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Abstract

Thispaperaddressestheproblemof autonomousexplo-
ration andmappingof unknownenvironmentsby a mobile
robot. A map-basedexploration systemis presented,in
which a topological map of the environmentis acquired
incrementallyby the robot, usingan artificial neural net-
work to detectnew areasof unexplored territory. Using
this approach, no manualinterventionin the mapacqui-
sition processis required, and all computationis carried
out in real-timeon board the robot. Experimentsare pre-
sentedin which a Nomad200 robot successfullymapped
andnavigatedcomplex, real world environmentscontain-
ing transientchangessuch asmovingpeople.

1 Intr oduction

In recentyears,therehasbeena greatdealof research
on the topic of mobile robot navigation,anda numberof
successfulnavigationsystemshave beenproduced.Many
systemseitherrely on pre-installedmaps[14], or usepas-
sivemechanismsto build mapswhile therobotis manually
steeredaroundtheenvironmentby ahumanoperator[8, 6].
In othersystems,the sensor-motor datarequiredfor map
building is first collectedby the robot undermanualcon-
trol, thenanoff-line learningalgorithmis usedto find the
bestmapto fit thedata[13].

While all of the methodsdescribedabove have their
merits, manual intervention is costly and prone to hu-
man error. Similarly, reactive behaviours such as wall-
following, thoughoftenvery robust,cannotbeguaranteed
to build completemapsin large, complex environments.
We thereforebelieve that themostflexible approachis for
the robot to acquireits own mapsthrougha processof�
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autonomous,map-basedexploration. In otherwords, the
robotshouldbeableto identify regionsof unexploredter-
ritory, navigateto the identifiedareasusingits own map,
andincrementallyupdatethismapat thesametime.

A versionof thelatterstrategy wasusedhere,in which
the robot continuouslytries to expandthe territory which
hasalreadybeencharted.Thebasicideais that the robot
travels to the edgeof the existing map,and thenusesits
range-findersensorsto detectnew regionsof unexplored
territory. The new territory is addedto the map,thenthe
robotattemptsto travel to thenext unexplorededgeof the
map. The processis repeateduntil the robot hascovered
theentireenvironment.

Therobotusesagraph-basedrepresentationof its envi-
ronment,in which thenodescorrespondto contiguousre-
gionsknown asplacesandthelinks to possibletransitions
betweenplaces.A topologicalratherthanmetricrepresen-
tationwasusedbecausemetricmapsrequirelargeamounts
of computationandalsodependon precisepositioninfor-
mation for map learning. Theserequirementsarepartic-
ularly hardto satisfyin largerenvironments,especiallyif
fully autonomousoperationis required.

Theapproachdiffersfrom previouswork in thatit does
not require high precisionsensingor dependupon sim-
plifying assumptionsaboutparticularenvironments,and
has been testedin populated,real world environments.
An artificial neuralnetwork is usedto detectareasof un-
explored territory, fusing togetherinformation from the
robot’ssonarandinfraredsensors.All of thedatarequired
for training the network is collectedby the robot itself,
avoiding theneedfor thesystemdesignerto determinethe
training signal. The completesystemrequiresonly mini-
mal computationalresourcesdueto thecompactnessof its
representations,therebyeliminating the needfor off-line
processingandincreasingtheautonomyof therobot.

In this paper, we assumethat the robot hasthe ability
to determineits own locationin the topologicalmap; full
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detailsof theself-localisationmechanismusedin theseex-
perimentscanbefoundin [3].

1.1 RelatedWork

Yamauchi[18] developeda techniquecalled“frontier-
based”exploration,in which a globaloccupancy grid [11]
was usedto representthe environment. Imagesegmen-
tation techniqueswereusedto extract regionsin the grid
betweenchartedand unknown territory known as “fron-
tiers”. Explorationwasthendirectedtowardsthefrontiers.
A disadvantageof thisapproachis thatit dependscritically
uponaccuratelasersensorsandpreciselycorrectedodome-
try, becauseexactpositioninformationis neededto update
grid-basedmaps.

Thrun [15] also developeda mapbuilding systemus-
ing a global occupancy grid. An artificial neuralnetwork
wastrainedto translateneighbouringgroupsof sonarsen-
sorreadingsinto occupancy valuesin thegrid. Exploration
wasthendirectedtowardsareasof high uncertaintyin the
acquiredmap. The requiredtraining exampleswere ob-
tained using a simulator, though the trained neural net-
workswereshown to work well on therealrobot.

EdlingerandWeiss[5] developeda mapbuilding sys-
tem in which the robot’s map consistedof a set of laser
range-finderscansand the topological relationsbetween
the scans. The systemattemptedto detectobstacle-free
segmentsin thescansknown as“passages”,thatis, regions
of openspacewhicharewideenoughfor therobotto move
into. Thedetectedpassageswereaddedto astackof unex-
ploredlocations,whichwerevisitedin turnuntil thewhole
environmenthadbeencoveredby therobot.

2 Exploration Strategy

Therobotbuildsatopologicalmap,whichis augmented
with metricinformationconcerningthedistanceandangles
betweenconnectedplaces.Themapcontainstwo different
typesof places(figure1):� Predicted. Placespresumedto exist but not yet vis-

itedby therobot.� Confirmed. Placesactuallyvisitedby therobot.

Explorationconsistsof continuouslytrying to expand
the territory alreadychartedby the robot, usinga neural
network to addnew ‘predicted’placesto themap. Subse-
quentmovementby therobotis usedto verify whetherthe
‘predicted’placesactuallyexist or not.

From its initial location, the robot addsthe first setof
‘predicted’ placesto the map,and thenattemptsto navi-
gateto thenearest‘predicted’place.If therobotis ableto

Figure1: Exampleof TopologicalMap Building. Places
predictedby theneuralnetwork but not yet visitedby the
robotareshown by squares.Placesvisitedby therobotare
shown by filled circles.

move to a physicallydistinct new locationin theenviron-
mentwithout encounteringany obstacles,the ‘predicted’
placeis replacedby a ‘confirmed’ place,otherwiseit is
deleted.Whenever another‘confirmed’ placeis addedto
themap,theneuralnetwork is usedagainto predictfurther
new places. This processis repeateduntil all ‘predicted’
placesin the maphave eitherbeenvisitedby the robotor
deleted.

In orderto implementthis explorationstrategy, thefol-
lowing mechanismswererequired:

1. Location Recognition.We assumethattherobothas
the ability to locateitself within the map. The self-
localisationalgorithmdescribedin [3] wasusedhere;
this algorithm is able to determinethe most likely
placeoccupiedby therobot,andalsothemostlikely
displacementof therobotwithin eachof thepossible
places.

2. Open SpaceDetectionand CompassSense.In or-
der to addthenew ‘predicted’placesto themap,the
robot requiresthe ability to determineits orientation
(seesection3). In addition,somemechanismis re-
quiredto addthe new ‘predicted’ placesto the map,
i.e.,to detectareasof unexploredterritoryin aparticu-
lar direction.Individual range-finderreadingsarenot
well suitedfor thispurposebecauseof problemssuch
asocclusionscausedby moving people,sensornoise,
cross-talkandspecularreflections.Instead,an artifi-
cial neuralnetwork wastrainedto learntheconceptof
“openspace”,combiningnoisy informationobtained
from many sensorreadings(seesection5).



3. Way Finding. Dijkstra’salgorithmwasusedfor path
planning.Therobot’sheadingwascontrolledby tak-
ing into accountthe robot’s current location in the
map, the compasssenseandthe shortestpath to the
goal location. A pre-trainedbehaviour for moving
forwardswhile avoiding obstacleswasusedfor low
level sensor-motorcontrol[12].

4. Local Dead Reckoning. In order to determine
whethera new ‘confirmed’ placeshouldbe addedto
the map, a local deadreckoning strategy was used
(seesection4). If the robot managedto travel by a
pre-specifieddistancethreshold(1m) from the near-
eststoredplacein themapwithout encounteringany
obstacles,thena new ‘confirmed’ placewasaddedto
themap.

5. ConsistencyMaintenance. Deadreckoning cannot
be used for global position estimationduring map
building, due to the accumulateddrift errorscaused
by wheelslippage.Therefore,someothermechanism
wasrequiredto assigngloballyconsistentcoordinates
to theplacesin the robot’s map,usingonly the local
metricrelationsbetweentheplaces(seesection6).

The systemwas implementedon a Nomad200 robot
equippedwith sonar, infraredandodometrysensorsanda
flux-gatecompass(figure2).

Turret

16 sonar
sensors
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Figure2: The Nomad200 Mobile RobotFortyTwo. The
sonarandinfraredsensorsaremountedontheturret,which
canrotateindependentlyrelative to thebaseof therobot.

3 CompassSense

A separatebehaviour wasusedto rotatetherobot’s tur-
ret at smallspeedsin thedirectionof ‘North’, asindicated
by theflux-gatecompass.Theeffectof thisbehaviour was
to smoothout localfluctuationsin themagneticfield of the
robot’s environment.Using thecompassin this way gave
therobotasingleview of eachlocation,i.e.,theappearance

of locationsto the robotdependedon the robot’s position
alone,not its orientation.

While this methodis robustin dealingwith minor vari-
ationsin themagneticfield, severecompasserrorscaused
by ferrousbuilding materialscouldposeaproblemin some
environments. A more reliable compasssensecould be
obtainedby integrating perceptualinformation from the
robot’s exteroceptiveandproprioceptivesensors,asin the
self-orientationsystemdescribedby Li et al [9], or by us-
ing correlationwith avision-basedmapof theceilingasin
Thrunet al [16].

4 DeadReckoning

Insteadof using the robot’s rotationalwheelencoders
for theon-linedeadreckoning,we usedtherelative angu-
lar displacementof the turret from the baseof the robot.
This hadthe effect of removing the accumulatedangular
drift affectingtherobot’sraw odometry(figure3), because
the turret wasanchoredto ‘North’ by the compasssense.
Usingcompass-basedodometryleavesa translationaldrift
errorof approximately2-5%of distancetravelled.
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Figure3: Top: Raw Odometry. Bottom: Compass-Based
Odometry. Theaccumulatedrotationaldrift in therobot’s
raw odometry was removed on-line using the compass
sense.



5 Open SpaceDetection

A fully connected,feedforwardneuralnetwork with 6
inputs, 3 hiddenunits and 1 output was trainedto asso-
ciatethesensoryinput in agivendirectionwith therobot’s
ability to move by a pre-specifieddistance(1m) in thatdi-
rection. Theoutputof this network wastheprobabilityof
openspacein thegivendirection(figure4).
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Figure 4: Architecturefor OpenSpaceDetection. Two
pre-processingfunctionswere appliedto the sensoryin-
put,thenanartificial neuralnetwork wasusedto detectthe
presenceor absenceof openspacein a givendirection.

5.1 Data Collection

Thesensingstrategy usedby therobotconsistedof ro-
tatingits turret to obtaina detailedscan,consistingof 144
sonarand144infraredreadingsat2.5degreeintervals.For
datacollection, a scanwas first taken, then the robot at-
temptedto move as far aspossiblein an arbitrarydirec-
tion until anobstaclewasdetected,recordingboththesen-
sorreadingsfrom thescanandthedistancetravelled. The
datawas collectedin several different areasof the com-
puterbuilding at Manchester.

5.2 Pre-Processing

The recordedsensorreadingswere first processedto
take into accountthe headingof the robot. A subsetof

58 of the readings,centredaroundthe directionof travel,
wasusedasinput to theclassificationmechanism.Thefol-
lowing functionswerethenapplied:

Median Filter. The robot’s raw sensorreadingsrarely
give accuraterangemeasurements;thevaluesmaybe too
high,e.g.,dueto specularreflections,or too low, e.g.,due
to cross-talkor occlusionscausedby moving people. To
reducetheseeffects,groupsof 5 or 6 adjacentsensorread-
ingswerecombinedto producea singlereadingby taking
their medianvalue.This resultedin five sonarandfive in-
fraredinputsto thenext pre-processingstage.

Symmetry Filter. This functionwasusedto exploit the
bilateralsymmetryinherentin this classificationtask. For
example,the left-mostsonarreadingwascombinedwith
theright-mostsonarreadingby takingtheminimumof the
two values(i.e., thenearestof thetwo obstaclesdetected).
The middle-left andmiddle-right readingsweresimilarly
combined.This resultedin threesonarandthreeinfrared
inputsto theneuralnetwork,sincethecentrereadingswere
notaffectedby this operation.

5.3 Training and Testing

A key issuewasthatof misclassificationerrors.Though
the performanceof the network usedherewasvery good
(see results), any classificationmechanismis bound to
make someerrors. Theseerrorswill eitherbe ‘f alseposi-
tives’,wheretherobotpredictsopenspacewhenthespace
is actuallyoccupied,or ‘f alsenegatives’, wherethe robot
predictsoccupiedspacewhenthe spaceis actuallyopen.
In the explorationstrategy presented,‘f alsepositives’ are
notamajorproblem,becausesubsequentmovementby the
robotis usedto verify whetherthepredictedplacesactually
exist. However, ‘f alsenegatives’wouldposeaproblem,as
we do not want the robot to missany areasof unexplored
territory.

The solution adoptedhere was to bias the classifier
mechanisminto over-estimatingthe likelihood of open
spacein a given direction,therebyproducingmore‘f alse
positives’ but fewer ‘f alsenegatives’ (nonein the experi-
mentspresentedhere).Thenetwork wastrainedto output
theprobabilityof openspaceby usingthecross-entropy er-
ror function insteadof the sum-of-squareserror normally
usedin neuralnetwork training[1]. During testing,a bias
value(0 � 15) wasaddedto theoutputof thenetwork in or-
der to producethe desiredover-estimates.An input pat-
ternwasthusclassifiedas“openspace”if the outputwas
greaterthana thresholdof 0 � 5, and“occupiedspace”oth-
erwise.



6 Map Learning

6.1 Local Metric Relations

Whenever therobotmovedbetweentwo distinctplaces
i and j for the first time, a new topological connection
was recordedin the map. In addition, the distancedi j

andheadingθi j of the robot betweenthe two placeswas
recorded.Thelinks betweenplaceswereconstrainedto be
bi-directional,that is, di j � d j i andθi j � θ j i

� π. These
measurementswere obtainedusing local deadreckoning
andmatchingof local range-finderscansconstructedfrom
therobot’ssonarreadings[3] (seealso[17, 10]).

During subsequenttraversalsof an existing link in the
map, the measurementsassociatedwith the link were
adaptedusing the following rules taken from Yamauchi
andBeer[19]:

d
�
i j � λdobs

�	�
1 
 λ � di j �

θ
�
i j � tan 1 � λsinθobs

�	�
1 
 λ � sinθi j

λcosθobs
�	�

1 
 λ � cosθi j � �
where the vector

�
dobs� θobs� refers to the observed dis-

placement,i.e.,distanceandheading,of therobotbetween
thetwo places,andthelink adaptationrate,λ � 0 � 5 in these
experiments.

6.2 ConsistencyMaintenance

The problemaddressedherewas how to assignglob-
ally consistentcoordinatevaluesto theplacesin therobot’s
map.Eachplacein themapwasrepresentedby aCartesian
coordinate

�
xi � yi � . A relaxationalgorithmwasusedto find

anoptimal setof coordinatesto fit the observedmeasure-
ments,using only the local metric relationsbetweenthe
places.

In this approach,eachlink in themapcanbemodelled
as a spring which connectstwo adjacentplacesi and j.
Thespringreachesminimumenergy whentherelativedis-
placementbetweenthe coordinatesof i and j is equalto
the vector

�
di j � θi j � measuredby the robot [10, 7]. Thus,

globalconsistency is maintainedin themapby minimising
thefollowing energy function:

E � ∑
i

�
∑

j

�
xi 
 x j

�
di j cosθi j � 2 �	� yi 
 y j

�
di j sinθi j � 2 �

where∑
�
j refersto thesumover theneighboursof a given

node. Therearea numberof differentalgorithmswhich
canbe appliedto solve this particularoptimisationprob-
lem,includingGaussianelimination,stiffnessmethodsand
expectation-maximisation[4, 10, 7, 13].

Figure5: Left: floor planof acorridorenvironment.Right:
thecorrespondingmapacquiredby therobot.

7 Results

Theneuralnetwork wastrainedusing276examplesto
performthe openspaceclassificationtask, resultingin a
testerrorof 7 � 6%,A validationerrorof 4 � 0%wasobserved
duringthetestingof thecompleteexplorationsystem(this
was lower than the test error becausethe data usedfor
trainingandtestingcontaineda higherproportionof “dif-
ficult” examples,suchasjunctionsandcorners).

Themap-basedexplorationstrategy wastestedsuccess-
fully in a numberof untreated,realworld environmentsat
our computerbuilding, which containedtransientchanges
suchasmoving people,doorsopeningandclosing,etc.An
examplemapacquiredby the robot in a corridorenviron-
mentof size34m � 33m is shown in figure5.

To assessthe quality of the mapsobtained,we con-
sideredthe robot’s ability to navigateusing its own self-
acquiredmap. Firstly, we consideredthe robot’s ability
to relocaliseunderglobal uncertainty, i.e., to recover its
position after becominglost. To assesslocalisationper-
formance,the UncertaintyCoefficientU

�
L � R� wasmea-

suredagainstthe distancetravelled by the robot from an
unknown startingposition using wall-following (seefig-
ure 6). This statistic measuresthe extent to which the
robot’s response,R (the location estimatesproducedby
self-localisation)predictstherobot’s truelocation,L, as

U
�
L � R��� H

�
L ��
 H

�
L � R�

H
�
L � �

H
�
L � � 
 ∑

j
p� j ln p� j �

H
�
L � R� � 
 ∑

i � j pi j ln
pi j

pi � �
wherep� j � ∑i pi j , pi � � ∑ j pi j , andpi j refersto theprob-
ability of therobot’sresponsebeingi whentherobot’strue



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 5 10 15 20

U
(L

|R
)�

Distance/m

RELOCALISATION PERFORMANCE

Figure 6: RelocalisationperformanceU
�
L � R� under

globaluncertaintyin thecorridorenvironment.

locationwas j. Full detailsof theexperimentalprocedure
usedto assesslocalisationperformancecanbefoundin [2].

Finally, the exploration systemwas validatedthrough
its integrationinto a completenavigationsystem[3]. The
robothadto performa delivery task,finding 100different
routesthroughthe corridor environmentin figure 5. The
successratewas100%whenstartingfrom a known loca-
tion and92% whenstartingfrom a completelyunknown
location,indicatingtheeffectivenessof ourapproach.

8 Discussion

In this paper, we presenteda completemap-basedex-
ploration systemfor a mobile robot. The basicmecha-
nismsincludeda compass,a topologicalmapaugmented
with metric information and a neuralnetwork trainedto
detectareasof openspace,combinedwith our previous
work on self-localisationusing landmarks[2, 3]. Using
this approach,realworld environmentsof severalhundred
m2 were mappedindependentlyby a Nomad 200 robot
without requiring off-line processingor humaninterven-
tion in theexplorationprocess.

Futurework will needto examinethe problemof self-
orientationin moredetail to improve thereliability of the
compasssense(section3). Anotherfundamentalproblem
for any navigatingrobotis to build consistentmapsin very
largeenvironmentscontainingloops.Sofar, mobilerobots
have only beensuccessfulin “closing the loop” by us-
ing accuraterange-findersensingandpreciselycorrected
odometry[15]. This approachwill inevitably fail oncethe
sizeof the environmentis increasedbeyond the limits of
therobot’smechanismsfor positioncorrection.
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