126 research outputs found

    Tokenisation of class files for an embedded java processor

    Get PDF
    Los Alamitos, US

    Requirement Mining for Model-Based Product Design

    Get PDF
    PLM software applications should enable engineers to develop and manage requirements throughout the product’s lifecycle. However, PLM activities of the beginning-of-life and end-of-life of a product mainly deal with a fastidious document-based approach. Indeed, requirements are scattered in many different prescriptive documents (reports, specifications, standards, regulations, etc.) that make the feeding of a requirements management tool laborious. Our contribution is two-fold. First, we propose a natural language processing (NLP) pipeline to extract requirements from prescriptive documents. Second, we show how machine learning techniques can be used to develop a text classifier that will automatically classify requirements into disciplines. Both contributions support companies willing to feed a requirements management tool from prescriptive documents. The NLP experiment shows an average precision of 0.86 and an average recall of 0.95, whereas the SVM requirements classifier outperforms that of naive Bayes with a 76% accuracy rate

    Requirement mining for model-based product design

    Get PDF
    PLM software applications should enable engineers to develop and manage requirements throughout the product’s lifecycle. However, PLM activities of the beginning-of-life and end-of-life of a product mainly deal with a fastidious document-based approach. Indeed, requirements are scattered in many different prescriptive documents (reports, specifications, standards, regulations, etc.) that make the feeding of a requirements management tool laborious. Our contribution is two-fold. First, we propose a natural language processing (NLP) pipeline to extract requirements from prescriptive documents. Second, we show how machine learning techniques can be used to develop a text classifier that will automatically classify requirements into disciplines. Both contributions support companies willing to feed a requirements management tool from prescriptive documents. The NLP experiment shows an average precision of 0.86 and an average recall of 0.95, whereas the SVM requirements classifier outperforms that of naive Bayes with a 76% accuracy rate

    Text Augmentation: Inserting markup into natural language text with PPM Models

    Get PDF
    This thesis describes a new optimisation and new heuristics for automatically marking up XML documents. These are implemented in CEM, using PPMmodels. CEM is significantly more general than previous systems, marking up large numbers of hierarchical tags, using n-gram models for large n and a variety of escape methods. Four corpora are discussed, including the bibliography corpus of 14682 bibliographies laid out in seven standard styles using the BIBTEX system and markedup in XML with every field from the original BIBTEX. Other corpora include the ROCLING Chinese text segmentation corpus, the Computists’ Communique corpus and the Reuters’ corpus. A detailed examination is presented of the methods of evaluating mark up algorithms, including computation complexity measures and correctness measures from the fields of information retrieval, string processing, machine learning and information theory. A new taxonomy of markup complexities is established and the properties of each taxon are examined in relation to the complexity of marked-up documents. The performance of the new heuristics and optimisation is examined using the four corpora

    Requirement mining for model-based product design

    Get PDF
    PLM software applications should enable engineers to develop and manage requirements throughout the product’s lifecycle. However, PLM activities of the beginning-of-life and end-of-life of a product mainly deal with a fastidious document-based approach. Indeed, requirements are scattered in many different prescriptive documents (reports, specifications, standards, regulations, etc.) that make the feeding of a requirements management tool laborious. Our contribution is two-fold. First, we propose a natural language processing (NLP) pipeline to extract requirements from prescriptive documents. Second, we show how machine learning techniques can be used to develop a text classifier that will automatically classify requirements into disciplines. Both contributions support companies willing to feed a requirements management tool from prescriptive documents. The NLP experiment shows an average precision of 0.86 and an average recall of 0.95, whereas the SVM requirements classifier outperforms that of naive Bayes with a 76% accuracy rate

    Requirement Mining for Model-Based Product Design

    Get PDF
    PLM software applications should enable engineers to develop and manage requirements throughout the product’s lifecycle. However, PLM activities of the beginning-of-life and end-of-life of a product mainly deal with a fastidious document-based approach. Indeed, requirements are scattered in many different prescriptive documents (reports, specifications, standards, regulations, etc.) that make the feeding of a requirements management tool laborious. Our contribution is two-fold. First, we propose a natural language processing (NLP) pipeline to extract requirements from prescriptive documents. Second, we show how machine learning techniques can be used to develop a text classifier that will automatically classify requirements into disciplines. Both contributions support companies willing to feed a requirements management tool from prescriptive documents. The NLP experiment shows an average precision of 0.86 and an average recall of 0.95, whereas the SVM requirements classifier outperforms that of naive Bayes with a 76% accuracy rate
    corecore