472 research outputs found

    Learning to automatically detect features for mobile robots using second-order Hidden Markov Models

    Get PDF
    In this paper, we propose a new method based on Hidden Markov Models to interpret temporal sequences of sensor data from mobile robots to automatically detect features. Hidden Markov Models have been used for a long time in pattern recognition, especially in speech recognition. Their main advantages over other methods (such as neural networks) are their ability to model noisy temporal signals of variable length. We show in this paper that this approach is well suited for interpretation of temporal sequences of mobile-robot sensor data. We present two distinct experiments and results: the first one in an indoor environment where a mobile robot learns to detect features like open doors or T-intersections, the second one in an outdoor environment where a different mobile robot has to identify situations like climbing a hill or crossing a rock.Comment: 200

    Appearance-based localization for mobile robots using digital zoom and visual compass

    Get PDF
    This paper describes a localization system for mobile robots moving in dynamic indoor environments, which uses probabilistic integration of visual appearance and odometry information. The approach is based on a novel image matching algorithm for appearance-based place recognition that integrates digital zooming, to extend the area of application, and a visual compass. Ambiguous information used for recognizing places is resolved with multiple hypothesis tracking and a selection procedure inspired by Markov localization. This enables the system to deal with perceptual aliasing or absence of reliable sensor data. It has been implemented on a robot operating in an office scenario and the robustness of the approach demonstrated experimentally

    Semantic labeling of places using information extracted from laser and vision sensor data

    Get PDF
    Indoor environments can typically be divided into places with different functionalities like corridors, kitchens, offices, or seminar rooms. The ability to learn such semantic categories from sensor data enables a mobile robot to extend the representation of the environment facilitating the interaction withhumans. As an example, natural language terms like corridor or room can be used to communicate the position of the robot in a map in a more intuitive way. In this work, we firrst propose an approach based on supervised learning to classify the pose of a mobile robot into semantic classes. Our method uses AdaBoost to boost simple features extracted from range data and vision into a strong classifier. We present two main applications of this approach. Firstly, we show how our approach can be utilized by a moving robot for an online classification of the poses traversed along its path using a hidden Markov model. Secondly, we introduce an approach to learn topological maps from geometric maps by applying our semantic classification procedure in combination with a probabilistic relaxation procedure. We finally show how to apply associative Markov networks (AMNs) together with AdaBoost for classifying complete geometric maps. Experimental results obtained in simulation and with real robots demonstrate the effectiveness of our approach in various indoor environments

    Eksperimentalna usporedba metoda izgradnje mrežastih karata prostora korištenjem ultrazvučnih senzora

    Get PDF
    For successful usage of mobile robots in human working areas several navigation problems have to be solved. One of the navigational problems is the creation and update of the model or map of a mobile robot working environment. This article describes most used types of the occupancy grid maps based sonar range readings. These maps are: (i) Bayesian map, (ii) Dempster-Shafer map, (iii) Fuzzy map, (iv) Borenstein map, (v) MURIEL map, and (vi) TBF map. Besides the maps description, a memory consumption and computation time comparison is done. Simulation validation is done using the AMORsim mobile robot simulator for Matlab and experimental validation is done using a Pioneer 3DX mobile robot. Obtained results are presented and compared regarding resulting map quality.Za uspješnu primjenu mobilnih robota u radnim prostorima s ljudima potrebno je riješiti različite probleme navigacije. Jedan od problema navigacije jest kreiranje modela i uključivanje novih informacija o radnoj okolini mobilnog robota u model radne okoline ili kartu. Članak opisuje često korištene tipove mrežastih karata prostora zasnovanih na očitanjima ultrazvučnih osjetila udaljenosti. Obrađeni modeli prostora su: (i) Bayesova karta, (ii) Dempster-Shaferova karta, (iii) neizrazita karta, (iv) Borensteinova karta, (v) MURIEL karta i (vi) TBF karta. Osim opisa, u članku je dana i usporedba implementiranih algoritama prema memorijskim i računskim zahtjevima. Simulacijska provjera napravljena je korištenjem AMORsim simulatora mobilnog robota za programski paket Matlab, a eksperimentalna provjera napravljena je korištenjem Pioneer 3DX mobilnog robota. Također su prikazani dobiveni rezultati uz usporedbu njihove kakvoće

    Conceptual spatial representations for indoor mobile robots

    Get PDF
    We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following findings in cognitive psychology, our model is composed of layers representing maps at different levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporates a linguistic framework that actively supports the map acquisition process, and which is used for situated dialogue. Finally, we discuss the capabilities of the integrated system

    Exploration of unknown environments using a compass, topological map and neural network

    Get PDF
    This paper addresses the problem of autonomous exploration and mapping of unknown environments by a mobile robot. A map-based exploration system is presented, in which a topological map of the environment is acquired incrementally by the robot, using an artificial neural network to detect new areas of unexplored territory. Using this approach, no manual intervention in the map acquisition process is required, and all computation is carried out in real-time on board the robot. Experiments are presented in which a Nomad 200 robot successfully mapped and navigated complex, real world environments containing transient changes such as moving people

    Supervised semantic labeling of places using information extracted from sensor data

    Get PDF
    Indoor environments can typically be divided into places with different functionalities like corridors, rooms or doorways. The ability to learn such semantic categories from sensor data enables a mobile robot to extend the representation of the environment facilitating interaction with humans. As an example, natural language terms like “corridor” or “room” can be used to communicate the position of the robot in a map in a more intuitive way. In this work, we first propose an approach based on supervised learning to classify the pose of a mobile robot into semantic classes. Our method uses AdaBoost to boost simple features extracted from sensor range data into a strong classifier. We present two main applications of this approach. Firstly, we show how our approach can be utilized by a moving robot for an online classification of the poses traversed along its path using a hidden Markov model. In this case we additionally use as features objects extracted from images. Secondly, we introduce an approach to learn topological maps from geometric maps by applying our semantic classification procedure in combination with a probabilistic relaxation method. Alternatively, we apply associative Markov networks to classify geometric maps and compare the results with a relaxation approach. Experimental results obtained in simulation and with real robots demonstrate the effectiveness of our approach in various indoor environments

    Navigating the Corridors of Power : Using RFID and Compass Sensors for Robot Localisation and Navigation

    Get PDF
    Localisation and navigation are still of the most important issues in mobile robotics. In certain indoor application scenarios Radio frequency identification (RFID) based absolute localisation has been found to be especially successful in supporting navigation. In this paper we examine the feasibility of an RFID and compass based approach to robot localisation and navigation for indoor environments that are dominated by corridors. We present a proof of concept system and show how it can be used to localized within and navigate through an environment
    corecore