
Adapting Compiler Front Ends for

Generalised Parsing

Submitted by

Robert Michael Walsh

for the degree of Doctor of Philosophy

provided by

Royal Holloway, University of London

2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/77297897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Declaration

I, Robert Michael Walsh, hereby declare that this thesis and the work presented in it

is entirely my own. Where I have consulted the work of others, this is always clearly

stated.

Signed: (Robert Michael Walsh)

Date: 16/02/2016

1



Dedications

I would like to thank numerous people and organisations without whom this thesis

would not have been possible.

• I would like to thank my supervisors, Adrian Johnstone and Elizabeth Scott,

for the countless academic, technical and (at times) emotional support they have

provided me over the years. They initially gave me the opportunity to pursue this

PhD and, since then, constantly helped me to develop and refine my ideas. I am

especially grateful for the assistance and feedback they provided during the final

stage of the work, as well as helping me to keep up my motivation and energy.

• I would like to thank Joe Reddington and Laurence O’Toole for all the advice

they provided me throughout my stay as a PhD student. I would also like to

thank them for their wit and friendship, that made my stay enjoyable.

• Although he arrived during the final stage of my thesis, Thomas van Binsbergen’s

enthusiasm and ideas have certainly inspired me which I would like to thank him

for.

• I would like to thank James Smith, Jamie Alnasir and Andrej Zukov Gregoric for

their friendship and for the lunches we have had together.

• Ulrich Schaechtle and Bedour Al-Rayes started in my laboratory at roughly the

same time I did, and together we have shared the PhD experience and I would

like to thank them for the many discussions we have had.

• I, of course, would like to thank my mother who has raised me over the years and

has provided countless support.

• I would like to thank all my friends, both in and out of Royal Holloway, who have

supported me and provided me a respite at particularly difficult moments

• I would like to thank EPSRC for the financial assistance they provided as part

of the studentship funding of the PLanCompS project

• Finally, I would like to thank the Swansea University half of the PLanCompS

project, headed by Peter Mosses, as well as Microsoft Corporation for providing

the interesting case study from which my work is built on.

2



Abstract

Traditional compiler front-ends are designed around near-deterministic parsing algo-

rithms, restricting the form of the parsing grammar. The corresponding lexical anal-

ysers are required to provide only a single partitioning of an input string into tokens.

This requires the lexical analyser to apply lexical disambiguation techniques.

A generalised parser can in principle generate all derivations from a grammar whose

tokens are the characters of the underlying alphabet (so called character-level pars-

ing) but this results in a very large data structure. This thesis investigates a form

of lexical analysis that can offer all tokenisations of a string to a parser, as well as

a corresponding multiple input parsing algorithm, MGLL, which can simultaneously

construct derivations over all tokenisations. The goal is to provide equivalent general-

ity to a character-level parser, but with significantly improved performance in terms of

both the space required to represent the derivations and the time required to construct

them. In addition, lexical-level disambiguation constructs are provided which may be

used to model traditional lexical disambiguation strategies under the new framework.

The thesis will also discuss the translation of derivation trees into abstract syntax

forms suitable for use in structural semantics, by annotating a grammar with a small

set of local operations called GIFT operators. Some preliminary work on how to specify

ambiguity reduction at syntactic level shall also be described.

The thesis concludes with two case studies. One demonstrating the application of

this new form of lexical analysis to the C# 2.0 language specification. The other drawn

from the PLanCompS [Mos+15] project, which shows how to generate derivations in

an appropriate abstract syntax for the C# 1.2 language, from a parser which uses the

concrete grammar from the C# 1.2 language standard specification.
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Chapter 1

Introduction and Background

Theory

The role of a compiler is to take a string written in some source programming lan-

guage and generate a semantically equivalent machine-interpretable string. As shown

in Figure 1.1, the process is conceptually considered in two parts - firstly the front-end,

which takes the initial string, and analyses its structure and semantics, and secondly

the back-end, which generates an equivalent machine-interpretable string. This the-

sis focuses on the former, developing new techniques and ideas for lexical analysis all

the way through to the interface between the syntax and semantic analyser. These

techniques are made possible with the advent of generalised parsing, which was pop-

ularised by Earley [Ear70], Lang [Lan74] and Tomita [Tom85], then expanded on by

Farshi [Noz91], Horspool and Aycock [AH99], and Johnstone and Scott [SJ13].

1.1 The Compiler Front-end

A language can be defined in terms of words and sentences. A compiler takes the

characters in an input string and initially groups them into words - the lexical analysis

(or lexing) stage. It then determines whether these words form syntactically valid

sentences - the syntactic analysis (or parsing) stage. Words can usually be grouped

according to some word set - for example, the set of identifiers in a programming

language. It can be helpful for the parsing stage if these words are grouped together and

denoted by a symbolic ‘token’, such as ID. Similarly, strings representing assignment

operators may be grouped together, as could strings representing binary operators.

Sentences for, say, an assignment statement can then be expressed as a combination of

these tokens. For example, ID assign op ID bin op ID; would be such a sentence

8



Figure 1.1: Simplified overview of the structure of a compiler

in a C-like language

Traditionally, lexical analysis produces a single grouping of words over the character

string, which is then given to the parser. However, it is not always possible to know

the correct word grouping, without knowing the sentential context in which it appears.

Chapter 2 will introduce and explore a new technique that produces multiple groupings

of words over a given character string. Chapter 3 will then present a parsing algorithm

that can take multiple groupings as input, and generate all derivations over all of those

groupings.

The parser produces a structure representing the way in which these sentences are

built. Extracting meaning from the sentences requires breaking the sentence down into

phrases. Chapter 4 will present a way to translate the structure of the sentence into a

different structure for the phrases needed for semantic analysis.

The role of the language designer is to define the set of words and valid sentence

structures. The former is achieved by specifying pattern sets (tokens) for the words.

The latter is achieved by specifying a context-free grammar containing productions that

determine the structure of the sentences. The language designer is then responsible for

specifying how these sentences are restructured to obtain meaning.

In the rest of this chapter, the background theory and definitions that are necessary

to understand the content of this thesis are introduced. Where appropriate, standard

treatments as found, for instance, in Aho, Sethi and Ullman [ASU86] are used. The

chapter will also introduce a structure that embeds all context-free derivations of a

sentence, called an SPPF, which is less well known. More details can be found in
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Grune [GJ08].

1.2 Strings and tokens

Definition 1.2.1. An alphabet is a finite set of symbols, A. The set of strings whose

elements lie in A is denoted by A∗. A string, s ∈ A∗, is a sequence a1 . . . an such that

a1, . . . , an ∈ A, where n is the length of the string. If n is 0 then this is the empty

string, denoted by the symbol, ε.

Two strings, s, t ∈ A∗ can be concatenated to form a string, st ∈ A∗. For all

α ∈ A∗, αε = α = εα. If R and Q are sets of strings, then the concatenation RQ is

the set of strings such that if α ∈ R and β ∈ Q then αβ ∈ RQ.

Any string defined over some alphabet, A, can be given as input to the compiler

though usually only a subset of these strings will be accepted. The role of the language

designer is to develop a language specification that determines which strings should be

accepted and how these strings should be subsequently processed. Usually, the first

stage is to determine whether the string can be partitioned into words and produce

partitions of the string as sequences of tokens.

Definition 1.2.2. A token is a pair (x, Y ) where x is a unique name for the token,

and Y ⊆ A∗ is the set of strings that x denotes (the pattern set). An element of Y is

known as a lexeme, and Y is the pattern of x. In this thesis, a token will often simply

be referred to by its name, x. A string s is said to be matched by x if s ∈ Y .

A language specification includes the definitions of the alphabet A and the set of

tokens T . This will be referred to as the lexical specification. Some tokens have patterns

which contain just a single string, for example, keywords such as if and while. These

are called single-lexeme tokens and in this thesis, the bolded lexeme will be used as the

name of the token, for example, (if, {if}).
A lexical analyser takes a character string, and determines if there is some sequence

of tokens in T that partitions the entire string, and produces some token sequences as

output if there is. If there exists more than one token sequence, i.e. there is more than

one way to partition the string, then this is known as a lexical ambiguity. The next few

sections describe the mechanisms for determining how to partition a character string

into a sequence of tokens.
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1.3 Regular Expressions

The patterns of tokens are typically defined using regular expressions. If A is the

alphabet of the language, regular expressions specify subsets of A∗ as follows

• ε is a regular expression denoting the set containing only the empty string

• a is a regular expression denoting the set containing only the character a ∈ A.

If r and q are regular expressions then

• rq is a concatenated regular expression denoting the set of all strings αβ such

that α is in the set denoted by r and β is in the set denoted by q.

• r|q is an alternated regular expression denoting the set obtained from the union

of the set denoted by r and the set denoted by q.

• (r) is a parenthesised regular expression denoting the set denoted by r.

• r? is an optional regular expression denoting the union of the set denoted by r

and the set containing the empty string.

• r+ is a positive closure regular expression denoting the set of all strings obtained

by concatenating one or more strings in the set denoted by r.

• r∗ is a Kleene closure regular expression denoting the union of the set denoted

by r+ and the set containing the empty string.

To prevent ambiguity, the operators of a regular expression are given an order of

precedence. Parentheses always have the highest precedence, followed by the Kleene

closure, positive closure and optional operators. This is then followed by the concate-

nation, with alternation having the lowest precedence.

In traditional lexical analysis, regular expressions specify the patterns for token

definitions. A string is matched by a regular expression if it is in the pattern denoted

by the regular expression. The next section describes how such a match is determined

for a given regular expression.

1.4 Lexical Analysis

For a lexical specification defining a set of tokens, T , t ∈ T has a corresponding

deterministic-finite state automaton [RS59], DFAt, which matches exactly the strings

in the pattern of t. The lexical analyser takes a character string, u, and partitions this
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string such that u = u1u2. If u1 is accepted by some DFAri then ri matches u1. If

u1 is accepted, then the lexical analyser determines inductively whether the remaining

input, u2, is accepted. u is accepted by the lexical analyser and token sequences (called

tokenisations) of form rirj . . . rn are produced if u1 is matched by ri and u2 is matched

by rj . . . rn.

In general, there will be multiple ways to partition u. A lexical analyser could

consider all ways to partition u but there are worst case exponentially many partitions.

Consider a string of n characters. A partition can be inserted in n−1 positions between

two characters. Therefore, there are 2(n−1) ways to partition the string.

1.5 Chomsky’s Grammar Hierarchy

Regular expressions are often sufficient to specify the patterns of tokens. However,

to specify the set of strings accepted by a programming language, one needs a more

complex description of the language of strings.

Formal grammars were explored by Chomsky in [Cho56]. A grammar is a formal

description that generates a language, LΓ. If T is a set of tokens used by a grammar,

then LΓ ⊆ T ∗. A grammar is a 4-tuple, Γ = (N,T, S, P ), where N is a set of non-

terminal symbols, T is a set of tokens (in this context known as the set of terminal

symbols), S ∈ N is the start symbol, and P is a set of pairs of form (x, γ) with

x ∈ (N ∪ T )∗N(N ∪ T )∗ and γ ∈ (N ∪ T )+ ∪ {ε}.
P is called the set of productions. The first element of the pair is known as the

left-hand side of the production, whilst the second element is known as the right-hand

side of the production. T is the alphabet of the grammar, Γ.

Chomsky identified four different classes of grammars. These classes are defined by

their constraints on the productions.

(Type 0) Unrestricted Grammars The set of all grammars satisfying the above

definition. The problem of deciding whether a string is in the language of an

unrestricted grammar is, in general, undecidable.

(Type 1) Context-sensitive Grammars For all (x, γ) ∈ P , then x is of the form

αXβ and γ is of the form αδβ where α, β ∈ (N ∪ T )+ ∪ {ε}, X ∈ N and

δ ∈ (N ∪ T )+. (S, ε) ∈ P is also allowed in a context-sensitive grammar if S does

not appear on the right-hand side of any production in P . In general, the problem

of deciding whether a string is in the language of a context-sensitive grammar is

worst-case exponential.
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(Type 2) Context-free Grammars For all (x, γ) ∈ P , then x ∈ N and γ ∈ (N ∪
T )+∪{ε}. Deciding whether a string is in the language of a context-free grammar

is known to be sub-cubic, but it is not known if it is linear, or even worst case

quadratic.

(Type 3) Regular Grammars For all (x, γ) ∈ P then x ∈ N and either the gram-

mar is right regular and γ ∈ TN or the grammar is left regular and γ ∈ NT .

(S, ε) ∈ P is also allowed in a regular grammar if S does not appear on the right-

hand side of any production in P . A regular grammar cannot be simultaneously

left regular and right regular. Language membership for regular languages is

decidable in linear time.

The classes form a containment hierarchy, Type 3 ⊂ Type 2 ⊂ Type 1 ⊂ Type 0.

Typically, syntactic analysis of programming languages is the process of determining

whether a string is in the language of some context-free grammar. A programming

language may have features that are context-sensitive but not context-free - however

these features are usually handled as part of the semantic analysis, as general context-

sensitive parsing algorithms offer poor performance.

1.6 Backus-Naur Form (BNF)

Backus-Naur Form (BNF) and its various extensions form a notation for describing

context-free grammars by their set of productions. If (x1, γ1), . . . , (xn, γn) ∈ P then

x1 ::= γ1

...

xn ::= γn

are production rules.

A non-terminal, xi, may be the left-hand side of multiple productions,

(xi, γi), . . . , (xi, γp)

For short-hand, a vertical bar | is used to represent this choice of productions

xi ::= γi| . . . |γp

γi, . . . , γp are called the alternates for the production rule for xi.

13



For any production

x ::= γ

γ = g1g2 . . . gp is a string of terminal and non-terminal instances.

1.6.1 Extended Backus-Naur Form (EBNF)

BNF can be extended by allowing the right-hand sides of rules to be regular expressions

over the symbols of the grammar. Such grammars, called EBNF [Wir96] grammars, do

not increase the class of languages that can be specified, but the format can be more

concise and extends the class of grammars which can be parsed using certain efficient

but limited techniques. In this thesis, parsing techniques which are based on EBNF will

not be discussed, and derivation trees for such grammars will not be defined. However,

later an EBNF recogniser version of GLL will be given, which can be used to generate

tokenisations. Extended Backus-Naur Form (EBNF) is often expressed in Wirth-style

form [Wir77] but this thesis shall use regular expression notation in which productions

are of the form X ::= γ, where X is a non-terminal and γ is a regular expression defined

over N ∪ T ∪ {ε}.

1.7 Derivations

For each X ∈ N , the language generated by X, LΓ(X), comprises the strings u ∈ T ∗

such that X derives u. A derivation step is of the form αXβ ⇒ αγβ where α, β, γ ∈
(N ∪ T )∗ and (X ::= γ) ∈ P . A sequence of derivation steps S ⇒ α1 ⇒ · · · ⇒ αn ⇒
s ∈ T ∗ is referred to as a derivation. The derivation step αXβ ⇒ αγβ is left-most if

α ∈ T ∗ and right-most if β ∈ T ∗. A derivation consisting solely of left-most derivation

steps is a left-most derivation and a derivation consisting solely of right-most derivation

steps is a right-most derivation.

X
∗

=⇒ u is used to represent the closure of a sequence of derivation steps. If X
∗

=⇒ u

then u ∈ LΓ(X). The role of the parser is to construct structural representations of the

derivations, S
∗

=⇒ u, for an input u, given a grammar Γ = (N,T, S, P ). The language

generated by the grammar, LΓ is the language of S, LΓ(S).

Consider the grammar

S ::= q S |AB

A ::= a

B ::= b

14



A left-most derivation of the string qqab is

S ⇒ qS ⇒ qqS ⇒ qqAB ⇒ qqaB ⇒ qqab

An equivalent right-most derivation is

S ⇒ qS ⇒ qqS ⇒ qqAB ⇒ qqAb⇒ qqab

If there is a non-terminal X ∈ N such that there exists a derivation X ⇒ α
∗

=⇒ Xγ,

then Γ is said to be left-recursive. Similarly, if there exists a derivation X ⇒ α
∗

=⇒ γX

then Γ is said to be right-recursive.

1.7.1 Derivation Trees

A derivation tree is an ordered, rooted tree with the following properties

• Leaf nodes have labels t ∈ (T ∪ ε)

• Interior nodes have labels n ∈ N

• If X is the label of an interior node, then the children of this node are labelled

with symbols in α for some X ⇒ α. The children are ordered as they appear,

left-to-right, in the sequence α.

• When read left-to-right, the leaf nodes, omitting nodes labelled ε, yield some

string in the language generated by the grammar, LΓ.

Each derivation corresponds to exactly one derivation tree although a derivation

tree can correspond to one or more derivations. The two derivations given of the

string qqab for the grammar on page 14 correspond to a single derivation tree, seen in

Figure 1.2.

1.7.2 Syntactic Ambiguity

The syntactic structure is usually the basis of semantic analysis. If for all strings in LΓ,

there exists exactly one left-most derivation, then Γ is syntactically unambiguous. If

there exists more than one left-most derivation for a given string, then Γ is syntactically

ambiguous. The existence of more than one left-most derivation is problematic for

semantics as this means there is more than one way to interpret the string. Chapter 5

will give a discussion of some elementary disambiguation techniques which are used

in the C# 1.2 case study in Chapter 6. Note, if there exists more than one left-most
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q

A

q S

S

S

B

a b

Figure 1.2: Derivation tree for the string qqab for the grammar on page 14

derivation of a given string, then there also exists more than one derivation tree. For

example, consider the grammar

S ::= q S |AB | a

A ::= a

B ::= b S | ε

The string qaba has two left-most derivations corresponding to the derivation trees in

Figure 1.3a and Figure 1.3b respectively.

S ⇒ qS ⇒ qAB ⇒ qaB ⇒ qabS ⇒ qaba

S ⇒ qS ⇒ qAB ⇒ qaB ⇒ qabS ⇒ qabAB ⇒ qab

1.7.3 Shared Packed Parse Forests (SPPFs)

In general, there can be a very large (and in some cases infinite) number of left-most

derivations. Constructing each derivation tree individually would be neither efficient

nor practical. Instead, these derivation trees can be combined into a single structure

called a shared packed parse forest (SPPF) [Tom85].

To combine derivation trees, one must determine which nodes can be shared. Simply

sharing nodes in the derivation tree that have the same label will not work as nodes

with the same label can refer to different contexts. The symbols in a derived string can

be denoted by their position (or index) in the string, starting at an index of 0. A portion

of the string can be denoted by two indices, the left extent representing the position of

the first character in the string portion, and the right extent representing the position

16
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Figure 1.3: The derivations of the string qaba for the grammar on page 16

after the last character of this string portion. Initially, left and right extents are added

to the node labels, so that every label is a triple (a, i, j) where a ∈ N ∪ T ∪ {ε} and

i ≤ j, i, j ∈ N. A leaf node of the form (t, i, j) means that the terminal t is matched

by the segment of the input beginning at a left extent of i and ending in a right extent

of j. An interior node has a label of the form (X, k, l) where the left-most child of the

node has a left-extent of k and the right-most child has a right-extent of k.

For the derivations of qaba for the grammar on page 16, the derivation trees with

extents are as given in Figure 1.4a and Figure 1.4b respectively. By comparing the two

trees, it is easy to see where it may be possible to share nodes. In this case, the only

point where the two trees differ is in the subtree rooted at (S, 3, 4). To manage these

separate derivation trees, a packed node is introduced for each family of children. This

packed node is labelled with a production of form X ::= γ denoting the production that

this family of children correspond to. Figure 1.5a and Figure 1.5b show how packed

nodes are included for the running example.

A shared packed parse forest (SPPF) is the union of these packed derivation trees

with extents. Non-packed nodes are shared if they have the same label. Shared nodes

may have distinct packed node children, these packed nodes will be the children of this

single node. For a set of derivation trees, X , the result is a directed, bipartite graph

with two disjoint node sets, Vp and Vs which have the following properties

• Each u ∈ Vs has a label of the form (r, i, j) where r ∈ (N ∪ T ∪ {ε}), i, j ∈ N and

i ≤ j.

• Each w ∈ Vp has a label of the form (X ::= αβ), where X ::= αβ ∈ P . Elements
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q, 0, 1

A, 1, 2 B, 2, 4

S, 3, 4

S, 1, 4

S, 0, 4

a, 3, 4

b, 2, 3a, 1, 2

(a)

q, 0, 1

A, 1, 2 B, 2, 4

ε, 4, 4

S, 3, 4

S, 1, 4

S, 0, 4

a, 3, 4

b, 2, 3a, 1, 2

B, 4, 4A, 3, 4

(b)

Figure 1.4: Derivation trees with extents for the string qaba for the grammar on page 16

q, 0, 1

A, 1, 2 B, 2, 4

A ::= a

S ::= q S

S ::= AB

S, 0, 4

a, 3, 4

S, 3, 4b, 2, 3a, 1, 2

S, 1, 4

S ::= a

B ::= b S

(a)

q, 0, 1

A, 1, 2 B, 2, 4

ε, 4, 4

A ::= a

B ::= ε

S ::= q S

S, 1, 4

S, 0, 4

S ::= AB

S ::= AB

a, 3, 4

S, 3, 4b, 2, 3a, 1, 2

B, 4, 4

A ::= a

B ::= b S

A, 3, 4

(b)

Figure 1.5: Derivation trees with extents and packed nodes for the string qaba for the
grammar on page 16

of Vp are called packed nodes.
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• u ∈ Vs with labels of the form (r, i, j) where r ∈ T are terminal nodes.

• u ∈ Vs with labels of the form (ε, i, i) where i ∈ N are epsilon nodes.

• u ∈ Vs with labels of the form (r, i, j) where r ∈ N are non-terminal nodes. Each

non-terminal node has one or more elements of Vp as its children.

• If u is a node in Vs with more than one child, then there is a syntactic ambiguity

at u.

• A node w ∈ Vp has one or more children. These children are elements of Vs.

• For any two trees in X , if there is a node in the two trees with the same label

and same yield, then there is exactly one corresponding node in the SPPF.

The final SPPF for the example is given in Figure 1.6. For brevity, in the rest of

this thesis, where there are no ambiguities, packed nodes will be omitted.

q, 0, 1

A, 1, 2 B, 2, 4

ε, 4, 4

A ::= a

B ::= ε

S ::= q S

S, 1, 4

S, 0, 4

S ::= AB

S ::= AB

a, 3, 4

S, 3, 4 b, 2, 3a, 1, 2

B, 4, 4

A ::= a

S ::= a

B ::= b S

A, 3, 4

Figure 1.6: SPPF for the derivations of string qaba over the grammar on page 16

1.7.4 Binarised SPPF

As noted in [SJ10b], if k is the maximum number of nonterminals in a given alternate

in a grammar, then the grammar can generate an SPPF of size O(nk). To constrain

the worst-case size complexity to cubic, a binarised form of the SPPF is constructed.
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Consider the grammar

S ::= q S B |AB c | a c

A ::= a

B ::= b S | ε

The string qabacc would result in the non-binarised SPPF given in Figure 1.7.

b, 2, 3a, 1, 2

A ::= a B ::= ε

S ::= AB c

q, 0, 1

c, 5, 6

S ::= AB c

B ::= ε

A, 3, 4

S, 3, 5

a, 3, 4

S, 1, 6

B ::= b S

c, 4, 5

A, 1, 2

A ::= a

B, 4, 4

B, 6, 6

ε, 4, 4

S ::= a c

B, 2, 5

S ::= q S B

S, 0, 6

ε, 6, 6

Figure 1.7: Non-binarised SPPF for the derivations of string qabacc over the grammar
on page 20

A binarised SPPF introduces intermediate nodes representing grammar slots. Packed

nodes can have at most two children - a left child, and a right child. For any given

packed node, all but the right-most child of the packed node is grouped under a new

intermediate node. Packed nodes additionally include a pivot value, representing the

right-extent reached by its left child. The properties of the binarised SPPF are then as

follows:

• Each u ∈ Vs has a label of form (r, i, j) where r ∈ (N ∪T ∪{ε}) or r is a grammar

slot X ::= α · β, X ::= αβ ∈ P , i, j ∈ N and i ≤ j.

• Each w ∈ Vp has a label of form (X ::= α · β, i), X ::= αβ ∈ P and i ∈ N.

Elements of Vp are called packed nodes, and i is called the pivot value.

• u ∈ Vs with labels of the form (r, i, j) where r ∈ T are terminal nodes.
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• u ∈ Vs with labels of the form (ε, i, i) where i ∈ N are epsilon nodes.

• u ∈ Vs with labels of the form (r, i, j) where r ∈ N are non-terminal nodes. Each

non-terminal node has one or more elements of Vp as its children.

• u ∈ Vs such that r is a grammar slot X ::= α · β are intermediate nodes. Each

intermediate node has one or more children that are elements of Vp.

• If u is a node in Vs with more than one child, then there is a syntactic ambiguity

at u.

• A node w ∈ Vp has one or two children - an (optional) left child and a right child.

These children are elements are of Vs. If w has label (r, i) and the right child has

label (t, k, j), then k = i.

The binarised version of the SPPF from parsing qabacc over the grammar on

page 20 is given in Figure 1.8.

1.8 Overview of the Thesis

Chapter 2 will present a new approach to lexical analysis which can offer all tokenisa-

tions of a string to a parser. A lexer under this approach will produce a set of token

triples as output for a given lexical specification. This set will embed all the tokeni-

sations of the strings in a way that ensures worst case quadratic size with respect to

the length of the string. The chapter will then investigate how elements of this set can

be removed to simulate the effects of the disambiguation techniques used in traditional

lexical analysis, and at the same time provide more control over how tokenisations are

eliminated. The final part of the chapter will review previous work in the context of

this new approach, such as character level parsing and Schrödinger’s tokens.

Chapter 3 will then present an extension of the generalised parsing algorithm GLL,

called MGLL, that can accept multiple tokenisations as input. The chapter will include

a discussion on how the derivation trees resulting from parsing multiple inputs are

represented, by giving an extension to the SPPF representation.

Chapter 4 will present a small set of grammar annotations, known as the GIFT

operators, that can be used to describe the translation of derivation trees into a form

more suitable for structural operational semantics. This will also discuss how the

same set of annotations can be used to describe an equivalent grammar to grammar

transformation.

Chapter 5 will discuss some of the implications of the theoretical concepts in Chap-

ters 2 and 3. The chapter contains a more in-depth discussion about how the new
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b, 2, 3

A ::= a B ::= ε

S ::= AB c

q, 0, 1

c, 5, 6

S ::= AB c

B ::= ε

S ::= q S B·, 6

S, 3, 5

a, 3, 4

S, 1, 6

c, 4, 5

A, 3, 4

B ::= b S

B, 4, 4

a, 1, 2

S ::= AB · c, 1, 5

A ::= a

S ::= q S ·B, 1

B, 6, 6

ε, 4, 4

S ::= a c

B, 2, 5A, 1, 2

S, 0, 6

S ::= AB · c, 3, 4

S ::= AB · c, 2

S ::= q S ·B, 0, 6

S ::= AB · c, 4

ε, 6, 6

Figure 1.8: Binarised SPPF for the derivations of string qabacc over the grammar on
page 20

lexical analysis approach compares to character-level parsing. It will then consider an

approach to syntactic disambiguation that operates similarly to the lexical disambigua-

tion rules in Chapter 2. The possibility of implementing a lexical analyser that permits

tokens with context-free patterns is explored, along with a method for suppressing

whitespace and comment tokens under the new lexical analysis approach. The chap-

ter will also consider the implications that this new approach has on the well-known

example of the ANSI-C type/variable name conflict.

Chapter 6 will present a set of general frameworks that implement the theoreti-

cal work discussed throughout this thesis. It will then apply this implementation to

produce a lexical analyser and parser for the C# 2.0 language specification [HCC06].
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This will be followed with a discussion on the use of this implementation to imple-

ment a compiler front-end for the C# 1.2 language specification [HCC02] as part of

the PLanCompS [Mos+15] project.

Concluding remarks, with a discussion of future work, will then be discussed in

Chapter 7.

The appendices contain the lexical and syntax specification for both C# language

specifcations, as well as a hand-crafted ‘abstract syntax’ for C# 1.2 used for the PLan-

CompS project.
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Chapter 2

Lexical Analysis in the Light of

Generalised Parsing

In the lexical specifications for programming languages, there is nearly always more

than one way to tokenise a string. A classic example can be found in the tokenisation

of identifiers. A string ab could denote a single identifier ab or two identifiers, a and b,

concatenated. Normally, during the lexical analysis phase, one of these tokenisations

is selected to be used by the parser. As discussed in the last chapter, formal languages

are typically specified in terms of sets of words (tokens) over a finite character set

and, then, as sentences of tokens. A compiler takes an input character string, which

is first tokenised into strings of tokens, that are then parsed. In lexical specifications

designed for traditional lexical analysers, there is usually some mechanism to ensure

that only one string of tokens is returned to be used by the parser. The existence of

more than one tokenisation of a given character string is known as a lexical ambiguity.

The process of discarding some tokenisations in favour of others shall be referred to

as lexical ambiguity reduction. Typically, lexical analysers choose the tokenisation in

which the tokens from the left are the longest match of the character string, with some

specified priority ordering of the tokens being used when there is more than one such

longest match.

Whilst the mechanisms used by traditional lexical analysis are generally good

enough, there are instances where the lexer will reject tokenisations which are syn-

tactically valid, whilst retaining one which is not valid. Languages such as Java or C#

will have the following token-pattern pairs:

(++, {++}), (+, {+})
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As noted in [Lip10], for the string a+++b there are three possible tokenisations:

1 ID ++ + ID

2 ID + ++ ID

3 ID + + + ID

All tokenisations are syntactically correct strings, however, most lexical specifications

for these programming languages will choose the first option. In this case, any approach

for selecting a single tokenisation will give a tokenisation that can be parsed.

However, consider the string a++++b which has five possible tokenisations:

1 ID ++ ++ ID

2 ID ++ + + ID

3 ID + ++ + ID

4 ID + + ++ ID

5 ID + + + + ID

A Java or C# lexer would return the first tokenisation. However, there are no grammat-

ical constructs in which a ++ token can be followed by another ++ token. In this case,

the tokenisation chosen by traditional lexical analysis will be rejected by the parser,

even though other tokenisations (tokenisations two, four and five) would be accepted.

Of course, these problems can be avoided by inserting appropriate whitespace into

the character string - the string a ++ + + b would be tokenised as the second tokeni-

sation above. Given that these languages are essentially whitespace insensitive with

respect to operators, it is uncomfortable that there is a case in which the placement of

whitespace is important.

A more interesting case is nested type parameters in Java. If one considers the Java

string List<List<Integer>>, then the tokenisation that is given by the Java parser is

ID < ID < ID >>, which would be rejected by the standard grammar, as it expects a

> token to close a type parameter, rather than a >> token. The tokenisation that would

be accepted by the Java standard grammar would be the tokenisation ID < ID < ID

> >. The Java compiler must work round this issue by using a non-standard grammar

which accepts the first tokenisation as nested type parameterisation.

Additionally, there are cases where the tokenisation that should be chosen is de-

pendent on the surrounding context. In these cases, it would be more appropriate to

simply pass all these tokenisations to the parser. C# has a number of keywords (such

as method and get) that are not considered reserved words by the language. This
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means they can potentially be considered as identifiers or keywords depending on the

context. It would be useful to be able to pass both tokenisations to the parser.

One possible approach to deal with multiple tokenisations is to output all tokeni-

sations at the lexical analysis phase and then separately parse each tokenisation. If

more than one tokenisation is accepted by the parser, then this would be treated as

a syntactic ambiguity. As shown in Chapter 1, the number of ways of partitioning

a string is worst case exponential in the length of the string. In practice, there will

be significantly fewer tokenisations, but often the actual number can be too large to

be useful for parsing. In this chapter, techniques will be developed and studied that

will allow one to explore the entire spectrum from resolving all lexical ambiguities to

allowing all tokenisations to be parsed. This will involve a new representation of the

tokenisations of a string, as well as the formalisation and expansion of the traditional

techniques for resolving lexical ambiguity. This new approach will be described as the

multilexer approach.

2.1 Traditional approach to Lexical Analysis

As described in Chapter 1, lexical analysis concerns itself with partitioning character

strings. Suppose that the patterns of the tokens t1, . . . , tp are specified by the regular

expressions r1, . . . , rp respectively. If u is a character string that can be partitioned as

u = u1 . . . un, where each ui can be matched by some rui , then t1 . . . tn is a tokenisation

of u. If there exists at least one tokenisation of u for the given set of tokens, then a

traditional lexical analyser will return some tokenisation. If there exists no tokenisation

of u, then the lexical analyser reports an error.

Recall that there can be multiple ways in which the character string can be to-

kenised. A string fragment in C such as forbid could be tokenised (correctly) as a

single identifier token, or as a concatenation of one or more identifier tokens for dif-

ferent partitions of the string fragment. It could also be tokenised as a for keyword

concatenated with the tokenisations of the string fragment bid. The C lexical analyser

chooses the tokenisation that is the longest match. Note that longest match is applied

across all possible tokens and not just those of the same identifier - the tokenisations in

which for is tokenised as a keyword are eliminated even though for is a proper prefix.

This is necessary as this ensures, for example, that a string fragment if is tokenised

as an if keyword rather than an identifier named i concatenated with an identifier

named f. This string fragment could also be tokenised as an identifier whose name is

if. Here a classical lexical analyser will use a priority mechanism. Keywords are nearly

always given priority over identifiers, and so an if token is chosen. Notable exceptions
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to this are the keywords in the PL/I [AC76] standard, which are never reserved and

therefore can be used as identifiers, and some keywords in the C# standard (such as

get and set) which are only considered as such in certain contexts.

Traditional lexical analysis is fast but does not lend itself towards constructing all

tokenisations. Listing multiple tokenisations as sequences of token/lexeme pairs omits

details about each tokenisation.

2.2 Tokens with Extents

Classically, the lexeme that a token matches is not expressed for the parsing phase.

As will be seen in Chapter 3, aspects of the relationship between the token and the

portion of the string that the token matched need to be maintained when running a

parser that handles multiple inputs. In this section, lexical analysis will be expanded

to store the matched character extents with each token.

Listing multiple tokenisations simply as sequences of token names does not give

enough information to distinguish between each unique tokenisation. Consider the

lexical specification consisting of the single token-pattern pair

(D, {a, b, c, ab, bc, abc})

The string abc can be tokenised as D or DD or as DDD. For D, there is a single

token/lexeme pair (D, abc), and for DDD there is a single token/lexeme sequence of

pairs (D, a)(D, b)(D, c). But there are two possible token/lexeme sequences of pairs

(D, ab)(D, c) and (D, a)(D, bc) for DD. These possibilities are presented in tabular

form in Table 2.1. There is a need to distinguish between these tokenisations, as later

a semantics analysis phase may need access to the underlying lexemes. This is not a

problem in traditional lexical analysis, as longest match ensures only the tokenisation

D is possible. Even if D was not an option, a semantics analyser can safely assume

that the corresponding token/lexeme sequence chosen was (D, ab)(D, c). For lexical

analysis that allows ambiguities, one must work harder to ensure that there remains a

one-to-one mapping between each tokenisation and the underlying character sequence.

To distinguish between tokenisations of a given character string, it is not necessary

to record the lexemes. It is sufficient to construct sequences of token/integer pairs (a, j),

where a is the token selected and j is the right character extent of the corresponding

lexeme in the input string. As a sequence of pairs is read (from left to right), the left

extent of the lexeme is the right extent of the previous lexeme. The tokenisations given
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a b c

1 D D D
2 D D
3 D D
4 D

Table 2.1: The list of all tokenisations for the string abc

in Table 2.1 can then be represented as the sequences

(D, 1)(D, 2)(D, 3)

(D, 1)(D, 3)

(D, 2)(D, 3)

(D, 3)

Note that there are two distinct sequences, (D, 1)(D, 3) and (D, 2)(D, 3).

In general, when tokenising a character string, a sequence of pairs can be returned -

where each pair contains the token and the right extent of the lexeme to which the token

corresponds. Sequences of token/index pairs with the property that the indices form

a monotonically increasing sequence of positive integers will be referred to as indexed

token strings. In the above example, the last elements at the end of every sequence

have the same right character extent. In general, the sequences could end with elements

that have different right character extents. A set of indexed token strings is called an

indexed token string (ITS) set if the last element of every sequence has the same right

character extent.

Of course, enumerating the ITS set is still worst case exponential in the length of

the string. An ITS set will normally have redundancy in the sense that the same pair

may appear in the same position in more than one sequence. For example, the pairs

(D, 1) and (D, 3) in the first sequence above appear in the same positions in other

sequences in the ITS set. Instead, one can consider a set of triples for the above set

{(D, 0, 1), (D, 0, 2), (D, 0, 3), (D, 1, 2), (D, 1, 3), (D, 2, 3)}

These sets of triples will be referred to as the sets of tokens with extents (TWE).

A TWE set is defined to be any finite set of triples in the form (a, i, j) where a is

a token and 0 ≤ i < j are integers. Formally, a set of tokens with extents is a finite set

Σ ⊆ {(t, i, j)|t ∈ T, i, j ∈ N, i < j}
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where T is the set of tokens, and i and j are the left and right extents respectively.

For a TWE set Σ, the floor of Σ is the smallest integer i such that there is an element

(a, i, k) ∈ Σ, and the height of Σ is the largest j such that there is an element (a, l, j) ∈
Σ.

This set adequately encompasses the set of tokenisations given above. While there

may be exponentially many tokenisations of a character string of length n, there are

at most O(n2) triples, thus the corresponding TWE set representation is worst case

quadratic in the length of the character string. This reduction in the complexity implies

that several ITS sets correspond to the same TWE set.

Any ITS set X corresponds to a TWE set, ΣX , as illustrated in the example above.

An indexed token string, r, of form (t1, i1)(t2, i2) . . . (tk, ik) corresponds to a TWE set

of form {(t1, 0, i1), (t2, i1, i2), . . . , (tk, ik−1, ik)}. ΣX is defined to be the union of the

TWE sets of the indexed token strings of X. If the elements of X are tokenisations

of a given character string, γ of length m, then Σ has floor 0 and height m. The

TWE set ΣX is uniquely defined for X, but two different ITS sets may have the same

corresponding TWE set. For example, for the string abbc, there is the ITS set X1 of

all tokenisations

{(D, 1)(D, 2)(D, 3)(D, 4),

(D, 1)(D, 2)(D, 4),

(D, 2)(D, 3)(D, 4),

(D, 2)(D, 4)}

and the subset X2 containing just two of the tokenisations

{(D, 1)(D, 2)(D, 3)(D, 4)

(D, 2)(D, 4)}

but

ΣX1 = {(D, 0, 1), (D, 1, 2), (D, 2, 3), (D, 3, 4), (D, 2, 4), (D, 0, 2)} = ΣX2

Furthermore, there exist many TWE sets which do not correspond to any ITS set, for

example,

{(D, 0, 2), (D, 1, 3), (D, 3, 4)}

Most of the TWE sets that will be considered in practice will correspond to sets of

tokenisations of a character string, and it is as TWE sets that sets of indexed token
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strings will eventually be given to an MGLL parser. However, the initial discussion

and analysis will be on the TWE sets and their relationship to ITS sets.

2.3 TWE and ITS Sets

It can be helpful to visualise a TWE set as a labelled directed, acyclic graph with

multiple edges between some pair of nodes. For a set Σ = {(a1, i1, j1), . . . , (ap, ip, jp)},
the integers i1, . . . , ip, j1, . . . , jp are the labels of nodes in the graph, and a1, . . . , ap are

the labels of edges in the graph. An edge labelled a between nodes i and j exists if and

only if (a, i, j) ∈ Σ, so triples correspond precisely to edges in the graph. For example,

consider the TWE set

Σ = {(y, 0, 1), (x, 0, 1), (x, 0, 2), (x, 1, 2), (v, 1, 2), (x, 1, 3), (x, 2, 3), (v, 2, 3), (x, 3, 4),

(v, 3, 4), (x, 3, 5), (x, 4, 5), (v, 4, 5), (x, 5, 6), (v, 5, 6), (x, 6, 7), (v, 6, 7)}

This can be visualised graphically as
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For the TWE set ΣX1 on page 29, the TWE graph is

1

0

3

2 4
D

D

DD D

D

Paths from 0 to the largest node, correspond to indexed token strings. It is intu-

itively obvious that if a TWE set Σ of height m is to correspond to an ITS set then

every node in the graph must lie on a path from 0 to m. Such a path is called a complete

path. Similarly, if two indexed token strings δ1δ2 and µ1µ2 correspond to paths which

intersect at the right hand ends of δ1 and µ1

0 i m

δ1

µ1

δ2

µ2

then there are also paths corresponding to δ1µ2 and µ1δ2. Thus if an ITS set contains

δ1δ2 and µ1µ2 then its corresponding TWE set will also correspond to the ITS set
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obtained by adding δ1µ2 and µ1δ2. Formally, an indexed token sequence r of form

(t1, i1)(t2, i2) . . . (tk, ik) is embedded in a TWE set Σ if, ik is the height of Σ, (t1, 0, i1) ∈
Σ, and for every contiguous subsequence (tk, ik)(tk+1, ik+1) in r one has (tk+1, ik, ik+1) ∈
Σ. The set of all indexed token strings embedded in Σ will be denoted by strings(Σ).

Recall that ΣX is the TWE set corresponding to X, so Σstrings(Σ) ⊆ Σ is a TWE set

such that (t, i, j) ∈ Σstrings(Σ) if, and only if, a contiguous subsequence (tk, i)(t, j) exists

in some string in strings(Σ).

A TWE set Σ is said to be tight if every triple in the set belongs to an indexed

token sequence embedded in Σ. An ITS set X is consistent if every string embedded

in ΣX is an element of X.

If a TWE set Σ is not tight, then there exist triples in the set whose correspond-

ing edges in the graphical representation are not on a complete path. Triples whose

corresponding edges lie on paths from the root node, but not on a complete path will

generally generate some parser activity. Triples whose corresponding edges do not lie

on paths from the root node will not generate MGLL parser activity but will increase

the size of the data structures unnecessarily. Also, as seen later, these triples could

interfere with attempts to lexically disambiguate the set. Ensuring the tightness of a

TWE set is, therefore, important.

Lemma 2.3.1. A TWE set Σ, with height m, is tight if and only if ∀(a, i, j) ∈ Σ

• i = 0 or there exists an element (a′, i′, i) ∈ Σ, and

• j = m or there exists an element (a′, j, j′) ∈ Σ

Proof. Suppose that Σ is tight, then (a, i, j) belongs to a string embedded in Σ. If

i 6= 0 then an indexed token sequence of the form α(a′, i)(a, j)β must be embedded in

Σ. Therefore there must be some (a′, i′, i) ∈ Σ. Similarly, if j 6= m then an indexed

token sequence γ(a, j)(a′, j′)δ must be embedded in Σ. Therefore there must be some

(a′, j, j′) ∈ Σ.

Now suppose both properties hold for every (a, i, j) ∈ Σ. Since i < j in any triple,

the elements of the form

(a0, 0, i0), (a1, i0, i1), . . . , (ap, ip, i)

must all be in Σ due to the first property. Also, the elements of the form

(b0, j, j0), (b1, j0, j1), . . . , (bf , jf ,m)
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must all be in Σ due to the second property. Hence the sequence

(a0, i0)(a1, i1) . . . (ap, i)(t, j)(b0, j0), (b1, j1) . . . (bf ,m)

is embedded in Σ and Σ is tight.

Lemma 2.3.2. This lemma is divided into two steps:

a) A TWE set Σ is tight if and only if Σstrings(Σ) = Σ, which is if and only if Σ ⊆
Σstrings(Σ) since Σstrings(∆) ⊆ ∆ for all TWE sets ∆

b) For any ITS set X, ΣX is tight.

Proof.

a) By definition, if Σ is tight then every triple σ ∈ Σ belongs to the TWE set of some

string in strings(Σ) so σ ∈ Σstrings(Σ). Conversely, if Σ = Σstrings(Σ) and σ ∈ Σ,

then σ ∈ Σstrings(Σ) and σ belongs to some string embedded in Σ.

b) By definition, if (t, i, j) ∈ ΣX then (t, i, j) belongs to some string u ∈ X. Also by

definition, u is embedded in ΣX . (t, i, j) ∈ Σstrings(Σ) and the result follows from

a).

As stated, a TWE set will embed an ITS set. The consistency of this ITS set is

another important feature.

Lemma 2.3.3. This lemma is divided into two steps:

a) An ITS set X is consistent if and only if X = strings(ΣX), the smallest enclosing

consistent set of X.

b) For any TWE set ∆, strings(∆) is consistent.

Proof.

a) By definition of ΣX and strings(ΣX), X ⊆ strings(ΣX). By the definition of

consistency, X is consistent if and only if strings(ΣX) ⊆ X.

b) Let X = strings(∆). The proof is to show that strings(ΣX) = X, and thus that

the result follows from a). By definition of ΣX and strings(ΣX), X ⊆ strings(ΣX)

for any X. So the remainder of the proof is to show that strings(ΣX) ⊆ X.

For any TWE sets ∆ ⊆ Σ, if the height of ∆ is equal to the height of Σ then

strings(∆) ⊆ strings(Σ). If X = ∅ then X is consistent. If X 6= ∅ then the height
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of ΣX is equal to the height of ∆. By definition, ΣX ⊆ ∆ so strings(ΣX) ⊆ X, as

required.

If X is the set of all tokenisations of a given character string then ΣX will be

tight. However, lexical ambiguity reduction may create TWE sets that are not tight.

As discussed, tightness is important for minimising the size of the data structures -

pruning is a procedure that will remove the elements that prevent the TWE set from

having the tightness property. A definition of prune(Σ) is given, which constructs the

maximum size tight TWE set Σ′ ⊆ Σ:

• Construct Σ1 by adding all elements of Σ of form (t, 0, j) for any t, j

• Form the closure of Σ1 under the property that if (t′, i, j) ∈ Σ1 then (s, j, k) ∈ Σ1

for all (s, j, k) ∈ Σ.

• Construct Σ′ by adding all elements of Σ1 of form (t, i,m) for any t, i

• Form the closure of Σ′ under the property that if (t′, i, j) ∈ Σ′ then (s, k, i) ∈ Σ′

for all (s, k, i) ∈ Σ1.

If there exist no element of Σ whose corresponding edge in the graphical representation

is on a complete path (which is precisely when strings(Σ) = ∅), then the maximum

size tight TWE set that is given by prune(Σ) is the empty set.

Lemma 2.3.4. For a TWE set Σ, the set, Σ′, constructed by prune(Σ), is tight.

Additionally, the set of indexed token strings embedded in Σ′ is exactly the set of indexed

token strings embedded in Σ.

Proof. By construction, if Σ′ = ∅ then strings(Σ) = ∅ and the result holds. If an

element of the form (t, i,m) ∈ Σ′, then there must be a sequence in strings(Σ). By

construction, the floor and height of Σ′ must be the same as the floor and height of Σ,

meaning there must be some (t0, 0, i0) ∈ Σ′ and some (tm, im−1,m) ∈ Σ′.

If (t, i, j) ∈ Σ′ then (t, i, j) ∈ Σ1. If i > 0, then

(t0, 0, i1), (t1, i1, i2), . . . , (ti, ii, i), (t, i, j) ∈ Σ1

If (t, i, j) ∈ Σ′ then (ti, ii, i) ∈ Σ′. If j < m then (tj+1, j, jj+1) ∈ Σ′. Therefore, Σ′ is

tight.

As Σ′ ⊆ Σ, strings(Σ′) ⊆ strings(Σ) by construction. Suppose

strings(Σ) \ strings(Σ′) 6= ∅
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Then there must exist some (t, i, j) ∈ Σ not in Σ′ such that

(t0, 0, i0), (t1, i0, i1), . . . , (ti, ii−1, i), (t, i, j), (tj , j, ij), . . . , (tm, im,m) ∈ Σ

By construction, (t0, 0, i0) ∈ Σ1 and therefore

(t0, 0, i0), (t1, i0, i1), . . . , (ti, ii−1, i), (t, i, j), (tj , j, ij), . . . , (tm, im,m) ∈ Σ1

As (tm, im,m) ∈ Σ1, (tm, im,m) ∈ Σ′, and so

(t0, 0, i0), (t1, i0, i1), . . . , (ti, ii−1, i), (t, i, j), (tj , j, ij), . . . , (tm, im,m) ∈ Σ′

Therefore (t, i, j) ∈ Σ′, a contradiction. strings(Σ)\strings(Σ′) = ∅ and strings(Σ) =

strings(Σ′).

2.4 Direct TWE Set Construction

In the previous section, the TWE set ΣX was defined in terms of a corresponding ITS

set. However, the main reason for introducing the TWE set representation is to reduce

the space requirements from worst case exponential to worst case quadratic. Construct-

ing the ITS sets in the lexical analysis phase would remove this saving. This section

instead discusses the direct construction of TWE sets for any given character string.

Ultimately, two approaches are considered. The one discussed in this section is based

on DFAs and assumes that the patterns of tokens can be defined using regular expres-

sions. The other approach uses a form of GLL recogniser which can be constructed

from EBNF grammars, and will be discussed in Chapter 5.

2.4.1 Finite-state Machine Approach

The algorithm considered here is a simple extension of an algorithm used in typical

lexical analysers, such as lex [LS75]. In a traditional lexical analyser, the set of to-

kens, T , would initially be sorted into a list, in order of priority. Each t ∈ T has a

corresponding deterministic finite state automaton [RS59], DFAt, exactly matching

the lexemes of t. The algorithm tries to match the character string, I, at the current

character index, starting at 0, to find the first token whose DFA matches a prefix of the

string starting at this index. Each DFA attempts to find the longest string from this

index that allows the DFA to transition to an accepting state. Each time such a string

is found, the current character index advances to the index one passed the portion of

string matched, and repeats until the end of the string is reached. The ordering of the
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tokens determines priority as only the first token matched is returned, and advancing

the current index for the longest matched string creates a longest match for the entire

string.

For an algorithm constructing TWE sets, a few aspects need to be different. The

first is that a triple is added to the resulting TWE set every time an accepting state

is reached. When a token match is made, all other tokens must be considered for the

same start index, and the indices following every matched strings must be considered.

In the algorithm below, I[k] returns the kth symbol in the input, I. cI denotes the

current character index. Σ is the TWE set being constructed. Q is a set of states to

be processed, whilst U keeps track of the states that have been processed.

Σ := ∅; Q := ∅; U := ∅
Add 0 to Q

while Q is not empty do {
Remove i from Q

cI := i

for all t ∈ T do {
s := 0; k := cI ; . Let s denote the current state in DFAt

while there exists a transition from s on I[k] to some state p do {
s := p; k := k + 1;

if s is an accepting state then {
Add (t, cI , k) to Σ

if k 6= m ∧ k 6∈ U then add k to Q and U
}

}
}

}
Return Σ

The first character index to be processed is 0. This is popped from Q and set as the

current character index, cI . For each t ∈ T , the string starting at the current index is

given as input to DFAt. The current character index is kept as the start index and this

character index is given to a counter, k. As long as a transition can be made on I[k]

in DFAt, the transition is made. If, after a transition, DFAt is in an accepting state,

a new triple (t, cI , k) is added to Σ. If k is not the end of the string and is not already

in U , then it is added to Q and U . The addition of k to Q adds it to the set of indices

to process, whilst the addition to U ensures that the same k cannot be processed more

than once (as the same k could be reached as a match by other tokens). Transitions for

the current DFAt continue until no further transitions can be made. This continues

for the same starting index, cI , for every token. After all tokens have been processed,

a new cI is taken from Q and the same process occurs. This continues until Q = ∅.
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The result of this algorithm will be a TWE set, Σ. Because only character indices

that are either 0 or the right extent of some match are considered in each iteration, if

the height of Σ is m then I is accepted by the lexical analyser. If I is accepted then Σ

will be tight.

2.5 Lexical Disambiguation

The main motivation for the work in this chapter is to give a language designer more

control over the tokenisations which are chosen from the set of possibilities within a

specified lexer scheme. A lexical ambiguity occurs when there exists more than one

indexed token string for the same input character string. Many of the tokenisations will

not be syntactically correct, that is they will not be derivable in the grammars used

to specify the language. However, parsing each tokenisation is likely to be slower than

eliminating many of the tokenisations before parsing. This section looks at developing

disambiguation rules which can be used to reduce the amount of lexical ambiguity in

the TWE set which is passed to the parser. The focus will be mainly on formalising and

discussing variations of the frequently used longest match and priority disambiguation

rules. The starting point is the full set, Xγ , of tokenisations of a character string γ and

its corresponding TWE set Σγ . However, the discussion applies if Xγ is replaced with

any consistent ITS set (as defined on page 31).

2.5.1 Lexical Ambiguity Reduction and TWE sets

Lexical ambiguity reduction removes some indexed token sequences from the ITS set

of a given character string. However, formally the ambiguity reduction rules will be

defined in terms of removing triples from a TWE set - which is not entirely equivalent

to ITS set element removal.

Removing sequences from an ITS set may make it inconsistent. As demonstrated in

Lemma 2.3.3, the corresponding TWE set will embed the smallest enclosing consistent

set, and so some removed sequences will be re-instated. Recall from page 29 the ITS

sets X1 and X2

X1 = {(D, 1)(D, 2)(D, 3)(D, 4),

(D, 1)(D, 2)(D, 4),

(D, 2)(D, 3)(D, 4),

(D, 2)(D, 4)}
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X2 = {(D, 1)(D, 2)(D, 3)(D, 4)

(D, 2)(D, 4)}

where X2 is a proper subset of X1 obtained by removing particular sequences. The

corresponding TWE set for X2 is the TWE set for X1 - the tokenisations removed from

X1 are reinstated. Thus, it is not possible to model ambiguity reduction from X1 to

X2 using TWE set element removal.

Removing a triple from a TWE set will remove all strings containing that triple em-

bedded in the set. For instance, it is not possible to remove just the string (D, 2)(D, 4),

say, fromX1 since removing the triple (D, 0, 2) also removes the string (D, 2)(D, 3)(D, 4).

A TWE set, Σ, embeds an ITS

(t1, i1)(t2, i2) . . . (tp, ip)

if and only if there exists exactly one sequence of triples in the TWE set

(t1, 0, i1)(t2, i1, i2) . . . (tp, ip−1, ip)

corresponding to this embedded ITS. Removing any one triple from this sequence will

remove this ITS from strings(Σ). In the case where the ITS set contains only one

element, then the corresponding TWE set will contain only triples for this exact ITS.

Likewise, if all but a single sequence of triples of the form above is removed from

the TWE set, then the TWE set will only embed one ITS. So, in the case that the

lexical disambiguation is complete, lexical ambiguity removal at either the level of

the ITS set or the TWE set will give the same result. As the ITS set is potentially

exponential in size whereas the TWE set is at worst quadratic, it is more practical

to disambiguate via TWE set triple removal - and this is the approach that will be

used, even though there are sometimes outcomes which cannot be obtained. Thus,

sequences from strings(Σ) are removed to produce a new set strings(Σ′) by removing

triples from Σ to produce the subset Σ′. As discussed in Lemma 2.3.3, by construction

strings(Σ′) will be consistent, and by pruning the set after disambiguation, Σ′ will be

tight, as demonstrated by Lemma 2.3.4.

Lexical ambiguity in a tight TWE set Σ means there exist two or more distinct

triples that share the same left extent, as in (a, i, j), (b, i, k) ∈ Σ, or equivalently that

there exist two distinct triples which share the same right extent. In terms of the

graphical representations, the former focuses on nodes that have more than one out-

edge, whilst the latter focuses on nodes that have more than one in-edge. Three classes

of disambiguation rules for both cases are specified, which are then related to the
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classical notions of longest match and priority.

2.5.2 Priority and Longest Match

Firstly, consider the longest match lexical disambiguation strategy that is very often

applied to identifiers.

Assuming a token ID whose pattern is the standard C-style identifiers, the string

aaa will have the following ITS set

{(ID, 1)(ID, 2)(ID, 3), (ID, 2)(ID, 3), (ID, 1)(ID, 3), (ID, 3)}

This has the corresponding TWE graph

1

0 32
ID

IDID

ID
ID ID

It should be apparent that to emulate classical longest match, it is enough to con-

sider, for each node, all ID labelled out-edges removing all but the one with the greatest

right extent. For the above, this results in

1

0 32
ID

ID

ID

Of course, the TWE set that this graph represents is not tight. However, after

pruning, the resulting set is Σ′ = {(ID, 0, 3)} and strings(Σ′) = {(ID, 3)} - exactly

the tokenisation expected from traditional longest match.

One can consider different ways in which longest match is applied. Longest match

could apply across all tokens (a global longest match), or only across a restricted group

of tokens. For example, in C-style languages, there exists a token (if, {if}). Consider

the character string ifa. This will have the ITS set

{(ID, 1)(ID, 2)(ID, 3), (ID, 2)(ID, 3), (ID, 3), (if, 2)(ID, 3)}

with corresponding TWE graph

38



1

0

32

ID

ID
if

ID

ID
ID ID

If one were to use ‘global’ longest match the resulting TWE graph would be

1

0 32
ID

ID

ID

After pruning, this would return just the indexed token string (ID, 3). Alternatively,

one can restrict longest match to only apply in the case of ID. In this case, the resulting

TWE graph would be

1

0
32

ID

IDif

ID

This returns two indexed token strings: (ID, 3) and (if, 2)(ID, 3).

In many languages, keywords and identifiers are distinguished, with keywords taking

priority over identifiers. The character string if will have the ITS set

{ (ID, 1)(ID, 2), (ID, 2), (if, 2) }

which has the corresponding TWE graph

1

0 2
ID

ID

if

ID

To eliminate the edge from node 0 to node 2 labelled ID and thus prioritise if, it is

enough to specify that an edge labelled ID be deleted if there exists another out-edge

from the same node, labelled if.

However, if one were to apply this priority rule exactly to the ifa example then

the resulting TWE graph would be
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1

0
32 IDif

ID

Here, the tokenisation (ID, 3) is desired. Priority as described above would remove the

edge from 0 to 3 labelled ID as there exists an edge from 0 to 2 labelled if.

The alternative version of priority is that an edge labelled ID should be removed

in the presence of an edge labelled if only if they share the same start and end nodes.

For the above example, applying this gives the TWE graph

1

0

32

ID

ID
if

ID
ID ID

Applying longest match across all tokens then returns the TWE graph

1

0 32
ID

ID

ID

Giving the tokenisation (ID, 3) as required, whilst still preserving (if, 2) in the if

character string example.

An interesting case is seen in early versions of FORTRAN [IA78] - which was

designed to be completely whitespace independent. A character string DO5AB=1,6 has

the corresponding TWE graph

1

0
3

2
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4

76
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ID

INT

LABEL

DO

ID

=

INT

LABEL

ID

,

ID

ID

ID

ID

ID
IDID

ID

INT

LABEL

ID
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Suppose one would like an implementation that always prioritises tokenisations with

DO as a keyword over ones with DO as a prefix of ID. Since longest match should still

apply to ID, a first step would be to restrict longest match to only be applicable just

across a particular token. Longest match just on ID will give the TWE graph

1

0
3

2

5

4

76

9

8INT

LABEL

DO

=

INT

LABEL

ID

,

ID

ID
INT

LABEL

ID

This will still leave tokenisations that match DO5AB as an ID. By specifying that DO

should always have priority over ID regardless of the right-extent, these tokenisations

will be eliminated.

2.5.3 Left-extent Pair-wise Operations

The previous section described specific ways in which a pair-wise comparison on triples

with the same left-extent could be used for disambiguation. This section will describe

a more general solution that can capture all these cases. Consider operations between

(a, i, j) and (b, i, k). The graph visualisation for these two triples is

i

k

ja

b

A formal expression of the comparisons in the previous examples is achieved by defining

relations over the set of tokens and their extents. A binary relation, R, over the token

set is defined as aRb if a can be compared to b. This relation need not be symmetric -

aRb does not imply bRa. It also need not be transitive - aRb and bRc does not imply

aRc. In some cases, R may be reflexive, so aRa.

Given relations R for two triples (a, i, j) and (b, i, k), classes of removal specifications

can be defined by the way in which j and k are compared

• (Class 1) Remove (b, i, k) if bRa and j = k
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• (Class 2) Remove (b, i, k) if bRa and j > k

• (Class 3) Remove (b, i, k) if bRa and j < k

As it stands, application of two or more removal decision operations can lead to

non-confluence issues. Consider (a, i, j), (b, i, k), (c, i, l) ∈ Σ whose graph visualisation

is

i k

j

l

a

c
b

Potential pair-wise removal decisions are between (a, i, j) and (b, i, k), between (a, i, j)

and (c, i, l), or between (b, i, k) and (c, i, l). If a decision between (a, i, j) and (b, i, k)

results in (b, i, k) being removed, then a decision between (b, i, k) and (c, i, l) no longer

occurs. If a decision between (b, i, k) and (c, i, l) results in (b, i, k) being removed, then

a decision between (a, i, j) and (b, i, k) no longer occurs.

A solution is to only mark a triple for removal instead of actually removing the

triple, and applying the removal decisions with marked as well as unmarked triples.

After all removal decisions are applied, a triple is removed from Σ if it is marked for

removal. The three classes of removal specifications on (a, i, j) and (b, i, k) are then as

follows:

• (Class 1) Mark (b, i, k) for removal if bRa and j = k

• (Class 2) Mark (b, i, k) for removal if bRa and j > k

• (Class 3) Mark (b, i, k) for removal if bRa and j < k

In the above case, an operation between (a, i, j) and (b, i, k) may mark (b, i, k) for

removal. However, the operation between (b, i, k) and (c, i, l) will still occur, regardless

of the state of (b, i, k). If (c, i, l) is marked for removal as a result of the operation, then

this simply means that (a, i, j) is the only triple left unmarked. Of course, this has

the potential to lead to all triples being marked for removal - if (b, i, k) and (c, i, l) are

marked for removal, an operation between (a, i, j) and (c, i, l) could still mark (a, i, j)

for removal as well.

Classes 1, 2, and 3 allow the specification of a large variety of operations. Relations

will be represented as a matrix of size |T | × |T | (where T is the set of tokens). Rows in

the matrix represent the left operand of R, whilst columns represent the right operand.
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The disambiguation rules only mark for removal edges labelled with the left operand,

so aRb,<= is not the same as bRa,>. In the relation matrix MR, MR[a, b] = 1 if aRb

and is 0 otherwise.

It is worth considering whether any of these classes of operations are redundant.

Two ambiguity reduction relations are said to be equivalent if, for all possible TWE

sets, applying either of the relations results in the same set. Two classes of ambiguity

reduction operations are equivalent if every relation of one class has an equivalent

relation in the other class. As the following lemma shows, this is not the case for these

three classes.

Lemma 2.5.1. For the given definition of what is required for two classes of ambiguity

reduction operations to be equivalent:

a) Class 1 and Class 2 are not equivalent.

b) Class 1 and Class 3 are not equivalent.

c) Class 2 and Class 3 are not equivalent.

Proof. This can be shown by example. If R is not empty then there is a relation aRb.

Consider the TWE set {(a, 0, 1), (b, 0, 1)}. A class 1 relation marks (a, 0, 1) for removal

but since the right extents are the same, no class 2 or class 3 relation can result in

(a, 0, 1) being marked for removal, proving both (a) and (b).

Now suppose that R is any nonempty relation with aRb. For the TWE set {(a, 0, 1),

(b, 0, 2)}, a class 2 relation for R marks (a, 0, 1) for removal but there is no class 3

relation which marks (a, 0, 1) for removal, proving (c).

Whilst the classes of operations are not redundant, they can still overlap. Consider

the TWE set

{(a, 0, 1), (b, 0, 1), (c, 0, 2), (d, 1, 3), (d, 2, 3)}

A class 1 relation bR1a would result in the TWE set {(a, 0, 1), (c, 0, 2), (d, 1, 3), (d, 2, 3)}
as would a class 2 relation bR2c.

The examples in the previous sub-section are now returned to, in order to demon-

strate how these mechanisms can achieve the desired results in practice. In these

examples, each relation will be represented by a matrix in the form described above.

To define the longest match rules for if and ID for C-style languages one can use

a class 2 rule with

R2 =

( if ID

if 0 1

ID 1 1

)
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and to define the priority of if over ID one can use a class 1 rule with

R1 =

( if ID

if 0 0

ID 1 0

)

For example, for a character string if(ifx), the TWE graph is

1

0 32

5

4

76

ID

(ID
if

ID )

ID
ID

ID

if

IDID

ID

Using the class 1 relation, (ID, 0, 2) is marked for removal since (if, 0, 2) exists and

IDR1if. Similarly (ID, 3, 5) is marked for removal.

Using the class 2 relation, (ID, 0, 1) is marked for removal as (ID, 0, 2) exists and

IDR2ID. Similarly, (ID, 3, 4), (ID, 3, 5), and (ID, 4, 5) are also marked for removal.

(if, 3, 5) is marked for removal as (ID, 3, 6) exists and ifR2ID.

After all marked triples are removed, the TWE graph is

1

0 32 5

4

76
ID

(
if

ID )

ID
ID

Pruning this gives the final ITS (if, 2)((, 3)(ID, 6)(), 7).

For the FORTRAN example, the TWE graph for the string DO5AB=1,6 is

1

0
3

2

5

4

76

9

8

ID

INT

LABEL

DO

ID

=

INT

LABEL

ID

,

ID

ID

ID

ID

ID
IDID

ID

INT

LABEL

ID
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If one uses a class 1 rule with relation

R1 =

(DO ID

DO 0 0

ID 1 0

)

A class 2 rule with relation

R2 =

(DO ID

DO 0 0

ID 1 1

)

and a class 3 rule with relation

R3 =

(DO ID

DO 0 0

ID 1 0

)

applying the rules gives the TWE graph

1

0
3

2

5

4

76

9

8INT

LABEL

DO

=

INT

LABEL

ID

,
ID

INT

LABEL

ID

which embeds the ITS set

{(DO, 2)(INT, 3)(ID, 5)(=, 6)(INT, 7)(,, 8)(INT, 9),

(DO, 2)(INT, 3)(ID, 5)(=, 6)(INT, 7)(,, 8)(LABEL, 9),

(DO, 2)(INT, 3)(ID, 5)(=, 6)(LABEL, 7)(,, 8)(INT, 9),

(DO, 2)(INT, 3)(ID, 5)(=, 6)(LABEL, 7)(,, 8)(LABEL, 9),

(DO, 2)(LABEL, 3)(ID, 5)(=, 6)(INT, 7)(,, 8)(INT, 9),

(DO, 2)(LABEL, 3)(ID, 5)(=, 6)(INT, 7)(,, 8)(LABEL, 9),

(DO, 2)(LABEL, 3)(ID, 5)(=, 6)(LABEL, 7)(,, 8)(INT, 9),

(DO, 2)(LABEL, 3)(ID, 5)(=, 6)(INT, 7)(,, 8)(LABEL, 9)}
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Defining ID RDO for all three classes of operations is in fact equivalent to the unre-

stricted version of priority necessary for this particular case.

Although the class 1-3 relations are adequate for handling all the cases seen in the

traditional use of a lexer, the aim of this thesis is to expand the options available to a

language designer. One may wish to consider other ambiguity reductions that are not

so easily modelled with the traditional understanding of priority and longest match.

Whilst the DO5AB=1,6 FORTRAN example has been described in a scenario where the

language designer would always want the keyword interpretation of DO, this does not

match what is required by FORTRAN. The string DO5AB=1.6 should be interpreted

as the assignment of a real value to the identifier DO5AB. The only way to determine

whether DO should be tokenised as a keyword or as the prefix of an identifier is to

perform lookahead, choosing the former tokenisation only if there is a comma present.

Whilst this will not be explored here, lexical ambiguity reduction using lookahead is

one option that can be considered.

Another additional set of operations, which will be considered, is right-extent pair-

wise operations.

2.5.4 Right-extent Pair-wise Operations

Rather than left-extent pair-wise operations, consider right-extent pair-wise operations.

Let r = (a, j, i) and s = (b, k, i). The graph visualisation for these two triples is

i

k

j a

b

The classes of pair-wise operations are equivalent to that of common left-extent:

• (Class 1a) Mark (b, k, i) for removal if bRa and j = k

• (Class 2a) Mark (b, k, i) for removal if bRa and j < k

• (Class 3a) Mark (b, k, i) for removal if bRa and j > k

It should be intuitively obvious that a class 1a ambiguity rule for common right

extent is semantically equivalent to a class 1 rule for common left extent. However, class

2a and class 3a are not equivalent to class 2 and class 3, and they are not redundant.

Consider the TWE set

{(a, 0, 1), (b, 0, 2), (b, 0, 4), (a, 1, 5), (a, 2, 3), (b, 3, 6), (a, 4, 6), (a, 5, 6)}

with the TWE graph
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The corresponding ITS set cannot be reduced down to just the string (a, 0, 2)(a, 2, 3)

(b, 3, 6) using any of classes 1-3. There is no class 1 relation that can remove any

triple. The only class two relation that can remove a triple is aRa which would remove

(a, 0, 2) (in favour of (a, 0, 4)), and the only class three relation that can remove a

triple is aRa which would also remove (a, 0, 2) (in favour of (a, 0, 1)). However class

2a relations on aRa and aRb will remove (a, 5, 6), and (a, 4, 6), leaving the single ITS

(a, 0, 2)(a, 2, 3)(b, 3, 6), as required.

An issue that affects both variants of pair-wise operations is the possibility that

when presented a choice, all choices are marked for removal. For example if there was

a relation aRb under the class 2 relation, and a relation bR′a under the class 3 relation,

then in all cases where the right extents are different, both (a, i, j) and (b, i, k) would

be marked for removal.

2.6 Token suppression

A common aspect of traditional lexical analysis that has not yet been considered is the

suppression of layout tokens (used here to refer to both whitespace and comments).

For languages where layout is not semantically significant, it is usual for the lexical

analyser to suppress tokens corresponding to layout before the token string is given as

input to the parser. This is conceptually straightforward to apply in the multilexer

approach, provided that matches to tokens that are suppressed do not overlap other

token matches.

A token t is said to be left separated in a token set if, for every lexeme, ak, in the

pattern set of t, the only token in the token set containing a lexeme of the form µak

(where µ is a string of characters) is t. Similarly, t is said to be right separated in a

token set if, for every lexeme, ak, in the pattern set of t, the only token in the token

set containing a lexeme of the form akµ is t. If t is both left and right separated, then

t is said to be separated in a token set.

Separated tokens can be suppressed from a constructed TWE set without a problem.

From the perspective of an indexed token sequence, this is straightforward - simply
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removing a pair from an indexed token sequence

(t1, j1) . . . (tp, ip)(t, j)(tq, iq) . . . (th, ih)

gives a new token sequence

(t1, j1) . . . (tp, ip)(tq, iq) . . . (th, ih)

whose relationship to the original is clear. In effect, the pattern match for t is ‘merged’

onto the front of the match made by tq. If t occurs at the end of the sequence, then

the height of the sequence will be changed. However, since t is separated in the token

set, this will apply to all sequences in a set of tokenisations of a given character string,

preserving consistency.

As discussed, it is often more practical to operate on TWE sets. For every indexed

token sequence of form

(t1, j1) . . . (tp, ip)(t, j)(tq, iq) . . . (th, ih)

in an ITS set X, the TWE set ΣX will contain a triple of form (t, jp, j). Given t is

separated, to remove (t, j) it is enough to remove the triple (t, jp, j) from ΣX , and

replace all triples of form (s, j, jl) with a triple of form (s, jp, jl).

Where layout is separated, this approach is sufficient. However, even for C-style

languages, comments are not separated in the above sense. Chapter 5 will consider

combining token suppression with an initial processing stage - an approach that is

sufficient for the C# case studies in Chapter 6.

Of course, layout suppression is not adequate in general. For example, in embedded

languages some patterns may be whitespace in some contexts but not others. The

multilexer parser approach gives the potential for dealing with non-separated layout in

a formal way, and the issues and potential approaches will be discussed in Chapter 5 -

although the full study is not yet complete.

2.7 Related Work

Whilst most current compilers use the traditional lexical analysis approach described

in 2.1, there have been previous proposals for how one could define lexical specifications

that output tokenisations other than the one obtained through longest match and

priority. This section will briefly consider these other proposals in relation to this

work.
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2.7.1 Lex/Flex

Whilst lex (and its free software counterpart, flex, with the two together being referred

to as (f)lex here) is a canonical example of a traditional lexical analyser, it includes

some functionality that allows lexical ambiguities to be handled in a way that is more

extensive than longest match and priority. The functionality that will be considered

here is the REJECT action.

In normal usage, (f)lex will behave like a traditional lexical analyser - selecting the

lexeme to give the tokenisation that is the longest match, with priority over the tokens

for cases where the lexemes have the same length (specified simply according to how

the tokens are ordered in the specification). However, if a rule is given the semantic

action of REJECT, then any semantic action for the match will be executed, and the

match is rejected, backtracking to the next match. For example, the lex specification

%%

forbid REJECT;

for printf("for");

bid printf("bid");

would, for the string forbid, reject the tokenisation forbid, but accept the tokenisation

for bid.

Although the documentation for (f)lex recommends against using the REJECT

action for string partitioning, as (f)lex allows any semantic action as a side effect of

a match, it is possible to construct a full TWE set with this action. By specifying

that individual characters should be skipped (the symbol, ., is used to represent any

character here), and assigning REJECT after a printf statement for every pattern

match, one could construct the following lex specification

%%

int i=0;

aaa printf("(X,%d,%d)",i,i+yyleng); REJECT;

aa printf("(Y,%d,%d)",i,i+yyleng); REJECT;

a printf("(X,%d,%d)",i,i+yyleng); printf("(Y,%d,%d)",i,yyleng); REJECT;

. i=i+1;

The left extent is tracked by i, and yyleng returns the length of the token match. For

the string aaa, this would produce the TWE set,

{(X, 0, 3), (Y, 0, 2), (X, 0, 1), (Y, 0, 1), (Y, 1, 3), (X, 1, 2), (Y, 1, 2), (X, 2, 3), (Y, 2, 3)}

Of course, this is an inelegant solution, as the TWE set is constructed through

the explicit rejection of all matches. This operation requires backtracking, which is
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costly. This is also much less efficient than the algorithm in 2.4, as every possible token

match, at every possible character input position, must be tried. The resulting set will,

in general, not be tight.

2.7.2 Schrödinger’s Tokens

Aycock and Horspool [AH01] developed a concept for allowing multiple tokens to match

the same lexeme. The idea is to introduce a new kind of token, which can simul-

taneously represent more than one token in the lexer specification, referred to as a

Schrödinger’s token. This presents a technique which is relatively simple in terms of

concept.

This approach produces a single tokenisation. However, when a lexeme can be

matched by more than one token, a special token is used that represents the union of

these tokens, denoted s̄(t1, . . . , tp), where t1, . . . , tp are the actual tokens matched. For

example, if one considers the lexical specification

X = {a, bx}

Y = {a, cy}

For the string abx, the resulting tokenisation is

s̄(X, Y )X

This tokenisation simultaneously represents both tokenisations of the string, with the

token given for a representing both X and Y. The modifications required to allow a

parser to take such a tokenisation as input are relatively straightforward, and are, in

fact, conceptually, the same as those needed in the multilexer approach - which will

be discussed in Chapter 3. In essence, all that is needed is to modify the parsing

algorithm to repeat actions, where relevant, for all the tokens that the Schrödinger’s

token represents, rather than just the single token

Although the specific intention was to handle the case where two or more tokens

can match the same lexeme, the paper sketches one way to handle the case where one

token matches a lexeme that is the prefix of the lexeme of another token match. The

suggestion was to pad the shorter tokenisation with special ‘null’ tokens. For example,

in the Java nested parametrisation case described at the start of this chapter, the string

List<List<Integer>> would result in, assuming longest match on ID, the tokenisation

ID<ID<ID s̄(>>, >) s̄(null, >)
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In this case, whilst the parser would fail for >>, it would succeed on >. The null token

would then be ignored and > read as the next input.

However, this approach has drawbacks. Where the longer match is required, it is

necessary to modify the parsing grammar to include these ‘null’ tokens. Whilst the

Schrödinger’s token approach is effective for when the language designer only needs

multiple tokenisations when a single lexeme is matched by more than one token, the

multilexer approach offers a more general solution for providing all possible tokenisa-

tions.

2.7.3 Character-Level Parsing

An approach described by Visser [Vis97], used in parser generators including ASF+SDF

[Bra+01], Spoofax [KV10], and Rascal [KSV11], is the use of character-level parsing.

This approach removes the formal distinction between lexical and syntactic analysis.

A character-level grammar is one in which the set of terminals is simply the set of

characters. A is a set of tokens whose patterns contain a single element which is a

single character string. A more detailed comparison between multilexer parsing and

character-level parsing will be given in Chapter 5, but a brief description of the approach

will be given here.

Consider a lexical specification

x = {b, c, bc}

y = {d}

This specification contains a lexical ambiguity as, for instance, the string bc can be

tokenised as both x and xx. Consider the following token-level parsing grammar which

has x and y as terminals

S ::= A y

A ::= xA | x

In a character-level parser, an equivalent grammar is

S ::= A Y

A ::= X A |X

X ::= b | c | b c

Y ::= d
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A parse of the string bcd on the character-level grammar would result in the SPPF in

Figure 2.1. This parse effectively captures both tokenisations of the string, with the

non-terminals X and Y being used to represent the tokens x and y that would exist

in the token-level grammar. The lexical ambiguity becomes a syntactic ambiguity in

the rules for A, and the ambiguity needs to be resolved using syntactic disambiguation

mechanisms. At a syntactic level, the concepts of longest match and priority become

more difficult to express. The approach used in tools such as ASF+SDF is to specify

restrictions on the characters that may follow a non-terminal symbol. A follow restric-

tion declares that if a particular non-terminal is matched, and the character that occurs

next in the input is in the set of characters that may not follow that non-terminal, then

the match is rejected. This is usually given in the form

X − /−G

where X is a non-terminal and G is the set of characters that may not follow X. In

the above example, the follow restriction

X − /− c

would state that X may not be followed by the character c. [Vis97] observes that this

approach can be used, in most cases, in place of an equivalent longest match technique.

For the string bcd, the derivation in which one X matches just b will be rejected, as

this X will be followed by c. This would then prune the branch of the SPPF rooted at

the packed node (A ::= X A·, 1) as required, leaving the branch where X is the longest

match.

The syntactic disambiguation operation that is used in place of priority is the reject

production. A reject production is a grammar rule annotated with reject. For a

production of form X{reject} ::= α, if X ⇒ α then this derivation is rejected. If one

were defining, for example, a character-level parser for C, the production

ID{reject} ::= f o r

would ensure that ID could never match the keyword for.

Although these operations can provide functionality that is similar to longest match

and priority, it is much harder, conceptually, to understand the effect of a given follow

restriction rule. In particular, follow restrictions may be too restrictive in the case
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A ::= X·, 0 A ::= X A·, 1

A, 1, 2

A, 0, 2

d, 2, 3

S, 0, 3

b, 0, 1

c, 1, 2

X, 0, 2 X, 0, 1

Y, 2, 3

X, 1, 2

Figure 2.1: Character-level SPPF for the string bcd

where two token non-terminals derive similar strings. Consider the following grammar

S ::= AB |AAB

A ::= x x | x

B ::= x y

For the string xxxy, the resulting SPPF is given in Figure 2.2. Ambiguity results as

the string xx can be matched as AA or A. One may be tempted to use the following

restriction to achieve the equivalent of longest match

A− /− x

However, this not only eliminates the packed node (S ::= AAB·, 2) but also the other

packed node (S ::= AB·, 2). This is because the third x in the string still follows A in

both cases.

A more detailed discussion comparing character-level parsing with the multilexer

approach will be given in Chapter 5. The key message, though, is that the multilexer

approach gives language designers the same level of power and control as a character-

level specification, whilst retaining some of the advantages of a token-level specification.

The data structures constructed in the multilexer approach are generally smaller than

53



A, 0, 1A, 1, 2

S ::= AB·, 2

B, 2, 4

S, 0, 4

A, 0, 2

S ::= AA ·B, 0, 2

x, 0, 1

S ::= AAB·, 2

x, 1, 2

x, 2, 3y, 3, 4

Figure 2.2: Character-level SPPF for the string xxxy

those constructed in character-level parsing. The lexical ambiguity reduction tech-

niques presented for the multilexer approach are also a closer match to what one might

expect from longest match and priority than follow restrictions and reject productions

in character-level parsing.

2.7.4 Other Work

In addition to those already discussed, there are other approaches that should be men-

tioned. One approach is to use lexical feedback [Ros91], in which the parser shares

context obtained during parsing to inform the tokenisation process. This requires the

lexical and syntactic analysis to occur in lock-step. This is used to handle issues such as

the ANSI C type/variable name conflict, which will be discussed in more detail towards

the end of Chapter 5. The multilexer approach has resonances with other attempts

made in the field of computational linguistics, in particular, [DFH04] and [CT96].
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Chapter 3

Multiple input parsing with

MGLL

Chapter 2 described a new multilexing approach that allows a language designer more

flexibility and control over lexical disambiguation. However, there are some lexical

choices that should be made in the syntactic context in which the token appears. Sup-

pose there is a language which, conceptually, is the union of two languages, for example,

COBOL and SQL. Then certain sequences of characters correspond to keywords when

appearing in an SQL statement but as identifiers in a COBOL statement. Of course,

a solution is to parse all the alternative tokenisations and reject those which are not

syntactically correct. The lexical approach that was developed in the previous chap-

ter is designed precisely to support this. However, simply parsing each token string

independently is likely to be inefficient.

As already mentioned, it is possible to use a character-level grammar to specify the

lexical and phrase level syntax of a language. Then input analysis can be carried out in

worst case cubic time in the length of the input character string. However, by adopt-

ing the approach discussed in Chapter 2, a language designer can retain the efficient

lexeme recognition techniques from traditional lexical analysis, and eliminate many

token strings before parsing begins. In fact, the given approach degrades gracefully to

the case of a single tokenised string when the design specification permits. Further-

more, parser level performance measures that rely on lookahead are more effective if

the lookahead is specified at token rather than character level. Thus, to exploit the

multilexer approach, an efficient multiple input parsing technique is required.

In this chapter, a new parsing technique, MGLL, is introduced which can efficiently

parse a set of input strings if they are specified as a TWE set. The discussion will begin

with parsing in general and the GLL [SJ13] technique on which MGLL is based. The
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notion of an extended SPPF structure which embeds derivations of multiple strings

will then be defined, and the MGLL technique for constructing such a structure will

be given.

3.1 Parsing Preliminaries

Chapter 1 described how a context free grammar Γ defines a language over sentences

which can be derived from the start symbol, S. At some point during execution, a

compiler is presented with a string of terminals, and it needs to determine whether the

string is in the language of Γ, in other words, whether the string can be derived from

S. This is referred to as recognition.

In fact, the semantics of a sentence is usually determined, at least in part, by its

syntactic structure, so a parser usually constructs some representation of a derivation

of the sentence. A parser for a grammar Γ takes as input strings of terminals and

produces a representation of one or more derivations of the string. There are many

parsing techniques both in the literature and in practice. In this section, the simplest

technique, recursive descent, will be described as will its generalisation, GLL, which

forms the basis of MGLL.

3.1.1 Recursive Descent Parsing

A recursive descent recogniser for a context-free grammar Γ contains a parse function,

parseX, for each nonterminal X in Γ and a main function which calls parseS, where

S is the start symbol. The function parseX contains a block of code for each grammar

rule for X, and each block is guarded by a test over a lookahead set. The block of code

corresponding to a rule X ::= x1 . . . xp contains a line for each xi. If xi is a terminal

then this is matched to the current input symbol, and if xi is a non-terminal then its

parse function is called. The input is assumed to be held in an array I whose last

element, I[m], is $. I thus has length m+ 1.

Consider a grammar

S ::= q S |A b |B

A ::= aA | a

B ::= b

The recursive descent recogniser for this grammar will then be as follows
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procedure recogniseΓ(input u) {
Let m be the length of u

Read each element of u into I

I[m] := $

i := 0

parseS

if i == m then Terminate and return success

else fail
}

procedure parseS {
if I[i] ∈ select(S,qS) then {

i := i+ 1

parseS

return
}
if I[i] ∈ select(S,Ab) then {

parseA

if I[i] = b then i := i+ 1

else fail

return
}
if I[i] ∈ select(S,B) then {

parseB

return
}
fail

}

procedure parseA {
if I[i] ∈ select(A,aA) then {

if I[i] = a then i := i+ 1

else fail

parseA

return
}
if I[i] ∈ select(A,a) then {

if I[i] = a then i := i+ 1

else fail

return
}

}

procedure parseB {
if I[i] ∈ select(B,b) then {
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if I[i] = b then i := i+ 1

else fail

return
}

}

(Here fail is a function which terminates recogniseΓ and returns an error message.)

select(X,x1 . . . xp) returns the lookahead sets defined using standard first and

follow sets.

firstT (X) = {t ∈ T |∃γ(X
∗

=⇒ tγ)}

followT (X) = {t ∈ T |∃γ, δ(S ∗
=⇒ γXtβ)}

If X is non-nullable then first(X) = firstT (X), otherwise first(X) = firstT (X)∪{ε}.
If S 6 ∗=⇒ αX then follow(X) = followT (X) otherwise follow(X) = followT (X) ∪ {$}.
Then if first(x1 . . . xp) does not contain ε

select(X,x1 . . . xp) = first(x1 . . . xp)

and if first(x1 . . . xp) does contain ε

select(X,x1 . . . xp) = first(x1 . . . xp) ∪ follow(X)

Recursive descent parsers do not accept all grammars. In general, the select sets

for each nonterminal are required to be disjoint to ensure the parser does not fail on

a valid input string. Without additional lookahead, the recursive descent parser for

the grammar on page 56 would never choose the alternate A ::= a as a is also in

select(A,aA). As a result, the recursive descent parser would incorrectly reject, for

example, the string ab. Even worse, if the grammar were left recursive (for example,

with A ::= Aa |a), the parser may fail to terminate at all. Provided the grammar is not

left recursive, the fail function could instead be some kind of backtracking mechanism

which initiates exploration of the other alternates. However, without care, this can

become exponential in both time and space requirements.

An alternative to backtracking is to create new processes for each possible option

at points of non-determinism. This requires the function call stack to be handled

explicitly. The function call stack holds the return position needed at the end of each

parse function call. GLL is a technique that effectively behaves in such a manner - in

this sense, it behaves like a generalisation of recursive descent, in which each possible

choice of action is recorded for eventual processing. Multiple call stacks are represented

efficiently using a graph-structured stack (GSS).
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The GLL parsing technique, described next, can be applied to any context free

grammar and outputs the SPPF representation of all possible derivations of an input

string. The algorithm described is slightly different from that originally given in [SJ13]

as GLL is presented here as a preliminary for the new MGLL algorithm.

3.1.2 GLL BNF Parsing Algorithm

Similar to a recursive descent parser, there is code in the GLL parser for Γ corresponding

to every position in the grammar rules of Γ. Such a position is called a grammar slot,

and a slot is denoted using item notation of form X ::= x1 . . . xj · xj1 . . . xp. Lines of

the parser are labelled with the corresponding grammar slot.

Conceptually, one can think of GLL as executing a recursive descent parser until

a point is reached where a choice needs to be made. This can occur where there are

two or more productions for a nonterminal containing the current input symbol in

their select sets. At this point, a record of the current parser state for each option is

created and then each option is processed in turn. A parser state comprises the current

algorithm position, i.e. the line label, the current input symbol, the current call stack

and, for a parser, the portion of the derivation tree constructed so far. Näıvely, tuples

of the form (L, u, i, w) are needed, where L is a grammar slot, u is a stack, i is an

integer, and w is a portion of a derivation tree. As remarked in the previous section,

the number of such tuples is potentially exponential, and can be infinite if the grammar

contains left recursion. To address this, two global data structures are maintained: a

GSS combining all the call stacks, and an SPPF combining all the derivation trees. The

state of the parser can then be represented by a tuple (or descriptor) (L, u, i, w), where

L is a grammar slot, i is an integer, u is a GSS node corresponding to a stack top, and

w is an SPPF node which is the left-most child of the next node to be constructed. To

ensure only one SPPF node needs to be recorded, SPPFs are binarised as defined in

Chapter 1.

GSS nodes are labelled with a pair u = (L, i), where L is a grammar slot and i is

an integer input index. The slot X ::= αA · β is the return position after what, in a

recursive descent parser, would be a call to parseA and i is the current input position.

The same GSS node can be used by several different descriptors provided that the input

position is the same in each case - hence the need to store the input position. When a

GSS node, u, is created, an edge is added from it to the previous current GSS node, v,

and this edge is labelled with the current SPPF node, w.

uv w

The GLL algorithm then proceeds to match the next portion of the input to the
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non-terminal A. When this is completed, the GSS node u = (X ::= αA · β, i) is

‘popped’. An SPPF node w′ is created whose left child is the edge label w and whose

right child is the SPPF node associated with A, which has just been constructed. At

some point, the algorithm will continue from position L with the current SPPF node

and the current GSS node - which is now the child of u.

In general, the node u may have more than one child - this is how the GSS reduces

the space required to store all the stacks. Thus, there may be more than one continu-

ation choice. A pop action creates descriptors of the form (L, u′, i, w′) for each child u′

of u, allowing all possible continuations to be explored.

A GLL algorithm consists of a main loop which selects a descriptor for processing.

The set of unprocessed descriptors is denoted by R. To avoid repeated processing,

the set U of all descriptors which have been created is also maintained. A new GSS

node can be added to a node which has already been popped, and a pop action will

need to be subsequently applied down the new edge. Thus a set P of popped nodes is

maintained and consulted whenever a new edge is added to an existing GSS node.

Three functions are defined to construct the GSS. The pop function performs a

pop on the given GSS node. The add function adds descriptors to U and R where

appropriate. The create function generates a new GSS node and adds descriptors to

ensure that the pop function is called for new nodes. pop is called at the end of a block

of code corresponding to an alternate. create is called at the point of what would be

a call to a parse function in a recursive-descent parser.

function add(L, u, i, w) {
if (L, u, i, w) 6∈ U then add (L, u, i, w) to U and to R

}

function pop(u, i, z) {
if u 6= u0 then {

let (L, k) be the label of u

add (u, z) to P
for each GSS edge (u,w, v) do {

let y be the node returned by getNode(L,w, z)

add(L, v, i, y)
}

}
}

function create(L, u, i, w) {
if there is not already a GSS node labelled (L, i) then create one

let v be the GSS node labelled (L, i)
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if there is not an edge from v to u labelled w then {
create an edge from v to u labelled w

for all (v, z) ∈ P do {
let y be the node returned by getNode(L,w, z)

let h be the right extent of z

add(L, u, h, y)
}

}
return v

}

Like recursive descent, GLL will use select sets to prevent the exploration of choices

that are guaranteed to be invalid. Testing the current input against the select set of

the current grammar slot can reduce the number of descriptors created and thus reduce

the overall amount of work required by the parser.

function testSelect(a, Y, α) {
if a ∈ first(α) or (ε ∈ first(α) ∧ a ∈ (first(Y ) ∪ follow(Y ))) then

return true

else

return false
}

The SPPF is constructed with the following support functions. The function getN-

odeL builds SPPF nodes for terminals and ε. The function getNode builds SPPF

nodes for productions and intermediate nodes. $ denotes a dummy node - used as an

anchor for constructing nodes. Q represents a grammar slot and is defined to be fiR

(first-in-rule) if it is of the form X ::= x · β where x is a terminal or a non-nullable

non-terminal, and does not represent the end of the rule (i.e. β 6= ε).

function getNodeL(a, i, j) {
if there is no SPPF node y labelled (a, i, j) then create one

return y
}

function getNode(Q,w, z) {
if Q is fiR then return z

else{
suppose that z has label (q, k, i)

if Q is the end of a production then set t := left hand side of Q

else set t := Q

if w = $ then let j := k
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else suppose w has label (s, j, k)

if an SPPF node y labelled (t, j, i) does not exist then create one

if y does not have a child labelled (Q, k) then

create one with right child z and, if w 6= $, left child w

return y
}

}

When executing, a GLL parser is essentially traversing the grammar and the input

string. It employs three variables, cU which holds the current stack top (a GSS node),

cI which holds the current input position and cN which holds the current SPPF node.

When a descriptor is processed, in order to continue a parse these variables are set

using the values in the descriptor.

For example, consider the grammar

S ::= A d |AB

A ::= A a | a

B ::= b b | d

A GLL parser for this grammar is as follows (cR is a global variable that holds an SPPF

node)

Create GSS node u0 = (L0, 0)

cU := u0; cN := $; cI := 0;

U := ∅; R := ∅; P := ∅
goto LS

L0 :

if R 6= ∅ then {
Remove (L, u, i, w) from R
cU := u; cN := w; cI := i;

goto L
}
if there exists SPPF node labelled (S, 0,m) then

Report success

else

Report failure

LS :

if testSelect(I[cI ], S,Ad) then

add(LS::=Ad, cU , cI , $)
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if testSelect(I[cI ], S,AB) then

add(LS::=AB , cU , cI , $)

goto L0

LS::=Ad :

cU := create(LS::=A·d, cU , cI , cN ); goto LA

LS::=A·d :

if testSelect(I[cI ], S,d) is false then goto L0

if I[cI ] = d then {
cR := getNodeL(d, cI , cI + 1)

cI := cI + 1; cN := getNode(LS::=Ad·, cN , cR)
}
if I[cI ] ∈ follow(S) then pop(cU , cI , cN )

goto L0

LS::=AB :

cU := create(LS::=A·B , cU , cI , cN ); goto LA

LS::=A·B :

if testSelect(I[cI ], S,B) is false then goto L0

cU := create(LS::=AB·, cU , cI , cN ); goto LB

LS::=AB· :

if I[cI ] ∈ follow(S) then pop(cU , cI , cN )

goto L0

LA :

if testSelect(I[cI ], S,Aa) then

add(LA::=Aa, cU , cI , $)

if testSelect(I[cI ], S,a) then

add(LA::=a, cU , cI , $)

goto L0

LA::=Aa :

cU := create(LA::=A·a, cU , cI , cN ); goto LA

LA::=A·a :

if testSelect(I[cI ], A,a) is false then goto L0

if I[cI ] = a then {
cR := getNodeL(a, cI , cI + 1)

cI := cI + 1; cN := getNode(LA::=Aa·, cN , cR)
}
if I[cI ] ∈ follow(A) then pop(cU , cI , cN )

goto L0

LA::=a :

if I[cI ] = a then {
cR := getNodeL(a, cI , cI + 1)
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cI := cI + 1; cN := getNode(LA::=a·, cN , cR)
}
if I[cI ] ∈ follow(A) then pop(cU , cI , cN )

goto L0

LB :

if testSelect(I[cI ], B,bb) then

add(LB::=bb, cU , cI , $)

if testSelect(I[cI ], B,d) then

add(LB::=d, cU , cI , $)

goto L0

LB::=bb :

if I[cI ] = b then {
cR := getNodeL(b, cI , cI + 1)

cI := cI + 1; cN := getNode(LB::=b·b, cN , cR)
}
if testSelect(I[cI ], B,b) is false then goto L0

if I[cI ] = b then {
cR := getNodeL(b, cI , cI + 1)

cI := cI + 1; cN := getNode(LB::=bb·, cN , cR)
}
if I[cI ] ∈ follow(B) then pop(cU , cI , cN )

goto L0

LB::=d :

if I[cI ] = d then {
cR := getNodeL(d, cI , cI + 1)

cI := cI + 1; cN := getNode(LB::=d·, cN , cR)
}
if I[cI ] ∈ follow(B) then pop(cU , cI , cN )

goto L0

The algorithm is illustrated by executing it on the string aad. The final GSS will

be
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LS::=A·B, 0

LS::=A·d, 0

L0, 0

LS::=AB·, 2

LA::=A·a, 0

$

$

A, 0, 2

$$

$

The final U and P will be

U = {(LS ::= Ad, (L0, 0), 0, $), (LS ::= AB, (L0, 0), 0, $),

(LA ::= Aa, (LS ::= A · d, 0), 0, $), (LA ::= a, (LS ::= A · d, 0), 0, $),

(LA ::= Aa, (LS ::= A ·B, 0), 0, $), (LA ::= a, (LS ::= A ·B, 0), 0, $),

(LA ::= Aa, (LA ::= A · a, 0), 0, $), (LA ::= a, (LA ::= A · a, 0), 0, $),

(LS ::= A · d, (L0, 0), 1, (A, 0, 1)), (LS ::= A ·B, (L0, 0), 1, (A, 0, 1)),

(LA ::= A · a, (LS ::= A ·B, 0), 1, (A, 0, 1)),

(LA ::= A · a, (LS ::= A ·B, 0), 2, (A, 0, 2)),

(LS ::= A · d, (L0, 0), 2, (A, 0, 2)), (LS ::= A ·B, (L0, 0), 2, (A, 0, 2)),

(LB ::= d, (LS ::= AB·, 2), 2, $), (LS ::= AB·, (L0, 0), 3, (S, 0, 3))}

P = {((LS ::= A · d, 0), (A, 0, 1)), ((LS ::= A ·B, 0), (A, 0, 1)), ((LA ::= A · a, 0), (A, 0, 1)),

((LA ::= A · a, 0), (A, 0, 2)), ((LS ::= A · d, 0), (A, 0, 2)), ((LS ::= A ·B, 0), (A, 0, 2)),

((LS ::= AB·, 2), (B, 2, 3))}

The parser will output the final SPPF in Figure 3.1.

The GLL parser specification is a set of ‘templates’, and a parsing algorithm is

constructed by substituting actual grammar symbols, alternates, and sets of terminals

into the templates. To perform the substitution, the slots associated with each symbol

in the grammar need to be identified. Every symbol, x, on the right-hand side of every

production is given a unique instance number, j, which is written as a superscript,

xj . For an instance, xj , Exj denotes the slot immediately after that instance of x,

X ::= αx · β. For each rule X ::= α, Lα′ denotes the slot X ::= ·α, where α′ is the

instanced version of α, and this labels the section of the algorithm corresponding to

the alternate α. L0 denotes the line label of the start of the main program - this can

be thought of as equivalent to the slot S′ ::= S· in an LR-parser.

If r is an instanced string, exp(r) denotes the underlying uninstanced string. lhs(xj)

denotes the nonterminal on the left-hand side of the production rule in which the
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a, 0, 1

A, 0, 1

A ::= Aa·, 1

A, 0, 2

d, 2, 3

S, 0, 3

B, 2, 3

B ::= d·, 2

A ::= a·, 0

a, 1, 2

S ::= Ad·, 2S ::= AB·, 2

Figure 3.1: Final SPPF produced from the above GLL parse

instance of xj occurs.

The main GLL parse function is then as follows

Create GSS node u0 = (L0, 0)

cU := u0; cN := $; cI := 0;

U := ∅; R := ∅; P := ∅
goto LS

L0 :

if R 6= ∅ then {
Remove (L, u, i, w) from R
cU := u; cN := w; cI := i;

goto L
}
if there exists SPPF node labelled (S, 0,m) then

Report success

else

Report failure

LA : code(A)

· · ·
LZ : code(Z)
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code(X) statements seen above are place-holders for where code generated by the

templates for X should be inserted. If the rule for X is of the form X ::= α1| . . . |αp
then each alternate must be considered, so the following code is generated.

code(X ::= α1| . . . |αp) =

if testSelect(I[cI ], X, α1) then add(Lα′1 , cU , cI , $)

· · ·
if testSelect(I[cI ], X, αp) then add(Lα′p , cU , cI , $)

goto L0

Lα′1 :

code(r1)

if I[cI ] ∈ follow(X) then pop(cU , cI , cN )

goto L0

· · ·
Lα′p :

code(rp)

if I[cI ] ∈ follow(X) then pop(cU , cI , cN )

goto L0

The template for an instanced string, g1g2 . . . gd, of terminals and non-terminals is

code(g1g2 . . . gd) =

code(g1)

code(g2)

. . .

code(gd)

For an ε instance εj whose left-hand side is X

code(εj) =

cR :=getNodeL(ε, cI , cI); cN :=getNode(Eεj , cN , cR)

For a terminal a ∈ T , the code generated for an instance aj , whose left-hand side

is X, is

code(code(aj) =

if I[cI ] = a then {
cR :=getNodeL(a, cI , cI + 1)
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cI := cI + 1; cN :=getNode(Eaj , cN , cR)
}

For a non-terminal Y ∈ N , the code generated for an instance Y j , whose left-hand

side is X, is

code(Y j) =

cU :=create(EY j , cU , cI , cN ); goto LY

EY j :

3.2 Extended SPPFs

Before extending GLL to accept multiple input strings, it is necessary to consider how

to efficiently represent the derivations of several different sentences.

An SPPF represents the set of all derivations for a single input string. If a TWE

set is used as input to the parser, then an extended form of SPPF is required. The

output of the parser is modified to handle the case where the input TWE set represents

multiple tokenisations. This Extended SPPF (ESPPF) is a modification of the standard

definition of an SPPF so that the leaf nodes now represent elements in the TWE set,

Σ. For example, given the grammar

S ::= A d |AB

A ::= A a | a

B ::= b b | d

For the input token string aabb, a GLL parser would produce the SPPF given in

Figure 3.2. However, suppose that the underlying character string has more than one

tokenisation and that the TWE set is

Σ = {(a, 0, 1), (a, 0, 2), (a, 1, 4), (a, 1, 5), (a, 2, 4),

(b, 2, 6), (b, 4, 5), (b, 5, 6), (d, 5, 6)}

then the corresponding ITS set is

strings(Σ) = {(a, 1)(a, 4)(b, 5)(b, 6), (a, 1)(a, 4)(b, 5)(d, 6), (a, 2)(b, 6),

(a, 2)(a, 4)(b, 5)(b, 6), (a, 1)(a, 5)(b, 6),

(a, 2)(a, 4)(b, 5)(d, 6), (a, 1)(a, 5)(d, 6) }
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A parser for this grammar would reject the tokenisations (a, 1)(a, 4)(b, 5)(d, 6), (a, 1)

(a, 5)(b, 6), (a, 1)(a, 5)(d, 6), (a, 2)(a, 4)(b, 5)(d, 6), and (a, 2)(b, 6). But, the tokeni-

sations (a, 1)(a, 4)(b, 5)(b, 6), and (a, 2)(a, 4)(b, 5)(b, 6) would be accepted. Because

both of these correspond to the token string aabb, the standard SPPF construction

would lose the information about the extents. As a result, both are treated as the

string aabb, resulting in the SPPF in Figure 3.2.

a, 0, 1

A, 0, 1 a, 1, 2

A, 0, 2

S, 0, 4

B, 2, 4

b, 2, 3 b, 3, 4

Figure 3.2: SPPF from parsing the tokenisation aabb

An ESPPF instead has leaf nodes whose extents match the extents in the TWE

set. Suppose that a TWE set, Σ, has a corresponding ITS set

{(a11, i11)(a12, i12) . . . (a1j1 ,m),

(a21, i21)(a22, i22) . . . (a2j2 , nn),

. . .

(ad1, id1)(ad2, id2) . . . (adjt , nn)}

For each individual ITS

(ah1, ih1)(ah2, ih2) . . . (ahjt ,m)

the corresponding ESPPF will be a modified SPPF for this tokenisation in which every

terminal node is relabelled to match the corresponding triple in the TWE set. The

changes to the extents are then appropriately propagated throughout the graph to

create the ESPPF. The final ESPPF is the union of the ESPPFs for each indexed

token string.

For the example above, when the extents are adjusted to match the definition of

an ESPPF, the result is three distinct ESPPFs - one for each valid tokenisation. The
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ESPPF for (a, 1)(a, 4)(b, 5)(b, 6) is given in Figure 3.3 and the ESPPF for (a, 2)(a, 4)

(b, 5)(b, 6) is given in Figure 3.4. The ESPPF for the tokenisation (a, 1)(a, 5)(d, 6) is

given in Figure 3.5. The ESPPF for the entire TWE set is then obtained by taking

b, 4, 5a, 1, 4

B, 4, 6

A, 0, 1 b, 5, 6

A, 0, 4

S, 0, 6

a, 0, 1

Figure 3.3: ESPPF from parsing the tokenisation (a, 1)(a, 4)(b, 5)(b, 6)

b, 4, 5

B, 4, 6

a, 2, 4A, 0, 2 b, 5, 6

A, 0, 4

a, 0, 2

S, 0, 6

Figure 3.4: ESPPF from parsing the tokenisation (a, 2)(a, 4)(b, 5)(b, 6)

the union of the ESPPFs for each indexed token string. For the above ESPPFs, this is

the ESPPF in Figure 3.6.

An ESPPF is a directed, bipartite graph with two disjoint node sets, Vp and Vs

with the following properties

• Each u ∈ Vs has a label of form (r, i, j) where r ∈ (N ∪ T ∪ ε) or r is a grammar

slot X ::= α · β, X ::= αβ ∈ P , i, j ∈ N and i ≤ j.

• Each w ∈ Vp has a label of form (X ::= α · β, i), X ::= αβ ∈ P and i ∈ N.

Elements of Vp are called packed nodes, and i is called the pivot value.

• u ∈ Vs with labels of the form (r, i, j), such that (r, i, j) ∈ Σ are terminal nodes.

• u ∈ Vs with labels of the form (ε, i, i) where i ∈ N are epsilon nodes.

70



a, 1, 5

a, 0, 1

A, 0, 1

B, 5, 6

S, 0, 6

A, 0, 5

S ::= Ad·, 5S ::= AB·, 5

d, 5, 6

Figure 3.5: ESPPF from parsing the tokenisation (a, 1)(a, 5)(d, 6)

b, 4, 5 a, 1, 5

a, 1, 4

B, 4, 6

A ::= Aa·, 2 d, 5, 6A ::= Aa·, 1

A, 0, 2

b, 5, 6

A, 0, 1

B, 5, 6A, 0, 4 A, 0, 5

S ::= Ad·, 5

a, 0, 2

S, 0, 6

a, 0, 1

a, 2, 4

S ::= AB·, 5S ::= AB·, 4

Figure 3.6: ESPPF combining the ESPPFs of tokenisations

• u ∈ Vs with labels of the form (r, i, j), such that r ∈ N are non-terminal nodes.

Each non-terminal node has one or more children that are elements of Vp.

• u ∈ Vs with labels of the form (r, i, j), such that r is a grammar slot X ::= α · β
are intermediate nodes. Each intermediate node has one or more children that

are elements of Vp.

• If u is a node in Vs with more than one child, then there is a syntactic ambiguity

at u.

• A node w ∈ Vp has one or two children - an (optional) left child and a right child.
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These children are elements of Vs. If w has label (r, i) and the right child has

label (t, k, j), then k = i.

• If the original character string from which the TWE set was constructed is α =

a1a2 . . . am, then the subgraph rooted at a node u ∈ Vs labelled (δ, i, j) represents

the substring ai . . . aj , 1 ≤ i < j ≤ m.

• In all cases 0 ≤ i < j ≤ m, where m is the height of Σ.

• For any two trees embedded in the ESPPF, if there is a node in the two trees

with the same label, then there is exactly one corresponding node for those nodes

in the ESPPF.

3.2.1 Retrieving Strings from the ESPPF

For single-input parsing, the tokenisation that is accepted can be retrieved from the

SPPF by concatenating pairs consisting of the token name and right extent from each

of the terminal nodes reachable from the root, in monotonically increasing order of

extent. When parsing multiple inputs, hopefully, the parse would eliminate all but

one input. In this case, the accepted tokenisation can be retrieved in the same way.

However, this is not the case when multiple inputs are accepted by the parser.

Consider the ESPPF from Figure 3.6. Simply reading all terminal nodes in mono-

tonically increasing order of extent will not work in this case as there are three to-

kenisations embedded in the ESPPF. Näıvely, one might consider constructing a TWE

set by considering the labels of terminals reachable from the root as the elements of

a TWE set. The strings that were parsed would then be the indexed token strings

embedded in this TWE set. In this example, the TWE set

{(a, 0, 2), (a, 2, 4), (a, 1, 4), (b, 4, 5), (b, 5, 6), (a, 0, 1), (d, 5, 6), (a, 1, 5)}

would be constructed. This does embed the three tokenisations that were accepted -

(a, 1)(a, 4)(b, 5)(b, 6), (a, 2)(a, 4)(b, 5)(b, 6) and (a, 1)(a, 5)(d, 6) - but it also embeds

three other tokenisations - (a, 1)(a, 4)(b, 5)(d, 6), (a, 2)(a, 4)(b, 5)(d, 6) and (a, 1)(a, 5)

(b, 6) - that were rejected by the parser.

Instead, consider how one might obtain tokenisations in a manner similar to the

way in which one obtains tokenisations in the single-input case. It is clear that two

tokenisations cannot be part of the same derivation. Therefore, first one must identify

which nodes are in a single derivation. Nodes that are children of the same packed node

must be members of the same derivation. In the graph in Figure 3.7, this is illustrated

by drawing a red/dashed line between these nodes. For a terminal node, (a, i, j), the
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b, 4, 5 a, 1, 5

a, 1, 4

B, 4, 6

A ::= Aa·, 2 d, 5, 6A ::= Aa·, 1

A, 0, 2

b, 5, 6

A, 0, 1

B, 5, 6A, 0, 4 A, 0, 5

S ::= Ad·, 5

a, 0, 2

S, 0, 6

a, 0, 1

a, 2, 4

S ::= AB·, 5S ::= AB·, 4

Figure 3.7: ESPPF from Figure 3.6 with red/dashed edges showing nodes that are
children of the same packed node

yield set, that is the ITS set that the node represents, is the set containing one element

(a, j). The yield set of a packed node is then the set obtained by concatenating elements

of the yield set for its left child with elements of the yield set for its right child. If an

interior node does not have multiple packed node children, then the yield set of that

node is the yield set of its single (omitted in this visualisation) packed node child. So

the node (A, 0, 2) will have a yield set of {(a, 2)} and the packed node (A ::= Aa·, 2)

will have a yield set of {(a, 2)(a, 4)}. Likewise, (A, 0, 1) will have a yield set of {(a, 1)}
and the packed node (A ::= Aa·, 1) will have a yield set of {(a, 1)(a, 4)}. (A, 0, 5) will

have a yield set of {(a, 1)(a, 5)} and (B, 5, 6) will have a yield set of {(d, 6)}, so the

packed nodes (S ::= AB·, 5) and (S ::= Ad·, 5) will both have a yield set of {(a, 1)

(a, 5)(d, 6)}.
Where an interior node has multiple packed node children, this indicates the pres-

ence of multiple derivations under that node. The yield set of an interior node is,

therefore, the union of the yield sets of its packed node children. As the yield set for

(A ::= Aa·, 2) is {(a, 2)(a, 4)} and the yield set for (A ::= Aa·, 1) is {(a, 1)(a, 4)}, the

yield set for (A, 0, 4) is {(a, 2)(a, 4), (a, 1)(a, 4)}. The yield set for (B, 4, 6) is {(b, 5)

(b, 6)}, so the yield set for the packed node (S ::= AB·, 4) is {(a, 2)(a, 4)(b, 5)(b, 6),

(a, 1)(a, 4)(b, 5)(b, 6)}. The yield set for (S, 0, 6) is then {(a, 2)(a, 4)(b, 5)(b, 6), (a, 1)

(a, 4)(b, 5)(b, 6), (a, 1)(a, 5)(d, 6)}. As this is the root node, this corresponds to the

set of indexed token strings that were accepted by the parser - the three tokenisations

that were expected.
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Formally, an algorithm that constructs the yield set, XΓ, is as follows

• For leaf nodes u labelled (a, i, j), if i < j then let Xu = {(a, j)}. If i = j, let

Xu = ∅.

• For packed nodes u with two children y = (t, i, k) and z = (s, k, j), where i ≤
k ≤ j, let Xu = Xy ·Xz, the set of all strings which are concatenations of some

element of Xy with an element of Xz.

• For packed nodes u with one child y = (t, i, j), let Xu = Xy.

• For internal nodes u with packed node children v1, v2, . . . , vp, let Xu = Xv1 ∪
Xv2 ∪ · · · ∪Xvp .

• If u is the root node, then XΓ = Xu.

3.3 Parsing a TWE Set

The aim is to parse the strings embedded in the TWE set more efficiently than simply

parsing each string independently. The GLL approach can be modified relatively easily

to allow the existence of several different terminals at a given input position. This

modification, termed MGLL, is given in this section.

3.3.1 GLL BNF Parsing Algorithm for a TWE Set (MGLL)

The main modification that is necessary to extend GLL to multiple inputs involves a

modification of the templates to consider all token matches at a given input position.

This involves modifying the template for terminals so that instead of simply construct-

ing the SPPF nodes for the current token and then advancing the input position, the

nodes for the current token are constructed and then descriptors are added for all token

triples that follow (in terms of the embedded ITS) the current token triple. Of course,

the templates for SPPF node construction must also be modified to assign appropriate

character extents.

Each descriptor stores (L, u, c, w) - where L is a grammar slot, u is a GSS Node, c

is a terminal/integer pair (b, i) and w is an SPPF node. Elements of P are now triples

(u, a, z), where u, z are GSS nodes and a ∈ T . For each terminal/integer pair c = (b, i),

c.sym and c.extent represent b and i respectively. The add, pop and create methods

are modified to take this into account.

function add(L, u, c, w) {
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if (L, u, c, w) 6∈ U then add (L, u, c, w) to U and to R
}

function pop(u, c, z) {
if u 6= u0 then {

let (L, k) be the label of u

add (u, c.sym, z) to P
for each GSS edge (u,w, v) do {

let y be the node returned by getNode(L,w, z)

add(L, v, c, y)
}

}
}

function create(L, u, i, w) {
if there is not already a GSS node labelled (L, i) then create one

let v be the GSS node labelled (L, i)

if there is not an edge from v to u labelled w then {
create an edge from v to u labelled w

for all a, z such that (v, a, z) ∈ P do {
let y be the node returned by getNode(L,w, z)

let h be the right extent of z and let f = (a, h)

add(L, u, f, y)
}

}
return v

}

The testSelect and SPPF node creation functions remain unchanged from the

previous version.

A challenge in parsing a set of triples is that the elements of the set are unordered.

The parser will need to know the triples that will follow a token that has been parsed.

To lower the search cost, the follow sets of each token found at a left extent are pre-

computed. For each a starting at left-extent i, a set Σa,i ⊆ Σ is defined such that

(b, j) ∈ Σa,i if (a, i, j), (b, j, k) ∈ Σ for some k > j.

The input is a TWE set Σ with parser lookahead sets Σa,j as previously defined. Σ

is augmented with a final triple ($,m,m + 1). cC represents a pair (a, i). Recall from

Chapter 2 that m is the height of the TWE set. cI is an integer value 0 ≤ cI ≤ m. ca

is a variable which is either some t ∈ T or $. sentence(w) is the result of running the

sentence finding algorithm on the ESPPF rooted at w. The main GLL parse function

is then as follows
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Construct sets Σa,i from Σ

Create GSS node u0 = (L0, 0)

U := ∅; R := ∅; P := ∅
for all (a, 0, i) ∈ Σ do

add(LS , u0, (a, 0), $))

L0 :

if R 6= ∅ then {
Remove (L, u, c, w) from R
cU := u; cN := w; cC := c; cI := c.extent; ca := c.sym;

goto L
}
if there exists SPPF node labelled (S, 0,m) then

output sentence((S, 0,m))

else

Report failure

LA : code(A)
...

LZ : code(Z)

If the rule for X is of the form X ::= α1| . . . |αp then each alternate must be

considered, so the following code is generated.

code(X ::= α1| . . . |αp) =

if testSelect(ca, X, α1) then add(Lα1
, cU , cC , $)

...

if testSelect(ca, X, αp) then add(Lαp
, cU , cC , $)

goto L0

Lα1
:

code(r1)

pop(cU , cC , cN )

goto L0
...

Lαp :

code(rp)

pop(cU , cC , cN )

goto L0

If r is an instanced string, let exp(r) be a function that returns the corresponding

uninstanced string. The template for an instanced string, g1g2 . . . gd, of terminals and
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non-terminals is

code(g1g2 . . . gd) =

code(g1)

code(g2)
...

code(gd)

For an ε instance εj whose left-hand side is X

code(εj) =

cR :=getNodeL(ε, cI , cI); cN :=getNode(Eεj , cN , cR)

if ca 6∈ follow(X) then goto L0

For a terminal a ∈ T the code generated for an instance aj , whose left-hand side is

X and whose follow is β, is

code(aj) =

if |Σa,cI | > 1 then {
for all (b, k) ∈ Σa,cI do {

if testSelect(b,X, β) is true then {
cR :=getNodeL(a, cI , k)

Let cx :=getNode(Eρ, cN , cR)

add(Eρ, cU , (b, k), cx)
}

}
goto L0

}
Let (b, k) be the singular element in Σa,cI
if testSelect(b,X, β) is false then goto L0

cR :=getNodeL(a, cI , k)

cN :=getNode(Eρ, cN , cR)

cI := k; cC := (b, k); ca := b

Eρ :

For a non-terminal Y ∈ N the code generated for an instance Y j , whose left-hand

side is X and whose follow is β, is

code(Y j) =

cU :=create(EY j , cU , cI , cN ); goto LY

EY j :
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if testSelect(ca, x, β) is false then goto L0

This gives a complete set of templates for generating an MGLL parser. As will

be demonstrated in Chapter 5, the shape of the ESPPF is comparable to an SPPF

produced by an equivalent character-level parser, therefore the size of an ESPPF is no

worse than cubic in the length of the input string. As character indices remain the basis

for descriptor creation, the algorithm should have an upper-bound time complexity no

worse than quartic in the number of character indices to process, and the upper-bound

may even be cubic. However, a full complexity analysis was not the focus of this study,

as the main advantage of MGLL is in the extent to which it is ‘recursively decent’ - in

the sense that it is relatively simple to understand and implement. The performance of

MGLL is certainly comparable to GLL in the average use case, as will be demonstrated

in Chapter 6.

Example

Recall the grammar

S ::= A d |AB

A ::= A a | a

B ::= b b | d

A MGLL parser for this grammar is as follows

Construct sets Σa,i from Σ

Create GSS node u0 = (L0, 0)

U := ∅; R := ∅; P := ∅
for all (x, 0, i) ∈ Σ do

add(LS , u0, (a, 0), $))

L0 :

if R 6= ∅ then {
Remove (L, u, c, w) from R
cU := u; cN := w; cC := c; cI := c.extent; ca := c.sym;

goto L
}
if there exists SPPF node labelled (S, 0,m) then

output sentence((S, 0,m))

else

Report failure
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LS :

if testSelect(ca, S,Ad) then

add(LS::=Ad, cU , cC , $)

if testSelect(ca, S,AB) then

add(LS::=AB , cU , cC , $)

goto L0

LS::=Ad :

cU := create(ES::=A·d, cU , cI , cN ); goto LA

ES::=A·d :

if testSelect(ca, S,d) is false then goto L0

if |Σd,cI | > 1 then {
for all (x, k) ∈ Σd,cI do {

if x ∈ follow(S) then {
cR :=getNodeL(d, cI , k)

Let cx :=getNode(ES::=Ad·, cN , cR)

add(ES::=Ad·,cU , (x, k), cx)
}

}
goto L0

}
Let (x, k) be the singular element in Σd,cI

if x 6∈ follow(S) then goto L0

cR :=getNodeL(d, cI , k)

cN :=getNode(ES::=Ad·, cN , cR)

cI := k; cC := (x, k); ca := x

ES::=Ad· :

pop(cU , cC , cN )

goto L0

LS::=AB :

cU := create(ES::=A·B , cU , cI , cN ); goto LA

ES::=A·B :

if testSelect(ca, S,B) is false then goto L0

cU := create(ES::=AB·, cU , cI , cN ); goto LB

ES::=AB· :

if ca 6∈ follow(S) then goto L0

pop(cU , cC , cN )

goto L0

LA :

if testSelect(ca, A,Aa) then

add(LA::=Aa, cU , cC , $)

if testSelect(ca, A,a) then
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add(LA::=a, cU , cC , $)

goto L0

LA::=Aa :

cU := create(EA::=A·a, cU , cI , cN ); goto LA

EA::=A·a :

if testSelect(ca, A,a) is false then goto L0

if |Σa,cI | > 1 then {
for all (x, k) ∈ Σa,cI do {

if x ∈ follow(A) then {
cR :=getNodeL(a, cI , k)

Let cx :=getNode(EA::=Aa·, cN , cR)

add(EA::=Aa·, cU , (x, k), cx)
}

}
goto L0

}
Let (x, k) be the singular element in Σa,cI

if x 6∈ follow(A) then goto L0

cR :=getNodeL(a, cI , k)

cN :=getNode(EA::=Aa·, cN , cR)

cI := k; cC := (x, k); ca := x

EA::=Aa· :

pop(cU , cC , cN )

goto L0

LA::=a :

if |Σa,cI | > 1 then {
for all (x, k) ∈ Σa,cI do {

if x ∈ follow(A) then {
cR :=getNodeL(a, cI , k)

Let cx :=getNode(EA::=a·, cN , cR)

add(EA::=a·, cU , (x, k), cx)
}

}
goto L0

}
Let (x, k) be the singular element in Σa,cI

if x 6∈ follow(A) then goto L0

cR :=getNodeL(a, cI , k)

cN :=getNode(EA::=a·, cN , cR)

cI := k; cC := (x, k); ca := x

EA::=a· :

pop(cU , cC , cN )

goto L0
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LB :

if testSelect(ca, B,bb) then

add(LB::=bb, cU , cC , $)

if testSelect(ca, B,d) then

add(LB::=d, cU , cC , $)

goto L0

LB::=bb :

if |Σb,cI | > 1 then {
for all (x, k) ∈ Σb,cI do {

if testSelect(x,B,b) is true then {
cR :=getNodeL(b, cI , k)

Let cx :=getNode(EB::=b·b, cN , cR)

add(EB::=b·b, cU , (x, k), cx)
}

}
goto L0

}
Let (x, k) be the singular element in Σb,cI

if testSelect(x,B,b) is false then goto L0

cR :=getNodeL(b, cI , k)

cN :=getNode(EB::=b·b, cN , cR)

cI := k; cC := (x, k); ca := x

EB::=b·b :

if |Σb,cI | > 1 then {
for all (x, k) ∈ Σb,cI do {

if x ∈ follow(B) then {
cR :=getNodeL(b, cI , k)

Let cx :=getNode(EB::=bb·, cN , cR)

add(EB::=bb·, cU , (x, k), cx)
}

}
goto L0

}
Let (x, k) be the singular element in Σb,cI

if x 6∈ follow(B) then goto L0

cR :=getNodeL(b, cI , k)

cN :=getNode(EB::=bb·, cN , cR)

cI := k; cC := (x, k); ca := x

EB::=bb· :

pop(cU , cC , cN )

goto L0

LB::=d :
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if |Σd,cI | > 1 then {
for all (x, k) ∈ Σd,cI do {

if x ∈ follow(B) then {
cR :=getNodeL(d, cI , k)

Let cx :=getNode(EB::=d·, cN , cR)

add(EB::=d·, cU , (x, k), cx)
}

}
goto L0

}
Let (x, k) be the singular element in Σd,cI

if x 6∈ follow(B) then goto L0

cR :=getNodeL(d, cI , k)

cN :=getNode(EB::=d·, cN , cR)

cI := k; cC := (x, k); ca := x

EB::=d· :

pop(cU , cC , cN )

goto L0

Consider the TWE set

Σ = {(a, 0, 1), (a, 0, 2), (a, 1, 4), (a, 1, 5), (a, 2, 4),

(b, 2, 6), (b, 4, 5), (b, 5, 6), (d, 5, 6)}

The first step of the algorithm creates triple follow sets for this TWE set as follows

Σa,0 = {(a, 1), (a, 2), (b, 2)}

Σa,1 = {(b, 4), (b, 5), (d, 5)}

Σa,2 = {(b, 4)}

Σb,2 = {($, 6)}

Σb,4 = {(b, 5), (d, 5)}

Σb,5 = {($, 6)}

Σd,5 = {($, 6)}

The final GSS will be
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ES::=AB·, 2

ES::=A·B, 0

EA::=A·a, 0

ES::=AB·, 5

L0, 0

ES::=AB·, 4

ES::=A·d, 0 $

A, 0, 4

A, 0, 5

A, 0, 2

$

$

$

$

The final values of U and P will be

U = {(LS, (L0, 0), (a, 0), $), (LS ::= Ad, (L0, 0), (a, 0), $),

(LS ::= AB, (L0, 0), (a, 0), $), (LA ::= Aa, (ES ::= A · d, 0), (a, 0), $),

(LA ::= a, (ES ::= A · d, 0), (a, 0), $), (LA ::= Aa, (ES ::= A ·B, 0), (a, 0), $),

(LA ::= a, (ES ::= A ·B, 0), (a, 0), $), (LA ::= Aa, (EA ::= A · a, 0), (a, 0), $),

(LA ::= a, (EA ::= A · a, 0), (a, 0), $), (EA ::= a·, (ES ::= A · d, 0), (a, 1), (A, 0, 1)),

(EA ::= a·, (ES ::= A · d, 0), (a, 2), (A, 0, 2)), (EA ::= a·, (ES ::= A · d, 0), (b, 2), (A, 0, 2)),

(EA ::= a·, (ES ::= A ·B, 0), (a, 1), (A, 0, 1)), (EA ::= a·, (ES ::= A ·B, 0), (a, 2), (A, 0, 2)),

(EA ::= a·, (ES ::= A ·B, 0), (b, 2), (A, 0, 2)), (EA ::= a·, (EA ::= A · a, 0), (a, 1), (A, 0, 1)),

(EA ::= a·, (EA ::= A · a, 0), (a, 2), (A, 0, 2)), (EA ::= a·, (EA ::= A · a, 0), (b, 2), (A, 0, 2)),

(ES ::= A · d, (L0, 0), (a, 1), (A, 0, 1)), (ES ::= A · d, (L0, 0), (a, 2), (A, 0, 2)),

(ES ::= A · d, (L0, 0), (b, 2), (A, 0, 2)), (ES ::= A ·B, (L0, 0), (a, 1), (A, 0, 1)),

(ES ::= A ·B, (L0, 0), (a, 2), (A, 0, 2)), (ES ::= A ·B, (L0, 0), (b, 2), (A, 0, 2)),

(EA ::= A · a, (EA ::= A · a, 0), (a, 1), (A, 0, 1)), (EA ::= A · a, (ES ::= A · d, 0), (a, 1), (A, 0, 1)),

(EA ::= A · a, (ES ::= A ·B, 0), (a, 1), (A, 0, 1)), (EA ::= A · a, (EA ::= A · a, 0), (a, 2), (A, 0, 2)),

(EA ::= A · a, (ES ::= A · d, 0), (a, 2), (A, 0, 2)), (EA ::= A · a, (ES ::= A ·B, 0), (a, 2), (A, 0, 2)),

(EA ::= A · a, (EA ::= A · a, 0), (b, 2), (A, 0, 2)), (EA ::= A · a, (ES ::= A · d, 0), (b, 2), (A, 0, 2)),

(EA ::= A · a, (ES ::= A ·B, 0), (b, 2), (A, 0, 2)), (LB ::= bb, (ES ::= AB·, 2), (b, 2), $),

(EA ::= Aa·, (EA ::= A · a, 0), (b, 4), (A, 0, 4)), (EA ::= Aa·, (EA ::= A · a, 0), (b, 5), (A, 0, 5)),

(EA ::= Aa·, (EA ::= A · a, 0), (d, 5), (A, 0, 5)), (EA ::= Aa·, (ES ::= A · d, 0), (b, 4), (A, 0, 4)),

(EA ::= Aa·, (ES ::= A · d, 0), (b, 5), (A, 0, 5)), (EA ::= Aa·, (ES ::= A · d, 0), (d, 5), (A, 0, 5)),

(EA ::= Aa·, (ES ::= A ·B, 0), (b, 4), (A, 0, 4)), (EA ::= Aa·, (ES ::= A ·B, 0), (b, 5), (A, 0, 5)),

(EA ::= Aa·, (ES ::= A ·B, 0), (d, 5), (A, 0, 5)), (EA ::= A · a, (EA ::= A · a, 0), (b, 4), (A, 0, 4)),

(EA ::= A · a, (ES ::= A · d, 0), (b, 4), (A, 0, 4)), (EA ::= A · a, (ES ::= A ·B, 0), (b, 4), (A, 0, 4)),
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(ES ::= A · d, (L0, 0), (b, 4), (A, 0, 4)), (ES ::= A ·B, (L0, 0), (b, 4), (A, 0, 4)),

(EA ::= A · a, (EA ::= A · a, 0), (b, 5), (A, 0, 5)), (EA ::= A · a, (ES ::= A · d, 0), (b, 5), (A, 0, 5)),

(EA ::= A · a, (ES ::= A ·B, 0), (b, 5), (A, 0, 5)), (EA ::= A · a, (EA ::= A · a, 0), (d, 5), (A, 0, 5)),

(EA ::= A · a, (ES ::= A · d, 0), (d, 5), (A, 0, 5)), (EA ::= A · a, (ES ::= A ·B, 0), (d, 5), (A, 0, 5)),

(ES ::= A · d, (L0, 0), (b, 5), (A, 0, 5)), (ES ::= A · d, (L0, 0), (d, 5), (A, 0, 5)),

(ES ::= A ·B, (L0, 0), (b, 5), (A, 0, 5)), (ES ::= A ·B, (L0, 0), (d, 5), (A, 0, 5)),

(LB ::= bb, (ES ::= AB·, 4), (b, 4), $), (LB ::= bb, (ES ::= AB·, 5), (b, 5), $),

(LB ::= d, (ES ::= AB·, 5), (d, 5), $), (EB ::= b · b, (ES ::= AB·, 4), (b, 5), (b, 4, 5)),

(ES ::= AB·, (L0, 0), ($, 6), (S, 0, 6))}

P = {((ES ::= A · d, 0),a, (A, 0, 1)), ((ES ::= A · d, 0),a, (A, 0, 2)), ((ES ::= A · d, 0),b, (A, 0, 2)),

((ES ::= A ·B, 0),a, (A, 0, 1)), ((ES ::= A ·B, 0),a, (A, 0, 2)), ((ES ::= A ·B, 0),b, (A, 0, 2)),

((EA ::= A · a, 0),a, (A, 0, 1)), ((EA ::= A · a, 0),a, (A, 0, 2)), ((EA ::= A · a, 0),b, (A, 0, 2)),

((EA ::= A · a, 0),b, (A, 0, 4)), ((ES ::= A · d, 0),b, (A, 0, 4)), ((ES ::= A ·B, 0),b, (A, 0, 4)),

((EA ::= A · a, 0),b, (A, 0, 5)), ((EA ::= A · a, 0),d, (A, 0, 5)), ((ES ::= A · d, 0),b, (A, 0, 5)),

((ES ::= A · d, 0),d, (A, 0, 5)), ((ES ::= A ·B, 0),b, (A, 0, 5)), ((ES ::= A ·B, 0),d, (A, 0, 5)),

((ES ::= AB·, 5), $, (B, 5, 6)), ((ES ::= AB·, 4), $, (B, 4, 6))}

The final output ESPPF is then as given in Figure 3.8.
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b, 4, 5

A ::= Aa·, 2 A ::= Aa·, 1

a, 0, 2 a, 0, 1

S, 0, 6

a, 2, 4

B, 5, 6

A ::= Aa·, 1 B ::= d·, 5

d, 5, 6a, 1, 5a, 1, 4b, 5, 6

A ::= a·, 0

B ::= bb·, 4

B, 4, 6

A, 0, 2 A, 0, 1

A, 0, 4 A, 0, 5

S ::= Ad·, 5

A ::= a·, 0

S ::= AB·, 5S ::= AB·, 4

Figure 3.8: Final ESPPF produced for this example
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Chapter 4

Abstract Syntax Conversion with

GIFT Operators

Syntactic structure is usually the basis of semantic interpretation. In early program-

ming language design, it was often assumed that semantics would be interpreted as the

string was parsed, due to the memory constraints of early computers. In contemporary

language design, where resources are more readily available, it is generally assumed

that the result of parsing a string is a structural representation of the string, which is

then transformed into a more suitable semantics form. This form could be some tree-

like structure, or it could be a collection of data structures for modelling the semantics.

This internal form is an abstraction of the language in which language concepts are

presented in a concise manner.

This internal abstraction of the language is called an abstract syntax - which may

or may not be grammar-based. The grammar that is used for parsing is then called a

concrete syntax. This chapter considers a style of abstract syntax called a structural

abstract syntax and examines a set of operators and its extension (the TIF and GIFT

operators respectively) for specifying a concrete to abstract syntax conversion. Chap-

ter 6 will later describe how the GIFT operators are used to perform a translation of

derivation trees in the C# concrete syntax into trees in a structural abstract syntax

for C# designed as part of the PLanCompS [Mos+15] project.

4.1 Models of Abstract Syntax

Abstract syntax forms range from those closely based on derivation trees to those which

impose no particular structure.

Attribute grammars [Knu68] specify semantics in terms of attributes associated
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with grammar elements. The semantics results from computation over trees, and the

initial tree is a derivation tree in the concrete syntax. As such, there is no separate ab-

stract syntax. An attribute grammar can define the complete semantics of a language.

Alternatively, an attribute grammar can be used as an intermediate step, describing the

translation from the derivation tree to some internal form. Later, an attribute grammar

style specification is used as the basis of TIF [JS10] and GIFT transformations.

The idea of abstraction, in general, is to reduce complex structures into a (concep-

tually) simpler form. A derivation tree itself is already an abstraction from derivations

- for instance, a derivation tree does not distinguish between a left-most and right-most

derivation.

An example of an unstructured abstract syntax is seen in the Vienna Development

Method (VDM) [BJ78]. VDM includes a formal language that supports high-level

abstractions of mathematical concepts such as sets and maps. It can be used to model

and validate the semantics of software systems, before production implementation. The

role of the concrete structure is de-emphasised, focussing only on the abstractions.

Although the compiler architecture flowchart given at the start of Chapter 1 shows

a simple progression from syntactic to semantic analysis, and then to intermediate code

generation, this in itself is an abstraction. In practice, the transition between the phases

involves a chain of intermediate abstract syntax conversions. For example, in the GNU

C Compiler [SG15], after parsing, a tree-based representation is constructed before

being transformed into a sequence of three-address instructions. This sequence is then

itself transformed into the low level architectural independent representation. This

representation is then used to construct the architectural specific representation. This

provides a simpler interface for the compiler to perform optimisations before producing

the final semantics.

4.2 Structural Abstract Syntax for Structural Operational

Semantics

Plotkin [Plo04] introduced the idea of specifying operational semantics in terms of

logical inference rules applied over the programming language syntax. Inference rules

must be defined for every syntactic form, so it is beneficial to reduce the number of

syntactic forms. The starting point for structural operational semantics specifications is

usually an abstract syntax tree that is the derivation tree of some structurally simpler,

abstract syntax grammar.

The idea is to take the non-terminals which represent syntactic categories in the

concrete syntax and map these into a smaller set of matching semantics categories
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- for example, grouping together semantically similar constructs under a single non-

terminal. Overbey and Johnson [OJ09] identified common transformations one would

wish to make when constructing an abstract syntax. Some of these include

• Omission of keywords that represent syntactic sugar

• Relabelling symbols to distinguish elements of the same production

• Merging symbols in different productions with similar semantics

• Renaming symbols to better document the semantic intent

• Converting recursive structures into list structures

• Removal of non-terminals that are necessary for unambiguous parsing, but not

for semantics

The specification of a concrete to abstract syntax transformation may be done infor-

mally, or through more principled techniques such as term rewriting [KBV01; BN98].

In the rest of this thesis, abstract syntax will be taken to mean a structural abstract

syntax grammar. The transformation operators that are defined in this chapter have

a derivation tree to abstract syntax tree interpretation, but may also be thought of as

grammar to grammar translations.

4.2.1 The relationship between concrete and structural abstract syn-

tax

The structural abstract syntax grammar may be thought of as a structurally more

concise version of the concrete syntax. Such an abstract syntax is unlikely to be suitable

for near-deterministic parsing techniques as they are often ambiguous. For example,

a common concrete to abstract syntax transformation is to take the subgrammar for

expressions which are usually of form

E ::= E1 | E1 < E1 | E1 > E1

E1 ::= E2 | E1 + E2 | E1 - E2

E2 ::= E3 | E2 * E3 | E2 / E3

E3 ::= Operand | ( E )

Operand ::= a | b | . . .

and translate it into an abstract syntax pattern of form

E ::= E Op E |Operand
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Op ::= + | - | * | / | > | <

Operand ::= a | b | . . .

The latter (abstract) syntax rule pattern supports compact semantics specification but

is not very useful as a parsing grammar without some well-defined disambiguation

strategy. Whilst the concrete syntax rule pattern for E makes the order of evaluation

explicit through the structure, the abstract syntax leaves this open. For the string

a+b*c>d, the concrete syntax generates the following derivation tree

Operand

E2

E2 E2 E3

E2

>

E

*

+

Operand

E3

E3

Operand

E1

E1

E1

a

c

b

d

OperandE3

A parser for the abstract syntax generates many derivation trees. There is one deriva-

tion tree in the abstract syntax that is equivalent in structure to the derivation tree

for the concrete syntax:
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a

c

>

E

d

OperandE E

*E E

+

b

Operand

Operand

Operand

E E

This tree has a similar shape to the tree for the concrete syntax except nodes cor-

responding to non-terminals which are used to determine the evaluation order are

removed. Since this tree makes the correct evaluation order explicit whilst being struc-

turally concise, it is the tree required as the starting point for structurally defined

semantics.

In structurally defined semantics, the expectation is that the concrete syntax is the

grammar that will parse the string and from which a derivation tree will be obtained.

This derivation tree is then transformed, using the operators which will be described in

this chapter, into a derivation tree in the abstract syntax. One could view the concrete

syntax parser as being the disambiguation strategy for the many abstract syntax parses.

4.3 Derivation Tree Manipulation

To obtain the preferred abstract syntax tree (AST) from a given concrete syntax deriva-

tion tree, transformations are performed on the nodes of the derivation tree. It is gener-

ally required to transform the structure of the tree, for instance by adding or removing

nodes or subtrees.

4.3.1 Node and subtree removal

If a single node is deleted, then its children could be reattached to some other part of

the tree. Possible removal transformations are considered in this section.

Consider the grammar

S ::= A d |AB
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A ::= A a | a

B ::= b b | d

A derivation tree for the string aabb is

A

a

B

a

A

S

b b

If a node, x, has no children, then removing that node involves simply deleting it. For

example, if one were to remove the second a in the above tree then the resulting tree

would be

A

a

B

A

S

b b

Now suppose x has children. There are several different ways to handle the children

when x is deleted.

• The entire tree rooted at x could be removed (x is torn from the tree). For the

above example, if the node B was torn, then the result would be

A

A

S

a

a
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• x could be removed with the children of x being attached to the parent of x (x is

folded under its parent). For the same example, if the node B was folded under

S, then the result would be

A

a

b

a

A

S

b

• One child, y, of x is distinguished. When x is removed from the tree, it is

relabelled y and inherits the children of y (y is folded over x). For the same

example, if the left-most b node is distinguished and is folded over B then the

result would be

A

a

b

a

A

S

b

The B node has been replaced by the left-most b node. Since only one child

could possibly be the successor, only a single distinguished child is allowed.

The root node may not be sensibly removed with tear or fold-under. Removing the

entire tree rooted at S would, of course, result in the empty tree, and since the root

node by definition has no parent, its children could not be attached to a parent.

4.3.2 Subtree insertion

For a subtree that comprises of a single node, insertion is straightforward. One simply

adds a new node amongst the list of existing children. For example, one could insert a

c node between the A and B children of S in the above example to obtain the tree
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A

a

c B

a

A

S

b b

Some less trivial node addition operations include:

• The insertion of an entire tree rooted at some node y amongst the list of children

for a node X. For the previous example, one could add a new node C, which has

c as a child:

A

a

C B

a

cA

S

b b

• Take one or more children of X and add them as children of a new node Y (Y

gathers some children of X). This Y then takes the place of these children under

X. In the running example, consider creating a new node, X, under S, that

gathers the nodes A and B

A

a

B

a

A

S

b b

X
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One could easily envisage transformations that go beyond these, but only local

tree transformation will be considered for this thesis. First, the Tear-Insert-Fold (TIF)

operators proposed in [JS10] shall be reviewed, and potential problems with the interac-

tion between operations will be noted. The Gather-Insert-Fold-Tear (GIFT) formalism,

which modifies and extends TIF, will then be described. In Chapter 6, it will be shown

how the GIFT operators may be used to transform the C# 1.2 parsing grammar from

the language specification into a structural abstract syntax, developed by the PLan-

CompS [Mos+15] project, used in the formal semantics of C# 1.2.

4.4 TIF Operators on Derivation Trees

The Tear-Insert-Fold (TIF) operators were originally implemented in RDP [JS98] but

were formalised in [JS10]. This formalisation of the TIF operators will be discussed

here as the background for the GIFT operators discussed later. TIF provides a set of

annotations applied to symbols on the right-hand side of productions. For a production

of form X ::= x1x2 . . . xn, an element xi can be annotated as follows

• xi (no annotation) - The node corresponding to this symbol is constructed ‘as is’

in the derivation tree

• x∧i (fold-under) - The node constructed for xi is removed and the children of xi

are attached to the node constructed for X.

• x∧∧i (fold-over) - As for fold-under, but the node X is relabelled xi. Only one

node may relabel X, so the right-most fold-over is chosen to relabel X, with the

rest converted to fold-under.

• x∧∧∧i (tear) - The tree rooted at the node constructed by xi is removed. Note,

the original RDP formulation prescribed very different semantics to the ∧∧∧, this

former semantic interpretation was discarded in the TIF formalism.

• [xi] (insert) - The tree rooted at xi is inserted at this position.

There is a natural correspondence between these operators and the transformations

described in the previous section. Fold-under, fold-over and tear are operations that

remove nodes from the tree. Fold-under removes the node corresponding to the anno-

tated symbol, fold-over removes the parent of the node corresponding to the annotated

symbol, whilst tear removes the tree rooted at the node corresponding to the annotated

symbol.

In TIF, insert is an operation that can insert a subtree which has been torn from

elsewhere in the current derivation. If a symbol is annotated with a name using the
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form x∧∧∧i : id, then the torn tree is stored and an occurrence of [id] means insert the

tree named id here.

For example, consider the annotated grammar

S ::= A d | C∧∧∧ : t A [t]B∧

A ::= A a∧∧ | a∧∧

B ::= b b | d

C ::= c

The derivation tree for the string caabb is

A

ac

B

a

C

A

S

b b

The result of applying the node operations gives the AST

a

C b

c

a

S

b

The tree rooted at the node C under S is torn with the identifier t, and then is reinserted

after node A. The node for A under S is replaced by its second child, and likewise, its

first child is also replaced by that node’s child. The node for B under S is removed

and its children attached under S.

A syntax-directed definition of the TIF operators can be made using an attribute

grammar. Given a production rule X ::= x1 . . . xn, each xi has three attributes, a tree

node, a string label, and a sequence of tree node children. A function newNode()

constructs and returns a new tree node. If xi denotes an unannotated terminal then

the following are defined

xi.node = newNode() xi.label = xi xi.children = ∅
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For each grammar rule X ::= x1x2 . . . xn, the following are defined

X.node = newNode() X.label = Z

X.children = (u1, . . . , un)

where ui = xi.node if xi is unannotated, ui = xi.children if xi is annotated with ∧ or
∧∧, and ui is the empty sequence if xi is annotated with ∧∧∧. Additionally, for each

x∧∧∧i : id, an additional attribute labelled id is stored

id = xi.node

[id] moves the node stored in id to a new position in the list of children. In the list of

children for X, uT such that 1 ≤ T ≤ n represents the position of the insertion. Then

uT = id. If there is a xi annotated with ∧∧ then Z = xi.label, otherwise Z = X.

For the example annotated grammar on page 95, the corresponding syntax-directed

definition is

S ::=A d

{S.node = getNode() S.label = S S.children = (A.node,d.node)

d.node = getNode() d.label = d d.children = ∅}

S ::=C∧∧∧ : tA [t]B∧

{S.node = getNode() S.label = S

t = C.node S.children = (A.node, t, B.children)}

A ::=A1 a∧∧

{A.node = a.node A.label = a.label A.children = (A1.node)}

A ::=a∧∧

{A.node = a.node A.label = a.label A.children = ∅}

B ::=b1 b2

{B.node = getNode() B.label = B B.children = (b1.node,b2.node)

b1.node = getNode() b1.label = b b1.children = ∅

b2.node = getNode() b2.label = b b2.children = ∅}

B ::=d

{B.node = getNode() B.label = B B.children = (d.node)
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d.node = getNode() d.label = d d.children = ∅}

C ::=c

{C.node = getNode() C.label = C C.children = (c.node)

c.node = getNode() c.label = c c.children = ∅}

In this thesis, only annotations on BNF grammars are considered, since for EBNF

the appropriate semantics for operators, such as folds under closure operations, are

unclear. This is partly because there is no formally agreed upon standard as to how

closures are represented in derivation trees (for instance, RDP [JS98] produces deriva-

tion trees where the items in a closure are represented at the top-level whilst the SDF

formalism [Hee+89] considers closures as anonymous non-terminals).

4.4.1 Evaluation order and interaction of operators

The TIF operators were designed to provide a small set of transformations that would

be easy for language engineers to reason about - as they perform only local changes

to the derivation tree - local here meaning that a node only interacts with its par-

ent. Unfortunately, the evaluation algorithm in the RDP interpretation for folds given

in [JS98] causes the impact of some fold operations to be dependent on fold operations

in other grammar rules, and thus is not locally determined. Consider

A ::= aB∧

B ::= b C∧∧

C ::= c

The derivation tree for the string abc is

A

a

C

B

c

b

If the fold-under operator on B was applied first, then an intermediate tree would be
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A

a Cb

c

and applying the fold-over operator on C would result in the tree

a

C

b c

Alternatively, if the fold-over operator on C was applied first, then the intermediate

tree would be

A

a C

b c

and then the final resulting tree would be

A

a cb

In the first case, the combination causes C to replace its former parent’s parent

which breaches the locality principle of the TIF operators. The second interpretation

maintains this locality.

The syntax-directed definition described in the introduction to this section works

to the second interpretation, and thus maintains locality.

A ::= aB∧

{A.node = getNode() A.label = A A.children = (a.node,B.children)

a.node = getNode() a.label = a a.children = ∅}

B ::= b C∧∧

{B.node = C.node B.label = C.label B.children = (b.node, C.children)

b.node = getNode() b.label = b b.children = ∅}
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C ::= c

{C.node = getNode() C.label = C C.children = (c.node)

c.node = getNode() c.label = c c.children = ∅}

The interpretation of the TIF operators given in [JS10] uses the interpretation in the

syntax directed definition above, and thus can only ever match the second interpreta-

tion.

4.5 The GIFT Operators

When discussing structural abstract syntax grammars, the usefulness of merging syn-

tactic categories under a single semantic category was noted. An example was given

with the expression grammar on page 88. More generally, for the purposes of formal

semantic definition, it may be useful to bring together non-terminals with similar sub-

languages in the grammar. For instance, it is not unusual for languages to have different

non-terminals for different types of declarations. For example, the C# grammars in ap-

pendices A and B have separate non-terminals for class member declarations and struct

member declarations, where the only distinction is that structs cannot have a destruc-

tor. The formal semantics, on the other hand, may wish to treat these declarations

uniformly, relying on the concrete syntax grammar to filter structs with destructors.

Therefore, when transforming concrete derivations to abstract syntax interpretations,

being able to merge subtrees under a new non-terminal is often desired.

In this section, the TIF notation is extended to include a new operator, gather.

When processed, the nodes for xi . . . xip are replaced by an instance of a node labelled

Y and reattached as children of that instance of Y . Y may be a new or a pre-existing

non-terminal.

Formally, the gather annotation defines a new symbol instance Y to be defined with

one or more children

Y.node = newNode() Y.label = Y Y.children = (ui, . . . , uip)

For a rule of form X ::= x1x2 . . . xn this is denoted by (xi . . . xip)!Y . Where the children

of X would normally be

X.children = (u1, . . . , ui, . . . , uip , . . . un)
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this is redefined by the gather operator as simply

X.children = (u1, . . . , Y.node, . . . , un)

ui, . . . , uip become the children of Y , and Y takes the places of these nodes in the

children of X.

This allows for symbols that are operands of gather to themselves have annotations.

ui, . . . , uip are defined according to the annotation on their corresponding symbols. In

addition, a subsequence of this sequence of symbols may also be annotated with gather,

and this behaves as if Y is the parent. For every (xi . . . (xh . . . xk)!W . . . xip)!Y , an extra

symbol is defined on top of the definitions for Y

W.node = newNode() W.label = W

and then the children of each node are defined as such

X.children = (u1, . . . , Y.node, . . . , un)

Y.children = (ui, . . . ,W.node, . . . , uip)

W.children = (uh, . . . , uk)

As fold-over modifies not just the list of children but the label of the parent, a

fold-over annotation within a gather is not permitted in the formulation described in

this thesis, as it is unclear whether X should be relabelled, or Y .

Given the example GIFT-annotated grammar

S ::= A d | (C∧∧∧ : t A [t]B∧)!A

A ::= A a∧∧ | a∧∧

B ::= (b!W b)!D | d

C ::= c

The corresponding syntax-directed definition is as follows

S ::= A d

{S.node = getNode() S.label = S S.children = (A.node,d.node)

d.node = getNode() d.label = d d.children = ∅}

S ::= (C∧∧∧ : tA1 [t]B∧)!A2

{S.node = getNode() S.label = S
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t = C.nodeS.children = (A1.node)

A1.node = getNode() A1.label = A

A1.children = (A2.node, t, B.children)}

A ::= A1 a∧∧

{A.node = a.node A.label = a.label A.children = (A1.node)}

A ::= a∧∧

{A.node = a.node A.label = a.label A.children = ∅}

B ::= (b1!W b2)!D

{B.node = getNode() B.label = B B.children = (D.node)

b1.node = getNode() b1.label = b b1.children = ∅

b2.node = getNode() b2.label = b b2.children = ∅

W.node = getNode() W.label = W W.children = (b1.node)

D.node = getNode() D.label = D D.children = (W.node,b2.node)}

B ::= d

{B.node = getNode() B.label = B B.children = (d.node)

d.node = getNode() d.label = d d.children = ∅}

C ::= c

{C.node = getNode() C.label = C C.children = (c.node)

c.node = getNode() c.label = c c.children = ∅}

The result of applying the node operations on the derivation tree for the string caabb

(seen on page 95) gives the AST

A

a C

b

D

ca

S

b

W

By combining the fold-under and gather operators, it is possible to perform an

action equivalent to renaming a symbol. This is used in a few areas of the C# 1.2 case
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study, which will be discussed in Chapter 6. Consider the annotated grammar

S ::= bB∧

B ::= (aa)!Y

The derivation tree for the string baa is

a

a

S

B

a

The resulting tree after applying all transformations will be the following

a Y

S

aa

This combination of operations is effectively equivalent to relabelling the B node into

Y .

This section has examined a set of simple operators that allow a language designer

to define the structure of abstract syntax trees over a concrete syntax in terms of tree-

to-tree transformations. A semantics designer may also need a grammar that can act

as the basis for inference rules. In the next section, the GIFT operators are considered

as grammar-to-grammar transformations.

4.6 Grammar-to-Grammar Transformation

It is relatively easy to see that, for some GIFT derivation tree to AST operation, there

is a corresponding operation that takes the concrete syntax and transforms it into

an abstract syntax such that the AST is a derivation tree in the abstract syntax. For

instance, the application of fold-under to a terminal instance removes the corresponding

terminal nodes from derivation trees. This corresponds to removing that terminal

instance from the grammar. If one considers the following GIFT-annotated grammar,

Γ

S ::= a b∧ c
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the derivation tree of the string abc for this Γ is

a

S

b c

Applying the fold-under operator transforms this into the tree

a

S

c

The transformation of Γ into a new grammar Γ′ is then

S ::= a c

and the second tree above is clearly a derivation tree in Γ′.

Of course, for a finite language, one way to generate this Γ′ is to enumerate all

the transformed trees that are generated by Γ and construct a grammar which is the

union of the most trivial grammars that generate these trees. As many languages are

non-finite, this would not be possible, in general.

The following section shall consider an operational approach for transforming Γ into

Γ′, through inductive steps defined over each GIFT operator.

4.6.1 The Fold-Under Operator

Derivations using a production of the form X ::= αx∧β, where x ∈ N ∪ T ∪ {ε} and

α, β ∈ (N ∪ T ∪ {ε})∗ will have derivations trees with subtrees of the form

X

β

x

γα

where γ represents one of the right-hand sides of x.

After applying the fold-under operator, this will be transformed into
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X

βγα

The corresponding abstract syntax will replace the rule X ::= αxβ with rules such

that for each right-hand side, γ1, γ2, . . . , γn of x

X ::= αγ1β

X ::= αγ2β

...

X ::= αγnβ

Embedded fold-under operators

The symbols of some γ that are the right-hand side of x may themselves include fold-

under operators, in other words, there may be productions of the form x ::= ηy∧ζ. In

this case, the working grammar will simply have a production of the form

X ::= αηy∧ζβ

which is processed subsequently.

A production of the form

X ::= αX∧β

constructs a new abstract syntax rule in the working grammar

X ::= ααX∧ββ

For this case, it is difficult to find a BNF context-free grammar whose derivations trees

exactly match the generated ASTs. This issue will be returned to in 4.6.6.

Example

Given

S ::= A d | C AB∧

A ::= A a | a∧

B ::= b C∧ b | d
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C ::= c

For the rule A ::= a∧ the resulting rule in the abstract syntax will be A ::= ε. In

the case of the rule S ::= C A B∧, B corresponds to two rules - B ::= b C∧ b and

B ::= d. As a result, two additional rules are generated for the abstract syntax. C∧

will then transform one of these rules as well as the existing rule into the final form.

The resulting abstract syntax will be

S ::= A d | C A b c b | C A d

A ::= A a | ε

B ::= b c b | d

C ::= c

Note that the rule for B can now be deleted as B is no longer reachable.

4.6.2 The Fold-over Operator

The fold-over operator is similar to the fold-under operator. Derivations using a pro-

duction of the form X ::= αx∧∧β, where x ∈ N ∪ T ∪ {ε} and α, β ∈ (N ∪ T ∪ {ε})∗

will have derivation trees with subtrees of the form

X

β

x

γα

After application of the fold-over operator, this will be transformed to

x

βγα

The abstract syntax will contain rules corresponding to each right hand side γ1, γ2, . . . , γn.

As the fold-over operator changes the parent of the node, grammar rules need to be

generated for each annotated x

x ::= αγ1β

x ::= αγ2β
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...

x ::= αγnβ

In the tree transformation, the node labelledX may be the child of another node, W .

After transformation x becomes the new child of W . In the grammar transformation,

this needs to be reflected. For example, in the annotated grammar

S ::= aX b

X ::= c Y ∧∧ | f

Y ::= d

One rule for X contains a symbol annotated with fold-over, whilst the other rule does

not. The resulting abstract grammar will need to be

S ::= a Y b | aX b

Y ::= c d

X ::= f

For every xi on the right-hand side of X annotated with fold-over, a set of exp(xi),

∆X , is maintained. X itself is also in this set if there exists a right-hand side of X that

does not contain a symbol with a fold-over annotation.

After all other transformations are applied, for all instances of X on right-hand

sides of production in P , new rules are created for each xi ∈ ∆X . For productions of

form Y ::= ηXζ, these new rules will be

Y ::= ηx1ζ

...

Y ::= ηxpζ

If ∆S contains more than one symbol, a new start symbol, S′, is created, and for

each σ ∈ ∆S , a rule S′ ::= σ is created.

Embedded Fold-over operators

As with the fold-under operator, the symbols of some γ that is the right-hand side of

x may themselves include fold-over operators. Similar to the fold-under over operator,
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the working grammar will simply have a production of the form

x ::= αηy∧∧ζβ

which is processed subsequently.

The fold-over operator also has the same problem with recursion. This will be

returned to in 4.6.6.

Example

Consider the annotated grammar

S ::= A d | C AB∧∧

A ::= A a∧∧ | a∧∧

B ::= b b | d

C ::= c

The rule A ::= Aa∧∧ will resolve to a rule a ::= A. a is added to ∆A. The rule

A ::= a∧∧ will resolve to a rule a ::= ε, as a is already in ∆A it is not added again.

In the rules of S, the rule S ::= C A B∧∧ will resolve to rules B ::= C A b b and

B ::= C A d. B is added to ∆S . As S ::= A d is not annotated with any fold-over

operator, S is also added to ∆S . After resolving all operators, one gets

S ::= A d

a ::= A | ε

B ::= C A d d | C A d | b b | d

C ::= c

This is then transformed into

S′ ::= S |B

S ::= a d

a ::= a | ε

B ::= C a d d | C a d | b b | d

C ::= c
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4.6.3 The Tear Operator

Derivations using a production of the form X ::= αx∧∧∧β, where x ∈ N ∪ T ∪ {ε} and

α, β ∈ (N ∪ T ∪ {ε})∗ will have derivation trees with subtrees of the form

X

β

x

γα

After application of the tear operator, this will be transformed to

X

βα

The abstract syntax will simply replace the former rule with a rule of form

X ::= αβ

Example

In the grammar

S ::= A d | C∧∧∧ : t A B

A ::= A a | a

B ::= b b | d

C ::= c

The rule S ::= C∧∧∧ : t AB is resolved to the rule S ::= AB and t = C. The resulting

grammar is

S ::= A d |AB

A ::= A a | a

B ::= b b | d

C ::= c
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4.6.4 The Insert Operator

Derivations using productions of the form X ::= α[x]β, where α, β ∈ (N ∪ T ∪ {ε})∗

will have derivation trees of the form

X

βα

After application of the insert operators, this will be transformed to

X

β

x

α

The abstract syntax will contain a rule X ::= αxβ. In the case that the insert operator

is [id] where id is the name of some stored symbol, y, then the abstract syntax will

contain the rule

X ::= αyβ

Example

Consider

S ::= A d | C∧∧∧ : t A [t]B

A ::= A a | a

B ::= b b | d

C ::= c [d]

Resolving [d] will generate the rule

C ::= c d

in the abstract syntax.

In the rule S ::= C∧∧∧ : t A [t] B, C is torn and stored as t. The abstract syntax

will therefore contain a rule S ::= A C B.
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The resulting abstract syntax grammar is

S ::= A d |A C B

A ::= A a | a

B ::= b b | d

C ::= c d

4.6.5 The Gather Operator

With the gather operator, the right-hand operator can either be an existing non-

terminal or a new non-terminal symbol. Derivations using a production of the form

X ::= α(δ)!Y β, where α, δ, β ∈ (N ∪ T ∪ {ε})∗ will have derivation trees of the form

X

βδα

After applying the gather operator, this will be transformed to

X

β

Y

δα

The abstract syntax will contain a rule of the form

X ::= αY β

as well as a rule of the form.

Y ::= δ

Example

Given the grammar

S ::= A d | C AB

A ::= A a | a

B ::= (b b)!D | d
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C ::= c

In the rule B ::= (b b)!D, the gather operator extracts b b into a new production

D ::= b b, and then B ::= D. The resulting grammar is then

S ::= A d | C AB

A ::= A a | a

B ::= D | d

C ::= c

D ::= b b

4.6.6 Resolution order of operators

As was the case in the tree-to-tree transformation, the resolution of the GIFT operators

from the grammar-to-grammar perspective is mostly declarative. Even in the case

where an operator is embedded in the left operand of a GIFT annotation, it is possible to

resolve both annotations in either order without affecting the final result. For example,

consider the GIFT grammar

S ::= (aA∧)!X

A ::= aA | a

If the gather operator is resolved first, then the working grammar will be

S ::= X

A ::= aA | a

X ::= aA∧

If instead the fold-under operator is resolved first, then the working grammar will be

S ::= (a aA)!X | (a a)!X

A ::= aA | a

In both cases, resolving all other operators will result in the same final abstract syntax

S ::= X

A ::= aA | a

X ::= a aA | a a
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Of course, performance is an important consideration. In the above example, re-

solving the gather operator first and then the fold-under operator requires only two

resolution steps. Meanwhile, when fold-under is resolved first, the need to create two

productions for each rule of A means there are two gather resolution steps, generating

three resolution steps overall. The gather operator only ever moves symbol instances,

it does not create them. The tear operator only ever removes symbol instances, and

the insert operator only reinstates the tear operator instance. However, the fold-over

and fold-under operators copy symbol instances, which, in general, will increase the

number of resolution steps needed if the symbol instances copied have annotations.

The conflict discussed in 4.4.1 becomes more pertinent in the grammar-to-grammar

context. Consider the GIFT-annotated grammar

A ::= aB∧

B ::= b C∧∧

C ::= c

Applying the annotation on B first will result in the intermediate grammar

A ::= a b C∧∧

C ::= c

Resolving C∧∧ would then lead to the abstract syntax

S′ ::= C

C ::= a c

The application of the fold-over operator breaks the locality of the GIFT operators,

leading to an interpretation that is different to the interpretation that results from

the tree-to-tree transformation. Resolving the operators in the other way results in an

abstract syntax grammar that matches the tree-to-tree transformation

S ::= a b c

For both this issue, and the performance issue, the solution is to resolve fold opera-

tors only when all symbol instances that are to be copied have their own annotations

resolved.

There is also the outstanding issue of what happens when the fold-under and fold-
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over annotation recursively copies instances of itself such as in the rule

X ::= aX∧ b | c

In this case, there is no easy solution. The problem becomes even more difficult when

the recursion is not obvious in the initial GIFT-annotated grammar, such as in the

grammar

X ::= a Y ∧ b

Y ::= c Z∧

Z ::= d |X∧

For this thesis, the proposal is that these fold-cycles will be identified and will remain

annotated without resolution in the final abstract syntax.

Definition 4.6.1. X is in a fold-cycle if there exists a sequence X1, X2, · · · , Xk, such

that for all i, 1 ≤ i ≤ k there exists a production of the form Xi ::= αX∧(i+1)β or

Xi ::= αX∧∧(i+1)β and X1 = X = Xk.

For the best time performance, and to handle the issues illustrated above, the

construction of the abstract syntax will occur in a series of steps. Initially, a definition

of terms is provided. A production, p ∈ P is annotation-free if none of the symbols on

its right hand side are annotated. For a given X ∈ N , if every pi ∈ P such that X is

on the left hand side of pi is annotation-free, then X is annotation-free.

Definition 4.6.2. If a grammar symbol x ∈ N ∪ T ∪ {ε} is a terminal, ε or an

annotation-free non-terminal, then it is annotation-resolved in Γ.

The steps taken are then as follows

1. Resolve all instances of the gather, insert and tear operators

2. For each annotation instance of form x∧ or x∧∧, apply this annotation instance

if:

• x is annotation-resolved.

• x is not annotation-resolved, but all annotations on the right-hand sides of

productions of x that are not annotation-free are of the form x ::= αY ∧β or

x ::= αY ∧∧β such that Y is in a fold-cycle.

3. Repeat the previous step until all symbols are either annotation-resolved or in a

fold-cycle.
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Of course, in the case where a fold-cycle is present the grammar that is produced

will not be the grammar whose derivation trees are ASTs in the original grammar.

However, the grammar that is produced will be a GIFT-annotated grammar, and the

ASTs that are produced by this grammar will be the ASTs of the original grammar.

The primary purpose of the grammar-to-grammar transformation is to document

the abstract syntax that the abstract syntax trees correspond to - which would be

particularly useful for debugging the GIFT translation of the trees. For this purpose,

a grammar-to-grammar transformation with minimal unresolved annotations may be

good enough.

For the grammar

S ::= A d | C∧∧∧ : t A [t]B∧

A ::= A a∧∧ f | a∧∧

B ::= D∧ b | d

C ::= c

D ::= B∧∧ b

the result of the described procedure would be the grammar

S ::= a d | a C D∧ b | a C d b

a ::= a f | ε

B ::= D∧ b | d

C ::= c

D ::= B∧∧ b

For the string cafdbb, the resulting AST will be

a C B

df c

S

b

b
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Chapter 5

Topics in Lexical Analysis

This chapter considers some issues arising from the theoretical approaches described

in Chapters 2 and 3. In the first instance, the ESPPF constructed using a multilexer

parser approach is compared to an equivalent SPPF constructed using a character-level

parser. Then an approach to syntactic ambiguity reduction operating similarly to the

lexical ambiguity reduction rules in Chapter 2 is considered. An alternative TWE set

construction algorithm is given, that uses an EBNF GLL Recogniser instead of a finite-

state automaton. A more detailed discussion of how the token suppression technique

in Chapter 2 can be used to suppress layout tokens then follows. The final part of this

chapter will consider the ANSI-C type/variable name ambiguity in the context of a

generalised parser.

5.1 The relationship between character-level SPPF and

token-level ESPPF parsing

In the multilexer parser approach, a user specifies a set of tokens, T , whose patterns

are non-empty strings over some alphabet A, along with a context-free grammar Γ,

whose set of terminals is T . The goal is to find, given T and Γ, all derivations of all

tokenisations of an input character string.

An alternative approach is to use character-level parsing with no formal distinction

between lexical and syntactic analysis. A character-level grammar is one in which the

set of terminals is simply the set A, where each a ∈ A denotes a single string, a. In

more traditional terms, A is a set of tokens whose patterns contain a single element

which is a string containing a single character.

This section gives a brief discussion on the relationship between the character-level

and multilexer parser approaches. The C# 2.0 case study in Chapter 6 will then go
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further by giving experimental results that include a practical comparison of the two

approaches.

Suppose that Γ = (N,T, S, P ) is a token-level grammar under the multilexer parser

approach, and that T is a set of tokens whose patterns are context-free strings over A.

One can define a corresponding character-level grammar for Γ as follows. Let the set

of terminals of the grammar be simply the alphabet, A. Define a set of non-terminals

T ′ = {t′|t ∈ T} and a set of productions Q such that for each t′ ∈ T ′, the sub-language

generated is the pattern for the corresponding t. Defining the productions that generate

the sub-language for t′ may require additional non-terminals (that must not be in N),

denoted by the set M . Each q ∈ Q is therefore a pair (t′, γ′) where t′ ∈ T ′ and

γ ∈ (M ∪A∪ T ′)+. For each p ∈ P , symbols in T are replaced with the corresponding

t′ ∈ T ′, with the resulting production being added to a set R. Let N ′ = N ∪ T ′ ∪M
and P ′ = R ∪ Q. If Γ is the grammar defined under the multilexer parser approach,

then Γ′ = (N ′, A, S, P ′) is a corresponding character-level grammar.

For example, consider the lexical specification

x = {b, c, bc, cc}

y = {d}

A = {b, c, d} and T = {x,y}. A token-level grammar, Γ over T is given by

S ::= A y

A ::= x C

C ::= x

A corresponding character-level grammar, Γ′, would then be

S ::= A Y

A ::= X C

C ::= X

X ::= b | c | b c | c c

Y ::= d

Of course, this is not the only corresponding character-level grammar that could be

used. Another possible Γ′ is

S ::= A Y
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A ::= X C

C ::= X

X ::= B | C |B C | C C

Y ::= d

B ::= b

C ::= c

The first definition of Γ′ will be the one that is used here.

There is a natural correspondence between the SPPFs that are produced by Γ′ and

the ESPPFs that are produced by Γ. Given an input character string, δ, the parser

for the character-level grammar Γ′ will produce an SPPF for δ. If all nodes that are

descendants of a symbol node labelled (t′, i, j) are removed from this SPPF and the

symbol node labelled (t′, i, j) is relabelled (t, i, j) (where t is the corresponding token

in the token-level grammar), then the result is the ESPPF obtained by tokenising δ

and giving the resulting TWE set to the parser for Γ.

Consider the character string bccd, and the example grammars above. Tokenising

the string yields the TWE set

Σ = {(x, 0, 1), (x, 0, 2), (x, 1, 2), (x, 1, 3), (x, 2, 3), (y, 3, 4)}

The MGLL parser for Γ would then produce the ESPPF in Figure 5.1. The parser

for Γ′, when given the character string, would produce the SPPF in Figure 5.2. If, for

this SPPF, all the nodes that descend from (X, 0, 1), (X, 0, 2), (X, 1, 3), (X, 2, 3), and

(Y, 3, 4) are removed, all instances of X are replaced with x, and all instances of Y are

replaced with y, the result is Figure 5.1.

A token-level grammar specification can always be transformed into an equivalent

character-level grammar specification. A character-level grammar specification is a

single unified specification in which all information is available throughout the input

string analysis. This has advantages over the traditional, lexical analysis followed by

syntactic analysis approach as this allows situations in which the token choice depends

on the syntactic context to be handled cleanly.

As will be demonstrated in Chapter 6, the multilexer approach provides several

advantages:

• When the patterns of the tokens are regular languages, producing a TWE set for

a string, and then parsing that set is likely to be more efficient than parsing the

character string in a corresponding character-level parser. Whereas generalised
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A ::= xC·, 2A ::= xC·, 1

C, 1, 3

A, 0, 3

S, 0, 4

C, 1, 3 x, 0, 2x, 0, 1

x, 1, 3 x, 2, 3

y, 3, 4

Figure 5.1: ESPPF produced by Γ for the string bccd

A ::= XC·, 2A ::= XC·, 1

C, 2, 3

A, 0, 3

d, 3, 4

c, 2, 3

S, 0, 4

b, 0, 1

c, 1, 2

C, 1, 3X, 0, 2X, 0, 1

X, 1, 3 X, 2, 3

Y, 3, 4

Figure 5.2: SPPF produced by Γ′ for the string bccd

parsing is worst-case time complexity cubic in the size of the string, the DFA

approach used by the multilexer is worst-case quadratic in the size of the string.

• The structure of a lexeme is usually not important for semantic evaluation and

the design of the multilexer parser approach means the construction of these

structures in the derivation tree can be omitted.
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• Character-level parsers are restricted to character-level lookahead. If, for exam-

ple, two tokens had lexemes that share the same first character, character-level

lookahead would not be able to eliminate the exploration of derivation steps in-

volving a token non-terminal that could not result in a valid parse. Meanwhile,

token-level lookahead could allow these derivation steps to be eliminated before

they are explored.

• A user will obtain more useful feedback from error reporting at token-level than

character-level. For instance, it is more useful to report that an “identifier”

cannot appear in a particular context, than to simply say that a certain sequence

of characters cannot appear in that context.

The multilexer parser approach is aimed at giving language designers the same level

of power and control as a character-level specification, whilst retaining the advantages

of a token-level specification. A multilexer specification also provides techniques for

reducing the amount of lexical ambiguity in the TWE set provided to an MGLL parser,

whereas in a character-level specification the parser must treat all lexical ambiguities as

syntactic ambiguities. As will be discussed in the next section, lexical level ambiguity

reduction mechanisms can be cleaner than attempting to disambiguate at syntactic

level. Where lexical choice is dependent on contextual information, all alternative

possibilities can be passed down to the MGLL parser for resolution.

It is up to the language designer to decide where the boundary between the lexer

and parser is set, and the language designer decides the disambiguation rules to use.

The next section compares the effects of these disambiguation rules at both lexical and

syntactic level.

5.2 Lexical Ambiguity Reduction and Syntactic Ambigu-

ity Reduction

Although syntactic ambiguity reduction is not a central topic for this thesis, ambiguity

reduction mechanisms are needed as part of the C# 1.2 case study. Of course, for a

character-level grammar, the lexical ambiguities that occur in a token-level approach

are moved to become syntactic ambiguities. So for a character-level grammar, to cap-

ture the behaviour of the lexical ambiguity mechanisms given in Chapter 2, one must

decide on syntactic equivalents.

Recall from Chapter 1 that for any context-free grammar, Γ, and token string, δ

in the language of Γ, there is an SPPF, Sδ, which embeds all the derivation trees for
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δ. Let Vs(Sδ) denote the set of symbols and intermediate nodes in Sδ, and let Vp(Sδ)
denote the set of packed nodes in Su.

Whilst the problem of finding syntactic ambiguity in a context-free grammar is

undecidable, it is trivial to determine whether an ambiguity exists in a given SPPF

for a string. An SPPF, Sδ is said to contain a syntactic ambiguity if and only if

an element of Vs(Sδ) has two or more children - representing the point where two

derivations diverge. For an ESPPF, an element of Vs(Sδ) having two or more children

still represents where two derivations diverge, but this does not necessarily mean the

ESPPF contains a syntactic ambiguity. The divergence of derivations in an ESPPF

means one of two things: either that there is a syntactic ambiguity, or that there exists a

derivation for more than one ITS. As was the case with lexical ambiguity, it may not be

possible, or even desirable, to reduce the number of derivation trees to one. Therefore,

the ideas presented in this section aim only to reduce the number of derivation trees.

This section gives a description of some syntactic ambiguity reduction techniques

that are needed for the C# 1.2 case study explored in Chapter 6. How the behaviour of

these techniques compares to lexical ambiguity reduction techniques is then considered,

with a discussion on the difference between choosing to resolve at lexical or parsing level.

5.2.1 Syntactic level ambiguity reduction in an SPPF

As the presence of more than one derivation tree embedded in an SPPF is indicated

by the presence of a symbol or intermediate node having more than one packed node,

it is natural to treat ambiguity reduction as the removal of packed nodes. In the given

scheme, although a node may have more than two packed node children, ambiguity

reduction will be pairwise. In addition, each ambiguity reduction operation will simply

mark packed nodes for suppression, they do not remove packed nodes from the tree.

That way, marked nodes continue to participate in other pairwise operations. It is an

error for an ambiguity reduction scheme to suppress all derivation trees as this would

change the language being parsed. In such cases, a warning is issued and one arbitrarily

chosen packed node is unmarked. After all marking operations are complete, all trees

rooted at marked nodes are removed from the SPPF.

The syntactic ambiguity reduction rules are in the format

rule(r, t)

rule is a label denoting the class of the disambiguation rule, r and t are grammar slots

of form X ::= α·β where X ::= αβ ∈ P . Consider a pair of packed nodes X ::= αx·β, k
and X ::= γy · δ, h with a common parent x, j, i as depicted by the graph
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X ::= αx · β, k

x, k, i

X ::= γy · δ, h

X ::= γ · yδ, j, h

x, j, i

X ::= α · xβ, j, k y, h, i

. . . . . .. . . . . .

Either α = γ, x = y, and β = δ and x is some X ::= αx · β, or β = ε = δ and x = X.

The three classes of rules are as follows. The reader will see that these rules are

thematically similar to the lexical ambiguity reduction rules given in Chapter 2.

• suppress(X ::= αx·, X ::= γy·) - Mark the node labelled (X ::= αx·, h) for

suppression if there exists a node labelled (X ::= γy·, k), γy 6= αx sharing the

same parent node such that k = h

• longest(X ::= αx · β,X ::= γy · δ) - Mark the node labelled (X ::= αx · β, h)

for suppression if there exists a node labelled (X ::= γy · δ, k) sharing the same

parent node such that k > h

• shortest(X ::= αx · β,X ::= γy · δ) - Mark the node labelled (X ::= αx · β, h)

for suppression if there exists a node labelled (X ::= γy · δ, k) sharing the same

parent node such that k < h

Informally, suppress(r, t) can be thought of as the negation of a priority mechanism

- marking all nodes labelled with slots that are lower priority than the node labelled

with t. longest(r, t) and shortest(r, t) can be viewed as longest and shortest-match

mechanisms. The pivot value of a packed node refers to the right-extent of the left

child of the packed node. As such, the pivot value effectively refers to the portion of

the string matched up until the symbol just before the slot position. A higher pivot

value means a longer match.

As was the case for the lexical ambiguity reduction rules, for two grammar slots r

and t, it is possible to specify that r should be suppressed if t exists regardless of the

pivot values, by specifying suppress(r, t), longest(r, t), and shortest(r, t) together in

the ambiguity reduction scheme.

In general, these rules will not be sufficient to reduce the number of derivations for

all grammars. However, these rules are sufficient for the purposes of this thesis.
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5.2.2 Syntactic Ambiguity Reduction in an ESPPF

For an ESPPF, the presence of a symbol/intermediate node with more than one packed

node child could either mean the underlying grammar is syntactically ambiguous or

that the ESPPF embeds derivations for more than one ITS. The same class of rules

defined above can still be applied in these circumstances. This section compares, with

examples, the use of these rules with corresponding lexical ambiguity reduction rules.

Consider a token set, T1, containing a single token

(x, {aa, a})

as well as a grammar Γ1 with a single rule

S ::= x x

Given the character string aaa, the lexical analysis phase initially generates the TWE

set represented by the graph

1

0
3

2
xx

x
x

x

If the relation xRx under the matrix for class 2 operations is specified and applied, the

result after pruning is the TWE set

{(x, 0, 2), (x, 2, 3)}

This is equivalent to lexical longest match. The MGLL parser for Γ1 would then

construct the ESPPF

x, 0, 2

S, 0, 3

x, 2, 3

Consider the corresponding character-level grammar

S ::= X X

X ::= a a | a

The SPPF that results from parsing the string aaa is the following
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a, 0, 1

S ::= X X·, 1 S ::= X X·, 2

S, 0, 3

a, 2, 3a, 1, 2

X, 0, 2X, 0, 1 X, 1, 3 X, 2, 3

To perform the equivalent derivation reduction, it is necessary to use the rule

longest(S ::= X X·, S ::= X X·)

This is conceptually more difficult for the user, as although the ambiguity is the result

of what X can derive, the choice appears under S. This can be illustrated more clearly

with Γ2

S ::= B B

B ::= x

If the full TWE set for the string aaa is given to the MGLL parser for Γ2, then the

result is the ESPPF

S ::= B B·, 2 S ::= B B·, 1

S, 0, 3

B, 2, 3 B, 0, 1B, 0, 2 B, 1, 3

x, 0, 2 x, 0, 1 x, 1, 3x, 2, 3

The presence of two derivation trees embedded in the ESPPF is the result of the lexical

ambiguity in x - the grammar itself is syntactically unambiguous. As before, defining

the relation xRx under the matrix for class 2 operations, and applying this to the
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TWE set, reduces the TWE set such that the result of parsing is a single derivation

tree. resulting in the ESPPF

x, 0, 2

S, 0, 3

B, 2, 3

x, 2, 3

B, 0, 2

For the corresponding character-level grammar

S ::= B B

B ::= X

X ::= a a | a

the SPPF for the string aaa is

S ::= B B·, 2S ::= B B·, 1

a, 1, 2 a, 2, 3

S, 0, 3

B, 2, 3

a, 0, 1

B, 0, 1 B, 0, 2B, 1, 3

X, 0, 2X, 0, 1 X, 1, 3 X, 2, 3

To achieve the same effect as longest match on the TWE set above, it is necessary to

specify longest(S ::= B B·, S ::= B B·). The syntactic ambiguity that the definition

of X creates only appears at the nodes under S. The sublanguages generated by non-

terminals representing tokens are unambiguous, but strings in these sublanguages can

cause ambiguities elsewhere in the grammar.
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The syntactic versions of longest match and priority are not sufficient for implement-

ing the lexical equivalents (class two and class one operations respectively). Consider

the token set

{(x, {aa, a}), (y, {bc, ab}), (z, {c})}

and the grammar, Γ3

S ::= x y z | x y

Let xRx,xRy, and zRy under the matrix for class 2 operations. After applying lexical

ambiguity reduction and pruning, the result of lexical analysis for the character string

aabc is the TWE set

{(x, 0, 2), (y, 2, 4)}

The MGLL parser for Γ3 will then generate the ESPPF

x, 0, 2 y, 2, 4

S, 0, 4

Now consider the corresponding character-level grammar

S ::= X Y Z |X Y

X ::= a a | a

Y ::= b c | a b

Z ::= c

A character-level parser on the same character string will produce the following SPPF
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S ::= X Y · Z, 0, 3 Z, 3, 4

a, 1, 2

S ::= X Y ·, 2

a, 0, 1

S, 0, 4

b, 2, 3 c, 3, 4

X, 0, 2X, 0, 1 Y, 2, 4

S ::= X Y Z·, 3

Y, 1, 3

Derivation reduction rules can only be applied to nodes under the root, as this is the

only node with more than one packed node child. longest(S ::= X Y ·, S ::= X Y Z·)
will suppress (S ::= XY ·, 2), making the opposite decision that was made in the MGLL

case. In this case shortest(S ::= X Y Z·, S ::= X Y ·) is what is needed to achieve the

same result. However, this fails for a slightly more complicated example. Consider

S ::= X Y Z |X Y

X ::= a a | a | d d | d

Y ::= b c | a b | d d c | d

Z ::= c

shortest(S ::= X Y Z·, S ::= X Y ·) is still needed for the equivalent of lexical longest

match on X for input aabc. However for the character string dddc, the character-level

grammar generates the SPPF
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S ::= X Y · Z, 0, 3Z, 3, 4

d, 1, 2 d, 0, 1

S ::= X Y ·, 1

S, 0, 4

X, 0, 2

d, 2, 3

Y ::= d d · c, 1, 3c, 3, 4

Y, 1, 4 X, 0, 1

Y, 2, 3

S ::= X Y Z·, 3

and the rule shortest(S ::= X Y Z·, S ::= X Y ·) selects the derivation in which X

matches d rather than the one in which it matches dd.

This demonstrates that the lexical ambiguity reduction mechanisms of the multi-

lexer parsing approach described in Chapter 2 cannot be simply mimicked in character-

level grammars with equivalent syntactic ambiguity reduction mechanisms. A more

complicated syntactic ambiguity reduction strategy that requires more than local in-

formation about two sibling packed nodes could be written that may achieve similar

goals. However, it is clear from the discussion that the techniques from lexical level dis-

ambiguation do not easily carry over in a natural manner to grammar level techniques

- a point that was previously highlighted by Visser [Vis97]. This gives the multilexer

parser approach a strong advantage over a character-level grammar approach.

5.3 Constructing TWE sets with a GLL Recogniser

Section 2.4 described how to construct TWE sets using deterministic finite state au-

tomata to represent token patterns. However, this only works with tokens whose pat-

terns represent a regular language. In some cases, it may be desirable for the tokens to

have patterns which are context-free. For example, OCaml allows the user to specify

nested comments such as the string (* This (* is (* a comment *) *) *). Mean-

while the string (* This (* comment is malformed *) is considered invalid. The

language for specifying nested comments needs to be context-free to ensure that a

match is only made on matching brackets.

This section gives a GLL-style recogniser for grammars whose start symbol S, where
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S has a single, EBNF rule of the form

S ::= (t1| . . . |tf )∗

where t1, . . . , tf are unique non-terminals, referred to as the token non-terminals, that

do not appear on the right-hand side of any other production rule. The set of terminals

for this grammar is a set of characters, A. The principle is that t1, . . . , tf will represent

the set of tokens, T , for the lexer specification. The sublanguage generated by the

productions of each ti is the pattern of ti. This grammar is effectively a character-level

grammar for the language defined by the set T ∗.

In principle, one could, after conversion to BNF, simply use this grammar to gen-

erate a classical generalised parser. When given a character string, this parser would

produce an SPPF. One could then extract the TWE set by creating triples for every

SPPF node with labels of the form (ti, i, j). However, the structural context infor-

mation about how each token was matched is not needed, and this would offer no

performance advantage over simply using a character-level grammar for parsing.

A recogniser is much more efficient for the task of constructing TWE sets. Further-

more, an EBNF recogniser will, provided the patterns for each token can be defined

using regular expressions over A, perform with efficiency comparable to that of finite

state automaton recognition.

A tokeniser based on an EBNF GLL recogniser takes as input a character string

over A and returns a corresponding TWE set. As this is a recogniser only, there

are differences to the GLL parsing algorithm described in Chapter 3. The first major

difference is the introduction of code templates for EBNF constructs (using the notation

given in Chapter 1). Secondly, in a GLL recogniser, the edges of the GSS are unlabelled

- since there is no SPPF construction. Also, a descriptor does not contain a reference

to an SPPF node. As in Chapter 3, m denotes the length of the input, cI denotes

the current input position, cU denotes the current GSS node, P is a set of GSS node,

integer pairs, and U and R are sets of descriptors. The character string input is read

character-by-character into an array I and I[m] is set to $ denoting the end of string.

Additionally Σ is used to denote the TWE set.

The recogniser uses a modified version of the support functions defined in Chapter 3.

Additionally, a fourth support function is defined named testRepeat, whose purpose

is to detect potentially repeated actions as a result of closure and alternated regular

expressions.

function add(L, u, i) {
if (L, u, i) 6∈ U then add (L, u, i) to U and to R
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}

function pop(u, i) {
let (L, k) be the label of u

add (u, z) to P
for each child v of u do {

add(L, v, i)
}

}

function create(L, u, i) {
if there is not already a GSS node labelled (L, i) then create one

let v be the GSS node labelled (L, i)

if there is not an edge from v to u then {
create an edge from v to u

for all (v, z) ∈ P do {
add(L, u, k)

}
}
return v

}

function testSelect(a, Y, r) {
if a ∈ first(r) or (ε ∈ first(r) ∧ a ∈ follow(Y )) then

return true

else

return false
}

function testRepeat(T, u, i) {
if (T, u, i) ∈ T R then {

return true }
else{

add (T, u, i) to T R
return false

}
}

The main GLL recognition function is then as follows

Create GSS nodes u0 = ($, 0) and u1 = (L0, 0) and create an edge from u1 to u0.

cU := u1; cI := 0;

U := ∅; R := ∅; P := ∅; Σ = ∅
goto LS
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L0 :

if R 6= ∅ then {
Remove (L, u, i) from R
cU := u; cI := i;

goto L }
else if (L0, u0,m) ∈ U then

Report success

else

Report failure

LA : code(A)
...

LZ : code(Z)

In this scheme, there are two templates for grammar rules, one for non-terminals

representing tokens and one for any other non-terminal. For a grammar rule X ::=

α1| . . . |αp, let ρi denote the instanced version of αi, 1 ≤ i ≤ p.
If X is non-terminal representing a token, then the following template is used. If g

is a GSS node with a label of the form (L, i), then level(g) returns i.

code(X ::= α1| . . . |αp) =

if testSelect(I[cI ], X, α1) then add(Lα1 , cU , cI)
...

if testSelect(I[cI ], X, αp) then add(Lαp , cU , cI)

goto L0

Lα1
:

code(ρ1, ε)

if I[cI ] ∈ FOLLOW (X) then {
pop(cU , cI)

add (Y, level(cU ), cI) to Σ
}
goto L0
...

Lαp
:

code(ρp, ε)

if I[cI ] ∈ FOLLOW (X) then {
pop(cU , cI)

add (Y, level(cU ), cI) to Σ
}
goto L0
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If X is not a non-terminal representing a token, then the following template is used

instead

code(X ::= α1| . . . |αp) =

if testSelect(I[cI ], X, α1) then add(Lα1
, cU , cI)

...

if testSelect(I[cI ], X, αp) then add(Lαp , cU , cI)

goto L0

Lα1
:

code(ρ1, ε)

if I[cI ] ∈ FOLLOW (X) then {
pop(cU , cI)

}
goto L0
...

Lαp :

code(ρp, ε)

if I[cI ] ∈ FOLLOW (X) then {
pop(cU , cI)

}
goto L0

For an ε instance εj whose left-hand side is X, no code is generated. For a terminal

a ∈ T the code generated for an instance aj whose left-hand side is X is

code(code(aj , r) =

if I[cI ] = a then {
cI := cI + 1;

}

For a non-terminal Y ∈ N the code generated for an instance Y j whose left-hand

side is X is

code(Y j , r) =

cU :=create(EY j , cU , cI); goto LY

EY j :

For a rule instance ρ = (µ), where µ is the instance of the body of some ρ
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code((µ), r) =

code(µ, r)

For a rule instance ρ = (µ)? where µ is the instance of the body of some ρ, there are

two templates depending on whether or not ε ∈ first(µ). It would be possible to use

the same template for both cases, however, ε ∈ first(µ) implies µ is nullable, making

the optional statement redundant. If ε ∈ first(µ) then one can use a more efficient

template:

code((µ)?, r)) =

code(µ, r)

Otherwise, if the left-hand side of µ is X then the template is as follows

code((µ)?, r)) =

if testSelect(I[cI ], X, r) then {
add(Eρ, cU , cI)

}
if testSelect(I[cI ], X, exp(µ)) is false then goto L0

code(µ, r)

Eρ :

To define the template for closure, an additional label Cρ needs to be defined. A

flag, Tρ, is used to prevent potential repeated actions. If ρ is an instanced string, let

exp(ρ) be a function that returns the corresponding underlying uninstanced string.

If ρ = (µ)+ whose left-hand side is X then the code generated is

code((µ)+, r) =

Cρ :

if testRepeat(Tρ, cU , cI) then goto L0

if testSelect(I[cI ], X, exp(µ)r) is false then goto L0

code(µ, (exp(µ))?r)

if testSelect(I[cI ], X, r) then {
add(Eρ, cU , cI)

}
Eρ :

For ρ = (µ)∗ whose left hand side is X, one must also consider the nullable case so

the code generated is
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code((µ)∗, r) =

if testSelect(I[cI ], X, r) then {
add(Eρ, cU , cI)

}
Cρ :

if testRepeat(Tρ, cU , cI) then goto L0

if testSelect(I[cI ], X, exp(µ)r) is false then goto L0

code(µ, (exp(µ))?r)

if testSelect(I[cI ], X, r) then {
add(Eρ, cU , cI)

}
Eρ :

If ρ = µ1 . . . µd where the left-hand side of ρ is X, then the following template is

used

code(ρ, r) =

code(µ1)

if testSelect(I[cI ], X, exp(µ2 . . . µd)r) is false then goto L0

code(µ2, exp(µ3 . . . µd)r)
...

if testSelect(I[cI ], X, exp(µd)r) is false then goto L0

code(µd, r)

If ρ = µ1| . . . |µd where the left-hand side of ρ is X, then the following template is

used

code(ρ, r) =

if testSelect(I[cI ], X, exp(µ1)r) then {
add(Lµ1

, cU , cI)
}
...

if testSelect(I[cI ], X, exp(µd)r) then {
add(Lµd

, cU , cI)
}
goto L0

Lµ1
:

code(µ1, r)

goto Cρ
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...

Lµd−1
:

code(µd−1, r)

goto Cρ

Lµd
:

code(µd, r)

Cρ :

if testRepeat(Tρ, cU , cI) then goto L0

The templates presented above are not those that can produce the most efficient

recognisers. Calls to testRepeat are only necessary when the body of closures can

derive ε. For a more efficient implementation, one could provide two templates: one

for nullable bodies and one for non-nullable bodies.

5.4 General Approaches to Layout Handling

As mentioned in Section 2.6, layout (whitespace and comment) strings are traditionally

treated differently from other strings in many languages, with them effectively being

suppressed from the character string. Section 2.6 defined a property that determined

whether tokens are considered separated and gave a method for suppressing triples

containing these separated tokens. In many languages, layout can be expressed with

separated tokens.

For some languages, simple layout suppression is inadequate. For example, in

Python, whitespace is insignificant in most places, the string

print "foo"; print "bar"

has the same semantics as the string

print "foo";print "bar"

However, whitespace will have a significant impact on the semantics of the surrounding

code when it occurs at the beginning of a new line. The level of indentation determines

the nesting of the current line, with sequences of whitespace characters treated as one

or more ‘indent’ tokens. For example, the string

if (x==1):

print(x)

x = x + 1

will print x and increment only when x is equal to 1. Meanwhile, the string

if (x==1):

print(x)
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x = x + 1

will print x when x is equal to 1 but will increment x regardless as it has no preceding

indent.

An extreme approach is to define tokens for layout, let the lexer construct a corre-

sponding TWE set for the character string and pass all triples (after lexical ambiguity

reduction and pruning) to the parser without suppressing layout. The parser is then

responsible for handling layout tokens. The lexer is able to handle any lexical level

ambiguity relating to the definition of the layout tokens themselves - therefore giving

performance enhancements over, say, a character-level approach, as discussed previ-

ously, whilst giving the parser control over whether layout should be suppressed. Of

course, to do this, the parsing grammar needs references to layout tokens throughout.

Generally, this would require placing an instance of a layout token before (or after)

every token instance on every production right-hand side. It is possible for this to be

done automatically [JSB11]. Regardless of whether this is done manually or automati-

cally, this approach dramatically increases the size of the parser and the size of the data

structures it produces. It also does not provide a clean separation in the lexer/parser

interface.

Where possible, it is much cleaner and efficient to use token suppression to remove

layout tokens. One näıve approach to consider would be to remove layout token triples

and then appropriately making new triples for each of the triples that follow after the

lexical ambiguity reduction step. For example, for the TWE set

{(ws, 0, 1), (ws, 1, 3), (b, 0, 3), (a, 3, 5), (ws, 5, 6), (a, 6, 7)}

If ws is a layout token, then the approach would first remove (ws, 0, 1) and add a new

triple (ws, 0, 3). Then both (ws, 1, 3) and (ws, 0, 3) are removed with (a, 0, 5) added.

The triple (ws, 5, 6) would then be removed with (a, 5, 7) being added. The resulting

TWE set would be

{(b, 0, 3), (a, 3, 5), (a, 0, 5), (a, 5, 7), (a, 6, 7)}

This would remove the layout tokens, whilst preserving the tokenisation involving the

b token. However, it can be easily seen that, in general, this would have a significant

performance impact as one must process all triples generated by this approach as well

as the triples already in the set - since a layout token could be followed by another

layout token.

Instead, even where layout tokens are not separated, it may be possible to process

the character string before tokenisation to simplify how layout is used. An approach
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that combines layout token suppression with some grammar modification technique may

be the better long-term solution - allowing layout tokens that can only be disambiguated

with contextual or semantic information to be given to the syntactic analysis phase.

However, a full solution to the issue of layout handling is beyond the scope of this

thesis. This section will conclude by describing how initial processing can be used to

simplify layout token suppression. This is powerful enough for layout tokens in both

C# language specifications (as well as most standalone C-like languages).

Given a set of tokens, T , whose patterns are non-empty strings over an alphabet A,

suppose that one has a processor P , which takes a string over A and identifies which

sequences of characters are matched by layout tokens. For example, one could define an

initial processor to remove the whitespace and comments in a C# string. To do so, the

processor would need to be able to recognise where whitespace and comments occur. As

whitespace characters can occur inside of a string literal, the processor would also need

to recognise string literals. The processor, P , produces a new string from the input

string, in which strings of characters recognised as whitespace or comments are replaced

with a single special character w, and all string literals and other character strings are

carried across. The set of tokens for the lexer is then defined to be T ′ = T ∪{(ws, w)}.
By construction, the token ws is separated in T ′

The output of the processor, P , is a new string δ′ which can be tokenised by the

main lexer, using token suppression on ws. For example, suppose the token set contains

(t1, {a, b, aa}), (t2, {1, 2, 3}), (t3, {=, +=}), and the C-style whitespace and comments.

Then the character string

a=3 /* base case */b =aa a+=b

could be processed to give the string

a=3wbw=aawa+=b

which is tokenised to form the ITS

(t1, 1)(t3, 2)(t2, 3)(ws, 4)(t1, 5)(ws, 6)

(t3, 7)(t1, 9)(ws, 10)(t1, 11)(t3, 13)(t1, 14)

After token suppression, the result is the ITS

(t1, 1)(t3, 2)(t2, 3)(t1, 5)(t3, 7)(t1, 9)(t1, 11)(t3, 13)(t1, 14)
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There is one further modification that is used for the case studies. To avoid po-

tentially large ITS sets, the TWE sets are constructed directly. Section 2.6 showed

how to modify the TWE triples for token suppression, however, this would require

iterating over the TWE set to search for the ‘adjacent’ triples to adjust their extents,

a costly operation. It would be more efficient to ensure the triples are constructed in

a manner such that the extents are already correctly adjusted. This can be achieved

by treating the w character as a delimiter, that splits the string into a list of string

fragments - a function achieved by the initial processor. The processor thus creates a

list of substrings P (δ) = (δ1, δ2, . . . , δd) such that δ = δ1wδ2w . . . wδd.

In this approach, the lexer processes each element of P (δ) separately, building the

final TWE set from the union of the TWE sets for each substring. For each element

being processed, an offset value is also given representing the distance of the current

element from the beginning of the full input, including the preceding w character. This

ensures that the extents of the constructed TWE set match character indexes in the

full string. For example, the string

a=3 /* base case */b=aa a+=b

would be processed to give a sequence of three strings

a=3

b=aa

a+=b

The lexer runs on the first string to construct {t1, 0, 1), (t3, 1, 2), (t2, 2, 3)}. For the

second string, the TWE set {(t1, 3, 5), (t3, 5, 6), (t1, 6, 8)} is constructed. For the third

string, the TWE set {(t1, 8, 10), (t3, 10, 12), (t1, 12, 13)} is constructed. The final TWE

set produced is then

{(t1, 0, 1), (t3, 1, 2), (t2, 2, 3), (t1, 3, 5), (t3, 5, 6),

(t1, 6, 8), (t1, 8, 10), (t3, 10, 12), (t1, 12, 13)}

5.5 Handling of the Standard C type/variable name am-

biguity

This chapter concludes with a brief discussion on the standard C type/variable name

ambiguity. In the standard C [ISO11] specification, a statement such as sizeof(a),
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where the argument is a single identifier, can have two different meanings depending on

the context. The symbol a could either be a type name defined in an earlier typedef

definition, or it could be a variable a. The correct interpretation can normally only be

determined by looking at how a is defined in the symbol table - part of the semantic

analysis phase. This full C example demonstrates how this can cause problems.

typedef int a;

void main() {

int sizeTA = sizeof(a);

char a;

int sizeVA = sizeof(a);

}

In the initialisation of sizeTA, a is interpreted as a type, due to the earlier typedef

definition of a - in this case, returning the size of int. However, then a local variable

a is defined. For sizeVA, a is interpreted as a unary expression, and since a is of type

char, returns the size of char.

To understand how this happens, one must look into the language specification. In

the C standard grammar, there is a grammar rule

typedef-name ::= identifier

where identifier is a token. This is designed to ensure that types and variables are

maintained in separate namespaces. However, this results in syntactic ambiguities. A

parser for this grammar maintains a symbol table for identifier and stores the in-

formation on whether identifier represents a type or a variable when a declaration

is found. This information is then used to remove the syntactic ambiguity. Of course,

non-generalised parsing techniques are not designed to handle parses that contain syn-

tactic ambiguities, although there are exceptions, for example where longest match

and priority can be applied (which is used to handle the dangling-else problem [ISO11,

p. 149 in N1570]). For longest match and priority, an LR parser can, for example, per-

form parse table conflict removal. This is not possible for ambiguities where semantic

context is needed.

The alternative approach used in most C parsers (with notable exception to Clang,

which uses a modified C parsing grammar that does not distinguish between types

and variable names), is to treat typedef-name as a terminal. This moves the prob-

lem away from syntactic analysis as a in the above example will be tokenised as either

typedef-name or identifier with only one derivation for each during syntactic analy-

sis. However, as the two tokens have identical patterns, this simply moves the problem
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from a syntactic ambiguity to a lexical ambiguity.

Many bespoke compiler front ends have the parser act as a ‘controller’ of the entire

front-end - the lexer is called only when it needs the next token, and it is able to

execute semantic actions on sentence recognition. In this case, the lexer has access to

the symbol tables that the parser is constructing and is able to use them to determine

which token to return.

This is not always desirable and is not naturally compatible with general lexing

and parsing techniques - as with ambiguity there can be more than one semantic

interpretation and, therefore, more than one version of the symbol tables. However,

a multilexer can simply return a TWE set containing triples for both token matches.

The MGLL parser then can parse both interpretations. typedef-name is syntactically

invalid in some places in the grammar where identifier is valid, and vice versa. Where

both interpretations are syntactically valid, such as in the example at the beginning

of this section, both derivations can be kept, with one being chosen later through the

semantic interpretation.

With generalised parsing, however, one does simply have the option of tokenising

both interpretations as identifier. A generalised parser can handle syntactic ambi-

guities, so the need to eliminate this ambiguity at lexical level is no longer pertinent. In

principle, the ANSI-C standard grammar, as it appears in the language specification,

could be used as is, with the ambiguity handled after parsing. What MGLL does offer,

though, is a choice over how this ambiguity is handled. The language designer can

choose to tokenise a string as both typedef-name and identifier - which would elim-

inate the need for an equivalent typedef-name non-terminal in the parsing grammar.

Or they could tokenise the string as simply identifier and use the grammar as it

appears in the specification. Having such a choice would be particularly useful where

one might be adapting a legacy compiler to general multilexing techniques.
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Chapter 6

Case Studies

The previous chapters set out a theoretical basis for new approaches which can be used

in the automatic generation of a compiler front-end. This chapter will describe how an

implementation of these techniques is used to provide solutions to problems in realistic

scenarios.

The first section will describe the multilexer parser design for the C# 2.0 language

specification [HCC06] (given in Appendix A) up to the construction of the ESPPF

via the MGLL algorithm. This section will demonstrate how the multilexer provides

a solution to the problems of contextual keywords and nested type parameterisation.

Additionally, a comparison will be made to an equivalent character-level GLL parser.

The later sections will then discuss the translation of a string in the C# 1.2 lan-

guage specification [HCC02] (given in Appendix B) into an AST suitable for applying

funcon [Chu+15] semantics - used as the main case study of the PLanCompS [Mos+15]

project. After tokenising and parsing the string (using a specification not dissimilar

to that used for the C# 2.0 case study), the result is an ESPPF embedding multiple

derivations. Section 6.2.2 will discuss the syntactic ambiguity reduction rules which

are needed to reduce the ESPPF to a single derivation tree. Section 6.2.3 will then

demonstrate how GIFT annotations are used to transform this derivation tree into an

abstract syntax tree, as specified by the hand-written abstract syntax for C# 1.2 (given

in Appendix C) designed for the PLanCompS project.

The theoretical concepts described in this thesis were implemented as a set of frame-

works for a Java 8 JRE [Gos+15]. These frameworks were then used to create compiler

front-ends for the case studies described in this chapter. All parsers used in these case

studies have been generated by the ART [JS11] parser generator, and the implemen-

tation has dependencies on API functions provided by ART. A framework that imple-

ments the multilexer techniques, along with the C# 2.0 case study, can be found as a
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GitHub project [Mic15b], as can the frameworks for providing the syntactic ambiguity

reduction rules and GIFT transformations, applied to the C# 1.2 case study [Mic15a].

6.1 A lexer/parser interface for the C# 2.0 language spec-

ification

The C# 2.0 language specification [HCC06] describes a lexical grammar for the C#

language. This lexical grammar is given in Appendix A.

The aim is to develop a lexer that, given a lexically valid C# string, produces a

lexical ambiguity reduced TWE set embedding C# token strings. Of course, to produce

a TWE set for C# strings, an instance of a multilexer needs to be implemented. In

this section, the multilexer framework is used to specify the C# lexemes.

As the language specification was designed with traditional lexical analysis in mind,

one would expect most lexical ambiguities to be resolvable by longest match and prior-

ity. In some cases, there are ambiguities that cannot be simply resolved through these

disambiguation mechanism, and require additional context provided by the parser. C#

contains tokens that are keywords but are not reserved. This means that a match on

one of these keywords could also legitimately be a match on identifier. This situation

cannot be handled by traditional lexical analysis, but can be handled by Schrödinger’s

tokens [AH01] and the multilexer approach. C# 2.0 also introduced the concept of pa-

rameterised types to C#. This introduces a special case of lexical ambiguity as nested

parameterised types (such as List<List<Integer>>) require strings of > characters to

be tokenised as individual > tokens rather than as >> tokens. This cannot be handled

by traditional lexical analysis, and cannot be sensibly handled by Schrödinger’s tokens.

This section will demonstrate that this situation can be rather elegantly handled with

the multilexer approach.

6.1.1 Layout-token initial processing

Strings are initially processed to replace all strings corresponding to layout (whitespace)

tokens with a single \n character. If a string is matched by a layout token, then

a \n character is appended to the output, otherwise the string is appended to the

output. whitespace, new-line, and comment are layout tokens in this implementation,

corresponding to the layout tokens of C#. string-literal and character-literal

are included as they are tokens whose patterns contain characters that also appear in

patterns of layout tokens. Adding these token definitions ensures characters are not

treated as layout if they are part of a character or string literal.
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The initial processor takes a string and starts at a character index of 0. An attempt

to match against each of the tokens is made. For each token, if a transition on the DFA

can be made from the current character index, the transition is made and the character

index is incremented. If, after transition, the DFA for the token is in an accepting state,

then the current character index is stored, and a flag is set if this token is layout. This

continues until there are no more transitions that can be applied or the end of the

string is reached. This results in a longest match on the token. This is repeated for

the same start index for each token. After all tokens are tried, the longest match over

all tokens is used to select the portion of the string matched. If the layout flag was

set, then this string is replaced by a \n character in the output, otherwise the string

is copied to the output and the current character index is advanced to the index after

this string. If none of the tokens in the scheme were matched, then a single character

is copied and the current character index is incremented.

This is not a general approach, however, this is good enough to initially process

C# strings as there is no valid overlap between layout and other tokens in the lexer

specification. For the input string given in Figure 6.1, the initial processor will produce

the string in Figure 6.2.

// This is a comment

class Program {

/* This is

a block

comment */

public static void Main() {

System.Console.WriteLine("Hello World");

}

}

Figure 6.1: An example of a C# string

The lexSegmented() function in the multilexer frameworks splits the string into

segments, using \n as a delimiter. Each segment is then tokenised as described in 5.4.

6.1.2 Lexer Specification Implementation

The multilexer framework [Mic15b] is used to generate TWE sets under the C# 2.0

lexer specification. The DFAMap interface is implemented to create a class CS2DFAMap.

Tokens with a single pattern are matched using string comparison; the other tokens

are matched using DFAs. These DFAs will be manually constructed although a lexer
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class
Program

{

public
static
void
Main()

{

System.Console.WriteLine("Hello World");

}

}

Figure 6.2: Figure 6.1 after processing

generator could automatically generate an implementation of DFAMap. When initialised,

DFAs are constructed for every token that has more than a single pattern. These DFAs

are constructed by hand, although there is no reason why DFAs cannot be constructed

mechanically.
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*
all except *

/
/

/

all except *

all except *

identifier

11

10

1

0

3 2

5

4 7

6

9 8

\

[a-zA-Z ]

[0-9a-fA-F]

[a-zA-Z0-9 ]

U

[0-9a-fA-F]

[0-9a-fA-F][0-9a-fA-F]

[0-9a-fA-F]

[0-9a-fA-F]

[a-zA-Z ]

[0-9a-fA-F]

@

u[0-9a-fA-F]

integer-literal

1

0

3

2
5

4

7

6

x,X

0
l,L

[0-9]

u,U

l,L

u,U

l,L

[0-9]

u,U[1-9]

[0-9a-fA-F]

[0-9a-fA-F]

new-line

1

0 2

\r

\n

\n
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real-literal

1

0

3
2

5
4

76
[0-9]

.

f,F,d,D,m,M

[0-9]
f,F,d,D,m,M[0-9]

+,- [0-9]

f,F,d,D,m,M
[0-9]

e,E

e,E[0-9]
[0-9] .

string-literal

11

10

13

12

15

14
17

16

18

1

0

3

2

5

4

7

6

98

[0-9a-fA-F] u
@

[0-9a-fA-F]

[0-9a-fA-F]

[0-9a-fA-F]

x

[0-9a-fA-F]

all except "
[0-9a-fA-F]

[0-9a-fA-F]
"

all except ",\,\n,\r

[0-9a-fA-F]

"

[0-9a-fA-F]

[0-9a-fA-F]

[0-9a-fA-F]

U "

”

[0-9a-fA-F]

’,",\,0,a,b,f,n,r,t,v

"

[0-9a-fA-F]

\

[0-9a-fA-F]

[0-9a-fA-F]

whitespace

10
,\t,\v,\f

All of these DFAs are stored as entries in DFAMap, indexed by the token name.

This DFA Map implementation for C# is passed in when initialising an instance of

RegularLexer to create a lexer for C#.

With the lexer defined, TWE sets for a given processed input string are then con-

structed using the Multilexer framework.

145



6.1.3 Lexical Disambiguation

There are lexical ambiguities in the C# lexical specification. In traditional lexical anal-

ysis, these lexical ambiguities are handled by longest match and priority. As discussed

at the beginning of this section, there are two cases that traditional lexical disambigua-

tion mechanisms cannot handle. In one case, the requirements of the lexer cannot be

sensibly provided by even Schrödinger’s tokens. As the multilexer approach is designed

to give the user more control, it can be demonstrated that a multilexer specification

can comfortably handle both of these cases. The lexical ambiguity reduction techniques

described in 2.5 are used to reduce the set of indexed token strings to only those strings

that are expected according to the C# specification.

Ambiguities Handled only by the Multilexer Approach

Some operators are prefixes of other operators - such as + and ++. In this case the

requirement is that ++ is chosen over +. This behaviour can be modelled by specifying

the relation + R ++ under the relation matrix for class two operations. Similarly, for

the operators < and <<, << should be chosen over < so the class two relation < R <<

is specified. These situations can also be comfortably handled by traditional lexical

disambiguation.

Logically, one would expect a similar relation for the operators > and >>. However,

the C# 2.0 parsing grammar contains the following sequence of grammar rules for

specifying parameterised types

type ::= reference-type | ...

reference-type ::= class-type | ...

class-type ::= type-name | ...

type-name ::= namespace-or-type-name

namespace-or-type-name ::= identifier type-argument-list | ...

type-argument-list ::= < type-arguments >

type-arguments ::= type-argument | type-arguments , type-argument

type-argument ::= type

The string A<B<C>> should be derivable from type. If the class two relation > R >>

was specified, then the closing brackets of the type parameters would be tokenised

as a single >> token. This would cause the string to be rejected by the parser as it is

expecting two > tokens. As the >> tokenisation is still desired in the case of a right-shift

expression, which tokenisation to use is dependent on the surrounding context. The

multilexer approach is able to provide both tokenisations to the parser, with the parser

rejecting one tokenisation when the context becomes clear. The multilexer approach

can resolve this simply by not specifying a relation for > and >>.
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Ambiguities Handled by Other Techniques

Of course, it is also important that the multilexer approach can handle cases of lexical

ambiguity that are handled by traditional lexical analysis and Schrödinger’s tokens.

A situation handled by Schrödinger’s tokens but not by traditional lexical analysis

are the contextual keywords. A contextual keyword (such as yield) is only interpreted

as such under certain contexts, being interpreted as identifier otherwise. This would

traditionally require the intervention of the parser. These contextual keywords would

traditionally be matched as identifier before being rewritten during syntactic analy-

sis. This is not necessary with Schrödinger’s tokens, as these would be simply tokenised

as a Schrödinger’s token. In the multilexer, it is equally as straightforward. Both key-

word and identifier tokens are kept in the resulting TWE set. An MGLL parser will

then eliminate one tokenisation as a result of parsing.

A lexical ambiguity typically handled by traditional lexical analysis is demonstrated

with identifier. For example, the string Main in Figure 6.2 on page 143 corresponds

to the following segment of the TWE graph for the entire string

39

38

3736

34 identifier

identifier

in

identifieridentifier

identifier

identifier

identifier

identifier

identifieridentifier

For any string matched by identifier whose length is greater than 1, every substring

of this string is also matched by identifier. This is an instance of the worst case in

the multilexer approach as, for an identifier of length n, there are n2−1 ways to tokenise

this identifier. In practice, only the longest match of identifier is required, which

is specified with the relation identifier R identifier under the relation matrix

for class 2 operations1 - this avoids all these identifier matches being passed to the

parser. By applying the rule in this example, one gets the TWE graph

1The reader may also notice the presence of (in, 37, 39) in this TWE graph. The relation between
keywords and identifier will be discussed shortly. This particular triple will be removed through
pruning without direct intervention after the identifier ambiguity is handled.
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3938

37

36

34

identifier

in

identifier

identifier identifier

identifier

After pruning of the TWE set, only (identifier, 34, 39) will remain.

Many of the keywords in the lexical specification have a pattern that overlaps with

patterns for identifier; these are all handled using the same technique: for example

consider the string ifa which will have the TWE graph

1

0

32

identifier

identifier
identifier

if

identifieridentifier identifier

The use of identifier R identifier under the relation matrix for class 2 operations

will reduce this graph to

1

0

32

identifier

identifier
if

identifier

This still leaves two indexed token strings, (identifier, 3) and (if, 2)(identifier, 3).

The keyword token match is a proper prefix of the longer identifier token match.

In this particular case, the C# specification requires the ITS, (identifier, 3). This

is specified with the relation if R identifier under the relation matrix for class 2

operations. Equivalent rules are specified for all keyword tokens. Longest match is

symmetric in traditional lexical analysis. Whilst the relation above is asymmetric, one

may optionally ensure symmetry by additionally specifying that identifier R if un-

der the relation matrix for class 2 operations. This would eliminate identifier in the

case where the identifier match is a proper prefix of the keyword match. This is not
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necessary, however, since C# keywords are always prefixes of a string in the pattern of

identifier. The class 2 relation identifier R identifier eliminates identifier

token matches that are proper prefixes of a keyword, as the longest identifier match

is either the same length as the keyword match or longer.

There is also an issue for keywords whose pattern is a prefix of the pattern of

another keyword. An example of this is for and foreach. The resolution of this is

straightforward - the longer keyword should always be chosen, by specifying the class

2 relation for R foreach. A more complex case occurs for the keyword in, whose

pattern is a prefix of the pattern for int, which is also a prefix of the patterns for

interface, and internal. In this case, the following class 2 relations are used

in R int

in R internal

in R interface

int R internal

int R interface

There are two types of string-literal in C# - regular and verbatim. A verbatim

string, which is preceded with an @ symbol, will accept any sequence of characters

between two double quotes, with double quotes themselves being escaped if they are

preceded by a double quote. This can lead to a lexical ambiguity: consider the TWE

graph for the string @""""

0

3

5

string-literal string-literal

string-literal

There are two tokenisations embedded in this TWE graph

{(string-literal, 3)(string-literal, 5),

(string-literal, 5)}

It is clear that the latter tokenisation (which would interpret this string as a verbatim

string containing an escaped double quote) is the correct interpretation. The class

2 relation string-literal R string-literal is used to ensure this tokenisation is

selected.

The rules described so far handle the case where a keyword pattern is a proper prefix
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of an identifier pattern, as well as identifier patterns that are proper prefixes of

other identifier patterns. The case where an identifier pattern is a proper prefix

of a keyword is also handled implicitly. However, there is still the situation where the

identifier pattern is the same length as the keyword pattern. This will occur for

every keyword in C# since every keyword pattern is also a pattern in identifier.

Consider the TWE graph for the string for

1

0 3

2

identifier

for

identifieridentifier

identifieridentifier identifier

After applying all previously defined disambiguation rules, the resulting TWE graph is

1

0

3

2

identifier

for

identifier

identifier

This leaves two indexed token strings: (identifier, 3) and (for, 3). The match chosen

depends on whether the keyword is reserved or contextual. As described, the multilexer

approach handles contextual keywords by maintaining both tokenisations. By contrast,

a reserved keyword is one that can never be used as an identifier - for is an example

of such a keyword. As the keyword is reserved, identifier cannot be a match for this

string. This relationship is specified by identifier R for under the relation matrix

for class 1 operations, with similar relationships being specified for every reserved word.

This removes the triple (identifier, 0, 3), leaving the ITS (for, 3) as the only match.

The one remaining lexical ambiguity to discuss surrounds integer-literal and

real-literal. Consider the string 123u, whose TWE graph is
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1

0 3

2

4

integer-literal integer-literal
integer-literal

integer-literal

integer-literal

integer-literal

identifier
integer-literal integer-literal

integer-literal

There are patterns of integer-literal that are proper prefixes of other patterns of

integer-literal. In practice, only the longest match of integer-literal is wanted -

achieved by specifying that integer-literal R integer-literal under the relation

matrix for class 2 operations. This results in the TWE graph

1

0

3

2

4

integer-literal

identifier

integer-literal

integer-literal

The remaining ITS is (integer-literal, 0, 4). Although identifier matches u, this

does not need to be handled explicitly, as any rule that ensures the longest match of

integer-literal on itself will eliminate this match after pruning.

There is also a lexical ambiguity between integer-literal and real-literal.

Consider the TWE graph for the string 1.55

1

0

3

2 4

real-literal

integer-literal
real-literal

real-literal

real-literal

integer-literal

integer-literal
.

integer-literal

The rule for integer-literal above will eliminate the triple (integer-literal, 2, 3),

however this still leaves other ambiguities. One such ambiguity is caused as a result of
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patterns for real-literal being proper prefixes of other patterns in real-literal.

As with integer-literal, specifying that real-literal R real-literal under the

relation matrix for class 2 operations is enough to eliminate this particular ambiguity,

giving the TWE graph

1

0

3

2

4real-literal

real-literal

integer-literal

integer-literal

. integer-literal

This leaves three embedded indexed token strings

{(real-literal, 4),

(integer-literal, 1)(real-literal, 4),

(integer-literal, 1)(., 2)(integer-literal, 4)}

Only the first ITS is considered valid by the C# language specification. To capture

this, it is enough to specify that integer-literal R real-literal under the relation

matrix for class 2 operations. This leaves the TWE graph

1

0

3

2

4

real-literal

.

real-literal

integer-literal

integer-literal

This reduces to just a single match. Had the string been simply .55, then there

would still be two matches (., 1)(integer-literal, 3), and (real-literal, 3). This is

resolved by adding an additional relation .R real-literal under the relation matrix

for class 2 operations.
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For the example C# string in Figure 6.2, the result given by the multilexer, includ-

ing lexical ambiguity reduction and pruning, is the TWE set

{

(class, 0, 5), (identifier, 5, 13), ({, 13, 15),

(public, 15, 22), (static, 22, 29), (void, 29, 34),

(identifier, 34, 39), ((, 39, 40), (), 40, 41),

({, 41, 43), (identifier, 43, 50), (., 50, 51),

(identifier, 51, 58), (., 58, 59), (identifier, 59, 68),

((, 68, 69), (string-literal, 69, 82), (), 82, 83),

(;, 83, 84), (}, 84, 86), (}, 86, 88)

}

Notably, in this case it also only embeds a single ITS. This TWE set is given to an

MGLL parser for the grammar in Appendix A.

6.1.4 Comparison with a Character-level Implementation

As discussed in Chapter 5, one alternative to this approach is to remove the lexical

analysis phase altogether and instead parse at character-level. The discussion suggested

that the multilexer approach offered the same level of power and control as a character-

level approach, whilst retaining some of the advantages of a token-based approach. This

included a claim of greater efficiency when the patterns of tokens are regular languages,

as well as efficiency from token-level lookahead. Lexical level disambiguation also allows

tokenisations to be filtered in a clean manner before being given to the parser. This

section will explore this by testing the character-level and multilexer approach on a

lexer/parser specification for the C# 2.0 specification.

An MGLL parser for the grammar in Appendix A was constructed. Additionally, a

character-level version of this grammar was constructed, by replacing all token termi-

nals with an equivalent non-terminal, whose productions are the productions given in

Appendix A (keywords, of course, have productions that derive the sequence of char-

acters in the pattern) with every token non-terminal also optionally deriving a newline

character as its first symbol. As the test string set, the set of test strings for the Mono

implementations of the C# 1.2 and 2.0 specifications [Pro06, /mono/tests; Pro11,

/mono/tests] were used along with the file Lexer.cs from the LitJSON library [B14,

/src/LitJson/Lexer.cs] as an example of a large C# string. These strings were pro-

cessed to remove all C# preprocessing directives and then given to the initial processor.
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The final set of test strings used is the output of this initial processor.

The character-level parser does not apply any disambiguation - the SPPF con-

structed is the full SPPF for the character string. For the multilexer parser approach,

there are two variations considered - one in which no lexical ambiguity reduction rules

are applied, and the other in which all the lexical ambiguity reduction rules given above

are applied.

The tests measure three different criteria. The first is the total amount of time

(in seconds) it takes to complete the construction of the (E)SPPF for the string. For

the character-level parser, this is simply the time it takes to parse the string. For the

multilexer parser approach, this is the time that was taken to tokenise the character

string and produce the TWE set that is given as output, and then the time taken to

parse this set with the MGLL parser.

The second criterion is the size of the resulting (E)SPPF - this is measured in the

number of nodes. There are two measures of the (E)SPPF size, the first is the measure

of the number of nodes reachable from the root node, and the second is the measure of

the number of nodes constructed by the parser in total - including those constructed

by ‘abandoned’ parses . For the character-level parser, any nodes that are descendants

of token non-terminal nodes are not included in the count. The expectation is that

the number of nodes that are reachable from the root for a given character string will

be the same for both character-level parsing and multilexing parsing without lexical

disambiguation. One would expect the number of nodes to be less for multilexing

parsing with lexical disambiguation.

The third criterion is the number of descriptors constructed in each approach. This

will give an insight as to how much parser activity occurs under the different approaches.

To ensure consistency in the timing results, the Java Runtime is executed with the

CompileThreshold flag set to 10. For each string, every test is run 21 times with only

the last 10 runs recorded. The median of the last 10 runs is then given as the timing

result. The experiment was carried out on a 64-bit Linux machine, with an Intel Core

i7-4710MQ CPU @ 2.50GHz, and 7.7GiB of memory. Time measurements were made

using Java’s System.nanotime() method.

6.1.5 Results

For each criterion, a table of results was produced, providing data for each string in

the test set. The length of the string was also recorded in each case. These strings

are varied, and two strings of the same length may have vastly different results de-

pending on what these strings contain. Therefore, the results for each criterion are

plotted on scatter diagrams to determine the general trend. As there are relatively
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few very large examples, a base-2 logarithmic scale is used in the representation. The

full table of results is given in the GitHub repository [Mic15b, /testSuite/2 0/ -

performanceResults.csv].

The results for measuring the total time taken to lex and parse a string are found in

Figure 6.3. When the multilexer parser approach is used with lexical disambiguation,

the time that was taken to lex and parse is faster, on average, than both character-

level parsing and multilexer parsing without lexical disambiguation. That multilexer

parsing with lexical disambiguation performs better than without is not surprising -

when the number of tokenisations is reduced, there is certainly less work required by

the parser. The multilexer performs worst case quadratic in the length of the character

string, whilst MGLL may be upper-bounded at quartic, so reducing the workload of the

parser will lead to greater gains in performance. Even without lexical disambiguation,

the multilexer parser generally performs better than the character-level parser, with

the difference most noticeable in the largest case.

In some cases, the character-level parser does appear to perform better than both

variations of the multilexer parser approach. In these cases, the string contains a signif-

icant number of usages of identifier which invokes worst case behaviour in the lexer,

whilst being relatively simple for the parser. As lexical disambiguation only happens

after the initial TWE set is constructed, even the multilexer with lexical disambiguation

will invoke this worst case behaviour. On the other hand, the character-level parser

has the advantage of being able to eliminate tokenisations through context. As there is

no point in the parsing grammar where two identifier tokens are concatenated, the

character-level parser can eliminate some tokenisations during the parse. This demon-

strates that, depending on the grammar, the character-level may have the advantage

of being able to eliminate tokenisations through context. However, the multilexer ap-

proach performs better in most other cases.

For the count of (E)SPPF nodes reachable from the root, the number of nodes,

without counting nodes under token non-terminals, constructed by the character-level

parser match the number of nodes constructed by multilexing without disambiguation,

supporting the hypothesis. When comparing the number of (E)SPPF nodes constructed

in total, the results are seen in Figure 6.4. It is notable that the character-level parser

constructs more SPPF nodes than the multilexer parser approach. This demonstrates

the savings that result from a token-based lookahead compared to a character-based

lookahead, leading to fewer failed parse attempts in the former.

For the descriptor count, the need to also parse token non-terminals leads to a much

greater descriptor count for character-level parsing, as seen in Figure 6.5.

Overall, the results are promising for the multilexer parser approach. The results
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Figure 6.3: Plot of C# string lengths and time taken to lex and parse them

Figure 6.4: Plot of C# string lengths against (E)SPPF node counts

generally show an improvement over character-level parsing. Space savings are particu-

larly marked. As the multilexer parser approach constructs ESPPFs that are analogous

to the SPPFs constructed by character-level parsing, this demonstrates that the mul-

tilexer parser approach can offer the same power and control as character-level parsing

but with greater efficiency.
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Figure 6.5: Plot of C# string lengths against descriptor counts

6.2 Generating a Structural Abstract Syntax Tree for the

C# 1.2 language specification

The PLanCompS [Mos+15] project includes a case study that considers an imple-

mentation for the C# 1.2 language specification [HCC02]. The goal was to give a

component-based specification of the syntax and semantics of the language. The syntax

can be described using the parsing grammar in conjunction with the lexical specifica-

tion (given in Appendix B). The semantics can then be described using a composition

of fundamental programming constructs, or funcons [Chu+15]. However, moving from

the syntax to semantics requires, first, the disambiguation of the resulting derivation

structure and, second, the translation of the derivation structure to an AST suitable

for the semantics. In this case, a description of the ASTs required for the semantics

is specified by a hand-written abstract syntax (given in Appendix C) for the C# 1.2

language.

Of course, to describe the transition from the ESPPF to AST, it is first necessary to

construct the ESPPF. An MGLL parser for the C# 1.2 concrete syntax is used along

with a multilexer specification that is similar to that described in the previous section.

The C# 1.2 multilexer specification differs only in that a different set of contextual

keywords is used, and that, as C# 1.2 does not include generics, the class two relation

> R >> is specified. The implementation of the C# 1.2 lexer specification can be seen

in the class CSDFAMap in the GitHub repository [Mic15a].
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This section will first describe the syntactic ambiguity reduction rules needed to

resolve the ambiguities in the ESPPF for the parsed string. It will then follow with a

description of the GIFT transformations necessary to translate the resulting derivation

trees into an equivalent form described by the abstract syntax.

6.2.1 Funcons

Whilst the formal semantics is not considered for this thesis, a brief and informal

introduction of the semantics formalism used for this case study will be given. Works

that give a more detailed description of the formal semantics can be found in the

bibliography [Chu+15; Mos08].

The aim of the PLanCompS project was to develop a component-based approach

to semantics specifications. Many programming constructs are common across many

languages (such as while loops and if statements). In many cases, how programming

constructs are evaluated is independent of the result of other constructs - for example,

the contents of an if statement do not affect how an if statement evaluates its contents.

These observations are taken advantage of in component-based semantics through

the specification of fundamental constructs (funcons). These funcons are effectively

simplified language constructs. For example, the funcon if-then-else(E1, E2, E3)

corresponds to the concept of an if statement. Funcons are composed to specify the

semantics of a sentence. For example, the C# string a=b+c could translate to the

funcon string bind("a",integer-add(bound("b"),bound("c"))). The semantics of

each funcon is specified by some modular semantics framework (such as MSOS [D04]).

Source language constructs are mapped to funcons through inductively defined

rewrite functions, for instance

exprJE1 == E2K = supply(exprJE1K, equal(given, exprJE2K))

A rewrite function will need to be written for every syntactic form. Therefore, as

mentioned in Chapter 4, it is beneficial to reduce the number of syntactic forms. The

abstract syntax used for the semantics is a structurally concise version of the concrete

syntax - representing only the structure essential to the semantics. As the AST would

have been constructed from derivations in the concrete syntax, ambiguity in the ab-

stract syntax is not an issue. As the aim is to produce human-readable descriptions of

the semantics, terminal symbols are maintained in this abstract syntax. This is to make

it easier to document how the semantics relates to source language constructs without

requiring an explicit mapping back to the concrete syntax [Mos08]. The language of

the abstract syntax is therefore a superset of the language of the concrete syntax.
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6.2.2 Syntactic Ambiguity Reduction of C# 1.2

After the lexical analysis step, the resulting TWE set is given to the MGLL parser for

C# 1.2, that is based on the grammar given in Appendix B. Although this grammar

is less ambiguous than the abstract syntax for C# given in Appendix C, it is still am-

biguous in a number of areas. As such, the resulting ESPPF will, in most cases, embed

more than one derivation tree. This section uses the syntactic ambiguity reduction

techniques described in Chapter 5 to reduce the level of ambiguity in the resulting

ESPPF. Creating a syntactic ambiguity reduction specification requires decisions to be

made, using a combination of the informal descriptions given in the C# specification

and knowledge of the abstract syntax trees produced by the C# abstract grammar in

Appendix C. The result after applying all ambiguity reduction rules is, in this case, a

single derivation tree.

In a few cases, ambiguities result from the concrete syntax providing more structural

information than is required by the semantics. The derivation trees rooted at these

ambiguities will map to the same abstract syntax tree. Therefore, it does not matter

which derivation tree is selected. An example of this is found in the grammar segment

reference-type ::= class-type | interface-type | array-type | delegate-type

class-type ::= type-name | object | string

interface-type ::= type-name

delegate-type ::= type-name

type-name ::= namespace-or-type-name

namespace-or-type-name ::= identifier | namespace-or-type-name . identifier

it is possible to derive type-name from reference-type in three ways as shown by the

ESPPF fragment in Figure 6.6. Similarly, in the grammar segment

reference-type ::= interface-type · ,i

interface-type,i,j

type-name,i,j

class-type,i,j

reference-type ::= delegate-type · ,i

. . .

reference-type ::= class-type · ,i

delegate-type,i,j

reference-type,i,j

Figure 6.6: Demonstration of ambiguity in reference-type
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value-type ::= struct-type | enum-type

struct-type ::= type-name | simple-type

enum-type ::= type-name

it is possible to derive type-name from value-type in two ways as seen in Figure 6.7.

In addition, the grammar rule for type is

enum-type,i,j

value-type,i,j

. . .

struct-type,i,j

value-type ::= enum-type · ,i

type-name,i,j

textitvalue-type ::= struct-type · ,i

Figure 6.7: Demonstration of ambiguity in value-type

type ::= value-type | reference-type

which means the ambiguities in value-type and reference-type also cause an addi-

tional ambiguity under type as seen in Figure 6.8.

To resolve this ambiguity, it is not enough simply to make a decision between the

packed nodes that are under type. One must also make a decision for the packed nodes

under reference-type and value-type.

In the abstract syntax, the rule for type is

type ::= predefined-type | qualified-identifier | array-type

qualified-identifier ::= identifier ( . identifier )*

The non-terminal qualified-identifier replaces type-name, and is now the imme-

diate descendant of type. For strings in the sublanguage generated by type-name in

the concrete syntax, there is only a single derivation from type in the abstract syntax.

All derivation trees from type deriving type-name in the concrete syntax will be trans-

formed into the same AST. As a result, the decisions that need to be made to reduce

the number of ambiguities do not matter and the following rules select packed nodes

arbitrarily

suppress(type ::= value-type·, type ::= reference-type·)

suppress(reference-type ::= delegate-type·, reference-type ::= class-type·)
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enum-type,i,j

. . .

struct-type,i,j

type,i,j

reference-type ::= interface-type · ,i

reference-type ::= class-type · ,i

type ::= value-type · ,i

class-type,i,jdelegate-type,i,j

type-name,i,j

type ::= reference-type · ,i

reference-type,i,j

reference-type ::= delegate-type · ,i value-type,i,j

value-type ::= enum-type · ,i

value-type ::= struct-type · ,i

interface-type,i,j

Figure 6.8: Demonstration of ambiguity under type

suppress(reference-type ::= delegate-type·,

reference-type ::= interface-type·)

suppress(reference-type ::= interface-type·,

reference-type ::= class-type·)

suppress(value-type ::= struct-type·, value-type ::= enum-type·)

Another case of an ambiguity where multiple derivation trees map to a single ab-

stract syntax tree is in the following concrete syntax grammar segment

class-base ::= : class-type | : interface-type-list | : class-type ,

interface-type-list

interface-type-list ::= interface-type | interface-type-list , interface-type

class-type ::= type-name | object | string

interface-type ::= type-name

It is possible to derive :type-name in two ways. Additionally for a comma-delimited

list of type-name, such as in :type-name,type-name, there are two ways to derive

from class-base. In the C# language, a class can inherit from one superclass, and
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can implement one of more interfaces. The syntax, as shown here, is the same for

both cases. The ambiguity arises as type-name could be either a class or an interface.

For the funcon semantics, it is not necessary to make the distinction. In the abstract

syntax, the rule for class-base is

class-base ::= : ( object | string | qualified-identifier ) ( ,

qualified-identifier )*

Again, the decision on which packed nodes to suppress can be made arbitrarily. The

rules that were chosen are as follows

suppress(class-base ::= : class-type·,

class-base ::= : interface-type-list·)

longest(class-base ::= : class-type , interface-type-list·,

class-base ::= : interface-type-list·)

shortest(class-base ::= : class-type , interface-type-list·,

class-base ::= : interface-type-list·)

suppress(class-base ::= : class-type , interface-type-list·,

class-base ::= : interface-type-list·)

When the ambiguity involves comma-delimited lists, the pivot values are different,

class-base ::= : class-type , interface-type-list· is suppressed regardless of the

pivot value. As discussed in 5.2, this is achieved by defining a relation for this grammar

slot for all three types of syntactic ambiguity rule.

There is one last case of ambiguity in the concrete syntax in which the abstract

syntax removes the distinction between the ambiguous derivations

primary-no-array-creation-expression ::= delegate-creation-expression |

object-creation-expression | ...

delegate-creation-expression ::= new delegate-type ( expression )

object-creation-expression ::= new type ( argument-list ) new type ( )

delegate-type ::= type-name

As established earlier, type is able to derive type-name. Also argument-list

can derive expression. As a result, there is an ambiguity rooted at

primary-no-array-creation-expression for a string of form new type (

expression ). In the abstract syntax, primary-no-array-creation-expression is

folded to become part of expression. delegate-type is replaced by type and the

two productions are merged into a single production:

expression ::= new type ( argument-list? ) | ...
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This eliminates the ambiguity in the abstract syntax. The decision on which rule to

use is arbitrary

suppress(primary-no-array-creation-expression ::=

delegate-creation-expression·,

primary-no-array-creation-expression ::=

object-creation-expression·)

Of course, not every ambiguity is resolved by the abstract syntax. Others must

be resolved through an understanding of the language specification. Like most C-like

languages, C# experiences the dangling-else ambiguity. The subgrammar for dealing

with if-then-else statements is as follows

if-statement ::= if ( boolean-expression ) embedded-statement

| if ( boolean-expression ) embedded-statement else embedded-statement

embedded-statement ::= selection-statement | ...

selection-statement ::= if-statement | ...

A sentence of form

if(boolean-expression)if(boolean-expression) embedded-statement

else embedded-statement

can be derived in two ways from if-statement as seen in Figure 6.9. From the

derivation tree rooted at the packed node labelled with pivot h, the else clause is

a member of the second if statement. From the derivation tree rooted at the packed

node labelled with pivot k, the else clause is a member of the first if statement. The

C# specification states that an else clause binds to the lexically closest unmatched

if statement. The derivation tree rooted at the packed node labelled with pivot h is

therefore chosen. As the pivots are different, the rules needed to capture this desired

result are as follows

longest(if-statement ::= if ( boolean-expression )

embedded-statement else embedded-statement·,

if-statement ::= if ( boolean-expression ) embedded-statement)

shortest(if-statement ::= if ( boolean-expression )

embedded-statement else embedded-statement·,

if-statement ::= if ( boolean-expression ) embedded-statement)
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else,l,k

selection-statement,i,j

embedded-statement,h,j

(,e,f

(,q,r

if-statement,h,l

),s,t

if,h,q

if-statement,h,j

if-statement ::= if ( boolean-expression ) embedded-statement · ,h

if-statement,i,j

if,i,e

embedded-statement,i,j

selection-statement,h,j

if-statement ::= if ( boolean-expression ) embedded-statement else embedded-statement · ,k

embedded-statement,k,j

embedded-statement,h,l

boolean-expression,r,s

. . .

boolean-expression,f,g

),g,h

. . .

selection-statement,h,l

. . .

. . .

embedded-statement,t,l

Figure 6.9: Demonstration of ambiguity under if-statement

suppress(if-statement ::= if ( boolean-expression )

embedded-statement else embedded-statement·,

if-statement ::= if ( boolean-expression ) embedded-statement)

There is an ambiguity between the syntax for cast and invocation expressions.

Consider the following grammar segment

unary-expression ::= primary-expression | + unary-expression | - unary-expression |

... | cast-expression

primary-expression ::= primary-no-array-creation-expression | ...

primary-no-array-creation-expression ::= simple-name | parenthesized-expression |

invocation-expression | member-access | ...

simple-name ::= identifier
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invocation-expression ::= primary-expression ( argument-list ) | primary-expression

( )

argument-list ::= argument | argument-list , argument

argument ::= expression | ...

parenthesized-expression ::= ( expression )

cast-expression ::= ( type ) unary-expression

A string of form (x)(y) results in an ESPPF of the form seen in Figure 6.10. In one

),k,j

parenthesized-expression,i,h

argument-list,l,k

type,e,g

simple-name,e,g

unary-expression,h,j

primary-no-array-creation-expression,l,k

primary-no-array-creation-expression,e,g

...

expression,l,k

parenthesized-expression,h,j

simple-name,l,k

(,i,e

cast-expression,i,j

expression,e,g

primary-expression,h,j

unary-expression ::= cast-expression · ,i unary-expression ::= primary-expression · ,i

unary-expression,l,k

. . .

...

identifier,l,k

primary-no-array-creation-expression,h,j

argument,l,k

primary-expression,i,j

invocation-expression,i,j

primary-expression,i,h

(,h,l

...

primary-expression,e,g

),g,h

identifier,e,g

primary-no-array-creation-expression,i,h

unary-expression,e,g

primary-no-array-creation-expression,i,j

primary-expression,l,k

unary-expression,i,j

. . .

Figure 6.10: Demonstration of ambiguity under unary-expression

interpretation, (x)(y) is a cast expression which takes the result of the parenthesised

expression (y) and casts it to a type x. In the other interpretation, the parenthesised

expression (x) is an invocation with the parameter y. The latter is rejected in C#

- an invocation expression is only valid for a method group identifier or a delegate
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type: it cannot be an expression surrounded by parentheses. Therefore, the invocation

expression interpretation is suppressed in favour of the cast expression interpretation.

suppress(unary-expression ::= primary-expression·,

unary-expression ::= cast-expression·)

additive-expression is another case where there is an ambiguity involving cast

expressions

additive-expression ::= multiplicative-expression | additive-expression +

multiplicative-expression | additive-expression - multiplicative-expression |

...

multiplicative-expression ::= unary-expression | ...

A string of form (x)-y will generate an ambiguity rooted at additive-expression as

seen in Figure 6.11.

In this case, (x)-y could be a cast expression which casts a unary expression -y

to a type x, or it could be a binary subtraction between a parenthesised expression

(x) and y. To understand which interpretation is correct, the C# language spec-

ification [HCC02] describes the exact conditions under which an expression can be

considered a cast expression:

“A sequence of one or more tokens enclosed in parentheses is considered

the start of a cast-expression only if at least one of the following are

true:

• The sequence of tokens is correct grammar for a type, but not for an

expression.

• The sequence of tokens is correct grammar for a type, and the token

immediately following the closing parentheses is the token ˜, the token

!, the token (, an identifier, a literal, or any keyword except as

and is.”

From this, in the (x)(y) case, (x) represents a cast since it is immediately followed

by a (. In the (x)-y case, (x) represents a parenthesized expression since x can be an

expression and - is not in the list of follow symbols for a cast. Of course, the latter

is also true for the string (x)+y. The following rules in the disambiguation scheme

capture the desired result

longest(additive-expression ::= multiplicative-expression·,
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primary-expression,i,k

(,i,g

parenthesized-expression,i,k

primary-no-array-creation-expression,g,h

...

primary-expression,l,j

expression,g,h

unary-expression,i,j

),h,k

unary-expression,l,j

cast-expression,i,j

unary-expression,k,j

simple-name,l,j

. . .

type,g,h

unary-expression,g,h

unary-expression,i,k

identifier,l,j

. . .

identifier,g,h

-,k,l

multiplicative-expression,l,j

primary-no-array-creation-expression,l,j

primary-expression,g,h

additive-expression ::= multiplicative-expression · ,i

multiplicative-expression,i,k

simple-name,g,h

additive-expression,i,j

additive-expression ::= additive-expression - multiplicative-expression · ,l

multiplicative-expression,i,j

primary-no-array-creation-expression,i,k

additive-expression,i,k

...

Figure 6.11: Demonstration of ambiguity under additive-expression

additive-expression ::= additive-expression +

multiplicative-expression·)

shortest(additive-expression ::= multiplicative-expression·,
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additive-expression ::= additive-expression +

multiplicative-expression·)

suppress(additive-expression ::= multiplicative-expression·,

additive-expression ::= additive-expression +

multiplicative-expression·)

longest(additive-expression ::= multiplicative-expression·,

additive-expression ::= additive-expression -

multiplicative-expression·)

shortest(additive-expression ::= multiplicative-expression·,

additive-expression ::= additive-expression -

multiplicative-expression·)

suppress(additive-expression ::= multiplicative-expression·,

additive-expression ::= additive-expression -

multiplicative-expression·)

The syntax definition of jagged arrays in C# leads to a syntactic ambiguity. Con-

sider the production rules

type ::= reference-type | ...

reference-type ::= array-type | ...

array-type ::= non-array-type rank-specifiers

non-array-type ::= type

rank-specifiers ::= rank-specifier | rank-specifiers rank-specifier

rank-specifier ::= [ dim-separators ] | [ ]

dim-separators ::= , | dim-separators ,

The ambiguity occurs for any string with more than one rank-specifier. For example,

the ESPPF fragment for a string of form a[][] will be as given in Figure 6.12.

As non-array-type can derive array-type, a[] can be derived from

non-array-type. There are two derivations, one where a[] is derived from

non-array-type, and one where [][] is derived from rank-specifiers. The number

of derivation trees increases exponentially with the number of rank specifiers. For in-

stance, for a string of form a[][][], at the top level there is a branch where a[][] is

derived from non-array-type, whose subtree looks like the one in Figure 6.12, as well

as the branch where [][][] is derived from rank-specifiers.

How this is resolved is made clear in the specification - a non-array-type cannot

derive a array-type. The correct interpretation can be obtained by suppressing the
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],h,k

reference-type,i,j

[,g,h

rank-specifiers,g,j

non-array-type,i,g

type,i,j

array-type,i,k

[,k,l

array-type,i,j

rank-specifier,g,ktype,i,g

array-type ::= non-array-type rank-specifiers · ,k

rank-specifiers,g,k

non-array-type,i,k

type,i,k

reference-type,i,k

. . .

rank-specifier,k,j

...

rank-specifiers,k,j

array-type ::= non-array-type rank-specifiers · ,g

],l,j

Figure 6.12: Demonstration of ambiguity under array-type

packed node with the highest pivot value

shortest(array-type ::= non-array-type rank-specifiers·,

array-type ::= non-array-type rank-specifiers·)

If non-array-type does not derive array-type then it must not derive strings that

are derivable from rank-specifiers. As seen in Figure 6.12, the lowest pivot value is

the one in which the top level rank-specifiers matches the most, and therefore the

derivation tree in which array-type does not derive non-array-type.

The remaining syntactic ambiguity to look at is found in the specification of at-

tribute arguments. Consider the grammar segment

attribute-arguments ::= ( positional-argument-list , named-argument-list ) | (

named-argument-list ) | ( ) | ( positional-argument-list )
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positional-argument-list ::= positional-argument | positional-argument-list ,

positional-argument

positional-argument ::= attribute-argument-expression

named-argument-list ::= named-argument | named-argument-list , named-argument

named-argument ::= identifier = attribute-argument-expression

attribute-argument-expression ::= expression

expression ::= assignment | ...

assignment ::= unary-expression assignment-operator expression

assignment-operator ::= = | ...

Given that unary-expression
∗

=⇒ identifier, an ambiguity occurs for strings of

the form (identifier=expression), which results in an ESPPF of the form given

in Figure 6.13. In this case identifier=expression can be derived either as an

assignment expression or as a named argument. This ambiguity becomes more complex

if there is more than one attribute argument of this form such as in strings of the form

(identifier=expression,identifier=expression,identifier=expression)

which will have an ESPPF of the form in Figure 6.14.

The C# language specification limits the circumstances in which an expression can

be interpreted as an attribute-argument-expression as follows:

“An expression E is an attribute-argument-expression if all of the

following statements are true:

• The type of E is an attribute parameter type.

• At compile-time, the value of E can be resolved to one of the following:

– A constant value.

– A System.Type object.

– A one-dimensional array of attribute-argument-expressions.”

It is not valid for an attribute-argument-expression to be an assignment state-

ment. Therefore, strings of the form identifier=expression must be derived from

named-argument in this context. The ambiguity reduction rules to ensure this are as

follows

suppress(attribute-arguments ::= ( positional-argument-list )·,

attribute-arguments ::= ( positional-argument-list

, named-argument-list )·)

suppress(attribute-arguments ::= ( positional-argument-list )·,

attribute-arguments ::= ( named-argument-list )·)
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assignment-operator,h,l

assignment,g,k

named-argument-list,g,k

unary-expression,g,h

identifier,g,h

attribute-arguments ::= ( positional-argument-list ) · ,k

positional-argument,g,k

...

attribute-arguments,i,j

attribute-arguments ::= ( named-argument-list ) · ,k

. . .

attribute-argument-expression,l,k

positional-argument-list,g,k

attribute-argument-expression,g,k

=,h,l

expression,l,k

(,i,g

),k,j

...

expression,g,k named-argument,g,k

Figure 6.13: Demonstration of ambiguity under attribute-arguments

suppress(attribute-arguments ::= ( positional-argument-list

, named-argument-list )·,

attribute-arguments ::= ( named-argument-list )·)

shortest(attribute-arguments ::= ( positional-argument-list

, named-argument-list · ),

attribute-arguments ::= ( positional-argument-list

, named-argument-list · ))
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attribute-arguments ::= ( positional-argument-list , named-argument-list · ),h

. . .

attribute-arguments ::= ( positional-argument-list ) · ,k

. . .

positional-argument-list,g,k

(,i,g

named-argument-list,g,k

. . .

attribute-arguments ::= ( named-argument-list ) · ,k

attribute-arguments,i,j

. . .

attribute-arguments ::= ( positional-argument-list , named-argument-list ) · ,k

),k,j

attribute-arguments ::= ( positional-argument-list , named-argument-list · ),g

Figure 6.14: Demonstration of another ambiguity under attribute-arguments

These rules ensure, in all cases, that when an argument can be either a named argument

or a positional argument, only the named argument interpretation is used.

The set of rules given in this section will reduce the set of derivations for any valid

C# 1.2 input string to just a single derivation tree.

6.2.3 Transformation of a C# 1.2 derivation tree to an abstract syn-

tax tree

The derivation tree resulting from the specification given in the previous section needs

to be transformed into a form suitable for the funcon [Chu+15] semantics used in the

PLanCompS project. As funcon is a form of structural operational semantics, this

abstract syntax tree is of the form described in Chapter 4. The AST corresponds to a
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derivation tree generated by the abstract syntax grammar in Appendix C. This abstract

syntax grammar was not constructed using the GIFT operators in Chapter 4, rather

it was constructed by hand. The aim in this section is to produce a GIFT-annotated

version of the concrete syntax for C# that constructs an AST that, if not exactly

matching, is similar to the ASTs that the abstract syntax describes.

The annotated grammar will not be given in full here, instead this section shall

look at the patterns and interesting cases where the GIFT annotations are necessary.

The full annotated concrete syntax can be found in Appendix B.

The GIFT annotations are defined over BNF grammars yet the abstract syntax is

defined in terms of EBNF. However, the impact that this has in terms of the AST

construction is minimal, even in the case of closure operations. For example, consider

the concrete syntax rules for variable-initializer-list

variable-initializer-list ::= variable-initializer | variable-initializer-list ,

variable-initializer

A typical derivation tree involving this production is

· · · · · ·

· · ·· · ·

,

variable-initializer-list

variable-initializer,

variable-initializer

variable-initializer-list

variable-initializer-list

In the abstract syntax, the equivalent rule is

variable-initializer-list ::= variable-initializer (, variable-initializer)*

So the corresponding AST would be

, ,

variable-initializer-list

variable-initializer variable-initializer variable-initializer

Although it is not possible to capture the EBNF abstract syntax rule using the GIFT

operators, it is possible to capture the resulting abstract syntax tree with the following

annotated concrete syntax rule
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variable-initializer-list ::= variable-initializer | variable-initializer-listˆ ,

variable-initializer

This is a rule featuring a fold-cycle, as described in 4.6.6. The grammar-to-grammar

translation of the fold-under operator will result in the same rule being returned. How-

ever, the AST produced from the derivation tree will match the expected tree con-

structed by the abstract syntax - a sequence of variable-initializer nodes sepa-

rated by , nodes.

A significant portion of the changes in the abstract syntax involve reducing a num-

ber of rules that are redundant from a semantics context. For example, consider the

following fragment of the concrete syntax

type ::= value-type | reference-type

reference-type ::= class-type | interface-type | array-type | delegate-type

class-type ::= type-name | object | string

interface-type ::= type-name

delegate-type ::= type-name

value-type ::= struct-type | enum-type

struct-type ::= type-name | simple-type

enum-type ::= type-name

simple-type ::= number-type | bool

numeric-type ::= integral-type | floating-point-type | decimal

floating-point-type ::= float | double

type-name ::= namespace-or-type-name

namespace-or-type-name ::= identifier | namespace-or-type-name . identifier

predefined-type ::= bool | byte | char | decimal | double | float | int | long |

object | sbyte | short | string | uint | ulong | ushort

qualified-identifier ::= identifier | qualified-identifier . identifier

This would require a large number of inference rules for the semantics. The corre-

sponding abstract syntax rules are much simpler

type ::= predefined-type | qualified-identifier | array-type

predefined-type ::= integral-type | bool | decimal | double | float | object |

string

integral-type ::= sbyte | byte | short | ushort | int | uint | long | ulong | char

To capture this transformation in the grammar, one can begin by appropriately prop-

agating fold-under operators across the sets of rules in the concrete syntax

type ::= value-typeˆ | reference-typeˆ

reference-type ::= class-typeˆ | interface-typeˆ | array-type | delegate-typeˆ

class-type ::= type-nameˆ | object | string

interface-type ::= type-nameˆ

delegate-type ::= type-nameˆ

value-type ::= struct-typeˆ | enum-typeˆ

struct-type ::= type-nameˆ | simple-typeˆ

174



enum-type ::= type-nameˆ

simple-type ::= number-typeˆ | bool

numeric-type ::= integral-type | floating-point-typeˆ | decimal

floating-point-type ::= float | double

type-name ::= namespace-or-type-nameˆ

namespace-or-type-name ::= identifier | namespace-or-type-nameˆ . identifier

predefined-type ::= bool | byte | char | decimal | double | float | int | long |

object | sbyte | short | string | uint | ulong | ushort

qualified-identifier ::= identifier | qualified-identifierˆ . identifier

After all fold-under operators are evaluated, the production rule for type is as follows.

Note that rules that would be duplicated become a single rule.

type ::= array-type | identifier | namespace-or-type-nameˆ . identifier | object |

string | bool | integral-type | float | double | decimal

This does not quite match the abstract syntax rule for type. array-type is now a

direct alternate of type. identifier | namespace-or-type-nameˆ. identifier

derives the same strings as qualified-identifier, and the rest of the alternates all

derive strings in predefined-type. To better match the abstract syntax, the gather

operator is also used

type ::= value-typeˆ | reference-typeˆ

reference-type ::= class-typeˆ | (interface-typeˆ)!qualified-identifier |

array-type | delegate-typeˆ

class-type ::= (type-nameˆ)!qualified-identifier | object!predefined-type | string!

predefined-type

interface-type ::= type-nameˆ

delegate-type ::= (type-nameˆ)!qualified-identifier

value-type ::= struct-typeˆ | enum-typeˆ

struct-type ::= (type-nameˆ)!qualified-identifier | simple-typeˆ

enum-type ::= (type-nameˆ)!qualified-identifier

simple-type ::= number-typeˆ | bool!predefined-type

numeric-type ::= integral-type!predefined-type | floating-point-typeˆ | decimal!

predefined-type

floating-point-type ::= float!predefined-type | double!predefined-type

type-name ::= namespace-or-type-nameˆ

namespace-or-type-name ::= identifier | (namespace-or-type-nameˆ)!

qualified-identifier . identifier

predefined-type ::= bool | byte!integral-type | char!integral-type | decimal |

double | float | int!integral-type | long!integral-type | object | sbyte!

integral-type | short!integral-type | string | uint!integral-type | ulong!

integral-type | ushort!integral-type

qualified-identifier ::= identifier | qualified-identifierˆ . identifier

The rules in predefined-type that are also in integral-type are gathered into

integral-type. Similarly all terminals derivable by predefined-type are gathered
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into predefined-type. type-name is gathered to qualified-identifier. The in-

stance of namespace-or-type-name that is under its own rule is also gathered under

qualified-identifier. Fold-under is then applied in both cases giving the rules that

already existed for qualified-identifier. The result is that the resulting AST will

match the derivation trees for the abstract syntax for this set of rules.

In the above set of rules, class-type is folded under reference-type which is

then folded under type. However, class-type is also referred to by other rules in the

concrete syntax. One example is the rule

specific-catch-clause ::= catch ( class-type ) block | catch ( class-type

identifier ) block

In the abstract syntax, the corresponding rule is

specific-catch-clause ::= catch ( type identifier? ) block

class-type is replaced with type. This can be reflected with the following GIFT

annotated rule

specific-catch-clause ::= catch ( (class-typeˆ)!type ) block | catch ( (

class-typeˆ)!type identifier ) block

As the rule for type now includes the transformed rules for class-type, this can be

done without further modification.

A problem occurs in the case of class-base

class-base ::= : class-type | : interface-type-list | : class-type ,

interface-type-list

interface-type-list ::= interface-type | interface-type-list , interface-type

The equivalent abstract syntax rule is

class-base ::= : (object | string | qualified-identifier) (, qualified-identifier)*

As seen earlier, the instance of object and string in class-type is gathered into

predefined-type, so it is unclear how one could produce an equivalent GIFT anno-

tated grammar that could simultaneously model that behaviour whilst modelling the

behaviour seen in the rule for class-base. This separation is more convenient in the

case of class-base as object is always a valid base class for inheritance in C#, whilst

string is always invalid as a base class for inheritance (as string is a ‘sealed’ class

in C#). In the other cases, the separation is not necessary as both can be treated as

predefined types. As the GIFT operators are local to the current production rule, it is

simply not possible to model these two different desired behaviours. In the case study,

the closest GIFT annotated grammar possible is

class-base ::= : class-typeˆ | : interface-type-listˆ | : class-typeˆ ,

interface-type-listˆ
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interface-type-list ::= (interface-typeˆ)!qualified-identifier | interface-type-listˆ

, (interface-typeˆ)!qualified-identifier

which gives the resulting grammar

class-base ::= : predefined-type | : qualified-identifier | : interface-type-listˆ

, qualified-identifier | : predefined-type , qualified-identifier | :

predefined-type , interface-type-listˆ , qualified-identifier | :

qualified-identifier , qualified-identifier | : qualified-identifier ,

interface-type-listˆ , qualified-identifier

In some cases in the grammar, there are non-terminals whose languages are either

identical or whose languages are such that one non-terminal’s language is a subset of

the other. In the abstract syntax, these are often ‘merged’ into a single non-terminal.

One example of this is in the following rules in the concrete syntax

accessor-body ::= block | ;

constructor-body ::= block | ;

destructor-body ::= block | ;

method-body ::= block | ;

with an example of one of these non-terminals being referenced in the following set of

rules

accessor-declarations ::= get-accessor-declaration | set-accessor-declaration |

get-accessor-declaration set-accessor-declaration | set-accessor-declaration

get-accessor-declaration

get-accessor-declaration ::= get accessor-body | attributes get accessor-body

The abstract syntax reduces the number of rules necessary by merging the non-

terminals with the same language into a single non-terminal body, as seen here

body ::= block | ;

accessor-declarations ::= attribute-sectionˆ* get body (attribute-sectionˆ* set

body)? | attribute-sectionˆ* set body (attribute-sectionˆ* set body)?

There are two ways that one could capture this in the GIFT-annotated concrete syntax.

The first is to gather each of the alternates of body non-terminals into body, and then

fold-under all instances of these non-terminals as follows

accessor-body ::= block!body | ;!body

constructor-body ::= block!body | ;!body

destructor-body ::= block!body | ;!body

method-body ::= block!body | ;!body

accessor-declarations ::= get-accessor-declarationˆ | set-accessor-declarationˆ |

get-accessor-declarationˆ set-accessor-declarationˆ | set-accessor-declarationˆ

get-accessor-declarationˆ

get-accessor-declaration ::= get accessor-bodyˆ | attributesˆ get accessor-bodyˆ
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The alternative is to fold-under the *-body non-terminals and gather into body as

follows

accessor-body ::= block | ;

constructor-body ::= block | ;

destructor-body ::= block | ;

method-body ::= block | ;

accessor-declarations ::= get-accessor-declarationˆ | set-accessor-declarationˆ |

get-accessor-declarationˆ set-accessor-declarationˆ | set-accessor-declarationˆ

get-accessor-declarationˆ

get-accessor-declaration ::= get (accessor-bodyˆ)!body | attributesˆ get (

accessor-bodyˆ)!body

In the case study, the former solution is chosen. In general, the former solution is better

when the change needs to be applied across the entire grammar (as is in this case),

whilst the latter is better for when the change only occurs locally.

Another example of this type of modification in the abstract syntax is in the case

of class-member-declaration and struct-member-declaration

class-member-declaration ::= constant-declaration | field-declaration |

method-declaration | property-declaration | event-declaration |

indexer-declaration | operator-declaration | constructor-declarator |

destructor-declaration | static-constructor-declaration | type-declaration

struct-member-declaration ::= constant-declaration | field-declaration |

method-declaration | property-declaration | event-declaration |

indexer-declaration | operator-declaration | econstructor-declaration |

static-constructor-declaration | type-declaration

The language of struct-member-declaration is a subset of

class-member-declaration, with the only difference being that

struct-member-declaration cannot derive destructor-declaration. The

abstract syntax effectively merges these two non-terminals into member-declaration,

which reduces the number of grammar rules at the (small) cost of widening the

language of struct declarations.

member-declaration ::= constant-declaration | field-declaration |

method-declaration | property-declaration | event-declaration |

indexer-declaration | operator-declaration | constructor-declarator |

destructor-declaration | static-constructor-declaration | type-declaration

In the GIFT-annotated concrete syntax, this transformation is captured by ap-

plying gather to each of the right-hand sides of class-member-declaration and

struct-member-declaration and then applying fold-under to all right-hand instances

of the two non-terminals

class-member-declaration ::= constant-declaration!member-declaration |

field-declaration!member-declaration | method-declaration!member-declaration |
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property-declaration!member-declaration | event-declaration!member-declaration |

indexer-declaration!member-declaration | operator-declaration!member-declaration

| constructor-declarator!member-declaration | destructor-declaration!

member-declaration | static-constructor-declaration!member-declaration |

type-declaration!member-declaration

struct-member-declaration ::= constant-declaration!member-declaration |

field-declaration!member-declaration | method-declaration!member-declaration |

property-declaration!member-declaration | event-declaration!member-declaration |

indexer-declaration!member-declaration | operator-declaration!member-declaration

| constructor-declaration!member-declaration | static-constructor-declaration!

member-declaration | type-declaration!member-declaration

The most significant difference between the concrete and abstract syntax is found in

the rules for expressions. In the concrete syntax, the evaluation order is made explicit

by the structure as seen in this fragment of the rules for expression

expression ::= conditional-expression | assignment

assignment ::= unary-expression assignment-operator expression

conditional-expression ::= conditional-or-expression | conditional-or-expression ?

expression : expression

conditional-or-expression ::= conditional-and-expression | conditional-or-expression

|| conditional-and-expression

conditional-and-expression ::= inclusive-or-expression | conditional-and-expression

&& inclusive-or-expression

inclusive-or-expression ::= exclusive-or-expression | inclusive-or-expression |

exclusive-or-expression

exclusive-or-expression ::= and-expression | exclusive-or-expression ˆ and-expression

In the abstract syntax, this is reduced to a more concise set of rules

expression ::= expression assignment-operator expression | expression ? expression

: expression | expression binary-operator expression | ...

binary-operator ::= overloadable-binary-operator | || | &&

overloadable-binary-operator ::= | | ˆ | ...

All binary expressions are reduced to a single rule, by extracting binary operators

into a new non-terminal binary-operator (with overloadable binary operators also in

turn extracted into the existing overload-binary-operator non-terminal). The entire

structure for expression is flattened. It is clear that applying the fold-under operator

can collapse rules such as expression ::= conditional-expression, however, it is

also necessary to ensure all the right-hand side instances of the non-terminals that are

folded under expression are changed to refer to expression. This is achieved by ap-

plying fold-under to the non-terminal instance and gathering the result to expression.

The GIFT-annotated grammar for this is

expression ::= conditional-expressionˆ | assignmentˆ
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assignment ::= (unary-expressionˆ)!expression assignment-operator*@) (*@expression

conditional-expression ::= conditional-or-expressionˆ | (conditional-or-expressionˆ)

!expression ? expression : expression

conditional-or-expression ::= conditional-and-expressionˆ | (

conditional-or-expressionˆ)!expression ||!binary-operator (

conditional-and-expressionˆ)!expression

conditional-and-expression ::= inclusive-or-expressionˆ | (

conditional-and-expressionˆ)!expression &&!binary-operator (

inclusive-or-expressionˆ)!expression

inclusive-or-expression ::= exclusive-or-expressionˆ | (inclusive-or-expressionˆ)!

expression (|!overloadable-binary-operator)!binary-operator (

exclusive-or-expressionˆ)!expression

exclusive-or-expression ::= and-expressionˆ | (exclusive-or-expressionˆ)!expression

(ˆ!overloadable-binary-operator)!binary-operator (and-expressionˆ)!expression

Evaluation of the GIFT Operators

This case study has demonstrated the application of the GIFT operators in a practical

scenario. In this case study, the fold-over, insert and tear operators are not applied.

A fold-over operator would typically be used to promote terminals to become non-

terminals - which removes symbols from strings in the language. The tear and insert

operators would typically be used to re-order symbols in a string - which removes and

replaces strings in the language. As the language of the abstract syntax used in this

case study is a superset of the language of the concrete syntax, these operators were

not applicable. Only fold-under and gather were needed for this case study.

Although the abstract syntax was handwritten, and designed using ad-hoc princi-

ples, these operators were enough to transform derivation trees generated by the C#

1.2 concrete syntax into a form matching the derivation trees generated by the abstract

syntax for all but one production. Whilst the GIFT operators have only been designed

to work with BNF grammars, the abstract syntax provided uses EBNF. This proved

not to be an issue, as annotations could still be applied as tree-to-tree transformations

to produce the ASTs that match one expectation of an EBNF tree structure. Inter-

estingly, this is often achieved by creating fold-cycle behaviour. This may suggest that

the solutions to the fold-cycle problem, discussed in 4.6.6, may be resolvable through

translation to some EBNF construct. Nonetheless, this shows that GIFT operators

have potential as a scheme for abstract syntax translations that is straightforward to

use whilst being powerful enough, in most cases, to model a useful abstract syntax.

However, this case study did highlight one case where the GIFT operators may not

be robust enough. Recall the example of class-base from page 176. To be able to

match the abstract syntax rule for class-base, it is necessary for the translation of
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class-type to be different depending on which non-terminal derived it - only gathering

object and string under predefined-type if class-type has not been derived by

class-base. For the tree-to-tree transformation, the solution to this would be allowing

the language specifier to state that a GIFT annotation should only apply if certain

conditions are met. In this particular case, there would be a condition on the application

of the gather operator to object and string stating that the operator only applies if

the parent node class-type has not got a node labelled class-base as its parent. The

workaround used in the implementation applies exactly this condition. More generally,

inherited attributes could be used in the syntax directed definition to facilitate this.

However, it is not clear how this would work in the grammar-to-grammar translation.

This example does highlight the limitations of applying translations within the scope

of a single production only. A more robust solution would need to consider translations

that can use information outside this scope.

The GIFT operators could be expressed as term rewrite rules [KBV01]. The original

TIF operators were intended to be a convenient way of expressing localised tree rewrite

rules. The situation encountered with class-base would be equivalent to a situation

where conditional rewrite rules are required.
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Chapter 7

Conclusions

This thesis has introduced and analysed novel approaches to dealing with the problems

faced in the design of compiler front-ends. This chapter will summarise what has been

presented and propose future directions for possible research.

7.1 Multilexing and Parsing

After introductory material in Chapter 1, a new approach to lexical analysis, known

as multilexing, was introduced in Chapter 2. This chapter considered the drawbacks

of a traditional single-tokenisation output style lexical analyser. It then considered

the theoretical and practical issues of a näıve approach that simply produced all the

tokenisations of a character string. This provided the context for a new approach, that

is able to embed all tokenisations of a string by producing a set of triples (a TWE set)

as output, and described a mechanism for ensuring that this set only contained the

minimal set of triples required to embed all the tokenisations necessary.

The chapter then presented an algorithm that takes a character string as input,

and produces a TWE set as output. This algorithm is a relatively simple modification

of a traditional finite-state automata-based tokenising algorithm. Chapter 5 presented

a different solution, using a GLL recogniser, that would permit tokens whose patterns

represent languages that are context-free not just regular languages - such as that

required by nested comments.

Mechanisms for reducing the number of tokenisations in a given TWE set were

presented. These mechanisms were shown to provide functionality analogous to mech-

anisms commonly used to perform lexical disambiguation under traditional models,

whilst also providing more flexibility for more complex cases. Chapter 5 showed that

these mechanisms provide a means of reducing lexical ambiguity with respect only
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to the token matches, a benefit not offered by equivalent syntactic-level strategies in

character-level based parsing approaches. A mechanism was given that suppresses to-

kens whose patterns have no overlap with other tokens. This mechanism was expanded

on in Chapter 5 to describe a way in which whitespace and comment tokens can be

removed from a TWE set - through the use of an initial processor.

Chapter 2 also discussed how this multilexing approach compared with other ap-

proaches for allowing multiple tokenisations, such as backtracking in lex, Schrödinger’s

tokens, and character-level parsing. Chapter 5 carried out further comparisons of mul-

tilexing to character-level parsing, by demonstrating how the data structures produced

by the parsers for each compare. This showed that the multilexing approach offers the

same level of power and control as character-level parsing, whilst offering the simplicity

and efficiency of a token-level parser.

Chapter 3 started by reviewing a parsing algorithm, GLL, that can produce multiple

derivations as output for a single input string. The chapter then considered how to

extend the SPPF data structure that is produced as a result of a GLL parse so that

it is be able to embed multiple derivations from multiple input strings - the result

being an Extended SPPF (ESPPF). The GLL algorithm was then extended, to MGLL,

through some conceptually straightforward modifications so that it can take a TWE

set as input and produce an ESPPF representing all derivations of all strings embedded

in that TWE set.

7.2 The GIFT Operators

Chapter 4 began by discussing the various models of abstract syntax. It then considered

one particular model of abstract syntax - the abstract syntax used in the specification

of structural operational semantics. This form of abstract syntax is essentially a concise

form of the grammar used for parsing - the concrete syntax.

The chapter then explored the ways a derivation tree in the concrete syntax could

be transformed into an equivalent derivation tree in the abstract syntax. This consid-

ered local transformations on the tree, looking at the effects that adding or removing

nodes could have on surrounding nodes. This led to a review of the TIF operators, a

set of annotations on a grammar for describing the local transformations that trans-

form a derivation tree into an equivalent abstract syntax tree. The semantics of the

individual operators along with the corresponding syntax-directed definition of the tree

construction semantics was given. Potential issues with the evaluation order, and how

the syntax-directed definition resolves these issues were discussed. The TIF operators

were then extended to the GIFT operators by adding a new gather annotation, that
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inserts a new node in between a parent node and a group of children.

After exploring the GIFT operators as a set of operators for transforming derivation

trees into abstract syntax trees, the chapter discussed how one could derive the abstract

syntax that generates the AST. It demonstrated how the same operators could be used

to perform local transformations to the concrete syntax to generate a BNF grammar

whose derivation trees are close, if not entirely equivalent, to the generated ASTs.

However, it also demonstrated some problems, such as when fold operators are in a

recursive cycle and the performance impact of evaluating the operators in certain orders.

The end of the chapter discussed a proposal for the order in which the operators are

to be evaluated, to maximise performance and proposed a means of detecting and

preventing the evaluation of fold operators in a recursive cycle.

7.3 Syntactic Ambiguity Reduction

Although discussed mainly as syntactic-level equivalents of the lexical ambiguity re-

duction rules, Chapter 5 proposed some primitive operations for reducing the number

of derivation trees embedded in an (E)SPPF. These operations work by considering

relations between grammar slots, which are the labels of packed nodes. An equiva-

lent of longest and shortest match, based on highest and lowest pivot were considered,

alongside a simple priority of grammar slots. Chapter 5 showed that these syntactic

ambiguity reduction mechanisms cannot simply mimic the behaviour of the equivalent

lexical ambiguity reduction rules.

The ambiguity reductions are simplistic and do not capture the full scope of the

problems faced in syntactic ambiguity reduction. Discussions on issues that cannot be

captured by the syntactic ambiguity reduction mechanisms presented in this thesis can

be found in more dedicated studies on the subject [San+14; Afr+13; BV12]. However,

the ambiguity reduction mechanisms seen in this thesis were good enough for the C#

1.2 case study presented in Chapter 6.

7.4 Implementation and the C# Case Study

Chapter 6 considered an implementation of the theoretical concepts described in this

thesis as a set of general frameworks. It first described an implementation of a mul-

tilexer for the C# 2.0 language specification. Whilst providing a lexical ambiguity

reduction scheme that matches the intentions of the C# lexer, it was shown how the

multilexer allowed a more robust lexical specification - by allowing non-reserved key-

words to also be treated as identifiers. This allows the parser to consider both in-
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terpretations, choosing one based on context. It was also shown how the multilexer

handles the lexical ambiguities surrounding > and >> - demonstrating that it is possi-

ble to have nested type parameterisation and right-shift expressions without requiring

difficult workarounds in the parsing grammar. The end of the first part compared this

implementation to an equivalent character-level implementation. The results gener-

ally demonstrated the conclusions made in Chapter 5 regarding the efficiency of the

multilexer, although they also demonstrated that the character-level approach may

have advantages in the situation where the input is the worst-case for the lexer but

average-case for the parser.

The second part of the chapter considered the application of the syntactic ambigu-

ity reduction mechanisms to resolve ambiguities in the C# 1.2 language specification

parser - with the aim of performing a translation to abstract syntax trees described by

a structural abstract syntax created for the PLanCompS [Mos+15] project. It demon-

strated that, for the needs of the PLanCompS project, these mechanisms are enough

to reduce the number of derivation trees to a single tree.

The final part of the chapter described how the GIFT annotations are applied to

transform the resulting derivation tree into an equivalent tree in the abstract syntax

created for the PLanCompS project. It was shown that the GIFT operators are able

to transform the derivation tree into a form that is identical to the desired abstract

syntax tree in all but one case.

7.5 Directions for Future Research

The work in this thesis also provides a platform on which further work can be developed.

This will be discussed here.

7.5.1 ‘On-the-fly’ Lexical Ambiguity Reduction

The lexical ambiguity reduction rules are designed to be applied after all tokenisations

are found. As demonstrated by the results in Chapter 6, this creates an overhead, as

even if the lexical ambiguity reduction scheme removes all but one tokenisation, the

TWE set embedding all tokenisations needs to be constructed - and this could exhibit

worst-case time and size complexity.

It would be more efficient if these lexical ambiguity reductions could be applied

as the initial TWE set is constructed. Instead of constructing the full set and then

removing triples, such a scheme would only initially add triples to the set if they are

not suppressed by the ambiguity reduction scheme. For most cases, this would then

lead to performance that is comparable to classical lexical analysis.
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7.5.2 More Sophisticated Layout Token Removal

The proposed mechanism for layout token removal involves an initial processing step,

with token suppression. This is good enough for the cases where tokens are separated

but is not good enough in general. Further research could look at ways that layout

tokens can be removed without requiring the tokens to be separated, and without

requiring an initial processing step. Such an approach could involve removing layout

tokens after the TWE set is constructed and lexical ambiguity reduction rules applied.

7.5.3 Identification of Flawed Ambiguity Reduction Schemes

A problem highlighted in Chapter 2 is that a lexical ambiguity reduction scheme may

remove all embedded tokenisations from the set. Similarly, a syntactic ambiguity re-

duction scheme defined using the mechanisms described in Chapter 5 may remove all

derivations from the (E)SPPF.

It would be useful to find techniques for determining whether a particular scheme

can create such conflicts and find ways to prevent or resolve these conflicts.

7.5.4 Multiple-Input Parsing for Other Parsing Algorithms

Chapter 3 gave an extension to the BNF version of the GLL parsing algorithm for

multiple inputs. It may be useful to consider extensions to allow multiple inputs for

other parsing algorithms. It would seem that the design of GLL makes its naturally

easier to extend to multiple inputs than, for example, GLR. It may be interesting to

see to what extent this suggestion is true.

7.5.5 Complexity analysis of MGLL

A full complexity analysis of MGLL was not the focus of this study, however it is cer-

tainly of interest. As stated at the end of Chapter 3, the hypothesis is that MGLL

should have upper-bound time complexity no worse than quartic in the number of char-

acter indices to process and may even be worst-case cubic. The worst-case scenario for

MGLL would involve combining the worst-case lexical specification for the multilexer

with the worst-case grammar for a generalised parser. Given a parser whose lexical

specification consists of the single token-pattern pair

(b, {a}+)
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and with the parsing grammar [SJ10a]

S ::= b | S S | S S S

it should be possible to test this hypothesis by parsing increasing strings of a.

7.5.6 GIFT Translation for EBNF

The GIFT operator scheme in Chapter 4 considered only BNF grammars as both the

input and the output. This is mainly due to problems in determining the semantics

of folds and gather under closure operations. Future work can consider ways that the

GIFT operators can be defined for EBNF grammars.

In addition, one may wish to consider whether the grammar-to-grammar transfor-

mation should create EBNF constructs where necessary. A closure operation may, for

instance, resolve the issue around fold cycles. For the C# 1.2 case study, all that was

considered was which operators were necessary to perform the necessary tree-to-tree

transformation. The annotated grammar in Appendix B does not transform into the

grammar in Appendix C, as the latter is written in EBNF. One might consider the

additional semantics and operators needed to provide a complete transformation.

7.5.7 Implementation of Grammar-to-Grammar GIFT translations

Unfortunately, the implementation of the GIFT transformations does not operate

through direct analysis of the annotated grammar, rather it traverses the derivation

tree and applies one of the operator transformations where it is appropriate. Whilst

the concrete syntax grammar to abstract syntax grammar conversion was used to il-

lustrate the transformation, the implementation focussed entirely on transforming the

derivation tree to an abstract syntax tree. The implementation does not produce an

abstract syntax grammar, although earlier experimental work showed promising results

for a textual based conversion of the grammar.

7.5.8 Grammar transformations outside the scope of a single produc-

tion

There was one case in the C# case study where it was not possible to transform the

derivation tree into a tree matching that generated by the abstract syntax. This is

because the operation required information beyond the local production context. One

could consider other transformations that go beyond the local production context,

perhaps using more sophisticated attribute grammar schemes.
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7.5.9 Mapping an abstract syntax to a parsing grammar

Although a single abstract syntax could correspond to many possible parsing grammars,

there is scope for considering whether there is an inverse to the GIFT operators for

generating a parsing grammar from an abstract syntax. For example, the grammars

provided by the specifications of programming languages such as OCaml [Ler+12] are

much closer to an abstract syntax than a parsing grammar and are highly ambiguous

as a result. Therefore, it may be useful to consider whether one can take an abstract

syntax, and through some grammar annotations, transform it into a less ambiguous

parsing grammar.

7.5.10 Expansion of Syntactic Ambiguity Reduction Schemes

Whilst the syntactic ambiguity reduction scheme described in Chapter 5 was good

enough for the concrete syntax for C# 1.2, it is not sufficient in general. For instance,

the scheme is unable to handle the operator associativity and precedence ambiguities

in the expression subgrammar for the C# abstract syntax in Appendix C.

The syntactic ambiguity reduction scheme proposed in this thesis allows for an easy

to use specification, and it will be worth determining how other works that address this

problem could be integrated into this scheme.
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Appendix A

C# 2.0 Language Specification

This appendix describes the C# 2.0 language specification used in 6.1. The first part

of this appendix is the lexical specification. The second part is the grammar used for

parsing.

A.1 Lexical specification

This lexical specification is based on the lexical syntax given in the appendix of the

language specification [HCC06]. Tokens are described using EBNF rules. A string is

in the pattern of the token if there is a derivation of the string in the grammar, whose

start symbol is the non-terminal labelled as the token. For readability, non-token non-

terminals will be listed in italics and token non-terminals will be in bold. Characters

will be underlined. Additionally, [α] will be interpreted to mean one symbol in the

sequence depicted by α.

identifier ::= (letter-character | ) identifier-part-character* |

@ (letter-character | ) identifier-part-character*

integer-literal ::= [1-9]+ integer-type-suffix? |

0 ((x|X) [0-9a-fA-F]+)? integer-type-suffix?

real-literal ::= [0-9]* . [0-9]+ exponent-part? real-type-suffix? |

[0-9]+ (exponent-part real-type-suffix? | real-type-suffix)

character-literal ::= ’ character ’

string-literal ::= " regular-string-literal-character " |

@ " ( single-verbatim-string-literal | " ")* "

letter-character := [a-zA-Z ]

identifier-part-character ::= [a-zA-Z0-9 ] | unicode-character-escape-sequence

unicode-character-escape-sequence ::= \ ( u [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-

9a-fA-F] | U [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-

9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])

integer-type-suffix ::= (u|U) (l|L)? | (l|L) (u|U)?
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exponent-part ::= (e|E) (+|-)? [0-9]+

real-type-suffix ::= f|F|d|D|m|M

character ::= single-character | simple-escape-sequence |

hexadecimal-escape-sequence | unicode-character-escape-sequence

single-character ::= any unicode character except \ ’ \n \r

simple-escape-sequence ::= \ (’|"|\|0|a|b|f|n|r|t|t|v

hexadecimal-escape-sequence ::= \ x [0-9a-fA-F] [0-9a-fA-F]? [0-9a-fA-F]? [0-9a-

fA-F]?

regular-string-literal-character ::= single-regular-string-literal-character |

simple-escape-sequence | hexadecimal-escape-sequence |

unicode-character-escape-sequence

single-regular-string-literal-character ::= any unicode character except " \ \n

\r

single-verbatim-string-literal-character ::= any unicode character except "

Additionally there are three layout tokens in the lexical specification

new-line ::= \r \n? | \n

whitespace ::= | \t | \v | \f

comment ::= // input-character* | /* (not-asterisk | *+ not-slash)* *+ /

input-character ::= any unicode character except \n \r

not-slash ::= any unicode character except /

not-asterisk ::= any unicode character except *

As with many languages, C# has a number of tokens whose patterns are the same

as their label - known as the keywords. The following list of such tokens are reserved,

that is these patterns should be recognised as matching only these tokens.

{ } [ ] ( ) . , : :: ; + - * / % & | ˆ ! ˜ = -> <

> ? ?? ++ -- && || << >> == != <= >= += -= *= /= %= &=

|= ˆ= <<= >>= -> abstract as base bool break byte case

catch char checked class const continue decimal default

delegate double do else enum event explicit extern false

finally fixed float foreach for goto if implicit interface

internal int in is lock long namespace new null object

operator out override params private protected public readonly

ref return sbyte sealed short sizeof stackalloc static string

struct switch this throw true try typeof uint ulong unchecked

unsafe ushort using virtual void volatile while

There are also keywords that are not reserved - known as the contextual keywords.
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The patterns for these tokens can also be matched by other tokens

add alias get partial remove set where yield

A.2 Parsing Grammar

The parsing grammar is based on the grammar given in the appendix of [HCC06]. This

grammar is given as a set of BNF grammar rules. The terminals of the grammar are

in bold. The start symbol of this grammar is the non-terminal compilation-unit.

literal ::= true | false | integer-literal | real-literal | characte-literal |

string-literal | null

compilation-unit ::= ε |

namespace-member-declarations |

global-attributes |

global-attributes namespace-member-declarations |

using-directives |

using-directives namespace-member-declarations |

using-directives global-attributes |

using-directives global-attributes namespace-member-declarations |

extern-alias-directives |

extern-alias-directives namespace-member-declarations |

extern-alias-directives global-attributes |

extern-alias-directives global-attributes namespace-member-declarations |

extern-alias-directives using-directives |

extern-alias-directives using-directives namespace-member-declarations |

extern-alias-directives using-directives global-attributes |

extern-alias-directives using-directives global-attributes

namespace-member-declarations

namespace-name ::= namespace-or-type-name

type-name ::= namespace-or-type-name

namespace-or-type-name ::= qualified-alias-member |

identifier |

identifier type-argument-list |

namespace-or-type-name . identifier |

namespace-or-type-name . identifier type-argument-list

type ::= value-type | reference-type | type-parameter

value-type ::= struct-type | enum-type
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struct-type ::= type-name | simple-type | nullable-type

simple-type ::= numeric-type | bool

numeric-type ::= integral-type | floating-point-type | decimal

integral-type ::= sbyte | byte | short | ushort | int | uint | long | ulong | char

floating-point-type ::= float | double

enum-type ::= type-name

nullable-type ::= non-nullable-value-type ?

non-nullable-value-type ::= enum-type | type-name | simple-type

reference-type ::= class-type | interface-type | array-type | delegate-type

class-type ::= type-name | object | string

interface-type ::= type-name

array-type ::= non-array-type rank-specifiers

non-array-type ::= value-type | class-type | interface-type | delegate-type |

type-parameter

rank-specifiers ::= rank-specifier | rank-specifiers rank-specifier

rank-specifier ::= [ ] | [ dim-separators ]

dim-separators ::= , | dim-separators ,

delegate-type ::= type-name

variable-reference ::= expression

argument-list ::= argument | argument-list , argument

argument ::= expression | ref variable-reference | out variable-reference

primary-expression ::= array-creation-expression |

primary-no-array-creation-expression

primary-no-array-creation-expression ::= literal | simple-name |

parenthesized-expression | member-access | invocation-expression |
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element-access | this-access | base-access | post-increment-expression |

post-decrement-expression | object-creation-expression |

delegate-creation-expression | typeof-expression | checked-expression |

unchecked-expression | default-value-expression | anonymous-method-expression

simple-name ::= identifier | identifier type-argument-list

parenthesized-expression ::= ( expression )

member-access ::= primary-expression . identifier |

primary-expression . identifier type-argument-list |

predefined-type . identifier |

predefined-type . identifier type-argument-list |

qualified-alias-member . identifier |

qualified-alias-member . identifier type-argument-list

predefined-type ::= bool | byte | char | decimal | double | float | int | long |

object | sbyte | short | string | uint | ulong | ushort

invocation-expression ::= primary-expression ( ) |

primary-expression ( argument-list )

element-access ::= primary-no-array-creation-expression [ expression-list ]

expression-list ::= expression | expression-list , expression

this-access ::= this

base-access ::= base [ expression-list ] |

base . identifier |

base . identifier type-argument-list

post-increment-expression ::= primary-expression ++

post-decrement-expression ::= primary-expression --

object-creation-expression ::= new type ( ) |

new type ( argument-list )

array-creation-expression ::= new array-type array-initializer |

new non-array-type [ expression-list ] |

new non-array-type [ expression-list ] array-initializer |

new non-array-type [ expression-list ] rank-specifiers |

new non-array-type [ expression-list ] rank-specifiers array-initializer

delegate-creation-expression ::= new delegate-type ( expression )
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typeof-expression ::= typeof ( type ) | typeof ( unbound-type-name ) |

typeof ( void )

unbound-type-name ::= identifier |

identifier generic-dimension-specifier |

identifier :: identifier |

identifier :: identifier generic-dimension-specifier |

unbound-type-name . identifier |

unbound-type-name . identifier generic-dimension-specifier

generic-dimension-specifier ::= < > | < commas >

commas ::= , | commas ,

checked-expression ::= checked ( expression )

unchecked-expression ::= unchecked ( expression )

default-value-expression ::= default ( type )

anonymous-method-expression ::= delegate block |

delegate anonymous-method-signature block

anonymous-method-signature ::= ( ) | ( anonymous-method-parameter-list )

anonymous-method-parameter-list ::= anonymous-method-parameter |

anonymous-method-parameter-list , anonymous-method-parameter

anonymous-method-parameter ::= type identifier | parameter-modifier type identifier

unary-expression ::= primary-expression | + unary-expression | - unary-expression |

! unary-expression | ˜ unary-expression | pre-increment-expression |

pre-decrement-expression | cast-expression

pre-increment-expression ::= ++ unary-expression

pre-decrement-expression ::= -- unary-expression

cast-expression ::= ( type ) unary-expression

multiplicative-expression ::= unary-expression |

multiplicative-expression * unary-expression |

multiplicative-expression / unary-expression |

multiplicative-expression % unary-expression
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additive-expression ::= multiplicative-expression |

additive-expression + multiplicative-expression |

additive-expression - multiplicative-expression

shift-expression ::= additive-expression | shift-expression << additive-expression |

shift-expression >> additive-expression

relational-expression ::= shift-expression | relational-expression <

shift-expression | relational-expression > shift-expression |

relational-expression <= shift-expression | relational-expression >=

shift-expression | relational-expression is type | relational-expression as type

equality-expression ::= relational-expression | equality-expression ==

relational-expression | equality-expression != relational-expression

and-expression ::= equality-expression | and-expression & equality-expression

exclusive-or-expression ::= and-expression | exclusive-or-expression ˆ and-expression

inclusive-or-expression ::= exclusive-or-expression |

inclusive-or-expression | exclusive-or-expression

conditional-and-expression ::= inclusive-or-expression |

conditional-and-expression && inclusive-or-expression

conditional-or-expression ::= conditional-and-expression |

conditional-or-expression || conditional-and-expression

null-coalescing-expression ::= conditional-or-expression |

conditional-or-expression ?? null-coalescing-expression

conditional-expression ::= null-coalescing-expression |

null-coalescing-expression ? expression : expression

assignment ::= unary-expression assignment-operator expression

assignment-operator ::= = | += | -= | *= | /= | %= | &= | |= | ˆ= | <<= | >>=

expression ::= conditional-expression | assignment

constant-expression ::= expression

boolean-expression ::= expression

statement ::= labeled-statement | declaration-statement | embedded-statement
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embedded-statement ::= block | empty-statement | expression-statement |

selection-statement | iteration-statement | jump-statement | try-statement |

checked-statement | unchecked-statement | lock-statement | using-statement |

yield-statement

block ::= { } | { statement-list }

statement-list ::= statement | statement-list statement

empty-statement ::= ;

labeled-statement ::= identifier : statement

declaration-statement ::= local-variable-declaration ; | local-constant-declaration ;

local-variable-declaration ::= type local-variable-declarators

local-variable-declarators ::= local-variable-declarator |

local-variable-declarators , local-variable-declarator

local-variable-declarator ::= identifier | identifier = local-variable-initializer

local-variable-initializer ::= expression | array-initializer

local-constant-declaration ::= const type constant-declarators

constant-declarators ::= constant-declarator | constant-declarators ,

constant-declarator;

constant-declarator ::= identifier = constant-expression

expression-statement ::= statement-expression ;

statement-expression ::= invocation-expression | object-creation-expression |

assignment | post-increment-expression | post-decrement-expression |

pre-increment-expression | pre-decrement-expression

selection-statement ::= if-statement | switch-statement

if-statement ::= if ( boolean-expression ) embedded-statement |

if ( boolean-expression ) embedded-statement else embedded-statement

switch-statement ::= switch ( expression ) switch-block

switch-block ::= { } | { switch-sections }
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switch-sections ::= switch-section | switch-sections switch-section

switch-section ::= switch-labels statement-list

switch-labels ::= switch-label | switch-labels switch-label

switch-label ::= case constant-expression : | default :

iteration-statement ::= while-statement | do-statement | for-statement |

foreach-statement

while-statement ::= while ( boolean-expression ) embedded-statement

do-statement ::= do embedded-statement while ( boolean-expression ) ;

for-statement ::= for ( ; ; ) embedded-statement |

for ( ; ; for-iterator ) embedded-statement |

for ( ; for-condition ; ) embedded-statement |

for ( ; for-condition ; for-iterator ) embedded-statement |

for ( for-initializer ; ; ) embedded-statement |

for ( for-initializer ; ; for-iterator ) embedded-statement |

for ( for-initializer ; for-condition ; ) embedded-statement |

for ( for-initializer ; for-condition ; for-iterator ) embedded-statement

for-initializer ::= local-variable-declaration | statement-expression-list

for-condition ::= boolean-expression

for-iterator ::= statement-expression-list

statement-expression-list ::= statement-expression | statement-expression-list ,

statement-expression

foreach-statement ::= foreach ( type identifier in expression ) embedded-statement

jump-statement ::= break-statement | continue-statement | goto-statement |

return-statement | throw-statement

break-statement ::= break ;

continue-statement ::= continue ;

goto-statement ::= goto identifier ; | goto case constant-expression ; |

goto default ;

return-statement ::= return ; | return expression ;
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throw-statement ::= throw ; | throw expression ;

try-statement ::= try block catch-clauses |

try block finally-clause |

try block catch-clauses finally-clause

catch-clauses ::= specific-catch-clauses |

general-catch-clause |

specific-catch-clauses general-catch-clause

specific-catch-clauses ::= specific-catch-clause | specific-catch-clauses

specific-catch-clause

specific-catch-clause ::= catch ( class-type ) block |

catch ( class-type identifier ) block

general-catch-clause ::= catch block

finally-clause ::= finally block

checked-statement ::= checked block

unchecked-statement ::= unchecked block

lock-statement ::= lock ( expression ) embedded-statement

using-statement ::= using ( resource-acquisition ) embedded-statement

resource-acquisition ::= local-variable-declaration | expression

yield-statement ::= yield return expression ; |

yield break ;

namespace-declaration ::= namespace qualified-identifier namespace-body |

namespace qualified-identifier namespace-body ;

qualified-identifier ::= identifier | qualified-identifier . identifier

namespace-body ::= { } |

{ namespace-member-declarations } |

{ using-directives } |

{ using-directives namespace-member-declarations } |

{ extern-alias-directives } |

{ extern-alias-directives namespace-member-declarations } |

{ extern-alias-directives using-directives } |
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{ extern-alias-directives using-directives namespace-member-declarations }

extern-alias-directives ::= extern-alias-directive |

extern-alias-directives extern-alias-directive

extern-alias-directive ::= extern alias identifier ;

using-directives ::= using-directive | using-directives using-directive

using-directive ::= using-alias-directive | using-namespace-directive

using-alias-directive ::= using identifier = namespace-or-type-name ;

using-namespace-directive ::= using namespace-name ;

namespace-member-declarations ::= namespace-member-declaration |

namespace-member-declarations namespace-member-declaration

namespace-member-declaration ::= namespace-declaration | type-declaration

type-declaration ::= class-declaration | struct-declaration |

interface-declaration | enum-declaration | delegate-declaration

qualified-alias-member ::= identifier :: identifier |

identifier :: identifier type-argument-list

class-declaration ::= class identifier class-body |

class identifier class-body ; |

class identifier type-parameter-constraints-clauses class-body |

class identifier type-parameter-constraints-clauses class-body ; |

class identifier class-base class-body |

class identifier class-base class-body ; |

class identifier class-base type-parameter-constraints-clauses class-body |

class identifier class-base type-parameter-constraints-clauses class-body ; |

class identifier type-parameter-list class-body |

class identifier type-parameter-list class-body ; |

class identifier type-parameter-list type-parameter-constraints-clauses

class-body |

class identifier type-parameter-list type-parameter-constraints-clauses

class-body ; |

class identifier type-parameter-list class-base class-body |

class identifier type-parameter-list class-base class-body ; |

class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body |

class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body ; |
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partial class identifier class-body |

partial class identifier class-body ; |

partial class identifier type-parameter-constraints-clauses class-body |

partial class identifier type-parameter-constraints-clauses class-body ; |

partial class identifier class-base class-body |

partial class identifier class-base class-body ; |

partial class identifier class-base type-parameter-constraints-clauses

class-body |

partial class identifier class-base type-parameter-constraints-clauses

class-body ; |

partial class identifier type-parameter-list class-body |

partial class identifier type-parameter-list class-body ; |

partial class identifier type-parameter-list type-parameter-constraints-clauses

class-body |

partial class identifier type-parameter-list type-parameter-constraints-clauses

class-body ; |

partial class identifier type-parameter-list class-base class-body |

partial class identifier type-parameter-list class-base class-body ; |

partial class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body |

partial class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body ; |

class-modifiers class identifier class-body |

class-modifiers class identifier class-body ; |

class-modifiers class identifier type-parameter-constraints-clauses class-body |

class-modifiers class identifier type-parameter-constraints-clauses class-body ;

|

class-modifiers class identifier class-base class-body |

class-modifiers class identifier class-base class-body ; |

class-modifiers class identifier class-base type-parameter-constraints-clauses

class-body |

class-modifiers class identifier class-base type-parameter-constraints-clauses

class-body ; |

class-modifiers class identifier type-parameter-list class-body |

class-modifiers class identifier type-parameter-list class-body ; |

class-modifiers class identifier type-parameter-list

type-parameter-constraints-clauses class-body |

class-modifiers class identifier type-parameter-list

type-parameter-constraints-clauses class-body ; |

class-modifiers class identifier type-parameter-list class-base class-body |

class-modifiers class identifier type-parameter-list class-base class-body ; |

class-modifiers class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body |

class-modifiers class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body ; |

class-modifiers partial class identifier class-body |
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class-modifiers partial class identifier class-body ; |

class-modifiers partial class identifier type-parameter-constraints-clauses

class-body |

class-modifiers partial class identifier type-parameter-constraints-clauses

class-body ; |

class-modifiers partial class identifier class-base class-body |

class-modifiers partial class identifier class-base class-body ; |

class-modifiers partial class identifier class-base

type-parameter-constraints-clauses class-body |

class-modifiers partial class identifier class-base

type-parameter-constraints-clauses class-body ; |

class-modifiers partial class identifier type-parameter-list class-body |

class-modifiers partial class identifier type-parameter-list class-body ; |

class-modifiers partial class identifier type-parameter-list

type-parameter-constraints-clauses class-body |

class-modifiers partial class identifier type-parameter-list

type-parameter-constraints-clauses class-body ; |

class-modifiers partial class identifier type-parameter-list class-base

class-body |

class-modifiers partial class identifier type-parameter-list class-base

class-body ; |

class-modifiers partial class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body |

class-modifiers partial class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body ; |

attributes class identifier class-body |

attributes class identifier class-body ; |

attributes class identifier type-parameter-constraints-clauses class-body |

attributes class identifier type-parameter-constraints-clauses class-body ; |

attributes class identifier class-base class-body |

attributes class identifier class-base class-body ; |

attributes class identifier class-base type-parameter-constraints-clauses

class-body |

attributes class identifier class-base type-parameter-constraints-clauses

class-body ; |

attributes class identifier type-parameter-list class-body |

attributes class identifier type-parameter-list class-body ; |

attributes class identifier type-parameter-list

type-parameter-constraints-clauses class-body |

attributes class identifier type-parameter-list

type-parameter-constraints-clauses class-body ; |

attributes class identifier type-parameter-list class-base class-body |

attributes class identifier type-parameter-list class-base class-body ; |

attributes class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body |
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attributes class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body ; |

attributes partial class identifier class-body |

attributes partial class identifier class-body ; |

attributes partial class identifier type-parameter-constraints-clauses

class-body |

attributes partial class identifier type-parameter-constraints-clauses

class-body ; |

attributes partial class identifier class-base class-body |

attributes partial class identifier class-base class-body ; |

attributes partial class identifier class-base

type-parameter-constraints-clauses class-body |

attributes partial class identifier class-base

type-parameter-constraints-clauses class-body ; |

attributes partial class identifier type-parameter-list class-body |

attributes partial class identifier type-parameter-list class-body ; |

attributes partial class identifier type-parameter-list

type-parameter-constraints-clauses class-body |

attributes partial class identifier type-parameter-list

type-parameter-constraints-clauses class-body ; |

attributes partial class identifier type-parameter-list class-base class-body |

attributes partial class identifier type-parameter-list class-base class-body ; |

attributes partial class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body |

attributes partial class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body ; |

attributes class-modifiers class identifier class-body |

attributes class-modifiers class identifier class-body ; |

attributes class-modifiers class identifier type-parameter-constraints-clauses

class-body |

attributes class-modifiers class identifier type-parameter-constraints-clauses

class-body ; |

attributes class-modifiers class identifier class-base class-body |

attributes class-modifiers class identifier class-base class-body ; |

attributes class-modifiers class identifier class-base

type-parameter-constraints-clauses class-body |

attributes class-modifiers class identifier class-base

type-parameter-constraints-clauses class-body ; |

attributes class-modifiers class identifier type-parameter-list class-body |

attributes class-modifiers class identifier type-parameter-list class-body ; |

attributes class-modifiers class identifier type-parameter-list

type-parameter-constraints-clauses class-body |

attributes class-modifiers class identifier type-parameter-list

type-parameter-constraints-clauses class-body ; |

attributes class-modifiers class identifier type-parameter-list class-base

class-body |
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attributes class-modifiers class identifier type-parameter-list class-base

class-body ; |

attributes class-modifiers class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body |

attributes class-modifiers class identifier type-parameter-list class-base

type-parameter-constraints-clauses class-body ; |

attributes class-modifiers partial class identifier class-body |

attributes class-modifiers partial class identifier class-body ; |

attributes class-modifiers partial class identifier

type-parameter-constraints-clauses class-body |

attributes class-modifiers partial class identifier

type-parameter-constraints-clauses class-body ; |

attributes class-modifiers partial class identifier class-base class-body |

attributes class-modifiers partial class identifier class-base class-body ; |

attributes class-modifiers partial class identifier class-base

type-parameter-constraints-clauses class-body |

attributes class-modifiers partial class identifier class-base

type-parameter-constraints-clauses class-body ; |

attributes class-modifiers partial class identifier type-parameter-list

class-body |

attributes class-modifiers partial class identifier type-parameter-list

class-body ; |

attributes class-modifiers partial class identifier type-parameter-list

type-parameter-constraints-clauses class-body |

attributes class-modifiers partial class identifier type-parameter-list

type-parameter-constraints-clauses class-body ; |

attributes class-modifiers partial class identifier type-parameter-list

class-base class-body |

attributes class-modifiers partial class identifier type-parameter-list

class-base class-body ; |

attributes class-modifiers partial class identifier type-parameter-list

class-base type-parameter-constraints-clauses class-body |

attributes class-modifiers partial class identifier type-parameter-list

class-base type-parameter-constraints-clauses class-body ;

class-modifiers ::= class-modifier | class-modifiers class-modifier

class-modifier ::= new | public | protected | internal | private | abstract |

sealed | static

class-base ::= : class-type | : interface-type-list |

: class-type , interface-type-list

interface-type-list ::= interface-type | interface-type-list , interface-type

class-body ::= { } | { class-member-declarations }
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class-member-declarations ::= class-member-declaration |

class-member-declarations class-member-declaration

class-member-declaration ::= constant-declaration | field-declaration |

method-declaration | property-declaration | event-declaration |

indexer-declaration | operator-declaration | constructor-declaration |

finalizer-declaration | static-constructor-declaration | type-declaration

constant-declaration ::= const type constant-declarators ; |

constant-modifiers const type constant-declarators ; |

attributes const type constant-declarators ; |

attributes constant-modifiers const type constant-declarators ;

constant-modifiers ::= constant-modifier | constant-modifiers constant-modifier

constant-modifier ::= new | public | protected | internal | private

field-declaration ::= type variable-declarators ; |

field-modifiers type variable-declarators ; |

attributes type variable-declarators ; |

attributes field-modifiers type variable-declarators ;

field-modifiers ::= field-modifier | field-modifiers field-modifier

field-modifier ::= new | public | protected | internal | private | static |

readonly | volatile

variable-declarators ::= variable-declarator |

variable-declarators , variable-declarator

variable-declarator ::= identifier | identifier = variable-initializer

variable-initializer ::= expression | array-initializer

method-declaration ::= method-header method-body

method-header ::= return-type member-name ( ) |

return-type member-name ( ) type-parameter-constraints-clauses |

return-type member-name ( formal-parameter-list ) |

return-type member-name ( formal-parameter-list )

type-parameter-constraints-clauses |

return-type member-name type-parameter-list ( ) |

return-type member-name type-parameter-list ( )

type-parameter-constraints-clauses |

return-type member-name type-parameter-list ( formal-parameter-list ) |
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return-type member-name type-parameter-list ( formal-parameter-list )

type-parameter-constraints-clauses |

method-modifiers return-type member-name ( ) |

method-modifiers return-type member-name ( ) type-parameter-constraints-clauses |

method-modifiers return-type member-name ( formal-parameter-list ) |

method-modifiers return-type member-name ( formal-parameter-list )

type-parameter-constraints-clauses |

method-modifiers return-type member-name type-parameter-list ( ) |

method-modifiers return-type member-name type-parameter-list ( )

type-parameter-constraints-clauses |

method-modifiers return-type member-name type-parameter-list (

formal-parameter-list ) |

method-modifiers return-type member-name type-parameter-list (

formal-parameter-list ) type-parameter-constraints-clauses |

attributes return-type member-name ( ) |

attributes return-type member-name ( ) type-parameter-constraints-clauses |

attributes return-type member-name ( formal-parameter-list ) |

attributes return-type member-name ( formal-parameter-list )

type-parameter-constraints-clauses |

attributes return-type member-name type-parameter-list ( ) |

attributes return-type member-name type-parameter-list ( )

type-parameter-constraints-clauses |

attributes return-type member-name type-parameter-list ( formal-parameter-list )

|

attributes return-type member-name type-parameter-list ( formal-parameter-list )

type-parameter-constraints-clauses |

attributes method-modifiers return-type member-name ( ) |

attributes method-modifiers return-type member-name ( )

type-parameter-constraints-clauses |

attributes method-modifiers return-type member-name ( formal-parameter-list ) |

attributes method-modifiers return-type member-name ( formal-parameter-list )

type-parameter-constraints-clauses |

attributes method-modifiers return-type member-name type-parameter-list ( ) |

attributes method-modifiers return-type member-name type-parameter-list ( )

type-parameter-constraints-clauses |

attributes method-modifiers return-type member-name type-parameter-list (

formal-parameter-list ) |

attributes method-modifiers return-type member-name type-parameter-list (

formal-parameter-list ) type-parameter-constraints-clauses

method-modifiers ::= method-modifier | method-modifiers method-modifier

method-modifier ::= new | public | protected | internal | private | static |

virtual | sealed | override | abstract | extern

return-type ::= type | void
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member-name ::= identifier | interface-type . identifier

method-body ::= block | ;

formal-parameter-list ::= fixed-parameters | fixed-parameters , parameter-array |

parameter-array

fixed-parameters ::= fixed-parameter | fixed-parameters , fixed-parameter

fixed-parameter ::= type identifier |

parameter-modifier type identifier |

attributes type identifier |

attributes parameter-modifier type identifier

parameter-modifier ::= ref | out

parameter-array ::= params array-type identifier |

attributes params array-type identifier

property-declaration ::= type member-name { accessor-declarations } |

property-modifiers type member-name { accessor-declarations } |

attributes type member-name { accessor-declarations } |

attributes property-modifiers type member-name { accessor-declarations }

property-modifiers ::= property-modifier | property-modifiers property-modifier

property-modifier ::= new | public | protected | internal | private | static |

virtual | sealed | override | abstract | extern

accessor-declarations ::= get-accessor-declaration |

get-accessor-declaration set-accessor-declaration |

set-accessor-declaration |

set-accessor-declaration get-accessor-declaration

get-accessor-declaration ::= get accessor-body |

accessor-modifier get accessor-body |

attributes get accessor-body |

attributes accessor-modifier get accessor-body

set-accessor-declaration ::= set accessor-body |

accessor-modifier set accessor-body |

attributes set accessor-body |

attributes accessor-modifier set accessor-body
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accessor-modifier ::= protected | internal | private | protected internal |

internal protected

accessor-body ::= block | ;

event-declaration ::= event type variable-declarators ; |

event-modifiers event type variable-declarators ; |

attributes event type variable-declarators ; |

attributes event-modifiers event type variable-declarators ; |

event type member-name { event-accessor-declarations } |

event-modifiers event type member-name { event-accessor-declarations } |

attributes event type member-name { event-accessor-declarations } |

attributes event-modifiers event type member-name { event-accessor-declarations }

event-modifiers ::= event-modifier | event-modifiers event-modifier

event-modifier ::= new | public | protected | internal | private | static |

virtual | sealed | override | abstract | extern

event-accessor-declarations ::= add-accessor-declaration remove-accessor-declaration

| remove-accessor-declaration add-accessor-declaration

add-accessor-declaration ::= add block | attributes add block

remove-accessor-declaration ::= remove block | attributes remove block

indexer-declaration ::= indexer-declarator { accessor-declarations } |

indexer-modifiers indexer-declarator { accessor-declarations } |

attributes indexer-declarator { accessor-declarations } |

attributes indexer-modifiers indexer-declarator { accessor-declarations }

indexer-modifiers ::= indexer-modifier | indexer-modifiers indexer-modifier

indexer-modifier ::= new | public | protected | internal | private | virtual |

sealed | override | abstract | extern

indexer-declarator ::= type this [ formal-parameter-list ] |

type interface-type . this [ formal-parameter-list ]

operator-declaration ::= operator-modifiers operator-declarator operator-body |

attributes operator-modifiers operator-declarator operator-body

operator-modifiers ::= operator-modifier | operator-modifiers operator-modifier

operator-modifier ::= public | static | extern
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operator-declarator ::= unary-operator-declarator | binary-operator-declarator |

conversion-operator-declarator

unary-operator-declarator ::= type operator overloadable-unary-operator ( type

identifier )

overloadable-unary-operator ::= + | - | ! | ˜ | ++ | -- | true | false

binary-operator-declarator ::= type operator overloadable-binary-operator

( type identifier , type identifier )

overloadable-binary-operator ::= + | - | * | / | % | & | | | ˆ | << | >> | == |

!= | > | < | >= | <=

conversion-operator-declarator ::= implicit operator type ( type identifier ) |

explicit operator type ( type identifier )

operator-body ::= block | ;

constructor-declaration ::= constructor-declarator constructor-body |

constructor-modifiers constructor-declarator constructor-body |

attributes constructor-declarator constructor-body |

attributes constructor-modifiers constructor-declarator constructor-body

constructor-modifiers ::= constructor-modifier | constructor-modifiers

constructor-modifier

constructor-modifier ::= public | protected | internal | private | extern

constructor-declarator ::= identifier ( ) |

identifier ( ) constructor-initializer |

identifier ( formal-parameter-list ) |

identifier ( formal-parameter-list ) constructor-initializer

constructor-initializer ::= : base ( ) |

: base ( argument-list ) |

: this ( ) |

: this ( argument-list )

constructor-body ::= block | ;

static-constructor-declaration ::= static-constructor-modifiers identifier ( )

static-constructor-body |

attributes static-constructor-modifiers identifier ( ) static-constructor-body

static-constructor-modifiers ::= static | extern static | static extern
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static-constructor-body ::= block | ;

finalizer-declaration ::= extern ˜ identifier ( ) finalizer-body |

attributes extern ˜ identifier ( ) finalizer-body |

˜ identifier ( ) finalizer-body |

attributes ˜ identifier ( ) finalizer-body

finalizer-body ::= block | ;

struct-declaration ::= struct identifier struct-body |

struct identifier struct-body ; |

struct identifier type-parameter-constraints-clauses struct-body |

struct identifier type-parameter-constraints-clauses struct-body ; |

struct identifier struct-interfaces struct-body |

struct identifier struct-interfaces struct-body ; |

struct identifier struct-interfaces type-parameter-constraints-clauses

struct-body |

struct identifier struct-interfaces type-parameter-constraints-clauses

struct-body ; |

struct identifier type-parameter-list struct-body |

struct identifier type-parameter-list struct-body ; |

struct identifier type-parameter-list type-parameter-constraints-clauses

struct-body |

struct identifier type-parameter-list type-parameter-constraints-clauses

struct-body ; |

struct identifier type-parameter-list struct-interfaces struct-body |

struct identifier type-parameter-list struct-interfaces struct-body ; |

struct identifier type-parameter-list struct-interfaces

type-parameter-constraints-clauses struct-body |

struct identifier type-parameter-list struct-interfaces

type-parameter-constraints-clauses struct-body ; |

partial struct identifier struct-body |

partial struct identifier struct-body ; |

partial struct identifier type-parameter-constraints-clauses struct-body |

partial struct identifier type-parameter-constraints-clauses struct-body ; |

partial struct identifier struct-interfaces struct-body |

partial struct identifier struct-interfaces struct-body ; |

partial struct identifier struct-interfaces type-parameter-constraints-clauses

struct-body |

partial struct identifier struct-interfaces type-parameter-constraints-clauses

struct-body ; |

partial struct identifier type-parameter-list struct-body |

partial struct identifier type-parameter-list struct-body ; |

partial struct identifier type-parameter-list type-parameter-constraints-clauses

struct-body |
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partial struct identifier type-parameter-list type-parameter-constraints-clauses

struct-body ; |

partial struct identifier type-parameter-list struct-interfaces struct-body |

partial struct identifier type-parameter-list struct-interfaces struct-body ; |

partial struct identifier type-parameter-list struct-interfaces

type-parameter-constraints-clauses struct-body |

partial struct identifier type-parameter-list struct-interfaces

type-parameter-constraints-clauses struct-body ; |

struct-modifiers struct identifier struct-body |

struct-modifiers struct identifier struct-body ; |

struct-modifiers struct identifier type-parameter-constraints-clauses

struct-body |

struct-modifiers struct identifier type-parameter-constraints-clauses

struct-body ; |

struct-modifiers struct identifier struct-interfaces struct-body |

struct-modifiers struct identifier struct-interfaces struct-body ; |

struct-modifiers struct identifier struct-interfaces

type-parameter-constraints-clauses struct-body |

struct-modifiers struct identifier struct-interfaces

type-parameter-constraints-clauses struct-body ; |

struct-modifiers struct identifier type-parameter-list struct-body |

struct-modifiers struct identifier type-parameter-list struct-body ; |

struct-modifiers struct identifier type-parameter-list

type-parameter-constraints-clauses struct-body |

struct-modifiers struct identifier type-parameter-list

type-parameter-constraints-clauses struct-body ; |

struct-modifiers struct identifier type-parameter-list struct-interfaces

struct-body |

struct-modifiers struct identifier type-parameter-list struct-interfaces

struct-body ; |

struct-modifiers struct identifier type-parameter-list struct-interfaces

type-parameter-constraints-clauses struct-body |

struct-modifiers struct identifier type-parameter-list struct-interfaces

type-parameter-constraints-clauses struct-body ; |

struct-modifiers partial struct identifier struct-body |

struct-modifiers partial struct identifier struct-body ; |

struct-modifiers partial struct identifier type-parameter-constraints-clauses

struct-body |

struct-modifiers partial struct identifier type-parameter-constraints-clauses

struct-body ; |

struct-modifiers partial struct identifier struct-interfaces struct-body |

struct-modifiers partial struct identifier struct-interfaces struct-body ; |

struct-modifiers partial struct identifier struct-interfaces

type-parameter-constraints-clauses struct-body |

struct-modifiers partial struct identifier struct-interfaces

type-parameter-constraints-clauses struct-body ; |
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struct-modifiers partial struct identifier type-parameter-list struct-body |

struct-modifiers partial struct identifier type-parameter-list struct-body ; |

struct-modifiers partial struct identifier type-parameter-list

type-parameter-constraints-clauses struct-body |

struct-modifiers partial struct identifier type-parameter-list

type-parameter-constraints-clauses struct-body ; |

struct-modifiers partial struct identifier type-parameter-list struct-interfaces

struct-body |

struct-modifiers partial struct identifier type-parameter-list struct-interfaces

struct-body ; |

struct-modifiers partial struct identifier type-parameter-list struct-interfaces

type-parameter-constraints-clauses struct-body |

struct-modifiers partial struct identifier type-parameter-list struct-interfaces

type-parameter-constraints-clauses struct-body ; |

attributes struct identifier struct-body |

attributes struct identifier struct-body ; |

attributes struct identifier type-parameter-constraints-clauses struct-body |

attributes struct identifier type-parameter-constraints-clauses struct-body ; |

attributes struct identifier struct-interfaces struct-body |

attributes struct identifier struct-interfaces struct-body ; |

attributes struct identifier struct-interfaces

type-parameter-constraints-clauses struct-body |

attributes struct identifier struct-interfaces

type-parameter-constraints-clauses struct-body ; |

attributes struct identifier type-parameter-list struct-body |

attributes struct identifier type-parameter-list struct-body ; |

attributes struct identifier type-parameter-list

type-parameter-constraints-clauses struct-body |

attributes struct identifier type-parameter-list

type-parameter-constraints-clauses struct-body ; |

attributes struct identifier type-parameter-list struct-interfaces struct-body |

attributes struct identifier type-parameter-list struct-interfaces struct-body ;

|

attributes struct identifier type-parameter-list struct-interfaces

type-parameter-constraints-clauses struct-body |

attributes struct identifier type-parameter-list struct-interfaces

type-parameter-constraints-clauses struct-body ; |

attributes partial struct identifier struct-body |

attributes partial struct identifier struct-body ; |

attributes partial struct identifier type-parameter-constraints-clauses

struct-body |

attributes partial struct identifier type-parameter-constraints-clauses

struct-body ; |

attributes partial struct identifier struct-interfaces struct-body |

attributes partial struct identifier struct-interfaces struct-body ; |
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attributes partial struct identifier struct-interfaces

type-parameter-constraints-clauses struct-body |

attributes partial struct identifier struct-interfaces

type-parameter-constraints-clauses struct-body ; |

attributes partial struct identifier type-parameter-list struct-body |

attributes partial struct identifier type-parameter-list struct-body ; |

attributes partial struct identifier type-parameter-list

type-parameter-constraints-clauses struct-body |

attributes partial struct identifier type-parameter-list

type-parameter-constraints-clauses struct-body ; |

attributes partial struct identifier type-parameter-list struct-interfaces

struct-body |

attributes partial struct identifier type-parameter-list struct-interfaces

struct-body ; |

attributes partial struct identifier type-parameter-list struct-interfaces

type-parameter-constraints-clauses struct-body |

attributes partial struct identifier type-parameter-list struct-interfaces

type-parameter-constraints-clauses struct-body ; |

attributes struct-modifiers struct identifier struct-body |

attributes struct-modifiers struct identifier struct-body ; |

attributes struct-modifiers struct identifier type-parameter-constraints-clauses

struct-body |

attributes struct-modifiers struct identifier type-parameter-constraints-clauses

struct-body ; |

attributes struct-modifiers struct identifier struct-interfaces struct-body |

attributes struct-modifiers struct identifier struct-interfaces struct-body ; |

attributes struct-modifiers struct identifier struct-interfaces

type-parameter-constraints-clauses struct-body |

attributes struct-modifiers struct identifier struct-interfaces

type-parameter-constraints-clauses struct-body ; |

attributes struct-modifiers struct identifier type-parameter-list struct-body |

attributes struct-modifiers struct identifier type-parameter-list struct-body ; |

attributes struct-modifiers struct identifier type-parameter-list

type-parameter-constraints-clauses struct-body |

attributes struct-modifiers struct identifier type-parameter-list

type-parameter-constraints-clauses struct-body ; |

attributes struct-modifiers struct identifier type-parameter-list

struct-interfaces struct-body |

attributes struct-modifiers struct identifier type-parameter-list

struct-interfaces struct-body ; |

attributes struct-modifiers struct identifier type-parameter-list

struct-interfaces type-parameter-constraints-clauses struct-body |

attributes struct-modifiers struct identifier type-parameter-list

struct-interfaces type-parameter-constraints-clauses struct-body ; |

attributes struct-modifiers partial struct identifier struct-body |

attributes struct-modifiers partial struct identifier struct-body ; |
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attributes struct-modifiers partial struct identifier

type-parameter-constraints-clauses struct-body |

attributes struct-modifiers partial struct identifier

type-parameter-constraints-clauses struct-body ; |

attributes struct-modifiers partial struct identifier struct-interfaces

struct-body |

attributes struct-modifiers partial struct identifier struct-interfaces

struct-body ; |

attributes struct-modifiers partial struct identifier struct-interfaces

type-parameter-constraints-clauses struct-body |

attributes struct-modifiers partial struct identifier struct-interfaces

type-parameter-constraints-clauses struct-body ; |

attributes struct-modifiers partial struct identifier type-parameter-list

struct-body |

attributes struct-modifiers partial struct identifier type-parameter-list

struct-body ; |

attributes struct-modifiers partial struct identifier type-parameter-list

type-parameter-constraints-clauses struct-body |

attributes struct-modifiers partial struct identifier type-parameter-list

type-parameter-constraints-clauses struct-body ; |

attributes struct-modifiers partial struct identifier type-parameter-list

struct-interfaces struct-body |

attributes struct-modifiers partial struct identifier type-parameter-list

struct-interfaces struct-body ; |

attributes struct-modifiers partial struct identifier type-parameter-list

struct-interfaces type-parameter-constraints-clauses struct-body |

attributes struct-modifiers partial struct identifier type-parameter-list

struct-interfaces type-parameter-constraints-clauses struct-body ;

struct-modifiers ::= struct-modifier | struct-modifiers struct-modifier

struct-modifier ::= new | public | protected | internal | private

struct-interfaces ::= : interface-type-list

struct-body ::= { } | { struct-member-declarations }

struct-member-declarations ::= struct-member-declaration |

struct-member-declarations struct-member-declaration

struct-member-declaration ::= constant-declaration | field-declaration |

method-declaration | property-declaration | event-declaration |

indexer-declaration | operator-declaration | constructor-declaration |

static-constructor-declaration | type-declaration

array-initializer ::= { variable-initializer-list , } |
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{ } | { variable-initializer-list }

variable-initializer-list ::= variable-initializer | variable-initializer-list ,

variable-initializer

interface-declaration ::= interface identifier interface-body |

interface identifier interface-body ; |

interface identifier type-parameter-constraints-clauses interface-body |

interface identifier type-parameter-constraints-clauses interface-body ; |

interface identifier interface-base interface-body |

interface identifier interface-base interface-body ; |

interface identifier interface-base type-parameter-constraints-clauses

interface-body |

interface identifier interface-base type-parameter-constraints-clauses

interface-body ; |

interface identifier type-parameter-list interface-body |

interface identifier type-parameter-list interface-body ; |

interface identifier type-parameter-list type-parameter-constraints-clauses

interface-body |

interface identifier type-parameter-list type-parameter-constraints-clauses

interface-body ; |

interface identifier type-parameter-list interface-base interface-body |

interface identifier type-parameter-list interface-base interface-body ; |

interface identifier type-parameter-list interface-base

type-parameter-constraints-clauses interface-body |

interface identifier type-parameter-list interface-base

type-parameter-constraints-clauses interface-body ; |

partial interface identifier interface-body |

partial interface identifier interface-body ; |

partial interface identifier type-parameter-constraints-clauses interface-body |

partial interface identifier type-parameter-constraints-clauses interface-body ;

|

partial interface identifier interface-base interface-body |

partial interface identifier interface-base interface-body ; |

partial interface identifier interface-base type-parameter-constraints-clauses

interface-body |

partial interface identifier interface-base type-parameter-constraints-clauses

interface-body ; |

partial interface identifier type-parameter-list interface-body |

partial interface identifier type-parameter-list interface-body ; |

partial interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body |

partial interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body ; |

partial interface identifier type-parameter-list interface-base interface-body |
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partial interface identifier type-parameter-list interface-base interface-body ;

|

partial interface identifier type-parameter-list interface-base

type-parameter-constraints-clauses interface-body |

partial interface identifier type-parameter-list interface-base

type-parameter-constraints-clauses interface-body ; |

interface-modifiers interface identifier interface-body |

interface-modifiers interface identifier interface-body ; |

interface-modifiers interface identifier type-parameter-constraints-clauses

interface-body |

interface-modifiers interface identifier type-parameter-constraints-clauses

interface-body ; |

interface-modifiers interface identifier interface-base interface-body |

interface-modifiers interface identifier interface-base interface-body ; |

interface-modifiers interface identifier interface-base

type-parameter-constraints-clauses interface-body |

interface-modifiers interface identifier interface-base

type-parameter-constraints-clauses interface-body ; |

interface-modifiers interface identifier type-parameter-list interface-body |

interface-modifiers interface identifier type-parameter-list interface-body ; |

interface-modifiers interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body |

interface-modifiers interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body ; |

interface-modifiers interface identifier type-parameter-list interface-base

interface-body |

interface-modifiers interface identifier type-parameter-list interface-base

interface-body ; |

interface-modifiers interface identifier type-parameter-list interface-base

type-parameter-constraints-clauses interface-body |

interface-modifiers interface identifier type-parameter-list interface-base

type-parameter-constraints-clauses interface-body ; |

interface-modifiers partial interface identifier interface-body |

interface-modifiers partial interface identifier interface-body ; |

interface-modifiers partial interface identifier

type-parameter-constraints-clauses interface-body |

interface-modifiers partial interface identifier

type-parameter-constraints-clauses interface-body ; |

interface-modifiers partial interface identifier interface-base interface-body |

interface-modifiers partial interface identifier interface-base interface-body ;

|

interface-modifiers partial interface identifier interface-base

type-parameter-constraints-clauses interface-body |

interface-modifiers partial interface identifier interface-base

type-parameter-constraints-clauses interface-body ; |
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interface-modifiers partial interface identifier type-parameter-list

interface-body |

interface-modifiers partial interface identifier type-parameter-list

interface-body ; |

interface-modifiers partial interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body |

interface-modifiers partial interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body ; |

interface-modifiers partial interface identifier type-parameter-list

interface-base interface-body |

interface-modifiers partial interface identifier type-parameter-list

interface-base interface-body ; |

interface-modifiers partial interface identifier type-parameter-list

interface-base type-parameter-constraints-clauses interface-body |

interface-modifiers partial interface identifier type-parameter-list

interface-base type-parameter-constraints-clauses interface-body ; |

attributes interface identifier interface-body |

attributes interface identifier interface-body ; |

attributes interface identifier type-parameter-constraints-clauses

interface-body |

attributes interface identifier type-parameter-constraints-clauses

interface-body ; |

attributes interface identifier interface-base interface-body |

attributes interface identifier interface-base interface-body ; |

attributes interface identifier interface-base

type-parameter-constraints-clauses interface-body |

attributes interface identifier interface-base

type-parameter-constraints-clauses interface-body ; |

attributes interface identifier type-parameter-list interface-body |

attributes interface identifier type-parameter-list interface-body ; |

attributes interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body |

attributes interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body ; |

attributes interface identifier type-parameter-list interface-base

interface-body |

attributes interface identifier type-parameter-list interface-base

interface-body ; |

attributes interface identifier type-parameter-list interface-base

type-parameter-constraints-clauses interface-body |

attributes interface identifier type-parameter-list interface-base

type-parameter-constraints-clauses interface-body ; |

attributes partial interface identifier interface-body |

attributes partial interface identifier interface-body ; |

attributes partial interface identifier type-parameter-constraints-clauses

interface-body |
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attributes partial interface identifier type-parameter-constraints-clauses

interface-body ; |

attributes partial interface identifier interface-base interface-body |

attributes partial interface identifier interface-base interface-body ; |

attributes partial interface identifier interface-base

type-parameter-constraints-clauses interface-body |

attributes partial interface identifier interface-base

type-parameter-constraints-clauses interface-body ; |

attributes partial interface identifier type-parameter-list interface-body |

attributes partial interface identifier type-parameter-list interface-body ; |

attributes partial interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body |

attributes partial interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body ; |

attributes partial interface identifier type-parameter-list interface-base

interface-body |

attributes partial interface identifier type-parameter-list interface-base

interface-body ; |

attributes partial interface identifier type-parameter-list interface-base

type-parameter-constraints-clauses interface-body |

attributes partial interface identifier type-parameter-list interface-base

type-parameter-constraints-clauses interface-body ; |

attributes interface-modifiers interface identifier interface-body |

attributes interface-modifiers interface identifier interface-body ; |

attributes interface-modifiers interface identifier

type-parameter-constraints-clauses interface-body |

attributes interface-modifiers interface identifier

type-parameter-constraints-clauses interface-body ; |

attributes interface-modifiers interface identifier interface-base

interface-body |

attributes interface-modifiers interface identifier interface-base

interface-body ; |

attributes interface-modifiers interface identifier interface-base

type-parameter-constraints-clauses interface-body |

attributes interface-modifiers interface identifier interface-base

type-parameter-constraints-clauses interface-body ; |

attributes interface-modifiers interface identifier type-parameter-list

interface-body |

attributes interface-modifiers interface identifier type-parameter-list

interface-body ; |

attributes interface-modifiers interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body |

attributes interface-modifiers interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body ; |

attributes interface-modifiers interface identifier type-parameter-list

interface-base interface-body |
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attributes interface-modifiers interface identifier type-parameter-list

interface-base interface-body ; |

attributes interface-modifiers interface identifier type-parameter-list

interface-base type-parameter-constraints-clauses interface-body |

attributes interface-modifiers interface identifier type-parameter-list

interface-base type-parameter-constraints-clauses interface-body ; |

attributes interface-modifiers partial interface identifier interface-body |

attributes interface-modifiers partial interface identifier interface-body ; |

attributes interface-modifiers partial interface identifier

type-parameter-constraints-clauses interface-body |

attributes interface-modifiers partial interface identifier

type-parameter-constraints-clauses interface-body ; |

attributes interface-modifiers partial interface identifier interface-base

interface-body |

attributes interface-modifiers partial interface identifier interface-base

interface-body ; |

attributes interface-modifiers partial interface identifier interface-base

type-parameter-constraints-clauses interface-body |

attributes interface-modifiers partial interface identifier interface-base

type-parameter-constraints-clauses interface-body ; |

attributes interface-modifiers partial interface identifier type-parameter-list

interface-body |

attributes interface-modifiers partial interface identifier type-parameter-list

interface-body ; |

attributes interface-modifiers partial interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body |

attributes interface-modifiers partial interface identifier type-parameter-list

type-parameter-constraints-clauses interface-body ; |

attributes interface-modifiers partial interface identifier type-parameter-list

interface-base interface-body |

attributes interface-modifiers partial interface identifier type-parameter-list

interface-base interface-body ; |

attributes interface-modifiers partial interface identifier type-parameter-list

interface-base type-parameter-constraints-clauses interface-body |

attributes interface-modifiers partial interface identifier type-parameter-list

interface-base type-parameter-constraints-clauses interface-body ;

interface-modifiers ::= interface-modifier | interface-modifiers interface-modifier

interface-modifier ::= new | public | protected | internal | private

interface-base ::= : interface-type-list

interface-body ::= { } | { interface-member-declarations }
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interface-member-declarations ::= interface-member-declaration |

interface-member-declarations interface-member-declaration

interface-member-declaration ::= interface-method-declaration |

interface-property-declaration | interface-event-declaration |

interface-indexer-declaration

interface-method-declaration ::= return-type identifier ( ) ; |

return-type identifier ( ) type-parameter-constraints-clauses ; |

return-type identifier ( formal-parameter-list ) ; |

return-type identifier ( formal-parameter-list )

type-parameter-constraints-clauses ; |

return-type identifier type-parameter-list ( ) ; |

return-type identifier type-parameter-list ( )

type-parameter-constraints-clauses ; |

return-type identifier type-parameter-list ( formal-parameter-list ) ; |

return-type identifier type-parameter-list ( formal-parameter-list )

type-parameter-constraints-clauses ; |

new return-type identifier ( ) ; |

new return-type identifier ( ) type-parameter-constraints-clauses ; |

new return-type identifier ( formal-parameter-list ) ; |

new return-type identifier ( formal-parameter-list )

type-parameter-constraints-clauses ; |

new return-type identifier type-parameter-list ( ) ; |

new return-type identifier type-parameter-list ( )

type-parameter-constraints-clauses ; |

new return-type identifier type-parameter-list ( formal-parameter-list ) ; |

new return-type identifier type-parameter-list ( formal-parameter-list )

type-parameter-constraints-clauses ; |

attributes return-type identifier ( ) ; |

attributes return-type identifier ( ) type-parameter-constraints-clauses ; |

attributes return-type identifier ( formal-parameter-list ) ; |

attributes return-type identifier ( formal-parameter-list )

type-parameter-constraints-clauses ; |

attributes return-type identifier type-parameter-list ( ) ; |

attributes return-type identifier type-parameter-list ( )

type-parameter-constraints-clauses ; |

attributes return-type identifier type-parameter-list ( formal-parameter-list )

; |

attributes return-type identifier type-parameter-list ( formal-parameter-list )

type-parameter-constraints-clauses ; |

attributes new return-type identifier ( ) ; |

attributes new return-type identifier ( ) type-parameter-constraints-clauses ; |

attributes new return-type identifier ( formal-parameter-list ) ; |

attributes new return-type identifier ( formal-parameter-list )

type-parameter-constraints-clauses ; |
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attributes new return-type identifier type-parameter-list ( ) ; |

attributes new return-type identifier type-parameter-list ( )

type-parameter-constraints-clauses ; |

attributes new return-type identifier type-parameter-list (

formal-parameter-list ) ; |

attributes new return-type identifier type-parameter-list (

formal-parameter-list ) type-parameter-constraints-clauses ;

interface-property-declaration ::= type identifier { interface-accessors } |

new type identifier { interface-accessors } |

attributes type identifier { interface-accessors } |

attributes new type identifier { interface-accessors }

interface-accessors ::= get ; | attributes get ; |

set ; | attributes set ; |

get ; set ; | get ; attributes set ; |

attributes get ; set ; | attributes get ; attributes set ; |

set ; get ; | set ; attributes get ; |

attributes set ; get ; | attributes set ; attributes get ;

interface-event-declaration ::= event type identifier ; |

new event type identifier ; |

attributes event type identifier ; |

attributes new event type identifier ;

interface-indexer-declaration ::= type this [ formal-parameter-list ] {

interface-accessors } |

new type this [ formal-parameter-list ] { interface-accessors } |

attributes type this [ formal-parameter-list ] { interface-accessors } |

attributes new type this [ formal-parameter-list ] { interface-accessors }

enum-declaration ::= enum identifier enum-body |

enum identifier enum-body ; |

enum identifier enum-base enum-body |

enum identifier enum-base enum-body ; |

enum-modifiers enum identifier enum-body |

enum-modifiers enum identifier enum-body ; |

enum-modifiers enum identifier enum-base enum-body |

enum-modifiers enum identifier enum-base enum-body ; |

attributes enum identifier enum-body |

attributes enum identifier enum-body ; |

attributes enum identifier enum-base enum-body |

attributes enum identifier enum-base enum-body ; |

attributes enum-modifiers enum identifier enum-body |

attributes enum-modifiers enum identifier enum-body ; |

attributes enum-modifiers enum identifier enum-base enum-body |
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attributes enum-modifiers enum identifier enum-base enum-body ;

enum-base ::= : integral-type

enum-body ::= { enum-member-declarations , } |

{ } | { enum-member-declarations }

enum-modifiers ::= enum-modifier | enum-modifiers enum-modifier

enum-modifier ::= new | public | protected | internal | private

enum-member-declarations ::= enum-member-declaration |

enum-member-declarations , enum-member-declaration

enum-member-declaration ::= identifier | attributes identifier |

identifier = constant-expression | attributes identifier = constant-expression

delegate-declaration ::= delegate return-type identifier ( ) ; |

delegate return-type identifier ( ) type-parameter-constraints-clauses ; |

delegate return-type identifier ( formal-parameter-list ) ; |

delegate return-type identifier ( formal-parameter-list )

type-parameter-constraints-clauses ; |

delegate return-type identifier type-parameter-list ( ) ; |

delegate return-type identifier type-parameter-list ( )

type-parameter-constraints-clauses ; |

delegate return-type identifier type-parameter-list ( formal-parameter-list ) ; |

delegate return-type identifier type-parameter-list ( formal-parameter-list )

type-parameter-constraints-clauses ; |

delegate-modifiers delegate return-type identifier ( ) ; |

delegate-modifiers delegate return-type identifier ( )

type-parameter-constraints-clauses ; |

delegate-modifiers delegate return-type identifier ( formal-parameter-list ) ; |

delegate-modifiers delegate return-type identifier ( formal-parameter-list )

type-parameter-constraints-clauses ; |

delegate-modifiers delegate return-type identifier type-parameter-list ( ) ; |

delegate-modifiers delegate return-type identifier type-parameter-list ( )

type-parameter-constraints-clauses ; |

delegate-modifiers delegate return-type identifier type-parameter-list (

formal-parameter-list ) ; |

delegate-modifiers delegate return-type identifier type-parameter-list (

formal-parameter-list ) type-parameter-constraints-clauses ; |

attributes delegate return-type identifier ( ) ; |

attributes delegate return-type identifier ( )

type-parameter-constraints-clauses ; |

attributes delegate return-type identifier ( formal-parameter-list ) ; |
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attributes delegate return-type identifier ( formal-parameter-list )

type-parameter-constraints-clauses ; |

attributes delegate return-type identifier type-parameter-list ( ) ; |

attributes delegate return-type identifier type-parameter-list ( )

type-parameter-constraints-clauses ; |

attributes delegate return-type identifier type-parameter-list (

formal-parameter-list ) ; |

attributes delegate return-type identifier type-parameter-list (

formal-parameter-list ) type-parameter-constraints-clauses ; |

attributes delegate-modifiers delegate return-type identifier ( ) ; |

attributes delegate-modifiers delegate return-type identifier ( )

type-parameter-constraints-clauses ; |

attributes delegate-modifiers delegate return-type identifier (

formal-parameter-list ) ; |

attributes delegate-modifiers delegate return-type identifier (

formal-parameter-list ) type-parameter-constraints-clauses ; |

attributes delegate-modifiers delegate return-type identifier

type-parameter-list ( ) ; |

attributes delegate-modifiers delegate return-type identifier

type-parameter-list ( ) type-parameter-constraints-clauses ; |

attributes delegate-modifiers delegate return-type identifier

type-parameter-list ( formal-parameter-list ) ; |

attributes delegate-modifiers delegate return-type identifier

type-parameter-list ( formal-parameter-list )

type-parameter-constraints-clauses ;

delegate-modifiers ::= delegate-modifier | delegate-modifiers delegate-modifier

delegate-modifier ::= new | public | protected | internal | private

global-attributes ::= global-attribute-sections

global-attribute-sections ::= global-attribute-section |

global-attribute-sections global-attribute-section

global-attribute-section ::= [ global-attribute-target-specifier attribute-list ] |

[ global-attribute-target-specifier attribute-list , ]

global-attribute-target-specifier ::= global-attribute-target :

global-attribute-target ::= identifier | abstract | as | base | bool | break |

byte | case | catch | char | checked | class | const | continue | decimal |

default | delegate | do | double | else | enum | event | explicit | extern |

false | finally | fixed | float | for | foreach | goto | if | implicit | in |

int | interface | internal | is | lock | long | namespace | new | null |

object | operator | out | override | params | private | protected | public |
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readonly | ref | return | sbyte | sealed | short | sizeof | stackalloc |

static | string | struct | switch | this | throw | true | try | typeof | uint

| ulong | unchecked | unsafe | ushort | using | virtual | void| volatile |

while

attributes ::= attribute-sections

attribute-sections ::= attribute-section | attribute-sections attribute-section;

attribute-section ::= [ attribute-list ] |

[ attribute-target-specifier attribute-list ] |

[ attribute-list , ] | [ attribute-target-specifier attribute-list , ]

attribute-target-specifier ::= attribute-target :

attribute-target ::= identifier | abstract | as | base | bool | break | byte |

case | catch | char | checked | class | const | continue | decimal | default |

delegate | do | double | else | enum | event | explicit | extern | false |

finally | fixed | float | for | foreach | goto | if | implicit | in | int |

interface | internal | is | lock | long | namespace | new | null | object |

operator | out | override | params | private | protected | public | readonly |

ref | return | sbyte | sealed | short | sizeof | stackalloc | static | string |

struct | switch | this | throw | true | try | typeof | uint | ulong |

unchecked | unsafe | ushort | using | virtual | void | volatile | while

attribute-list ::= attribute | attribute-list , attribute

attribute ::= attribute-name | attribute-name attribute-arguments

attribute-name ::= type-name

attribute-arguments ::= ( positional-argument-list , named-argument-list ) |

( named-argument-list ) | ( ) | ( positional-argument-list )

positional-argument-list ::= positional-argument |

positional-argument-list , positional-argument

positional-argument ::= attribute-argument-expression

named-argument-list ::= identifier = attribute-argument-expression

attribute-argument-expression ::= expression

type-parameter-list ::= < type-parameters >

type-parameters ::= type-parameter | attributes type-parameter |
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type-parameters , type-parameter |

type-parameters , attributes type-parameter

type-parameter ::= identifier

type-argument-list ::= < type-arguments >

type-arguments ::= type-argument | type-arguments , type-argument

type-argument ::= type

type-parameter-constraints-clauses ::= type-parameter-constraints-clause |

type-parameter-constraints-clauses type-parameter-constraints-clause

type-parameter-constraints-clause ::= where type-parameter :

type-parameter-constraints

type-parameter-constraints ::= primary-constraint | secondary-constraints |

constructor-constraint | primary-constraint , secondary-constraints |

primary-constraint , constructor-constraint |

secondary-constraints , constructor-constraint |

primary-constraint , secondary-constraints , constructor-constraint

primary-constraint ::= class-type | class | struct

secondary-constraints ::= interface-type | type-parameter |

secondary-constraints , interface-type |

secondary-constraints , type-parameter

constructor-constraint ::= new ( )

224



Appendix B

C# 1.2 Language Specification

This appendix describes the C# 1.2 language specification used in 6.2. The first part

of this appendix is the lexical specification. The second part is the GIFT-annotated

parsing grammar.

B.1 Lexical specification

This lexical specification is based on the lexical syntax given in the appendix of the

language specification [HCC02]. Tokens are described using EBNF rules. A string is

in the pattern of the token if there is a derivation of the string in the grammar, whose

start symbol is the non-terminal labelled as the token. For readability, non-token non-

terminals will be listed in italics and token non-terminals will be in bold. Characters

will be underlined. Additionally, [α] will be interpreted to mean one symbol in the

sequence depicted by α.

identifier ::= (letter-character | ) identifier-part-character* |

@ (letter-character | ) identifier-part-character*

integer-literal ::= [1-9]+ integer-type-suffix? |

0 ((x|X) [0-9a-fA-F]+)? integer-type-suffix?

real-literal ::= [0-9]* . [0-9]+ exponent-part? real-type-suffix? |

[0-9]+ (exponent-part real-type-suffix? | real-type-suffix)

character-literal ::= ’ character ’

string-literal ::= " regular-string-literal-character " |

@ " ( single-verbatim-string-literal | " ")* "

null-literal ::= null

letter-character := [a-zA-Z ]

identifier-part-character ::= [a-zA-Z0-9 ] | unicode-character-escape-sequence

unicode-character-escape-sequence ::= \ ( u [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-

9a-fA-F] | U [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-

9a-fA-F] [0-9a-fA-F] [0-9a-fA-F])
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integer-type-suffix ::= (u|U) (l|L)? | (l|L) (u|U)?

exponent-part ::= (e|E) (+|-)? [0-9]+

real-type-suffix ::= f|F|d|D|m|M

character ::= single-character | simple-escape-sequence |

hexadecimal-escape-sequence | unicode-character-escape-sequence

single-character ::= any unicode character except \ ’ \n \r

simple-escape-sequence ::= \ (’|"|\|0|a|b|f|n|r|t|t|v

hexadecimal-escape-sequence ::= \ x [0-9a-fA-F] [0-9a-fA-F]? [0-9a-fA-F]? [0-9a-

fA-F]?

regular-string-literal-character ::= single-regular-string-literal-character |

simple-escape-sequence | hexadecimal-escape-sequence |

unicode-character-escape-sequence

single-regular-string-literal-character ::= any unicode character except " \ \n

\r

single-verbatim-string-literal-character ::= any unicode character except "

Additionally there are three layout tokens in the lexical specification

new-line ::= \r \n? | \n

whitespace ::= | \t | \v | \f

comment ::= // input-character* | /* (not-asterisk | *+ not-slash)* *+ /

input-character ::= any unicode character except \n \r

not-slash ::= any unicode character except /

not-asterisk ::= any unicode character except *

As with many languages, C# has a number of tokens whose patterns are the same

as their label - known as the keywords. The following list of such tokens are reserved,

that is these patterns should be recognised as matching only these tokens.

{ } [ ] ( ) . , : ; + - * / % & | ˆ ! ˜ = < >

? ++ -- && || << >> == != <= >= += -= *= /= %= &=

|= ˆ= <<= >>= -> abstract as base bool break byte case

catch char checked class const continue decimal default

delegate double do else enum event explicit extern

false finally fixed float foreach for goto if implicit interface

internal int in is lock long namespace new object operator

out override params private protected public readonly ref

return sbyte sealed short sizeof stackalloc static string

struct switch this throw true try typeof uint ulong unchecked

unsafe ushort using virtual void volatile while

There are also keywords that are not reserved - known as the contextual keywords.
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The patterns for these tokens can also be matched by other tokens

add assembly field get method module param property remove

set type

B.2 GIFT-annotated Parsing Grammar

The parsing grammar is based on the grammar given in the appendix of [HCC02].

This grammar is given as a set of BNF grammar rules. Additionally, the grammar is

annotated with GIFT operators designed to transform the trees generated by the parser

of this grammar into trees in the abstract syntax given in Appendix C. The terminals

of the grammar are in bold. The start symbol of this grammar is the non-terminal

compilation-unit.

namespace-name ::= (namespace-or-type-nameˆ)!qualified-identifier

type-name ::= namespace-or-type-nameˆ

namespace-or-type-name ::=

identifier |

(namespace-or-type-nameˆ)!qualified-identifier . identifier

type ::= value-typeˆ | reference-typeˆ

value-type ::= struct-typeˆ | enum-typeˆ

struct-type ::= (type-nameˆ)!qualified-identifier |

simple-typeˆ

simple-type ::= numeric-typeˆ | bool!predefined-type

numeric-type ::=

integral-type!predefined-type |

floating-point-typeˆ |

decimal!predefined-type

integral-type ::= sbyte | byte | short | ushort | int | uint | long | ulong | char

floating-point-type ::= float!predefined-type | double!predefined-type

enum-type ::= (type-nameˆ)!qualified-identifier

reference-type ::= class-typeˆ | (interface-typeˆ)!qualified-identifier |

array-type | delegate-typeˆ
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class-type ::=

(type-nameˆ)!qualified-identifier |

object!predefined-type |

string!predefined-type

interface-type ::= type-nameˆ

delegate-type ::= (type-nameˆ)!qualified-identifier

variable-reference ::= expression

argument-list ::= argument | argument-listˆ , argument

argument ::=

expression |

ref variable-referenceˆ |

out variable-referenceˆ

primary-expression ::=

primary-no-array-creation-expressionˆ |

array-creation-expressionˆ

primary-no-array-creation-expression ::=

literal |

simple-nameˆ |

parenthesized-expressionˆ |

member-accessˆ |

invocation-expressionˆ |

element-accessˆ |

this-accessˆ |

base-accessˆ |

post-increment-expressionˆ |

post-decrement-expressionˆ |

object-creation-expressionˆ |

delegate-creation-expressionˆ |

typeof-expressionˆ |

checked-expressionˆ |

unchecked-expressionˆ

simple-name ::= identifier

parenthesized-expression ::= ( expression )

member-access ::= (primary-expressionˆ)!expression . identifier |

predefined-type . identifier
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predefined-type ::= bool | byte!integral-type | char!integral-type | decimal |

double | float | int!integral-type | long!integral-type | object | sbyte!

integral-type | short!integral-type | string | uint!integral-type | ulong!

integral-type | ushort!integral-type

invocation-expression ::=

(primary-expressionˆ)!expression ( argument-list ) |

(primary-expressionˆ)!expression ( )

element-access ::= (primary-no-array-creation-expressionˆ)!expression [

expression-list ]

expression-list ::= expression | expression-listˆ , expression

this-access ::= this

base-access ::= base . identifier | base [ expression-list ]

post-increment-expression ::= (primary-expressionˆ)!expression ++!

unary-assignment-operator

post-decrement-expression ::= (primary-expressionˆ)!expression --!

unary-assignment-operator

object-creation-expression ::= new type ( argument-list ) | new type ( )

array-creation-expression ::=

new non-array-typeˆ [ expression-list ] rank-specifiersˆ array-initializer |

new non-array-typeˆ [ expression-list ] |

new non-array-typeˆ [ expression-list ] rank-specifiersˆ |

new non-array-typeˆ [ expression-list ] array-initializer |

new array-type array-initializer

delegate-creation-expression ::= new (delegate-typeˆ)!type ( expression!argument )

typeof-expression ::=

typeof ( type!return-type ) |

typeof ( void!return-type )

checked-expression ::= checked ( expression )

unchecked-expression ::= unchecked ( expression )

unary-expression ::=

primary-expressionˆ |
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+!unary-operator (unary-expressionˆ)!expression |

-!unary-operator (unary-expressionˆ)!expression |

!!unary-operator (unary-expressionˆ)!expression |

˜!unary-operator (unary-expressionˆ)!expression |

pre-increment-expressionˆ |

pre-decrement-expressionˆ |

cast-expressionˆ

pre-increment-expression ::= ++!unary-assignment-operator (unary-expressionˆ)!

expression

pre-decrement-expression ::= --!unary-assignment-operator (unary-expressionˆ)!

expression

cast-expression ::= ( type ) (unary-expressionˆ)!expression

multiplicative-expression ::= unary-expressionˆ |

(multiplicative-expressionˆ)!expression (*!overloadable-binary-operator)!

binary-operator (unary-expressionˆ)!expression |

(multiplicative-expressionˆ)!expression (/!overloadable-binary-operator)!

binary-operator (unary-expressionˆ)!expression |

(multiplicative-expressionˆ)!expression (%!overloadable-binary-operator)!

binary-operator (unary-expressionˆ)!expression

additive-expression ::= multiplicative-expressionˆ |

(additive-expressionˆ)!expression (+!overloadable-binary-operator)!

binary-operator (multiplicative-expressionˆ)!expression |

(additive-expressionˆ)!expression (-!overloadable-binary-operator)!

binary-operator (multiplicative-expressionˆ)!expression

shift-expression ::= additive-expressionˆ | (shift-expressionˆ)!expression (<<!

overloadable-binary-operator)!binary-operator (additive-expressionˆ)!expression |

(shift-expressionˆ)!expression (>>!overloadable-binary-operator)!

binary-operator (additive-expressionˆ)!expression

relational-expression ::= shift-expressionˆ |

(relational-expressionˆ)!expression (<!overloadable-binary-operator)!

binary-operator (shift-expressionˆ)!expression |

(relational-expressionˆ)!expression (>!overloadable-binary-operator)!

binary-operator (shift-expressionˆ)!expression |

(relational-expressionˆ)!expression (<=!overloadable-binary-operator)!

binary-operator (shift-expressionˆ)!expression |

(relational-expressionˆ)!expression (>=!overloadable-binary-operator)!

binary-operator (shift-expressionˆ)!expression |

(relational-expressionˆ)!expression is type |

(relational-expressionˆ)!expression as type
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equality-expression ::= relational-expressionˆ |

(equality-expressionˆ)!expression (==!overloadable-binary-operator)!

binary-operator (relational-expressionˆ)!expression |

(equality-expressionˆ)!expression (!=!overloadable-binary-operator)!

binary-operator (relational-expressionˆ)!expression

and-expression ::= equality-expressionˆ |

(and-expressionˆ)!expression (&!overloadable-binary-operator)!binary-operator (

equality-expressionˆ)!expression

exclusive-or-expression ::= and-expressionˆ |

(exclusive-or-expressionˆ)!expression (ˆ!overloadable-binary-operator)!

binary-operator (and-expressionˆ)!expression

inclusive-or-expression ::=

exclusive-or-expressionˆ |

(inclusive-or-expressionˆ)!expression (|!overloadable-binary-operator)!

binary-operator (exclusive-or-expressionˆ)!expression

conditional-and-expression ::= inclusive-or-expressionˆ |

(conditional-and-expressionˆ)!expression &&!binary-operator

(inclusive-or-expressionˆ)!expression

conditional-or-expression ::= conditional-and-expressionˆ |

(conditional-or-expressionˆ)!expression ||!binary-operator

(conditional-and-expressionˆ)!expression

conditional-expression ::=

conditional-or-expressionˆ |

(conditional-or-expressionˆ)!expression ? expression : expression

assignment ::= (unary-expressionˆ)!expression assignment-operator expression

assignment-operator ::= = | += | -= | *= | /= | %= | &= | |= | ˆ= | <<= | >>=

expression ::= conditional-expressionˆ | assignmentˆ

constant-expression ::= expression

boolean-expression ::= expression

statement ::=

labeled-statementˆ |

declaration-statement |

embedded-statement
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embedded-statement ::=

block |

empty-statementˆ |

expression-statementˆ |

selection-statementˆ |

iteration-statementˆ |

jump-statementˆ |

try-statementˆ |

checked-statementˆ |

unchecked-statementˆ |

lock-statementˆ |

using-statementˆ

block ::= { statement-listˆ } | { }

statement-list ::= statement | statement-listˆ statement

empty-statement ::= ;

labeled-statement ::= identifier : statement

declaration-statement ::= local-variable-declaration ; | local-constant-declaration ;

local-variable-declaration ::= type local-variable-declaratorsˆ

local-variable-declarators ::= local-variable-declaratorˆ |

local-variable-declaratorsˆ , local-variable-declaratorˆ

local-variable-declarator ::=

identifier!variable-declarator |

(identifier = local-variable-initializerˆ)!variable-declarator

local-variable-initializer ::=

expression!variable-initializer |

array-initializer!variable-initializer

local-constant-declaration ::= const type constant-declarators

constant-declarators ::= constant-declarator | constant-declaratorsˆ ,

constant-declarator

constant-declarator ::= identifier = constant-expressionˆ

expression-statement ::= statement-expressionˆ ;
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statement-expression ::=

(invocation-expressionˆ)!expression |

(object-creation-expressionˆ)!expression |

(assignmentˆ)!expression |

(post-increment-expressionˆ)!expression |

(post-decrement-expressionˆ)!expression |

(pre-increment-expressionˆ)!expression |

(pre-decrement-expressionˆ)!expression

selection-statement ::= if-statementˆ | switch-statementˆ

if-statement ::=

if ( boolean-expressionˆ ) embedded-statement |

if ( boolean-expressionˆ ) embedded-statement else embedded-statement

switch-statement ::= switch ( expression ) switch-blockˆ

switch-block ::= { } | { switch-sectionsˆ }

switch-sections ::= switch-section | switch-sectionsˆ switch-section

switch-section ::= switch-labelsˆ statement-listˆ

switch-labels ::= switch-label | switch-labelsˆ switch-label

switch-label ::= case constant-expressionˆ : | default :

iteration-statement ::=

while-statementˆ |

do-statementˆ |

for-statementˆ |

foreach-statementˆ

while-statement ::=

while ( boolean-expressionˆ ) embedded-statement

do-statement ::=

do embedded-statement while ( boolean-expressionˆ ) ;

for-statement ::=

for ( ; ; ) embedded-statement |

for ( ; ; for-iteratorˆ ) embedded-statement |

for ( ; for-conditionˆ ; ) embedded-statement |

for ( ; for-conditionˆ ; for-iteratorˆ ) embedded-statement |

for ( for-initializer ; ; ) embedded-statement |

for ( for-initializer ; ; for-iteratorˆ ) embedded-statement |
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for ( for-initializer ; for-conditionˆ ; ) embedded-statement |

for ( for-initializer ; for-conditionˆ ; for-iteratorˆ ) embedded-statement

for-initializer ::= local-variable-declaration |

(statement-expression-listˆ)!expression-list

for-condition ::= boolean-expressionˆ

for-iterator ::=

(statement-expression-listˆ)!expression-list

statement-expression-list ::= statement-expressionˆ |

statement-expression-listˆ , statement-expressionˆ

foreach-statement ::=

foreach ( type identifier in expression ) embedded-statement

jump-statement ::= break-statementˆ | continue-statementˆ | goto-statementˆ |

return-statementˆ | throw-statementˆ

break-statement ::= break ;

continue-statement ::= continue ;

goto-statement ::=

goto identifier ; |

goto case constant-expressionˆ ; |

goto default ;

return-statement ::= return ; | return expression ;

throw-statement ::= throw ; | throw expression ;

try-statement ::=

try block catch-clauses |

try block finally-clauseˆ |

try block catch-clauses finally-clauseˆ

catch-clauses ::=

specific-catch-clausesˆ |

general-catch-clause |

specific-catch-clausesˆ general-catch-clause

specific-catch-clauses ::= specific-catch-clause | specific-catch-clausesˆ

specific-catch-clause

234



specific-catch-clause ::= catch ( (class-typeˆ)!type ) block |

catch ( (class-typeˆ)!type identifier ) block

general-catch-clause ::= catch block

finally-clause ::= finally block

checked-statement ::= checked block

unchecked-statement ::= unchecked block

lock-statement ::= lock ( expression ) embedded-statement

using-statement ::= using ( resource-acquisition ) embedded-statement

resource-acquisition ::= local-variable-declaration | expression

compilation-unit ::=

ε |

namespace-member-declarationsˆ |

global-attributesˆ |

global-attributesˆ namespace-member-declarationsˆ |

using-directivesˆ |

using-directivesˆ namespace-member-declarationsˆ |

using-directivesˆ global-attributesˆ |

using-directivesˆ global-attributesˆ namespace-member-declarationsˆ

namespace-declaration ::=

namespace qualified-identifier namespace-bodyˆ |

namespace qualified-identifier namespace-bodyˆ ;

qualified-identifier ::= identifier | qualified-identifierˆ . identifier

namespace-body ::=

{ } |

{ namespace-member-declarationsˆ } |

{ using-directivesˆ } |

{ using-directivesˆ namespace-member-declarationsˆ }

using-directives ::= using-directive | using-directivesˆ using-directive

using-directive ::= using-alias-directiveˆ | using-namespace-directiveˆ

using-alias-directive ::=

using identifier = (namespace-or-type-nameˆ)!qualified-identifier ;
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using-namespace-directive ::= using namespace-nameˆ ;

namespace-member-declarations ::= namespace-member-declaration |

namespace-member-declarationsˆ namespace-member-declaration

namespace-member-declaration ::= namespace-declarationˆ | type-declaration

type-declaration ::=

class-declaration |

struct-declaration |

interface-declaration |

enum-declaration |

delegate-declaration

class-declaration ::=

class identifier class-bodyˆ |

class identifier class-bodyˆ ; |

class identifier class-base class-bodyˆ |

class identifier class-base class-bodyˆ ; |

class-modifiersˆ class identifier class-bodyˆ |

class-modifiersˆ class identifier class-bodyˆ ; |

class-modifiersˆ class identifier class-base class-bodyˆ |

class-modifiersˆ class identifier class-base class-bodyˆ ; |

attributesˆ class identifier class-bodyˆ |

attributesˆ class identifier class-bodyˆ ; |

attributesˆ class identifier class-base class-bodyˆ |

attributesˆ class identifier class-base class-bodyˆ ; |

attributesˆ class-modifiersˆ class identifier class-bodyˆ |

attributesˆ class-modifiersˆ class identifier class-bodyˆ ; |

attributesˆ class-modifiersˆ class identifier class-base class-bodyˆ |

attributesˆ class-modifiersˆ class identifier class-base class-bodyˆ ;

class-modifiers ::= class-modifierˆ | class-modifiersˆ class-modifierˆ

class-modifier ::= new!modifier | public!modifier | protected!modifier | internal!

modifier | private!modifier | abstract!modifier | sealed!modifier

class-base ::= : class-typeˆ | : interface-type-listˆ | : class-typeˆ ,

interface-type-listˆ

interface-type-list ::= (interface-typeˆ)!qualified-identifier |

interface-type-listˆ , (interface-typeˆ)!qualified-identifier

class-body ::= { } | { class-member-declarationsˆ }

class-member-declarations ::= class-member-declarationˆ |
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class-member-declarationsˆ class-member-declarationˆ

class-member-declaration ::=

constant-declaration!member-declaration |

field-declaration!member-declaration |

method-declaration!member-declaration |

property-declaration!member-declaration |

event-declaration!member-declaration |

indexer-declaration!member-declaration |

operator-declaration!member-declaration |

constructor-declaration!member-declaration |

destructor-declaration!member-declaration |

static-constructor-declaration!member-declaration |

type-declaration!member-declaration

constant-declaration ::=

const type constant-declarators ; |

constant-modifiersˆ const type constant-declarators ; |

attributesˆ const type constant-declarators ; |

attributesˆ constant-modifiersˆ const type constant-declarators ;

constant-modifiers ::= constant-modifierˆ | constant-modifiersˆ constant-modifierˆ

constant-modifier ::=

new!modifier |

public!modifier |

protected!modifier |

internal!modifier |

private!modifier

field-declaration ::=

type variable-declarators ; |

field-modifiersˆ type variable-declarators ; |

attributesˆ type variable-declarators ; |

attributesˆ field-modifiersˆ type variable-declarators ;

field-modifiers ::= field-modifierˆ | field-modifiersˆ field-modifierˆ

field-modifier ::=

new!modifier |

public!modifier |

protected!modifier |

internal!modifier |

private!modifier |

static!modifier |

readonly!modifier |

237



volatile!modifier

variable-declarators ::= variable-declarator |

variable-declaratorsˆ , variable-declarator

variable-declarator ::= identifier | identifier = variable-initializer

variable-initializer ::= expression | array-initializer

method-declaration ::= method-headerˆ method-bodyˆ

method-header ::=

return-type member-nameˆ ( ) |

return-type member-nameˆ ( formal-parameter-list ) |

method-modifiersˆ return-type member-nameˆ ( ) |

method-modifiersˆ return-type member-nameˆ ( formal-parameter-list ) |

attributesˆ return-type member-nameˆ ( ) |

attributesˆ return-type member-nameˆ ( formal-parameter-list ) |

attributesˆ method-modifiersˆ return-type member-nameˆ ( ) |

attributesˆ method-modifiersˆ return-type member-nameˆ ( formal-parameter-list )

method-modifiers ::= method-modifierˆ | method-modifiersˆ method-modifierˆ

method-modifier ::= new!modifier | public!modifier | protected!modifier | internal!

modifier | private!modifier | static!modifier | virtual!modifier | sealed!

modifier | override!modifier | abstract!modifier | extern!modifier

return-type ::= type | void

member-name ::= identifier!qualified-identifier |

(interface-typeˆ . identifier)!qualified-identifier

method-body ::= block!body | ;!body

formal-parameter-list ::= fixed-parametersˆ |

fixed-parametersˆ , parameter-array | parameter-array

fixed-parameters ::= fixed-parameter | fixed-parametersˆ , fixed-parameter

fixed-parameter ::=

type identifier |

parameter-modifierˆ type identifier |

attributesˆ type identifier |

attributesˆ parameter-modifierˆ type identifier

parameter-modifier ::= ref | out
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parameter-array ::= params array-type identifier |

attributesˆ params array-type identifier

property-declaration ::=

type member-nameˆ { accessor-declarations } |

property-modifiersˆ type member-nameˆ { accessor-declarations } |

attributesˆ type member-nameˆ { accessor-declarations } |

attributesˆ property-modifiersˆ type member-nameˆ { accessor-declarations }

property-modifiers ::= property-modifierˆ | property-modifiersˆ property-modifierˆ

property-modifier ::=

new!modifier |

public!modifier |

protected!modifier |

internal!modifier |

private!modifier |

static!modifier |

virtual!modifier |

sealed!modifier |

override!modifier |

abstract!modifier |

extern!modifier

accessor-declarations ::=

get-accessor-declarationˆ |

get-accessor-declarationˆ set-accessor-declarationˆ |

set-accessor-declarationˆ |

set-accessor-declarationˆ get-accessor-declarationˆ

get-accessor-declaration ::=

get accessor-bodyˆ |

attributesˆ get accessor-bodyˆ

set-accessor-declaration ::=

set accessor-bodyˆ |

attributesˆ set accessor-bodyˆ

accessor-body ::= block!body | ;!body

event-declaration ::=

event (type variable-declarators)!local-variable-declaration ; |

event-modifiersˆ event (type variable-declarators)!local-variable-declaration ; |

attributesˆ event (type variable-declarators)!local-variable-declaration ; |
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attributesˆ event-modifiersˆ event (type variable-declarators)!

local-variable-declaration ; |

event type member-nameˆ { event-accessor-declarations } |

event-modifiersˆ event type member-nameˆ { event-accessor-declarations } |

attributesˆ event type member-nameˆ { event-accessor-declarations } |

attributesˆ event-modifiersˆ event type member-nameˆ {

event-accessor-declarations }

event-modifiers ::=

event-modifierˆ |

event-modifiersˆ event-modifierˆ

event-modifier ::=

new!modifier |

public!modifier |

protected!modifier |

internal!modifier |

private!modifier |

static!modifier |

virtual!modifier |

sealed!modifier |

override!modifier |

abstract!modifier |

extern!modifier

event-accessor-declarations ::=

add-accessor-declaration remove-accessor-declaration |

remove-accessor-declaration add-accessor-declaration

add-accessor-declaration ::=

add block |

attributes add block

remove-accessor-declaration ::=

remove block |

attributesˆ remove block

indexer-declaration ::=

indexer-declarator { accessor-declarations } |

indexer-modifiersˆ indexer-declarator { accessor-declarations } |

attributesˆ indexer-declarator { accessor-declarations } |

attributesˆ indexer-modifiersˆ indexer-declarator { accessor-declarations }

indexer-modifiers ::=

indexer-modifierˆ |

indexer-modifiersˆ indexer-modifierˆ
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indexer-modifier ::= new!modifier | public!modifier | protected!modifier | internal!

modifier | private!modifier | virtual!modifier | sealed!modifier | override!

modifier | abstract!modifier | extern!modifier

indexer-declarator ::=

type this [ formal-parameter-list ] |

type (interface-typeˆ)!qualified-identifier . this [ formal-parameter-list ]

operator-declaration ::=

operator-modifiersˆ operator-declarator operator-bodyˆ |

attributesˆ operator-modifiersˆ operator-declarator operator-bodyˆ

operator-modifiers ::=

operator-modifierˆ |

operator-modifiersˆ operator-modifierˆ

operator-modifier ::=

public!modifier |

static!modifier |

extern!modifier

operator-declarator ::=

unary-operator-declaratorˆ |

binary-operator-declaratorˆ |

conversion-operator-declaratorˆ

unary-operator-declarator ::=

type operator overloadable-unary-operator ( type identifier )

overloadable-unary-operator ::= +!unary-operator | -!unary-operator | !!

unary-operator | ˜!unary-operator | ++!unary-assignment-operator | --!

unary-assignment-operator | true | false

binary-operator-declarator ::=

type operator overloadable-binary-operator ( type identifier , type identifier )

overloadable-binary-operator ::= + | - | * | / | % | & | | | ˆ | << | >> | == |

!= | > | < | >= | <=

conversion-operator-declarator ::= implicit operator type ( type identifier ) |

explicit operator type ( type identifier )

operator-body ::=

block!body |

;!body
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constructor-declaration ::=

constructor-declaratorˆ constructor-bodyˆ |

constructor-modifiersˆ constructor-declaratorˆ constructor-bodyˆ |

attributesˆ constructor-declaratorˆ constructor-bodyˆ |

attributesˆ constructor-modifiersˆ constructor-declaratorˆ constructor-bodyˆ

constructor-modifiers ::=

constructor-modifierˆ |

constructor-modifiersˆ constructor-modifierˆ

constructor-modifier ::= public!modifier | protected!modifier | internal!modifier |

private!modifier | extern!modifier

constructor-declarator ::=

identifier ( ) |

identifier ( ) constructor-initializer |

identifier ( formal-parameter-list ) |

identifier ( formal-parameter-list ) constructor-initializer

constructor-initializer ::=

: base!constructor-order ( ) |

: base!constructor-order ( argument-list ) |

: this!constructor-order ( ) |

: this!constructor-order ( argument-list )

constructor-body ::=

block!body |

;!body

static-constructor-declaration ::=

static-constructor-modifiers identifier ( ) static-constructor-bodyˆ |

attributesˆ static-constructor-modifiers identifier ( ) static-constructor-bodyˆ

static-constructor-modifiers ::=

static |

extern static |

static extern

static-constructor-body ::= block!body | ;!body

destructor-declaration ::=

˜ identifier ( ) destructor-bodyˆ |

extern ˜ identifier ( ) destructor-bodyˆ |

attributesˆ ˜ identifier ( ) destructor-bodyˆ |

attributesˆ extern ˜ identifier ( ) destructor-bodyˆ

242



destructor-body ::=

block!body |

;!body

struct-declaration ::= struct identifier struct-bodyˆ |

struct identifier struct-bodyˆ ; |

struct identifier (struct-interfacesˆ)!interface-base struct-bodyˆ |

struct identifier (struct-interfacesˆ)!interface-base struct-bodyˆ ; |

struct-modifiersˆ struct identifier struct-bodyˆ |

struct-modifiersˆ struct identifier struct-bodyˆ ; |

struct-modifiersˆ struct identifier (struct-interfacesˆ)!interface-base

struct-bodyˆ |

struct-modifiersˆ struct identifier (struct-interfacesˆ)!interface-base

struct-bodyˆ ; |

attributesˆ struct identifier struct-bodyˆ |

attributesˆ struct identifier struct-bodyˆ ; |

attributesˆ struct identifier (struct-interfacesˆ)!interface-base struct-bodyˆ |

attributesˆ struct identifier (struct-interfacesˆ)!interface-base struct-bodyˆ ;

|

attributesˆ struct-modifiersˆ struct identifier struct-bodyˆ |

attributesˆ struct-modifiersˆ struct identifier struct-bodyˆ ; |

attributesˆ struct-modifiersˆ struct identifier (struct-interfacesˆ)!

interface-base struct-bodyˆ |

attributesˆ struct-modifiersˆ struct identifier (struct-interfacesˆ)!

interface-base struct-bodyˆ ;

struct-modifiers ::=

struct-modifierˆ |

struct-modifiersˆ struct-modifierˆ

struct-modifier ::=

new!modifier |

public!modifier |

protected!modifier |

internal!modifier |

private!modifier

struct-interfaces ::= : interface-type-list

struct-body ::=

{ } |

{ struct-member-declarationsˆ }

struct-member-declarations ::=

struct-member-declarationˆ |
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struct-member-declarationsˆ struct-member-declarationˆ

struct-member-declaration ::=

constant-declaration!member-declaration |

field-declaration!member-declaration |

method-declaration!member-declaration |

property-declaration!member-declaration |

event-declaration!member-declaration |

indexer-declaration!member-declaration |

operator-declaration!member-declaration |

constructor-declaration!member-declaration |

static-constructor-declaration!member-declaration |

type-declaration!member-declaration

array-type ::= non-array-typeˆ rank-specifiersˆ

non-array-type ::= type

rank-specifiers ::= rank-specifier | rank-specifiersˆ rank-specifier

rank-specifier ::= [ ] | [ dim-separatorsˆ ]

dim-separators ::= , | dim-separatorsˆ ,

array-initializer ::=

{ variable-initializer-list , } |

{ } |

{ variable-initializer-list }

variable-initializer-list ::= variable-initializer |

variable-initializer-listˆ , variable-initializer

interface-declaration ::=

interface identifier interface-bodyˆ |

interface identifier interface-bodyˆ ; |

interface identifier interface-base interface-bodyˆ |

interface identifier interface-base interface-bodyˆ ; |

interface-modifiersˆ interface identifier interface-bodyˆ |

interface-modifiersˆ interface identifier interface-bodyˆ ; |

interface-modifiersˆ interface identifier interface-base interface-bodyˆ |

interface-modifiersˆ interface identifier interface-base interface-bodyˆ ; |

attributesˆ interface identifier interface-bodyˆ |

attributesˆ interface identifier interface-bodyˆ ; |

attributesˆ interface identifier interface-base interface-bodyˆ |

attributesˆ interface identifier interface-base interface-bodyˆ ; |

attributesˆ interface-modifiersˆ interface identifier interface-bodyˆ |
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attributesˆ interface-modifiersˆ interface identifier interface-bodyˆ ; |

attributesˆ interface-modifiersˆ interface identifier interface-base

interface-bodyˆ |

attributesˆ interface-modifiersˆ interface identifier interface-base

interface-bodyˆ ;

interface-modifiers ::= interface-modifierˆ | interface-modifiersˆ

interface-modifierˆ

interface-modifier ::=

new!modifier |

public!modifier |

protected!modifier |

internal!modifier |

private!modifier

interface-base ::= : interface-type-list

interface-body ::=

{ } |

{ interface-member-declarationsˆ }

interface-member-declarations ::=

interface-member-declaration |

interface-member-declarationsˆ interface-member-declaration

interface-member-declaration ::=

interface-method-declarationˆ |

interface-property-declarationˆ |

interface-event-declarationˆ |

interface-indexer-declarationˆ

interface-method-declaration ::=

return-type identifier ( ) ; |

return-type identifier ( formal-parameter-list ) ; |

new return-type identifier ( ) ; |

new return-type identifier ( formal-parameter-list ) ; |

attributesˆ return-type identifier ( ) ; |

attributesˆ return-type identifier ( formal-parameter-list ) ; |

attributesˆ new return-type identifier ( ) ; |

attributesˆ new return-type identifier ( formal-parameter-list ) ;

interface-property-declaration ::=

type identifier { interface-accessors } |

new type identifier { interface-accessors } |

attributesˆ type identifier { interface-accessors } |
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attributesˆ new type identifier { interface-accessors }

interface-accessors ::=

get ; |

attributesˆ get ; |

set ; |

attributesˆ set ; |

get ; set ; |

get ; attributesˆ set ; |

attributesˆ get ; set ; |

attributesˆ get ; attributesˆ set ; |

set ; get ; |

set ; attributesˆ get ; |

attributesˆ set ; get ; |

attributesˆ set ; attributesˆ get ;

interface-event-declaration ::=

event type identifier ; |

new event type identifier ; |

attributesˆ event type identifier ; |

attributesˆ new event type identifier ;

interface-indexer-declaration ::=

type this [ formal-parameter-list ] { interface-accessors } |

new type this [ formal-parameter-list ] { interface-accessors } |

attributesˆ type this [ formal-parameter-list ] { interface-accessors } |

attributesˆ new type this [ formal-parameter-list ] { interface-accessors }

enum-declaration ::=

enum identifier enum-bodyˆ |

enum identifier enum-bodyˆ ; |

enum identifier enum-base enum-bodyˆ |

enum identifier enum-base enum-bodyˆ ; |

enum-modifiersˆ enum identifier enum-bodyˆ |

enum-modifiersˆ enum identifier enum-bodyˆ ; |

enum-modifiersˆ enum identifier enum-base enum-bodyˆ |

enum-modifiersˆ enum identifier enum-base enum-bodyˆ ; |

attributesˆ enum identifier enum-bodyˆ |

attributesˆ enum identifier enum-bodyˆ ; |

attributesˆ enum identifier enum-base enum-bodyˆ |

attributesˆ enum identifier enum-base enum-bodyˆ ; |

attributesˆ enum-modifiersˆ enum identifier enum-bodyˆ |

attributesˆ enum-modifiersˆ enum identifier enum-bodyˆ ; |

attributesˆ enum-modifiersˆ enum identifier enum-base enum-bodyˆ |

attributesˆ enum-modifiersˆ enum identifier enum-base enum-bodyˆ ;
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enum-base ::= : integral-type

enum-body ::=

{ enum-member-declarations , } |

{ } |

{ enum-member-declarations }

enum-modifiers ::= enum-modifierˆ | enum-modifiersˆ enum-modifierˆ

enum-modifier ::=

new!modifier |

public!modifier |

protected!modifier |

internal!modifier |

private!modifier

enum-member-declarations ::=

enum-member-declaration |

enum-member-declarationsˆ , enum-member-declaration

enum-member-declaration ::=

identifier |

attributesˆ identifier |

identifier = constant-expressionˆ |

attributesˆ identifier = constant-expressionˆ

delegate-declaration ::=

delegate return-type identifier ( ) ; |

delegate return-type identifier ( formal-parameter-list ) ; |

delegate-modifiersˆ delegate return-type identifier ( ) ; |

delegate-modifiersˆ delegate return-type identifier ( formal-parameter-list ) ; |

attributesˆ delegate return-type identifier ( ) ; |

attributesˆ delegate return-type identifier ( formal-parameter-list ) ; |

attributesˆ delegate-modifiersˆ delegate return-type identifier ( ) ; |

attributesˆ delegate-modifiersˆ delegate return-type identifier (

formal-parameter-list ) ;

delegate-modifiers ::= delegate-modifierˆ | delegate-modifiersˆ delegate-modifierˆ

delegate-modifier ::=

new!modifier |

public!modifier |

protected!modifier |

internal!modifier |

private!modifier
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global-attributes ::= global-attribute-sectionsˆ

global-attribute-sections ::= global-attribute-section | global-attribute-sectionsˆ

global-attribute-section

global-attribute-section ::=

[ global-attribute-target-specifierˆ attribute-list ] |

[ global-attribute-target-specifierˆ attribute-list , ]

global-attribute-target-specifier ::= global-attribute-target :

global-attribute-target ::= assembly | module

attributes ::= attribute-sectionsˆ

attribute-sections ::= attribute-section | attribute-sectionsˆ attribute-section

attribute-section ::=

[ attribute-list ] |

[ attribute-target-specifierˆ attribute-list ] |

[ attribute-list , ] |

[ attribute-target-specifierˆ attribute-list , ]

attribute-target-specifier ::= attribute-target :

attribute-target ::= field | method | param | property | type | return | event

attribute-list ::= attribute | attribute-listˆ , attribute

attribute ::= (attribute-nameˆ)!qualified-identifier |

(attribute-nameˆ)!qualified-identifier attribute-arguments

attribute-name ::= type-nameˆ

attribute-arguments ::=

( (positional-argument-listˆ)!expression-list , named-argument-list ) |

( named-argument-list ) | ( ) |

( (positional-argument-listˆ)!expression-list )

positional-argument-list ::= positional-argumentˆ | positional-argument-listˆ ,

positional-argumentˆ

positional-argument ::= attribute-argument-expressionˆ

named-argument-list ::= named-argument | named-argument-listˆ , named-argument

248



named-argument ::= identifier = attribute-argument-expressionˆ

attribute-argument-expression ::= expression

literal ::= false | true |

integer-literal |

real-literal |

character-literal |

string-literal |

null-literal
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Appendix C

Abstract Syntax Grammar for

C# 1.2

This appendix describes the abstract syntax grammar for C# used in Chapter 6. This

grammar is given as a set of EBNF grammar rules. The start symbol of this grammar

is the non-terminal compilation-unit.

literal ::= false | true | integer-literal | real-literal | character-literal |

string-literal | null-literal

type ::= predefined-type | qualified-identifier | array-type

predefined-type ::= object | string | integral-type | float | double | decimal |

bool

integral-type ::= sbyte | byte | short | ushort | int | uint | long | ulong | char

expression ::= literal |

identifier |

( expression ) |

expression . identifier |

predefined-type . identifier |

expression ( argument-list? ) |

expression [ expression-list ] |

this |

base . identifier |

base [ expression-list ] |

expression unary-assignment-operator |

new type ( argument-list? ) |

new type [ expression-list ] rank-specifier* array-initializer? |

new type rank-specifier+ array-initializer |

typeof ( return-type ) |
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checked ( expression ) |

unchecked ( expression ) |

unary-operator expression |

unary-assignment-operator expression |

( type ) expression |

expression binary-operator expression |

expression is type |

expression as type |

expression ? expression : expression |

expression assignment-operator expression

unary-operator ::= + | - | ! | ˜

unary-assignment-operator ::= ++ | --

binary-operator ::= overloadable-binary-operator | || | &&

overloadable-unary-operator ::= unary-operator | unary-assignment-operator | true |

false

overloadable-binary-operator ::= + | - | * | / | % | & | | | ˆ | << | >> | == |

!= | > | < | >= | <=

assignment-operator ::= = | += | -= | *= | /= | %= | &= | |= | ˆ= | <<= | >>=

argument-list ::= argument (, argument)*

argument ::= expression | ref expression | out expression

expression-list ::= expression (, expression)*

statement ::= embedded-statement | declaration-statement | identifier : statement

embedded-statement ::= block |

; |

expression ; |

if ( expression ) embedded-statement (else embedded-statement)? |

switch ( expression ) { switch-section* } |

while ( expression ) embedded-statement |

do embedded-statement while ( expression ) ; |

for ( for-initializer? ; expression? ; expression-list? ) embedded-statement |

foreach ( type identifier in expression ) embedded-statement |

break ; |

continue ; |

goto identifier ; |

goto case expression ; |
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goto default ; |

return expression? ; |

throw expression? ; |

try block catch-clauses? (finally block)? |

checked block |

unchecked block |

lock ( expression ) embedded-statement |

using ( resource-acquisition ) embedded-statement

block ::= { statement* }

declaration-statement ::= local-variable-declaration ; | local-constant-declaration ;

local-variable-declaration ::= type variable-declarators

local-constant-declaration ::= const type constant-declarators

switch-section ::= switch-label+ statement+

switch-label ::= case expression : | default :

for-initializer ::= local-variable-declaration | expression-list

catch-clauses ::= specific-catch-clause+ |

specific-catch-clause* general-catch-clause

specific-catch-clause ::= catch ( type identifier? ) block

general-catch-clause ::= catch block

resource-acquisition ::= local-variable-declaration | expression

compilation-unit ::= using-directive* global-attribute-section*

namespace-member-declaration*

namespace-member-declaration ::= namespace qualified-identifier { using-directive*

namespace-member-declaration* } ;? type-declaration ;

qualified-identifier ::= identifier (. identifier)*

using-directive ::= using (identifier =)? qualified-identifier ;

type-declaration ::= class-declaration | struct-declaration | interface-declaration

| enum-declaration | delegate-declaration
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class-declaration ::= attribute-section* modifier* class identifier class-base? {

member-declaration* } ;?

class-base ::= : (object | string | qualified-identifier) (, qualified-identifier)*

modifier ::= new | public | protected | internal | private | abstract | sealed |

static | readonly | volatile | virtual | override | extern

member-declaration ::= constant-declaration | field-declaration |

method-declaration | property-declaration | event-declaration |

indexer-declaration | operator-declaration | constructor-declaration |

static-constructor-declaration | destructor-declaration | type-declaration

body ::= block | ;

constant-declaration ::= attribute-section* modifier* const type

constant-declarators ;

constant-declarators ::= constant-declarator (, constant-declarator)*

constant-declarator ::= identifier = expression

field-declaration ::= attribute-section* modifier* type variable-declarators ;

variable-declarators ::= variable-declarator (, variable-declarator)*

variable-declarator ::= identifier (= variable-initializer)?

variable-initializer ::= expression | array-initializer

method-declaration ::= attribute-section* modifier* return-type

qualified-identifier ( formal-parameter-list? ) body

return-type ::= void | type

formal-parameter-list ::= fixed-parameter (, fixed-parameter)* (, parameter-array)?

| parameter-array

fixed-parameter ::= attribute-section* (ref | out)? type identifier

parameter-array ::= attribute-section* params type rank-specifier+ identifier

property-declaration ::= attribute-section* modifier* type qualified-identifier {

accessor-declarations }
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accessor-declarations ::= attribute-section* get body (attribute-section* set body)?

|

attribute-section* set body (attribute-section* get body)?

event-declaration ::= attribute-section* modifier* event local-variable-declaration

; |

attribute-section* modifier* event type qualified-identifier {

event-accessor-declarations }

indexer-declaration ::= attribute-section* modifier* indexer-declarator {

accessor-declarations }

indexer-declarator ::= type (qualified-identifier .)? this [ formal-parameter-list ]

operator-declaration ::= attribute-section* modifier* operator-declarator body

operator-declarator ::= (implicit | explicit) operator type ( type identifier ) |

type operator overloadable-unary-operator ( type identifier ) |

type operator overloadable-binary-operator ( type identifier , type identifier )

constructor-declaration ::= attribute-section* modifier* identifier (

formal-parameter-list? ) constructor-initializer? body

constructor-initializer ::= : constructor-order ( argument-list? )

constructor-order ::= base | this

static-constructor-declaration ::= attribute-section* static-constructor-modifiers

identifier ( ) body

static-constructor-modifiers ::= static | extern static | static extern

destructor-declaration ::= attribute-section* extern? ˜ identifier ( ) body

struct-declaration ::= attribute-section* modifier* struct identifier interface-base?

{ member-declaration* } ;?

array-type ::= type rank-specifier+

rank-specifier ::= [ ,* ]

array-initializer ::= { variable-initializer-list? ,? }

variable-initializer-list ::= variable-initializer (, variable-initializer)*
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interface-declaration ::= attribute-section* modifier* interface identifier

interface-base? { interface-member-declaration* } ;?

interface-base ::= : interface-type-list

interface-type-list ::= qualified-identifier (, qualified-identifier)*

interface-member-declaration ::= attribute-section* new? event type identifier ; |

attribute-section* new? type identifier { interface-accessors } |

attribute-section* new? return-type identifier ( formal-parameter-list? ) ; |

attribute-section* new? type this [ formal-parameter-list ] {

interface-accessors }

interface-accessors ::= attribute-section* get ; |

attribute-section* set ; |

attribute-section* get ; attribute-section* set ; |

attribute-section* set ; attribute-section* get ;

enum-declaration ::= attribute-section* modifier* enum identifier enum-base? {

enum-member-declarations? ,? } ;?

enum-base ::= : integral-type

enum-member-declarations ::= enum-member-declaration (, enum-member-declaration)*

enum-member-declaration ::= attribute-section* identifier |

attribute-section* identifier = expression

delegate-declaration ::= attribute-section* modifier* delegate return-type

identifier ( formal-parameter-list? ) ;

event-accessor-declarations ::=

add-accessor-declaration remove-accessor-declaration |

remove-accessor-declaration add-accessor-declaration

add-accessor-declaration ::= attribute-section* add block

remove-accessor-declaration ::= attribute-section* remove block

global-attribute-section ::= [ (assembly | module) : attribute-list ,? ]

attribute-list ::= attribute (, attribute)*

attribute ::= qualified-identifier attribute-arguments?

attribute-arguments ::= ( expression-list? ) |
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( expression-list , named-argument-list ) |

( named-argument-list )

named-argument-list ::= named-argument (, named-argument)*

named-argument ::= identifier = expression

attribute-section ::= [ (attribute-target :)? attribute-list ,? ]

attribute-target ::= field | event | method | param | property | return | type
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