2,186 research outputs found

    Health Assessment and Life Prediction of cutting tools based on support vector regression.

    No full text
    International audienceThe integrity of machining tools is important to maintain a high level of surface quality. The wear of the tool can lead to poor surface quality of the workpiece and even to damage of the machine. Furthermore, in some applications such as aeronautics and precision engineering, it is preferable to change the tool earlier rather than to loose the workpiece because of its high price compared to the tool's one. Thus, to maintain a high quality of the manufactured pieces, it is necessary to assess and predict the level of wear of the cutting tool. This can be done by using condition monitoring and prognostics. The aim is then to estimate and predict the amount of wear and calculate the remaining useful life of the cutting tool. This paper presents a method for tool condition assessment and life prediction. The method is based on nonlinear feature reduction and support vector regression. The number of original features extracted from the monitoring signals is first reduced. These features are then used to learn nonlinear regression models to estimate and predict the level of wear. The method is applied on experimental data taken from a set of cuttings and simulation results are given. These results show that the proposed method is suitable for assessing the wear evolution of the cutting tools and predicting their remaining useful life. This information can then be used by the operators to take appropriate maintenance actions

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Sensors for product characterization and quality of specialty crops—A review

    Get PDF
    This review covers developments in non-invasive techniques for quality analysis and inspection of specialty crops, mainly fresh fruits and vegetables, over the past decade up to the year 2010. Presented and discussed in this review are advanced sensing technologies including computer vision, spectroscopy, X-rays, magnetic resonance, mechanical contact, chemical sensing, wireless sensor networks and radiofrequency identification sensors. The current status of different sensing systems is described in the context of commercial application. The review also discusses future research needs and potentials of these sensing technologies. Emphases are placed on those technologies that have been proven effective or have shown great potential for agro-food applications. Despite significant progress in the development of non-invasive techniques for quality assessment of fruits and vegetables, the pace for adoption of these technologies by the specialty crop industry has been slow

    Photonic Biosensors: Detection, Analysis and Medical Diagnostics

    Get PDF
    The role of nanotechnologies in personalized medicine is rising remarkably in the last decade because of the ability of these new sensing systems to diagnose diseases from early stages and the availability of continuous screenings to characterize the efficiency of drugs and therapies for each single patient. Recent technological advancements are allowing the development of biosensors in low-cost and user-friendly platforms, thereby overcoming the last obstacle for these systems, represented by limiting costs and low yield, until now. In this context, photonic biosensors represent one of the main emerging sensing modalities because of their ability to combine high sensitivity and selectivity together with real-time operation, integrability, and compatibility with microfluidics and electric circuitry for the readout, which is fundamental for the realization of lab-on-chip systems. This book, “Photonic Biosensors: Detection, Analysis and Medical Diagnostics”, has been published thanks to the contributions of the authors and collects research articles, the content of which is expected to assume an important role in the outbreak of biosensors in the biomedical field, considering the variety of the topics that it covers, from the improvement of sensors’ performance to new, emerging applications and strategies for on-chip integrability, aiming at providing a general overview for readers on the current advancements in the biosensing field

    Simulation of site-specific irrigation control strategies with sparse input data

    Get PDF
    Crop and irrigation water use efficiencies may be improved by managing irrigation application timing and volumes using physical and agronomic principles. However, the crop water requirement may be spatially variable due to different soil properties and genetic variations in the crop across the field. Adaptive control strategies can be used to locally control water applications in response to in-field temporal and spatial variability with the aim of maximising both crop development and water use efficiency. A simulation framework ‘VARIwise’ has been created to aid the development, evaluation and management of spatially and temporally varied adaptive irrigation control strategies (McCarthy et al., 2010). VARIwise enables alternative control strategies to be simulated with different crop and environmental conditions and at a range of spatial resolutions. An iterative learning controller and model predictive controller have been implemented in VARIwise to improve the irrigation of cotton. The iterative learning control strategy involves using the soil moisture response to the previous irrigation volume to adjust the applied irrigation volume applied at the next irrigation event. For field implementation this controller has low data requirements as only soil moisture data is required after each irrigation event. In contrast, a model predictive controller has high data requirements as measured soil and plant data are required at a high spatial resolution in a field implementation. Model predictive control involves using a calibrated model to determine the irrigation application and/or timing which results in the highest predicted yield or water use efficiency. The implementation of these strategies is described and a case study is presented to demonstrate the operation of the strategies with various levels of data availability. It is concluded that in situations of sparse data, the iterative learning controller performs significantly better than a model predictive controller

    Air pollution and livestock production

    Get PDF
    The air in a livestock farming environment contains high concentrations of dust particles and gaseous pollutants. The total inhalable dust can enter the nose and mouth during normal breathing and the thoracic dust can reach into the lungs. However, it is the respirable dust particles that can penetrate further into the gas-exchange region, making it the most hazardous dust component. Prolonged exposure to high concentrations of dust particles can lead to respiratory health issues for both livestock and farming staff. Ammonia, an example of a gaseous pollutant, is derived from the decomposition of nitrous compounds. Increased exposure to ammonia may also have an effect on the health of humans and livestock. There are a number of technologies available to ensure exposure to these pollutants is minimised. Through proactive means, (the optimal design and management of livestock buildings) air quality can be improved to reduce the likelihood of risks associated with sub-optimal air quality. Once air problems have taken hold, other reduction methods need to be applied utilising a more reactive approach. A key requirement for the control of concentration and exposure of airborne pollutants to an acceptable level is to be able to conduct real-time measurements of these pollutants. This paper provides a review of airborne pollution including methods to both measure and control the concentration of pollutants in livestock buildings

    Service robotics and machine learning for close-range remote sensing

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen

    Estimation of the basic density of Eucalyptus grandis wood chips at different moisture levels using benchtop and handheld NIR instruments

    Full text link
    With the increasing demand for productivity and quality in the forestry sector, near-infrared (NIR) spectroscopy is promising in the monitoring of wood properties, such as density. However, most predictive models are based on spectra acquired in wood at equilibrium moisture content using benchtop equipment. The objective of this study was to evaluate the performance of the NIR instruments in predicting the basic density of Eucalyptus grandis wood at different moisture contents. The wood chips were evaluated from saturated conditions (freshly felled) to hygroscopic equilibrium conditions using benchtop and portable NIR instruments. Principal component analysis (PCA) was performed to verify the behavior of spectral data, partial least squares discriminant analysis (PLS-DA) to classify density categories, and partial least squares regression (PLS-R) to develop predictive models. The moisture gradient was not the limiting factor for the statistical modeling. PCA discriminated 99.50% of the variation in the data, while the PLS-DA correctly categorized in the range of 0–94% the density classes. The models developed by PLS-R with the benchtop instrument showed a prediction coefficient (RÂČ) ranging from 0.79 to 0.85 and those with the portable instrument ranged from 0.77 to 0.82; the ratios of prediction deviation (RPD) were 2.20 and 2.45, respectively. Thus, NIR spectroscopy has shown potential application in wood under saturated conditions, regardless of the type of instrument. In the industrial context, the use of a portable NIR instrument could streamline wood characterization without the need for drying and transporting samples to the laboratories
    • 

    corecore