

http://waikato.researchgateway.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the Act

and the following conditions of use:

 Any use you make of these documents or images must be for research or private

study purposes only, and you may not make them available to any other person.

 Authors control the copyright of their thesis. You will recognise the author’s right to

be identified as the author of the thesis, and due acknowledgement will be made to

the author where appropriate.

 You will obtain the author’s permission before publishing any material from the
thesis.

http://waikato.researchgateway.ac.nz/

Text Augmentation:
Inserting markup into natural

language text with PPM Models

A thesis
submitted in partial fulfilment

of the requirements for the degree
of

Doctor of Philosophy
at the

University of Waikato
by

Stuart A. Yeates

Department of Computer Science

Hamilton, New Zealand

July 9, 2006

ii

Abstract

This thesis describes a new optimisation and new heuristicsfor automatically mark-

ing up XML documents. These are implemented in CEM, using PPM models. CEM

is significantly more general than previous systems, marking up large numbers of

hierarchical tags, usingn-gram models for largen and a variety of escape methods.

Four corpora are discussed, including the bibliography corpus of 14682 bibli-

ographies laid out in seven standard styles using the BIBTEX system and marked-

up in XML with every field from the original BIBTEX. Other corpora include the

ROCLING Chinese text segmentation corpus, the Computists’ Communique cor-

pus and the Reuters’ corpus. A detailed examination is presented of the methods

of evaluating mark up algorithms, including computation complexity measures and

correctness measures from the fields of information retrieval, string processing, ma-

chine learning and information theory.

A new taxonomy of markup complexities is established and theproperties of

each taxon are examined in relation to the complexity of marked-up documents.

The performance of the new heuristics and optimisation is examined using the four

corpora.

Keywords: hidden Markov models, HMM, PPM, Viterbi search, part-of-speech

tagging, XML, markup, metadata.

iii

iv

Dedication

To Jacqui,

my trapping state.

v

vi

Acknowledgements

Thank you my family, for always being there.

Thank you David, Ian, Sally Jo and Matt for guidance, encouragement and tech-
nical help.

Thank you to the Royal Society of New Zealand for funding through the Mars-
den Fund.

Thank you to Reuters for the use of ‘Reuters Corpus, Volume 1, English lan-
guage, 1996-08-20 to 1997-08-19’. Thank you to the ROCLING SIGIR for the
use of the ROCLING corpus. Thank you to Kenneth I. Laws for the use of the
Computists’ Communique.

Thank you to Pauline for handling the long-distance submission.

Thank you my fellow students Carl, Catherine, Dana, Dave, David, Geoff, Gor-
don, Hayley, Imene, Jack, John, Justin, Karl, Kathy, Lin-Yi, Mark, Mark, Shane,
Stuart, Yingying, and everyone else in the New Zealand Digital Library research
group. Thank you to the tutoring, secretarial and technicalstaff.

Thank you Aimee, Aliene, Amanda, Andraus, Andrew, Andrew, Andy, Anne,
Anne, Barry, Belinda, Bill, Bob, Brent, Bret, Carolee, Caroline, Chris, Christine,
Christine, Christine, Dale, Dave, Dave, David, David, Deborah, Dee, Des, Douglas,
Erin, Erin, Gail Gayle, Gaylene, Georgina, Haylee, Ian, Jacqui, Jane, Janice, Jenny,
Jenny, Kay, Kay, Kirsten, Kumar, Lee, Leigh, Leo, Linda, Lyn, Mandy, Matt, Maz,
Micheal, Murray, Rachel, Rachel, Rachel, Rhonda, Roland, Rosie, Sam, Sam, Sara,
Sarah, Shauna, Stuart, Sue, Terri, Terry, Terry, Toni, Tony, Wayne, Wendy and
everyone else I’ve danced with in Christchurch, Hamilton, Auckland, London and
Oxford during the course of my enrolment.

Thank you to OUCS at Oxford for the use of their resources to finish this thesis.
Thank you to all the RTS crew for their encouragement. Thanksto Sebastian for
the LATEX and XML help.

vii

viii

Contents

Dedication v

Acknowledgements vii

Table of Contents xi

List of Figures xiv

List of Tables xv

List of Algorithms xvii

1 Introduction 1
1.1 Plan of the Thesis . 4
1.2 Thesis Statement . 4

2 Background 7
2.1 The nature of text . 7

2.1.1 Ambiguity . 8
2.1.2 Metadata . 9

2.2 Extraction of Textual Information10
2.2.1 Regular Expressions . 10
2.2.2 Handcrafted Rules . 11
2.2.3 Instance Based Machine Learning 11
2.2.4 Information Extraction . 11
2.2.5 Markov Modelling . 13
2.2.6 Trained versus Handcrafted Models 14
2.2.7 Single Step versus Multiple Step Systems 16

2.3 Correctness . 16
2.3.1 Recall and Precision . 17
2.3.2 Edit Distance . 18
2.3.3 Confusion Matrices . 19
2.3.4 Entropy . 20
2.3.5 Hybrid and Other Measures 21

2.4 Efficiency . 21
2.5 XML Tags . 22

2.5.1 Nested Tags . 23
2.5.2 Attributes of Tags . 24
2.5.3 Other Issues . 24

ix

3 Models and Algorithms 27
3.1 Markov Models . 27
3.2 Hidden Markov Models . 28
3.3 Higher Order Models . 29
3.4 Prediction by Partial Matching . 33
3.5 Granularity of Models . 41
3.6 Searching in Models . 44
3.7 XML and Unicode . 49

4 The System 51
4.1 Metadata . 51

4.1.1 Segmentation . 51
4.1.2 Classification . 53
4.1.3 Entity Extraction . 54
4.1.4 Limitations and Constraints 55

4.2 Architecture . 56
4.2.1 The Model . 57
4.2.2 Differences between CEM and other systems 60
4.2.3 The Search Tree . 61
4.2.4 Full Exclusion . 62

4.3 Optimisations and Heuristics . 63
4.3.1 Viterbi Optimisation . 63
4.3.2 Best First Optimisation . 66
4.3.3 Automatic Tokenisation Heuristic 67
4.3.4 Alphabet Reduction . 69
4.3.5 Maximum Lookahead Heuristic 69
4.3.6 TagC Heuristic . 70
4.3.7 State Tying . 70

4.4 Search Space . 72
4.4.1 The Semantics of Nested Tags 75

4.5 Teahan Search . 75
4.6 Evaluation . 77

4.6.1 Recall and Precision . 77
4.6.2 Edit Distance . 80
4.6.3 Confusion Matrices . 81
4.6.4 Type Confusion Matrices 82
4.6.5 Entropy . 83

5 The Text 85
5.1 Computists’ Corpus . 85
5.2 Bibliography Corpus . 87
5.3 Segmentation Corpus . 94
5.4 Reuters’ Corpus . 95

6 Results 97
6.1 PPM-SY versus PPMD . 97
6.2 Correctness . 99

x

6.2.1 Granularity and Heterogeneity 100
6.2.2 Computists’ Corpus . 101
6.2.3 Bibliography Corpus . 104
6.2.4 Segmentation Corpus . 110
6.2.5 Reuters’ Corpus . 111

6.3 Baum–Welch Re-estimation . 113
6.4 Effectiveness of Optimisations and Heuristics 115

6.4.1 Best First . 115
6.4.2 Automatic Tokenisation 120
6.4.3 Alphabet Reduction . 129
6.4.4 Maximum Lookahead Heuristic 133
6.4.5 TagC Heuristic . 137
6.4.6 State Tying . 139

7 Conclusions 143
7.1 Review of Aims . 144
7.2 Performance of CEM and the New Techniques 145
7.3 Impact of Unicode and Document Orientation 147
7.4 Limitations of CEM . 148
7.5 Problems Suitable for CEM and Text Augmentation 151
7.6 Training Corpora Sizes . 152
7.7 Original Contributions . 153
7.8 Open Questions . 155

Bibliography 157

A Corpora Samples 171
A.1 Computists’ Corpus . 171
A.2 Bibliography Corpus . 173
A.3 Segmentation Corpus . 176
A.4 Reuters’ Corpus . 177

xi

xii

List of Figures

2.1 Segmentation ambiguity in Chinese and Japanese 8
2.2 A limerick shown with and without secondary structure 25

3.1 Isomorphism in Markov models 30
3.2 Three representations of the PPMD model for•aabbccabca. 36
3.3 The• model built from•aba◦cbc◦bab• 38
3.4 The◦ model built from•aba◦cbc◦bab• 39
3.5 The expansion step in a Viterbi search of•abbacbccbbab. 40
3.6 The next expansion step in a Viterbi search of•abbaccbcbbab. 41
3.7 The fourth expansion step in a Viterbi search of•abbaccbcbbab. . .. 42

4.1 Schema structures for segmentation and classification problems . . . 52
4.2 Schema structure for the bibliography entity extraction problem . . 55
4.3 The structure of a CEM model . 57
4.4 The structure of a PPM model . 59
4.5 Viterbi search of a large search space 64
4.6 Viterbi search fails . 65
4.7 The structure of a hidden Markov model, with state tying 71
4.8 Teahan and Viterbi search comparison76
4.9 A short quote from Hamlet . 78
4.10 Inter-dependencies in a small entity extraction problem 80

5.1 Corrections in the Computists’ Communique 86
5.2 Data-flow diagram for creating the bibliography collection 90
5.3 Schema for the bibliography corpus with all tags 91
5.4 Schema for bibliography corpus with tags used in this thesis (with

state tying) . 93
5.5 Schema for the bibliography corpus without state tying 93

6.1 PPMD and PPM-SY in the Computists’ corpus 98
6.2 PPMD and PPM-SY in the segmentation corpus 99
6.3 Correctness for documents in the Reuters’ corpus 112
6.4 Correctness for the Reuters’ corpus 113
6.5 Baum–Welch re-estimation . 114
6.6 Best first in the bibliography corpus (hierarchical) 116
6.7 Best first in the bibliography corpus (non-hierarchical). 117
6.8 Best first for varying model orders 118
6.9 Effect of best first and the number of training documents 119
6.10 Effect of tokenisation on a group of hierarchical tags 122
6.11 Effect of tokenisation on a group of non-hierarchical tags 123
6.12 Interaction between best first and tokenisation 128

xiii

6.13 The effects of alphabet reduction on finding a single tag. 130
6.14 The effects of alphabet reduction on finding multiple tags 132
6.15 Lookahead for thenametag . 135
6.16 Lookahead for theword tag . 136
6.17 The TagC heuristic in the bibliography corpus (hierarchical) 137
6.18 The TagC heuristic in the bibliography corpus (non-hierarchical) . . 138
6.19 Entropy dropping with increased training data 141

xiv

List of Tables

2.1 Metadata at different granularities 10

3.1 A variety of linguistic problems tackled with HMMs 28
3.2 n-gram models and models of orderk 31

4.1 Search space size . 75

6.1 Confusion matrices for the Computists’ corpus 102
6.2 Accuracy for the Computists’ corpus 103
6.3 Confusion matrix for the bibliography corpus withoutnote 104
6.4 Confusion matrix for the bibliography corpus withnote 106
6.5 Type confusion matrix for the bibliography corpus for many tags . . 108
6.6 Example of effect of model size on defects 109
6.7 Segmentation of Chinese . 110
6.8 Occurrence tables for the Reuters’ corpus 121
6.9 Occurrence tables for the bibliography corpus 125
6.10 Interaction between errors . 126
6.11 Occurrence tables for the Computists’ corpus 126
6.12 Occurrence tables for the segmentation corpus 127
6.13 Folders used in alphabet reduction 129
6.14 Example of effect of lookahead on defects 134
6.15 Lookahead for theword tag . 136
6.16 Type confusion matrices, with and without state tying (many tags) . 140
6.17 Type confusion matrices, with and without state tying (few tags) . . 142

xv

xvi

List of Algorithms

1 The complete search algorithm . 44
2 The Viterbi search algorithm . 45
3 The Teahan search algorithm . 46
4 The Baum–Welch algorithm . 47

xvii

Chapter 1

Introduction

Timely news is in great demand, and the value increases if thenews is tightly fo-

cused on specific areas of interest to the readers. Often readers are interested in

specific organisations, dates and sources, so the fragment:

1997 was a record spending year for computer-industry mergers andacquisi-

tions, and companies such as Compaq, Dell, IBM, and Hewlett-Packard are

still hot to buy what’s left. [InfoWorld Electric, 24Dec97. EduP.]

might be considerably more valuable to a reader if the organisations, dates and

sources of information were marked up with<o> <d> and<s> tags, respectively:

<d>1997</d>was a record<d>spending year</d>for computer-industry

mergers and acquisitions, and companies such as<o>Compaq</o>,

<o>Dell</o>, <o>IBM</o>, and<o>Hewlett-Packard</o>are still hot

to buy what’s left. [<s>InfoWorld Electric</s>, <d>24Dec97</d>.

<s>EduP</s>.]

The extraction of references to company names in particularforms the backbone

of systems such asfinance.yahoo.com, which aggregate news from many

hundreds of sources into thousands of tightly focused categories.

Languages such as Chinese and Japanese are usually written without white-

space segmenting the characters into words. One of the first operations that must

be performed by many information systems dealing with such text is to augment it

with segmentation information, for example: is augmented to

1

<w> </w><w> </w><w> </w><w> </w><w> </w>, ([ele-

mentary school][building interior][sports][area][construction], i.e. the construction

of an elementary school indoor sports arena). Such segmented text can then be used

in all the ways that words from a western language can be used [3]. The tags can

then be discarded to display the text in the original form or used to process the

text in the word-by-word fashion common to most western information systems, or

some combination of the two.

There are many thousands, perhaps many millions, of peer-reviewed academic

papers available on the Internet, each with bibliographic entries linking it to other

papers and materials, for example:

Donald E. Knuth. Semantics of context-free languages. Mathematical System

Theory, 1968, 2(2), 127–145.

A competent researcher or librarian can readily separate this entry into all the parts

necessary to find the document to which it refers. When there are collections of

thousands of electronic documents, separating these manually is a huge, tedious

and error-prone task. What would be useful would be a system that took the entry

and automatically augmented it as:

<entry>

<author>

<forenames>Donald E.</forenames>

<surname>Knuth</surname>.

</author>

<title>Semantics of context-free languages</title>.

<journal>Mathematical System Theory</journal>,

<year>1968</year>,

<volume>2</volume>(<number>2</number>),

<pages>127-145</pages>.

</entry>

2

Data in such an augmented format could then be used in a numberof opera-

tions, including interloaning a copy of the document, reformatting the reference for

inclusion in another bibliography, citation analysis and querying by date.

Digital library software is increasingly interacting withnon-computer special-

ists on their own terms. This can be done using generic interfaces (witness the

success of the slim-line Google interface) or interfaces tailored to the domain of the

users or the content. In order to provide this, the digital library needs to know what

those terms are and how they apply to the documents in the collections, whether

they are organisations, dates and sources or authors, titles and dates of publication.

Manual augmentation with this knowledge is typically expensive, slow and incon-

sistent.

This thesis describes a method for automating text augmentations for a large

class of problems covering all of these examples. Such text augmentation is per-

formed by building models from training text marked-up withXML tags, then us-

ing the models and searching to insert similar tags into testing text that does not

yet contain any tags. Building effective models requires considerable volumes of

training text with consistently used tags, and that the training text be representa-

tive of testing text. The text augmentation described in this thesis covers a broader

range of information than preceding approaches, but is shallower than most infor-

mation extraction systems in that all reasoning is fine-grained, with no higher-level

or document-level reasoning, limiting the text augmentations that can be attempted.

The quality of text augmentation is evaluated by splitting amarked-up corpus

into a set of training documents and a set of testing documents; training a model on

the former; stripping the tags from the latter; augmenting the stripped testing docu-

ments using the model; and finally comparing the testing documents as augmented

by the system with the original documents. Several different methods to compare

the augmented document to the original are explored in this thesis.

3

1.1 Plan of the Thesis

Following this introduction, Chapter 2 gives the backgroundto the current work,

starting by examining the nature of text and an overview of methods of extracting

information from text. Approaches to evaluating the correctness and efficiency of

the such extractions are then examined, together with ways on encoding extracted

information in XML. Chapter 3 introduces Markov models builtfrom text, and

algorithms for search using such models to extract information.

Chapter 4 discusses the architecture of the implemented system, and examines

the rationale for some of the design choices. It then presents an optimisation and a

number of heuristics, and examines the search spaces of different classes of prob-

lems with respect to these. Chapter 5 introduces the corpora used in this thesis.

Chapter 6 sets out the experimental results of the optimisation and heuristics

on the corpora. Chapter 7 concludes the thesis with an overview of the research,

a list of the original contributions, and a summary of unanswered questions. The

appendix contains samples from each of the corpora used in this work.

1.2 Thesis Statement

Text augmentation is the automated insertion of XML tags into documents in the

context of a digital library to make implicit textual information accessible to con-

ventional processing.

Text augmentation can be expanded to a larger class of problems than

those previously studied. It can be partitioned into three classes of prob-

lem: segmentation, classification and entity extraction. Each class of

problem has distinctive properties, computational complexity and types

of failure, necessitating different evaluation methodologies.

Markov models and searching can be used to solve these problems.

Given the context of their application, there are a number ofoptimisa-

4

tions and heuristics which can be used to make these algorithms com-

putationally tractable.

Text augmentation is a computational process by which natural language text is

augmented by the addition of XML tags to elucidate the implicit structure. Three

different classes of text augmentation are discussed. Eachclass has a structurally

different schema which affects the performance and evaluation of text augmenta-

tion.

Text augmentation is performed using statistical modelling techniques, such as

hidden Markov and PPM models, and using searching algorithms to find a good

augmentation. In the past, text augmentation has been performed using Teahan

search (see Section 4.5), but in this thesis a variety of algorithms is used. Viterbi

search is computationally intractable in many interestingtext augmentation situa-

tions, but an optimisation of it, and a number of heuristics to it, can be exploited,

given the application, to make searching computationally feasible.

To these ends, this thesis aims to:

1. Examine text augmentation problems, in the large, to attempt to determine

which are susceptible to automated text augmentation and whether some sets

of problems are inherently easier than others.

2. Build a text augmentation system capable of solving at least as wide a range

of problems as existing low-human-input systems, with an eye to eventual

inclusion as part of a digital library system.

3. Locate and/or build corpora to test this system.

4. Find specific heuristics and optimisations which performwell in relation to a

particular set of augmentation problems.

5. Evaluate both the text augmentation system and the heuristics and optimisa-

tions in the system.

5

These aims are reviewed in Section 7.1.

6

Chapter 2

Background

This chapter examines the background to the current work. First it looks at the na-

ture of text, various types of ambiguities in natural language text and then examines

metadata, namely explicit information about text. Information extraction systems,

whose purpose is to extract metadata from text, are then surveyed and various meth-

ods of evaluating such extraction systems are examined, together with methods of

evaluating the correctness and efficiency of such systems. Finally, aspects of XML

and Unicode relevant to text augmentation are surveyed.

2.1 The nature of text

One task in text augmentation is the Chinese text segmentation problem, the task

of segmenting a stream of Chinese characters into words. The task is often the first

step in Chinese information processing systems, since Chinese is normally written

without explicit word delimiters. The task is made more challenging by the fact that

line delimiters may occur anywhere, including between letters in a word or digits in

a number [42].

The task is harder than it appears because Chinese text is ambiguous. The text

shown in Figure 2.1(a)(i) (taken from [137]) can be segmented as shown in (ii) or

as shown in (iii), meaning ‘I like New Zealand flowers’ and ‘I like fresh broccoli’

respectively. Similarly the Japanese title shown in Figure2.1(b)(i) (taken from [3])

can be segmented as shown in (ii) or as shown in (iii) meaning ‘president both busi-

ness and general manager’ and ‘president (of) subsidiary business (for) (the proper

7

(i) (ii) (iii)
(a) Chinese

(i) (ii) (iii)
(b) Japanese

Figure 2.1: Examples of segmentation ambiguity in east Asian languages.

name) Tsutomu, general manager’ respectively. Since this last is four nouns and

thus identical from the point of view of a part of speech system, it is a particularly

ambiguous situation.

2.1.1 Ambiguity

Segmentation ambiguity is not confined to Asian languages. There is a widely

circulated joke featuring sentence segmentation ambiguity in English:

Dear John: I want a man who knows what love is all about. You are

generous, kind, thoughtful. People who are not like you admit to being

useless and inferior. You have ruined me for other men. I yearn for

you. I have no feelings whatsoever when we’re apart. I can be forever

happy—will you let me be yours? Gloria

and

Dear John: I want a man who knows what love is. All about you are

generous, kind, thoughtful people, who are not like you. Admit to being

useless and inferior. You have ruined me. For other men, I yearn. For

you, I have no feelings whatsoever. When we’re apart, I can be forever

happy. Will you let me be? Yours, Gloria

8

There is an entire class of English expression, double entendre, which exploits

ambiguity of meaning [128]. This ambiguity is resolved using context—the style

and genre of a piece of text. A sentence with two possible meanings has the more

risqúe meaning if it appears in a Blackadder [38] script and has the less risqúe of

the two if it appears in a Reuters’ dispatch. There are also forms of text in which

resolving ambiguity of meaning is not possible, a well-known example of which is

Lewis Carroll’s poem ‘Jabberwocky’.

Ambiguity resolution using context is an example of what is known in arti-

ficial intelligence as ‘common sense reasoning’. It is knownto be difficult for

computers to resolve such ambiguity, with the difficulty lying in the wide range

of world-knowledge and subtle reasoning that humans use to solve this class of

problem [107].

Partly to reduce the need for ambiguity resolution, the overwhelming majority

of text mining is performed on collections of text with uniform style and genre.

Uniformity of linguistic style highlights the patterns andstructures within the text

and the uniformity of genre ensures that the patterns have the same meanings.

2.1.2 Metadata

Metadata means ‘a set of data that describes and gives data about other data’ [128].

Usually at the granularity of the document (the catalogue entry for a book or the

title and author of a web page), metadata can be at the character level [5] or cover

entire collections of documents (Table 2.1). In many systems and standards much

of the metadata is stored at the document level, even though it may apply to the

collection, section or even character level, because this is the level at which most

processing, storage, licensing, retrieval and transmission operations take place. The

RDF standard [156] is notable for granularity independence,addressing, individual

tags (elements), documents or collections of documents.

This thesis centres on fine-grained metadata, at the character and word levels,

9

Granularity Relevant metadata

Collection Scope; purpose; coverage; copyright; maintenance status;
maintainer contact details;

Document Author; title; date of publication; subject classification;
Section Topics; cross references;
Sentence Semantic meanings;
Word Part of speech; glossary links; dictionary links; collation

order;
Character Encoding; reading direction; case;

Table 2.1: Metadata at different granularities.

and how such metadata can be inferred from, and then annotated into, the text it-

self. This process of augmenting the text is referred to as text augmentation. It has

been previously called ‘tag insertion’ [136, 135], but the author believes that‘text

augmentation’better portrays the action and intent of the process.

2.2 Extraction of Textual Information

A wide range of distinct approaches and many hybrid ones havebeen used to ex-

tract fine-grained information from text for various purposes. This section reviews

several of them, including regular expressions, machine learning and information

extraction. The following section examines how to measure the correctness of the

extraction.

2.2.1 Regular Expressions

Regular expressions are compact representations of a set of strings which can be

converted into a finite-state machine. The machine can efficiently recognise in-

stances of the set of strings within a stream of text. Their close relationship to the

well-studied field of formal language parsing has led to thembeing well under-

stood [2].

Regular expressions are the tool of choice for extracting information with an

exact and precise format, such as email addresses, post codes, dates and the like.

10

They are, however, fragile in the face of mistakes, ambiguity and stylistic variations

in the text.

2.2.2 Handcrafted Rules

Handcrafted rules or templates can also be used to extract information from text.

These typically involve searching for short fragments of text or regular expressions

within text, with each rule processed in order of precedence. Unfortunately, sys-

tems of handcrafted rules can be complex and fragile in the face changing input

data. They also scale poorly with the number classes of information being extracted,

particularly when there is a requirement that rules do not overlap.

These systems typically can consider large windows and potentially have access

to ‘out of band’ sources of information such as dictionariesand name lists [17, 1,

74].

2.2.3 Instance Based Machine Learning

Instance based machine learning is a field concerned primarily with classifying in-

stances into classes. Machine learning can be applied to text [149], but requires that

the text be pre-segmented into instances, potentially losing significant information

and/or leading to large instances.

Machine learning handles noise and ambiguity significantlybetter than regular

expressions. Mis-classified instances, once detected, canbe added incrementally to

the training instances, allowing an existing model to be refined and improved. The

widely-used Brill tagger [28] uses this approach as a primarymethod.

2.2.4 Information Extraction

The field of information extraction typically involves multi-step systems that first

extract atoms from text (using regular expressions, part-of-speech tagging, etc.) and

11

then use higher-order reasoning to solve ‘real world’ problems. The Text REtrieval

Conferences series (TREC) [53, 54, 142, 143] is built round textretrieval tasks

and the Message Understanding Conferences (MUC) and DocumentUnderstanding

Conferences (DUC) are built around competitions between systems. The intent is

to focus research and systems development towards specific,known targets.

MUC Named Entity [35] problems centre on the extraction of proper nouns

(e.g. company names), often with subsidiary information (e.g. market symbols or

addresses) from stylised information sources, typically news articles such as the

Reuters’ corpus. The problems set in the MUC tracks explicitly required the ex-

traction of facts from the texts into a separate database andsubsequent higher-order

reasoning about those facts, in two separate systems. Many involve multiple steps,

such as sentence and word segmentors, part-of-speech taggers, hypothesis genera-

tors, hypothesis evaluators and disambiguators [167].

The systems include many opportunities for encoding handcrafted or externally

curated domain knowledge, from the notion of the word embedded in the word seg-

mentors, to domain-specific word lists used in the part-of-speech tagger and hand-

crafted heuristics for template filling. Word lists includelists of first names, cor-

porate names, colleges and universities, corporate suffixes, times and dates, world

regions and state codes [23]. Many of the systems use trainedmodels, either learnt

rules or Markov models, but only for an individual step of solving the problem.

Many of these systems and corpora suffer from proper-noun ambiguity errors

(see Sections 2.1.1 and 5.1). Methods employed to overcome the ambiguity include

leveraging company and personal titles (Mr, LtdandCorp.) [22]) and deeper parsing

to detect structures such as standard formatting of place names.

The GATE system is a Java GUI framework for linguistic engineering. It incor-

porates a wide variety of tools for using hand- or tool-generated rules, and regular

expressions and links to gazetteers of cities and organisations. Testing and evalua-

tion tools are included for classification problems. GATE focuses on the inclusion

12

of extra-textual information:gazetteers, word-lists, grammars and similar, and their

interactive development to solve particular problems. It also has tools for higher-

level reasoning about texts1 [37, 22, 95]. GATE’s choice to have a GUI enables it

to allow display and input of multiple texts and scripts: 21 are supported.

Citeseer [80] uses a two-stage approach, with an edit distance metric to merge

similar references across the entire collection and then a hand-crafted ‘invariants

first’ heuristic that parses those parts of the reference with the fewest differences

first and uses standard machine learning on them. The system was able to leverage

two extra-document sources of information, tables of common western personal

names and repetition of the same reference (often in slightly different form) in mul-

tiple documents. Citeseer does not parse the diversity of fields that occur in the

bibliography corpus, instead focusing on the title and author fields which are also

extracted from the start of documents and which link most easily to external sources

in the bibliography at the end. The public interface of the Citeseer system allows

end-users to correct the extracted fields and add the missingones. It is not clear

whether feedback from these corrections is applied to the internal algorithms.

2.2.5 Markov Modelling

A number of systems and approaches have used Markov models toextract informa-

tion from, or add information to, text. The early Xerox tagger [40, 39] uses hidden

Markov models and Viterbi search to good effect, but handlesunseen words and

novel contexts poorly.

Built using arithmetic encoder [102] models, one for ‘good’ text and one (called

a ‘confusion model’ [36]) for errors, the TMT (Text Modelling Toolkit) and later

SMI (Statistical Modelling Interface) systems [134, 36] can correct errors in text and

classify textual fragments [133, 26]. With a large number ofoptions and supporting

a wide range of static and adaptive models, SMI is entirely capable of solving the

1 http://gate.ac.uk/

13

news and Chinese examples given in the opening Chapter, but notthe bibliographic

example, because SMI models are not recursive; they cannot represent a hierarchy

of textual fragments.

Arithmetic encoder models provide slightly more information than conventional

Markov models, providing an ordering of symbols as well as probabilities repre-

sented using integer ratios. Integer ratios avoid using floating-point arithmetic to

whose inaccuracies arithmetic encoding is particularly sensitive. These steps make

SMI useful for both textual augmentation and full text compression.2

Freitag and McCallum [46, 96] report work on a bibliography corpus using

hand-crafted, then automatically shrunk, Markov models, giving good results. Fre-

itag and McCallum build models with increasingly complex structures in a similar

manner to Dynamic Markov Compression (DMC) [151], which are then blended

using linear combination.

Recently Besagni et al. [15] have had some success in marking upbibliogra-

phies using part of speech tagging, building chains of whichparts of speech oc-

cur in which bibliographic fields and then correcting fields using a post-processing

step. As with the post-processing performed in part of speech tagging, this includes

super-adjacency. They use six tags and get a recall (see Section 2.3.1) of between

82% and 97% of the time for a corpus of 2500 references. Not allof the failures

are complete failures, since sometimes part of a name is successfully returned. This

may be useful, depending on the context.

2.2.6 Trained versus Handcrafted Models

The use of automatically trained models rather than handcrafted models lends itself

to use in situations where training data is cheaper or more accessible than domain-

knowledgeable humans. With the increasing volumes of data available at the cost of

transfer on the Internet and the relatively stable cost of labour, using large amounts

2 ‘Full text compression’ in this context means lossless compression, as opposed to the lossy
compression often used for images which effectively destroys text [151].

14

of training data rather than people is likely to be an increasingly attractive choice.

While much of the freely available material for training models is of low or

questionable quality, the existence and growth of curated repositories such as the

Oxford Text Archive,3 the Linguistic Data Consortium4 and Project Gutenberg5

suggest that the availability of curated textual and linguistic materials is increasing.

There are limits on what trained models can recognise, because of the finite

training text available, their lack of ‘common sense’ reasoning and various theo-

retic limits [13]. For example, most model training and template building systems

cannot recognise structures characterised byn a’s thenn b’s followed by n c’s.

While systems can be built to recognise these structures for aparticularn, it is not

possible to recognise these structures for unknownn’s with a regular expression

while rejecting structures with different numbers ofa’s, b’s andc’s. These limits

do not apply to handcrafted models. Handcrafted models run into the well-known

difficulties of hand-building large, complex systems [83] and labour costs.

Building and maintaining a set of handcrafted rules or a handcrafted model

may be more cost effective than building a corpus of documents with the concepts

marked-up if the documents are sufficiently rare or sufficiently difficult to handle

(for example they contain embedded private or confidential information). Hand-

crafting is also more attractive if the concept is well understood by non-specialists,

meaning labour is relatively cheap.

Trained models also have the option of automated incremental improvement by

using the Baum–Welch algorithm [10, 11] in production situations. Long-term use

of Baum–Welch may result in divergence and poor performance.However, if the

data seen in production is changing at a rate faster than thisdivergence, then using

the Baum–Welch may be advantageous. This thesis focuses on trained models.

3 http://ota.ahds.ac.uk/
4 http://www.ldc.upenn.edu/
5 http://www.gutenberg.org/

15

2.2.7 Single Step versus Multiple Step Systems

Multiple step text augmentation systems have an advantage over single step sys-

tems in allowing a different choice of algorithm for each step, providing the system

builders with a wider range of options and making the intermediate forms accessible

for ‘boosting’ using word lists and similar. A wider range ofchoices for systems

builders enables them to hand-select algorithms that perform well on the expected

input for the systems. Unfortunately, this often leads to poor performance on other

input: other genre, other character encodings and other languages.

Multiple step text augmentation systems also encourage reuse of system com-

ponents, such as the Brill part-of-speech tagger, which is widely used as a pre-

processor [37]. Single step augmentation systems can be reused as a whole, but

are not as amenable to the development of UNIX-style ‘pipelines’. Corpora used to

train models and rules are amenable to incremental development, either by adding

additional documents of the same type or by adding documentsin additional lan-

guages, as is common in corpora used in comparative linguistics. Steps can also be

arranged in a cascade or waterfall [68].

This thesis focuses on single-step markup processes using Markov models.

There is no theoretical reason why the systems and approaches used here could

not be used as individual steps within a multiple system, buttraining data for the

intermediate stages appears to be rarer, except where the individual step has already

been studied in isolation, as with part-of-speech tagging.

2.3 Correctness

The ultimate test of a computer system is in terms of interactions with users—does

the system work correctly? Are any errors made, minor or catastrophic? Is it fast

enough? Is it easy to use? Do the users like it? These questions, however, are hard

to phrase in terms that allow the answers to be compared amongsystems, versions

16

of the same system, and software packages across time in the face of changing

requirements, user expectations, groups of users and operating environments. They

are also hard to ask of sub-systems that provide a subset of functionality required

by a full system.

There are, however, two features of overall performance which are widely used

for comparing systems: correctness and efficiency. This section examines these and

how they can be applied to text augmentation.

The approaches to measuring correctness examined here comefrom the fields of

information retrieval, string processing, machine learning and information theory.

2.3.1 Recall and Precision

The information retrieval paradigm [122, 6] assumes that a query (single operation)

retrieves a set of items, some of which are relevant to the query. Evaluation is based

around the question ‘Is itemn relevant and was it returned?’ The answer to this

question puts each item into one of four distinct classes: true positive (relevant and

retrieved), true negative (not relevant and not retrieved), false positive (not relevant

and retrieved) and false negative (relevant and not retrieved).

Accumulating counts of each of these four classes over a large number of in-

dependent experiments allows the calculation of two higher-level measures. Re-

call [31] is the proportion of all relevant items that were retrieved:

Recall =
number of relevant items retrieved

total number of relevant items in collection
=

true positives

true positives + false negatives

Precision is the proportion of retrieved items that are relevant:

Precision =
number of relevant items retrieved

total number of items retrieved
=

true positives

true positives + false positives

17

Recall and precision represent a trade-off. A system could return many items

(for high recall and low precision) or few items (for low recall and high precision)

and so they are sometimes expressed as their harmonic mean:

F − measure =
2 × recall × precision

recall + precision

Often the number of false negatives is unknown, such as when retrieving doc-

uments from the World Wide Web, whose exact size is unknown but large [81].

When the number of false negatives is known (or can be reliablyestimated), an-

other measure, called ‘Fallout’ [84], which is a measure of how good the result is

as a result for the negated query, can be used:

Fallout =
number of irrelevant items retrieved

total number of irrelevant items in collection
=

false positives

false positives + true negatives

Fallout measures how effectively irrelevant items are winnowed from the query

results. Fallout is rarely used, as it is sensitive to the size of the collection and the

addition of clearly-irrelevant items to the collection. Recall, precision, and their

combination in the F-measure, are the primary means of evaluating correctness in

information retrieval systems.

2.3.2 Edit Distance

Edit distance is a standard technique in the string processing field. It is a well-

studied measure used in spelling correction [73, 89] (wheretransposes are common

because of the mechanics of typing) and Optical Character Recognition (OCR) [73]

(where swaps are common due to mis-recognition of one character for another).

These research fields measure edit distance on data, whereaswhen used in text aug-

mentation, edit distance is used on combined data and metadata with an expectation

18

that errors be closely linked to the metadata.

Edit distance is performed in terms of individual tags rather than tag-pairs. False

negatives (inserts) and false positives (deletes) are counted and then summed to get

an edit distance.

Edit distance is solely concerned with mistakes made in textaugmentation and

neither true negatives nor true positives impact on edit distance. Edit distance ex-

plicitly recognises the sequential nature of text but, because true positives are ig-

nored, the independence problems discussed in relation to recall and precision do

not occur in edit distance calculation. Teahan [133] uses edit distance to evaluate

text augmentation and Nahm et al. [106] uses edit distance asan input to a multi-

stage text mining system. All edit distances used in the current work are normalised

for document length to give edits per character.

2.3.3 Confusion Matrices

Whereas recall and precision assume an underlying binary classification, confusion

matrices are a tool for evaluating many-class classification tasks, and are widely

used in machine learning for evaluating such tasks [149]. The following is a confu-

sion matrix for a classification problem withi classes:

























a1,1 a1,2 · · · a1,i

a2,1 a2,2 · · · a2,i

...
...

.. .
...

ai,1 ai,2 · · · ai,i

























The matrix is square, with a row and a column for each class.am,n, in columnn

and rowm, is the number of symbols that should have been classified in classn that

were actually classified in classm. Correct classification is indicated whenn = m,

on the leading diagonal of the matrix.

Any non-zero numbers off the leading diagonal, indicate misclassification and

19

there is often symmetry about the diagonal. Non-zero numbers in bothan,m and

am,n indicate that if symbols of classm can be mistaken for symbols of classn,

then symbols of classn are also likely to be mistaken for symbols of classm. This

ability to highlight confusion between tags makes the confusion matrix an excellent

tool for fine-tuning tagsets and finding markup errors. For example, Bray et al. [26]

used a confusion matrix to find errors and demonstrate the strong correlation be-

tween name tags and place tags in the Computists’ corpus. Confusion matrices are

conventionally normalised by converting the rows into percentages.

2.3.4 Entropy

Entropy is a measure from information theory widely used in signal processing,

error-correction and compression fields of computer science [102, 151]. It is in-

versely related to probability. A ‘good’ augmentation of text has a high probability

and a low entropy (measured in bits per character) [13].

Unlike other measures of correctness, entropy does not measure results against

a predefined answer, but rather measures how closely a set of results matches a

model. This is effective in situations where perfect answers are either unobtainable

or obtainable only at great expense.

For entropy measures to be an effective measurement of accuracy of an augmen-

tation of text, the model used to measure entropy must be independent of both the

testing and training data. This problem is closely related to the over-fitting problem

in machine learning, and can be avoided by training two models on separate training

data and using one to augment the text and one to measure entropy.

If an independently trained model is unavailable, an untrained model can be

used with an adaptive algorithm. This is the standard methodology for measuring

the strength of lossless compression algorithms [152, 103,13].

An entropy measurement is relative to a model, and so conveyslittle clear

knowledge about the absolute quality of an augmentation: the user of augmented

20

text is unable to infer as much from an entropy measurement asfrom a re-

call/precision pair or an edit distance. It can, however, beused to compare the

relative merit of different augmentations of the same text,provided the model cap-

tures pertinent details and the same model is used to calculate both entropy mea-

surements.

2.3.5 Hybrid and Other Measures

Many reports of text augmentation use a combination of measures to report their

results. For example Bray [26] decomposed tag insertion evaluation in the Com-

putists’ corpus into a pair of operations, firstly segmenting characters into tokens

and, secondly, classifying the tokens into their respective types.

The segmentation operation was measured in terms of the error count (false-

negatives+ false-positives), and classification of the segments was measured using

confusion matrices. Other systems use measures expressed in terms of their inter-

action with larger information systems, such as extractionof acronyms [165] and

bibliographies [21].

2.4 Efficiency

Computer programs can be written in a wide variety of computerlanguages and run

on a wide variety of platforms. Since the efficiency of these languages and platforms

varies widely, it is useful to compare algorithms independent of their language and

platform. One methodology which allows this is time complexity analysis using

‘big O notation’ [70]. The function is simplified to remove constant factors and is

referred to asO.

Time complexity analysis is defined in terms of a characteristic operation—in

the case of tag insertion this is visiting a node in the searchspace—and counting

how many times the operation is performed, and expressed as afunction of the

21

parameters and input size of the algorithm.

The size of the search space is normalised by the document length to give a

measurement in terms of search space per character. There are special cases when

searching at the start and end of documents, but for the corpora used in this thesis

the initial and final characters in documents are low entropy, so they should not

effect this normalisation.

2.5 XML Tags

EXtensible Markup Language (XML) [25] tags have a name (or type), span a (po-

tentially empty) range of text and have a (potentially empty) set of attributes. The

tags may be nested, but only strictly hierarchically. Thus,if a document has tags

indicating pages from the physical document, it may also have tags indicating lines

and, because each line is wholly within a page, the tags are hierarchical. A tag

which contains only hierarchical tags, or no tags at all, is said to be well-balanced.

An XML document has an enclosing, top level, tag holding information about

the document as a whole. An XML document that is well-balanced is said to be

well-formed.

XML cannot directly represent overlapping hierarchies (such as the physical

and logical document layout), unlike the preceding SGML [51] which had a feature,

CONCUR, which permitted overlapping tags. XML can represent non-hierarchical

tags using higher-order structures, using empty tags with attributes which associate

them in pairs or in a sequence. The difficulties of tagging overlapping structures,

and standard ways of overcoming them, are described in detail in [130].

There are several schema languages for describing which XMLtags may oc-

cur within other XML tags. The W3C schema language includes anANY tag to

refer to any well-balanced tag [43]. Schemas which feature the ANY tag are flexi-

ble but challenging to model, because literally anything can be encoded, including

22

structures equivalent to entire documents of the type beingmarked up.

2.5.1 Nested Tags

The XML standard largely attempts to avoid statements aboutthe semantics

of tags and the semantics of nested tags, other than their well-formedness.

It is tempting to extend practice in XHTML to cover XML. In XHTML

. . . is typically considered semantically equiv-

alent from. . . because most presentation en-

gines (browsers) present these identically. Presentational customisation systems

such as CSS [24] and XSLT [155], however, have no difficulty differentiating these

two situations and the XML standard is silent on their semantic relationship. One

can imagine a (fictional) programming language expressed inXML in which the

semantics are clearly different. For example

<if cond="undefined(symbol)">

<define name="symbol">

<action/>

</define>

</if >

has different semantics to

<define name="symbol">

<if cond ="undefined(symbol)">

<action/>

</if >

</define>

23

The current work attempts to avoid making semantic assumptions such as this, ex-

cept explicitly in the state-tying heuristic (see Section 4.3.7).

2.5.2 Attributes of Tags

The current work focuses exclusively on direct representations and does not con-

sider attributes during training or testing (with the exception of attributes of the

document-level node). All of the corpora used in this thesishave been created or

transformed, as described above, to convert attributes into tags.

Attributes are syntactic sugar and any XML document with attributes can be

transformed into one without attributes and back in a lossless fashion. For exam-

ple, the tag<word partofspeech="verb">jump</word> can easily be transformed

to <word><verb>jump</verb></word> but such transforms can lead to combi-

natorial explosion of tags if there are large number of attributes or the attributes

contain large numbers of unique values. Real-valued attributes would lead to an

infinite number of tags, one for each possible value. If the order of attributes of a

tag is significant, the situation is significantly worse. TheXML standard is silent on

the question of whether the order of attributes is significant, but several subsidiary

standards, including XSLT [155] and DOM [154] do not even permit discovery of

the order of tags. The author knows of no use of an XML corpus inwhich the order

of attributes is significant or of toolsets which support theprocessing of such XML.

2.5.3 Other Issues

A key feature XML shares with many other natural language processing approaches

is the linearisation of language. While written language across a wide range of

cultures is laid out in rectangular regions, whether read left-to-right and top-to-

bottom, or bottom-to-top and right-to-left, digitised language—written or spoken—

is almost always linear to the detriment of any secondary rectangular structure. For

example, the limerick shown in Figure 2.2 is shown twice, first with the secondary

24

The limerick packs laughs anatomical
Into space that is quite economical.
But the good ones I’ve seen
So seldom are clean—
And the clean ones so seldom are comical.

(a)

The limerick packs laughs anatomical Into space that is quite econom-
ical. But the good ones I’ve seen So seldom are clean—And the clean
ones so seldom are comical.

(b)

Figure 2.2: A limerick shown with and without secondary structure.

rectangular structure and then without. The second form of the limerick has the

same rhymes and cadence as the first but loss of the explicit rectangular structure

makes it harder to recognise. None of the data dealt with in this thesis has a strong

secondary rectangular structure.

XML can be canonicalised [25], a process which, amongst other things, stan-

dardises whitespace. This is a lossy operation, whitespacecan contain information,

particularly about line and paragraph boundaries which is lost by canonicalisation.

For this reason all operations preparing the corpora used inthis thesis are performed

without canonicalisation and preserve whitespace.

Standardisation for representing annotated linguistic data in XML [25] is cur-

rently underway, led by the Architecture and Tools for Linguistic Analysis Systems

(ATLAS)6 [78]. The standardisation work includes a content-independent method

of specifying regions and anchors in linear linguistic signals, and a query language

over those regions and anchors. Similar work, with greater implemented function-

ality, is being undertaken by the Linguistic Data Consortium7 [20, 19]. As with the

current work, these approaches embed the inferred information within the linguistic

6 http://www.nist.gov/speech/atlas/
7 http://www.ldc.upenn.edu/

25

data rather than removing it to the document header or an external data store as in

most information extraction.

The current work is based on the Unicode and a subset of XML restricts the

types of texts and annotations which can be easily worked with. With the exception

of attributes, most of the important features of documents in modern information

systems can be represented. By using Unicode and XML a range ofdata preparation

and processing tools is available. A range of corpora is available for reuse in XML

and, by using XML for the corpora produced in the current work, their potential for

reuse is higher than if non-standard formats had been used.

26

Chapter 3

Models and Algorithms

This chapter examines Markov models and some of the searching algorithms that

operate on them. Exhaustive treatment of many aspects touched on here can be

found in the standard texts [63] and [13].

3.1 Markov Models

Markov models are Finite State Machines (FSMs) which consist of a finite number

of states and the transitions between them. In a probabilistic FSM, each transition

has an associated probability and generates (or predicts) asymbol from some al-

phabet of symbols. The FSM has a set of start states (often only one) and a set

of end states (again, often only one). A stream of data is generated by a FSM by

starting in one of the start states and moving through a succession of states (using

the current state’s probability density function to determine the next state) until it

reaches an end state. An excellent review of the use of Markovmodels and similar

statistical techniques as applied to language processing can be found in McMahon

and Smith [99].

Markov models encapsulate the Markov assumption: that ‘thevalue of the next

state is only influenced by the value of the state that directly preceded it’ [41]. The

Markov assumption is useful because it gives a bound on how much system context

needs to be modelled. Markov models produce probability density functions, which

estimate the likelihood of each possible value for the next state.

27

Problem Observable
Sequence

Hidden
Sequence

Observable
Alphabet
Size

Hidden
Alphabet
Size

Type Ref.

Chinese word
segmentation

Characters Words Large 2 Segmentation [137]

English sentence
segmentation

Words Sentences Large 2 Segmentation [133]

Part-of-speech
tagging

Words Word classes Large ≈ 50 Classification [28]

Phone
identification

Digitised, audio
waveforms

Phones Very large Large Entity extrac-
tion

[166,
33]

Table 3.1: Observable and hidden sequences for a variety of linguistic problems
tackled with hidden Markov models.

3.2 Hidden Markov Models

Hidden Markov models (HMM) are composite models involving anumber of hid-

den states each of which contains a complete Markov model. The hidden states

typically represent the information the model is designed to infer, the words to be

segmented or the parts of speech to be distinguished between.

Table 3.1 shows some of the wide variety of previous uses of hidden Markov

models in linguistic problems. Chinese word segmentation and English sentence

segmentation use simple models. Part-of-speech tagging, which has already been

discussed, has a larger hidden alphabet and thus more hiddenmodels.

Phone identification is a key step in voice recognition in which digitised audio

waves are mapped to phones, speech sounds, which are later built into words [166].

HMMs are also widely used in computational biology [72, 9, 27].

A key property of hidden Markov models that makes them so widely used in

these fields is that they handle noisy and ambiguous data well, unlike rule-based

systems which are based on a series of binary decisions and are relatively brittle in

the face of noise and ambiguity. Markov models are, however,much less convenient

for the extraction of pertinent details. While rule-based systems have sets of rules,

typically with clear means of identifying the most important, Markov models have

matrices of hundreds, or even hundreds of thousands, of numbers, with none being

clearly more important than others.

28

3.3 Higher Order Models

Higher order Markov models involve a relaxation of the Markov assumption, al-

lowing multiple states to be taken into account [41]: ‘the values of the next state

are only influenced by the values of then states that directly preceded it’. Each

Markov model of orderk > 1 is isomorphic with a family of Markov models of

orderk − 1, k − 2, k − 3, · · · 3, 2, 1.

Figure 3.1 shows this isomorphism for an FSM with a two-character alphabet.

Figure 3.1(a) shows an order 3 Markov model, with a single state and eight (23)

transitions, each starting and finishing in the single state, and transition probabili-

ties dependent on the previous two characters. Figure 3.1(b) shows an isomorphic

order 2 Markov model, in which the number of states has been multiplied by the

size of the alphabet. The same eight transitions shown in Figure 3.1(a) appear in

Figure 3.1(b), with all transitions generating ana leading to statea and ab leading

to stateb. Although the transition probabilities are still dependent on the previ-

ous two characters, the immediately previous character is implicit in the state and

transitions are labelled with only the previous-but-one character.

Figure 3.1(c) shows an isomorphic order 1 Markov model: again the number

of states has been multiplied by the size of the alphabet; andagain the same 8

transitions appear. Generating a pair of ‘a’s leads to stateaa, generating ana then

a b leads to stateab, and so forth. In this case the proceeding two characters are

implicit in the state. Such order 1 models can then be used in software and tools

such as HTK [166].

Computational linguistics uses terms such asn-gram, uni-gram, bi-gram and tri-

gram [73, 120, 3] to denote the order of models, while information sciences refer

to the order of models [4]. Table 3.2 shows the relationship between these two

terminologies.

Markov models are often represented using a table, with cells representing the

transition probabilities between each pair of states and each symbol, but these grow

29

x
i

P(x
i−1

=b,x
i−2

x
i

P(x
i−1

x
i−2

x
i

P(=b| x
i−1

x =b)
i−2

x
i

P(=b| x
i−1

=b,x
i−2

x
i

P(=b| x
i−1

x
i−2

x
i

P(x
i−1

x =b)
i−2

x
i

P(=b| x
i−1

=b,x =b)
i−2

=a,

=a)

=a, =a)

x
i

P(x
i−1

=b,x =b)
i−2

=a|

=a| =a,

=a)=a|

=a| =a, =a)

(a)

a b

P(x
i
=b| x

i−1

P(x
i

x
i−1

P(x
i
=b| x

i−1
=b)

P(x
i
=b| x

i−1

P(x
i

x
i−1

P(x
i
=b| x

i−1
=b)

P(x
i

x
i−1

=b)

=a)

=a)=a|

=a|=a)

=a)=a|

P(x
i

x
i−1

=b)=a|

(b)

bbba

aa ab

P(xi

P(xi

P(xi =b)

P(xi =b)

P(xi =b)

P(xi

P(xi =b)
P(xi

=a)

=a)

=a)

=a)

(c)

Figure 3.1: Isomorphism in Markov models. (a) an order 3 model, (b) an order 2
model isomorphic to (a), (c) an order 1 model isomorphic to (a) and (b).

30

n-gram Order Meaning

−1 All symbols to be equal probability
Uni-gram 0 Symbol probability based on their frequency in

training data
Bi-gram 1 Symbol probability based on their frequency in

training data following the previous symbol
Tri-gram 2 Symbol probability based on their frequency in

training data following the previous two symbols
Quad-gram 3 Symbol probability based on their frequency in

training data following the previous three symbols
.
n-gram k − 1 Symbol probability based on their frequency in

training data following the previousk − 1 symbols
n + 1-gram k Symbol probability based on their frequency in

training data following the previousk symbols

Table 3.2:n-gram models and models of orderk.

large for high-order models, as the size issk entries, wheres is the alphabet of

observable symbols andk is the order of the model. The isomorphism between

higher- and lower-order models preserves the number of transitions, meaning that

the table for a lower-order model has the same number of entries as the higher-order:

it is not possible to reduce the table size by using the isomorphism demonstrated in

Figure 3.1.

Even with large amounts of training data, it is unlikely thatevery state and tran-

sition of a high-order model is visited during training. Theremaining untravelled

transitions have zero probability, meaning that the model may generate zero proba-

bilities for a sequence seen during testing. The problem, called the ‘zero-frequency

problem’ [146], appears when no non-zero transition existsfrom the current state

to the state that generates the next symbol in the observablesequence. (In hidden

Markov models there can be more than one transition, each emitting a different

symbol (or symbols) in the hidden sequence.) The zero-frequency problem is often

solved by shrinkage (also known as backing off and smoothing[34]), namely the

use of a simpler model to estimate probabilities for zero-frequency transitions in

more complex models.

Many later systems usen-gram methods together with specialised handling of

31

novel characters. Such systems are effective in tackling problems such as Chinese

text segmentation partly because of the large character sets involved. Typically this

involves the introduction of a special token (or character)to model the concept of

an unseen character.

The differences between this approach and the normaln-gram models are high-

lighted by the handling of a known character between a pair ofnovel characters:

. . . a b A d B f g In the current work the unknown charactersA andB are mod-

elled by escaping back to the order−1 model and the known characterb is seen

in a context which has never been seen before (an order0 model). The introduc-

tion of a synthetic novel characterN would enable a probability of encountering the

sequence. . . a b N . . . to be estimated, then. . . a b N d . . . and . . . a b N d N . . .

etc., all without escaping back to the order−1 model. This effectively allows the

concept of ‘the character following a novel character’ to bemodelled, something

conventionaln-gram models cannot do. Part of the reason such techniques are so

important is that novel characters in Chinese text, like novel words in English, are

often nouns [133]: significant information can be inferred simply from novelty.

The zero-frequency problem can solved using escape methods[146], a recursive

case of shrinkage in which unseen transition probabilitiesare estimated by reference

to a lower-order model. Other cases are also common in information extraction

systems, for example, Freitag et. al. [46] escape back to a more general class of

tags rather than to a lower-order of model for the same tag.

There are several studies of the effectiveness of differentsmoothing strate-

gies [34, 144], but there is noa priori reason why one should perform better than

another in the absence ofa priori knowledge about the symbol distribution within

the model. An alternative approach to smoothing is to use Markov as a prescriptive

model and reject outright any sequence containing a zero probability. This approach

may be useful in closed systems or for carefully curated corpora, but is unlikely to

result in robust systems in production environments.

32

Two aspects of Markov models can be trained: the topology (the number of

states and transitions between them) and the weights of individual transitions. In

theory the former aspect can be folded into the latter because: (a) a model with

a transition of zero probability is indistinguishable fromone lacking the transition

and, (b) a model with a state which has only zero probability transitions to it is

indistinguishable from one lacking that state. In real-world situations, with bounded

training data, these are generally treated as separate problems. Model topology

is commonly a fixed pattern, variable but selected or trainedprior to training the

transitions, or trained in parallel to training the transitions (as in DMC [151]). One

fixed pattern of topology is used by PPM.

3.4 Prediction by Partial Matching

A Prediction by Partial Matching (PPM) model of ordern examines the previous

n characters to calculate a probability density function forthe next character. To

calculate the function, PPM keeps a record of sequences ofn characters already

seen and the character that followed them. If a sequence ofn characters is seen that

has not been seen before, then PPM ‘escapes’ back to sequences ofn−1 characters.

If a match is still not found, PPM escapes back to sequences ofn − 2, and so on,

eventually escaping back to the order−1, in which all characters in the observable

alphabet have the same probability.

The PPM model keeps the sequences of characters in a suffix tree, with each

node labelled with the number of times the sequence has been seen [13]. This suffix

tree can be converted to a single state Markov model of ordern + 1. The suffix tree

is an efficient representation of a sparse model (one for which many of the possible

states have not been observed) because unused branches are not expanded. The

equivalent Markov model is an array in which all leaves are present, with those not

seen during training appearing as small probabilities. In the current work, suffix

33

trees are used for all processing.

The PPM model is deterministic [75] (or subsequential [104]) in that it always

has one transition for each output symbol. In this regard it differs from the work of

Lafferty and McCallum which has built non-deterministic HMMs for similar tasks

to those seen in this thesis, using non-deterministic conditional random fields [75].

An additional benefit of the suffix-tree based Markov models over the traditional

table models is that they greatly reduce the cost of introducing extra symbols. In-

creasing the character set size from 8 bit ASCII to 32 bit Unicode incurs a cost only

for those characters are actually used in the training set orwhen the−1 model is

escaped to.

PPM models may seem far removed from the way that humans deal with nat-

ural language text. However, as the following story reveals, it may be closer to

the way that humans deal with natural language text when theyhave no linguistic

information about it [30]:

[A] typesetter working on a Greek text at the Oxford University Press

announced he’d found a mistake in the text. As the typesettercouldn’t

read Greek, his colleagues and then his superiors dismissedhis claim.

But the man insisted. So finally an editor came down to the compositing

room. At first, she, too, dismissed the idea, but checking more closely,

she found there was an error. Asked how he knew, the typesetter said

he had been hand-picking letters for Greek texts for most of his profes-

sional life and was sure that he’d never made the physical move to pick

the two letters in that order before.

This implies that the typesetter had built an implicit modelof which charac-

ters followed which other characters and had sufficient confidence in the model to

question the text.

PPM is an incremental compression algorithm [151] with two widely-known

variants, PPMC and PPMD [57]. PPMD is used in other text-augmentation

34

work [133, 26]. PPMC and PPMD differ in the probabilities they put aside for

unexpected events, seeing a character in a context in which they have not seen that

character before. In a context in whichCt total characters andCd distinct characters

have been seen, PPMC sets asideCd

Ct+Cd

and PPMD sets asideCd

2Ct
. Katz [67] takes

a different approach and for an ordern model usesCn

N
, whereCn is the count of the

number ofn grams that have been seen exactly once andN is the training text size.

PPMII is a PPM variant with special handling for the case in which only a sin-

gleton example of the current context has been seen during training. The occurrence

of such contexts rises with the model order to 60–80% of all contexts. PPMII im-

plementations typically also use adaptive models, and re-scale counts frequently to

favour text seen recently over text seen at the start of training, to give good perfor-

mance on compression corpora [127].

As implemented in this thesis, the PPM model does not store probabilities but

rather counts of occurrences. These counts are converted into probabilities dynam-

ically using an escape method which allocates the probability between seen and

unseen symbols in the observable alphabet [152].

Figure 3.2 shows three representations of the adaptive order 1 PPMD model

built from the string•aabbccabca. . . . The• represents the start of the string. Fig-

ure 3.2(a) is the suffix-tree representation. The tree is notcomplete, for example the

c-labelled node markedx has no transition to ana-labelled node because the string

•aabbccabca. . . contains no sub-stringac. Figure 3.2(b) shows the occurrence ta-

bles for order−1, order 0 and order 1, which correspond to the root node of the

suffix tree, the first row of the suffix tree, and the leaves of the suffix tree respec-

tively. Each non-zero entry in the order 1 table correspondsto a leaf in the tree

above, while each zero entry thus corresponds to missing leaf.

Figure 3.2(c) shows the Markov models of order−1, order 0 and order 1. These

have the same structure as the occurrence tables in Figure 3.2(b), but the occurrences

have been converted to probabilities using escape method D.Each count in the

35

a c a b b c

b c

1

3

1
2

1
21 1 2

3

x

a

4

(a)

k = −1
• 1
a 1
b 1
c 1

k = 0
• 1
a 4
b 3
c 3

k = +1 • a b c
• 0 0 0 0
a 1 1 0 2
b 0 2 1 0
c 0 0 2 1

(b)

k = −1
• 1

4

a 1

4

b 1

4

c 1

4

k = 0
• 1

11

a 4

11

b 3

11

c 3

11

k = +1 • a b c
• 1

11

4

11

3

11

3

11

a 1

5

1

5

1

5

2

5

b 1

16

1

2

1

4

3

16

c 1

20

4

20

2

4

1

4

(c)

Figure 3.2: Three representations of the PPMD model for•aabbccabca. . . .

36

order−1 and 0 tables is divided by the total of counts in the table to obtaina

probability. Each non-zero count in the order+1 table is divided by the total of

counts in that row plus one. The probability corresponding to the extra (plus one)

count is distributed among the zero counts.

Each type of XML tag corresponds to a hidden state and has a separate model

built for it. In the observable sequence the tags are mapped to single charac-

ter symbols. Thus the stringaba<sometag>cbc</sometag>bab is mapped to

aba◦cbc◦bab, with a different symbol corresponding to each pair of tags,with the

•, seen earlier indicating the start of the string, being usedfor the entire string

(what the XML standard refers to as the ‘document element’ [25]). Therefore if

aba◦cbc◦bab is the entire string, it is represented as•aba◦cbc◦bab•.

A distinct PPM model is built for each tag, in this case for• and◦. The models

for • and◦ built from the string•aba◦cbc◦bab• are shown in Figures 3.3 and 3.4,

which have similar structures to Figure 3.2. The• model is built from the strings•,

•a, ab, ba, a◦, ◦b, ba, ab andb•. The◦ model is built from the sub-strings◦c, cb,

bc’’ andc◦.

• occurs in the◦ model because it can be part of the alphabet in which the

context. Even though it cannot be seen within the◦ model, it can appear in the

context which is carried into the model, for example in the string •◦c◦•.

When a◦ is seen in the• model, a transition occurs from the• model to the◦

model. When a◦ is seen in the◦ model, a transition occurs from the◦ model into

the previous model, in this case the• model.

Figures 3.3 and 3.4 show how we can use Viterbi search to find the most likely

sequence of tags in the sequence•abbacbccbbab. . . , the first step of which is shown

in Figure 3.5, which has a lookahead of four. Between each two symbols in the ob-

served sequence, the algorithm calculates the probabilityof there being a transition

within the hidden state (the right branch from each node), and the probability of

there being a transition to the other hidden state (the left branch from each node).

37

b b

a

a

b

1

2

1 2

a

2 1 1

3 3
1

(a)

k = −1
• 1
a 1
b 1
c 1
◦ 1

k = 0
• 2
a 3
b 3
c 0
◦ 1

k = +1 • a b c ◦
• 0 0 1 0 0
a 1 0 2 0 0
b 0 2 0 0 1
c 0 0 0 0 0
◦ 0 1 0 0 0

(b)

k = −1
• 1

5

a 1

5

b 1

5

c 1

5

◦ 1

5

k = 0
• 2

10

a 3

10

b 3

10

c 1

10

◦ 1

10

k = +1 • a b c ◦
• 2

14

3

14

1

2

1

14

1

14

a 1

4

3

20

1

2

1

20

1

20

b 2

12

1

2

2

24

1

24

1

4

c 2

10

3

10

3

10

1

10

1

10

◦ 2

14

1

2

3

14

1

14

1

14

(c)

Figure 3.3: The• model built from•aba◦cbc◦bab•.

38

c c

21
1

1 1 1 1
c

b

b

(a)

k = −1
• 1
a 1
b 1
c 1
◦ 1

k = 0
• 0
a 0
b 1
c 2
◦ 1

k = +1 • a b c ◦
• 0 0 0 0 0
a 0 0 0 0 0
b 0 0 0 1 0
c 0 0 1 0 1
◦ 0 0 0 1 0

(b)

k = −1
• 1

5

a 1

5

b 1

5

c 1

5

◦ 1

5

k = 0
• 1

10

a 1

10

b 1

5

c 2

5

◦ 1

5

k = +1 • a b c ◦
• 1

10

1

10

1

5

2

5

1

5

a 1

10

1

10

1

5

2

5

1

5

b 1

12

1

12

2

12

1

2

2

12

c 1

18

1

18

1

3

2

9

1

3

◦ 1

12

1

12

1

6

1

6

1

6

(c)

Figure 3.4: The◦ model built from•aba◦cbc◦bab•.

39

1
168

3
14

1 1 1

1

11 111 1111 11 1 111

1 1

1

2 120

2
24

1
24

2 12 24 122212212

6 6

5

24 24 24

3
70

3
70

3
130

2
24 24

e

x y

wz

a

b

b

a
48484848

Figure 3.5: The expansion step in a Viterbi search of•abbacbccbbab. . ..

The probability for the left branch can be taken from the right hand tables in

Figure 3.4(c) (for states in the◦ model) or Figure 3.3(c) (for states in the• model).

The probability for a right branch is the product of two probabilities, that of the

transition from one model into the other and of seeing the observed character.

Following the expansion step shown in Figure 3.5 is a pruningstep. Either node

x or nodey must be pruned from the search tree, taking all descendants with it.

Since nodez is the leaf with the highest probability and a descendant ofx rather

thany, y must be pruned. Nodesw andeare discussed in Section 4.3.2.

Figure 3.6 shows the tree after pruning. Nodex in Figure 3.5 has becomex−1

and there are a newx and a newy based on the location ofz, the lowest entropy

leaf. Figure 3.7 shows the situation two steps later. For thefirst time the algorithm

is about to prune thex branch rather than they branch, and insert a◦ tag.

Viterbi search says that even for this demonstration example a lookahead of four

is insufficient to guarantee an optimal tagging: the lookahead must be one more than

the sum of the order of the model (1) and the longest tag length(3). Real examples

typically have significantly longer tag lengths (see the samples in Appendix A) and

40

2
24

1
24

1
6

3
70

1
2

1
12

1
24

1
24

1
12

1
2

3
14

1
2

1
120

x −1

x y

1 1 1 1 111 11 1 1
20 60

2
5

1
70

2
5 70 20 60

2
5 70 20 60 20 60

2
5 70

a

b

b

a

c

11
48 48

z

Figure 3.6: The next expansion step in a Viterbi search of•abbacbccbbab. . ..

often higher-order models, but for clarity a short lookahead has been used in this

example.

3.5 Granularity of Models

Many published reports of text mining, information retrieval and other information

systems model text as words [61]. Thisa priori assumption of segmentation into

words leads to two separate problems:

1. In many contexts it is not clear what is and is not a word. In English two

areas of ambiguity are contractions and abbreviations (forexample ‘i.e.’ and

‘can’t’) and sometimes joined words (for example ‘real-time’ which is used

variously as ‘realtime,’ ‘real time’ and ‘real-time’).

2. Words seen during testing (or practical application) that are not seen during

training raise the ‘unknown-word problem’ [144]. This problem is a variant

41

x −1

3
14

1
2

2
24

1
2

x y

111

a

b

b

a

c
11

20 60
2
5

1
70

11 1

1 1 1 1 1

1
48

60
1
3

1
14

1
3 1410

3 3
10 60

1
24

1
24 2 168 1682 2 2168 168

1
24 24

1 1
24

1
24

1
24

1
24

z

b

c

Figure 3.7: The fourth expansion step in a Viterbi search of•abbacbccbbab. . ..

42

of the zero-frequency problem (see Section 3.3). In many system-evaluation

contexts, the problem is solved by leaking information fromthe testing set to

the training set in the form of a ‘Perfect Lexicon’ containing every word in

the system [17]. In production systems this approach is not possible because,

unless a constraint is placed on the system vocabulary (so-called ‘controlled

vocabularies’ [84, 105]), an unbounded number of words may be seen over

the life of the system.

Approaches to solving the unknown-word problem include merging all un-

seen words into a single class and treating all unknown wordsthe same, which

works surprisingly well for news articles in which most unknown words are

proper nouns, and escaping back to a character-level model,requiring two

models, one at the word level and one at the character level.

An alternative to this is modelling text as a sequence of characters [133]. At first

glance neither of the problems discussed above affects character-based models, but

similar problems arise at a different level of granularity.

1. Unicode allows combining character sequences—characters built from a base

character and combining characters, which add elements to it (i.e. accents or

enclosing circles). All characters in most living natural languages (including

English, Maori and Mandarin) are representable without combining charac-

ters, but should a system see them in input, handling them is problematic.

2. Though the Unicode character set is bounded, it is sufficiently large (many

tens of thousands of characters) that if characters are hyper-geometrically

distributed (as can be expected in natural languages [99, 169]), only rarely

will a system see an instance of every character. Unicode is also expanding,

with more characters being added; in theory a production system could see

characters which were undefined when the system was built.

43

These character-level problems appear to be of a similar nature, if not a sim-

ilar frequency, to the word-level problems. This suggests that the transition from

word to character level has not actually solved the word level problems but rather

transformed them to a lower level.

3.6 Searching in Models

Once built, the models can be used to find the most likely sequence of hidden states

for a sequence of observed states. This is done using a searchtree, in which each

node is labelled with a state in the model. Each node is also labelled with the sum

of all probabilities on the path between it and the root of thesearch tree. Entropy

is inversely related to likelihood [126], and the most likely sequence corresponds to

the leaf node with the lowest entropy.

oldLeaves ← root;
while moreInputSymbolsdo

newLeaves ← ∅;
for leaf∈ oldLeavesdo

newleaves ← ExpandLeaf(leaf);
CalculateEntropy(newleaves);

end
1 oldLeaves ← newLeaves ;

end
result ← SelectLowestEntropyLeaf(oldLeaves);

Algorithm 1: The complete search algorithm.

An exhaustive, or complete, search for the most likely sequence involves a

search space as deep as the sequence is long. This algorithm is shown in Algo-

rithm 1. The functionExpandLeaf takes a single leaf node in the search tree,

examines the state in the model with which it is labelled and adds a new leaf to the

search tree for each out-going transition from the state in the model. The function

CalculateEntropy calculates entropy of the each of these new leaves.

For many interesting sequences this search space is computationally infeasi-

44

ble, but the ‘Viterbi search’ [140] algorithm provides a computationally feasible

searches in situations when only local information matters. The Viterbi proof [140]

guarantees that Viterbi search will find the most likely sequence, provided the model

determines the entropy for a node based on bounded local knowledge, rather than

on global knowledge required by the exhaustive search. Fortunately Markov mod-

els, even high order Markov models, meet this criterion [90]. The length of the

sequence that must be modelled for this local knowledge is called the ‘lookahead’.

oldLeaves ← root;
while moreInputSymbolsdo

newLeaves ← ∅;
for leaf∈ oldLeavesdo

leaves ← ExpandLeaf(leaf);
CalculateEntropy(leaves);
AddLeavesToSet(newLeaves,leaves);

end
2 bestLeaf ← SelectLowestEntropyLeaf(oldLeaves);
3 oldLeaves ← PruneBranch(bestLeaf, newLeaves);

end
result ← SelectLowestEntropyLeaf(oldLeaves);

Algorithm 2: The Viterbi search algorithm.

Viterbi is a beam search, as shown in Algorithm 2. This is expressed as a search

tree which is built independently of the Markov model in use,but with pointers in

every node to a state in the model. The operationPruneBranch takes abestLeaf

from a selection ofnewLeaves, traces parents ofbestLeaf up until it finds a node

which is the parent of every leaf innewLeaves and prunes all daughters from that

node except the one which leads tobestLeaf .

There is an alternative representation, that of a search lattice, in which nodes

from the search tree are not pruned but ‘merged’ with other nodes with identical

state in the underlying models. Merged nodes have the lowestentropy of any of

the nodes from which they were merged, this representing theminimum entropy

path through the search tree (now a search lattice) to the node. The search lattice is

45

either unified with the Markov model or has a similar structure. This representation

is widely used in signal processing and reflects common low-level and hardware

implementations in that field [63].

The stack algorithm, a variant of Viterbi search, uses a sorted list rather than

an explicit search tree. The list is sorted by the entropy of the node and initially

populated with the first symbol. The lowest entropy node is removed from the list

and its children calculated and added to the list. The searchends when a leaf node

is found.

The Fano algorithm, related to the stack algorithm, does notuse a stack but

moves incrementally though the search tree guided by entropy-based thresholds,

revisiting many nodes, but using only tightly-bounded memory, thus making it suit-

able for implementation in hardware. The creeper algorithmis a hybrid of the stack

and Fano algorithms, using complex tables. All three of these algorithms are de-

scribed in detail in Johannesson and Zigangirov, Chapter 6 [63].

Viterbi search implemented as a lattice or tree, the stack algorithm, the Fano

algorithm, and the creeper algorithm all represent different trade-offs between time

and space, and between simple and complex algorithms. The search-tree represen-

tation is traditional in computer science, because it allows a more direct comparison

with other forms of searching; it is used in this thesis for a more natural representa-

tion of the pruning explored in Section 4.3.

oldLeaves ← root;
while moreInputSymbolsdo

newLeaves ← ∅;
for leaf∈ oldLeavesdo

leaves ← ExpandLeaf(leaf);
CalculateEntropy(leaves);
AddLeavesToSet(newLeaves,leaves);

end
4 oldLeaves ← SelectNLowestEntropyLeaves(newLeaves,N);

end
result ← SelectLowestEntropyLeaf(oldLeaves);

Algorithm 3: The Teahan search algorithm.

46

Algorithm 3 shows the Teahan search, a ‘Viterbi-inspired’ [136] algorithm

which has been found effective [133]. Rather than search a fixed distance ahead into

the search space on each increment, it only expands theN lowest entropy nodes at

each level in the tree (line 4).

The Teahan search algorithm is a heuristic: it is not guaranteed to find the lowest

entropy tagging. The Viterbi proof cannot usefully be applied to Teahan search.

This is because the only point at which Teahan search is guaranteed to search the

local search space at every step in the search is whenN is the number of leaves

in the exhaustive search. At this point the Teahan search andexhaustive search

become identical.

For many interesting problems, limited amounts of data withcorrelated hidden

and observable sequences are available for training, but data with only observable

sequences abound. An algorithm to utilise these un-correlated observable sequences

was developed by Baum and is known as the Baum–Welch algorithm [10, 11, 118].

This (Algorithm 4) is similar to Viterbi search with the addition of a step (line

5) that updates the model after the most likely branch has been found [118, 90].

The UpdateModelfunction updates the hidden Markov model to include seeing

bestLeaf.

oldLeaves ← root;
while moreInputSymbolsdo

newLeaves ← ∅;
for leaf∈ oldLeavesdo

leaves ← ExpandLeaf(leaf);
CalculateEntropy(leaves);
AddLeavesToSet(newLeaves,leaves);

end
bestLeaf ← SelectLowestEntropyLeaf(oldLeaves);

5 UpdateModel(bestLeaf);
oldLeaves ← PruneBranch(bestLeaf, newLeaves);

end
result ← SelectLowestEntropyLeaf(oldLeaves);

Algorithm 4: The Baum–Welch algorithm.

47

The Baum–Welch algorithm is a specialisation of ExpectationMaximisation

(EM) which is widely used in machine learning [149] and statistics [60]. McLachlan

and Krishnan [98] describe EM and the relationship between it and the Baum–

Welch algorithm in detail and [18] discusses this relationship mathematically.

The Baum–Welch algorithm is the primary training mechanism for several

information-extraction systems, for learning either the transition probabilities [82,

125, 17] or the model structure [125], or both. In this thesis, the Baum–Welch

algorithm is used only for learning the transition probabilities, the Markov model

structure is imposed by the PPM algorithm and the hidden Markov model structure

reflects the schema of the documents seen during training.

This thesis uses a variant of the Baum–Welch algorithm, in which an entire

document, or group of documents, has tags inserted which arethen used to update

the model, rather than to perform tag insertion and model re-estimation in such a

closely-linked manner. This approach precludes the possibility of intra-document

learning (lowering the entropy of a sequence of symbols in a tag because they have

already been seen) but allows the efficient use of non-adaptive models, and avoids

the cost of ‘unlearning’ during searching. The effect of this is likely to be most

significant for long, single-subject, documents which contain frequent occurrences

of proper nouns and other features which are rare within, or absent from, the training

corpus. Proper and rare nouns are typically introduced in stylised forms [160] which

can then used to update the model for their less stylised subsequent use. Without

the ability to update the model, subsequent uses of the features are likely to be

ambiguous.

Much research on the Baum–Welch algorithm is performed in thecontext of

voice recognition [11, 118], where is it used at the phone level for adapting a model

to an individual’s accent. In voice recognition, the observable sequence is a discre-

tised representation of a continuous signal. The symbols inthe discretised repre-

sentation can be ordered, for example, it is possible to say that 50 dB< 51 dB<<

48

1000 dB. Much of this research cannot be applied to text because the observable

character set in text modelling (characters) has no useful implicit ordering.

The Baum–Welch algorithm is normally used during training. However, if the

sequence being modelled is changing slowly over time, or if there is insufficient

training data to characterise the sequence sufficiently it can be used during testing.

Unfortunately, if a feature is mis-modelled when first seen,the reinforcement of

the Baum–Welch algorithm makes it much more likely that it will be mis-modelled

when seen subsequently, even in contexts which could have been clear if seen by a

model without re-estimation.

3.7 XML and Unicode

This section examines some issues with Unicode and XML and their impact on the

corpora and algorithms used in this thesis. These issues include the assumptions

Unicode makes about text, the semantics of nested XML tags, and the order of

XML attributes. These issues are important because they underpin much later work

in this thesis.

XML is a standard [25] for encoding data and has emerged as theleading stan-

dard for encoding textual documents for archiving, academic study, interchange and

corpus building. XML uses Unicode [138] by default, allowing a large number of

languages and writing systems to be represented. Unicode makes various assump-

tions which make it significantly easier to reason about text, including:

• That characters are unique entities from a finite set.

• That each character falls into exactly one character class.

• That the character class of each character is known.

These assumptions do not hold universally, not even for all documents held

in modern information systems. Handwritten texts or texts printed prior to the

49

standardisation of book printing are particularly problematic because their digitisa-

tion commonly involves more semantic interpretation than the digitisation of later

printed works with known conventions. The Early English Books Online project,1

is an example of a real-world undertaking impacted by these issues. Unicode char-

acter classes are discussed in Section 4.3.3.

1 http://www.lib.umich.edu/tcp/eebo

50

Chapter 4

The System

This chapter introduces the bulk of the new content in the thesis, starting with a

new taxonomy for metadata markup problems. The architecture of the implemen-

tation is introduced, followed by a number of optimisationsand heuristics imple-

mented within it. The search space of these optimisations and heuristics for various

metadata markup problems is then examined together with theimpact of metadata

problems on assessing experimental correctness.

4.1 Metadata

This thesis introduces a new taxonomy for fine granularitiesof metadata problems:

in segmentation metadata, classification metadata, and entity metadata. The remain-

der of this section describes the taxa.

Metadata comprises encoded tags, in ranges of adjacent characters which share

some property, and externalised as XML [25]. XML is a widely-used metadata

format [156, 123, 147].

4.1.1 Segmentation

Segmentation problems involve finding the internal boundaries within text. The

boundaries can be linguistic (e.g. in word or sentence boundaries), semantic (e.g.

between topics) or both (e.g. between index or bibliographyentries). Finding word

boundaries in Chinese, Japanese or Thai text and finding suitable places to seg-

51

document

word

(a)
document

DT NNP IN VBD JJ . . .TOCD

(b)
issue

name location email source date money phone fax URLorganisation

(c)

Figure 4.1: Schema structures for segmentation and classification problems. (a) The
Chinese text segmentation problem. (b) The part of speech tagging classification
problem. (c) The Computists’ Communique classification problem. Details of these
problems and corpora in which they are studied are given in Chapter 5.

ment English, German and French words for line-end hyphenation [77] and all

well-known examples of segmentation problems.

As encoded in this thesis, all segmentation information is destroyed by tag merg-

ing. If adjacent tags are merged, all segmentation information is lost because infor-

mation lies solely in where the tags start and end, rather than in which type of tag a

piece of text falls.

Figure 4.1(a) is the schema for the Chinese text-segmentation problem. It has a

single root-node and a single type of child-tag below it. There is an instance of the

child-tag around each word. The schema for every segmentation problem has this

shape, with a single type of child tag and all characters within instances of that tag

type.

Various approaches have been used to segment text. Many early systems used

simple lookup tables [157], which work surprisingly well onmost text, except novel

characters not seen in training. Most text segmentation systems usen-gram models

or equivalent Markov models [137, 50, 117].

52

Recent segmentation research directions include conditional random

fields [115], and using integrating segmentation with functionality such as

part-of-speech tagging [58] and proper noun extraction [168]. Combining segment-

ation with higher-level processing allows leveraging segmentation to help solve

other natural-language processing problems and the results of the higher-level

processing to fine-tune the text segmentation.

4.1.2 Classification

Classification problems involve classifying textual elements (typically words or

characters) into one of several classes. Many classification problems are referred

to as tagging in the information extraction and document understanding communi-

ties, but this name has been avoided, because all of the problems discussed here

involve inserting tags—literally ‘tagging’. The term classification is used in ma-

chine learning to refer to problems which involve placing aninstance into one of a

set of classes, and it is used here in the same manner.

Classification metadata is immune to tag merging. If two adjacent tags of the

same class are merged, no knowledge is lost, because the extracted information lies

solely in which type of tag text falls. Similarly if a tag is split in two, no information

is lost, provided the two new tags cover the same characters as the previous single

tag.

Figures 4.1(b) and (c) show the schema structures of classification problems.

The schemas have a single root node (representing the document), and each of

the classes has a node directly connected to this root node. The schema for ev-

ery classification problem has this shape, with a number of types of child tags and

all characters within instances of these child tag types.

Much early work on classification problems was performed on part-of-speech

taggers, drawing on traditional debates on the role of grammar in language. Several

early systems were grounded in distinct schools of linguistic theory, but performed

53

relatively poorly. Later approaches have used more genericstatistical modelling

techniques to better success.

The Brill tagger [28, 29] first trains a rule-based tagger and then learns transfor-

mation rules based on the errors of the rule-based tagger. The transformation rules

allow for super-adjacency and higher-level reasoning, neither available to conven-

tional Markov models. Super-adjacency, looking not at immediately adjacent words

but at those several words away, allows wildcard-like effects. Applying rules is fast,

so the whole system runs quickly, and it is widely used and well respected.

The MUC problems can be considered classification problems,but the focus is

on information extraction: the inferred information is notembedded in the docu-

ment text, but either included in the document header or completely separated from

the document. Many problems contain higher-order reasoning outside the scope of

text augmentation considered in this thesis. For example, the title Presidentand

the nameBill Clinton can be inferred to refer to the same individual combined as

President Bill Clinton. Classification can identify title and name, both together and

separately, but not perform the higher-order reasoning to link the instances or to

present the separate components combined into a single sequence.

4.1.3 Entity Extraction

A superset of segmentation and classification, entity extraction, finds bounded sec-

tions of text that belong to a particular class. If adjacent tags are merged, some

information may be lost, since information lies both in which symbols are in which

class of tag and in where the individual tags start and finish.

Because entities have both a range and a depth, it is possible for entities to be

nested, introducing extra complexity. Nesting of a tag within another of the same

type is a technique used relatively widely in grammar-basedlinguistics. It is not

inherently more complex than nesting a tag within a different type of tag.1

1However, the current work does not handle such cases gracefully, as explained in section 7.4

54

. . .title editor address publisher date

month

bibbody

bibliography

author journal

lastfirst jrlast

yearname

lastfirst jrlast

name

Figure 4.2: Schema structure for the bibliography entity extraction problem. Details
of this problem and corpus in which it is studied are given in Chapter 5.

Figure 4.2 shows the schema structure for the bibliography corpus, an example

of entity extraction in which the entities such as author names, article, titles and

conference names are marked up. The schema for entity extraction problems allows

arbitrary nesting of tags.

Bray [26] showed that, on a small sample, hierarchical tagging of personal

names into first and last parts hindered the overall identification of names, but the hi-

erarchical tagging of email addresses into username and host parts aided the identi-

fication of email addresses. The failure of hierarchical tagging of names in this case

appears to be at least in part caused by the small number of names used. Wen [144]

used eight tags from an early version of the bibliography corpus (see Section 5.2)

and achieved an F-measure of 76%.

4.1.4 Limitations and Constraints

Text augmentation is not a universal method of inferring metadata. There is a range

of text-augmentation problems that fall outside this taxonomy, including those with

55

overlapping structures, those with attributes that are continuous numeric values, and

those with escapes to the XML Schema ANY tag. The taxonomy is unsuitable for

the coarser-grained metadata, such as document level or collection level informa-

tion.

There are certain constraints derived from the XML tagging used (see Sec-

tion 2.5):

1. Half the tags are opening tagsttagname and half are closing tagst/tagname.

2. Only the most recently opened unclosed tag may be closed next.

3. Each opening tag must be separated from the correspondingclosing tag by at

least one data point from the underlying sequence.

4. No two tags of the same type are opened between any two characters.

5. Tags do not have attributes.

Constraints 1 and 2 are a restatement of the well-balancedness constraint of

XML. Constraint 3 is not present in XML, but is present in the current representation

to rule out the proliferation of arbitrary numbers of empty tags.

Constraint 4 is also not present in XML but is introduced here in order to make

the sets of tags enumerable, both a consequence of implementation choices and a

prerequisite for calculating the size of search spaces. Thelack of attributes has been

discussed in Section 2.5.2.

4.2 Architecture

The implementation used in this thesis is called ‘ColloquialEntropy Markup’ or

CEM. CEM is built in pure Java [52], no platform-dependent library bring used.

All input and output of data is performed using the Apache / Xerces implementation

of the standard Java XML Document Object Model (DOM) [154]. In this thesis a

56

Figure 4.3: The structure of a CEM model, hidden states (square boxes) with asso-
ciated PPM models (circles).

deliberately standards-based approach was taken largely in response to difficulties

encountered Teahan’s [133] implementation.

CEM uses Unicode throughout and recursive modelling of tags,the latter en-

abling it to tackle the more challenging entity-extractiontasks, as well as those of

segmentation and classification. There are two main internal data-structures, the

model and the search tree. DOM is not used in the internal data-structures, because

when the software was first designed, the DOM was immature andit was not clear

that it would prove as stable and effective as it has done.

4.2.1 The Model

The structure of the hidden Markov models implemented in CEM is shown in Fig-

ure 4.3. Each of the circles is a PPM model in the form of a suffixtree, as shown in

Figure 3.2. Each of the squares is a hidden state in the hiddenMarkov model; the

associated PPM model is the Markov model for that hidden state.

The presence of two characters without a tag between them is represented as

a transition between two states within the same PPM model. The presence of two

characters with one or more tags between them is representedas a series of one

or more transitions between states in different PPM models (or between states in

the same PPM model in the case of closing tags immediately followed by opening

57

tags). Closing tags indicate transitions up, towards the root of the hidden Markov

model and opening tags indicate transitions down, towards the leaves of the model.

XML well-formedness is enforced by starting in the root of the hidden model at the

start of the sequence and by forcing a return to the root by inserting close tags at the

end of the sequence.

Figure 4.4 shows the relationship between the suffix tree representation of

Markov models used in CEM and a more traditional representation. Nodes are

numbered for identification. The implementation uses only the suffix tree during

training and testing, although it can output low-order Markov models for manual

validation. Figure 4.4(b) is directly convertible to a tabular format.

Each state is adjacent to an end state, because each state hasanα transition from

it. When building PPM models,α is treated as just another letter in the alphabet:α

represents one third of the alphabet in Figure 4.4(b). Having multiple start and end

states is unusual for a Markov model used in an HMM, but is natural and efficient

to implement when suffix trees are used, because the suffixes can have the extra

character added for hidden state transition prepended (α in this case), and be carried

from one hidden state to the next.

The CEM model is implemented as shown in Figure 4.4(a): a simple tree, with

each node labelled with a character and a number. The tree representation allows

branches to be expanded as and when they are first seen during training, saving

memory on unseen branches.

Transition probabilities are computed dynamically from counts, using escape

methods, in the manner of adaptive text compressors [146]. Counts rather than

probabilities are stored, so the escape method can be changed after training. This

feature is desirable during experimentation, but unlikelyto be important in produc-

tion environments.

CEM models are serialisable: they can be streamed to a file using standard

Java serialisation and later streamed back into memory intact. Models are streamed

58

32 4

8 106 11 12 1375

1

ba

9
baa a

b bα

α

α α

(a)

6

13

12

11

108

5

7

9

b

α

α

α
α

α
b

b

b

b

α

α

b

a
a

a a

a

a

a

b

b

b

a α

a

α

b

(b)

Figure 4.4: The structure of a PPM model, (a) as a suffix tree, in which leaf nodes
(5–13) are reached by navigating from the top of the tree eachtime an entropy
is calculated, using the suffix of recently seen characters,and (b) as a finite state
machine using traditional Markov model notation, in which apointer to a node
is used for state rather than a suffix and the next node is foundby traversing the
transition labelled with the current character.

59

through a gzip [88] stream reducing their size by approximately 90%, primarily

because Java serialisation focuses on issues such as portability and flexibility rather

than output size. No experiment was undertaken relating thesize of training texts

to the size of streamed or in-memory models. Streaming models to and from disk

allows the reuse of models across testing sessions.

4.2.2 Differences between CEM and other systems

There are two key architectural differences between CEM Markov models and com-

parable systems: the handling of context between models andthe symmetric, recur-

sive structure of the hidden states. This section examines these differences in more

detail.

Systems such as HTK and SMI have Markov models with a single start state,

so that no matter how much context is taken into account within the models, each

transition between hidden states results in a complete lossof context. HTK partly

overcomes this by having a large number of hidden states in a complex structure.

When moving between hidden states, CEM prepends a single character to the con-

text for each transition (and thus each tag that is opened or closed). This is seen,

for example, in theα symbol in Figure 4.4. For tagging problems with many fine-

grained, deeply-nested tags this can represent a considerable loss of context, but for

lightly-tagged text with a PPM model of non-trivial order the loss is less significant.

This retention of context allows for the efficient modellingof the situation in

which tags are marked by a distinctive characters. For example, consider the frag-

ments:

. . .<x> [a] </x> b

and

. . . [<x> a </x>] b

When CEM calculates the entropy forb with an order 3 model, in each case

it has a full context to use for the calculation, and avoids the need to escape to a

60

lower-order model. This is not true for most other Markov model implementations.

CEM hidden models have a symmetric, recursive structure, reflecting the well-

formedness requirement of the XML from which it is automatically generated. This

differs from the flat (non recursive) model of SMI and genericfinite-state machine

model of HTK and other voice-recognition systems. The flat model is sufficient

for segmentation and classification problems, but not for entity extraction prob-

lems. The added complexity of a generic finite-state machinemodel is used in

voice recognition to represent models of sentence-level structure, based on separate

analysis and testing. While there are certainly areas of textaugmentation which

might benefit from such generic models, it is hard to imagine how they would be

readily incorporated into CEM’s low human-input approach.

4.2.3 The Search Tree

The search tree is the second of the two main data structures in CEM. Each node in

the search tree is labelled with:

• the current character from the input stream;

• any XML tags inserted immediately before the current character;

• the current states in the hidden Markov and PPM models; and

• the cumulative entropy of traversing from the root of the search tree to this

node.

There are two types of search tree implemented in CEM: Teahan search (see

Algorithm 3 on page 46) and maximum lookahead search. When themaximum

lookahead is used with a sufficiently long lookahead, it is a true Viterbi search.

Except where explicitly stated, the maximum lookahead search (see Algorithm 2

on page 45) is used.

61

4.2.4 Full Exclusion

The PPM escape methods, as implemented in this thesis, differ from the standard

escape methods because they do not use full exclusion. That is, when an ordern

model is escaped from back to ann − 1 model, then − 1 model is not modified by

removing characters which appear in the ordern model. Removal of these charac-

ters from then − 1 model is safe because they have already been considered in the

n model. This variant has been dubbed PPM-SY after the initials of the author, to

differentiate it from other forms of PPM.

The effect of not using full exclusion is to modify slightly the action of the

escape methods used. As noted on page 32, there is noa priori reason either to

think that one escape method should model a sequence better than another, or when

using PPM for text augmentation to suggest that PPMD should give better results

than PPM-SY.

When using PPM to drive an arithmetic encoder, using PPM-SY would squan-

der a small amount of probability whenever a model is escapedfrom, resulting in

a longer coded text, and would thus be undesirable. In text-augmentation applica-

tions, the absolute entropy values are not important, only the relative values: the

coded text is never used or produced so the length is irrelevant.

The choice not to use full exclusion was made for reasons of efficiency: per-

forming set operations on large character sets in the inner loop of a computation

is understandably expensive. It is expected that the cost offull exclusion will be

substantially higher for larger character sets than for small ones. A version of PPM

with full exclusion is tested in Section 6.1.

The implementation of full exclusion calculates the exclusion dynamically as it

occurs. An alternative implementation was considered in which exclusions were

calculated the first time they were used, and then cached for reuse thereafter.

This would have consumed considerable extra memory, particularly for the large

character-set segmentation corpus (see Section 5.3), for which the size of the model

62

was an issue.

4.3 Optimisations and Heuristics

The pruning of search trees using optimisations and heuristics to enable them to be

searched as efficiently as possible has a long history in computer science [71]. This

section applies this tradition to the search space of text augmentation. Optimisa-

tions are techniques that improve the efficiency of problem solving without altering

correctness. Heuristics are techniques that improve the efficiency of problem solv-

ing but may potentially reduce correctness. This section looks first at techniques

and then at how some of them affect the search spaces in three different classes of

text augmentation.

4.3.1 Viterbi Optimisation

Viterbi search [140, 141] (Algorithm 2, page 45) is an optimisation of complete

search (Algorithm 1, page 44), which Viterbi proved [140] has no impact on cor-

rectness provided the lookaheada is large enough and the encoding scheme has the

right properties. For text-augmentation problems ‘large enough’ is the maximum

possible length of a tag, plus the order of the PPM model in use, plus one.

Relating search-space size to the maximum length of the tags being inserted

means that some tags require smaller search spaces than others. Inserting short tags,

such as personal names or parts of speech, gains more advantage from the Viterbi

search than do large tags such as the<html> or <body> tags in XHTML [114]

which contain an entire document.

Figure 4.5 shows an example of Viterbi search space, with each small black

triangle being the search space for the current increment, page 45) and the large

triangle being the full search space (respectively the for and thewhile loops in Al-

gorithm 2, page 45). Figure 4.5(a) shows the initial search space of deptha + 1,

63

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

n+1

a+1

n-a

(a)

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

(b)

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

(c)
Search space for
full search

Search space for
Viterbi search

(d)

Figure 4.5: Viterbi search of a large search space.

64

before the first pruning of the search space, and the full search space of depthn+1.

Figure 4.5(b) shows the second search space of deptha after the first pruning. Fig-

ure 4.5(c) shows the search half-way though, and Figure 4.5(d) shows the completed

search.

aaa({)(}{)· · ·(}{)· · ·(}{)(}{)(}{x

(a)

aaaa({)(}{)(}{)(}{)(}{)}aa

(b)

◦ a { } () ◦ ? ¦
a 1

8

1

8

1

8

y

8

1

8

1

8

1

8

1

8

{ 1

49

1

49

1

49

1

49

1

49

1

49

6

7

1

49

} 1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

(1

49

1

49

1

49

1

49

1

49

1

49

1

49

6

7

) 1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

◦ 1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

?
1

49

1

49

6

7

1

49

1

49

1

49

1

49

1

49

¦ 1

49

1

49

x

49

1

49

6

7

1

49

1

49

1

49

(c)

? a { } () ◦ ? ¦
a 1

6

1

6

1

6

1

6

1

6
0 1

6
0

{ 1

6

1

6

1

6

1

6

1

6
0 1

6
0

} 1

6

1

6

1

6

1

6

1

6
0 1

6
0

(1

6

1

6

1

6

1

6

1

6
0 1

6
0

) 1

6

1

6

1

6

1

6

1

6
0 1

6
0

◦ 1

6

1

6

1

6

1

6

1

6
0 1

6
0

?
1

6

1

6

1

6

1

6

1

6
0 1

6
0

¦ 1

6

1

6

1

6

1

6

1

6
0 1

6
0

(d)

¦ a { } () ◦ ? ¦
a 1

6

1

6

1

6

1

6

1

6
0 0 1

6

{ 1

6

1

6

1

6

1

6

1

6
0 0 1

6

} 1

6

1

6

1

6

1

6

1

6
0 0 1

6

(1

6

1

6

1

6

1

6

1

6
0 0 1

6

) 1

6

1

6

1

6

1

6

1

6
0 0 1

6

◦ 1

6

1

6

1

6

1

6

1

6
0 0 1

6

? 1

6

1

6

1

6

1

6

1

6
0 0 1

6

¦ 1

6

1

6

1

6

1

6

1

6
0 0 1

6

(e)

Figure 4.6: A set of models and sequences for which the Viterbi assumption does
not hold and Viterbi search fails. (a) a class of difficult sequences (b) a single
sequence (c) top-level Markov model (d) model for? (e) model for¦. x=1 andy=1.

As the following contrived example illustrates, it is not obvious that the Markov

assumption, and with it Viterbi proof, in any form holds for natural language text.

Figure 4.6 shows a Markov model with three hidden states and an alphabet of eight

symbols. Hidden model? models the contents of matched{ } braces (d). Hidden

model¦ models the contents of matched() parentheses (d). The columns of zeros

in the? and¦ models indicate that no direct transitions between them arepossible,

and that transitions must be via the top-level Markov model for the◦ hidden state.

Figure 4.6(a) shows a class of sequences which is problematic with respect to

this model: parentheses and brackets used in ways that do notmatch. Furthermore,

a repeating chain of parentheses and brackets can extend theambiguity indefinitely

65

until some other symbols, such as anx are seen. Figure 4.6(b) shows a string for

which Viterbi search will yield two equally likely hidden sequences. The model

may be changed to prefer one over the other by changingx in ◦ (and adjusting the

other probabilities so that the sum is 1). However, such a solution still requires that

the search sees the end of the chain before pruning the searchtree at the start of the

chain.

Fortunately such situations are rare, none of the datasets presented in this thesis

appears to contain such sequences, and none has been reported in the literature.

Experience [136, 144, 145, 135, 26, 163] has shown that in practice Viterbi search

does work on natural language text.

Figure 4.6 shows a situation in which Teahan Search (Algorithm 3 on page 46)

performs admirably. Teahan Search expands a fixed number of nodes at each level

in the search tree so it is capable of exploring equal entropybranches of the search

tree to an arbitrary depth, providing at each level one node from each branch is

expanded. However, if a branch has higher entropy (for example, y in Figure 4.6(c)

is raised), then it will probably get pruned, even if the lowest global entropy lies

down that branch of the search tree.

4.3.2 Best First Optimisation

The best first optimisation is based on the observation that once a candidate aug-

mentation has been found and the entropy calculated, all nodes within the search

space with higher entropy can be pruned immediately. If a likely candidate aug-

mentation can be found computationally cheaply, and the probability distribution

function is steep (i.e. the model has high discrimination),the search space can be

reduced considerably. In Figure 3.5,e has an log probability of 3

168×130
= 3

21840
, and

nodez has an log probability of 6

14×2×24×2
= 6

1344
= 1

224
: neitherw nor any other

child of e can have a lower log probability (and thus entropy) than thatof nodez,

so nodee need not be expanded.

66

The savings made from best first are difficult to calculate, because they depend

on the probability distribution function for each state in the model and the exact

sequence of symbols seen. In general, however, the savings are larger for probability

density functions that are highly discriminative. Discrimination generally increases

as models are better trained.

The CEM implementation finds a best first candidate by calculating the entropy

of the left most leaf (the only leaf reachable without inserting any tags). This is

the computationally cheapest leaf to find and in many situations it is a low-entropy

leaf, if not the lowest. Hardware and Field Programmable Gate Array (FPGA)

implementations of Viterbi search may avoid the need for thebest first optimisation

by performing this part of the algorithm in parallel [140, 141, 121]. Such treatment

is not possible with text augmentation because of the significantly larger lookahead.

4.3.3 Automatic Tokenisation Heuristic

The automatic tokenisation heuristic is based on the observation that in many prob-

lems there are classes of characters between which no tag ever occurs. For example,

in the Computists’ and bibliography corpora, no tag ever occurs between a pair of

lower-case letters or between a pair of whitespace characters. If no tag is ever seen

in a situation during training, and a sufficient amount of training data has been seen,

it is reasonable not to consider inserting tags in such positions during testing. This

assumption may prove false, which is why automatic tokenisation is a heuristic not

an optimisation.

The saving in search space depends on the structure of the text. However, if text

were uniform words of four letters starting with a capital letter and separated from

the next by a space (. . . Abcd Efgh . . .) and automatic tokenisation meant the

search did not have to consider inserting tags between pairsof lower-case letters,

two of every five nodes in the search space would not need to be expanded. This2
5

approximation is assumed throughout this chapter.

67

Some types of contraction and abbreviation have a direct impact on automatic

tokenisation. For example, the stringJohn Anthony Smithmay have the same search

space asJ. A. Smith, even though they differ markedly in length.

The CEM implementation keeps an occurrence table of possiblepairs of Uni-

code character classes [138], and counts how many tags are seen between each pair.

During augmentation, each node in the search tree is checkedto see whether more

than a threshold number of tags has been seen between the current pair of character

classes, before considering whether to expand the search tree. Common threshold

values include -1, 0, 1 and the default 5.

Unicode characters are divided into a set of 28 classes. The most common

classes seen in the corpora used in this thesis are lowercaseletter, uppercase letter,

other letter (common in the segmentation corpus), space separator, line separator,

decimal digit number, and various classes of punctuation. The classes are partic-

ularly convenient in Java, which uses Unicode throughout [52]. The ANSI C [59]

functionsisspace(), isupper(), isdigit(), etc. have a long history in parsing applica-

tions [2] and would almost certainly have performed well in this role for the En-

glish language corpora. There are been proposals [5] for much more sophisticated

character-level metadata systems in Unicode, but these arenot considered here.

One Unicode character class, the private use class, is reserved for ‘use by soft-

ware developers and end users who need a special set of characters for their appli-

cations. [These characters] are reserved for private use and do not have defined,

interpretable semantics except by private agreement’ [138]. CEM uses these to rep-

resent tags in character-level models, assigning a character to each tag to enable it

to be modelled as just another character within the PPM models: theα in Figure 4.4

and the¦, ? and◦ in Figure 4.6. These characters are used by CEM only inter-

nally, and always mapped to or from full XML representationsof the tags when

externalised.

68

4.3.4 Alphabet Reduction

Alphabet reduction is a heuristic based on the same character classes as automatic

tokenisation. In the bibliography corpus, repeating patterns of punctuation and cap-

italisation involving names in bibliographies were noticed. Names, which are com-

monly unique strings, remain a problem for the PPM model which sees limited

context.

Alphabet reduction merges a class of characters into a single character in the

model. For example, merging all upper case letters toA and all lower case let-

ters toa means thatJohn A. Smith and, Jill K. Jones andandYong X. Xiong and

all merge toAaaa A. Aaaaa aaa. Throwing away this information homogenises

these names. Considerably less memory and training data are needed to produce

high-order models because alphabet reduction reduces the size of the alphabet so

drastically. Empirically, alphabet reduction has raised the maximum order of the

model to between 15 and 25. The performance of alphabet reduction in practice is

examined in detail in Section 6.4.3.

This method is related to methods used elsewhere for finding acronyms [32,

160] using capitalisation patterns for generating candidate acronyms, which are then

winnowed using other techniques. The benefits of alphabet reduction are hard to

model, as they depend on the gains from modelling at a higher order compared with

the loss of information about each character.

4.3.5 Maximum Lookahead Heuristic

The lookaheada required by the Viterbi proof is not always needed in practice, and

previous work [133] suggests that the results of tag insertion commonly converge

at lookaheads much lower thana. The maximum lookahead heuristic is to select a

lower lookahead that represents a trade-off between correctness and efficiency. The

lower lookahead is denoteda′. If a′ is too low, the lowest entropy tagging may not

be found; this may be detectable during evaluation (see Section 2.3.4). Ifa′ is too

69

high, the search space is unnecessarily large.

The CEM implementation collects statistics on the maximum size of every tag,

but leaves the selection of a lower lookahead to the user. Theperformance of maxi-

mum lookahead in practice is examined in detail in Section 6.4.4. Various methods

for limiting the depth of Viterbi search are discussed in [118].

4.3.6 TagC Heuristic

As presented so far, CEM considers every possible combination of tags whenever

it considers inserting any tags. In real documents, however, only limited ranges

of permutations of tags are found. The TagC heuristic involves tracking dur-

ing training the set of all tag permutations seen. For example, the training text

<entry> <author><forenames> Donald E.</forenames> <surname>Knuth.

</surname></author>. . . would add { (<entry> <author> <forenames>),

(</forenames><surname>) and (</surname> </author>)} to the set of permuta-

tions. When tags are inserted, only the permutations seen in training are considered

for insertion (plus closing tags at the end of the file to guarantee that all tags are

closed).

The TagC heuristic has no effect on segmentation problems (since there are only

two states) and only limited effect on classification, because only one tag can be

closed and one opened, limiting the number of permutations.The significantly more

complex schemas involved in entity extraction (see Figure 4.2) give considerable

scope for savings to be made. The savings will be greater for complex schemas

when a relatively small set of permutations is seen during training. The performance

of the TagC heuristic is discussed in Section 6.4.5.

4.3.7 State Tying

State tying is a widely-used heuristic in speech recognition [60], which appears not

to have been used before in text modelling. The insight on which state tying is

70

Figure 4.7: The structure of a hidden Markov model, with state tying. The squares
are hidden states, linked by the solid arrows of the model structure and by dotted
arrows to their associated models.

built is that some states in a large model are similar not by chance but because they

model similar concepts. Thus in a speech-recognition system, the models for the

second half of the words ‘hair’ and ‘pair’ are similar (or at least they are for certain

dialects) even though the words themselves are different and they may represent

different parts of speech. State tying uses a single underlying Markov model to

model several hidden states. The hidden states are not merged—at a higher level

the model tracks the difference between them—but they sharea PPM model and

should require significantly less training data. Figure 4.7shows the hidden Markov

model shown in Figure 4.3 with two leaf states tied.

The key benefit of state tying is the ability to share trainingdata between rela-

tively common and relatively rare tags so as to achieve better performance from the

same amount of training data. State tying only works on entity extraction problems,

because it requires at least two levels below the document root to tie together. Tying

two states in a classification problem would leave two indistinguishable states. In a

segmentation problem there is one (non-root) state, which cannot be tied to itself.

By default CEM performs state tying on all states with the same tagname. The

effect ofnot tying thenametag is examined in Section 6.4.6.

71

4.4 Search Space

As discussed in Section 2.4, the efficiency of abstract computer operations is ex-

pressed by complexity, using theO(x). In the case of the tag insertion methodology

presented here, the parameters are the numbers of tags (t), the lookahead (a) and

the size of the input is the length (n) of the text. This complexity is a reflection of

tagging action, rather than the complexity of the underlying intellectual or syntactic

complexity [16].

If u is a constant andx and y are unbounded positive variables,O(u) ¿

O(x) ¿ O(xu) ¿ O(uy) ¿ O(xy). Algorithms withO(uy) or greater are re-

ferred to as intractable and run in non-polynomial time on conventional computer

equipment.

A line of investigation in the MUC conferences (see Section 2.2.4) was mea-

suring the inherent complexity in the web of atoms in the named entity tasks [7].

This approach relied on a uniform model of textual atoms extracted into a relational

database and a network of inferred relations between them, not readily adaptable

to the approach under consideration in this thesis. It was discovered was that tasks

considered in MUC-5, MUC-6 and MUC-7 had surprisingly similar complexity,

suggesting that the underlying complexity of textual understanding tasks may not

be as great as that of the solutions presented here. This approach is not applicable

to the present work because no web of atoms or equivalent structure is constructed

by systems such as CEM.

This thesis examines only the efficiency of text augmentation by tag insertion,

rather than the building of models which is a prerequisite tothis activity. There is

other work in the area of efficiently building models [97, 133], but it is outside the

scope of this thesis. CEM builds the suffix tree with a hash table from the standard

Java libraries. The hash key is the character leading to the node stored in the hash

value. Character counts are stored in the child node. Character counts are stored

as Java longs and never rescaled (none of the corpora dealt with in this thesis are

72

sufficiently large to overflow a long).

This analysis of search space is dependent on the constraints introduced in Sec-

tion 4.1.4. Removing Constraint 3 would add an infinite number of empty tags into

the search space, and removing Constraint 4 would add an infinite number of non-

empty tags. Therefore analysis includes recursive tags, but only when there is at

least one character between each two open tags of each type.

If a document contains a single character, it could potentially have tags inserted

either before or after that character. By Constraint 3, which forbids empty tags,

any tags inserted into such a document must open before the character and close

after it. By constraint 4, each tag can only open once. If the document is being

marked up using a set oft tags, then0, 1, 2, 3, . . . or t tags could occur before the

character, with the tags chosen being a permutation of thet tags. Thus, the number

of combinations of tags that might be inserted prior to the first character is:

t
∑

i=0

tPi =
t

∑

i=0

t!

(t − i)!

Constraint 3, which prevents the opening of tags that would beempty, and Con-

straint 2 which requires that all open tags must be closed, means the only tags

following the final character in any document are close tags matching those tags re-

maining unclosed. Thus the number of taggings of the entire document is the same

as the combinations of tags that might be inserted prior to the first character.

If a document with the single character ‘a’ is tagged with thetwo tags, ‘<x>’

and ‘<y>’, then there are
∑

2

i=0 2Pi = 1 + 2 + 2 = 5 possible taggings.

In a document of two characters, the same tags might be inserted prior to the

first character as in the case of a one-character document. More tags may occur

between the first and second characters: tags may be closed aswell as opened. The

maximum number of tags that may be opened is directly relatedto the number of

73

tags previously opened:
i

∑

j=0

(
t

∑

k=0

tPk)

wherei is the number of tags opened before the first character.

As before, the tags following the last character can only be the closing tags

of already open tags. This gives the total number of taggingsfor a two character

document as:

t
∑

i=0





tPi ×
i

∑

j=0

t
∑

k=0

tPk



 =
t

∑

i=0

((i + 1) × tPi) ×
t

∑

k=0

tPk

Thus, if a document with the two characters ‘ab’ is tagged with the two tags

the ‘<x>’ and ‘<y>’, then there are1 × 1 × 5 + 2 × 2 × 5 + 2 × 3 × 5 = 55

possible taggings. The formula on the right can be considerably simplified, but the
∑t...

jx=0

∑t
kx=0 tPkx

factor can be factored out.

The number of taggings for a three-character document follows from this:

t
∑

i=0





tPi ×
i

∑

j1=0

t
∑

k1=0





tPk1
×

i−j1+k1
∑

j2=0

t
∑

k2=0

tPk2









=
t

∑

i=0

tPi ×
i

∑

j1=0

t
∑

k1=0

(k1 − j1 + i + 1) ×
t

∑

k2=0

tPk2

and each additional character in the document adds a
∑t...

jx=0

∑t
kx=0 tPkx

term to the

number of taggings, which isO(t2t!) = O(t!) = O(tt).

Classification is significantly simpler, because each character can be put into

only one oft classes, givingtP1 or t options, which isO(t). Segmentation is even

simpler: either a tag is inserted or no tag is inserted, a binary decision, givingO(c)

wherec is a constant.

Table 4.1 gives the number of nodes in search spaces, first forinserting tags

between two characters in a document and then for inserting tags into an entire

document for each variant.

74

4.4.1 The Semantics of Nested Tags

Permutation is a significant contributor to the search space, particularly whent is

large. If the semantics of nested tags (see Section 2.5.1) were changed so that

opening tags occurring between two adjacent characters aresemantically equiva-

lent, independent of order (i.e. widely expected HTML / XHTML semantics), this

would change the permutation to a combination, substantially reducing the search

space for entity extraction. Changing the semantics of nested tags also drastically

reduces the maximum number of Markov models which would be needed in the

case where tags are not used consistently, increasing the usefulness of state tying

(see Section 4.3.7).

Segmentation and classification do not involve nested tags,so their semantics

are irrelevant.

4.5 Teahan Search

Not all of the optimisations and heuristics described abovecan be applied to the

Teahan search algorithm. In particular, those that relate to pruning the depth of the

search space (the Viterbi and best-first optimisations, andthe maximum lookahead

heuristic) cannot be used because the Teahan search does notconsider depth of

search. Automatic tokenisation, which applies to the nodesat which the search tree

can branch, can be used with Teahan search, as can the TagC heuristic, which relates

to the width of the branching.

Algorithm SegmentationClassification Entity Extraction
per Character O(c) O(t) O(tt)
Complete O(cn) O(tn) O(ttn)
Viterbi O(ca) O(ta) O(tta)

Maximum Lookahead O(ca
′

) O(ta
′

) O(tta
′

)

Table 4.1: Search space size.t is the number of tags,t is the document length,
a is the lookahead for Viterbi search,a′ is the lookahead for maximum lookahead
search andc is a constant.

75

x y z
Node in the search

E
nt

ro
py

 o
f n

od
e

on
 th

e
lo

w
es

t e
nt

ro
py

 p
at

h

(a)

x y z
Node in the search

E
nt

ro
py

 o
f n

od
e

on
 th

e
lo

w
es

t e
nt

ro
py

 p
at

h

(b)

Figure 4.8: Scenarios in which Teahan search and Viterbi search can be expected to
perform differently, (a) Teahan search performs well and (b) Viterbi search performs
well.

Both Teahan search and Viterbi search with maximum lookaheadare heuristics

and it makes sense to ask which can be expected to perform better, ormightperform

better, than the other. There is noa priori reason to believe that one will perform

better in the general case, but in specific cases they performdifferently. Viterbi

search can be expected to perform well in situations in whichthere is a great deal of

ambiguity (a small entropy difference between a large number of nodes at the same

level) in the search tree, because it focuses on searching the current, immediate

context. Teahan search will perform better when the search contains long sequences

of low ambiguity interspersed with short sequences of high ambiguity because, by

counting only the leaves, it is able to look effectively pastthe long sequences of low

ambiguity.

76

Figure 4.8 shows two scenarios which illustrate such situations. It shows the

entropy implications of inserting a single tag at various points in a sequence. In

Figure 4.8(a) all the points are high-entropy, exceptx andz which are low entropy.

Viterbi search with maximum lookahead is only capable of determining whetherx

or z is the better place to insert the tag if the difference between them isa′ or less.

Teahan search is capable of making the differentiation no matter what the separa-

tion, provided there are no (or relatively few) other low entropy branching options

betweenx andz. Figure 4.8(b) still hasx andz but also has a range of relatively

low-entropy branching options betweenx andy. In such a situation Teahan search

is likely to prune prematurely atx, whereas Viterbi search with maximum lookahead

is guaranteed to find the best option within thea′ maximum lookahead.

4.6 Evaluation

This section examines how the measures of correctness first introduced in Sec-

tion 2.3 can be used in conjunction with the metadata taxonomy introduced in Sec-

tion 4.1. For each of the measures, each of the three taxa is examined. A new

correctness measure,type confusion matrices, is introduced.

4.6.1 Recall and Precision

Recall, precision, and their combination in the F-measure, are the primary means of

evaluating correctness in information-retrieval systems, but the definition of what

constitutes a document varies for each type of text-augmentation problem.

Segmentation

For segmentation problems the evaluation question is ‘Doesa segment end between

one symbol and the next and was that segment end found?’ Recalland precision

are good measures for evaluating segmentation problems because both operate on

77

to be or not to be

(a)

<to>to</to> <be>be</be> <cc>or</cc> <xnot>not</xnot>

<to>to</to> <be>be</be>

(b)

Figure 4.9: A short quote from Hamlet. (a) without and (b) with part of speech tags.

a binary distinction. Recall and precision are the standard methodology for mea-

suring correctness in the fields of Chinese text segmentation[137, 145, 12, 50] and

Japanese text segmentation [3], both widely-studied segmentation problems.

Classification

For classification problems, the evaluation question is ‘Isthe class predicted for

symboln correct?’, where symbols are the characters, words, sentences or docu-

ments being placed into classes. Recall and precision are standard methodology for

measuring correctness in the fields of part-of-speech tagging [28, 76, 94] and genre

classification [66], which are probably the most widely-studied textual classification

problems.

Figure 4.9(a) shows a short quote from Hamlet and Figure 4.9(b) the same quote

marked up using the tags of the Lancaster Oslo/Bergen part-of-speech corpus [64].

Teahan’s work (from which this example is taken) [133] is a word-based approach

and uses word-based evaluation mechanisms: there are 6 words in the sample and

they are all correctly tagged, giving 6 true-positives. Character-based approaches

see only characters not words: there are 18 characters, including 5 spaces, all cor-

rectly tagged, giving 18 true-positives. Evaluation of theoutput from a character-

based system using a word-based evaluation might be considered. However, this

works for mistakes such as misclassification of an entire word, but fails when only

part of a word or a non-word character is misclassified. Thereare similar prob-

lems in evaluating Optical Character Recognition (OCR) at a wordlevel when word

78

boundaries can be incorrectly identified [73].

The core problem is that character-based approaches are more expressive and

can be wrong in ways that cannot be represented in conventional word-based ap-

proaches. The reverse is not the case, however, and the output of a word-based

system can be compared to that of a character-based system atthe character level.

The expressiveness of character-based approaches definitely has advantages in

some corpora. For example, dates in the Computists’ corpus (Section 5.1) are ex-

pressed as a single word in the form19Jan98which word-based approaches see

as a single word (unless they have customised word boundaries heuristics) and

are unable to do better that identifying it as a date (<date>19Jan98</date>).

Character-based approaches are capable of breaking the dateinto component parts

(<date><day>19</day><month>Jan</month><year>98</year></date>).

The difference in expressiveness applies to all three typesof text augmentation

problem if the standard measurement technique is word-based, but is most obvious

in classification problems such as part of speech tagging.

Entity Extraction

Measuring entity extraction as an information retrieval problem is challenging. The

four basic classes (true positives, false positives, falsenegatives and true negatives)

are accumulated over successive independent trials, but the XML well-balancedness

constraint (see page 56) introduces inter-dependencies between trials.

Figure 4.10 shows inter-dependencies in a small entity extraction problem. The

untagged input text is shown in Figure 4.10(a). The task is toinsert<name> and

<title> tags into the text, as shown in Figure 4.10(b). Figure 4.10(c) shows an error:

the boundary between the first two names has been inserted in an incorrect place:

the tag<name>Smolensky, P., Fox,</name> is a false positive. The independence

criterion is broken because seeing this false positive doesnot just preclude the pos-

sibility of seeing the tag<name>Smolensky, P.,</name>. It also precludes the

79

Smolensky, P., Fox, B., King, R., and Lewis, C. Computer-aided
reasoned discourse. . .

(a)

<name>Smolensky, P., </name><name>Fox, B.,
</name><name>King, R. </name>, and <name>Lewis, C.
</name><title>Computer-aided reasoned discourse. . .</title>

(b)

<name> Smolensky, P., Fox,</name> B., <name> King, R.
</name> , and<name> Lewis, C.</name> <title> Computer-
aided reasoned discourse. . .</title>

(c)

Figure 4.10: Inter-dependencies in a small entity extraction problem.

possibility of seeing the tag<name>Fox, B.,</name>.

The possibility of<name>Smolensky, P., Fox,</name>, <name>Smolensky,

P., </name> and<name>Fox, B.,</name> as names is not precluded if the data

is segmented into a relation before processing. However, such segmented results

could not be merged back into XML using tags such as we are using if these three

names are included.

It is unclear whether breaking of the independence criterion matters. Certainly it

means that recall and precision results from entity-extraction problems are in some

way different from segmentation and classification results, and not directly com-

parable. Recall and precision are the primary means of comparison in the TREC,

MUC and DUC conferences (see Section 2.2.4).

4.6.2 Edit Distance

The correctness of all kinds of metadata used in text augmentation can be measured

using edit distance.

80

4.6.3 Confusion Matrices

As with recall and precision, the effectiveness of confusion matrices on different

kinds of text augmentation problems varies.

Segmentation

Confusion matrices of segmentation problems represent a degenerate case in which

there are only two classes. The matrix contains the four basic measures from the

information retrieval paradigm and is a contingency table:









a1,1 a1,2

a2,1 a2,2









=









true positives false positives

false negatives true negatives









For this reason evaluating segmentation using a confusion matrix or the informa-

tion retrieval metrics produce the same results, but the information retrieval metrics

have higher level metrics (recall and precision) built uponthem.

Classification

Confusion matrices are the standard method of evaluating classification tasks [149].

Their only disadvantage is that they are somewhat verbose, especially for problems

(such as part-of-speech tagging) which have a large number of classes.

Entity Extraction

Confusion matrices have identical independence problems torecall and precision

when used to evaluation entity extraction from text. Confusion matrices assume an

underlying many-class classification task, but entity extraction in the most general

form is more general than this; it is ahierarchicalmany-class classification task. If

the hierarchy depth is bounded in some way, it is possible to re-define the problem

such that every possible state in the hierarchy is a new class. This approach suffers

from problems of combinatoric explosion, leading to large,sparse, matrices which

81

cannot be normalised, since this leads to division by zero.

4.6.4 Type Confusion Matrices

Type confusion matrices are a new extension of confusion matrices suitable for ap-

plication to hierarchical many-class classification tasks. Every node in the hierarchy

is assigned a type, which is the most recently opened tag. Thetype confusion matrix

for a hierarchical classification problem withi classes is:

























a1,1 a1,2 · · · a1,i

a2,1 a2,2 · · · a2,i

...
...

. ..
...

ai,1 ai,2 · · · ai,i

























am,n in columnn and rowm is the number of symbols that should have been clas-

sified in a node of classn that were actually classified in a node of classm.

Type confusion matrices can be used similarly to confusion matrices, but it

should be noted that information has been thrown away. For example, if the se-

quence. . . S. Kraus, and V. Subrahmanian. . .is marked up as:

. . .<editor><name><first>S.</first><last>Kraus,</last></name>and

<name><first>V.</first><last>Subrahmanian</last></name></editor>. . .

rather than as:

. . .<author><name><first>S.</first><last>Kraus,</last></name>and -

<name><first>V.</first><last>Subrahmanian</last></name></author>. . .

theauthor/ editorconfusion would only be apparent in theandsub-sequence. Other

sub-sequences such asKraus, do not have the erroneous tag as an immediately

enclosing tag. This situation is much worse when dealing with classes whose only

content is other classes such as thebibbodytag which always contains a single other

tag.

Type confusion matrices are applicable to any tag insertionproblems. However,

82

when applied to a classification problem, they degenerate toa confusion matrix be-

cause the immediately enclosing tag is the only tag. When applied to segmentation

problems, type confusion matrices degenerate to a contingency table (see page 81).

4.6.5 Entropy

All types of text augmentation can be evaluated using entropy. Care does need to be

taken to avoid using the same model or a model built from the same data for both

augmentation and evaluation. If entropy is being used for evaluation, it is normal

to either use an empty adaptive model or a model built from data which is distinct

from the training, re-estimation or testing data.

When a tag insertion using a Viterbi algorithm, produces an incorrect result, en-

tropy measurements can be used to determine whether the fault lies with the model

or the searching algorithm. If the result produced by tag insertion has lower entropy

than the baseline (or ground truth) text, the model is flawed (i.e. has not seen enough

training data, is not of sufficient order, or is attempting tolinguistically model non-

linguistic features). If the experimental result has higher entropy than the baseline

(or ground truth), the searching algorithm is flawed (i.e. one of the heuristics is

making an assumption that does not hold for this text). This technique is used in

Section 6.4.3 to examine the effectiveness of the alphabet-reduction heuristic.

83

84

Chapter 5

The Text

In this chapter the four corpora used in this thesis are introduced, the problems

posed by the corpora are described and previous work solvingthese, or similar,

problems is discussed.

In the information-retrieval paradigm, a collection of documents is called a ‘cor-

pus’ and is assumed to have some commonality: the documents are either from the

same source, cover the same topic, or are a representative sample of a larger pop-

ulation of documents. Building corpora, especially those with rich metadata about

and within the documents, can be expensive and time-consuming.

In the research community, corpora serve as pools of data forexploratory re-

search [91, 92] and as benchmarks for comparative research [65, 64]. This thesis

uses them for both these purposes. The corpora used here are referred to as: the

Computists’ corpus, the bibliography corpus, the Chinese text-segmentation corpus

and the Reuters’ corpus. Each of these is discussed in the following sections. Short

samples of each can be found in Appendix 1.

5.1 Computists’ Corpus

The Computists’ corpus [136, 135, 148, 26, 144] is composed ofissues of a mag-

azine called ‘The Computists’ Communique’ converted from ASCII text to XML.

Each of the 38 issues is approximately 1200 words in length and consists of a num-

ber of short articles usually followed by a list of job openings. Previous workers

marked up ten features (name, location, organisation, email, source, date, money,

85

phone, fax andurl) by hand, and then made corrections based on the results of the

Teahan’s TMT [135].

(937) 255-2902.<http://web.fie.com/htdoc/fed/afr/wri/any
/proc/any/07209802.htm>. [CBD, 20Jul98.]

(a)

<p>(937) 255-2902</p>. <<<u> http://web.fie.com/htdoc/fed/afr/wri/any</u>
/proc/any/07209802.htm>. [<s> CBD</s>, <d> 20Jul98</d>.]

(b)

<p>(937) 255-2902</p>. < <u> http://web.fie.com/htdoc/fed/afr/wri/any
/proc/any/07209802.htm</u>>. [<s> CBD</s>, <d>20Jul98</d>.]

(c)

Figure 5.1: Corrections in the Computists’ Communique. (a) theoriginal text (b)
the text as received (c) the text used in this thesis.

For this thesis the data was converted from the XML-like format used by TMT

into well-formed XML and a number of systemic errors corrected. Figure 5.1(a)

shows two lines from corpus as it appears in the original text, notice that a URL has

been broken across a line break. Figure 5.1(b) shows the textas used by Teahan,

Bray and Wen [135, 26, 144]. Four tags have been added: phone number, URL,

source and date. Only the first part of the URL has been marked-up as a URL.

The insertion of the URL and email address (not shown) tags wasdone automat-

ically, inserted extra ‘<’ and the URL detection failed when the URL had been

line-wrapped. The text also has un-escaped ‘<’, ‘ >’ and ‘&’ (not shown) charac-

ters, which are non-well-formed XML. Figure 5.1(c) shows the same text with these

deficiencies corrected. This is the version used in this thesis.

The corpus has a number of endemic ambiguity issues: (a) mailing-list names

are listed as sources when derived from the mailing list but not when creation of the

mailing list is announced; (b) many of the organisation names (particularlyApple)

were marked up intermittently and (c) many words are marked up coincidentally.

86

For example, in a discussion about computers from IBM and Sun Microsystems,

Sunis marked as an organisation even when used as a class of computers. PC is

never marked as an organisation. These issues, and the fact that organisations and

sources are named after places and people, and that place names are often coined

from personal names, account for the many of errors previously reported [26, 144].

Several corrections to the corpus are made in this thesis to attempt to resolve

(b) and (c). Two passes were made over the corpus, marking-uporganisations (and

to a lesser extent sources) which had not been marked-up in previous work. This

revised corpus is used everywhere in this thesis except Section 6.2.2, where results

are compared with previous work and therefore the uncorrected data must be used.

To the author’s knowledge the corpus is in the public domain.Copies are available

from the author.

Inserting the ten features into the Computists’ corpus is a classification problem.

Figure 4.1(c) shows the schema structure for the problem. The MUC named entity

problems from the MUC conferences have strong correspondences to thename,

location, organisation, source, dateandmoneytags.

5.2 Bibliography Corpus

The bibliography corpus was created specifically for this thesis from bibliography

records. It was designed to resemble the bibliographies found in the computer sci-

ence technical report collection at the New Zealand DigitalLibrary [153, 109].

The corpus consists of a large number of bibliographies generated by the LATEX /

BIBTEX tool-chain which is widely used throughout technically-oriented scientific

disciplines. It is anticipated that a model trained on the bibliography corpus may

be adaptable for academic fields which use humanities citation conventions by us-

ing the Baum–Welch algorithm (see Section 3.6), but this is not explored in this

thesis. Marking up bibliographies is a first step for severalactivities, including doc-

87

ument linking, bibliometrics [111] and a range of possible integrated reading list,

bibliography and citation systems, making it a desirable feature for a digital library.

A collection of publicly available bibliographic databases1 has been maintained

and expanded by other workers for a number of years. Samples of bibliographic

entries were taken from the same sources as this collection,split into 14682 bib-

liographies with up to 25 entries and formatted using the BIBTEX and LATEX [77]

text-formatting systems. Seven of the standard bibliography styles (abbrv, alpha,

apalike, ieeetr, plain, siamandunsrt) and several different page layout techniques

(article, bookandreport) were used to mitigate secondary effects due to line, col-

umn and page wrapping.

Addition of metadata tags into the bibliographies changed the layout of entries;

line breaks and hyphenation, in particular, were radicallychanged. To avoid this,

each bibliography was processed twice, once using the standard style file and once

using a modified style file which inserted metadata tags around parts of the en-

tries. This process is shown in Figure 5.2. The upper half of the figure shows the

processing of the bibliography (.bib) using the unmodified style file (.sty) to pro-

duce the laid-out bibliography (.bbl) using BIBTEX. This laid-out bibliography was

then processed to a PostScript (.ps) document using LATEX anddvips, and then the

PostScript document processed to a text file (.txt) usingps2txt. The lower half of

the figure shows the processing of the bibliography using themodified style file

to insert escaped XML tags. The resulting two text files were then merged into

a single XML document, taking the layout, whitespace and punctuation from the

text derived from the unmodified style file and un-escaping the escaped XML tags

from the text derived from the modified style file. The resulting bibliographies were

processed using the XML ‘preserve-space’ style to preservewhitespace.

There are several peculiarities in the corpus, largely because of how it was con-

structed.
1 http://liinwww.ira.uka.de/bibliography/index.html

88

1. All first names are marked-up in a single tag rather than each first name in

a separate tag. The BST language2 in which the style files are written has

primitives for laying out names. Marking-up individual first names separately

would have required a modified BST interpreter rather than modified BST

programs.

2. There are inconsistencies in the relative location of punctuation and close tags

at the end of words. The period following an initial is an indication of con-

traction, semantically part of the initial, whereas the period at the end of a

sentence is semantically separated from the word it follows. The tagging at-

tempts to reflect this, but there are some deeply ambiguous cases, particularly

where an initial falls at the end of a sentence and the period fills both roles.

In such cases the punctuation has been included within the tag.

3. Splitting a large bibliography into many smaller ones breaks cross-references

between entries unless both referrer and referent happen toappear in the same

smaller bibliography. Broken cross references appear as ‘[?] ’.

LATEX commands to generate non-ASCII characters in the text are escaped to

Unicode characters. The conversion is based upon the commands observed in the

corpus rather than a comprehensive list of commands, but includes many common

mathematical symbols and letters from a wide variety of Western European lan-

guages (Portuguese, Spanish, German, Polish, Swedish, etc.). Most of the letters

appear in names, either in the name field or as references to people in titles. A

few of the entries were entirely in French. Many bibliography entries with non-

ASCII characters also occur in a Romanised form, with the non-ASCII characters

converted to ASCII characters by bibliography creators.

2The author knows of no comprehensive description of the BST language; the implementation is
part of BIBTEX. It is a stack-based language in which sets of non-recursive macros (called ‘style files’)
are used to format convert entries in a standard format (for which again, a canonical description
appears to be lacking) into bibliography entries conforming to the stylistic conventions of a particular
publication.

89

BibTeX

BibTeX

.sty

.sty

.txt.bbl .ps

.bbl .ps .txt

.xml.bib

merge

Figure 5.2: Data-flow diagram for creating the bibliographycollection.

Escaping non-ASCII characters rather then dropping them outof the corpus

made the corpus significantly less close to the computer science technical report

collection, but significantly closer to bibliographies as they appear in the majority

of electronic documents, and closer to how they were intended to appear. Other

researchers have discarded such bibliographies, at the rate of 6.5% [125].

Many of the discarded bibliographies contain LATEX macros which could never

be processed by standard LATEXṠome appear to be mis-typed macros, but there is

no way to distinguish these from macros which individual researchers have defined

locally. There are also many sets of macros circulating in subject- and language-

specific communities to represent features of interest within those communities.

The lack of namespaces in LATEX means that there is no easy way to differenti-

ate these, and because macro files are imported into the document rather than the

bibliography, isolated bibliographies contain no reference to the file name which

defines (or redefines) macros.

The structure of the schema is shown in Figure 5.3. The tags atlevels B and C

indicate bibliographies marked-up according to certain bibliography and document

styles respectively. All combinations of these were used when creating the corpus.

Tags at level E correspond to tags of different types of documents being referenced.

90

bibliography

. . .

name

article bookincollection techreport manual proceeings phdthesis

author title journal editor address publisher date

abbrev alpha unsortieeetr siam acm plain

bibprocbibreportbibbookbibarticle

bibbody

year month

lastfirst jrlast

B

A

C

D

E. . .

F

G

H

Figure 5.3: Schema for the bibliography corpus with all tags.

91

Tags at level F correspond to the fields in bibliographic records.

The structure of names in the BIBTEX format is somewhat unusual. With four

parts (first, last, van and jr), the structure reflects American English names as con-

ceptualised in the 1980s, but handles rather poorly a numberof features of names

as used internationally, particularly double-barrelled surnames, von parts3 starting

with a capital and names in which the given name follows the surname. One of

the causes is systematic confusion between the portion of the name which is writ-

ten first and the given (as opposed to inherited, parental) portion. These issues are

compounded by the difficulties representing non-ASCII characters in LATEX, for ex-

ample the need to encode ‘Céline’ as ‘C{\’{e}}line,’ and the use of a simplistic

sorting algorithm for ordering the entries.

A number of different workarounds have been developed to force BIBTEX and

LATEX to ‘do the right thing’ in sorting, formatting and hyphenating particular names.

A collection of these can be found in the archives of thecomp.lang.tex news-

group. Other name formats, such as the Library of Congress authority lists [112]

used in the MARC [108, 48] format are actively curated, enabling such issues to

be handled systematically, if not optimally. In this thesis, the original BIBTEX ter-

minology is used because it is precise and clear to workers and tool builders in the

field [77, 101].

Not all the tags shown in Figure 5.3 are used in this thesis. Figure 5.4 shows

only those tags in the corpus which are used in experiments inthis thesis. Note, in

particular, that the tags at levels B, C and E in Figure 5.3 are missing in Figure 5.4.

The variant schema structure shown in Figure 5.5, and explained in Section 4.3.7,

is used in experiments with state tying.

Freitag and McCallum [46, 96] report work on a similar, although non-

hierarchical, corpus initially hand-crafted, then incrementally improved using

Markov models. Citeseer [80] (see Section 2.2.4) also involves bibliographic data,

3In the BIBTEX model of names, fragments such as ‘von’ and ‘van der’ are referred to as the ‘von
part’.

92

. . .

name

title editor address publisher date

year month

lastfirst jrlast

bibbody

bibliography

author journal

Figure 5.4: Schema for bibliography corpus with tags used inthis thesis (with state
tying).

. . .title editor address publisher date

month

bibbody

bibliography

author journal

lastfirst jrlast

yearname

lastfirst jrlast

name

Figure 5.5: Schema for the bibliography corpus without state tying.

93

using a handcrafted multi-step algorithm.

5.3 Segmentation Corpus

The segmentation corpus was derived from the ROCLING segmentation corpus.

which contains about two million pre-segmented words, represented in the Big5

coding scheme. The corpus was converted from Big5 encoding toGB (Guojia

Biaozhun) by Wen [137].

The corpus was further converted from GB encoding to Unicode. After inserting

word tags, whitespace (but not punctuation) was removed and the text split on sen-

tence boundaries into 1000 documents of approximately the same size. The XML

was output as ASCII to force all non-8-bit clean characters tobe converted into

Unicode escapes to reduce the chance of handling errors.

In the resulting corpus, a two character word looks like:<word>时-

候</word>. The corpus also includes western terms (for example, proper

nouns and currency symbols). A thorough review of Chinese text segmentation is

given in Teahan and Wen [137]. As the author neither reads norspeak Chinese, he

is unable to give a detailed analysis. The results of previous workers are shown in

Table 6.7.

The segmentation corpus appears to suffer from the overly ‘optimistic segment-

ation’ described by Wu and Fung [157]. This phenomenon is caused by the ten-

dency for many segmentation algorithms to be biased towardssmaller segments

when faced with even genuine ambiguity.

Insertingword tags into the segmentation corpus is a segmentation problem.

Figure 4.1(a) shows the schema structure for the problem.

94

5.4 Reuters’ Corpus

The Reuters’ corpus is a collection of news articles taken from the Reuters’ news

wire and referred to by Reuters as ‘Reuters Corpus, Volume 1, English language,

1996-08-20 to 1997-08-19’. The articles range from two-paragraph summaries of

financial information to in-depth articles on political or literary topics. The corpus

has been widely studied for a number of purposes, including text categorisation and

clustering [62, 55], information extraction [45, 46, 119],authorship [68], and part

of speech tagging [46].

This is the sort of news discussed on page 1: automatically inserting tags, either

as a first step in a more sophisticated information-extraction process, or simply to

tag articles as being connected to the organisations and locations. This process, or

one similar to it, is performed ubiquitously in the field of news aggregation.

The corpus was prepared for this thesis by taking the first 7471 articles from the

full Reuters’ corpus, removing the document level metadata (title, author, topic and

copyright information) and passing it through the Brill tagger [28], a widely used

part-of-speech tagger that tags every word with a label thatindicates the role it plays

in speech. The tagger’s notion of what constitutes a word is sometimes unusual—

Don’t is regarded as two words anddollar/yenas one word—but the tagger was used

‘out of the box’ according to accepted practice [46, 119]. 11documents containing

URLs, which confused the tagger’s parser, were removed. The full Reuters’ corpus

contains many duplicates [69], but as with other corpora andinformation systems,

the presence or absence of duplicates is not as important as whether the corpus is a

representative sample of the larger population of documents. Given that identical or

similar news articles commonly appear in a number of publication outlets, having

duplicates and near-duplicates in the Reuters’ corpus is a sign of correlation with

‘real-world’ news sources, rather than a sign of a flaw.

The full Reuters’ corpus is large (over 800,000 articles), but only the first block

of articles is used here, since the behaviour of text augmentation on large bodies of

95

text is not the primary interest of this thesis and has been studied elsewhere [133].

A complete explanation of the meanings of each of the 38 tags is contained in [94].

The text of the Reuters’ corpus is copyright Reuters and not forredistribution.

Copies of the corpus are, however, available from Reuters.

Inserting part of speech tags into the Reuters’ corpus is a classification problem.

Figure 4.1(b) on page 52 shows the schema structure for the problem.

96

Chapter 6

Results

In this chapter the effects of applying the earlier discussed optimisations and heuris-

tics to the four corpora discussed in the previous chapter are examined. The cor-

rectness results are then given and, where possible, compared against experimental

results given in the literature. The effects of Baum–Welch re-estimation are ex-

amined and, finally, the effectiveness of individual optimisations and heuristics are

examined.

6.1 PPM-SY versus PPMD

CEM normally uses PPM-SY, and in this section it is compared with PPMD . Fig-

ure 6.1 shows the search time per node of the search in the Computists’ corpus, for

a range of orders of model and a lookahead of six. The search time increases less

than linearly for PPM-SY and more than linearly for PPMD.

Despite the use of leave-one-out cross-validation, the correctness of PPM-SY

and PPMD was identical in all cases except for the case of the locationCapitol

Hill , which was correctly identified as a location by PPMD using models of order

three and four when PPM-SY incorrectly identified it as an organisation. Using an

order-five model correctly identified it as a location.

Figure 6.2 shows the search time per node of the search in the Chinese segment-

ation corpus, for a range of orders of model and a lookahead offour. The time

increases less than linearly for PPM-SY and more than linearly for PPMD. This

increase in the cost is substantially larger than in the Computists’ corpus, probably

97

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7

S
ea

rc
h

tim
e

pe
r

no
de

 (
m

ill
is

ec
on

ds
)

Order

Comparison of PPMD and PPM-SY in the Computists’ corpus

time * 0.15012 + 3.506
PPMD

PPM-SY

Figure 6.1: Graph showing the speed of searching in the Computists’ corpus for
PPMD and PPM-SY. A reference line is included to show that thespeed for PPM-
SY is growing less than linearly with respect to model order.Timings are averaged
over leave-one-out cross-validation.

98

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0.5 1 1.5 2 2.5 3 3.5

S
ea

rc
h

tim
e

pe
r

no
de

 (
m

ill
is

ec
on

ds
)

Order

Comparison of PPMD and PPM-SY in the segmentation corpus

PPMD
PPM-SY

Figure 6.2: Graph showing the speed of searching in the segmentation corpus for
PPMD and PPM-SY. All runs use 900 training documents and a single testing doc-
ument. Results shown are averages over 100 runs.

because of the significantly larger character set involved.PPMD gave better results,

on average, than PPM-SY, with a difference in F-measure of+0.03%, +0.02% and

+0.04% for orders one, two and three respectively.

6.2 Correctness

Correctness (see Section 2.3) is studied on a corpus-by-corpus basis. Leave-one-out

cross-validation is used only for the Computists’ corpus, because that corpus is so

small. In all other experiments, no cross validation is usedexcept where specifically

stated.

99

6.2.1 Granularity and Heterogeneity

Unfortunately text-mining systems of the type being examined in this thesis make

the assumption that text seen during training is the same as the text seen during test-

ing. In this sense they are not general-purpose systems in the way that PPM [133],

bzip [88] or gzip [124] are. How well this assumption hold varies from corpus

to corpus depending in the internal granularity and heterogeneity. For the corpora

described in Chapter 5:

• The Chinese text-segmentation corpus was built from pre-homogenised data,

no variation among the 1000 documents is apparent to the author.

• The Computists’ corpus contains documents which all have thesame struc-

ture, but with considerable variation on subject matter.

• The Bibliography corpus contains relatively homogeneous documents with

two exceptions: (a) those documents generated from personal bibliographies

containing all publications by an individual, and (b) thosedocuments gen-

erated from forum bibliographies containing all publications appearing in a

journal, conference or book series. These documents are entirely an artifact

of the way the data was prepared—an insignificant number of peer reviewed

articles are published in computer science which contain references to only a

single author or source.

• The Reuters’ corpus, by contrast, contains genuinely heterogeneous articles,

ranging from short market-report articles, with columns ofnumeric figures,

to long in-depth articles of political commentary.

Only the Reuters’ corpus is evaluated both at a corpus level and at a document

level (see Section 6.2.5). The other corpora are evaluated at the corpus level.

100

6.2.2 Computists’ Corpus

The Computists’ corpus has been previously studied by Bray [26], using TMT, and

Wen [144]. Bray evaluated extraction based upon a confusion matrix (see Sec-

tion 2.3.3) and this is reproduced in Table 6.1(a). Tables 6.1(b) and (c) show the con-

fusion matrices for CEM on the corrected data using maximum lookahead search

and Teahan search respectively. The values in (a) are measured in words, the values

in (b), (c) and (d) are in characters. Theissuetag is the background: both TMT and

CEM build Markov models for theissuetag but Bray does not report the full results

for this, so the CEM results in (b), (c) and (d) have an extra row.

For most of the tags the CEM results were comparable to, but slightly worse

than the results given in Bray. Because the Bray results are percentages of words

correctly classified and the CEM results are percentages of characters correctly clas-

sified, direct comparison between these results is difficult. Many of the mistakes

shown in Table 6.1 for both systems appear be connected to inconsistencies, as de-

scribed in Section 5.1.

Three of the tags with the best performance (url, email and money), deserve

close attention. The first two can be described using a regular expression and the

last is uniquely and exclusively identified by a single character ($). These proper-

ties make tag insertion much more consistent; they also makemodelling such tags

easier for certain kinds of models. Unfortunately it also makes marking-up using

Markov models pointless: except in extreme cases marking upby regular expression

is always more efficient than marking-up using Markov modelsand searching.

The systemic confusion betweenname, source, location andorganisation, as

discussed in Chapter 5, is clear in all three confusion tables, with greater confusion

for CEM than for TMT.

Another situation in which CEM performs much worse than the Bray analysis

is the fax tag. The most common type of error withfax andphonetags in both

systems is where the fax numbers are mistaken for phone numbers: <p>617-373-

101

d n s l o u e p f m i
[d]ate 93.46 + 6.40
[n]ame 89.35 + 1.31 1.50 7.48
[s]ource + 60.09 2.85 36.62
[l]ocaton + 81.64 4.69 12.89
[o]rg 2.56 2.56 1.6369.23 24.01
[u]rl 100.00
[e]mail 97.34 2.66
[p]hone 82.29 10.71
[f]ax 100.00
[m]oney 100.00

(a)
d n s l o u e p f m i #

[d]ate 91.18 + + + + + + 8.12 10070
[n]ame + 85.49 2.75 1.78 2.02 + + 7.27 10494
[s]ource 1.13 51.97 + 3.02 + + 41.71 9983
[l]ocation + 2.66 1.96 72,38 4.79 + + 17.65 5155
[o]rg + 3.48 2.99 3.6627.50 + + + 60.99 5688
[u]rl + + + + + 95.23 + + 3.11 20023
[e]mail + + 1.14 + + + 93.60 + + 3.30 12164
[p]hone 88.69 9.95 1.36 955
[f]ax 27.86 69.14 3.01 499
[m]oney + 99.47 + 1133
[i]ssue + + 1.14 + 1.47 + + + + 95.92 317169

(b)
d n s l o u e p f m i #

[d]ate 91.04 + + + + 8.22 10098
[n]ame 87.92 2.19 1.26 3.92 + 4.64 11167
[s]source + 1.27 64.02 + 5.99 + 27.81 14229
[l]ocation + 2.46 1.26 75.82 11.38 + 8.75 5534
[o]rg 2.57 2.13 4.2758.48 + 32.40 12212
[u]rl + + + 95.90 + + 2.88 20089
[e]mail + + + + + 1.08 94.70 3.38 12186
[p]hone 75.03 8.88 16.10 969
[f]ax 16.43 57.11 26.45 499
[m]oney + + + 90.35 7.98 1140
[i]ssue + + + + 1.28 + + + + + 96.94 303100

(c)
d n s l o u e p f m i #

[d]ate 92.23 + + + + 6.99 10075
[n]ame 92.46 + + 2.65 3.49 11135
[s]source + + 68.11 + 5.12 + 25.57 13881
[l]ocation 1.62 + 84.53 7.87 5.86 5619
[o]rg + 2.03 2.47 2.3966.47 + 26.53 12169
[u]rl + + + 96.48 1.00 2.25 19668
[e]mail + + + + + 96.55 2.23 12436
[p]hone 72.55 6.60 20.85 969
[f]ax 1.20 4.21 70.14 24.45 499
[m]oney + + + 88.80 9.58 1107
[i]ssue + + + + 1.09 + + + + + 97.48 301326

(d)

Table 6.1: Confusion matrices for the Computists’ corpus (a) from Bray using
TMT [26] page 70, (b) from CEM/maximum lookahead using the same data as Bray,
(c) from CEM/maximum lookahead using corrected data, (d) from CEM/Teahan
search using corrected data. Character counts (#) are in characters, all other values
are in percent, ‘+’ indicates a figure lower than 0.99%. A lookahead of 6 was used.

102

Author Recall Precision F-measure
Wen 65.29 73.35 69.09
CEM/maximum lookahead (Wen’s data)49.17 63.38 55.38
CEM/maximum lookahead (corrected)71.06 61.21 66.13
CEM/Teahan (corrected) 74.65 67.71 71.18

Table 6.2: Accuracy for the Computists’ corpus, from Wen [144] page 75 and from
the current work. A lookahead of 6 was used.

5358</p>, <p>617-373-5121</p><f>Fax</f>. In CEM, because of the small

number offax tags seen (28 at most), the model for thefax tag is the closest to an

untrained model: it is the least biased against apparently random sequences. The

range of characters seen in thefax tag is narrow, but not significantly narrower than

phonetag. This results in errors such as:<f>REAL</f>basic, <f>pp. 43-45</f>,

andUnix <f>ht://Di</f>g search.

As predicted in Section 4.5, CEM with Viterbi search performed differently

from CEM with Teahan search. With the ability of Teahan searchto ‘see’ long

distances it might have been expected to correctly classifyphone and fax numbers,

which commonly have the differentiator at the end. Unfortunately the numeric con-

tent of these tags, being effectively random digits, has high entropy which lim-

ited the gains made here. The clearest improvements were situations such as(703)

306-0599 Faxwhich maximum lookahead search broke in two as:<p>(703) 306-

0599</p><f>Fax</f>, whereas Teahan search correctly marked-up as<f>(703)

306-0599 Fax</f>.

Wen [144] expresses accuracy in terms of recall, precision and error rates for

each type of tag, as shown in Table 6.2. The Wen model is trained on 25 documents,

whereas this thesis uses leave-one-out cross-validation for the Computists’ corpus.

The apparent reason for the better performance of Teahan search in this case is that

many of the ambiguities are of type (a) rather than type (b), as shown in Figure 4.8.

The values in Table 6.1 bear no direct relationship with those in Table 6.2 because

the former are at the word (or character) level, whereas the latter is the recall and

precision of whole tags (excluding the issue tag).

103

name

pages

date

volume

number

title

journal

booktitle

publisher

address

bibliography

character
count

97
.8

0
1.

46
+

+
+

+
+

62
6,

91
7

98
.7

9
+

+
+

+
14

0,
26

0
+

+
97

.3
2

+
1.

07
+

+
+

+
+

16
1,

12
8

+
+

+
95

.3
2

+
1.

05
+

+
+

+
2.

99
31

,1
82

+
+

1.
32

96
.5

4
+

+
+

1.
03

11
,3

21
1.

47
+

92
.5

8
+

3.
84

+
+

1.
53

1,
51

0,
75

7
+

+
+

1.
31

94
.5

5
+

+
+

3.
17

27
6,

28
5

+
+

+
7.

54
+

88
.6

1
+

+
2.

83
27

2,
45

8
+

+
+

+
3.

45
1.

72
+

82
.7

1
3.

82
6.

93
98

,6
70

+
+

+
+

2.
32

+
1.

62
3.

92
86

.7
7

3.
99

10
1,

18
7

0.
61

+
+

+
+

2.
31

6.
55

2.
56

1.
37

1.
01

84
.6

8
93

7,
92

8

Table 6.3: Confusion matrix for the bibliography corpus withoutnote. Counts are in
characters, all other values are in percent, a ‘+’ indicates a figure lower than 0.99%.
Order 6 models trained on 6000 documents and tested on 1000 documents with a
lookahead of 5.

6.2.3 Bibliography Corpus

Because the bibliography corpus was developed in the presentstudy, there is not a

wide range of results from other systems to compare the results from CEM against.

Wen [144] gives some results on three tags (publisher, dateandpages) from an early

version of the corpus, but these results are not sufficientlydetailed for comparison.

Table 6.3 shows the confusion matrix for a large number of tags in the biblio-

graphy corpus. A significant number of the errors were causedby use of the note

field in BIBTEX. This field allows arbitrary text to be inserted at the end ofan entry.

Often this extra text is an abbreviated reference (for example: (Published version of

104

UWCS Tech. Report No. 226., 1974)), information which should ideally be in other

fields of the reference (such asLecture Notes in Computer Science 866should be

in the series and number fields) or a citation (such asErratum in it JPL 25:5, 2000,

pp. 541–542.). In Table 6.3 the note tags were stripped prior to tagging, the text

previously included in them appeared at the document level,polluting the trained

model by adding noise.

The root of these errors is that the generation of the corpus (and all BIBTEX

processing) assumes that the BIBTEX file format is prescriptive, when in fact it is

descriptive: users will put whatever they need to into a BIBTEX file to get the entry to

look ‘right’ in the style they are using. This leads to a situation in which the meaning

of bibliographic entries (when formatted for publication)is clear to researchers and

librarians passingly familiar with the field, but the content of the BIBTEX fields does

not correspond to field definitions. No increase in lookahead, training data or model

order can remedy such a problem.

A different kind of error is seen at the boundary between the author list and

the document title because of the wide variation in layout ofthe author list and the

tendency of titles to start with lengthy proper nouns which are easily mistaken for

author names. The first word or two of the title are sometimes tagged as author

names, either as part of the last genuine author name or as a separate name. This

kind of error is strongly linked to the lookahead (see section 6.4.4): as more context

is taken into account these errors diminish.

Table 6.4 shows a confusion matrix with thenotetag added. The overall perfor-

mance is not substantially different, but that for thenumbertag drops considerably.

This appears to be because many of thenotetags contained numeric sequences (see

examples above) and separatingnotetags out from the background model enables

it to effectively model numbers.

Table 6.5 shows the type confusion matrix for the bibliography corpus. The

bibliography tag is still the document tag, but almost all the content is now with

105

nam
e

pages

date

volum
e

num
ber

title

journal

booktitle

publisher

address

note

bibliography

character
count

97.75 + 1.14 + + + + + 67807
98.32 + + + 13245

+ 96.40 + 1.41 0.05 1.16 + + + 15275
+ 96.09 + 1.17 0.09 + + 1.63 3426

1.22 87.13 1.82 2.84 6.99 987
2.20 + + + 91.89 + 3.84 + + + + 150900

+ 1.08 94.30 + 1.18 1.22 2.05 29738
+ + + 5.42 + 90.90 + + + 1.49 27407
1.14 4.96 1.89 1.1283.20 2.11 1.90 3.69 11178
+ + + 1.78 + 1.39 6.82 85.14 1.38 1.95 12715
+ + + 2.43 + 1.55 + 93.40 1.17 16476
+ + + + 1.57 3.12 3.54 1.49 + + 87.49 82518

Table
6.4:

C
onfusion

m
atrix

for
the

bibliography
corpus

w
ith
n

o
te.

C
ounts

are
in

characters,
all

other
values

are
in

percentage,
a

‘
+

’
indicates

a
figure

low
er

than
0.99%

.
O

rder
6

m
odels

trained
on

6000
docum

ents
and

tested
on

100
docum

ents
w

ith
a

lookahead
of5.

106

bibbodytags which contain the bodies of the references (but not the leading refer-

ence key in bibliography styles which use one).

Many of the characters mistakenly marked-up asbibbodyare punctuation (and

the note tag as explained above), whereas the errors in thetitle column mainly

represent the first few words of thetitle confused with the end of the preceding

author tag. As in Tables 6.3 and 6.4, there is confusion betweentitle andbooktitle

becausebooktitleis used in the place oftitle when there are two titles to a document

(i.e. a chapter title and a book title, or an article title anda collection title).

There is confusion between thepublisherandaddresstags because manypub-

lisher tags have the address of the publisher included within them,especially in

entries forproceedingsand inproceedingsin which theaddresstag is reserved for

the address of the conference rather than the publisher.

In Table 6.4, thenamefrom Table 6.3 has been split into five separate tags:

editor, author, name, first and last. There is considerable confusion among the

various tags, but surprisingly little difference between the editor and nametags,

because thenameis almost always immediately following abibbodystart tag while

aneditor tag is in the middle of thebibbodytag.

Table 6.6 shows the effect of increasing model order—as the model order in-

creases, the experimental result converges with the expected results, the number of

defects falling. Placing name tags is particularly challenging because of the diver-

sity in the way names are laid out in the training text.

The results given here appear much better than the figures given for other sys-

tems, such as [46]. However, such a direct comparison is at best an approximation

because of the different granularity at which the results are measured and the dif-

ferent number of tags. Informal comparison of these resultsto uncorrected results1

listed on the Citeseer website2 suggest that a significantly better determination of

1The Citeseer system allows for users to correct or complete bibliographic information. These
corrected entries are not considered here.

2 http://citeseer.nj.nec.com/cs

107

bibbody

editor

author

nam
e

first

last

pages

date

volum
e

num
ber

title

journal

booktitle

publisher

address

bibliography

character
count

79.51 + + + + + + + + + + 7.47 5.17 1.78 1.55 255,064
3.15 85.11 2.98 1.94 + 3.84 2.57 + + + 12,432
+ + 92.58 2.47 + + 3.86 + + 26,446
1.46 + 4.17 89.51 + 1.82 2.11 + + + 20,261
+ + + 94.68 2.87 1.90 + + + + 79,359
+ + + 1.33 94.61 + 3.32 + + + + 149,929
+ + + + 99.09 + + + + + 56,241
+ + + 97.17 + + 1.01 + 1.07 + + 64,928
2.56 + + 95.31 + + + + + + 12,805
+ + + + 97.73 + + 4,321
1.25 + + + 1.25 + + 93.73 + 2.61 + 0.16 602,944
3.19 + + + + 1.01 95.00 + + + 118,350
2.99 + + + + 10.17 + 85.37 + + 114,846
9.29 + + + + + + + 4.65 1.53 + 80.04 3.20 40,286
3.87 + + + + + + + + 2.41 + 2.16 2.33 87.94 48,225
+ + + + 99.84 77,247

Table
6.5:

Type
confusion

m
atrix

for
the

bibliography
corpu

s
for

m
any

tags.
C

har-
acter

counts
(#)

are
in

characters,
allother

values
are

in
pe

rcent,
a

‘+
’indicates

a
figure

low
er

than
0.99%

.
O

rder
6

m
odels

trained
on

6000
docum

e
nts

and
tested

on
300

docum
ents

w
ith

a
lookahead

of5.

108

Order Text
0 [5] <name><first>T. </first><last>Matsui,</last> ¦ ¦<first>T. </first><last>-

Matsuoka,</last> </name>and <name><first>S.</first> <last>Furui,</last>-
</name> <title>/Smoothed N-best-based speaker adaptation for speech re-
cognition,"¦ in ¦Proc. ICASSP¦</title> ’<pages>97,</pages> (<journal>-
Munich, Germany</journal>), pp. <pages>1015–1018,</pages> Apr. <date>-
1997</date>.

1 [5] <name> <first> T. </first> <last> Matsui,</last> <first> T. </first> <last>
Matsuoka,</last> </name> and<name> <first> S.</first> <last> Furui,</last>
</name> <title> /Smoothed N-best-based speaker adaptation for speech recogn-
ition,"¦ in ¦Proc. ICASSP</title> ’<pages> 97,</pages> (<journal> Mu-
nich, Germany</journal>), pp. <pages> 1015–1018,</pages> Apr. <date>-
1997</date>.

2 [5] <name> <first> T.</first> <last> Matsui,</last> </name> <name> <first>
T.</first> <last> Matsuoka,</last> </name> and <name> <first> S.</first>-
<last> Furui,</last> </name> <title> /Smoothed N-best-based speaker adap-
tation for speech recognition,"</title> in <booktitle> Proc. ICASSP ’97¦,
(¦Munich, Germany¦),</booktitle> pp. <pages> 1015–1018,</pages> <date>-
Apr. 1997</date>.

3 [5] <name> <first> T.</first>¦ ¦ <last> Matsui,</last> <first> T.</first>-
<last> Matsuoka,</last> </name> and <name> <first> S.</first> <last>-
Furui,</last> </name> <title> /Smoothed N-best-based speaker adaptation for
speech recognition,"</title> in <booktitle> Proc. ICASSP ’97,</booktitle>-
(<address> Munich, Germany</address>), pp. <pages> 1015–1018,</pages>-
<date> Apr. 1997</date>.

4 [5] <name> <first> T.</first> ¦ ¦<last> Matsui,</last> <first> T.</first>-
<last> Matsuoka,</last> </name> and <name> <first> S.</first> <last>-
Furui,</last> </name> <title> /Smoothed N-best-based speaker adaptation for
speech recognition,"</title> in <booktitle> Proc. ICASSP ’97,</booktitle>-
(<address> Munich, Germany</address>), pp. <pages> 1015–1018,</pages>-
<date> Apr. 1997</date>.

5 [5] <name> <first> T.</first> <last> Matsui,</last> </name> <name> <first>
T.</first> <last> Matsuoka,</last> </name> and <name> <first> S.</first>-
<last> Furui,</last> </name> <title> /Smoothed N-best-based speaker adaptation
for speech recognition,"</title> in <booktitle> Proc. ICASSP ’97,</booktitle>
(<address> Munich, Germany</address>), pp. <pages> 1015–1018,</pages>-
<date> Apr. 1997</date>.

Expected [5] <name> <first> T.</first> <last> Matsui,</last> </name> <name> <first>
T.</first> <last> Matsuoka,</last> </name> and <name> <first> S.</first>-
<last> Furui,</last> </name> <title> /Smoothed N-best-based speaker adaptation
for speech recognition,"</title> in <booktitle> Proc. ICASSP ’97,</booktitle>-
(<address> Munich, Germany</address>), pp. <pages> 1015–1018</pages> ,
<date> Apr. 1997</date>.

Table 6.6: Example of effect of model size on defects, using models trained on 4000
documents and a lookahead of 5. Tags initalics are incorrectly placed.¦ indicates
a missing tag.

109

Author Corpus Recall Precision F-measure Perfect Ref.
Peng People’s Daily & Treebank 74.0 75.1 74.2 Yes [116]
Ponte & Croft People’s Daily & Xinhua 93.6 96.0 94.8 Yes [117]
Ponte & Croft People’s Daily & Xinhua 89.8 84.4 87.0 No [117]
Palmer TREC-5 — — 82.7 Yes [113]
Teahan Xinhua 93.4 89.6 91.5 No [137]
CEM/Teahan ROCLING 97.8 98.1 97.9 No
CEM/Viterbi ROCLING 98.2 98.0 98.1 No

Table 6.7: Performance of Chinese text segmentors. Perfect indicates that the sys-
tem uses a perfect lexicon.

non-name structures by CEM and similar determination of names by CEM and Mc-

Callum’s system described in [47, 75].

6.2.4 Segmentation Corpus

Segmentation of Chinese text is an archetypical segmentation task and there are

many published recall and precision figures for this task. Table 6.7 shows a selection

of these, together with the best-case results obtained in the present study for CEM

on the segmentation corpus described in Section 5.3. Many systems use a perfect

lexicon: a list of all words which may be seen during testing and effectively solves

the zero frequency problem [146] but prevents the results from being transferred

to many real-world problems. The difference between the twoPonte and Croft

results[117] in Table 6.7 shows the drop in performance of a system used with and

without a perfect lexicon. Production systems typically cannot assume access to a

perfect lexicon. There is a relationship between the perfect lexicon and the order

−1 (or 0-gram) model in PPM, which includes all characters representable in the

character set,

The results from CEM using maximum lookahead search and CEM using Tea-

han search are similar, with the maximum lookahead search performing marginally

better. The Teahan search used 2000 leaves and averaged 5983nodes per character.

The maximum lookahead search used a lookahead of 6 and averaged 4081 nodes

per character. Both used an order 3 model trained on 900 documents and 10 testing

documents.

110

Taken at face value, the results for CEM are clearly better than those for the other

segmentation systems. However, most of the other systems appear to be assessing

recall and precision on the number of whole words rather thanon word boundaries,

which can double the perceived number of false positives andfalse negatives for

isolated errors. This is because a single segmentation error can cause the words on

either side of a boundary both to become false negatives. Another issue is that the

data used in the present work was sorted at the sentence level, and it is not clear that

this was the case for the other reported results. Data was used in the form it was

obtained in, and with no notes on the sorting or otherwise in the literature, no extra

processing was performed.

CEM differs from Teahan’s TMT system in internal character handling. TMT

uses ASCII internally, breaking Unicode characters into multiple characters. Be-

cause of the way in which Unicode characters are laid out in the available 32 bits

(in ‘code pages’) there are a number of artifacts, the primary one being that novel

Unicode characters are always mapped to novel characters within CEM, escaping

back to the order−1 model, but within TMT they may not escape back only as far

as the code page. As noted earlier, there is noa priori reason for preferring one

escape method over another (see Section 3.4) and these results are unlikely to be

generalisable beyond Chinese text segmentation.

Because of the large alphabet used in Chinese, the models for even modest or-

ders are large, making the problem significantly more difficult than it would be in a

smaller alphabet language such as English. No attempt has been made to optimise

the memory usage by CEM models, meaning that it cannot be used to build such

large models as Teahan’s TMT.

6.2.5 Reuters’ Corpus

Figures 6.3 and 6.4 show both recall and precision curves forthe entity extraction

task in the Reuters’ corpus, with training on 7100 documents and testing on 100

111

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

R
ec

al
l /

 p
re

ci
si

on
 (

%
)

Lookahead

Order 2
Order 3
Order 4
Order 5

Figure 6.3: Graph of recall and precision against lookaheadfor various orders of
models for documents in the Reuters’ corpus.

documents. The difference between Figures 6.3 and 6.4 is granularity, as explained

in Section 6.2.1. Figure 6.3 shows recall and precision calculated for each document

and then averaged over the testing set. Figure 6.4 shows the recall and precision

calculated over the entire testing set. In every case shown,recall and precision are

highly correlated and similar.

The difference between Figures 6.3 and 6.4, up to six percentand greatest at low

lookaheads, is caused by a number of shorter market-report articles with columns

of figures which are easier to tag than are longer articles of amore literary nature.

Fortunately, while the results are different, the trends are still clearly the same:

incremental gains as the lookahead is increased. Unfortunately the prohibitive size

of large models prevented the creation of higher order models.

Overall, the performance of CEM was poor, as state-of-the-art taggers routinely

have recall and precision measures in the 90% range [28]. Theresults are particu-

larly disappointing since the baseline data was generated using a finite-state based

112

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

R
ec

al
l /

 p
re

ci
si

on
 (

%
)

Lookahead

Order 2
Order 3
Order 4
Order 5

Figure 6.4: Graph of recall and precision against lookaheadfor various orders of
models for the Reuters’ corpus taken as a whole.

system (the Brill tagger) which word-level taggers have beenable to emulate rela-

tively easily. There are two possible causes. Firstly, whereas the Brill tagger uses

a model and search context of a handful of words, CEM uses a model and search

context of a handful of characters. Secondly, CEM’s linear context and lack of

super-adjacency handicapped it against the Brill tagger which uses rule-based post-

processing which can examine not just immediate words, but more remote words.

Small-scale investigations suggested that increasing model order and lookahead had

little effect.

6.3 Baum–Welch Re-estimation

The Baum–Welch algorithm (see Section 3.6) allows untagged data to be used to

boost models’ performance. This section looks at the application of Baum–Welch

re-estimation in the bibliography corpus. This is pertinent, because, as has been

113

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 0.038

 0.04

 0.042

 0.044

 0 500 1000 1500 2000

E
di

t d
is

ta
nc

e
(e

di
ts

/c
ha

ra
ct

er
)

Re-estimation (files)

cumulative average
15 document average

Figure 6.5: Graph of edit distance with increasing re-estimation. Trained with 2110
abbrvdocuments, re-estimated with up to 2111acmdocuments, using thefirst and
last tags only, order 4 and lookahead of 3.

pointed out in Sections 5.2 and 6.2.3, the bibliography corpus is significantly less

diverse than an uncurated bibliography collection in a digital library and it would

be beneficial to be able to generalise the models built on the bibliography corpus to

these more diverse collections.

Figure 6.5 shows an attempt to generalise from theabbrvbibliography format to

theacmbibliography format. Theabbrv format is an abbreviated form with author

forenames initialised, while theacmformat is more standard style which includes

the full author forenames, if known. Only thefirst andlast tags are considered.

As might be expected, a model built on theabbrv format and tested on theacm

format makes many errors. The line across Figure 6.5 at 0.0342 edits per character

is the average number of edits over the entire 2111acmdocuments without any re-

estimation. The most common error is the tagging of afirst tag as alast tag, which

is seen by the edit distance metric as four separate errors: removing one opening

114

and one closing tag, and adding one opening and one closing tag. A novel error is

the misidentification ofeds(the token indicating the start of an editor list in theacm

format) as last name.

The 15-document average is a running average of the previous15 points. It

shows a great deal of noise and no obvious pattern of increaseor decrease. The

cumulative average reaches 0.0323 edits per character after all 1269 documents,

a significant drop from the 0.0342 edits per character without re-estimation. Re-

estimation clearly reduces the edit distance in this case, lowering the average edit

distance for theacmdocuments. EM theory [60] predicts this is not a true conver-

gence (as an increasing proportion of the data is estimated rather than true data, the

fidelity of the model slowly falls) but there is insufficient re-estimation data in this

example for this to become apparent.

The documents are processed here in random order, but these figures are partic-

ularly sensitive to the order in which the documents are processed. The first handful

of documents used in the re-estimation appear to be important. It may be worth ex-

ploring whether documents should be used ordered in some manner, perhaps those

with the lowest mutual-entropy first.

6.4 Effectiveness of Optimisations and Heuristics

The bibliography corpus is a useful dataset for evaluating the effectiveness of op-

timisations and heuristics because the wide variety of tagsin the corpus allows a

selection of tags to be examined. The segmentation corpus isalso used because it

represents a widely-studied problem and a sharp contrast tothe bibliography corpus.

6.4.1 Best First

Best first (Section 4.3.2) is an optimisation that exploits the nature of the maxi-

mum lookahead search, linking the discrimination of the models to the search space

115

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a ab

b

c

c

d

d

with best first
without

Figure 6.6: Best first optimisation in hierarchical tag insertion. The lines are: a
author, editor, name, first andlast; b name, first andlast; c nameandlast; d name.
All runs used an order 3 model with 200 training documents anda single testing
document.

required to find the lowest entropy tagging of a sequence withrespect to that model.

Figure 6.6 shows the effect of the best first optimisation on the hierarchical

(nested) tagsauthor, editor, name, first and last in the bibliography corpus. In all

cases where the lookahead is> 1, the search space was significantly reduced. The

effect was greatest with the largest number of tags, becauseas the number of tags

increases, the chance that an observed sequence will have low entropy relative to a

particular model increases.

Figure 6.7 shows the effect of the best first optimisation on the non-hierarchical

tagsname, pages, date, volumeandnumberin the bibliography corpus.

Figure 6.8 shows the effect of the best first optimisation on theword tag in the

segmentation corpus. Without best first, the order of the model has no impact on

the search space. Best first reduces the search space (a versusb), with the effect

increasing as the order increases the discrimination of themodel (b, c, d, and e).

116

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a b c d e

a b c d e

with best first
without

Figure 6.7: Best first optimisation in non-hierarchical tag insertion. The lines are:
aname, pages, date, volumeandnumber; b name, pages, dateandvolume; c name,
pagesanddate; d nameandpages; e name. All runs used an order 3 model with
200 training documents and a single testing document.

117

1

10

100

1000

10000

1 2 3 4 5 6 7

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a

b
c
d
e

with best first
without

Figure 6.8: The effect of best first onword for varying model orders. a labels nearly
co-incident quadruple lines representing the search spaces for orders 1, 2, 3 and 4
without best first; b is order 1 with best first; c is order 2 withbest first; d is order 3
with best first; e is order 4 with best first. All runs used 900 training documents and
a single testing document.

118

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000
 0

 2

 4

 6

 8

 10

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

E
nt

ro
py

 (
bi

ts
/c

ha
ra

ct
er

)

Number of training files

search space with best first
search space without

entropy

Figure 6.9: Effect of best first when the number of training documents is varied. All
runs use order 3 models with a lookahead of 6 and a single testing document from
the segmentation corpus. Entropy is the entropy of the entire entire document with
respect to the model using for text augmentation, normalised for document length.

The documents in the segmentation corpus are significantly more homogeneous

than those in the bibliography corpus, resulting in less noise in their respective

graphs.

Figure 6.9 shows how little the effectiveness of the best first increases with the

amount of training in the segmentation corpus. Without bestfirst, the search space

is independent of the number of documents trained on, but with best first the search

space drops. Most of the drop occurred over the first 200 training documents, with

relatively little drop over the remaining 799 documents (one document was always

withheld for testing).

Figures 6.7, 6.8 and 6.9 each show the results for a single document. This is be-

cause while the trends are the same (in all cases best first improves performance and

that improvement increases with model order) the size of theimprovement varies

considerably depending on the problem, and indeed the document, being tackled. In

119

all cases the results are representative of larger-scale experimentation, but averaged

results are naturally smoother.

These findings are consistent with the expectations from Section 4.3.2. Well-

trained, high-order models allow the probability distribution function to distinguish

accurately between likely and unlikely branches, and models with many tags have

many more unlikely branches to prune. Given the good performance, the relatively

simple implementation and fact that no extra state is required in the model, the best

first optimisation is valuable in these tag insertion problems.

6.4.2 Automatic Tokenisation

Automatic tokenisation (see Section 4.3.3) is explored using occurrence tables for

illustrative purposes. Table 6.8 shows an occurrence tablefor the Reuters’ corpus

after the start and end tags have been converted to special-use characters. In Ta-

ble 6.8(a) each row contains counts of characters appearingin the corpus belonging

to each Unicode character class. Each column contains counts of the character class

of the characters immediately following them. In Table 6.8(b) each row contains

counts of characters in a Unicode character class that occurimmediately prior to a

tag (either a start tag or an end tag). Each column contains counts of the class of

the character immediately following a tag. An empty cell in Table 6.8(b) indicates

that a pair of classes between which a tag has not been seen andwhich it is rea-

sonable to assume need not be considered for inserting tags.Cells that are empty

in Table 6.8(b) but occupied in Table 6.8(a) represent a genuine saving, particularly

if the number in the cell in Table 6.8(a) is high, as these are pairs of characters

between which the search is not considered inserting tags.

The distinctive cross-shape in Table 6.8(b) is due to the fact that opening tags

usually follow a space character and are followed by almost anything, while clos-

ing tags can be preceded by almost anything but are followed by a space or ‘\n’

character. This effect is reinforced by the uniform formatting of the corpus. The

120

First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 27
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 85k 223k 1k - - 30k 1k 57 2k 2 13k 73 1k 1 360k
LOWERCASE LETTER 2 - 2k 5m 254 - - 1m 13k 35 4k - 134k 24 6 - 6m
DECIMAL DIGIT NUMBER 9 - 1k 1k 145k - - 66k 5k 36 2k - 53k 267 52 - 275k
SPACE SEPARATOR 12 - - - - - 62k 1m - - - - - - - - 1m
CONTROL 15 - - - - - 54 69k - - - - - - - - 69k
PRIVATE USE 18 7k 248k 1m 65k 1m 7k 7k 8k 8k 17 - 14k 2k 6k 4 2m
DASH PUNCTUATION 20 - 3k 13k 5k - - 6k 4k 5 9 - 27 - 322 - 33k
START PUNCTUATION 21 - 4k 1k 1k - - 206 131 - - - 92 99 713 - 8k
END PUNCTUATION 22 - 27 6 20 - - 7k 8 4 1 - 1k - 2 - 8k
CONNECTOR PUNCTUATION 23 - - - - - - 3 - - - 119 - - - - 122
OTHER PUNCTUATION 24 - 15k 18k 44k - - 139k 141 78 303 1 20k 8 18 -238k
MATH SYMBOL 25 - 50 19 2k - - 475 8 4 1 - 39 16 44 - 2k
CURRENCY SYMBOL 26 - 13 36 9k - - 344 - 10 6 - 32 18 - - 9k
MODIFIER SYMBOL 27 - - 5 - - - - - - - - - - - - 5
Sum 7k 360k 6m 275k 1m 69k 2m 33k 8k 8k 122 238k 2k 9k 511m

(a)
First Character Second Character Sum

Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 27
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - - - - 30k - - - - - - - - - - 30k
LOWERCASE LETTER 2 - - - - 1m - - - - - - - - - - 1m
DECIMAL DIGIT NUMBER 9 - - - - 66k - - - - - - - - - - 66k
SPACE SEPARATOR 12 - 201k 1m 62k - - - 5k 8k 17 - 6k 2k 6k 4 1m
CONTROL 15 7k 46k 302 3k 3 - - 3k 406 - - 7k 89 63 - 69k
PRIVATE USE 18 - - - - - - - - - - - - - - - -
DASH PUNCTUATION 20 - - - - 6k - - - - - - - - - - 6k
START PUNCTUATION 21 - - - - 206 - - - - - - - - - - 206
END PUNCTUATION 22 - - - - 7k - - - - - - - - - - 7k
CONNECTOR PUNCTUATION 23 - - - - 3 - - - - - - - - - - 3
OTHER PUNCTUATION 24 - - - - 139k - - - - - - - - - - 139k
MATH SYMBOL 25 - - - - 475 - - - - - - - - - - 475
CURRENCY SYMBOL 26 - - - - 344 - - - - - - - - - - 344
MODIFIER SYMBOL 27 - - - - - - - - - - - - - - - -
Sum 7k 248k 1m 65k 1m - - 8k 8k 17 - 14k 2k 6k 4 2m

(b)

Table 6.8: Occurrence tables for the Reuters’ corpus. (a) Table of all pairs of char-
acters. (b) Table of pairs of characters either side of a tag.‘k’ and ‘m’ indicate units
of a thousand and a million respectively.

121

 1

 10

 100

 1000

 1 2 3 4 5 6

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a

b

c
d

a

b

c

d

with tokenisation
without

Figure 6.10: Effect of tokenisation on a group of hierarchical tags. The lines are: a
name, last, first, editor andauthor; b name, last andfirst; c nameandlast; d name.
Each run was performed with 2000 training documents, one testing document and
order 3 models.

CONTROL3 character class includes ‘\n’, ‘\r’ and EOF.

Figures 6.10 and 6.11 show the effect of tokenisation of hierarchical and non-

hierarchical tags in the bibliography corpus. The reason for the differences between

hierarchical and non-hierarchical tags is shown in Table 6.9. Table 6.9(a) shows all

pairs of characters; Table 6.9(b) shows those either side ofthenametag, the sparse-

ness of the latter indicating that a procedure such as tokenisation has the potential

to make an improvement. The hierarchical tags shown in Table6.9(c) are similar to

the non-hierarchical tags shown in Table 6.9(b), not because they are hierarchical

but because they are sequences of case-sensitive characters delimited with spaces,

commas and full-stops. The non-hierarchical tags shown in Table 6.9(d) by com-

parison have a significantly more diverse context. Thedate tag is a sequence of

digits and case-sensitive characters andvolumeandnumbertags are strings of dig-

3The standard method of writing the names of Unicode characters and character classes is in
capitals.

122

 1

 10

 100

 1000

 1 2 3 4 5 6

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a b d d e a b c d e

without
with best first

Figure 6.11: Effect of tokenisation on a group of non-hierarchical tags. The lines
are: aname, pages, date, volumeandnumber; b name, pages, dateandvolume; c
name, pagesanddate; d nameandpages; e name. Each run was performed with
2000 training documents, one testing document and order 3 models.

123

its commonly delimited by brackets and semicolons. The resultant occurrence table

is much less sparse than the previous table.

Tokenisation potentially interacts with other errors. Forexample, in Table 6.10

some errors on the bibliography corpus result from problemsfinding the boundary

between the author list and the title tag. In this example,Athena, the first word of

the article title, has been split in two. The stringAthenhas a slightly lower entropy

in the last tag than in the title tag, buta: has never been seen in the last tag. Thea:

has not been seen when the decision is taken whether or not to start the tag name

tag, so the word is split in two.

Whether the first or the second error is preferable will probably depend on the

application. As lookahead gets longer, such errors are greatly reduced, but the

proper nouns commonly found at the start of titles are often long words (partic-

ularly corporate, place and personal names transliteratedinto English) and remain

problematic even at long lookaheads.

Of 100 differences in correctness examined in the bibliography corpus, using the

experimental scenario from Figure 6.10 but using 500 testing documents, 98 were

errors of the type shown by Table 6.10. Both the tokenisation and non-tokenisation

results were incorrect but the non-tokenisation results recovered more quickly. The

remaining were situations in which every tag occurred between rare pairs of char-

acter classes.

The appearance of tags between novel or rare pairs of character classes could be

guarded against by also inserting tags between character classes seen fewer times

than a separate threshold (of the order of 25). In all cases examined this would have

solved the problem. If the training corpora is representative, this should have little

effect on the search space.

Table 6.11(a) and (b) show the occurrence tables for the Computists’ corpus and

all the tags within it. Table 6.11(b) is significantly less sparse than Table 6.8(a).

However, the frequently-occurring alpha-numeric pairs inthe upper left corner are

124

First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 27
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 100k 375k 5k 26k 2k 127 2k 763 1k - 132k 362 2 19649k
LOWERCASE LETTER 2 - 2k 3m 4k 479k 60k 10k 16k 1k 5k 1 233k 1k - 57 4m
DECIMAL DIGIT NUMBER 9 243 288 3k 384k 13k 4k 2 1k 56k 81k - 86k 88 - 1 632k
SPACE SEPARATOR 12 - 382k 367k 98k 37k - 84k 225 20k 756 9 6k 825 1 1031m
CONTROL 15 1k 34k 43k 17k 2 13k 1k 9 50k 3 - 359 47 1 14162k
PRIVATE USE 18 - 87k 469 6 83k 4k 3 - 1 - 1 70 17 - 1 176k
DASH PUNCTUATION 20 - 7k 11k 2k 277 556 - - 2 14 - 49 - 1 - 22k
START PUNCTUATION 21 - 26k 2k 96k 128 2k 62 5 9 4 - 1k 15 - 1 130k
END PUNCTUATION 22 - 9 75 17 49k 143 3 112 26 142 - 40k 24 1 - 90k
CONNECTOR PUNCTUATION 23 - 6 5 - - - - - - - - - - - - 11
OTHER PUNCTUATION 24 - 6k 8k 23k 309k 76k 75k 1k 202 1k - 27k 32 - 1 529k
MATH SYMBOL 25 - 622 589 282 747 152 - 36 6 24 - 81 579 - 2 3k
CURRENCY SYMBOL 26 - - 1 4 - - - - - - - 1 - - - 6
MODIFIER SYMBOL 27 - 66 104 13 5 - - 2 - 1 - 8 - - - 199
Sum 2k 649k 4m 632k 1m 164k 172k 22k 130k 90k 11 529k 3k 6 1997m

(a)
First Character Second Character Sum

Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 27
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - - - - 124 - - - - - - 3 - - - 127
LOWERCASE LETTER 2 - - 2 - 10k 44 - - - - - 5 - - - 10k
DECIMAL DIGIT NUMBER 9 - - - - 2 - - - - - - - - - - 2
SPACE SEPARATOR 12 - 84k 454 2 - - - - 1 - 1 59 17 - 1 84k
CONTROL 15 - 1k 7 2 - - - - - - - 2 - - - 1k
PRIVATE USE 18 - - - - - - - - - - - - - - - -
DASH PUNCTUATION 20 - - - - - - - - - - - - - - - -
START PUNCTUATION 21 - 62 - - - - - - - - - - - - - 62
END PUNCTUATION 22 - - - - 3 - - - - - - - - - - 3
CONNECTOR PUNCTUATION 23 - - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24 - 1 - - 73k 2k - - - - - - - - - 75k
MATH SYMBOL 25 - - - - - - - - - - - - - - - -
CURRENCY SYMBOL 26 - - - - - - - - - - - - - - - -
MODIFIER SYMBOL 27 - - - - - - - - - - - - - - - -
Sum - 85k 463 4 83k 2k - - 1 - 1 69 17 - 1 172k

(b)
First Character Second Character Sum

Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 27
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASELETTER 1 - - - - 192 2 - - - - - 4 - - - 198
LOWERCASELETTER 2 - 2 2 - 16k 208 - - - - - 168 - - - 17k
DECIMAL DIGIT NUMBER 9 - - - - 3 - - - - - - - - - - 3
SPACESEPARATOR 12 - 168k 659 2 - - - - 5 - 4 93 37 - - 169k
CONTROL 15 - 2k 6 2 - - - - 1 - - 1 - - - 2k
PRIVATE USE 18 - - - - - - - - - - - - - - - -
DASH PUNCTUATION 20 - - - - - - - - - - - - - - - -
START PUNCTUATION 21 - 56 - - - - - - - - - - - - - 56
END PUNCTUATION 22 - - - - 32 1 - - - - - - - - - 33
CONNECTORPUNCTUATION 23 - - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24 - 1 - - 152k 3k - - - 56 - - - - - 156k
MATH SYMBOL 25 - 1 - - - - - - - - - - - - - 1
CURRENCYSYMBOL 26 - - - - - - - - - - - - - - - -
MODIFIER SYMBOL 27 - - - - - - - - - - - - - - - -
Sum - 171k 667 4 169k 3k - - 6 56 4 266 37 - - 345k

(c)
First Character Second Character Sum

Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 27
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASELETTER 1 - - - - 143 1 - - 4 5 - 35 - - - 188
LOWERCASELETTER 2 - 2 3 - 10k 55 - - - 619 - 290 - - - 11k
DECIMAL DIGIT NUMBER 9 - - - - 8k 784 - - 11k 33k - 44k - - - 99k
SPACESEPARATOR 12 - 97k 518 57k - - - - 3 - - 708 20 - 2 156k
CONTROL 15 - 2k 23 6k - - - - - - - 55 - - - 9k
PRIVATE USE 18 - - - - - - - - - - - - - - - -
DASH PUNCTUATION 20 - - - - - - - - - 1 - 2 - - - 3
START PUNCTUATION 21 - 4k 6 29k - - - 1 1 - - 247 - - - 33k
END PUNCTUATION 22 - - - - 42 5 - - - 72 - 37 - - - 156
CONNECTORPUNCTUATION 23 - - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24 - 58 11 20k 101k 5k - - 8 31 - 38 - - - 127k
MATH SYMBOL 25 - - - - - - - - - - - - - - - -
CURRENCYSYMBOL 26 - - - - - - - - - - - - - - - -
MODIFIER SYMBOL 27 - - - - - - - - - - - - - - - -

(d)

Table 6.9: Occurrence tables for the bibliography corpus. (a) Table of all pairs of
characters. (b) Table of pairs of characters either side of anametag. (c) Table of
pairs of characters either side ofname, last, first, editor andauthor tags. (d) Table
of pairs of characters either side ofname, pages, date, volumeandnumbertags.

125

Case Text
0 [Son] D. Song. Athena: A new efficient automatic checker for security

protocol analysis.
1 [Son] <name> <first> D.</first> <last> Song.</last> </name>-

<name> <last> Athena:</last> </name> <title> A new efficient
automatic checker for security protocol analysis.</title>

2 [Son] <name> <first> D.</first> <last> Song.</last> </name>-
<name> <last> Athen</last> </name> <title> a: A new efficient
automatic checker for security protocol analysis.</title>

Table 6.10: Interaction between errors. The unmarked-up text (0), the text with a
markup error (1) and with the first error confounded by a second error which splits
a word in two (2).

First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 5k 10k 55 1k 39 1k 174 - 110 4 971 27 - 20k
LOWERCASE LETTER 2 - 451 198k 974 33k 1k 2k 896 - 116 40 10k 9 - 249k
DECIMAL DIGIT NUMBER 9 - 1k 52 4k 339 50 1k 234 - 88 1 746 359 - 8k
SPACE SEPARATOR 12 - 8k 29k 1k 8k 2k 2k 163 1k - 1 418 609 - 54k
CONTROL 15 - 897 2k 42 1k 2k 679 73 441 - 71 178 317 - 8k
PRIVATE USE 18 36 2k 1k 904 1k 179 36 31 51 356 - 2k 1k 27510k
DASH PUNCTUATION 20 - 215 864 201 225 23 44 233 - 5 - 3 - - 1k
START PUNCTUATION 21 - 616 171 67 1 - 611 - - - - 31 129 - 1k
END PUNCTUATION 22 - - - - 352 828 14 - - 10 - 435 - - 1k
CONNECTOR PUNCTUATION 23 - 10 32 2 - 72 - - - - 4k 1 - - 4k
OTHER PUNCTUATION 24 - 607 4k 350 7k 1k 303 8 - 948 - 1k 35 - 18k
MATH SYMBOL 25 - 3 41 18 427 30 1k 1 - 6 - 966 190 - 2k
CURRENCY SYMBOL 26 - - - 275 - - - - - - - - - - 275
Sum 36 20k 249k 8k 54k 8k 10k 1k 1k 1k 4k 18k 2k 275383k

(a)
First Character Second Character Sum

Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - - - - 308 48 - 16 - 179 - 603 6 - 1k
LOWERCASE LETTER 2 - - 35 - 750 48 - 7 - 164 - 880 908 - 2k
DECIMAL DIGIT NUMBER 9 - - - - 135 42 - 8 - 13 - 924 18 - 1k
SPACE SEPARATOR 12 - 1k 397 804 - - - - 38 - - 4 8 230 2k
CONTROL 15 36 478 61 62 - - - - 13 - - 5 3 21 679
PRIVATE USE 18 - - - - - - - - - - - - - - -
DASH PUNCTUATION 20 - 3 4 19 - - - - - - - - - 18 44
START PUNCTUATION 21 - 543 45 17 - - - - - - - - - 6 611
END PUNCTUATION 22 - - - - 9 - - - - - - 5 - - 14
CONNECTOR PUNCTUATION 23 - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24 - 57 26 - 75 5 - - - - - 21 119 - 303
MATH SYMBOL 25 - 24 1k 2 - - - - - - - 2 - - 1k
CURRENCY SYMBOL 26 - - - - - - - - - - - - - - -
Sum 36 2k 1k 904 1k 143 - 31 51 356 - 2k 1k 27510k

(b)

Table 6.11: Occurrence tables for the Computists’ corpus. (a) Table of all pairs of
characters. (b) Table of pairs of characters either side of atag.

126

First Character Second Character Sum
Symbol # 0 1 2 5 9 11 18 20 21 22 23 24 25 26
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 3k 2k 470 61 - 1k 1 1 - 18 1 - 1 8k
LOWERCASE LETTER 2 - 146 17k 696 4 - 4k 1 1 1 - - - 7 22k
OTHER LETTER 5 - 45 259 1m 524 - 1m - 56 389 225 - - 5723m
DECIMAL DIGIT NUMBER 9 - 18 346 1k 4k - 1k 2 - 383 262 - - 62 7k
OTHER NUMBER 11 - - - - - - 3 - - - - - - - 3
PRIVATE USE 18 999 3k 1k 1m 2k 1 2m - 18k 20k 314k 28 9 1k 4m
DASH PUNCTUATION 20 - - 2 - 2 - - - - - - - - - 4
START PUNCTUATION 21 - - - 393 383 - 26k - 1 23 20 - - - 27k
END PUNCTUATION 22 - 2 - 49 1 - 21k - 3 - 4 - - 1 21k
OTHER PUNCTUATION 24 - 601 487 276k 54 2 28k - 8k 19 1 5 - 348315k
MATH SYMBOL 25 - 8 13 - - - 13 - - - - - - - 34
CURRENCY SYMBOL 26 - - - - - - 9 - - - - - - - 9
OTHER SYMBOL 28 - 2 72 604 107 - 1k - 13 - - - - 9 2k
Sum 999 8k 22k 3m 7k 3 4m 4 27k 21k 315k 34 9 2k 7m

(a)
First Character Second Character Sum

Symbol # 0 1 2 5 9 11 18 20 21 22 23 24 25 26
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 126 15 875 34 - - - 46 259 482 4 - 45 1k
LOWERCASE LETTER 2 - 721 616 1k 30 - - - 33 1k 509 - - 98 4k
OTHER LETTER 5 - 1k 347 1m 2k 1 - - 17k 18k 304k - 8 1k 1m
DECIMAL DIGIT NUMBER 9 - 29 58 878 22 - - - 12 110 246 24 - 26 1k
OTHER NUMBER 11 - - - 3 - - - - - - - - - - 3
PRIVATE USE 18 - - - - - - - - - - - - - - -
DASH PUNCTUATION 20 - - - - - - - - - - - - - - -
START PUNCTUATION 21 - 1k 343 24k 130 - - - 92 6 55 - - 21 26k
END PUNCTUATION 22 - 15 2 12k 44 - - - 405 150 8k - - 22 21k
OTHER PUNCTUATION 24 998 255 13 26k 67 - - - 821 30 221 - 1 21 28k
MATH SYMBOL 25 - - - - - - - - - 5 8 - - - 13
CURRENCY SYMBOL 26 - - - - 9 - - - - - - - - - 9
OTHER SYMBOL 28 1 70 83 1k 25 - - - 51 16 318 - - 87 1k
Sum 999 3k 1k 1m 2k 1 - - 18k 20k 314k 28 9 1k 2m

(b)

Table 6.12: Occurrence tables for the segmentation corpus.(a) Table of all pairs of
characters. (b) Table of pairs of characters either side of atag.

mainly zero, so the heuristic is of some benefit.

Table 6.12 is the occurrence table for the segmentation corpus and indicates

that the OTHER LETTER is by far the most common character class, which is to

be expected since most Chinese characters fall into this class. The nature of the

corpus means that all of the frequently-occurring pairs in Table 6.12(a) also appear

in Table 6.12(b) (as non-zeros), indicating that automatictokenisation is going to

have little effect on the search space in this corpus.

Figure 6.12 shows the interaction between best first and tokenisation for the

nametag. The addition of tokenisation to best first always reduces the search space,

but the effect is most noticeable at low lookaheads when bestfirst is less effective.

This is because automatic tokenisation prunes branches of the search tree without

having to expand the first node in the branch to calculate the entropy.

Consistent with the expectations from Section 4.3.3, these results show that au-

tomatic tokenisation improves performance on some datasets. However, it does not

127

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

with tokenisation, with best first
without tokenisation, with best first
with tokenisation, without best first

without tokenisation, without best first

Figure 6.12: Effect of best first and automatic tokenisationon nametag. Each run
was performed with 2000 training documents, one testing document and order 3
models.

perform consistently well across all datasets, and a numberof the corpora have noise

in the occurrence tables. Such noise is likely to be significantly greater in digital

library collections of heterogeneous documents of diverseorigin than in the curated

corpora used here. Anecdotal evidence of HTML and XHTML documents from the

Internet suggest that tags do occur in a significantly wider variety of places than

in the corpora examined here. Automatic tokenisation requires a small and tightly-

bounded amount of extra state per model in the form of an occurrence table.

Unlike best first, automatic tokenisation is not linked to the discrimination of

the models. This means it can perform well even for a poorly trained model. The

reason that automatic tokenisation does not perform as wellas the occurrence table

method is that the PPM model already discriminates between these situations and

that best first ensures that the branches that get pruned by automatic tokenisation

are not explored anyway.

128

Name Symbol Example
Null folder N Jones,Jill K. and
Capitals folder c JONES,JILL K AND
Case folder C Aaaaa,AaaaA. aaa
Unicode folder u AaaaaPSAaaaSAPSaaa
Vowel folder V nvnvn,nvnnn. vnn
Vowel & case folderVC Nvnvn,NvnnN. vnn

Table 6.13: Folders used in alphabet reduction.

6.4.3 Alphabet Reduction

Table 6.13 shows the six ‘folders’ used in the alphabet reduction experiment. They

‘fold’ the alphabet used in the model, as their effects on a sample string show.

The Null folder does not change the alphabet at all. The Capitals folder removes

the distinction between upper and lower case. The Case folderfolds all uppercase

letters to a single letter and all lowercase letters to a single letter. The Unicode

folder folds each of the Unicode character classes (see Section 4.3.3) to a single

character per class. The Vowel folder folds all vowels to a single letter and all non-

vowels to a single letter. The Vowel and Case folder folds uppercase vowels to a

single letter, lowercase vowels to a single letter, uppercase non-vowels to a single

letter and lowercase non-vowels to a single letter.

Figure 6.13 shows the results of these six folders onnamein the bibliography

corpus. Figure 6.13(a) shows the F-measure against the order of the model for each

of the folders. The experiment was performed in 750 megabytes of heap memory,

and the data is shown only for those models and lookaheads which could be built

and used in that memory.

The N folder performed best, but N models could only be built to order seven,

because of the large alphabet. The C models also performed well and could be built

to order 23. However, increasing order did not increase the performance because

useful information was thrown away by the folder. The c, V andVC models all

performed similarly poorly and could be built to orders between seven and ten. The

129

0

20

40

60

80

100

0 5 10 15 20 25

F
-m

ea
su

re
 (

%
)

Model order

N
V

VC
C
u
c

(a) F-measure

0

2

4

6

8

10

12

0 5 10 15 20 25

R
at

io

Model order

N
V

VC
C
u
c

(b) Ratio of baseline entropy to experimental entropy

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 5 10 15 20 25

R
at

io

Model order

N
V

VC
C
u
c

(c) Ratio of baseline entropy to experimental entropy (detail)

Figure 6.13: The effects of alphabet reduction on finding thenametag of biblio-
graphy corpus. Lookahead of 8, trained on 2000 documents andtested on 20 docu-
ments.

130

u models performed badly with an F-measure less than twenty despite being able

to be built to order 18. This is particularly surprising given that the u folder has

a close relationship with the C folder, which performed well. The reason for this

difference appears to be that ‘.’ and ‘,’ are important in delimiting names and other

features in bibliographies and the u models were unable to distinguish between these

characters.

Figure 6.13(b) shows the ratio of baseline to experimental entropy for the same

experiments while Figure 6.13(c) shows detail of the same relationship where the

ratio approaches one. As discussed previously (see page 83), the entropy can be

used to determine whether the model or the search is responsible for a mis-tagging.

All data points with a ratio less than one indicate that the search was deficient (i.e.

the lookahead could be increased for greater correctness).All data points where

the ratio is greater than one indicate that the model is deficient in some regard;

in the ideal situation the ratio is 1:1. There are three likely ways in which the

model can be deficient: it may have seen insufficient trainingdata, it may be of

insufficient order, or it may be failing to capture importantfeatures of the data. 2000

training bibliographies (approximately 45,000 bibliographic entries) would appear

to be sufficient training data: models with smaller alphabets generally require less

training data. Increasing the order of the u, V, c and VC models clearly moves the

ratio further from 1:1. Thus the problem is likely to be that these models are not

capturing important features of the data.

The upward trend in the entropy ratio for the C models of orderhigher than 6

(Figure 6.13(c)) is consistent with the behaviour of PPM models when the order is

increased beyond optimal. This species of over-fitting is caused by the building of a

higher order model than there is training data available to train effectively, leading

to many common states having their probabilities generatedvia the escape method.

The increase in noise for the ratio of entropies (particularly for the u model) as

order increases is due to sampling effects.

131

0

20

40

60

80

100

0 5 10 15 20 25

F
-m

ea
su

re
 (

%
)

Model order

N
V

VC
C
u
c

(a) F-measure

0

2

4

6

8

10

12

0 5 10 15 20 25

R
at

io

Model order

N
V

VC
C
u
c

(b) Ratio of baseline entropy and experimental entropy

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 5 10 15 20 25

R
at

io

Model order

N
V

VC
C
u
c

(c) Ratio of baseline entropy and experimental entropy (detail)

Figure 6.14: The effects of alphabet reduction on finding multiple tags in the bib-
liography corpus. Lookahead of 4, trained on 2000 documentsand tested on 20
documents.

132

Figure 6.14 shows the same details as Figure 6.13 for tagsname, pages, date,

volumeandnumberat a lower lookahead (necessary because of the greatly increased

search space caused by the additional tags). Performance inFigure 6.14 was con-

sistently poorer than that in Figure 6.13, but the relative performance of the folders

was similar. The one deviation from this is the c folder, whose F-measure is similar

to the VC and V folders in Figure 6.13, but clearly superior inFigure 6.14. This is

because thepages, date, volumeandnumbertags in Figure 6.14 are number-centric

rather than text-centric, so the loss of capitalisation does not effect them as badly.

The large reductions in correctness shown in Figures 6.13 and 6.14 strongly

suggest that, with the possible exception of C, alphabet reduction is unlikely to be

useful in production systems for such corpora.

6.4.4 Maximum Lookahead Heuristic

For the majority of tag-insertion problems, maximum lookahead is problematic be-

cause the lookahead at which the accuracy becomes asymptotic is computationally

infeasible. For problems with a small number of tags, maximum lookahead is ob-

tainable. Table 6.14 shows the effect of various lookahead values on a single bibli-

ographic entry. The result converges on the expected text within a lookahead of 5,

much shorter than the maximum tag length of∼ 60 which Viterbi search suggests

would be required.

The defects displayed in Table 6.14 are mainly of types already discussed in

Section 6.2.3: confusion caused by the wide variety of name formats and confusion

between article titles and book titles. Similar defects were also seen in Table 6.6, in

which the same reference was used to examine the performancewith varying model

orders. However, as shown in Figure 6.15, there is often a great deal of noise, and it

may not be clear whether the asymptote has been reached or whether the lookahead

must be increased.

The primary sources of errors when inserting thepagestag were four-digit page

133

lookahead text
1 [5] <name> <first> T.</first> <last> Matsui,</last> </name>-

¦ ¦<title> T.¦ ¦ </title> <journal>¦ ¦ Matsuoka,</journal> and
<name> <first> S.</first> <last> Furui,</last> </name> <title>

/N-best-based speaker adaptation for speech recognition,"</title>-
in <booktitle> Proc. ICASSP ’97,</booktitle> (¦<name>-
<first> Munich,</first> </name> <title> Germany¦),</title> pp.
<pages> 1015–1018,</pages> <date> Apr. 1997</date>.

2 [5] <name> <first> T.</first><last> Matsui,</last> ¦ ¦ <first>-
T.</first> <last> Matsuoka,</last> </name> and <name>-
<first> S.</first> <last> Furui,</last> </name> <title> /N-
best-based speaker adaptation for speech recognition,"</title> in
<booktitle> Proc. ICASSP ’97,</booktitle> (<address> Munich,
Germany</address>), pp. <pages> 1015–1018,</pages> <date>-
Apr. 1997</date>.

3 [5] <name> <first> T.</first><last> Matsui,</last>¦ ¦ <first>-
T.</first> <last> Matsuoka,</last> </name> and <name>-
<first> S.</first> <last> Furui,</last> </name> <title> /N-
best-based speaker adaptation for speech recognition,"</title> in
<booktitle> Proc. ICASSP ’97,</booktitle> (<address> Munich,
Germany</address>), pp. <pages> 1015–1018,</pages> <date>-
Apr. 1997</date>.

4 [5] <name> <first> T.</first> <last> Matsui,</last>¦ ¦<first>-
T.</first> <last> Matsuoka,</last> </name> and <name>-
<first> S.</first> <last> Furui,</last> </name> <title> /N-
best-based speaker adaptation for speech recognition,"</title> in
<booktitle> Proc. ICASSP ’97,</booktitle> (<address> Munich,
Germany</address>), pp. <pages> 1015–1018,</pages> <date>-
Apr. 1997</date>.

5 [5] <name> <first> T.</first> <last> Matsui,</last> </name>-
<name> <first> T.</first> <last> Matsuoka,</last> </name> and
<name> <first> S.</first> <last> Furui,</last> </name> <title>

/N-best-based speaker adaptation for speech recognition,"</title> in
<booktitle> Proc. ICASSP ’97,</booktitle> (<address> Munich,
Germany</address>), pp. <pages> 1015–1018,</pages> <date>-
Apr. 1997</date>.

baseline [5] <name> <first> T.</first> <last> Matsui,</last> </name>-
<name> <first> T.</first> <last> Matsuoka,</last> </name> and
<name> <first> S.</first> <last> Furui,</last> </name> <title>

/N-best-based speaker adaptation for speech recognition,"</title> in
<booktitle> Proc. ICASSP ’97,</booktitle> (<address> Munich,
Germany</address>), pp. <pages> 1015–1018,</pages> <date>-
Apr. 1997</date>.

Table 6.14: Example of effect of lookahead on defects, usingorder 4 models trained
on 4000 documents. Tags initalics are incorrectly placed.¦ indicates a missing tag.

134

 1

 4

 16

 64

 256

 1024

 4096

 16384

 0 2 4 6 8 10 12 14
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

R
ec

al
l/P

re
ci

si
on

 (
%

)

Lookahead

Search space
Recall

Precision

Figure 6.15: Graph of recall, precision and search space against lookahead for the
singlenametag. Models trained on 2000 documents and tested on one document.

numbers that looked like years such as1993–2002and features such asn–n+4,

which is a common format when the citation is taken from an electronic copy and

the document length is known but not the location within the larger journal or col-

lection. These sources of noise are compounded by variability in the length of

bibliographies, which may be as short as a single entry with only onepagestag and

only onename. These problems are not resolved by increasing the lookahead.

Figure 6.16 shows the same analysis for thewordtag in the segmentation corpus.

The data from this graph (Table 6.15) show that while the search space increased by

five orders of magnitude, the recall and precision increasedby less than one percent.

It is not clear why recall and precision cross-over in Figures 6.15 and 6.16 as look-

ahead increases, but the levelling-off of increase in recall and precision, indicative

and representative of larger samples, suggests that the model does not contain all

the information needed to make the underlying relevancy decisions.

These results show that the maximum lookahead heuristic canbe effective. In-

135

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 0 1 2 3 4 5 6 7 8 9
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

R
ec

al
l/P

re
ci

si
on

 (
%

)

Lookahead

Search space
Recall

Precision

Figure 6.16: Graph of recall, precision and search space against lookahead for the
word tag. Models trained on 2000 documents and tested on one document.

Lookahead Search spaceRecall (%) Precision (%)
(nodes per character)

1 6.00 97.10 97.37
2 27.26 97.83 97.79
3 86.22 97.82 97.53
4 241.07 97.73 98.21
5 633.54 97.74 98.21
6 1598.50 98.30 98.06
7 3976.08 97.72 97.59
8 9801.47 97.61 98.16
9 23457.08 97.77 97.87

10 58153.64 97.84 98.09
11 139079.05 97.71 98.02

Table 6.15: Table of recall, precision and search space against lookahead for the
word tag. The data is plotted in Figure 6.16.

136

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a b c d

a b c d

with TagC
without

Figure 6.17: TagC heuristic in hierarchical tag insertion.From steepest to shallow-
est the lines are: (a)author, editor, name, first and last; (b) name, first and last;
(c) nameand last; (d) name. All runs used an order 3 model with 200 training
documents and a single testing document.

creasing the lookahead beyond six has, in this case, no obvious benefit to recall and

precision but is of great detriment to the search space.

6.4.5 TagC Heuristic

The TagC heuristic (Section 4.3.6) limits the number of tagsto be considered for

insertion between two characters in a document. Figure 6.17shows the effect of

the TagC heuristic on the hierarchical tagsauthor, editor, name, first and last in

the bibliography corpus. In all cases the search space was reduced. Figure 6.18

shows the effect of the TagC heuristic on the non-hierarchical tagsname, pages,

date, volumeandnumberin the bibliography corpus.

Results show the TagC heuristic to be consistent and significant. Much of the

pruning of the TagC heuristic is similar to that of the best first optimisation. A

tag that is ruled out by the TagC heuristic has not been seen inthis model before,

137

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a b c d e

a b c d e

with TagC
without

Figure 6.18: TagC optimisation in non-hierarchical tag insertion. From steepest
to shallowest the lines are: (a)name, pages, date, volumeandnumber; (b) name,
pages, dateandvolume; (c) name, pagesanddate; (d) nameandpages; (e) name.
All runs used an order 3 model with 200 training documents anda single testing
document.

138

meaning the PPM model must escape back to order−1 (see Section 3.4), and im-

plying high entropy transitions. The structure of PPM models means an ordera

transition can be followed, at most, by an ordera + 1 transition (except for the start

of sequence symbol), so an order−1 transition can be penalised over an ordern

transition forn + 1 transitions. Many of the tags and tag sequences ruled out by the

TagC heuristic would mean three or four order−1 transitions and can be rapidly

pruned by the best first under normal circumstances.

The set of observed tag combinations is smaller in the bibliography corpus than

it may be in real-world corpora because, when integrating the tagged and untagged

bibliographies (see Figure 5.2), placement of tags with respect to inter-word white-

space was performed automatically and therefore consistently. Diverse, real-world,

uncurated sources are unlikely to display this degree of consistency.

6.4.6 State Tying

The opportunity to apply the state tying heuristic (see Section 4.3.7) occurred only

once in the corpora studied, on thenametag which may occur within theeditor or

theauthor tag in the bibliography corpus. The schema for the bibliography dataset

with and without state tying are shown in Figure 5.4 and Figure 5.5 respectively.

Figure 5.4 differs from Figure 5.5 in that thenamesubtree has been cloned and a

copy appears for each parent. This section examines the effect this duplication has

on the performance of the model.

Table 6.16 shows the type confusion matrices, with and without state tying,

for the bibliography corpus. Perhaps surprisingly, the twokey leaf tagsfirst and

last perform similarly in the two models. This is evidence that good models were

built for these tags both with and without tying. At a slightly higher level, the tying

performed noticeably better (more than 1%) at identifyingnametags, while without

tying performed noticeably better (more than 1%) at identifying editor tags. This

later improvement appears to be because that proceedings editors often only have

139

99.88 + + + + + + + + +
+ 80.06 + + + + + + + + + 3.02 7.09 4.64 1.80 1.54

3.01 83.93 3.76 2.21 + 3.49 2.85 + + +
+ + 92.59 2.43 + + 3.91 + + + +

+ 1.52 + 4.27 89.50 + 1.87 1.94 + + + +
+ + + + 94.58 2.92 1.87 + + + +
+ + + + 1.28 94.78 + + 3.21 + + + +
+ + + + + 99.04 + + + + +
+ + + + + + 97.27 + + 1.01 + + + +
3.32 + + + 94.79 + + + + + +
1.46 + + + 96.97 + +

+ 1.28 + + + + 1.35 + + + + 93.91 + 2.41 + +
+ 3.28 + + + + + + + + 1.27 94.52 + + +

3.13 + + + + + + + + 7.94 + 87.29 + +
8.01 + + + + + + + + 3.61 1.57 + 81.70 3.98
4.19 + + + + + + + + 2.60 + 1.85 2.68 87.30

bibliography

bibbody

editor

author

nam
e

first

last

pages

date

volum
e

num
ber

title

journal

booktitle

publisher

address

99.87 + + + + + + + +
+ 77.14 + + + + + + + + + 3.01 8.25 6.52 1.82 1.39

3.31 85.88 3.33 1.39 + 2.82 2.62 + + +
+ + 92.78 2.37 + + 3.56 + + +
1.59 + 5.30 87.70 + 2.49 1.91 + + + +
+ + + + 94.35 3.31 1.55 + + + +
+ + + + 1.45 94.49 + 3.10 + + + +
+ 98.95 + + + + + +
+ + + + + + 96.87 + 1.06 1.18 + +
2.09 + + + + + 95.99 + 1.11 + + + +
+ + + + 96.09 1.53 +

+ 1.17 + + + + 1.70 + + + + 93.08 + 3.05 + +
2.63 + + + + + + + + 1.11 95.54 + + +

+ 3.71 + + + + + + + + 10.23 + 84.59 + +
7.25 + + + + + + + + 4.57 1.85 + 81.47 3.77
3.54 + + + 1.18 + + + 3.02 + 2.35 2.86 85.82

Table
6.16:

Type
confusion

m
atrices

for
the

bibliography
co

rpus.
T

he
m

atrix
on

the
leftis

w
ith

state
tying

and
the

m
atrix

on
the

rightis
w

ithout
state

tying.
A

llvalues
are

in
percent,a

‘+’indicates
a

figure
low

er
than

0.99%
.

O
rder

6
m

odels
trained

o
n

6000
docum

ents
and

tested
on

500
docum

ents
w

ith
a

lookahead
o

f5.

140

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 1000 10000

E
nt

ro
py

 (
bi

ts
/c

ha
ra

ct
er

)

Training Files

without tying
with tying

Figure 6.19: Entropy dropping with increased training data, with and without state
tying. Order 6 models tested on 500 documents with a lookahead of 5.

their last name given in bibliography entries and modellingeditor tags separately

from authortags allowed this information to be captured.

In the tags not directly related to names, the state tying results are slightly better

than the without state tying results, having a higher numberof results on the leading

diagonal in nine of eleven cases. This is, perhaps, because the state tying presented

a more consistent model of the concepts of names to the rest ofthe model. Other

features of type confusion matrices for the bibliography corpus are explained in

Section 6.2.3.

Figure 6.19 shows how entropy drops with increased trainingdata, with and

without state tying, for the tags shown in Table 6.16. Entropy with state tying

appears to be slightly less, but not consistently less, thanentropy without state tying.

This is somewhat surprising since the motivation for state tying was to achieve

better performance from the same amount of training data (Section 4.3.7), and this

appears not to be happening consistently. This is probably because the effect which

141

98
.9

8
+

+
+

+
+

2.
85

88
.5

0
+

4.
86

+
2.

79
9.

91
+

81
.0

3
6.

36
+

2.
20

2.
86

1.
88

1.
68

93
.3

8
+

+
1.

10
+

+
+

94
.7

3
3.

85
2.

68
+

+
+

1.
49

95
.6

4

bibliography

name

editor

author

first

last

98
.5

3
+

+
+

+
1.

29
2.

57
89

.0
4

+
5.

45
1.

01
1.

74
10

.5
2

+
81

.3
6

5.
90

+
1.

78
3.

41
2.

44
2.

29
91

.7
8

+
+

1.
16

+
+

+
95

.9
6

2.
67

2.
48

+
+

1.
81

95
.5

6

Table 6.17: Type confusion matrices for the bibliography corpus. The matrix on the
left is with state tying and the matrix on the right is withoutstate tying. All values
are in percent, a ‘+’ indicates a figure lower than 0.99%. Order 6 models trained on
6000 documents and tested on 100 documents with a lookahead of 5.

is noticeable in Table 6.16 is too small to be detected over the sampling error.

Table 6.17 shows the type confusion matrices, with and without state tying, for

the bibliography corpus for a greatly reduced set of tags compared with Table 6.16.

The results do not show a clear pattern of similarity with those shown in Table 6.16

for the larger set of tags, suggesting that the results are not generally applicable.

An unanticipated benefit of state tying is that the combined models are sig-

nificantly smaller than the separate models. The memory consumption of models

increases linearly with extra tags but less than linearly with extra training data: if

two tags are tied together to use the same PPM model, memory can be saved. The

CEM implementation uses memory näively, no experimentation or tuning has been

used to reduce the memory consumption.

The state tying optimisation gives at best a marginal improvement in results,

but can be expected to lead to smaller models. Occam’s Razor (also called the

‘principle of parsimony’ or the ‘principle of simplicity’)asserts that a simpler or

smaller model of a phenomenon is to be preferred over a more complex or larger

one.

142

Chapter 7

Conclusions

This thesis extended text augmentation to cover entity extraction problems. It in-

vestigated three classes of text augmentation: segmentation, classification and entity

extraction, and described how they are connected to data mining, text mining and

related fields.

Segmentation, the computationally simplest class, involves segmenting the text.

Information is encoded in where one segment ends and the nextstarts. Tasks such as

Chinese text segmentation were evaluated using recall and precision on the segment

boundaries.

Classification, which is more computationally expensive than segmentation, in-

volves classifying textual elements into one of several classes. Information is en-

coded in the class an element falls into. Classification tasks, such as part of speech

tagging, have close ties to machine learning, and share withit the confusion matrix

evaluation method.

Entity extraction is the most computationally expensive class of text augmenta-

tion. It marks-up textual fragments with a nested hierarchyof classes and informa-

tion is encoded both in where fragments start and finish and intheir type. Inserting

attribute-free XML into text is an entity-extraction task.Entity extraction was eval-

uated using type confusion matrixes and using edit distances.

143

7.1 Review of Aims

In Section 1.2 various aims were introduced; in this sectionthey are examined to

determine whether they have been met.

1. Examine text-augmentation problems, in the large, to attempt to determine

which are susceptible to automated text augmentation and whether some sets

of problems are inherently easier than other.

Section 4.1 built a taxonomy of three taxa of text-augmentation problems:

segmentation, classification and entity extraction. Collection and document

level metadata are poorly catered for. Section 4.1.4 coversa number of forms

of fine-grained metadata which does not sit within the taxonomy. Sections 4.4

and 6.4 examines the different static and dynamic performance of various

searches over the different problems. Segmentation is computationally eas-

ier than classification, which is computationally easier than entity extraction.

This aim has been met.

2. Build a text-augmentation system capable of solving at least as wide a range

of problems as existing low-human-input systems, with an eye to eventual

inclusion as part of a digital library system.

Section 4.2 describes CEM, a system capable of solving a widerrange of

text-augmentations problems than the immediately previous systems TMT

and SMI, which did not solve entity-extraction problems. CEMhas low-

human-input and has a number of design characteristics suchas using Uni-

code throughout and using standard XML documents. This aim has been met.

3. Locate and/or build corpora to test this system.

The four corpora used in this thesis are described in Chapter 5. The Com-

putists’ corpus was developed from an earlier corpus; the Chinese text seg-

mentation and Reuters’ corpora were existing corpora adapted for use. The

144

bibliography corpus was built as a model entity-extractioncorpus. This aim

has been met.

4. Use specific heuristics and optimisations which perform well in relation to a

particular set of augmentation problems.

The best first optimisation and automatic tokenisation, alphabet reduction,

maximum lookahead, TagC and state tying heuristics are described in Chap-

ter 5 and used with particular types of augmentation problems. State tying

is effective only on entity extraction problems (Section 4.3.7) and TagC only

works on entity extraction and classification problems (Section 4.3.6). This

aim has been met.

5. Evaluate both the text-augmentation system and the heuristics and optimisa-

tions in the system.

Chapter 6 contains a systematic evaluation of both the systemas a whole and

individual heuristics and optimisations. This aim his beenmet.

7.2 Performance of CEM and the New Techniques

The implementation, CEM, created for this thesis uses a substantially different form

of model from that used by previous workers. The model not only allows fully

recursive modelling to deeply tagged XML, it also carries context between hidden

states, which avoids prejudicing entry to these states by avoiding escaping back to

low-order models. CEM also uses a significantly more efficientvariation on the

PPMD escape method avoiding full exclusion. Non-full exclusion is a substantial

performance improvement over full-exclusion with marginal less of correctness.

The best first optimisation leads to substantial gain. It could be argued that the

best first optimisation was an implementation detail ratherthan a true optimisa-

tion. It is, however, absent from the immediately precedingsystem, Teahan’s TMT.

145

Hardware implementations of Viterbi search usually avoid the need for the best first

optimisation by performing this step in parallel.

The maximum lookahead heuristic is used elsewhere and was shown to work

in CEM to good effect. Unfortunately there is no apparenta priori method for

selecting a maximum lookahead, other than by splitting a known-good corpus into a

training corpus and a testing corpus. This technique is lesseffective once the Baum–

Walsh algorithm has been used to adapt the model to a supersetof the original

corpus.

CEM also implements two novel heuristics, TagC and automatictokenisation,

to some advantage. Both are reliant on the consistency of the training data and are

unlikely to be widely useful on uncurated diverse corpora. They also largely prune

the search tree in ways that the best first optimisation also prunes effectively.

The state tying heuristic, which is widely used in voice-recognition systems,

was found to have little effect on the search space, but reduced the size of the hidden

Markov model by merging some of the underlying Markov models. If the seman-

tics of tag nesting are changed, state tying is likely to be more effective. In either

case, it reduces the number of Markov models, and proportionally reduces the re-

quired volume of training data. The use of state tying in thisway, however, hampers

the convergence towards consistent tagging in the marked uptext, by making the

Markov model that best matches a fragment accessible at multiple hidden states.

This is likely to be a significant barrier to the incremental development of corpora

using the system to improve the quality of the training text.It may be possible to

enable state tying during training, and disable it during testing and re-estimation to

restrict access to each Markov model to a single hidden state, thus standardising the

tagging.

Four corpora were used in this thesis. Marking-up the Chinesetext segmentat-

ion corpus was a task on which CEM achieved an F-measure of 98%,in the same

range as other systems and better than TMT. The Reuters’ corpus was used in con-

146

junction with the Brill part of speech tagger, but CEM performed poorly on this

classification task, because the PPM models in CEM have a linear context and lack

super-adjacency, a key aspect of the Brill tagger and other part-of-speech taggers.

A detailed comparison of the performance of CEM and the similar TMT system

on the Computists’ corpus showed that TMT performed consistently better. The

differences were shown to be related to both the modelling characters rather than

words, and the search algorithm.

The fourth corpus was the bibliography corpus, which was used for entity ex-

traction. CEM appeared to perform well, but the lack of a standard test corpus made

comparison with other systems difficult.

CEM includes the Baum–Welch algorithm: this was successfullyused to help

adapt a model trained on one style of bibliography to markup adifferent style. In

this thesis the Baum–Welch algorithm was evaluated using theedit-distance metric.

CEM can be applied to solve a significantly wider range of problems than the

immediately preceding system (TMT), which could solve segmentation and class-

ification problems but not entity extraction. CEM performed well at both the simple

and complex ends of the computational spectrum. It was, however, not so well op-

timised for speed or memory consumption as TMT.

7.3 Impact of Unicode and Document Orientation

Use of Unicode solves many internationalisation issues, but not the unknown-

character problem: the character level equivalent of the unknown word problem.

It also provides a set of cross-language character classes on which word-level rules

and models can be built. The character classes are similar inapproach to the char-

acter classes from the C programming language, which have a long history of use

in parsers.

Encoding metadata, as a CEM does, in a single hierarchical insertion of

147

attribute-free XML tags, limits the classes of metadata that can be represented, in

particular, overlapping structures and alternative interpretations of the same pas-

sage. There are interesting sets of metadata that fall into the excluded category, in

particular: overlapping hierarchies such as physical and logical document structure,

and metadata constructed from fragments scattered throughout the document text.

The view of the data and metadata as an annotated document rather than a col-

lection of facts has a number of impacts on further use, even though metadata held

in an external database could be processed to embed it in the document andvice

versa. Firstly it makes the document more amenable to presentation as a metadata-

enhanced document, such as in a digital library or an XML-based document reposi-

tory. Secondly it makes the kinds of higher-level processing used in the later stages

of many of the MUC systems harder, because these perform operations such as re-

lational joins which have no direct equivalent in an annotated document. Thirdly it

makes the metadata significantly less amenable to export foruse in external systems,

many of which expect relations of data. Fourthly document-centric, XML-native,

databases allow queries on the annotated XML documents, including aspects of the

documents which the querier might consider important whichthe metadata extrac-

tor might not. The best representation for inferred metadata is thus likely to be

determined by the larger context and the intended uses of themetadata.

7.4 Limitations of CEM

CEM has two broad sets of limitations, those imposed by modelling and search

techniques, and those due to the implementation of those techniques.

Attribute data CEM does not capture attribute data. For enumerable attributes,

this can be mitigated by XML transformations which transform each possible

combination of attributes in each tag to a separate tag. For continuous at-

tributes this technique leads to an infinite number of tags. It is not clear how

148

many continuous attributes occur in linguistic corpora, the author has seen

continuous attributes in spoken linguistic corpora (particularly in the time di-

mension) but not in written linguistic corpora.

Differentiable tags Tags that do not have different character distributions, or

whose character distributions PPM is unable to model, cannot be inserted.

An extreme case of this might be the task of marking-up the prime-numbered

digits in a decimal representation ofπ. While automating such a marking up

is possible, doing it with Viterbi search and learnt PPM models is not. The

author is aware of no linguistic corpora for which this is an issue.

Consistency Tags are assumed to be used consistently. This does not hold for

many real-world situations, but curated textual corpora are becoming more

common. There are also various tools such as jtidy1 which regularise some

aspects of HTML/XHTML.

These three limitations are shared with all directly comparable applications of

searching using Markov models, including TMT and HTK. The second set of limi-

tations are implementation-based, caused by choices made when building CEM.

Number of tags CEM has an upper bound on the number of Markov models and

thus of tags modelled. The implementation represents tags using Unicode

characters from the private use range\uE000–\uF8FF, of which 3 are re-

served as special markers. While an order of magnitude greater than the num-

ber of tags appearing in commonly used markup such as XHTML, MathML

and those appearing in this thesis, this limits the use of tagtransformations as

work-arounds for other limitations.

Nesting of tags CEM cannot represent tags nested directly within tags of the same

type. This is currently impossible because in the search nodes only the tag is

1 http://jtidy.sourceforge.net/

149

noted and not whether it is opening or closing. None of the corpora examined

here displays such nesting and while it would be relatively easy to fix, it

would involve an extra test in the inner loop of the search operation, slowing

searching. An alternative to changing the implementation is to transform the

text so that every odd-depth tag has a different name, and then use state-tying

to tie the odd and even tags together. HTK supports models such as these,

TMT does not.

Adaptive Models The PPM models implemented in CEM are not adaptive. This

means that the Baum–Welch algorithm cannot be applied any finer than the

document level, for example to allow intra-document learning. This is likely

to be a problem when the re-estimation text contains relatively few but un-

usually large documents, allowing few re-estimation cycles. If the documents

are internally homogeneous, it may be possible to overcome this by splitting

them to increase the number of inter-document re-estimation cycles. Both

HTK and TMT can be adaptive.

Streaming documentsDocuments are held entirely in memory rather than being

streamed. Holding documents in memory consumes extra memory. While

this was not a problem for corpora used in this work, which have reasonably

short documents, it would prevent processing of large documents. Documents

as large as 6MB (unmarked up size) have been successfully marked up. Doc-

ument length is linearly related to this aspect of memory consumption. HTK

allows documents to be streamed, TMT does not.

Document-at-once processingAn entire XML document, rather than an XML

fragment, must be marked up at once. The command line to interface CEM

requires documents be read from the file system, one documentper file. A

Java interface allowing arbitrary XML nodes to be marked-upexists but is

not used in the experiments presented here. Marking-up document fragments

150

is important in interfacing CEM with other systems. Both HTK and TMT

have interfaces allowing partial documents to be processed.

Integer overflow The PPM models implemented in CEM implicitly assume that

none of their counters rolls over. This assumption holds unless more than

231 − 1 characters of training data (or combined training and re-estimation

data) are seen. HTK overcomes this limit by encoding probabilities as

floating-point numbers rather than as ratios of integers. TMT overcomes this

limit using integers that are scaled prior to overflow. The latter could be

worked into CEM.

CEM does not have a mode of operation which calculates the entropy of entire

documents in each of the Markov models. This is used effectively by TMT for

calculation of whole document metadata such as language andgenre. Of these

implementation limitations, only making the PPM models adaptive and removing

the upper bound on the number of tags would require extensiveredesign of CEM.

7.5 Problems Suitable for CEM and Text

Augmentation

There are several broad indicators that metadata will be marked up well by CEM: it

should be relatively fine-grained, at the character, word orphrase level; it should be

discriminatable from the immediately surrounding text; there should be a training

corpus which matches the testing text sufficiently well to build a model from (or

text available to build such corpus from); if the testing text is changing with time, it

should be changing sufficiently slowly that the model can be re-estimated to track

the changes.

Segmentation problems that meet these requirements include the segmentation

of languages written without spaces between words (i.e. Chinese, Japanese and

151

Thai) and locating potential hyphenation points in European languages (i.e. En-

glish, German and French). Classification problems that meetthese requirements

include part-of-speech tagging, finding proper nouns, email addresses, URLs, stock,

cross-references and similar classes of textual entities.Entity-extraction problems

that meet these requirements include marking-up bibliographies, title and frontis

pages, email headers, standard forms and other highly-structured sections of text.

Parsing of many computer programming languages, includingScheme, Java

and C, into an XML representation is an entity-extraction problem, although not

one CEM is ideal for, because of the length of structures involved. Parsing of the

Python language is not, and CEM is not capable of this task: theconcept ‘the same

indentation as the previous line’ cannot be learnt using PPM.

In all cases, higher-order reasoning based on the inferred metadata is beyond

the ability of CEM. For example, while it can find proper nouns in English text, but

it cannot be used to find equivalences between different nouns used for the same

subject, because this requires reasoning about on non-adjacent values. Since this

higher-order reasoning is an integral part of many systems used in the wild, CEM

is unlikely to be a suitable drop-in replacement for many systems.

7.6 Training Corpora Sizes

The relative success of text augmentation on the Computists’corpus, with only 38

issues of 1200 words, shows that augmentation can be useful even when trained

on relatively small volumes of text. Certainly this augmentation is of high enough

quality to be used for transforming the document for presentation to end users.

With F-measures as low as 55%, however, the augmented text should be used with

care. In particular, the compilation of indexes and of extracted terms, in which

recurring terms contribute less than singly-occurring terms should be avoided, as

this emphasises errors, which tend to be unique, singly-occurring items.

152

Estimating the quantity of training text needed to produce results of a certain

quality is challenging because of the many factors that influence this, but it seems

apparent, supported by the experimental results in Chapter 6, that model discrimi-

nation is key. For example in the Computists’ corpus, the easily-discriminated URL

and email tags were augmented reliably, whereas the poorly-discriminated name,

organisation and location tags were augmented poorly, despite considerably more

examples being seen in training.

The incremental development of the Computists’ corpus, together with an ex-

amination of the errors of text augmentation systems leading the correction of the

training text, is likely to be particularly scalable, sinceit allows leveraging of work

already completed to converge on a consistently marked up corpus. Unfortunately,

incremental development may reveal flaws in the initial assumptions, which are un-

likely to be rectifiable without considerable work.

The automated conversion of existing data and metadata intoa corpus, as for

the bibliography corpus, has the advantage that the metadata in existing data is

presumably present for a reason, reflecting the use or meaning of the data. The

conversion is automated, so if the conversion reveals issues it can be re-performed

completely.

Automatic conversion is limited to those corpora for which asuitable data source

can be found with suitable metadata, and those found are unlikely to be structured

to allow for control of arbitrary variables of interest. Thegrowth of curated reposi-

tories may increase the likelihood that a corpus already exists that can be converted,

extended or developed to be suitable.

7.7 Original Contributions

A number of original contributions are made in this thesis. Asystem called ‘Col-

loquial Entropy Markup’ or CEM was designed and implemented.CEM builds a

153

hidden Markov model from a corpus of marked-up XML documentsand uses vari-

ants of Viterbi search to augment unmarked-up XML documentswith tags in the

marked-up XML documents.

Four corpora were used. The Reuters’ and segmentation corpora required rela-

tively little data preparation. The Computists’ corpus was systematically re-marked-

up. The bibliography corpus is a new corpus.

The following are the key novel aspects of the work presentedin this thesis.

• Partitioning of tag insertion problems into a coherent taxonomy with three

taxa (Section 2.1.2).

• Exploration of the relationship between PPM (Prediction byPartial Match-

ing) models and Markov models (Section 3.3). Previously published as [164].

• Expansion of text augmentation to include nested tags (Chapter 4).

• The best first (Section 4.3.2) optimisation, the automatic tokenisation (Sec-

tion 4.3.3), alphabet reduction (Section 4.3.4) and TagC (Section 4.3.6)

heuristics.

• Detailed analysis of the search space size of tag insertion (Section 4.4). Ear-

lier versions of this work were published as [162].

• Detailed analysis of the correctness measures for different types of tag inser-

tion problems and research methodology (Section 2.3).

• Development of an entropy-based technique to determine whether tag-

insertion errors are the result of a PPM modelling failure orof a searching

failure (Section 2.3.4).

• A new extension of confusion matrices suitable for evaluating hierarchical

many-class classification problems (Section 4.6.4).

154

7.8 Open Questions

There are a number of open questions not examined in this thesis:

1. Whether the conceptualisation of context used here (and elsewhere) is

optimal. There is an alternative method for computing the context of

the current character in a character stream. This was discovered dur-

ing the experimental work for this thesis, but not explored.The con-

text for e in . . .<a>abcd<c>e. . . can be ‘collapsed’ to

. . .<a/>e. . .. This could be achieved by substituting the character rep-

resenting the transition into the tag for the entire tag. This approach is likely to

be most successful where tag densities are highest, such as in part-of-speech

tagging, where state-of-the-art systems take advantage ofsuper-adjacency.

2. Whether adding a default tag with an uninitialised (untrained) model acces-

sible from every context would remove the tendency to place high-entropy

sequences in the model with the least training data.

3. Whether different escape methods would reduce the tendency to place high

entropy sequences in the model with the least training data.

4. Whether a more universal similarity metric such as Kolmogorov complex-

ity [85, 86] might be an appropriate measure for comparing sequences. This

would move evaluation to a theoretical framework independent of any partic-

ular approach to solving the problem and resolve some of the complexities of

evaluating performance.

5. Whether certain textual strings (such asReferenceson a line by itself) can

be used as synchronisation points in a finite automata sense.This is likely to

form part of the infrastructure integrating CEM into a possible digital library

structure, which will need ways of detecting when it is appropriate to use

various tools such as CEM.

155

6. Whether Teahan search or Viterbi search will perform better on certain classes

of text-augmentation tasks.

All of these seem useful avenues of investigation, 1 and 4 being significantly

more novel than 2 and 3. Issues 5 and 6 are likely to be directlyand immediately

relevant to a practical production system.

156

Bibliography

[1] Eugene Agichtein and Luis Gravano. Snowball: Extracting relations from
large plain-text collections. InProceedings of the Fifth ACM conference on
Digital libraries, pages 85–94, San Antonio, Texas, United States, 2000.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

[3] Rie Kubota Ando and Lillian Lee. Mostly unsupervised statistical segmentat-
ion of Japanese Kanji sequences.Journal of Natural Language Engineering,
9(2):127–149, August 2003.

[4] J. Anigbogu and A. Belaid. Hidden Markov models in text recognition.Inter-
national Journal of Pattern Recognition and Artificial Intelligence, 9(6):925–
958, 1995.

[5] Steven Atkin and Ryan Stansifer. A generalized mechanismfor Unicode
metadata. InProceedings of the Nineteenth International Unicode Confer-
ence, San Jose, California, USA, 10–14 September 2001.

[6] Ricardo Baeza-Yates and Berthier Ribeiro-Neto.Modern Information Re-
trieval. ACM / Addison–Wesley, Massachusetts, USA, 1999.

[7] Amit Bagga. Analyzing the complexity of a domain with respect to an Infor-
mation Extraction task. InProceedings of the Fifth Workshop on Very Large
Corpora, 1997.

[8] David Bainbridge, Dana McKay, Ian H. Witten, and Stefan Boddie. Green-
stone Digital Library Developer’s Guide. Digital Library Laboratory, Uni-
versity of Waikato, March 2004.

[9] Alex Bateman, Ewan Birney, Lorenzo Cerruti, Richard Durbin,Laurence
Etwiller, Sean R. Eddy, Sam Griffiths-Jones, Kevin L. Howe, Mhairi Mar-
shall, and Erik L. L. Sonnhammer. The Pfam protein families database.Nu-
cleic Acids Research, 28:263–266, 2000.

[10] Leonard E. Baum. An inequality and associated maximisation technique in
statistical estimation for probabilistic functions of a Markov process. In-
equalities, 3:1–8, 1972. Not sighted.

[11] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A max-
imisation techniques occurring in the statistical analysis of probabilistic func-
tions of markov chains.The Annals of Mathematical Statistics, 41(1):164–
171, 1970.

157

[12] Doug Beeferman, Adam Berger, and John D. Lafferty. Statistical models for
text segmentation.Machine Learning, 34(1-3):177–210, 1999.

[13] Timothy C. Bell, John G. Cleary, and Ian H. Witten.Text Compression.
Prentice Hall, Englewood Cliffs, New Jersey, USA, 1990.

[14] Timothy C. Bell, Ian H. Witten, and John G. Cleary. Modelingfor text com-
pression.ACM Computing Surveys, 21(4):557–591, December 1989.

[15] Dominique Besagni, Abdel Belaı̈d, and Nelly Benet. A segmentation method
for bibliographic references by contextual tagging of fields. In Proceedings
of the Seventh International Conference on Document Analysis and Recog-
nition, page 384, Edinburgh, Scotland, August 2003.

[16] Alan W. Biermann and Amit Bagga. Analyzing the complexityof a domain
with respect to an Information Extraction task. InProceedings of the Fifth
Workshop on Very Large Corpora, 1997.

[17] Daniel M. Bikel, Richard L. Schwartz, and Ralph M. Weischedel. An al-
gorithm that learns what’s in a name.Machine Learning, 34(1-3):211–231,
1999.

[18] Jeff A. Bilmes. A gentle tutorial on the EM algorithm and its application
to parameter estimation for Gaussian mixture and hidden Markov models.
Technical Report ICSI-TR-97-021, University of Berkeley, Massachusetts,
USA, 1997.

[19] Steven Bird, Peter Buneman, and Wang-Chiew Tan. Towards a query lan-
guage for annotation graphs. InProceedings of the Second International
Conference on Language Resources and Evaluation, pages 807–814, Paris,
France, 2000. European Language Resources Association.

[20] Steven Bird, Kazuaki Maeda, Xiaoyi Ma, Haejoong Lee, BethRandall, and
Salim Zayat. TableTrans, Multitrans, InterTrans and TreeTrans: Diverse
tools built on the annotation graph toolkit. InProceedings of the Third Inter-
national Conference on Language Resources and Evaluation, Paris, France,
2002.

[21] Kurt Bollacker, Steve Lawrence, and C. Lee Giles. CiteSeer: An autonomous
web agent for automatic retrieval and identification of interesting publica-
tions. In Katia P. Sycara and Michael Wooldridge, editors,Proceedings of
the Second International Conference on Autonomous Agents, pages 116–123,
New York, New York, USA, 1998. ACM Press.

[22] Kalina Bontcheva, Marin Dimitrov, Diana Maybard, Valentin Tablin, and
Hamish Cunningham. Shallow methods for named entity coreference reso-
lution. In Conference annuelle sur le Traitement Automatique des Langues
Naturelles, Nancy, France, 24–27 June 2002.

158

[23] A. Borthwick, J. Sterling, E. Agichtein, and R. Grishman.Nyu: Description
of the mene named entity system as used in MUC. InProceedings of the
Seventh Message Understanding Conference (MUC-7), 1998.

[24] Bert Bos, Tantek Çelik, Ian Hickson, and Håkon Wium Lie. Cascading
style sheets 2.1 specification. Technical report, World Wide Web Consor-
tium (W3C), 25 February 2004.

[25] Tim Bray, Jean Paoli, and C. Michael Sperberg-McQueen. EXtensible
Markup Language 1.0. Recommendation, The World Wide Web Consor-
tium, 10 February 1998.

[26] Zane C. Bray. Using compression models for text mining. Master’s thesis,
Department of Computer Science, University of Waikato, Hamilton, New
Zealand, July 1999.

[27] Alvis Brazma, Inge Jonassen, Ingvar Eidhammer, and David Gilbert. Ap-
proaches to the automatic discovery of patterns in biosequences.Journal of
Computational Biology, 5(2):277–304, 1998.

[28] Eric Brill. A simple rule-based part-of-speech tagger.In Proceedings of the
Third Conference on Applied Natural Language Processing, pages 152–155,
Trento, Italy, 1992.

[29] Eric Brill. Some advances in transformation-based partof speech tagging.
In Proceedings of the Twelth National Conference on Artificial Intelligence,
pages 722–727, 1994.

[30] John Seely Brown and Paul Duguid.The Social Life of Information. Harvard
Business School Press, Boston, Massachusetts, USA, March 2000. Excerpt
published in First Monday 5:4 April 2000.
http://www.firstmonday.org/issues/issue54/browncontents.html.

[31] M. Buckland and F. Gey. The relationship between recall and precision.
Journal of the American Society for Information Science, 45(1):12–19, 1994.

[32] Jeffrey T. Chang, Hinrich Schütze, and Russ B. Altman. Creating an on-
line dictionary of abbreviations from MEDLINE.Journal of the American
Medical Informatics Association, 23 July 2002.

[33] Eugene Charniak.Statistical Language Learning. MIT Press, Cambridge,
Massachusetts, USA, 1993.

[34] Stanley F. Chen and Joshua Goodman. An empirical study ofsmoothing
techniques for language modeling. In Arivind Joshi and Martha Palmer, edi-
tors,Proceedings of the Thirty-Fourth Annual Meeting of the Association for
Computational Linguistics, pages 310–318. Morgan Kaufmann, 1996.

[35] Nancy A. Chinchor. Overview of MUC-7/MET-2. InProceedings of the
Seventh Message Understanding Conference, April 1998.

159

[36] John G. Cleary and William J. Teahan. An open interface for probabilistic
models of text. In James A. Storer and Martin Cohn, editors,Proceedings of
the Data Compression Conference, 1999.

[37] Hamish Cunningham, Yorick Wilks, and Robert J. Gaizauskas. Gate—a gen-
eral architecture for text engineering. InSixteenth International Conference
on Computational Linguistics, volume 2, pages 1057–1060, Denmark, Au-
gust 1996.

[38] Richard Curtis, Ben Elton, and John Lloyd.Blackadder: the Whole Damn
Dynasty. Michael Joseph, London, England, 1998.

[39] Doug Cutting, Julian Kupiec, Jan Pedersen, and PenelopeSibun. A prac-
tical part-of-speech tagger. In Oliviero Stock, editor,Proceedings of the
Third Conference on Applied Natural Language Processing, pages 133–140,
Trento, Italy, April 1992.

[40] Doug Cutting and Jan Pedersen.The Xerox Part-of-Speech Tagger. Xerox
Palo Alto Research Center, Palo Alto, California, USA, v1.0 edition, 12 April
1993.

[41] E. B. Dynkin.Markov Processes. Springer, New York, 1965. Translated into
English by J. Fabius, V. Greenberg, A. Maitra and G. Majone.

[42] Tom Emerson. Segmentation of Chinese text.MultiLingual Computing &
Technology, 12(38), February 2003.

[43] David C. Fallside.XML Schema. The World Wide Web Consortium (W3C),
2 May 2001.

[44] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. RFC 2068:
HyperText Transfer Protocol — HTTP 1.1, January 1997.

[45] Dayne Freitag. Multistrategy learning for information extraction. InPro-
ceedings of the Fifthteenth International Conference on Machine Learning,
pages 161–169, San Francisco, California, USA, 1998. MorganKaufmann.

[46] Dayne Freitag and Andrew McCallum. Information extraction with HMM
structures learned by stochastic optimization. InProceedings of the American
Association for Artificial Intelligence Conference, pages 584–589, 2000.

[47] Dayne Freitag and Andrew Kachites McCallum. Information extraction with
HMMs and shrinkage. InProceedings of the American Association for Artifi-
cial Intelligence Workshop on Machine Learning for Information Extraction,
1999.

[48] Betty Furrie.Understanding MARC Bibliographic: Machine-Readable Cat-
aloging. Cataloging Distribution Service, Library of Congress, fifthedition,
1990.

160

[49] R. Gaizauskas and Y. Wilks. Information extraction: Beyond document re-
trieval. Journal of Documentation, 54(1):70–105, 1998.

[50] Xianping Ge, Wanda Pratt, and Padhraic Smyth. Discovering Chinese words
from unsegmented text. InResearch and Development in Information Re-
trieval, pages 271–272, 1999.

[51] Charles F. Goldfarb.The SGML Handbook. Oxford, 1990.

[52] James Gosling, Bill Joy, and Guy Steele.The Java Language Specification.
Addison–Wesley, Massachusetts, USA, 1996.

[53] Donna K. Harman. Overview of the first text retrieval conference. InPro-
ceedings of the First Text REtrieval Conference, pages 1–20, Gaithersburg,
Maryland, USA, 4–6 November 1992. National Institute of Standards and
Technology.

[54] Donna K. Harman. Overview of the fourth text retrieval conference. InPro-
ceedings of the Fourth Text REtrieval Conference, pages 1–24, Gaithersburg,
Maryland, USA, 1–3 November 1995. National Institute of Standards and
Technology.

[55] M. Hearst. Untangling text data mining. InProceedings of the Thirty seventh
Annual Meeting of the Association for Computational Linguistics, 1999.

[56] Chris Heegard and Stephen B. Wicker.Turbo Coding. Kluwer Academic
Publishers, 1999.

[57] Paul Glor Howard.The Design and Analysis of Efficient Lossless Data Com-
pression Systems. PhD thesis, Department of Computer Science, Brown Uni-
versity, June 1993.

[58] Akira Ishikawa. A functional operator-based morphological analysis of
Japanese. In14th International Conference of Applications of Prolog, Tokyo,
Japan, 20–22 October 2001.

[59] ISO-9899—Harmonized standard for the C programming language, 1990.

[60] Frederick Jelinek.Statistical Methods for Speech Recognition. MIT Press,
Boston, Massachusetts, USA, 1998.

[61] Thorsten Joachims. A probabilistic analysis of the Rocchio algorithm with
TF/IDF for text categorization. In Douglas H. Fisher, editor, Proceedings of
Fourteenth International Conference on Machine Learning, pages 143–151,
Nashville, USA, 1997. Morgan Kaufmann.

[62] Thorsten Joachims. Text categorization with support vector machines: learn-
ing with many relevant features. In Claire Nédellec and Ćeline Rouveirol,
editors,Proceedings of Tenth European Conference on Machine Learning,
pages 137–142, Chemnitz, Germany, 1998. Springer.

161

[63] Rolf Johannesson and Kamil Sh. Zigangirov.Fundamentals of Convolutional
Coding. Wiley, 1999.

[64] S. Johansson, G. Leech, and H. Goodluck. Manual of information to accom-
pany the Lancaster-Oslo-Bergen corpus of british english for use with digital
computers. Technical report, Bergen: Norwegian Computing Center for the
Humanities, 1978.

[65] Karen Sparck Jones and C. J. van Rijshergen. Report on the need for and
provision of an “ideal” information retrieval test collection. Technical report,
Cambridge University Computer Laboratory, December 1975.

[66] Jussi Karlgren and Douglass Cutting. Recognizing text genres with simple
metrics using discriminant analysis. InProceedings of the Fifteenth Inter-
national Conference on Computational Linguistics, volume II, pages 1071–
1075, Kyoto, Japan, 1994.

[67] Slava M. Katz. Estimation of probabilities from sparsedata for the language
model component of a speech recognizer.IEEE Transactions on Acoustics
Speech and Signal Processing, 35(3):400–401, March 1997.

[68] D. Khmelev and William J. Teahan. A repetition-based measure for verifica-
tion of text collections and for text categorization. InProceedings of the 26th
Annual International ACM SIGIR Conference (SIGIR), Toronto, Canada, 28
July–1 August 2003.

[69] Y Khmelev and William J. Teahan. A repetition-based measure for verifi-
cation of text collections and for text categorization. In26th Annual Inter-
national ACM Special Interest Group on Information Retrieval Conference
(SIGIR), Toronto, Canada, 28 July–1 August 2003.

[70] Jeffrey H. Kingston.Algorithms and Data Structures—Design, Correctness,
Analysis. Addison–Wesley, Massachusetts, USA, 1990.

[71] Donald E. Knuth.The Art of Computer Programming, volume 1, Fundamen-
tal Algorithms. Addison–Wesley, first edition, 1968.

[72] Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjolander, and David
Haussler. Hidden Markov models in computational biology: Applications to
protein modeling. Technical Report UCSC-CRL-93-32, Universityof Cali-
fornia at Santa Cruz, 1993.

[73] Karen Kukich. Techniques for automatically correcting words in text.ACM
Computing Surveys, 24(4):377–439, December 1992.

[74] Nicholas Kushmerick. Wrapper induction: Efficiency andexpressiveness.
Artificial Intelligence, 118:15–68, 1999.

[75] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence

162

data. InProceedings of the Eighteenth International Conference on Machine
Learning, pages 282–289. Morgan Kaufmann, 2001.

[76] Corrin Lakeland. Part of speech tagging in statistical parsing. In M. Jason-
Smith, A. Renaud, and T. Wright, editors,Proceedings of the New Zealand
Computer Science Research Students’ Conference, pages 138–139, April
2001.

[77] Leslie Lamport.LATEX: A Document Preparation System: User’s Guide and
Reference Manual. Addison–Wesley, Massachusetts, USA, 1986.

[78] Christophe Laprun, Jonathan G. Fiscus, Sylvain Pajot, and John Garofolo.
A practical introduction to ATLAS. InHuman Language Technology, San
Diego, California, USA, 24–27 March 2002.

[79] Steve Lawrence and C. Lee Giles. Searching the World WideWeb. Science,
280(5360):98–100, 1998.

[80] Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digitallibraries and au-
tonomous citation indexing.IEEE Computer, 32(6):67–71, 1999.

[81] Steve Lawrence and Lee Giles. Accessibility of information on the web.
Nature, 400:107–109, 1999.

[82] T. R. Leek. Information extraction using hidden Markov models. Master’s
thesis, University of California, San Diego, USA, 1997.

[83] Douglas B. Lenat. CYC: A large-scale investment in knowledge infrastruc-
ture. Communications of the ACM, 38(11):33–38, 1995.

[84] D. D. Lewis. Evaluating Text Categorization. InProceedings of Speech and
Natural Language Workshop, pages 312–318. Morgan Kaufmann, 1991.

[85] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul Vit́anyi. The similarity metric.
In Proceedings of the Fourteenth Annual Symposium on DiscreteAlgorithms,
pages 863–872, Baltimore, MD, 12–14 January 2003. ACM/SIAM.

[86] Ming Li and Paul M. B. Vitanyi.An Introduction to Kolmogorov Complexity
and Its Applications. Springer, Berlin, Germany, 1993.

[87] Hokon Wium Lie and Bert Bos.Cascading Style Sheets, level 1. The World
Wide Web Consortium (W3C), 17 December 1996.

[88] Jean loup Gailly.gzip v1.0, 1993. UNIX Manual page.

[89] Cláudio L. Lucchesi and Tomasz Kowaltowski. Applications of finite au-
tomata representing large vocabularies.Software—Practice and Experience,
23(1):15–300, January 1993.

[90] Helmut Lucke. Which stochastic models allow Baum-Welch training. IEEE
Transactions on Signal Processing, 44(11):2746–2756, November 1996.

163

[91] Hans Peter Luhn. A statistical approach to mechanised encoding and search-
ing of literary information.IBM Journal, pages 309–317, October 1957. Pre-
sented at the American Chemical Society meeting in Miami, April 8 1957.

[92] Hans Peter Luhn.Modern Trends in Documentation, chapter Auto-Encoding
of Documents for Information Retrieval Systems, pages 45–58. Pergamon
Press, London, England, 1959.

[93] Clifford Lynch. The battle to define the future of the bookin the digital
world. First Monday, 6(6), June 2001.

[94] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-
ing a large annotated corpus of English: The Penn Treebank.Computational
Linguistics, 19(2):313–330, 1994.

[95] Diana Maynard, Kalina Bontcheva, Horacio Saggion, Hamish Cunningham,
and Oana Hamza. Using a text engineering framework to build an extendable
and portable IE-based summarisation system. InProceedings of the ACL
Workshop on Text Summarisation, 2002.

[96] Andrew McCallum, Dayne Freitag, and Fernando Pereira. Maximum en-
tropy Markov models for information extraction and segmentation. InPro-
ceedings of the Seventeenth International Conference on Machine Learning,
pages 591–598. Morgan Kaufmann, 2000.

[97] Katherine J. McGowan. Efficient phrase hierarchy inference. Master’s thesis,
University of Waikato, Hamilton, New Zealand, 2002.

[98] Geoffrey J. McLachlan and Thriyambakam Krishnan.The EM Algorithm
and Extensions. Probability and Statistics. John Wiley & Sons, Indianapolis,
Indiana, USA, 1996.

[99] John G. McMahon and F. Jack Smith. A review of statistical language pro-
cessing techniques.Artificial Intelligence Review, 12(5):347–391, 1998.

[100] Rodger J. McNab, Ian H. Witten, and S. J. Boddie. A distributed digital li-
brary architecture incorporating different index styles.In Forum on Research
and Technology Advances in Digital Libraries, pages 36–45, Santa Barbara,
California, 1998. IEEE Computer Society Press, Los Alamitos.

[101] F. Mittelbach, M. Goossens, Braams, Carlisle, and Rowley. The LATEX Com-
panion. Addison–Wesley, second edition, 2004.

[102] Alistair Moffat, Timothy C. Bell, and Ian H. Witten. Lossless compres-
sion for text and images.International Journal of High-Speed Electronics,
8(1):179–231, 1997. Special issue on Signal Compression.

[103] Alistar Moffat. Lossless compression.The Computer Journal, 40(2/3):65–
66, 1997. Special Issue on Lossless Compression, Editorial.

164

[104] Mehryar Mohri and Michael Riley. Weighted determinization and minimiza-
tion for large vocabulary speech recognition. InProceedings of the Fifth Eu-
ropean Conference on Speech and Communication Technology, pages 131–
134, Rhodes, Greece, 1997.

[105] Manijya Rao Muddamalle. Natural language versus controlled vocabulary in
information retrieval: A case study in soil mechanics.Journal of the Ameri-
can Society for Information Science, 49(10):881–887, 1998.

[106] Un Yong Nahm, Mikhail Bilenko, and Raymond J. Mooney. Twoapproaches
to handling noisy variation in text mining. InInternational Conference on
Machine Learning Text Learning Workshop, pages 18–27, Sydney, Australia,
July 2002.

[107] Theodor H. Nelson.Computer Lib. Microsoft Press, Redmond, Washington,
1987. ‘Dream Machines’ by the same author in the same volume.

[108] Network Development and MARC Standards Office, Libraryof Congress.
MARC 21 Format for Bibliographic Data: Field List, 1999 english edition,
1999.

[109] Craig G. Nevill-Manning, T. Reed, and Ian H. Witten. Extracting text from
PostScript. Working Paper 97/10, Department of Computer Science, Univer-
sity of Waikato, April 1998.

[110] David M. Nichols, Kirsten Thomson, and Stuart A. Yeates. Usability and
open-source software development. In Elizabeth Kemp, ChrisPhillips, Kin-
shuk, and John Haynes, editors,Symposium on Computer Human Inter-
action, pages 49–54, Palmerston North, New Zealand, 6 July 2001. ACM
SIGCHI NZ.

[111] Joseph Z. Nitecki.Metalibrarianship: A Model for Intellectual Foundations
of Library Information Science. Published by Joanne Twining Williams at
the Texas Woman’s University, 1993. Volume 1 of the Nitecki Trilogy.

[112] Library of Congress.Library of Congress Classification Outline. Library of
Congress, 1990.

[113] David D. Palmer and John D. Burger. Chinese word segmentation and in-
formation retrieval. InProceedings of the Symposium on Cross-Language
Text and Speech Retrieval. American Association for Artificial Intelligence
Conference, 1997.

[114] Steven Pemberton, Daniel Austin, Jonny Axelsson, Tantek Celik, Doug Do-
miniak, Herman Elenbaas, Beth Epperson, Masayasu Ishikawa,Shin’ichi
Matsui, Shane McCarron, Ann Navarro, Subramanian Peruvemba, Rob Re-
lyea, Sebastian Schnitzenbaumer, and Peter Stark.XHTML—The Extensible
HyperText Markup Language—A Reformulation of HTML 4 in XML 1.0. The
World Wide Web Consortium, 1.0 edition, August 2002.

165

[115] Fuchun Peng, Fangfang Feng, and Andrew McCallum. Chinese segmentat-
ion and new word detection using conditional random fields. In Proceedings
of The 20th International Conference on Computational Linguistics, Geneva,
Switzerland, 23–27 August 2004.

[116] Fuchun Peng and Dale Schuurmans. Self-supervised Chinese word segment-
ation. Lecture Notes in Computer Science, 2189:238–248, 2001.

[117] Jay M. Ponte and W. Bruce Croft. USeg: a retargetable wordsegmentation
procedure for information retrieval. InSymposium on Document Analysis
and Information Retrieval, 1996.

[118] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition.Proceedings of the IEEE, 77(2):257–286,
February 1989.

[119] Martin Rajman and Romaric Besanon. Text mining knowledgeextraction
from unstructured textual data. InProceedings of the Sixth Conference of
International Federation of Classification Societies, Rome, Italy, 1998.

[120] R. Rosenfeld. A maximum entropy approach to adaptive statistical language
modeling.Computer, Speech and Language, 10:187– 228, 1996.

[121] M. S. Ryan and G. R. Nudd. The Viterbi algorithm. Warwick Research Re-
port RR238, Computer Science, University of Warwick, Coventry,England,
12 February 1993.

[122] Gerard Salton.Automatic Text Processing: The transformation, Analysis,
and Retrieval of Information by Computer. Addison–Wesley, Massachusetts,
USA, 1989.

[123] Dieter Scheffner and Johann-Christoph Freytag. The xml query execution
engine (xee). Technical Report hub-ib-157, Humboldt University Berlin,
Berlin, Germany 2001.

[124] Julian Seward.bzip2 v1.0. UNIX Manual page.

[125] Kristie Seymore, Andrew McCallum, and Ronald Rosenfeld.Learning hid-
den Markov model structure for information extraction. InProceedings of
the Sixteenth National Conference on Articial Intelligence:Workshop on
Machine Learning for Information Extraction, pages 37–42, Orlando, FL,
1999.

[126] Claude Elwood Shannon and Warren Weaver.The Mathematical Theory of
Communication. The University of Illinois Press, Urbana, Illinois, USA,
1964.

[127] Dmitry Shkarin. Ppm: One step to practicality. In James A. Storer and Martin
Cohn, editors,Proceedings of the 12th Data Compression Conference, pages
202–210. IEEE Press, 2002.

166

[128] John Simpson, editor.Oxford English Dictionary (Online edition). Oxford
University Press, Oxford, England, 2002.

[129] Tony C. Smith.N-gram Models of Agreement in Language. PhD thesis, Com-
puter Science Department, University of Waikato, Hamilton, New Zealand,
2001.

[130] C.M. Sperberg-McQueen and Lou Burnard.Guidelines for Electronic Text
Encoding and Interchange. Association for Computers and the Humanities
Association for Computational Linguistics and Associationfor Literary and
Linguistic Computing, Chicago, USA and Oxford, England.

[131] James A. Storer and Martin Cohn, editors.Data Compression Conference,
Snowbird, Utah, USA, 28–30 March 2000. IEEE.

[132] James A. Storer and Martin Cohn, editors.Data Compression Conference,
Snowbird, Utah, USA, 27–29 March 2001. IEEE.

[133] William J. Teahan.Modelling English Text. PhD thesis, Department of Com-
puter Science, University of Waikato, Hamilton, New Zealand, May 1998.

[134] William J. Teahan. An improved interface for probabilistic models of
text. Technical report, School of Computer and MathematicalSciences, The
Robert Gordon University, 2000.

[135] William J. Teahan and John G. Cleary. Tag based models ofEnglish text. In
Storer and Cohn [132], page 582.

[136] William J. Teahan and D. J. Harper. Combining PPM modelsusing a text
mining approach. In Storer and Cohn [131], pages 153–162.

[137] William J. Teahan, Yingying Wen, Roger McNab, and Ian H.Witten. A
compression-based algorithm for Chinese word segmentation. Computa-
tional Linguistics, 26(3):375–393, September 2000.

[138] The Unicode Consortium.The Unicode Standard—Worldwide Character
Encoding. Addison-Wesley, 1992.

[139] Michael B. Twidale, David M. Nichols, and Chris D. Paice.Browsing is a
collaborative process.Information Processing and Management, 33(6):761–
783, 1997.

[140] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptot-
ically optimal decoding algorithm.IEEE Transactions on Information The-
ory, 13:260–269, 1967.

[141] Andrew J. Viterbi and J. K. Omura.Principles of Digital Communication
and Coding. McGraw–Hill, 1979.

167

[142] Ellen M. Voorhees and Donna K. Harman. Overview of the fifth text retrieval
conference. InProceedings of the Fifth Text REtrieval Conference, pages 1–
28, Gaithersburg, Maryland, USA, 20–22 November 1996. National Institute
of Standards and Technology.

[143] Ellen M. Voorhees and Donna K. Harman. Overview of the tenth text re-
trieval conference. InProceedings of the Tenth Text REtrieval Conference,
pages 1–17, Gaithersburg, Maryland, USA, 13–16 November 2001. National
Institute of Standards and Technology.

[144] Yingying Wen. Text mining using HMM and PPM. Master’s thesis, Com-
puter Science, University of Waikato, Hamilton, New Zealand, July 2001.

[145] Ian H. Witten. Applications of lossless compression in adaptive text mining.
In Proc 2000 Conference on Information Sciences and Systems 2, pages 13–
18, Princeton, USA, March 2000.

[146] Ian H. Witten and Timothy C. Bell. The zero-frequency problem: Estimating
the probablitiies of novel events on adaptive text compression. IEEE Trans-
action of Information Theory, 37(4):1085–1094, 1991.

[147] Ian H. Witten and Stefan Boddie.Greenstone Digital Library Users Guide.
Digital Library Laboratory, University of Waikato, Hamilton, New Zealand,
2003.

[148] Ian H. Witten, Zane Bray, Malika Mahoui, and William J. Teahan. Using
language models for generic entity extraction. InProceedings of the Interna-
tional Conference on Machine Learning Workshop on Text Mining, 1999.

[149] Ian H. Witten and Eibe Frank.Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann, San
Francisco, 1999.

[150] Ian H. Witten, Rodger J. McNab, Steve Jones, Mark Apperley, David Bain-
bridge, and Sally Jo Cunningham. Managing complexity in a distibuted dig-
ital library. IEEE Computer, 32(2):6, Feburary 1999.

[151] Ian H. Witten, Alistair Moffat, and Timothy C. Bell.Managing Gigabytes —
Compressing and Indexing Documents and Images. Morgan Kaufmann, 2nd
edition, 1999.

[152] Ian H. Witten, R. M. Neal, and John G. Cleary. Arithmetic coding for data
compression.Communications of the ACM, 30(6):520–540, June 1987.

[153] Ian H. Witten, Craig G. Nevill-Manning, Rodger J. McNab,and Sally Jo
Cunningham. A public library based on full-text retrieval.Communications
of the Association for Computing Machinery, 41(4):71–75, April 1998.

[154] Lauren Wood. Document object model (dom) level 1 specification. Technical
report, World Wide Web Consortium (W3C), 1 October 1998.

168

[155] World Wide Web Consortium.XSL Transformations (XSLT), version 1.0
edition, 16 November 1999.

[156] The World Wide Web Consortium (W3C).RDF/XML Syntax Specification,
10 February 2004.

[157] Dekai Wu and Pascale Fung. Improving chinese tokenization with linguistic
filters on statistical lexical acquisition. InProceedings of the Fourth ACL
Conference on Applied Natural Language Processing, Stuttgart, Germany,
13–15 October 1994.

[158] Stuart Yeates. Automatic extraction of acronyms fromtext. In Stuart Yeates,
editor, Third New Zealand Computer Science Research Students’ Confer-
ence, pages 117–124, Hamilton, New Zealand, April 1999. University of
Waikato.

[159] Stuart Yeates.Colloquial Entropy Markup (CEM) Documentation. Univer-
sity of Waikato, javadoc package edition, 2005.

[160] Stuart Yeates, David Bainbridge, and Ian H. Witten. Using compression to
identify acronyms in text. In Storer and Cohn [131], page 582.A longer
version of this appears as [161].

[161] Stuart Yeates, David Bainbridge, and Ian H. Witten. Using compression to
identify acronyms in text. Working Paper 00/01, Departmentof Computer
Science, University of Waikato, Hamilton, New Zealand, January 2000. A
short version of this appears as [160].

[162] Stuart Yeates and Ian H. Witten. On tag insertion and its complexity. In
Ah-Hwee Tan and Philip Yu, editors,International Workshop on Text and
Web Mining: Pacific Rim International Conference on Artificial Intelligence
2000, pages 52–63, Melbourne, Australia, 28 August 2000.

[163] Stuart Yeates, Ian H. Witten, and David Bainbridge. Taginsertion complex-
ity. In Storer and Cohn [132], pages 243–252.

[164] Stuart A. Yeates. The relationship between hidden markov models and pre-
diction by partial matching models. InEighth Annual New Zealand Engi-
neering and Technology Postgraduate Conference, Hamilton, New Zealand,
30–31 August 2001. University of Waikato.

[165] Jeonghee Yi and Neel Sundaresan. Mining the web for acronyms using
the duality of patterns and relations. InProceedings of the Second Inter-
national Workshop on on Web Information and Data Management, pages
48–52, Kansas City, Missouri, USA, November 2–6 1999. ACM.

[166] Steve J. Young. The HTK Hidden Markov model ToolKit: Design and phi-
losophy. Technical Report CUED/F-INFENG/TR.152, Departmentof Engi-
neering, Cambridge University, September 1994.

169

[167] Shilong Yu, Shuanhu Bai, and Paul Wu. Description of theKent Ridge digital
labs system used for muc-7. InProceedings of the Fifth Workshop on Very
Large Corpora, 1997.

[168] Xiaodan Zhu, Mu Li, Jianfeng Gao, and Chang-Ning Huang.Single char-
acter chinese named entity recognition. InSecond SIGHAN Workshop on
Chinese Language Processing, Sapporo, Japan, 7–12 July 2003.

[169] George Kingsley Zipf. Human behavior and the principle of least effort;
An introduction to human ecology. Addison–Wesley, Massachusetts, USA,
1949. Republished 1965.

170

Appendix A
Corpora Samples

This appendix contains samples from each of the corpora discussed in Chapter 5
and used throughout this thesis. For reasons of space, documents have been
abbreviated, an ellipsis marks a point at which content has been removed. All
documents are presented after preparation rather than in the state in which they
were received.

A.1 Computists’ Corpus

The following is an issue from the Computists’ corpus. The corpus is described in
Section 5.1.

<issue>
AI Vol. 8, No. 1.1
IS<d>January 6, 1998</d>

CS<s>THE COMPUTISTS’ COMMUNIQUE</s>
"Careers beyond programming."
1>> <o>NSF</o>news.
2>> Other funding.
3>> Career jobs.

In the beginning the Universe was created. This has made
a lot of people very angry and been widely regarded as a bad move.
– <n>Douglas Adams</n>. [<s>QotD</s>, <d>16Oct97</d>.]
Greetings, Computists!
The<s>Computists’ Communique</s>will now arrive three times
<d>per week</d>, on Tuesdays, Wednesdays, and Thursdays. Issues
will be shorter, for easy reading, and may vary a bit in length.
Part of each Wednesday issue will be a table of contents for
<d>that day</d>’s CAJ jobs digest. (You can request the digest issue
if you see an interesting opportunity.) I’m reducing the number
of <d>publication weeks</d>to 40 (or 120 issues!), to give me more time
for Web work and other activities. That means there will be
about<d>one week</d><d>each month</d>with no<s>Communique</s>s, usually
with
a holiday or at the end of<d>the month</d>. All to serve you better,
of course, but do get in touch with me if you have suggestions
about the changes.
Membership fees will hold steady at<d>last year</d>’s level,
but with a new"departmental rate" for groups of up to five

171

participants. At<m>$195</m>per year (or half of that outside the<l>US</l>),
it should be attractive to lab directors and other group leaders.
(Please circulate copies of the<s>Communique</s>to the appropriate
people. They can write to me or visit <<u>http://www.computists.com</u>>
to check out the service.) Members may offer<d>two-month</d>

free trials to friends, or<d>three-month</d>free trials
(excluding their own dues) for groups.
My wife<n>Lily</n>will be taking over some of the renewal
billing communication, and will be getting in touch with you.
The captain is on holiday, but his"cool job of<d>the week</d>"
should return in<d>a week</d>or two. (Sometimes he just doesn’t
find a cool enough job.) We’re taking care of business,
so have a fun and prosperous<d>new year</d>!
1>> <o>NSF</o>news:
<o>NSF</o>’s Awards for the Integration of Research and Education
at Baccalaureate Institutions program will make 10-20 awards of
up to<m>$500K</m>. Eligibility is restricted to Carnegie Classification
Baccalaureate I and II institutions and Specialized Technical
institutions that award only baccalaureate degrees. Deadlines
are<d>04Feb98</d>for letters of intent,<d>17Mar98</d>for preliminary
applications, and<d>17Jun98</d>for full applications.
< <u>http://www.nsf.gov/od/osti</u>>. [<s>grants</s>, <d>23Dec97</d>.]
<o>NSF</o>’s CISE and ENG directorates have a Combined
Research-Curriculum Development (CRCD) Program to support
dynamic, relevant engineering and CS/IS education.
<d>31Mar98</d>deadline.
< <u>http://www.nsf.gov/cgi-bin/getpub?nsf9838</u>>.
[<n>Maria Zemankova</n>< <e>mzemanko@nsf.gov</e>>, <s>dbworld</s>,
<d>30Dec97</d>.]
...
I have been poor and I have been rich. Rich is better.
– <n>Sophie Tucker</n>, American singer. [<s>DailyQuote</s>,
<d>02Jan98</d>.]
</issue>

172

A.2 Bibliography Corpus

The following is a bibliography from the bibliography corpus. The corpus is
described in Section 5.2.

<bibliography xsi:schemaLocation="http://www.greenstone.org"
filename="/research/say1/bib/tmpbib files/graphics/2748.bib"><plain><bibproc>
<p></p>References
<p></p>[1] <bibbody><article><author><name><first>Till
B.</first><last>Anders</last></name>and
<name><first>Wolfgang</first><last>Jachmann.</last></name></author><title>Cross
sections with polarized spin-1over2 particles in terms of helicity
amplitudes.</title><journal><emphasis>Journal of Mathematical
Physics,</emphasis></journal><volume>24</volume>(<number>12</number>):<pages>2847-
2854,</pages><date><month>December</month><year>1983</year></date>.</article></bibbody>
<p></p>[2] <bibbody><article><author><name><first>V.
G.</first><last>Bagrov,</last></name><name><first>V.
V.</first><last>Belov,</last></name>and<name><first>I.
M.</first><last>Ternov.</last></name></author><title>Quasiclassical
trajectory-coherent states of a particle in an arbitrary electromagnetic
field.</title><journal><emphasis>Journal of Mathematical
Physics,</emphasis></journal><volume>24</volume>(<number>12</number>):<pages>2855-

2859,</pages><date><month>December</month><year>1983</year></date>.</article></bibbody>
. . .
<p></p>[25] <bibbody><article><author><name><first>W.
M.</first><last>Zheng.</last></name></author><title>The Darboux
transformation and solvable double-well potential models for Schrodinger
equations.</title><journal><emphasis>Journal of Mathematical
Physics,</emphasis></journal><volume>25</volume>(<number>1</number>):<pages>88-
90,</pages><date><month>January</month><year>1984</year></date>.</article></bibbody>
<p></p>Page<pagematter>2 </pagematter>
</bibproc></plain></bibliography>

If the output is indented to show the full structure, it appears as:

<bibliography xsi:schemaLocation=”http://www.greenstone.org” file-
name=”/research/say1/bib/tmpbib files/graphics/2748.bib”>

<plain>

<bibproc>

<p> </p> References

<p> </p> [1]
<bibbody>
<article>

<author>

173

<name>
<first> Till B.</first>
<last> Anders</last>

</name> and
<name>
<first> Wolfgang</first>
<last> Jachmann.</last>

</name>
</author>
<title> Cross

sections with polarized spin-1over2 particles in
terms of helicity amplitudes.</title>

<journal>
<emphasis> Journal of Mathematical

Physics,</emphasis>
</journal>
<volume> 24</volume> (
<number> 12</number>):
<pages> 2847-2854,</pages>
<date>
<month> December</month>

<year> 1983</year>
</date> .</article>

</bibbody>

<p> </p> [2]
<bibbody>
<article>

<author>
<name>
<first> V. G.</first>
<last> Bagrov,</last>

</name>
<name>
<first> V. V.</first>
<last> Belov,</last>

</name> and
<name>
<first> I. M.</first>
<last> Ternov.</last>

</name>
</author>

<title> Quasiclassical trajectory-coherent states of
a particle in an arbitrary electromagnetic field.</title>

<journal>
<emphasis> Journal of Mathematical Physics,</emphasis>

174

</journal>
<volume> 24</volume> (
<number> 12</number>):
<pages> 2855-

2859,</pages>
<date>
<month> December</month>
<year> 1983</year>

</date> .</article>

</bibbody>

. . .

<p> </p> [25]
<bibbody>
<article>

<author>
<name>
<first> W. M.</first>
<last> Zheng.</last>

</name>
</author>
<title> The Darboux transformation

and solvable double-well potential models for
Schrodinger equations.</title>

<journal>
<emphasis> Journal of Mathematical

Physics,</emphasis>
</journal>
<volume> 25</volume> (
<number> 1</number>):
<pages> 88-90,</pages>
<date>
<month> January</month>
<year> 1984</year>

</date> .</article>

</bibbody>

<p> </p> Page
<pagematter> 2

</pagematter>
</bibproc>
</plain>

</bibliography>

175

A.3 Segmentation Corpus

The following is a single document from the segmentation corpus. Whitespace
appearing here is a side-effect of layout, the only whitespace in the original file is a
terminal EOL. The corpus is described in Section 5.3.

<document>
<word> 假</word> <word> 晶华</word> <word>
饭店</word> <word> 举行</word> <word>
颁奖</word> <word> 典礼</word> <word>
，到底</word> <word> 真相</word> <word>
如何</word> <word> 呢</word> <word>
？一</word> <word> 、</word> <word>
资格</word> <word>
：丁肇中</word> <word>
院士</word> <word> 即</word> <word> 因</word>
<word> 首先</word>
...
</document>

176

A.4 Reuters’ Corpus

The following is a single document from the Reuters’ corpus. The corpus itself is
described in Section 5.4.

<document> <NNP> PDCP</NNP> <NNP> Development</NNP> <NNP>

Bank</NNP> <VBD> said</VBD> <IN> on</IN> <NNP> Thursday</NNP>

<PRPSTRING> its</PRPSTRING> <NN> board</NN> <VBD> approved</VBD>

<DT> the</DT> <NN> issue</NN> <IN> of</IN> <CD> one</CD> <CD>

billion</CD> <NN> pesos’</NN> <JJ> worth</JJ> <IN> of</IN> <JJ>
convertible</JJ> <JJ> preferred</JJ> <CD> shares.</CD>

<DT> The</DT> <NNS> proceeds</NNS> <IN> of</IN> <DT> the</DT> <NN>

issue</NN> <MD> will</MD> <VB> fund</VB> <NN> lending</NN> <NN>

operations,</NN> <NN> computerisation,</NN> <CC> and</CC> <VBG>

refurbishing</VBG> <IN> of</IN> <NN> branch</NN> <NN> offices,</NN>

<PRP> it</PRP> <JJ> said.</JJ>
...
</document>

177

Text Augmentation:
Inserting markup into natural

language text with PPM Models

A thesis
submitted in partial fulfilment

of the requirements for the degree
of

Doctor of Philosophy
at the

University of Waikato
by

Stuart A. Yeates

Department of Computer Science

Hamilton, New Zealand

July 9, 2006

ii

Abstract

This thesis describes a new optimisation and new heuristicsfor automatically mark-

ing up XML documents. These are implemented in CEM, using PPM models. CEM

is significantly more general than previous systems, marking up large numbers of

hierarchical tags, usingn-gram models for largen and a variety of escape methods.

Four corpora are discussed, including the bibliography corpus of 14682 bibli-

ographies laid out in seven standard styles using the BIBTEX system and marked-

up in XML with every field from the original BIBTEX. Other corpora include the

ROCLING Chinese text segmentation corpus, the Computists’ Communique cor-

pus and the Reuters’ corpus. A detailed examination is presented of the methods

of evaluating mark up algorithms, including computation complexity measures and

correctness measures from the fields of information retrieval, string processing, ma-

chine learning and information theory.

A new taxonomy of markup complexities is established and theproperties of

each taxon are examined in relation to the complexity of marked-up documents.

The performance of the new heuristics and optimisation is examined using the four

corpora.

Keywords: hidden Markov models, HMM, PPM, Viterbi search, part-of-speech

tagging, XML, markup, metadata.

iii

iv

Dedication

To Jacqui,

my trapping state.

v

vi

Acknowledgements

Thank you my family, for always being there.

Thank you David, Ian, Sally Jo and Matt for guidance, encouragement and tech-
nical help.

Thank you to the Royal Society of New Zealand for funding through the Mars-
den Fund.

Thank you to Reuters for the use of ‘Reuters Corpus, Volume 1, English lan-
guage, 1996-08-20 to 1997-08-19’. Thank you to the ROCLING SIGIR for the
use of the ROCLING corpus. Thank you to Kenneth I. Laws for the use of the
Computists’ Communique.

Thank you to Pauline for handling the long-distance submission.

Thank you my fellow students Carl, Catherine, Dana, Dave, David, Geoff, Gor-
don, Hayley, Imene, Jack, John, Justin, Karl, Kathy, Lin-Yi, Mark, Mark, Shane,
Stuart, Yingying, and everyone else in the New Zealand Digital Library research
group. Thank you to the tutoring, secretarial and technicalstaff.

Thank you Aimee, Aliene, Amanda, Andraus, Andrew, Andrew, Andy, Anne,
Anne, Barry, Belinda, Bill, Bob, Brent, Bret, Carolee, Caroline, Chris, Christine,
Christine, Christine, Dale, Dave, Dave, David, David, Deborah, Dee, Des, Douglas,
Erin, Erin, Gail Gayle, Gaylene, Georgina, Haylee, Ian, Jacqui, Jane, Janice, Jenny,
Jenny, Kay, Kay, Kirsten, Kumar, Lee, Leigh, Leo, Linda, Lyn, Mandy, Matt, Maz,
Micheal, Murray, Rachel, Rachel, Rachel, Rhonda, Roland, Rosie, Sam, Sam, Sara,
Sarah, Shauna, Stuart, Sue, Terri, Terry, Terry, Toni, Tony, Wayne, Wendy and
everyone else I’ve danced with in Christchurch, Hamilton, Auckland, London and
Oxford during the course of my enrolment.

Thank you to OUCS at Oxford for the use of their resources to finish this thesis.
Thank you to all the RTS crew for their encouragement. Thanksto Sebastian for
the LATEX and XML help.

vii

viii

Contents

Dedication v

Acknowledgements vii

Table of Contents xi

List of Figures xiv

List of Tables xv

List of Algorithms xvii

1 Introduction 1
1.1 Plan of the Thesis . 4
1.2 Thesis Statement . 4

2 Background 7
2.1 The nature of text . 7

2.1.1 Ambiguity . 8
2.1.2 Metadata . 9

2.2 Extraction of Textual Information10
2.2.1 Regular Expressions . 10
2.2.2 Handcrafted Rules . 11
2.2.3 Instance Based Machine Learning 11
2.2.4 Information Extraction . 11
2.2.5 Markov Modelling . 13
2.2.6 Trained versus Handcrafted Models 14
2.2.7 Single Step versus Multiple Step Systems 16

2.3 Correctness . 16
2.3.1 Recall and Precision . 17
2.3.2 Edit Distance . 18
2.3.3 Confusion Matrices . 19
2.3.4 Entropy . 20
2.3.5 Hybrid and Other Measures 21

2.4 Efficiency . 21
2.5 XML Tags . 22

2.5.1 Nested Tags . 23
2.5.2 Attributes of Tags . 24
2.5.3 Other Issues . 24

ix

3 Models and Algorithms 27
3.1 Markov Models . 27
3.2 Hidden Markov Models . 28
3.3 Higher Order Models . 29
3.4 Prediction by Partial Matching . 33
3.5 Granularity of Models . 41
3.6 Searching in Models . 44
3.7 XML and Unicode . 49

4 The System 51
4.1 Metadata . 51

4.1.1 Segmentation . 51
4.1.2 Classification . 53
4.1.3 Entity Extraction . 54
4.1.4 Limitations and Constraints 55

4.2 Architecture . 56
4.2.1 The Model . 57
4.2.2 Differences between CEM and other systems 60
4.2.3 The Search Tree . 61
4.2.4 Full Exclusion . 62

4.3 Optimisations and Heuristics . 63
4.3.1 Viterbi Optimisation . 63
4.3.2 Best First Optimisation . 66
4.3.3 Automatic Tokenisation Heuristic 67
4.3.4 Alphabet Reduction . 69
4.3.5 Maximum Lookahead Heuristic 69
4.3.6 TagC Heuristic . 70
4.3.7 State Tying . 70

4.4 Search Space . 72
4.4.1 The Semantics of Nested Tags 75

4.5 Teahan Search . 75
4.6 Evaluation . 77

4.6.1 Recall and Precision . 77
4.6.2 Edit Distance . 80
4.6.3 Confusion Matrices . 81
4.6.4 Type Confusion Matrices 82
4.6.5 Entropy . 83

5 The Text 85
5.1 Computists’ Corpus . 85
5.2 Bibliography Corpus . 87
5.3 Segmentation Corpus . 94
5.4 Reuters’ Corpus . 95

6 Results 97
6.1 PPM-SY versus PPMD . 97
6.2 Correctness . 99

x

6.2.1 Granularity and Heterogeneity 100
6.2.2 Computists’ Corpus . 101
6.2.3 Bibliography Corpus . 104
6.2.4 Segmentation Corpus . 110
6.2.5 Reuters’ Corpus . 111

6.3 Baum–Welch Re-estimation . 113
6.4 Effectiveness of Optimisations and Heuristics 115

6.4.1 Best First . 115
6.4.2 Automatic Tokenisation 120
6.4.3 Alphabet Reduction . 129
6.4.4 Maximum Lookahead Heuristic 133
6.4.5 TagC Heuristic . 137
6.4.6 State Tying . 139

7 Conclusions 143
7.1 Review of Aims . 144
7.2 Performance of CEM and the New Techniques 145
7.3 Impact of Unicode and Document Orientation 147
7.4 Limitations of CEM . 148
7.5 Problems Suitable for CEM and Text Augmentation 151
7.6 Training Corpora Sizes . 152
7.7 Original Contributions . 153
7.8 Open Questions . 155

Bibliography 157

A Corpora Samples 171
A.1 Computists’ Corpus . 171
A.2 Bibliography Corpus . 173
A.3 Segmentation Corpus . 176
A.4 Reuters’ Corpus . 177

xi

xii

List of Figures

2.1 Segmentation ambiguity in Chinese and Japanese 8
2.2 A limerick shown with and without secondary structure 25

3.1 Isomorphism in Markov models 30
3.2 Three representations of the PPMD model for•aabbccabca. 36
3.3 The• model built from•aba◦cbc◦bab• 38
3.4 The◦ model built from•aba◦cbc◦bab• 39
3.5 The expansion step in a Viterbi search of•abbacbccbbab. 40
3.6 The next expansion step in a Viterbi search of•abbaccbcbbab. 41
3.7 The fourth expansion step in a Viterbi search of•abbaccbcbbab. . .. 42

4.1 Schema structures for segmentation and classification problems . . . 52
4.2 Schema structure for the bibliography entity extraction problem . . 55
4.3 The structure of a CEM model . 57
4.4 The structure of a PPM model . 59
4.5 Viterbi search of a large search space 64
4.6 Viterbi search fails . 65
4.7 The structure of a hidden Markov model, with state tying 71
4.8 Teahan and Viterbi search comparison76
4.9 A short quote from Hamlet . 78
4.10 Inter-dependencies in a small entity extraction problem 80

5.1 Corrections in the Computists’ Communique 86
5.2 Data-flow diagram for creating the bibliography collection 90
5.3 Schema for the bibliography corpus with all tags 91
5.4 Schema for bibliography corpus with tags used in this thesis (with

state tying) . 93
5.5 Schema for the bibliography corpus without state tying 93

6.1 PPMD and PPM-SY in the Computists’ corpus 98
6.2 PPMD and PPM-SY in the segmentation corpus 99
6.3 Correctness for documents in the Reuters’ corpus 112
6.4 Correctness for the Reuters’ corpus 113
6.5 Baum–Welch re-estimation . 114
6.6 Best first in the bibliography corpus (hierarchical) 116
6.7 Best first in the bibliography corpus (non-hierarchical). 117
6.8 Best first for varying model orders 118
6.9 Effect of best first and the number of training documents 119
6.10 Effect of tokenisation on a group of hierarchical tags 122
6.11 Effect of tokenisation on a group of non-hierarchical tags 123
6.12 Interaction between best first and tokenisation 128

xiii

6.13 The effects of alphabet reduction on finding a single tag. 130
6.14 The effects of alphabet reduction on finding multiple tags 132
6.15 Lookahead for thenametag . 135
6.16 Lookahead for theword tag . 136
6.17 The TagC heuristic in the bibliography corpus (hierarchical) 137
6.18 The TagC heuristic in the bibliography corpus (non-hierarchical) . . 138
6.19 Entropy dropping with increased training data 141

xiv

List of Tables

2.1 Metadata at different granularities 10

3.1 A variety of linguistic problems tackled with HMMs 28
3.2 n-gram models and models of orderk 31

4.1 Search space size . 75

6.1 Confusion matrices for the Computists’ corpus 102
6.2 Accuracy for the Computists’ corpus 103
6.3 Confusion matrix for the bibliography corpus withoutnote 104
6.4 Confusion matrix for the bibliography corpus withnote 106
6.5 Type confusion matrix for the bibliography corpus for many tags . . 108
6.6 Example of effect of model size on defects 109
6.7 Segmentation of Chinese . 110
6.8 Occurrence tables for the Reuters’ corpus 121
6.9 Occurrence tables for the bibliography corpus 125
6.10 Interaction between errors . 126
6.11 Occurrence tables for the Computists’ corpus 126
6.12 Occurrence tables for the segmentation corpus 127
6.13 Folders used in alphabet reduction 129
6.14 Example of effect of lookahead on defects 134
6.15 Lookahead for theword tag . 136
6.16 Type confusion matrices, with and without state tying (many tags) . 140
6.17 Type confusion matrices, with and without state tying (few tags) . . 142

xv

xvi

List of Algorithms

1 The complete search algorithm . 44
2 The Viterbi search algorithm . 45
3 The Teahan search algorithm . 46
4 The Baum–Welch algorithm . 47

xvii

Chapter 1

Introduction

Timely news is in great demand, and the value increases if thenews is tightly fo-

cused on specific areas of interest to the readers. Often readers are interested in

specific organisations, dates and sources, so the fragment:

1997 was a record spending year for computer-industry mergers andacquisi-

tions, and companies such as Compaq, Dell, IBM, and Hewlett-Packard are

still hot to buy what’s left. [InfoWorld Electric, 24Dec97. EduP.]

might be considerably more valuable to a reader if the organisations, dates and

sources of information were marked up with<o> <d> and<s> tags, respectively:

<d>1997</d>was a record<d>spending year</d>for computer-industry

mergers and acquisitions, and companies such as<o>Compaq</o>,

<o>Dell</o>, <o>IBM</o>, and<o>Hewlett-Packard</o>are still hot

to buy what’s left. [<s>InfoWorld Electric</s>, <d>24Dec97</d>.

<s>EduP</s>.]

The extraction of references to company names in particularforms the backbone

of systems such asfinance.yahoo.com, which aggregate news from many

hundreds of sources into thousands of tightly focused categories.

Languages such as Chinese and Japanese are usually written without white-

space segmenting the characters into words. One of the first operations that must

be performed by many information systems dealing with such text is to augment it

with segmentation information, for example: is augmented to

1

<w> </w><w> </w><w> </w><w> </w><w> </w>, ([ele-

mentary school][building interior][sports][area][construction], i.e. the construction

of an elementary school indoor sports arena). Such segmented text can then be used

in all the ways that words from a western language can be used [3]. The tags can

then be discarded to display the text in the original form or used to process the

text in the word-by-word fashion common to most western information systems, or

some combination of the two.

There are many thousands, perhaps many millions, of peer-reviewed academic

papers available on the Internet, each with bibliographic entries linking it to other

papers and materials, for example:

Donald E. Knuth. Semantics of context-free languages. Mathematical System

Theory, 1968, 2(2), 127–145.

A competent researcher or librarian can readily separate this entry into all the parts

necessary to find the document to which it refers. When there are collections of

thousands of electronic documents, separating these manually is a huge, tedious

and error-prone task. What would be useful would be a system that took the entry

and automatically augmented it as:

<entry>

<author>

<forenames>Donald E.</forenames>

<surname>Knuth</surname>.

</author>

<title>Semantics of context-free languages</title>.

<journal>Mathematical System Theory</journal>,

<year>1968</year>,

<volume>2</volume>(<number>2</number>),

<pages>127-145</pages>.

</entry>

2

Data in such an augmented format could then be used in a numberof opera-

tions, including interloaning a copy of the document, reformatting the reference for

inclusion in another bibliography, citation analysis and querying by date.

Digital library software is increasingly interacting withnon-computer special-

ists on their own terms. This can be done using generic interfaces (witness the

success of the slim-line Google interface) or interfaces tailored to the domain of the

users or the content. In order to provide this, the digital library needs to know what

those terms are and how they apply to the documents in the collections, whether

they are organisations, dates and sources or authors, titles and dates of publication.

Manual augmentation with this knowledge is typically expensive, slow and incon-

sistent.

This thesis describes a method for automating text augmentations for a large

class of problems covering all of these examples. Such text augmentation is per-

formed by building models from training text marked-up withXML tags, then us-

ing the models and searching to insert similar tags into testing text that does not

yet contain any tags. Building effective models requires considerable volumes of

training text with consistently used tags, and that the training text be representa-

tive of testing text. The text augmentation described in this thesis covers a broader

range of information than preceding approaches, but is shallower than most infor-

mation extraction systems in that all reasoning is fine-grained, with no higher-level

or document-level reasoning, limiting the text augmentations that can be attempted.

The quality of text augmentation is evaluated by splitting amarked-up corpus

into a set of training documents and a set of testing documents; training a model on

the former; stripping the tags from the latter; augmenting the stripped testing docu-

ments using the model; and finally comparing the testing documents as augmented

by the system with the original documents. Several different methods to compare

the augmented document to the original are explored in this thesis.

3

1.1 Plan of the Thesis

Following this introduction, Chapter 2 gives the backgroundto the current work,

starting by examining the nature of text and an overview of methods of extracting

information from text. Approaches to evaluating the correctness and efficiency of

the such extractions are then examined, together with ways on encoding extracted

information in XML. Chapter 3 introduces Markov models builtfrom text, and

algorithms for search using such models to extract information.

Chapter 4 discusses the architecture of the implemented system, and examines

the rationale for some of the design choices. It then presents an optimisation and a

number of heuristics, and examines the search spaces of different classes of prob-

lems with respect to these. Chapter 5 introduces the corpora used in this thesis.

Chapter 6 sets out the experimental results of the optimisation and heuristics

on the corpora. Chapter 7 concludes the thesis with an overview of the research,

a list of the original contributions, and a summary of unanswered questions. The

appendix contains samples from each of the corpora used in this work.

1.2 Thesis Statement

Text augmentation is the automated insertion of XML tags into documents in the

context of a digital library to make implicit textual information accessible to con-

ventional processing.

Text augmentation can be expanded to a larger class of problems than

those previously studied. It can be partitioned into three classes of prob-

lem: segmentation, classification and entity extraction. Each class of

problem has distinctive properties, computational complexity and types

of failure, necessitating different evaluation methodologies.

Markov models and searching can be used to solve these problems.

Given the context of their application, there are a number ofoptimisa-

4

tions and heuristics which can be used to make these algorithms com-

putationally tractable.

Text augmentation is a computational process by which natural language text is

augmented by the addition of XML tags to elucidate the implicit structure. Three

different classes of text augmentation are discussed. Eachclass has a structurally

different schema which affects the performance and evaluation of text augmenta-

tion.

Text augmentation is performed using statistical modelling techniques, such as

hidden Markov and PPM models, and using searching algorithms to find a good

augmentation. In the past, text augmentation has been performed using Teahan

search (see Section 4.5), but in this thesis a variety of algorithms is used. Viterbi

search is computationally intractable in many interestingtext augmentation situa-

tions, but an optimisation of it, and a number of heuristics to it, can be exploited,

given the application, to make searching computationally feasible.

To these ends, this thesis aims to:

1. Examine text augmentation problems, in the large, to attempt to determine

which are susceptible to automated text augmentation and whether some sets

of problems are inherently easier than others.

2. Build a text augmentation system capable of solving at least as wide a range

of problems as existing low-human-input systems, with an eye to eventual

inclusion as part of a digital library system.

3. Locate and/or build corpora to test this system.

4. Find specific heuristics and optimisations which performwell in relation to a

particular set of augmentation problems.

5. Evaluate both the text augmentation system and the heuristics and optimisa-

tions in the system.

5

These aims are reviewed in Section 7.1.

6

Chapter 2

Background

This chapter examines the background to the current work. First it looks at the na-

ture of text, various types of ambiguities in natural language text and then examines

metadata, namely explicit information about text. Information extraction systems,

whose purpose is to extract metadata from text, are then surveyed and various meth-

ods of evaluating such extraction systems are examined, together with methods of

evaluating the correctness and efficiency of such systems. Finally, aspects of XML

and Unicode relevant to text augmentation are surveyed.

2.1 The nature of text

One task in text augmentation is the Chinese text segmentation problem, the task

of segmenting a stream of Chinese characters into words. The task is often the first

step in Chinese information processing systems, since Chinese is normally written

without explicit word delimiters. The task is made more challenging by the fact that

line delimiters may occur anywhere, including between letters in a word or digits in

a number [42].

The task is harder than it appears because Chinese text is ambiguous. The text

shown in Figure 2.1(a)(i) (taken from [137]) can be segmented as shown in (ii) or

as shown in (iii), meaning ‘I like New Zealand flowers’ and ‘I like fresh broccoli’

respectively. Similarly the Japanese title shown in Figure2.1(b)(i) (taken from [3])

can be segmented as shown in (ii) or as shown in (iii) meaning ‘president both busi-

ness and general manager’ and ‘president (of) subsidiary business (for) (the proper

7

(i) (ii) (iii)
(a) Chinese

(i) (ii) (iii)
(b) Japanese

Figure 2.1: Examples of segmentation ambiguity in east Asian languages.

name) Tsutomu, general manager’ respectively. Since this last is four nouns and

thus identical from the point of view of a part of speech system, it is a particularly

ambiguous situation.

2.1.1 Ambiguity

Segmentation ambiguity is not confined to Asian languages. There is a widely

circulated joke featuring sentence segmentation ambiguity in English:

Dear John: I want a man who knows what love is all about. You are

generous, kind, thoughtful. People who are not like you admit to being

useless and inferior. You have ruined me for other men. I yearn for

you. I have no feelings whatsoever when we’re apart. I can be forever

happy—will you let me be yours? Gloria

and

Dear John: I want a man who knows what love is. All about you are

generous, kind, thoughtful people, who are not like you. Admit to being

useless and inferior. You have ruined me. For other men, I yearn. For

you, I have no feelings whatsoever. When we’re apart, I can be forever

happy. Will you let me be? Yours, Gloria

8

There is an entire class of English expression, double entendre, which exploits

ambiguity of meaning [128]. This ambiguity is resolved using context—the style

and genre of a piece of text. A sentence with two possible meanings has the more

risqúe meaning if it appears in a Blackadder [38] script and has the less risqúe of

the two if it appears in a Reuters’ dispatch. There are also forms of text in which

resolving ambiguity of meaning is not possible, a well-known example of which is

Lewis Carroll’s poem ‘Jabberwocky’.

Ambiguity resolution using context is an example of what is known in arti-

ficial intelligence as ‘common sense reasoning’. It is knownto be difficult for

computers to resolve such ambiguity, with the difficulty lying in the wide range

of world-knowledge and subtle reasoning that humans use to solve this class of

problem [107].

Partly to reduce the need for ambiguity resolution, the overwhelming majority

of text mining is performed on collections of text with uniform style and genre.

Uniformity of linguistic style highlights the patterns andstructures within the text

and the uniformity of genre ensures that the patterns have the same meanings.

2.1.2 Metadata

Metadata means ‘a set of data that describes and gives data about other data’ [128].

Usually at the granularity of the document (the catalogue entry for a book or the

title and author of a web page), metadata can be at the character level [5] or cover

entire collections of documents (Table 2.1). In many systems and standards much

of the metadata is stored at the document level, even though it may apply to the

collection, section or even character level, because this is the level at which most

processing, storage, licensing, retrieval and transmission operations take place. The

RDF standard [156] is notable for granularity independence,addressing, individual

tags (elements), documents or collections of documents.

This thesis centres on fine-grained metadata, at the character and word levels,

9

Granularity Relevant metadata

Collection Scope; purpose; coverage; copyright; maintenance status;
maintainer contact details;

Document Author; title; date of publication; subject classification;
Section Topics; cross references;
Sentence Semantic meanings;
Word Part of speech; glossary links; dictionary links; collation

order;
Character Encoding; reading direction; case;

Table 2.1: Metadata at different granularities.

and how such metadata can be inferred from, and then annotated into, the text it-

self. This process of augmenting the text is referred to as text augmentation. It has

been previously called ‘tag insertion’ [136, 135], but the author believes that‘text

augmentation’better portrays the action and intent of the process.

2.2 Extraction of Textual Information

A wide range of distinct approaches and many hybrid ones havebeen used to ex-

tract fine-grained information from text for various purposes. This section reviews

several of them, including regular expressions, machine learning and information

extraction. The following section examines how to measure the correctness of the

extraction.

2.2.1 Regular Expressions

Regular expressions are compact representations of a set of strings which can be

converted into a finite-state machine. The machine can efficiently recognise in-

stances of the set of strings within a stream of text. Their close relationship to the

well-studied field of formal language parsing has led to thembeing well under-

stood [2].

Regular expressions are the tool of choice for extracting information with an

exact and precise format, such as email addresses, post codes, dates and the like.

10

They are, however, fragile in the face of mistakes, ambiguity and stylistic variations

in the text.

2.2.2 Handcrafted Rules

Handcrafted rules or templates can also be used to extract information from text.

These typically involve searching for short fragments of text or regular expressions

within text, with each rule processed in order of precedence. Unfortunately, sys-

tems of handcrafted rules can be complex and fragile in the face changing input

data. They also scale poorly with the number classes of information being extracted,

particularly when there is a requirement that rules do not overlap.

These systems typically can consider large windows and potentially have access

to ‘out of band’ sources of information such as dictionariesand name lists [17, 1,

74].

2.2.3 Instance Based Machine Learning

Instance based machine learning is a field concerned primarily with classifying in-

stances into classes. Machine learning can be applied to text [149], but requires that

the text be pre-segmented into instances, potentially losing significant information

and/or leading to large instances.

Machine learning handles noise and ambiguity significantlybetter than regular

expressions. Mis-classified instances, once detected, canbe added incrementally to

the training instances, allowing an existing model to be refined and improved. The

widely-used Brill tagger [28] uses this approach as a primarymethod.

2.2.4 Information Extraction

The field of information extraction typically involves multi-step systems that first

extract atoms from text (using regular expressions, part-of-speech tagging, etc.) and

11

then use higher-order reasoning to solve ‘real world’ problems. The Text REtrieval

Conferences series (TREC) [53, 54, 142, 143] is built round textretrieval tasks

and the Message Understanding Conferences (MUC) and DocumentUnderstanding

Conferences (DUC) are built around competitions between systems. The intent is

to focus research and systems development towards specific,known targets.

MUC Named Entity [35] problems centre on the extraction of proper nouns

(e.g. company names), often with subsidiary information (e.g. market symbols or

addresses) from stylised information sources, typically news articles such as the

Reuters’ corpus. The problems set in the MUC tracks explicitly required the ex-

traction of facts from the texts into a separate database andsubsequent higher-order

reasoning about those facts, in two separate systems. Many involve multiple steps,

such as sentence and word segmentors, part-of-speech taggers, hypothesis genera-

tors, hypothesis evaluators and disambiguators [167].

The systems include many opportunities for encoding handcrafted or externally

curated domain knowledge, from the notion of the word embedded in the word seg-

mentors, to domain-specific word lists used in the part-of-speech tagger and hand-

crafted heuristics for template filling. Word lists includelists of first names, cor-

porate names, colleges and universities, corporate suffixes, times and dates, world

regions and state codes [23]. Many of the systems use trainedmodels, either learnt

rules or Markov models, but only for an individual step of solving the problem.

Many of these systems and corpora suffer from proper-noun ambiguity errors

(see Sections 2.1.1 and 5.1). Methods employed to overcome the ambiguity include

leveraging company and personal titles (Mr, LtdandCorp.) [22]) and deeper parsing

to detect structures such as standard formatting of place names.

The GATE system is a Java GUI framework for linguistic engineering. It incor-

porates a wide variety of tools for using hand- or tool-generated rules, and regular

expressions and links to gazetteers of cities and organisations. Testing and evalua-

tion tools are included for classification problems. GATE focuses on the inclusion

12

of extra-textual information:gazetteers, word-lists, grammars and similar, and their

interactive development to solve particular problems. It also has tools for higher-

level reasoning about texts1 [37, 22, 95]. GATE’s choice to have a GUI enables it

to allow display and input of multiple texts and scripts: 21 are supported.

Citeseer [80] uses a two-stage approach, with an edit distance metric to merge

similar references across the entire collection and then a hand-crafted ‘invariants

first’ heuristic that parses those parts of the reference with the fewest differences

first and uses standard machine learning on them. The system was able to leverage

two extra-document sources of information, tables of common western personal

names and repetition of the same reference (often in slightly different form) in mul-

tiple documents. Citeseer does not parse the diversity of fields that occur in the

bibliography corpus, instead focusing on the title and author fields which are also

extracted from the start of documents and which link most easily to external sources

in the bibliography at the end. The public interface of the Citeseer system allows

end-users to correct the extracted fields and add the missingones. It is not clear

whether feedback from these corrections is applied to the internal algorithms.

2.2.5 Markov Modelling

A number of systems and approaches have used Markov models toextract informa-

tion from, or add information to, text. The early Xerox tagger [40, 39] uses hidden

Markov models and Viterbi search to good effect, but handlesunseen words and

novel contexts poorly.

Built using arithmetic encoder [102] models, one for ‘good’ text and one (called

a ‘confusion model’ [36]) for errors, the TMT (Text Modelling Toolkit) and later

SMI (Statistical Modelling Interface) systems [134, 36] can correct errors in text and

classify textual fragments [133, 26]. With a large number ofoptions and supporting

a wide range of static and adaptive models, SMI is entirely capable of solving the

1 http://gate.ac.uk/

13

news and Chinese examples given in the opening Chapter, but notthe bibliographic

example, because SMI models are not recursive; they cannot represent a hierarchy

of textual fragments.

Arithmetic encoder models provide slightly more information than conventional

Markov models, providing an ordering of symbols as well as probabilities repre-

sented using integer ratios. Integer ratios avoid using floating-point arithmetic to

whose inaccuracies arithmetic encoding is particularly sensitive. These steps make

SMI useful for both textual augmentation and full text compression.2

Freitag and McCallum [46, 96] report work on a bibliography corpus using

hand-crafted, then automatically shrunk, Markov models, giving good results. Fre-

itag and McCallum build models with increasingly complex structures in a similar

manner to Dynamic Markov Compression (DMC) [151], which are then blended

using linear combination.

Recently Besagni et al. [15] have had some success in marking upbibliogra-

phies using part of speech tagging, building chains of whichparts of speech oc-

cur in which bibliographic fields and then correcting fields using a post-processing

step. As with the post-processing performed in part of speech tagging, this includes

super-adjacency. They use six tags and get a recall (see Section 2.3.1) of between

82% and 97% of the time for a corpus of 2500 references. Not allof the failures

are complete failures, since sometimes part of a name is successfully returned. This

may be useful, depending on the context.

2.2.6 Trained versus Handcrafted Models

The use of automatically trained models rather than handcrafted models lends itself

to use in situations where training data is cheaper or more accessible than domain-

knowledgeable humans. With the increasing volumes of data available at the cost of

transfer on the Internet and the relatively stable cost of labour, using large amounts

2 ‘Full text compression’ in this context means lossless compression, as opposed to the lossy
compression often used for images which effectively destroys text [151].

14

of training data rather than people is likely to be an increasingly attractive choice.

While much of the freely available material for training models is of low or

questionable quality, the existence and growth of curated repositories such as the

Oxford Text Archive,3 the Linguistic Data Consortium4 and Project Gutenberg5

suggest that the availability of curated textual and linguistic materials is increasing.

There are limits on what trained models can recognise, because of the finite

training text available, their lack of ‘common sense’ reasoning and various theo-

retic limits [13]. For example, most model training and template building systems

cannot recognise structures characterised byn a’s thenn b’s followed by n c’s.

While systems can be built to recognise these structures for aparticularn, it is not

possible to recognise these structures for unknownn’s with a regular expression

while rejecting structures with different numbers ofa’s, b’s andc’s. These limits

do not apply to handcrafted models. Handcrafted models run into the well-known

difficulties of hand-building large, complex systems [83] and labour costs.

Building and maintaining a set of handcrafted rules or a handcrafted model

may be more cost effective than building a corpus of documents with the concepts

marked-up if the documents are sufficiently rare or sufficiently difficult to handle

(for example they contain embedded private or confidential information). Hand-

crafting is also more attractive if the concept is well understood by non-specialists,

meaning labour is relatively cheap.

Trained models also have the option of automated incremental improvement by

using the Baum–Welch algorithm [10, 11] in production situations. Long-term use

of Baum–Welch may result in divergence and poor performance.However, if the

data seen in production is changing at a rate faster than thisdivergence, then using

the Baum–Welch may be advantageous. This thesis focuses on trained models.

3 http://ota.ahds.ac.uk/
4 http://www.ldc.upenn.edu/
5 http://www.gutenberg.org/

15

2.2.7 Single Step versus Multiple Step Systems

Multiple step text augmentation systems have an advantage over single step sys-

tems in allowing a different choice of algorithm for each step, providing the system

builders with a wider range of options and making the intermediate forms accessible

for ‘boosting’ using word lists and similar. A wider range ofchoices for systems

builders enables them to hand-select algorithms that perform well on the expected

input for the systems. Unfortunately, this often leads to poor performance on other

input: other genre, other character encodings and other languages.

Multiple step text augmentation systems also encourage reuse of system com-

ponents, such as the Brill part-of-speech tagger, which is widely used as a pre-

processor [37]. Single step augmentation systems can be reused as a whole, but

are not as amenable to the development of UNIX-style ‘pipelines’. Corpora used to

train models and rules are amenable to incremental development, either by adding

additional documents of the same type or by adding documentsin additional lan-

guages, as is common in corpora used in comparative linguistics. Steps can also be

arranged in a cascade or waterfall [68].

This thesis focuses on single-step markup processes using Markov models.

There is no theoretical reason why the systems and approaches used here could

not be used as individual steps within a multiple system, buttraining data for the

intermediate stages appears to be rarer, except where the individual step has already

been studied in isolation, as with part-of-speech tagging.

2.3 Correctness

The ultimate test of a computer system is in terms of interactions with users—does

the system work correctly? Are any errors made, minor or catastrophic? Is it fast

enough? Is it easy to use? Do the users like it? These questions, however, are hard

to phrase in terms that allow the answers to be compared amongsystems, versions

16

of the same system, and software packages across time in the face of changing

requirements, user expectations, groups of users and operating environments. They

are also hard to ask of sub-systems that provide a subset of functionality required

by a full system.

There are, however, two features of overall performance which are widely used

for comparing systems: correctness and efficiency. This section examines these and

how they can be applied to text augmentation.

The approaches to measuring correctness examined here comefrom the fields of

information retrieval, string processing, machine learning and information theory.

2.3.1 Recall and Precision

The information retrieval paradigm [122, 6] assumes that a query (single operation)

retrieves a set of items, some of which are relevant to the query. Evaluation is based

around the question ‘Is itemn relevant and was it returned?’ The answer to this

question puts each item into one of four distinct classes: true positive (relevant and

retrieved), true negative (not relevant and not retrieved), false positive (not relevant

and retrieved) and false negative (relevant and not retrieved).

Accumulating counts of each of these four classes over a large number of in-

dependent experiments allows the calculation of two higher-level measures. Re-

call [31] is the proportion of all relevant items that were retrieved:

Recall =
number of relevant items retrieved

total number of relevant items in collection
=

true positives

true positives + false negatives

Precision is the proportion of retrieved items that are relevant:

Precision =
number of relevant items retrieved

total number of items retrieved
=

true positives

true positives + false positives

17

Recall and precision represent a trade-off. A system could return many items

(for high recall and low precision) or few items (for low recall and high precision)

and so they are sometimes expressed as their harmonic mean:

F − measure =
2 × recall × precision

recall + precision

Often the number of false negatives is unknown, such as when retrieving doc-

uments from the World Wide Web, whose exact size is unknown but large [81].

When the number of false negatives is known (or can be reliablyestimated), an-

other measure, called ‘Fallout’ [84], which is a measure of how good the result is

as a result for the negated query, can be used:

Fallout =
number of irrelevant items retrieved

total number of irrelevant items in collection
=

false positives

false positives + true negatives

Fallout measures how effectively irrelevant items are winnowed from the query

results. Fallout is rarely used, as it is sensitive to the size of the collection and the

addition of clearly-irrelevant items to the collection. Recall, precision, and their

combination in the F-measure, are the primary means of evaluating correctness in

information retrieval systems.

2.3.2 Edit Distance

Edit distance is a standard technique in the string processing field. It is a well-

studied measure used in spelling correction [73, 89] (wheretransposes are common

because of the mechanics of typing) and Optical Character Recognition (OCR) [73]

(where swaps are common due to mis-recognition of one character for another).

These research fields measure edit distance on data, whereaswhen used in text aug-

mentation, edit distance is used on combined data and metadata with an expectation

18

that errors be closely linked to the metadata.

Edit distance is performed in terms of individual tags rather than tag-pairs. False

negatives (inserts) and false positives (deletes) are counted and then summed to get

an edit distance.

Edit distance is solely concerned with mistakes made in textaugmentation and

neither true negatives nor true positives impact on edit distance. Edit distance ex-

plicitly recognises the sequential nature of text but, because true positives are ig-

nored, the independence problems discussed in relation to recall and precision do

not occur in edit distance calculation. Teahan [133] uses edit distance to evaluate

text augmentation and Nahm et al. [106] uses edit distance asan input to a multi-

stage text mining system. All edit distances used in the current work are normalised

for document length to give edits per character.

2.3.3 Confusion Matrices

Whereas recall and precision assume an underlying binary classification, confusion

matrices are a tool for evaluating many-class classification tasks, and are widely

used in machine learning for evaluating such tasks [149]. The following is a confu-

sion matrix for a classification problem withi classes:

























a1,1 a1,2 · · · a1,i

a2,1 a2,2 · · · a2,i

...
...

.. .
...

ai,1 ai,2 · · · ai,i

























The matrix is square, with a row and a column for each class.am,n, in columnn

and rowm, is the number of symbols that should have been classified in classn that

were actually classified in classm. Correct classification is indicated whenn = m,

on the leading diagonal of the matrix.

Any non-zero numbers off the leading diagonal, indicate misclassification and

19

there is often symmetry about the diagonal. Non-zero numbers in bothan,m and

am,n indicate that if symbols of classm can be mistaken for symbols of classn,

then symbols of classn are also likely to be mistaken for symbols of classm. This

ability to highlight confusion between tags makes the confusion matrix an excellent

tool for fine-tuning tagsets and finding markup errors. For example, Bray et al. [26]

used a confusion matrix to find errors and demonstrate the strong correlation be-

tween name tags and place tags in the Computists’ corpus. Confusion matrices are

conventionally normalised by converting the rows into percentages.

2.3.4 Entropy

Entropy is a measure from information theory widely used in signal processing,

error-correction and compression fields of computer science [102, 151]. It is in-

versely related to probability. A ‘good’ augmentation of text has a high probability

and a low entropy (measured in bits per character) [13].

Unlike other measures of correctness, entropy does not measure results against

a predefined answer, but rather measures how closely a set of results matches a

model. This is effective in situations where perfect answers are either unobtainable

or obtainable only at great expense.

For entropy measures to be an effective measurement of accuracy of an augmen-

tation of text, the model used to measure entropy must be independent of both the

testing and training data. This problem is closely related to the over-fitting problem

in machine learning, and can be avoided by training two models on separate training

data and using one to augment the text and one to measure entropy.

If an independently trained model is unavailable, an untrained model can be

used with an adaptive algorithm. This is the standard methodology for measuring

the strength of lossless compression algorithms [152, 103,13].

An entropy measurement is relative to a model, and so conveyslittle clear

knowledge about the absolute quality of an augmentation: the user of augmented

20

text is unable to infer as much from an entropy measurement asfrom a re-

call/precision pair or an edit distance. It can, however, beused to compare the

relative merit of different augmentations of the same text,provided the model cap-

tures pertinent details and the same model is used to calculate both entropy mea-

surements.

2.3.5 Hybrid and Other Measures

Many reports of text augmentation use a combination of measures to report their

results. For example Bray [26] decomposed tag insertion evaluation in the Com-

putists’ corpus into a pair of operations, firstly segmenting characters into tokens

and, secondly, classifying the tokens into their respective types.

The segmentation operation was measured in terms of the error count (false-

negatives+ false-positives), and classification of the segments was measured using

confusion matrices. Other systems use measures expressed in terms of their inter-

action with larger information systems, such as extractionof acronyms [165] and

bibliographies [21].

2.4 Efficiency

Computer programs can be written in a wide variety of computerlanguages and run

on a wide variety of platforms. Since the efficiency of these languages and platforms

varies widely, it is useful to compare algorithms independent of their language and

platform. One methodology which allows this is time complexity analysis using

‘big O notation’ [70]. The function is simplified to remove constant factors and is

referred to asO.

Time complexity analysis is defined in terms of a characteristic operation—in

the case of tag insertion this is visiting a node in the searchspace—and counting

how many times the operation is performed, and expressed as afunction of the

21

parameters and input size of the algorithm.

The size of the search space is normalised by the document length to give a

measurement in terms of search space per character. There are special cases when

searching at the start and end of documents, but for the corpora used in this thesis

the initial and final characters in documents are low entropy, so they should not

effect this normalisation.

2.5 XML Tags

EXtensible Markup Language (XML) [25] tags have a name (or type), span a (po-

tentially empty) range of text and have a (potentially empty) set of attributes. The

tags may be nested, but only strictly hierarchically. Thus,if a document has tags

indicating pages from the physical document, it may also have tags indicating lines

and, because each line is wholly within a page, the tags are hierarchical. A tag

which contains only hierarchical tags, or no tags at all, is said to be well-balanced.

An XML document has an enclosing, top level, tag holding information about

the document as a whole. An XML document that is well-balanced is said to be

well-formed.

XML cannot directly represent overlapping hierarchies (such as the physical

and logical document layout), unlike the preceding SGML [51] which had a feature,

CONCUR, which permitted overlapping tags. XML can represent non-hierarchical

tags using higher-order structures, using empty tags with attributes which associate

them in pairs or in a sequence. The difficulties of tagging overlapping structures,

and standard ways of overcoming them, are described in detail in [130].

There are several schema languages for describing which XMLtags may oc-

cur within other XML tags. The W3C schema language includes anANY tag to

refer to any well-balanced tag [43]. Schemas which feature the ANY tag are flexi-

ble but challenging to model, because literally anything can be encoded, including

22

structures equivalent to entire documents of the type beingmarked up.

2.5.1 Nested Tags

The XML standard largely attempts to avoid statements aboutthe semantics

of tags and the semantics of nested tags, other than their well-formedness.

It is tempting to extend practice in XHTML to cover XML. In XHTML

. . . is typically considered semantically equiv-

alent from. . . because most presentation en-

gines (browsers) present these identically. Presentational customisation systems

such as CSS [24] and XSLT [155], however, have no difficulty differentiating these

two situations and the XML standard is silent on their semantic relationship. One

can imagine a (fictional) programming language expressed inXML in which the

semantics are clearly different. For example

<if cond="undefined(symbol)">

<define name="symbol">

<action/>

</define>

</if >

has different semantics to

<define name="symbol">

<if cond ="undefined(symbol)">

<action/>

</if >

</define>

23

The current work attempts to avoid making semantic assumptions such as this, ex-

cept explicitly in the state-tying heuristic (see Section 4.3.7).

2.5.2 Attributes of Tags

The current work focuses exclusively on direct representations and does not con-

sider attributes during training or testing (with the exception of attributes of the

document-level node). All of the corpora used in this thesishave been created or

transformed, as described above, to convert attributes into tags.

Attributes are syntactic sugar and any XML document with attributes can be

transformed into one without attributes and back in a lossless fashion. For exam-

ple, the tag<word partofspeech="verb">jump</word> can easily be transformed

to <word><verb>jump</verb></word> but such transforms can lead to combi-

natorial explosion of tags if there are large number of attributes or the attributes

contain large numbers of unique values. Real-valued attributes would lead to an

infinite number of tags, one for each possible value. If the order of attributes of a

tag is significant, the situation is significantly worse. TheXML standard is silent on

the question of whether the order of attributes is significant, but several subsidiary

standards, including XSLT [155] and DOM [154] do not even permit discovery of

the order of tags. The author knows of no use of an XML corpus inwhich the order

of attributes is significant or of toolsets which support theprocessing of such XML.

2.5.3 Other Issues

A key feature XML shares with many other natural language processing approaches

is the linearisation of language. While written language across a wide range of

cultures is laid out in rectangular regions, whether read left-to-right and top-to-

bottom, or bottom-to-top and right-to-left, digitised language—written or spoken—

is almost always linear to the detriment of any secondary rectangular structure. For

example, the limerick shown in Figure 2.2 is shown twice, first with the secondary

24

The limerick packs laughs anatomical
Into space that is quite economical.
But the good ones I’ve seen
So seldom are clean—
And the clean ones so seldom are comical.

(a)

The limerick packs laughs anatomical Into space that is quite econom-
ical. But the good ones I’ve seen So seldom are clean—And the clean
ones so seldom are comical.

(b)

Figure 2.2: A limerick shown with and without secondary structure.

rectangular structure and then without. The second form of the limerick has the

same rhymes and cadence as the first but loss of the explicit rectangular structure

makes it harder to recognise. None of the data dealt with in this thesis has a strong

secondary rectangular structure.

XML can be canonicalised [25], a process which, amongst other things, stan-

dardises whitespace. This is a lossy operation, whitespacecan contain information,

particularly about line and paragraph boundaries which is lost by canonicalisation.

For this reason all operations preparing the corpora used inthis thesis are performed

without canonicalisation and preserve whitespace.

Standardisation for representing annotated linguistic data in XML [25] is cur-

rently underway, led by the Architecture and Tools for Linguistic Analysis Systems

(ATLAS)6 [78]. The standardisation work includes a content-independent method

of specifying regions and anchors in linear linguistic signals, and a query language

over those regions and anchors. Similar work, with greater implemented function-

ality, is being undertaken by the Linguistic Data Consortium7 [20, 19]. As with the

current work, these approaches embed the inferred information within the linguistic

6 http://www.nist.gov/speech/atlas/
7 http://www.ldc.upenn.edu/

25

data rather than removing it to the document header or an external data store as in

most information extraction.

The current work is based on the Unicode and a subset of XML restricts the

types of texts and annotations which can be easily worked with. With the exception

of attributes, most of the important features of documents in modern information

systems can be represented. By using Unicode and XML a range ofdata preparation

and processing tools is available. A range of corpora is available for reuse in XML

and, by using XML for the corpora produced in the current work, their potential for

reuse is higher than if non-standard formats had been used.

26

Chapter 3

Models and Algorithms

This chapter examines Markov models and some of the searching algorithms that

operate on them. Exhaustive treatment of many aspects touched on here can be

found in the standard texts [63] and [13].

3.1 Markov Models

Markov models are Finite State Machines (FSMs) which consist of a finite number

of states and the transitions between them. In a probabilistic FSM, each transition

has an associated probability and generates (or predicts) asymbol from some al-

phabet of symbols. The FSM has a set of start states (often only one) and a set

of end states (again, often only one). A stream of data is generated by a FSM by

starting in one of the start states and moving through a succession of states (using

the current state’s probability density function to determine the next state) until it

reaches an end state. An excellent review of the use of Markovmodels and similar

statistical techniques as applied to language processing can be found in McMahon

and Smith [99].

Markov models encapsulate the Markov assumption: that ‘thevalue of the next

state is only influenced by the value of the state that directly preceded it’ [41]. The

Markov assumption is useful because it gives a bound on how much system context

needs to be modelled. Markov models produce probability density functions, which

estimate the likelihood of each possible value for the next state.

27

Problem Observable
Sequence

Hidden
Sequence

Observable
Alphabet
Size

Hidden
Alphabet
Size

Type Ref.

Chinese word
segmentation

Characters Words Large 2 Segmentation [137]

English sentence
segmentation

Words Sentences Large 2 Segmentation [133]

Part-of-speech
tagging

Words Word classes Large ≈ 50 Classification [28]

Phone
identification

Digitised, audio
waveforms

Phones Very large Large Entity extrac-
tion

[166,
33]

Table 3.1: Observable and hidden sequences for a variety of linguistic problems
tackled with hidden Markov models.

3.2 Hidden Markov Models

Hidden Markov models (HMM) are composite models involving anumber of hid-

den states each of which contains a complete Markov model. The hidden states

typically represent the information the model is designed to infer, the words to be

segmented or the parts of speech to be distinguished between.

Table 3.1 shows some of the wide variety of previous uses of hidden Markov

models in linguistic problems. Chinese word segmentation and English sentence

segmentation use simple models. Part-of-speech tagging, which has already been

discussed, has a larger hidden alphabet and thus more hiddenmodels.

Phone identification is a key step in voice recognition in which digitised audio

waves are mapped to phones, speech sounds, which are later built into words [166].

HMMs are also widely used in computational biology [72, 9, 27].

A key property of hidden Markov models that makes them so widely used in

these fields is that they handle noisy and ambiguous data well, unlike rule-based

systems which are based on a series of binary decisions and are relatively brittle in

the face of noise and ambiguity. Markov models are, however,much less convenient

for the extraction of pertinent details. While rule-based systems have sets of rules,

typically with clear means of identifying the most important, Markov models have

matrices of hundreds, or even hundreds of thousands, of numbers, with none being

clearly more important than others.

28

3.3 Higher Order Models

Higher order Markov models involve a relaxation of the Markov assumption, al-

lowing multiple states to be taken into account [41]: ‘the values of the next state

are only influenced by the values of then states that directly preceded it’. Each

Markov model of orderk > 1 is isomorphic with a family of Markov models of

orderk − 1, k − 2, k − 3, · · · 3, 2, 1.

Figure 3.1 shows this isomorphism for an FSM with a two-character alphabet.

Figure 3.1(a) shows an order 3 Markov model, with a single state and eight (23)

transitions, each starting and finishing in the single state, and transition probabili-

ties dependent on the previous two characters. Figure 3.1(b) shows an isomorphic

order 2 Markov model, in which the number of states has been multiplied by the

size of the alphabet. The same eight transitions shown in Figure 3.1(a) appear in

Figure 3.1(b), with all transitions generating ana leading to statea and ab leading

to stateb. Although the transition probabilities are still dependent on the previ-

ous two characters, the immediately previous character is implicit in the state and

transitions are labelled with only the previous-but-one character.

Figure 3.1(c) shows an isomorphic order 1 Markov model: again the number

of states has been multiplied by the size of the alphabet; andagain the same 8

transitions appear. Generating a pair of ‘a’s leads to stateaa, generating ana then

a b leads to stateab, and so forth. In this case the proceeding two characters are

implicit in the state. Such order 1 models can then be used in software and tools

such as HTK [166].

Computational linguistics uses terms such asn-gram, uni-gram, bi-gram and tri-

gram [73, 120, 3] to denote the order of models, while information sciences refer

to the order of models [4]. Table 3.2 shows the relationship between these two

terminologies.

Markov models are often represented using a table, with cells representing the

transition probabilities between each pair of states and each symbol, but these grow

29

x
i

P(x
i−1

=b,x
i−2

x
i

P(x
i−1

x
i−2

x
i

P(=b| x
i−1

x =b)
i−2

x
i

P(=b| x
i−1

=b,x
i−2

x
i

P(=b| x
i−1

x
i−2

x
i

P(x
i−1

x =b)
i−2

x
i

P(=b| x
i−1

=b,x =b)
i−2

=a,

=a)

=a, =a)

x
i

P(x
i−1

=b,x =b)
i−2

=a|

=a| =a,

=a)=a|

=a| =a, =a)

(a)

a b

P(x
i
=b| x

i−1

P(x
i

x
i−1

P(x
i
=b| x

i−1
=b)

P(x
i
=b| x

i−1

P(x
i

x
i−1

P(x
i
=b| x

i−1
=b)

P(x
i

x
i−1

=b)

=a)

=a)=a|

=a|=a)

=a)=a|

P(x
i

x
i−1

=b)=a|

(b)

bbba

aa ab

P(xi

P(xi

P(xi =b)

P(xi =b)

P(xi =b)

P(xi

P(xi =b)
P(xi

=a)

=a)

=a)

=a)

(c)

Figure 3.1: Isomorphism in Markov models. (a) an order 3 model, (b) an order 2
model isomorphic to (a), (c) an order 1 model isomorphic to (a) and (b).

30

n-gram Order Meaning

−1 All symbols to be equal probability
Uni-gram 0 Symbol probability based on their frequency in

training data
Bi-gram 1 Symbol probability based on their frequency in

training data following the previous symbol
Tri-gram 2 Symbol probability based on their frequency in

training data following the previous two symbols
Quad-gram 3 Symbol probability based on their frequency in

training data following the previous three symbols
.
n-gram k − 1 Symbol probability based on their frequency in

training data following the previousk − 1 symbols
n + 1-gram k Symbol probability based on their frequency in

training data following the previousk symbols

Table 3.2:n-gram models and models of orderk.

large for high-order models, as the size issk entries, wheres is the alphabet of

observable symbols andk is the order of the model. The isomorphism between

higher- and lower-order models preserves the number of transitions, meaning that

the table for a lower-order model has the same number of entries as the higher-order:

it is not possible to reduce the table size by using the isomorphism demonstrated in

Figure 3.1.

Even with large amounts of training data, it is unlikely thatevery state and tran-

sition of a high-order model is visited during training. Theremaining untravelled

transitions have zero probability, meaning that the model may generate zero proba-

bilities for a sequence seen during testing. The problem, called the ‘zero-frequency

problem’ [146], appears when no non-zero transition existsfrom the current state

to the state that generates the next symbol in the observablesequence. (In hidden

Markov models there can be more than one transition, each emitting a different

symbol (or symbols) in the hidden sequence.) The zero-frequency problem is often

solved by shrinkage (also known as backing off and smoothing[34]), namely the

use of a simpler model to estimate probabilities for zero-frequency transitions in

more complex models.

Many later systems usen-gram methods together with specialised handling of

31

novel characters. Such systems are effective in tackling problems such as Chinese

text segmentation partly because of the large character sets involved. Typically this

involves the introduction of a special token (or character)to model the concept of

an unseen character.

The differences between this approach and the normaln-gram models are high-

lighted by the handling of a known character between a pair ofnovel characters:

. . . a b A d B f g In the current work the unknown charactersA andB are mod-

elled by escaping back to the order−1 model and the known characterb is seen

in a context which has never been seen before (an order0 model). The introduc-

tion of a synthetic novel characterN would enable a probability of encountering the

sequence. . . a b N . . . to be estimated, then. . . a b N d . . . and . . . a b N d N . . .

etc., all without escaping back to the order−1 model. This effectively allows the

concept of ‘the character following a novel character’ to bemodelled, something

conventionaln-gram models cannot do. Part of the reason such techniques are so

important is that novel characters in Chinese text, like novel words in English, are

often nouns [133]: significant information can be inferred simply from novelty.

The zero-frequency problem can solved using escape methods[146], a recursive

case of shrinkage in which unseen transition probabilitiesare estimated by reference

to a lower-order model. Other cases are also common in information extraction

systems, for example, Freitag et. al. [46] escape back to a more general class of

tags rather than to a lower-order of model for the same tag.

There are several studies of the effectiveness of differentsmoothing strate-

gies [34, 144], but there is noa priori reason why one should perform better than

another in the absence ofa priori knowledge about the symbol distribution within

the model. An alternative approach to smoothing is to use Markov as a prescriptive

model and reject outright any sequence containing a zero probability. This approach

may be useful in closed systems or for carefully curated corpora, but is unlikely to

result in robust systems in production environments.

32

Two aspects of Markov models can be trained: the topology (the number of

states and transitions between them) and the weights of individual transitions. In

theory the former aspect can be folded into the latter because: (a) a model with

a transition of zero probability is indistinguishable fromone lacking the transition

and, (b) a model with a state which has only zero probability transitions to it is

indistinguishable from one lacking that state. In real-world situations, with bounded

training data, these are generally treated as separate problems. Model topology

is commonly a fixed pattern, variable but selected or trainedprior to training the

transitions, or trained in parallel to training the transitions (as in DMC [151]). One

fixed pattern of topology is used by PPM.

3.4 Prediction by Partial Matching

A Prediction by Partial Matching (PPM) model of ordern examines the previous

n characters to calculate a probability density function forthe next character. To

calculate the function, PPM keeps a record of sequences ofn characters already

seen and the character that followed them. If a sequence ofn characters is seen that

has not been seen before, then PPM ‘escapes’ back to sequences ofn−1 characters.

If a match is still not found, PPM escapes back to sequences ofn − 2, and so on,

eventually escaping back to the order−1, in which all characters in the observable

alphabet have the same probability.

The PPM model keeps the sequences of characters in a suffix tree, with each

node labelled with the number of times the sequence has been seen [13]. This suffix

tree can be converted to a single state Markov model of ordern + 1. The suffix tree

is an efficient representation of a sparse model (one for which many of the possible

states have not been observed) because unused branches are not expanded. The

equivalent Markov model is an array in which all leaves are present, with those not

seen during training appearing as small probabilities. In the current work, suffix

33

trees are used for all processing.

The PPM model is deterministic [75] (or subsequential [104]) in that it always

has one transition for each output symbol. In this regard it differs from the work of

Lafferty and McCallum which has built non-deterministic HMMs for similar tasks

to those seen in this thesis, using non-deterministic conditional random fields [75].

An additional benefit of the suffix-tree based Markov models over the traditional

table models is that they greatly reduce the cost of introducing extra symbols. In-

creasing the character set size from 8 bit ASCII to 32 bit Unicode incurs a cost only

for those characters are actually used in the training set orwhen the−1 model is

escaped to.

PPM models may seem far removed from the way that humans deal with nat-

ural language text. However, as the following story reveals, it may be closer to

the way that humans deal with natural language text when theyhave no linguistic

information about it [30]:

[A] typesetter working on a Greek text at the Oxford University Press

announced he’d found a mistake in the text. As the typesettercouldn’t

read Greek, his colleagues and then his superiors dismissedhis claim.

But the man insisted. So finally an editor came down to the compositing

room. At first, she, too, dismissed the idea, but checking more closely,

she found there was an error. Asked how he knew, the typesetter said

he had been hand-picking letters for Greek texts for most of his profes-

sional life and was sure that he’d never made the physical move to pick

the two letters in that order before.

This implies that the typesetter had built an implicit modelof which charac-

ters followed which other characters and had sufficient confidence in the model to

question the text.

PPM is an incremental compression algorithm [151] with two widely-known

variants, PPMC and PPMD [57]. PPMD is used in other text-augmentation

34

work [133, 26]. PPMC and PPMD differ in the probabilities they put aside for

unexpected events, seeing a character in a context in which they have not seen that

character before. In a context in whichCt total characters andCd distinct characters

have been seen, PPMC sets asideCd

Ct+Cd

and PPMD sets asideCd

2Ct
. Katz [67] takes

a different approach and for an ordern model usesCn

N
, whereCn is the count of the

number ofn grams that have been seen exactly once andN is the training text size.

PPMII is a PPM variant with special handling for the case in which only a sin-

gleton example of the current context has been seen during training. The occurrence

of such contexts rises with the model order to 60–80% of all contexts. PPMII im-

plementations typically also use adaptive models, and re-scale counts frequently to

favour text seen recently over text seen at the start of training, to give good perfor-

mance on compression corpora [127].

As implemented in this thesis, the PPM model does not store probabilities but

rather counts of occurrences. These counts are converted into probabilities dynam-

ically using an escape method which allocates the probability between seen and

unseen symbols in the observable alphabet [152].

Figure 3.2 shows three representations of the adaptive order 1 PPMD model

built from the string•aabbccabca. . . . The• represents the start of the string. Fig-

ure 3.2(a) is the suffix-tree representation. The tree is notcomplete, for example the

c-labelled node markedx has no transition to ana-labelled node because the string

•aabbccabca. . . contains no sub-stringac. Figure 3.2(b) shows the occurrence ta-

bles for order−1, order 0 and order 1, which correspond to the root node of the

suffix tree, the first row of the suffix tree, and the leaves of the suffix tree respec-

tively. Each non-zero entry in the order 1 table correspondsto a leaf in the tree

above, while each zero entry thus corresponds to missing leaf.

Figure 3.2(c) shows the Markov models of order−1, order 0 and order 1. These

have the same structure as the occurrence tables in Figure 3.2(b), but the occurrences

have been converted to probabilities using escape method D.Each count in the

35

a c a b b c

b c

1

3

1
2

1
21 1 2

3

x

a

4

(a)

k = −1
• 1
a 1
b 1
c 1

k = 0
• 1
a 4
b 3
c 3

k = +1 • a b c
• 0 0 0 0
a 1 1 0 2
b 0 2 1 0
c 0 0 2 1

(b)

k = −1
• 1

4

a 1

4

b 1

4

c 1

4

k = 0
• 1

11

a 4

11

b 3

11

c 3

11

k = +1 • a b c
• 1

11

4

11

3

11

3

11

a 1

5

1

5

1

5

2

5

b 1

16

1

2

1

4

3

16

c 1

20

4

20

2

4

1

4

(c)

Figure 3.2: Three representations of the PPMD model for•aabbccabca. . . .

36

order−1 and 0 tables is divided by the total of counts in the table to obtaina

probability. Each non-zero count in the order+1 table is divided by the total of

counts in that row plus one. The probability corresponding to the extra (plus one)

count is distributed among the zero counts.

Each type of XML tag corresponds to a hidden state and has a separate model

built for it. In the observable sequence the tags are mapped to single charac-

ter symbols. Thus the stringaba<sometag>cbc</sometag>bab is mapped to

aba◦cbc◦bab, with a different symbol corresponding to each pair of tags,with the

•, seen earlier indicating the start of the string, being usedfor the entire string

(what the XML standard refers to as the ‘document element’ [25]). Therefore if

aba◦cbc◦bab is the entire string, it is represented as•aba◦cbc◦bab•.

A distinct PPM model is built for each tag, in this case for• and◦. The models

for • and◦ built from the string•aba◦cbc◦bab• are shown in Figures 3.3 and 3.4,

which have similar structures to Figure 3.2. The• model is built from the strings•,

•a, ab, ba, a◦, ◦b, ba, ab andb•. The◦ model is built from the sub-strings◦c, cb,

bc’’ andc◦.

• occurs in the◦ model because it can be part of the alphabet in which the

context. Even though it cannot be seen within the◦ model, it can appear in the

context which is carried into the model, for example in the string •◦c◦•.

When a◦ is seen in the• model, a transition occurs from the• model to the◦

model. When a◦ is seen in the◦ model, a transition occurs from the◦ model into

the previous model, in this case the• model.

Figures 3.3 and 3.4 show how we can use Viterbi search to find the most likely

sequence of tags in the sequence•abbacbccbbab. . . , the first step of which is shown

in Figure 3.5, which has a lookahead of four. Between each two symbols in the ob-

served sequence, the algorithm calculates the probabilityof there being a transition

within the hidden state (the right branch from each node), and the probability of

there being a transition to the other hidden state (the left branch from each node).

37

b b

a

a

b

1

2

1 2

a

2 1 1

3 3
1

(a)

k = −1
• 1
a 1
b 1
c 1
◦ 1

k = 0
• 2
a 3
b 3
c 0
◦ 1

k = +1 • a b c ◦
• 0 0 1 0 0
a 1 0 2 0 0
b 0 2 0 0 1
c 0 0 0 0 0
◦ 0 1 0 0 0

(b)

k = −1
• 1

5

a 1

5

b 1

5

c 1

5

◦ 1

5

k = 0
• 2

10

a 3

10

b 3

10

c 1

10

◦ 1

10

k = +1 • a b c ◦
• 2

14

3

14

1

2

1

14

1

14

a 1

4

3

20

1

2

1

20

1

20

b 2

12

1

2

2

24

1

24

1

4

c 2

10

3

10

3

10

1

10

1

10

◦ 2

14

1

2

3

14

1

14

1

14

(c)

Figure 3.3: The• model built from•aba◦cbc◦bab•.

38

c c

21
1

1 1 1 1
c

b

b

(a)

k = −1
• 1
a 1
b 1
c 1
◦ 1

k = 0
• 0
a 0
b 1
c 2
◦ 1

k = +1 • a b c ◦
• 0 0 0 0 0
a 0 0 0 0 0
b 0 0 0 1 0
c 0 0 1 0 1
◦ 0 0 0 1 0

(b)

k = −1
• 1

5

a 1

5

b 1

5

c 1

5

◦ 1

5

k = 0
• 1

10

a 1

10

b 1

5

c 2

5

◦ 1

5

k = +1 • a b c ◦
• 1

10

1

10

1

5

2

5

1

5

a 1

10

1

10

1

5

2

5

1

5

b 1

12

1

12

2

12

1

2

2

12

c 1

18

1

18

1

3

2

9

1

3

◦ 1

12

1

12

1

6

1

6

1

6

(c)

Figure 3.4: The◦ model built from•aba◦cbc◦bab•.

39

1
168

3
14

1 1 1

1

11 111 1111 11 1 111

1 1

1

2 120

2
24

1
24

2 12 24 122212212

6 6

5

24 24 24

3
70

3
70

3
130

2
24 24

e

x y

wz

a

b

b

a
48484848

Figure 3.5: The expansion step in a Viterbi search of•abbacbccbbab. . ..

The probability for the left branch can be taken from the right hand tables in

Figure 3.4(c) (for states in the◦ model) or Figure 3.3(c) (for states in the• model).

The probability for a right branch is the product of two probabilities, that of the

transition from one model into the other and of seeing the observed character.

Following the expansion step shown in Figure 3.5 is a pruningstep. Either node

x or nodey must be pruned from the search tree, taking all descendants with it.

Since nodez is the leaf with the highest probability and a descendant ofx rather

thany, y must be pruned. Nodesw andeare discussed in Section 4.3.2.

Figure 3.6 shows the tree after pruning. Nodex in Figure 3.5 has becomex−1

and there are a newx and a newy based on the location ofz, the lowest entropy

leaf. Figure 3.7 shows the situation two steps later. For thefirst time the algorithm

is about to prune thex branch rather than they branch, and insert a◦ tag.

Viterbi search says that even for this demonstration example a lookahead of four

is insufficient to guarantee an optimal tagging: the lookahead must be one more than

the sum of the order of the model (1) and the longest tag length(3). Real examples

typically have significantly longer tag lengths (see the samples in Appendix A) and

40

2
24

1
24

1
6

3
70

1
2

1
12

1
24

1
24

1
12

1
2

3
14

1
2

1
120

x −1

x y

1 1 1 1 111 11 1 1
20 60

2
5

1
70

2
5 70 20 60

2
5 70 20 60 20 60

2
5 70

a

b

b

a

c

11
48 48

z

Figure 3.6: The next expansion step in a Viterbi search of•abbacbccbbab. . ..

often higher-order models, but for clarity a short lookahead has been used in this

example.

3.5 Granularity of Models

Many published reports of text mining, information retrieval and other information

systems model text as words [61]. Thisa priori assumption of segmentation into

words leads to two separate problems:

1. In many contexts it is not clear what is and is not a word. In English two

areas of ambiguity are contractions and abbreviations (forexample ‘i.e.’ and

‘can’t’) and sometimes joined words (for example ‘real-time’ which is used

variously as ‘realtime,’ ‘real time’ and ‘real-time’).

2. Words seen during testing (or practical application) that are not seen during

training raise the ‘unknown-word problem’ [144]. This problem is a variant

41

x −1

3
14

1
2

2
24

1
2

x y

111

a

b

b

a

c
11

20 60
2
5

1
70

11 1

1 1 1 1 1

1
48

60
1
3

1
14

1
3 1410

3 3
10 60

1
24

1
24 2 168 1682 2 2168 168

1
24 24

1 1
24

1
24

1
24

1
24

z

b

c

Figure 3.7: The fourth expansion step in a Viterbi search of•abbacbccbbab. . ..

42

of the zero-frequency problem (see Section 3.3). In many system-evaluation

contexts, the problem is solved by leaking information fromthe testing set to

the training set in the form of a ‘Perfect Lexicon’ containing every word in

the system [17]. In production systems this approach is not possible because,

unless a constraint is placed on the system vocabulary (so-called ‘controlled

vocabularies’ [84, 105]), an unbounded number of words may be seen over

the life of the system.

Approaches to solving the unknown-word problem include merging all un-

seen words into a single class and treating all unknown wordsthe same, which

works surprisingly well for news articles in which most unknown words are

proper nouns, and escaping back to a character-level model,requiring two

models, one at the word level and one at the character level.

An alternative to this is modelling text as a sequence of characters [133]. At first

glance neither of the problems discussed above affects character-based models, but

similar problems arise at a different level of granularity.

1. Unicode allows combining character sequences—characters built from a base

character and combining characters, which add elements to it (i.e. accents or

enclosing circles). All characters in most living natural languages (including

English, Maori and Mandarin) are representable without combining charac-

ters, but should a system see them in input, handling them is problematic.

2. Though the Unicode character set is bounded, it is sufficiently large (many

tens of thousands of characters) that if characters are hyper-geometrically

distributed (as can be expected in natural languages [99, 169]), only rarely

will a system see an instance of every character. Unicode is also expanding,

with more characters being added; in theory a production system could see

characters which were undefined when the system was built.

43

These character-level problems appear to be of a similar nature, if not a sim-

ilar frequency, to the word-level problems. This suggests that the transition from

word to character level has not actually solved the word level problems but rather

transformed them to a lower level.

3.6 Searching in Models

Once built, the models can be used to find the most likely sequence of hidden states

for a sequence of observed states. This is done using a searchtree, in which each

node is labelled with a state in the model. Each node is also labelled with the sum

of all probabilities on the path between it and the root of thesearch tree. Entropy

is inversely related to likelihood [126], and the most likely sequence corresponds to

the leaf node with the lowest entropy.

oldLeaves ← root;
while moreInputSymbolsdo

newLeaves ← ∅;
for leaf∈ oldLeavesdo

newleaves ← ExpandLeaf(leaf);
CalculateEntropy(newleaves);

end
1 oldLeaves ← newLeaves ;

end
result ← SelectLowestEntropyLeaf(oldLeaves);

Algorithm 1: The complete search algorithm.

An exhaustive, or complete, search for the most likely sequence involves a

search space as deep as the sequence is long. This algorithm is shown in Algo-

rithm 1. The functionExpandLeaf takes a single leaf node in the search tree,

examines the state in the model with which it is labelled and adds a new leaf to the

search tree for each out-going transition from the state in the model. The function

CalculateEntropy calculates entropy of the each of these new leaves.

For many interesting sequences this search space is computationally infeasi-

44

ble, but the ‘Viterbi search’ [140] algorithm provides a computationally feasible

searches in situations when only local information matters. The Viterbi proof [140]

guarantees that Viterbi search will find the most likely sequence, provided the model

determines the entropy for a node based on bounded local knowledge, rather than

on global knowledge required by the exhaustive search. Fortunately Markov mod-

els, even high order Markov models, meet this criterion [90]. The length of the

sequence that must be modelled for this local knowledge is called the ‘lookahead’.

oldLeaves ← root;
while moreInputSymbolsdo

newLeaves ← ∅;
for leaf∈ oldLeavesdo

leaves ← ExpandLeaf(leaf);
CalculateEntropy(leaves);
AddLeavesToSet(newLeaves,leaves);

end
2 bestLeaf ← SelectLowestEntropyLeaf(oldLeaves);
3 oldLeaves ← PruneBranch(bestLeaf, newLeaves);

end
result ← SelectLowestEntropyLeaf(oldLeaves);

Algorithm 2: The Viterbi search algorithm.

Viterbi is a beam search, as shown in Algorithm 2. This is expressed as a search

tree which is built independently of the Markov model in use,but with pointers in

every node to a state in the model. The operationPruneBranch takes abestLeaf

from a selection ofnewLeaves, traces parents ofbestLeaf up until it finds a node

which is the parent of every leaf innewLeaves and prunes all daughters from that

node except the one which leads tobestLeaf .

There is an alternative representation, that of a search lattice, in which nodes

from the search tree are not pruned but ‘merged’ with other nodes with identical

state in the underlying models. Merged nodes have the lowestentropy of any of

the nodes from which they were merged, this representing theminimum entropy

path through the search tree (now a search lattice) to the node. The search lattice is

45

either unified with the Markov model or has a similar structure. This representation

is widely used in signal processing and reflects common low-level and hardware

implementations in that field [63].

The stack algorithm, a variant of Viterbi search, uses a sorted list rather than

an explicit search tree. The list is sorted by the entropy of the node and initially

populated with the first symbol. The lowest entropy node is removed from the list

and its children calculated and added to the list. The searchends when a leaf node

is found.

The Fano algorithm, related to the stack algorithm, does notuse a stack but

moves incrementally though the search tree guided by entropy-based thresholds,

revisiting many nodes, but using only tightly-bounded memory, thus making it suit-

able for implementation in hardware. The creeper algorithmis a hybrid of the stack

and Fano algorithms, using complex tables. All three of these algorithms are de-

scribed in detail in Johannesson and Zigangirov, Chapter 6 [63].

Viterbi search implemented as a lattice or tree, the stack algorithm, the Fano

algorithm, and the creeper algorithm all represent different trade-offs between time

and space, and between simple and complex algorithms. The search-tree represen-

tation is traditional in computer science, because it allows a more direct comparison

with other forms of searching; it is used in this thesis for a more natural representa-

tion of the pruning explored in Section 4.3.

oldLeaves ← root;
while moreInputSymbolsdo

newLeaves ← ∅;
for leaf∈ oldLeavesdo

leaves ← ExpandLeaf(leaf);
CalculateEntropy(leaves);
AddLeavesToSet(newLeaves,leaves);

end
4 oldLeaves ← SelectNLowestEntropyLeaves(newLeaves,N);

end
result ← SelectLowestEntropyLeaf(oldLeaves);

Algorithm 3: The Teahan search algorithm.

46

Algorithm 3 shows the Teahan search, a ‘Viterbi-inspired’ [136] algorithm

which has been found effective [133]. Rather than search a fixed distance ahead into

the search space on each increment, it only expands theN lowest entropy nodes at

each level in the tree (line 4).

The Teahan search algorithm is a heuristic: it is not guaranteed to find the lowest

entropy tagging. The Viterbi proof cannot usefully be applied to Teahan search.

This is because the only point at which Teahan search is guaranteed to search the

local search space at every step in the search is whenN is the number of leaves

in the exhaustive search. At this point the Teahan search andexhaustive search

become identical.

For many interesting problems, limited amounts of data withcorrelated hidden

and observable sequences are available for training, but data with only observable

sequences abound. An algorithm to utilise these un-correlated observable sequences

was developed by Baum and is known as the Baum–Welch algorithm [10, 11, 118].

This (Algorithm 4) is similar to Viterbi search with the addition of a step (line

5) that updates the model after the most likely branch has been found [118, 90].

The UpdateModelfunction updates the hidden Markov model to include seeing

bestLeaf.

oldLeaves ← root;
while moreInputSymbolsdo

newLeaves ← ∅;
for leaf∈ oldLeavesdo

leaves ← ExpandLeaf(leaf);
CalculateEntropy(leaves);
AddLeavesToSet(newLeaves,leaves);

end
bestLeaf ← SelectLowestEntropyLeaf(oldLeaves);

5 UpdateModel(bestLeaf);
oldLeaves ← PruneBranch(bestLeaf, newLeaves);

end
result ← SelectLowestEntropyLeaf(oldLeaves);

Algorithm 4: The Baum–Welch algorithm.

47

The Baum–Welch algorithm is a specialisation of ExpectationMaximisation

(EM) which is widely used in machine learning [149] and statistics [60]. McLachlan

and Krishnan [98] describe EM and the relationship between it and the Baum–

Welch algorithm in detail and [18] discusses this relationship mathematically.

The Baum–Welch algorithm is the primary training mechanism for several

information-extraction systems, for learning either the transition probabilities [82,

125, 17] or the model structure [125], or both. In this thesis, the Baum–Welch

algorithm is used only for learning the transition probabilities, the Markov model

structure is imposed by the PPM algorithm and the hidden Markov model structure

reflects the schema of the documents seen during training.

This thesis uses a variant of the Baum–Welch algorithm, in which an entire

document, or group of documents, has tags inserted which arethen used to update

the model, rather than to perform tag insertion and model re-estimation in such a

closely-linked manner. This approach precludes the possibility of intra-document

learning (lowering the entropy of a sequence of symbols in a tag because they have

already been seen) but allows the efficient use of non-adaptive models, and avoids

the cost of ‘unlearning’ during searching. The effect of this is likely to be most

significant for long, single-subject, documents which contain frequent occurrences

of proper nouns and other features which are rare within, or absent from, the training

corpus. Proper and rare nouns are typically introduced in stylised forms [160] which

can then used to update the model for their less stylised subsequent use. Without

the ability to update the model, subsequent uses of the features are likely to be

ambiguous.

Much research on the Baum–Welch algorithm is performed in thecontext of

voice recognition [11, 118], where is it used at the phone level for adapting a model

to an individual’s accent. In voice recognition, the observable sequence is a discre-

tised representation of a continuous signal. The symbols inthe discretised repre-

sentation can be ordered, for example, it is possible to say that 50 dB< 51 dB<<

48

1000 dB. Much of this research cannot be applied to text because the observable

character set in text modelling (characters) has no useful implicit ordering.

The Baum–Welch algorithm is normally used during training. However, if the

sequence being modelled is changing slowly over time, or if there is insufficient

training data to characterise the sequence sufficiently it can be used during testing.

Unfortunately, if a feature is mis-modelled when first seen,the reinforcement of

the Baum–Welch algorithm makes it much more likely that it will be mis-modelled

when seen subsequently, even in contexts which could have been clear if seen by a

model without re-estimation.

3.7 XML and Unicode

This section examines some issues with Unicode and XML and their impact on the

corpora and algorithms used in this thesis. These issues include the assumptions

Unicode makes about text, the semantics of nested XML tags, and the order of

XML attributes. These issues are important because they underpin much later work

in this thesis.

XML is a standard [25] for encoding data and has emerged as theleading stan-

dard for encoding textual documents for archiving, academic study, interchange and

corpus building. XML uses Unicode [138] by default, allowing a large number of

languages and writing systems to be represented. Unicode makes various assump-

tions which make it significantly easier to reason about text, including:

• That characters are unique entities from a finite set.

• That each character falls into exactly one character class.

• That the character class of each character is known.

These assumptions do not hold universally, not even for all documents held

in modern information systems. Handwritten texts or texts printed prior to the

49

standardisation of book printing are particularly problematic because their digitisa-

tion commonly involves more semantic interpretation than the digitisation of later

printed works with known conventions. The Early English Books Online project,1

is an example of a real-world undertaking impacted by these issues. Unicode char-

acter classes are discussed in Section 4.3.3.

1 http://www.lib.umich.edu/tcp/eebo

50

Chapter 4

The System

This chapter introduces the bulk of the new content in the thesis, starting with a

new taxonomy for metadata markup problems. The architecture of the implemen-

tation is introduced, followed by a number of optimisationsand heuristics imple-

mented within it. The search space of these optimisations and heuristics for various

metadata markup problems is then examined together with theimpact of metadata

problems on assessing experimental correctness.

4.1 Metadata

This thesis introduces a new taxonomy for fine granularitiesof metadata problems:

in segmentation metadata, classification metadata, and entity metadata. The remain-

der of this section describes the taxa.

Metadata comprises encoded tags, in ranges of adjacent characters which share

some property, and externalised as XML [25]. XML is a widely-used metadata

format [156, 123, 147].

4.1.1 Segmentation

Segmentation problems involve finding the internal boundaries within text. The

boundaries can be linguistic (e.g. in word or sentence boundaries), semantic (e.g.

between topics) or both (e.g. between index or bibliographyentries). Finding word

boundaries in Chinese, Japanese or Thai text and finding suitable places to seg-

51

document

word

(a)
document

DT NNP IN VBD JJ . . .TOCD

(b)
issue

name location email source date money phone fax URLorganisation

(c)

Figure 4.1: Schema structures for segmentation and classification problems. (a) The
Chinese text segmentation problem. (b) The part of speech tagging classification
problem. (c) The Computists’ Communique classification problem. Details of these
problems and corpora in which they are studied are given in Chapter 5.

ment English, German and French words for line-end hyphenation [77] and all

well-known examples of segmentation problems.

As encoded in this thesis, all segmentation information is destroyed by tag merg-

ing. If adjacent tags are merged, all segmentation information is lost because infor-

mation lies solely in where the tags start and end, rather than in which type of tag a

piece of text falls.

Figure 4.1(a) is the schema for the Chinese text-segmentation problem. It has a

single root-node and a single type of child-tag below it. There is an instance of the

child-tag around each word. The schema for every segmentation problem has this

shape, with a single type of child tag and all characters within instances of that tag

type.

Various approaches have been used to segment text. Many early systems used

simple lookup tables [157], which work surprisingly well onmost text, except novel

characters not seen in training. Most text segmentation systems usen-gram models

or equivalent Markov models [137, 50, 117].

52

Recent segmentation research directions include conditional random

fields [115], and using integrating segmentation with functionality such as

part-of-speech tagging [58] and proper noun extraction [168]. Combining segment-

ation with higher-level processing allows leveraging segmentation to help solve

other natural-language processing problems and the results of the higher-level

processing to fine-tune the text segmentation.

4.1.2 Classification

Classification problems involve classifying textual elements (typically words or

characters) into one of several classes. Many classification problems are referred

to as tagging in the information extraction and document understanding communi-

ties, but this name has been avoided, because all of the problems discussed here

involve inserting tags—literally ‘tagging’. The term classification is used in ma-

chine learning to refer to problems which involve placing aninstance into one of a

set of classes, and it is used here in the same manner.

Classification metadata is immune to tag merging. If two adjacent tags of the

same class are merged, no knowledge is lost, because the extracted information lies

solely in which type of tag text falls. Similarly if a tag is split in two, no information

is lost, provided the two new tags cover the same characters as the previous single

tag.

Figures 4.1(b) and (c) show the schema structures of classification problems.

The schemas have a single root node (representing the document), and each of

the classes has a node directly connected to this root node. The schema for ev-

ery classification problem has this shape, with a number of types of child tags and

all characters within instances of these child tag types.

Much early work on classification problems was performed on part-of-speech

taggers, drawing on traditional debates on the role of grammar in language. Several

early systems were grounded in distinct schools of linguistic theory, but performed

53

relatively poorly. Later approaches have used more genericstatistical modelling

techniques to better success.

The Brill tagger [28, 29] first trains a rule-based tagger and then learns transfor-

mation rules based on the errors of the rule-based tagger. The transformation rules

allow for super-adjacency and higher-level reasoning, neither available to conven-

tional Markov models. Super-adjacency, looking not at immediately adjacent words

but at those several words away, allows wildcard-like effects. Applying rules is fast,

so the whole system runs quickly, and it is widely used and well respected.

The MUC problems can be considered classification problems,but the focus is

on information extraction: the inferred information is notembedded in the docu-

ment text, but either included in the document header or completely separated from

the document. Many problems contain higher-order reasoning outside the scope of

text augmentation considered in this thesis. For example, the title Presidentand

the nameBill Clinton can be inferred to refer to the same individual combined as

President Bill Clinton. Classification can identify title and name, both together and

separately, but not perform the higher-order reasoning to link the instances or to

present the separate components combined into a single sequence.

4.1.3 Entity Extraction

A superset of segmentation and classification, entity extraction, finds bounded sec-

tions of text that belong to a particular class. If adjacent tags are merged, some

information may be lost, since information lies both in which symbols are in which

class of tag and in where the individual tags start and finish.

Because entities have both a range and a depth, it is possible for entities to be

nested, introducing extra complexity. Nesting of a tag within another of the same

type is a technique used relatively widely in grammar-basedlinguistics. It is not

inherently more complex than nesting a tag within a different type of tag.1

1However, the current work does not handle such cases gracefully, as explained in section 7.4

54

. . .title editor address publisher date

month

bibbody

bibliography

author journal

lastfirst jrlast

yearname

lastfirst jrlast

name

Figure 4.2: Schema structure for the bibliography entity extraction problem. Details
of this problem and corpus in which it is studied are given in Chapter 5.

Figure 4.2 shows the schema structure for the bibliography corpus, an example

of entity extraction in which the entities such as author names, article, titles and

conference names are marked up. The schema for entity extraction problems allows

arbitrary nesting of tags.

Bray [26] showed that, on a small sample, hierarchical tagging of personal

names into first and last parts hindered the overall identification of names, but the hi-

erarchical tagging of email addresses into username and host parts aided the identi-

fication of email addresses. The failure of hierarchical tagging of names in this case

appears to be at least in part caused by the small number of names used. Wen [144]

used eight tags from an early version of the bibliography corpus (see Section 5.2)

and achieved an F-measure of 76%.

4.1.4 Limitations and Constraints

Text augmentation is not a universal method of inferring metadata. There is a range

of text-augmentation problems that fall outside this taxonomy, including those with

55

overlapping structures, those with attributes that are continuous numeric values, and

those with escapes to the XML Schema ANY tag. The taxonomy is unsuitable for

the coarser-grained metadata, such as document level or collection level informa-

tion.

There are certain constraints derived from the XML tagging used (see Sec-

tion 2.5):

1. Half the tags are opening tagsttagname and half are closing tagst/tagname.

2. Only the most recently opened unclosed tag may be closed next.

3. Each opening tag must be separated from the correspondingclosing tag by at

least one data point from the underlying sequence.

4. No two tags of the same type are opened between any two characters.

5. Tags do not have attributes.

Constraints 1 and 2 are a restatement of the well-balancedness constraint of

XML. Constraint 3 is not present in XML, but is present in the current representation

to rule out the proliferation of arbitrary numbers of empty tags.

Constraint 4 is also not present in XML but is introduced here in order to make

the sets of tags enumerable, both a consequence of implementation choices and a

prerequisite for calculating the size of search spaces. Thelack of attributes has been

discussed in Section 2.5.2.

4.2 Architecture

The implementation used in this thesis is called ‘ColloquialEntropy Markup’ or

CEM. CEM is built in pure Java [52], no platform-dependent library bring used.

All input and output of data is performed using the Apache / Xerces implementation

of the standard Java XML Document Object Model (DOM) [154]. In this thesis a

56

Figure 4.3: The structure of a CEM model, hidden states (square boxes) with asso-
ciated PPM models (circles).

deliberately standards-based approach was taken largely in response to difficulties

encountered Teahan’s [133] implementation.

CEM uses Unicode throughout and recursive modelling of tags,the latter en-

abling it to tackle the more challenging entity-extractiontasks, as well as those of

segmentation and classification. There are two main internal data-structures, the

model and the search tree. DOM is not used in the internal data-structures, because

when the software was first designed, the DOM was immature andit was not clear

that it would prove as stable and effective as it has done.

4.2.1 The Model

The structure of the hidden Markov models implemented in CEM is shown in Fig-

ure 4.3. Each of the circles is a PPM model in the form of a suffixtree, as shown in

Figure 3.2. Each of the squares is a hidden state in the hiddenMarkov model; the

associated PPM model is the Markov model for that hidden state.

The presence of two characters without a tag between them is represented as

a transition between two states within the same PPM model. The presence of two

characters with one or more tags between them is representedas a series of one

or more transitions between states in different PPM models (or between states in

the same PPM model in the case of closing tags immediately followed by opening

57

tags). Closing tags indicate transitions up, towards the root of the hidden Markov

model and opening tags indicate transitions down, towards the leaves of the model.

XML well-formedness is enforced by starting in the root of the hidden model at the

start of the sequence and by forcing a return to the root by inserting close tags at the

end of the sequence.

Figure 4.4 shows the relationship between the suffix tree representation of

Markov models used in CEM and a more traditional representation. Nodes are

numbered for identification. The implementation uses only the suffix tree during

training and testing, although it can output low-order Markov models for manual

validation. Figure 4.4(b) is directly convertible to a tabular format.

Each state is adjacent to an end state, because each state hasanα transition from

it. When building PPM models,α is treated as just another letter in the alphabet:α

represents one third of the alphabet in Figure 4.4(b). Having multiple start and end

states is unusual for a Markov model used in an HMM, but is natural and efficient

to implement when suffix trees are used, because the suffixes can have the extra

character added for hidden state transition prepended (α in this case), and be carried

from one hidden state to the next.

The CEM model is implemented as shown in Figure 4.4(a): a simple tree, with

each node labelled with a character and a number. The tree representation allows

branches to be expanded as and when they are first seen during training, saving

memory on unseen branches.

Transition probabilities are computed dynamically from counts, using escape

methods, in the manner of adaptive text compressors [146]. Counts rather than

probabilities are stored, so the escape method can be changed after training. This

feature is desirable during experimentation, but unlikelyto be important in produc-

tion environments.

CEM models are serialisable: they can be streamed to a file using standard

Java serialisation and later streamed back into memory intact. Models are streamed

58

32 4

8 106 11 12 1375

1

ba

9
baa a

b bα

α

α α

(a)

6

13

12

11

108

5

7

9

b

α

α

α
α

α
b

b

b

b

α

α

b

a
a

a a

a

a

a

b

b

b

a α

a

α

b

(b)

Figure 4.4: The structure of a PPM model, (a) as a suffix tree, in which leaf nodes
(5–13) are reached by navigating from the top of the tree eachtime an entropy
is calculated, using the suffix of recently seen characters,and (b) as a finite state
machine using traditional Markov model notation, in which apointer to a node
is used for state rather than a suffix and the next node is foundby traversing the
transition labelled with the current character.

59

through a gzip [88] stream reducing their size by approximately 90%, primarily

because Java serialisation focuses on issues such as portability and flexibility rather

than output size. No experiment was undertaken relating thesize of training texts

to the size of streamed or in-memory models. Streaming models to and from disk

allows the reuse of models across testing sessions.

4.2.2 Differences between CEM and other systems

There are two key architectural differences between CEM Markov models and com-

parable systems: the handling of context between models andthe symmetric, recur-

sive structure of the hidden states. This section examines these differences in more

detail.

Systems such as HTK and SMI have Markov models with a single start state,

so that no matter how much context is taken into account within the models, each

transition between hidden states results in a complete lossof context. HTK partly

overcomes this by having a large number of hidden states in a complex structure.

When moving between hidden states, CEM prepends a single character to the con-

text for each transition (and thus each tag that is opened or closed). This is seen,

for example, in theα symbol in Figure 4.4. For tagging problems with many fine-

grained, deeply-nested tags this can represent a considerable loss of context, but for

lightly-tagged text with a PPM model of non-trivial order the loss is less significant.

This retention of context allows for the efficient modellingof the situation in

which tags are marked by a distinctive characters. For example, consider the frag-

ments:

. . .<x> [a] </x> b

and

. . . [<x> a </x>] b

When CEM calculates the entropy forb with an order 3 model, in each case

it has a full context to use for the calculation, and avoids the need to escape to a

60

lower-order model. This is not true for most other Markov model implementations.

CEM hidden models have a symmetric, recursive structure, reflecting the well-

formedness requirement of the XML from which it is automatically generated. This

differs from the flat (non recursive) model of SMI and genericfinite-state machine

model of HTK and other voice-recognition systems. The flat model is sufficient

for segmentation and classification problems, but not for entity extraction prob-

lems. The added complexity of a generic finite-state machinemodel is used in

voice recognition to represent models of sentence-level structure, based on separate

analysis and testing. While there are certainly areas of textaugmentation which

might benefit from such generic models, it is hard to imagine how they would be

readily incorporated into CEM’s low human-input approach.

4.2.3 The Search Tree

The search tree is the second of the two main data structures in CEM. Each node in

the search tree is labelled with:

• the current character from the input stream;

• any XML tags inserted immediately before the current character;

• the current states in the hidden Markov and PPM models; and

• the cumulative entropy of traversing from the root of the search tree to this

node.

There are two types of search tree implemented in CEM: Teahan search (see

Algorithm 3 on page 46) and maximum lookahead search. When themaximum

lookahead is used with a sufficiently long lookahead, it is a true Viterbi search.

Except where explicitly stated, the maximum lookahead search (see Algorithm 2

on page 45) is used.

61

4.2.4 Full Exclusion

The PPM escape methods, as implemented in this thesis, differ from the standard

escape methods because they do not use full exclusion. That is, when an ordern

model is escaped from back to ann − 1 model, then − 1 model is not modified by

removing characters which appear in the ordern model. Removal of these charac-

ters from then − 1 model is safe because they have already been considered in the

n model. This variant has been dubbed PPM-SY after the initials of the author, to

differentiate it from other forms of PPM.

The effect of not using full exclusion is to modify slightly the action of the

escape methods used. As noted on page 32, there is noa priori reason either to

think that one escape method should model a sequence better than another, or when

using PPM for text augmentation to suggest that PPMD should give better results

than PPM-SY.

When using PPM to drive an arithmetic encoder, using PPM-SY would squan-

der a small amount of probability whenever a model is escapedfrom, resulting in

a longer coded text, and would thus be undesirable. In text-augmentation applica-

tions, the absolute entropy values are not important, only the relative values: the

coded text is never used or produced so the length is irrelevant.

The choice not to use full exclusion was made for reasons of efficiency: per-

forming set operations on large character sets in the inner loop of a computation

is understandably expensive. It is expected that the cost offull exclusion will be

substantially higher for larger character sets than for small ones. A version of PPM

with full exclusion is tested in Section 6.1.

The implementation of full exclusion calculates the exclusion dynamically as it

occurs. An alternative implementation was considered in which exclusions were

calculated the first time they were used, and then cached for reuse thereafter.

This would have consumed considerable extra memory, particularly for the large

character-set segmentation corpus (see Section 5.3), for which the size of the model

62

was an issue.

4.3 Optimisations and Heuristics

The pruning of search trees using optimisations and heuristics to enable them to be

searched as efficiently as possible has a long history in computer science [71]. This

section applies this tradition to the search space of text augmentation. Optimisa-

tions are techniques that improve the efficiency of problem solving without altering

correctness. Heuristics are techniques that improve the efficiency of problem solv-

ing but may potentially reduce correctness. This section looks first at techniques

and then at how some of them affect the search spaces in three different classes of

text augmentation.

4.3.1 Viterbi Optimisation

Viterbi search [140, 141] (Algorithm 2, page 45) is an optimisation of complete

search (Algorithm 1, page 44), which Viterbi proved [140] has no impact on cor-

rectness provided the lookaheada is large enough and the encoding scheme has the

right properties. For text-augmentation problems ‘large enough’ is the maximum

possible length of a tag, plus the order of the PPM model in use, plus one.

Relating search-space size to the maximum length of the tags being inserted

means that some tags require smaller search spaces than others. Inserting short tags,

such as personal names or parts of speech, gains more advantage from the Viterbi

search than do large tags such as the<html> or <body> tags in XHTML [114]

which contain an entire document.

Figure 4.5 shows an example of Viterbi search space, with each small black

triangle being the search space for the current increment, page 45) and the large

triangle being the full search space (respectively the for and thewhile loops in Al-

gorithm 2, page 45). Figure 4.5(a) shows the initial search space of deptha + 1,

63

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

n+1

a+1

n-a

(a)

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

(b)

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

(c)
Search space for
full search

Search space for
Viterbi search

(d)

Figure 4.5: Viterbi search of a large search space.

64

before the first pruning of the search space, and the full search space of depthn+1.

Figure 4.5(b) shows the second search space of deptha after the first pruning. Fig-

ure 4.5(c) shows the search half-way though, and Figure 4.5(d) shows the completed

search.

aaa({)(}{)· · ·(}{)· · ·(}{)(}{)(}{x

(a)

aaaa({)(}{)(}{)(}{)(}{)}aa

(b)

◦ a { } () ◦ ? ¦
a 1

8

1

8

1

8

y

8

1

8

1

8

1

8

1

8

{ 1

49

1

49

1

49

1

49

1

49

1

49

6

7

1

49

} 1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

(1

49

1

49

1

49

1

49

1

49

1

49

1

49

6

7

) 1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

◦ 1

8

1

8

1

8

1

8

1

8

1

8

1

8

1

8

?
1

49

1

49

6

7

1

49

1

49

1

49

1

49

1

49

¦ 1

49

1

49

x

49

1

49

6

7

1

49

1

49

1

49

(c)

? a { } () ◦ ? ¦
a 1

6

1

6

1

6

1

6

1

6
0 1

6
0

{ 1

6

1

6

1

6

1

6

1

6
0 1

6
0

} 1

6

1

6

1

6

1

6

1

6
0 1

6
0

(1

6

1

6

1

6

1

6

1

6
0 1

6
0

) 1

6

1

6

1

6

1

6

1

6
0 1

6
0

◦ 1

6

1

6

1

6

1

6

1

6
0 1

6
0

?
1

6

1

6

1

6

1

6

1

6
0 1

6
0

¦ 1

6

1

6

1

6

1

6

1

6
0 1

6
0

(d)

¦ a { } () ◦ ? ¦
a 1

6

1

6

1

6

1

6

1

6
0 0 1

6

{ 1

6

1

6

1

6

1

6

1

6
0 0 1

6

} 1

6

1

6

1

6

1

6

1

6
0 0 1

6

(1

6

1

6

1

6

1

6

1

6
0 0 1

6

) 1

6

1

6

1

6

1

6

1

6
0 0 1

6

◦ 1

6

1

6

1

6

1

6

1

6
0 0 1

6

? 1

6

1

6

1

6

1

6

1

6
0 0 1

6

¦ 1

6

1

6

1

6

1

6

1

6
0 0 1

6

(e)

Figure 4.6: A set of models and sequences for which the Viterbi assumption does
not hold and Viterbi search fails. (a) a class of difficult sequences (b) a single
sequence (c) top-level Markov model (d) model for? (e) model for¦. x=1 andy=1.

As the following contrived example illustrates, it is not obvious that the Markov

assumption, and with it Viterbi proof, in any form holds for natural language text.

Figure 4.6 shows a Markov model with three hidden states and an alphabet of eight

symbols. Hidden model? models the contents of matched{ } braces (d). Hidden

model¦ models the contents of matched() parentheses (d). The columns of zeros

in the? and¦ models indicate that no direct transitions between them arepossible,

and that transitions must be via the top-level Markov model for the◦ hidden state.

Figure 4.6(a) shows a class of sequences which is problematic with respect to

this model: parentheses and brackets used in ways that do notmatch. Furthermore,

a repeating chain of parentheses and brackets can extend theambiguity indefinitely

65

until some other symbols, such as anx are seen. Figure 4.6(b) shows a string for

which Viterbi search will yield two equally likely hidden sequences. The model

may be changed to prefer one over the other by changingx in ◦ (and adjusting the

other probabilities so that the sum is 1). However, such a solution still requires that

the search sees the end of the chain before pruning the searchtree at the start of the

chain.

Fortunately such situations are rare, none of the datasets presented in this thesis

appears to contain such sequences, and none has been reported in the literature.

Experience [136, 144, 145, 135, 26, 163] has shown that in practice Viterbi search

does work on natural language text.

Figure 4.6 shows a situation in which Teahan Search (Algorithm 3 on page 46)

performs admirably. Teahan Search expands a fixed number of nodes at each level

in the search tree so it is capable of exploring equal entropybranches of the search

tree to an arbitrary depth, providing at each level one node from each branch is

expanded. However, if a branch has higher entropy (for example, y in Figure 4.6(c)

is raised), then it will probably get pruned, even if the lowest global entropy lies

down that branch of the search tree.

4.3.2 Best First Optimisation

The best first optimisation is based on the observation that once a candidate aug-

mentation has been found and the entropy calculated, all nodes within the search

space with higher entropy can be pruned immediately. If a likely candidate aug-

mentation can be found computationally cheaply, and the probability distribution

function is steep (i.e. the model has high discrimination),the search space can be

reduced considerably. In Figure 3.5,e has an log probability of 3

168×130
= 3

21840
, and

nodez has an log probability of 6

14×2×24×2
= 6

1344
= 1

224
: neitherw nor any other

child of e can have a lower log probability (and thus entropy) than thatof nodez,

so nodee need not be expanded.

66

The savings made from best first are difficult to calculate, because they depend

on the probability distribution function for each state in the model and the exact

sequence of symbols seen. In general, however, the savings are larger for probability

density functions that are highly discriminative. Discrimination generally increases

as models are better trained.

The CEM implementation finds a best first candidate by calculating the entropy

of the left most leaf (the only leaf reachable without inserting any tags). This is

the computationally cheapest leaf to find and in many situations it is a low-entropy

leaf, if not the lowest. Hardware and Field Programmable Gate Array (FPGA)

implementations of Viterbi search may avoid the need for thebest first optimisation

by performing this part of the algorithm in parallel [140, 141, 121]. Such treatment

is not possible with text augmentation because of the significantly larger lookahead.

4.3.3 Automatic Tokenisation Heuristic

The automatic tokenisation heuristic is based on the observation that in many prob-

lems there are classes of characters between which no tag ever occurs. For example,

in the Computists’ and bibliography corpora, no tag ever occurs between a pair of

lower-case letters or between a pair of whitespace characters. If no tag is ever seen

in a situation during training, and a sufficient amount of training data has been seen,

it is reasonable not to consider inserting tags in such positions during testing. This

assumption may prove false, which is why automatic tokenisation is a heuristic not

an optimisation.

The saving in search space depends on the structure of the text. However, if text

were uniform words of four letters starting with a capital letter and separated from

the next by a space (. . . Abcd Efgh . . .) and automatic tokenisation meant the

search did not have to consider inserting tags between pairsof lower-case letters,

two of every five nodes in the search space would not need to be expanded. This2
5

approximation is assumed throughout this chapter.

67

Some types of contraction and abbreviation have a direct impact on automatic

tokenisation. For example, the stringJohn Anthony Smithmay have the same search

space asJ. A. Smith, even though they differ markedly in length.

The CEM implementation keeps an occurrence table of possiblepairs of Uni-

code character classes [138], and counts how many tags are seen between each pair.

During augmentation, each node in the search tree is checkedto see whether more

than a threshold number of tags has been seen between the current pair of character

classes, before considering whether to expand the search tree. Common threshold

values include -1, 0, 1 and the default 5.

Unicode characters are divided into a set of 28 classes. The most common

classes seen in the corpora used in this thesis are lowercaseletter, uppercase letter,

other letter (common in the segmentation corpus), space separator, line separator,

decimal digit number, and various classes of punctuation. The classes are partic-

ularly convenient in Java, which uses Unicode throughout [52]. The ANSI C [59]

functionsisspace(), isupper(), isdigit(), etc. have a long history in parsing applica-

tions [2] and would almost certainly have performed well in this role for the En-

glish language corpora. There are been proposals [5] for much more sophisticated

character-level metadata systems in Unicode, but these arenot considered here.

One Unicode character class, the private use class, is reserved for ‘use by soft-

ware developers and end users who need a special set of characters for their appli-

cations. [These characters] are reserved for private use and do not have defined,

interpretable semantics except by private agreement’ [138]. CEM uses these to rep-

resent tags in character-level models, assigning a character to each tag to enable it

to be modelled as just another character within the PPM models: theα in Figure 4.4

and the¦, ? and◦ in Figure 4.6. These characters are used by CEM only inter-

nally, and always mapped to or from full XML representationsof the tags when

externalised.

68

4.3.4 Alphabet Reduction

Alphabet reduction is a heuristic based on the same character classes as automatic

tokenisation. In the bibliography corpus, repeating patterns of punctuation and cap-

italisation involving names in bibliographies were noticed. Names, which are com-

monly unique strings, remain a problem for the PPM model which sees limited

context.

Alphabet reduction merges a class of characters into a single character in the

model. For example, merging all upper case letters toA and all lower case let-

ters toa means thatJohn A. Smith and, Jill K. Jones andandYong X. Xiong and

all merge toAaaa A. Aaaaa aaa. Throwing away this information homogenises

these names. Considerably less memory and training data are needed to produce

high-order models because alphabet reduction reduces the size of the alphabet so

drastically. Empirically, alphabet reduction has raised the maximum order of the

model to between 15 and 25. The performance of alphabet reduction in practice is

examined in detail in Section 6.4.3.

This method is related to methods used elsewhere for finding acronyms [32,

160] using capitalisation patterns for generating candidate acronyms, which are then

winnowed using other techniques. The benefits of alphabet reduction are hard to

model, as they depend on the gains from modelling at a higher order compared with

the loss of information about each character.

4.3.5 Maximum Lookahead Heuristic

The lookaheada required by the Viterbi proof is not always needed in practice, and

previous work [133] suggests that the results of tag insertion commonly converge

at lookaheads much lower thana. The maximum lookahead heuristic is to select a

lower lookahead that represents a trade-off between correctness and efficiency. The

lower lookahead is denoteda′. If a′ is too low, the lowest entropy tagging may not

be found; this may be detectable during evaluation (see Section 2.3.4). Ifa′ is too

69

high, the search space is unnecessarily large.

The CEM implementation collects statistics on the maximum size of every tag,

but leaves the selection of a lower lookahead to the user. Theperformance of maxi-

mum lookahead in practice is examined in detail in Section 6.4.4. Various methods

for limiting the depth of Viterbi search are discussed in [118].

4.3.6 TagC Heuristic

As presented so far, CEM considers every possible combination of tags whenever

it considers inserting any tags. In real documents, however, only limited ranges

of permutations of tags are found. The TagC heuristic involves tracking dur-

ing training the set of all tag permutations seen. For example, the training text

<entry> <author><forenames> Donald E.</forenames> <surname>Knuth.

</surname></author>. . . would add { (<entry> <author> <forenames>),

(</forenames><surname>) and (</surname> </author>)} to the set of permuta-

tions. When tags are inserted, only the permutations seen in training are considered

for insertion (plus closing tags at the end of the file to guarantee that all tags are

closed).

The TagC heuristic has no effect on segmentation problems (since there are only

two states) and only limited effect on classification, because only one tag can be

closed and one opened, limiting the number of permutations.The significantly more

complex schemas involved in entity extraction (see Figure 4.2) give considerable

scope for savings to be made. The savings will be greater for complex schemas

when a relatively small set of permutations is seen during training. The performance

of the TagC heuristic is discussed in Section 6.4.5.

4.3.7 State Tying

State tying is a widely-used heuristic in speech recognition [60], which appears not

to have been used before in text modelling. The insight on which state tying is

70

Figure 4.7: The structure of a hidden Markov model, with state tying. The squares
are hidden states, linked by the solid arrows of the model structure and by dotted
arrows to their associated models.

built is that some states in a large model are similar not by chance but because they

model similar concepts. Thus in a speech-recognition system, the models for the

second half of the words ‘hair’ and ‘pair’ are similar (or at least they are for certain

dialects) even though the words themselves are different and they may represent

different parts of speech. State tying uses a single underlying Markov model to

model several hidden states. The hidden states are not merged—at a higher level

the model tracks the difference between them—but they sharea PPM model and

should require significantly less training data. Figure 4.7shows the hidden Markov

model shown in Figure 4.3 with two leaf states tied.

The key benefit of state tying is the ability to share trainingdata between rela-

tively common and relatively rare tags so as to achieve better performance from the

same amount of training data. State tying only works on entity extraction problems,

because it requires at least two levels below the document root to tie together. Tying

two states in a classification problem would leave two indistinguishable states. In a

segmentation problem there is one (non-root) state, which cannot be tied to itself.

By default CEM performs state tying on all states with the same tagname. The

effect ofnot tying thenametag is examined in Section 6.4.6.

71

4.4 Search Space

As discussed in Section 2.4, the efficiency of abstract computer operations is ex-

pressed by complexity, using theO(x). In the case of the tag insertion methodology

presented here, the parameters are the numbers of tags (t), the lookahead (a) and

the size of the input is the length (n) of the text. This complexity is a reflection of

tagging action, rather than the complexity of the underlying intellectual or syntactic

complexity [16].

If u is a constant andx and y are unbounded positive variables,O(u) ¿

O(x) ¿ O(xu) ¿ O(uy) ¿ O(xy). Algorithms withO(uy) or greater are re-

ferred to as intractable and run in non-polynomial time on conventional computer

equipment.

A line of investigation in the MUC conferences (see Section 2.2.4) was mea-

suring the inherent complexity in the web of atoms in the named entity tasks [7].

This approach relied on a uniform model of textual atoms extracted into a relational

database and a network of inferred relations between them, not readily adaptable

to the approach under consideration in this thesis. It was discovered was that tasks

considered in MUC-5, MUC-6 and MUC-7 had surprisingly similar complexity,

suggesting that the underlying complexity of textual understanding tasks may not

be as great as that of the solutions presented here. This approach is not applicable

to the present work because no web of atoms or equivalent structure is constructed

by systems such as CEM.

This thesis examines only the efficiency of text augmentation by tag insertion,

rather than the building of models which is a prerequisite tothis activity. There is

other work in the area of efficiently building models [97, 133], but it is outside the

scope of this thesis. CEM builds the suffix tree with a hash table from the standard

Java libraries. The hash key is the character leading to the node stored in the hash

value. Character counts are stored in the child node. Character counts are stored

as Java longs and never rescaled (none of the corpora dealt with in this thesis are

72

sufficiently large to overflow a long).

This analysis of search space is dependent on the constraints introduced in Sec-

tion 4.1.4. Removing Constraint 3 would add an infinite number of empty tags into

the search space, and removing Constraint 4 would add an infinite number of non-

empty tags. Therefore analysis includes recursive tags, but only when there is at

least one character between each two open tags of each type.

If a document contains a single character, it could potentially have tags inserted

either before or after that character. By Constraint 3, which forbids empty tags,

any tags inserted into such a document must open before the character and close

after it. By constraint 4, each tag can only open once. If the document is being

marked up using a set oft tags, then0, 1, 2, 3, . . . or t tags could occur before the

character, with the tags chosen being a permutation of thet tags. Thus, the number

of combinations of tags that might be inserted prior to the first character is:

t
∑

i=0

tPi =
t

∑

i=0

t!

(t − i)!

Constraint 3, which prevents the opening of tags that would beempty, and Con-

straint 2 which requires that all open tags must be closed, means the only tags

following the final character in any document are close tags matching those tags re-

maining unclosed. Thus the number of taggings of the entire document is the same

as the combinations of tags that might be inserted prior to the first character.

If a document with the single character ‘a’ is tagged with thetwo tags, ‘<x>’

and ‘<y>’, then there are
∑

2

i=0 2Pi = 1 + 2 + 2 = 5 possible taggings.

In a document of two characters, the same tags might be inserted prior to the

first character as in the case of a one-character document. More tags may occur

between the first and second characters: tags may be closed aswell as opened. The

maximum number of tags that may be opened is directly relatedto the number of

73

tags previously opened:
i

∑

j=0

(
t

∑

k=0

tPk)

wherei is the number of tags opened before the first character.

As before, the tags following the last character can only be the closing tags

of already open tags. This gives the total number of taggingsfor a two character

document as:

t
∑

i=0





tPi ×
i

∑

j=0

t
∑

k=0

tPk



 =
t

∑

i=0

((i + 1) × tPi) ×
t

∑

k=0

tPk

Thus, if a document with the two characters ‘ab’ is tagged with the two tags

the ‘<x>’ and ‘<y>’, then there are1 × 1 × 5 + 2 × 2 × 5 + 2 × 3 × 5 = 55

possible taggings. The formula on the right can be considerably simplified, but the
∑t...

jx=0

∑t
kx=0 tPkx

factor can be factored out.

The number of taggings for a three-character document follows from this:

t
∑

i=0





tPi ×
i

∑

j1=0

t
∑

k1=0





tPk1
×

i−j1+k1
∑

j2=0

t
∑

k2=0

tPk2









=
t

∑

i=0

tPi ×
i

∑

j1=0

t
∑

k1=0

(k1 − j1 + i + 1) ×
t

∑

k2=0

tPk2

and each additional character in the document adds a
∑t...

jx=0

∑t
kx=0 tPkx

term to the

number of taggings, which isO(t2t!) = O(t!) = O(tt).

Classification is significantly simpler, because each character can be put into

only one oft classes, givingtP1 or t options, which isO(t). Segmentation is even

simpler: either a tag is inserted or no tag is inserted, a binary decision, givingO(c)

wherec is a constant.

Table 4.1 gives the number of nodes in search spaces, first forinserting tags

between two characters in a document and then for inserting tags into an entire

document for each variant.

74

4.4.1 The Semantics of Nested Tags

Permutation is a significant contributor to the search space, particularly whent is

large. If the semantics of nested tags (see Section 2.5.1) were changed so that

opening tags occurring between two adjacent characters aresemantically equiva-

lent, independent of order (i.e. widely expected HTML / XHTML semantics), this

would change the permutation to a combination, substantially reducing the search

space for entity extraction. Changing the semantics of nested tags also drastically

reduces the maximum number of Markov models which would be needed in the

case where tags are not used consistently, increasing the usefulness of state tying

(see Section 4.3.7).

Segmentation and classification do not involve nested tags,so their semantics

are irrelevant.

4.5 Teahan Search

Not all of the optimisations and heuristics described abovecan be applied to the

Teahan search algorithm. In particular, those that relate to pruning the depth of the

search space (the Viterbi and best-first optimisations, andthe maximum lookahead

heuristic) cannot be used because the Teahan search does notconsider depth of

search. Automatic tokenisation, which applies to the nodesat which the search tree

can branch, can be used with Teahan search, as can the TagC heuristic, which relates

to the width of the branching.

Algorithm SegmentationClassification Entity Extraction
per Character O(c) O(t) O(tt)
Complete O(cn) O(tn) O(ttn)
Viterbi O(ca) O(ta) O(tta)

Maximum Lookahead O(ca
′

) O(ta
′

) O(tta
′

)

Table 4.1: Search space size.t is the number of tags,t is the document length,
a is the lookahead for Viterbi search,a′ is the lookahead for maximum lookahead
search andc is a constant.

75

x y z
Node in the search

E
nt

ro
py

 o
f n

od
e

on
 th

e
lo

w
es

t e
nt

ro
py

 p
at

h

(a)

x y z
Node in the search

E
nt

ro
py

 o
f n

od
e

on
 th

e
lo

w
es

t e
nt

ro
py

 p
at

h

(b)

Figure 4.8: Scenarios in which Teahan search and Viterbi search can be expected to
perform differently, (a) Teahan search performs well and (b) Viterbi search performs
well.

Both Teahan search and Viterbi search with maximum lookaheadare heuristics

and it makes sense to ask which can be expected to perform better, ormightperform

better, than the other. There is noa priori reason to believe that one will perform

better in the general case, but in specific cases they performdifferently. Viterbi

search can be expected to perform well in situations in whichthere is a great deal of

ambiguity (a small entropy difference between a large number of nodes at the same

level) in the search tree, because it focuses on searching the current, immediate

context. Teahan search will perform better when the search contains long sequences

of low ambiguity interspersed with short sequences of high ambiguity because, by

counting only the leaves, it is able to look effectively pastthe long sequences of low

ambiguity.

76

Figure 4.8 shows two scenarios which illustrate such situations. It shows the

entropy implications of inserting a single tag at various points in a sequence. In

Figure 4.8(a) all the points are high-entropy, exceptx andz which are low entropy.

Viterbi search with maximum lookahead is only capable of determining whetherx

or z is the better place to insert the tag if the difference between them isa′ or less.

Teahan search is capable of making the differentiation no matter what the separa-

tion, provided there are no (or relatively few) other low entropy branching options

betweenx andz. Figure 4.8(b) still hasx andz but also has a range of relatively

low-entropy branching options betweenx andy. In such a situation Teahan search

is likely to prune prematurely atx, whereas Viterbi search with maximum lookahead

is guaranteed to find the best option within thea′ maximum lookahead.

4.6 Evaluation

This section examines how the measures of correctness first introduced in Sec-

tion 2.3 can be used in conjunction with the metadata taxonomy introduced in Sec-

tion 4.1. For each of the measures, each of the three taxa is examined. A new

correctness measure,type confusion matrices, is introduced.

4.6.1 Recall and Precision

Recall, precision, and their combination in the F-measure, are the primary means of

evaluating correctness in information-retrieval systems, but the definition of what

constitutes a document varies for each type of text-augmentation problem.

Segmentation

For segmentation problems the evaluation question is ‘Doesa segment end between

one symbol and the next and was that segment end found?’ Recalland precision

are good measures for evaluating segmentation problems because both operate on

77

to be or not to be

(a)

<to>to</to> <be>be</be> <cc>or</cc> <xnot>not</xnot>

<to>to</to> <be>be</be>

(b)

Figure 4.9: A short quote from Hamlet. (a) without and (b) with part of speech tags.

a binary distinction. Recall and precision are the standard methodology for mea-

suring correctness in the fields of Chinese text segmentation[137, 145, 12, 50] and

Japanese text segmentation [3], both widely-studied segmentation problems.

Classification

For classification problems, the evaluation question is ‘Isthe class predicted for

symboln correct?’, where symbols are the characters, words, sentences or docu-

ments being placed into classes. Recall and precision are standard methodology for

measuring correctness in the fields of part-of-speech tagging [28, 76, 94] and genre

classification [66], which are probably the most widely-studied textual classification

problems.

Figure 4.9(a) shows a short quote from Hamlet and Figure 4.9(b) the same quote

marked up using the tags of the Lancaster Oslo/Bergen part-of-speech corpus [64].

Teahan’s work (from which this example is taken) [133] is a word-based approach

and uses word-based evaluation mechanisms: there are 6 words in the sample and

they are all correctly tagged, giving 6 true-positives. Character-based approaches

see only characters not words: there are 18 characters, including 5 spaces, all cor-

rectly tagged, giving 18 true-positives. Evaluation of theoutput from a character-

based system using a word-based evaluation might be considered. However, this

works for mistakes such as misclassification of an entire word, but fails when only

part of a word or a non-word character is misclassified. Thereare similar prob-

lems in evaluating Optical Character Recognition (OCR) at a wordlevel when word

78

boundaries can be incorrectly identified [73].

The core problem is that character-based approaches are more expressive and

can be wrong in ways that cannot be represented in conventional word-based ap-

proaches. The reverse is not the case, however, and the output of a word-based

system can be compared to that of a character-based system atthe character level.

The expressiveness of character-based approaches definitely has advantages in

some corpora. For example, dates in the Computists’ corpus (Section 5.1) are ex-

pressed as a single word in the form19Jan98which word-based approaches see

as a single word (unless they have customised word boundaries heuristics) and

are unable to do better that identifying it as a date (<date>19Jan98</date>).

Character-based approaches are capable of breaking the dateinto component parts

(<date><day>19</day><month>Jan</month><year>98</year></date>).

The difference in expressiveness applies to all three typesof text augmentation

problem if the standard measurement technique is word-based, but is most obvious

in classification problems such as part of speech tagging.

Entity Extraction

Measuring entity extraction as an information retrieval problem is challenging. The

four basic classes (true positives, false positives, falsenegatives and true negatives)

are accumulated over successive independent trials, but the XML well-balancedness

constraint (see page 56) introduces inter-dependencies between trials.

Figure 4.10 shows inter-dependencies in a small entity extraction problem. The

untagged input text is shown in Figure 4.10(a). The task is toinsert<name> and

<title> tags into the text, as shown in Figure 4.10(b). Figure 4.10(c) shows an error:

the boundary between the first two names has been inserted in an incorrect place:

the tag<name>Smolensky, P., Fox,</name> is a false positive. The independence

criterion is broken because seeing this false positive doesnot just preclude the pos-

sibility of seeing the tag<name>Smolensky, P.,</name>. It also precludes the

79

Smolensky, P., Fox, B., King, R., and Lewis, C. Computer-aided
reasoned discourse. . .

(a)

<name>Smolensky, P., </name><name>Fox, B.,
</name><name>King, R. </name>, and <name>Lewis, C.
</name><title>Computer-aided reasoned discourse. . .</title>

(b)

<name> Smolensky, P., Fox,</name> B., <name> King, R.
</name> , and<name> Lewis, C.</name> <title> Computer-
aided reasoned discourse. . .</title>

(c)

Figure 4.10: Inter-dependencies in a small entity extraction problem.

possibility of seeing the tag<name>Fox, B.,</name>.

The possibility of<name>Smolensky, P., Fox,</name>, <name>Smolensky,

P., </name> and<name>Fox, B.,</name> as names is not precluded if the data

is segmented into a relation before processing. However, such segmented results

could not be merged back into XML using tags such as we are using if these three

names are included.

It is unclear whether breaking of the independence criterion matters. Certainly it

means that recall and precision results from entity-extraction problems are in some

way different from segmentation and classification results, and not directly com-

parable. Recall and precision are the primary means of comparison in the TREC,

MUC and DUC conferences (see Section 2.2.4).

4.6.2 Edit Distance

The correctness of all kinds of metadata used in text augmentation can be measured

using edit distance.

80

4.6.3 Confusion Matrices

As with recall and precision, the effectiveness of confusion matrices on different

kinds of text augmentation problems varies.

Segmentation

Confusion matrices of segmentation problems represent a degenerate case in which

there are only two classes. The matrix contains the four basic measures from the

information retrieval paradigm and is a contingency table:









a1,1 a1,2

a2,1 a2,2









=









true positives false positives

false negatives true negatives









For this reason evaluating segmentation using a confusion matrix or the informa-

tion retrieval metrics produce the same results, but the information retrieval metrics

have higher level metrics (recall and precision) built uponthem.

Classification

Confusion matrices are the standard method of evaluating classification tasks [149].

Their only disadvantage is that they are somewhat verbose, especially for problems

(such as part-of-speech tagging) which have a large number of classes.

Entity Extraction

Confusion matrices have identical independence problems torecall and precision

when used to evaluation entity extraction from text. Confusion matrices assume an

underlying many-class classification task, but entity extraction in the most general

form is more general than this; it is ahierarchicalmany-class classification task. If

the hierarchy depth is bounded in some way, it is possible to re-define the problem

such that every possible state in the hierarchy is a new class. This approach suffers

from problems of combinatoric explosion, leading to large,sparse, matrices which

81

cannot be normalised, since this leads to division by zero.

4.6.4 Type Confusion Matrices

Type confusion matrices are a new extension of confusion matrices suitable for ap-

plication to hierarchical many-class classification tasks. Every node in the hierarchy

is assigned a type, which is the most recently opened tag. Thetype confusion matrix

for a hierarchical classification problem withi classes is:

























a1,1 a1,2 · · · a1,i

a2,1 a2,2 · · · a2,i

...
...

. ..
...

ai,1 ai,2 · · · ai,i

























am,n in columnn and rowm is the number of symbols that should have been clas-

sified in a node of classn that were actually classified in a node of classm.

Type confusion matrices can be used similarly to confusion matrices, but it

should be noted that information has been thrown away. For example, if the se-

quence. . . S. Kraus, and V. Subrahmanian. . .is marked up as:

. . .<editor><name><first>S.</first><last>Kraus,</last></name>and

<name><first>V.</first><last>Subrahmanian</last></name></editor>. . .

rather than as:

. . .<author><name><first>S.</first><last>Kraus,</last></name>and -

<name><first>V.</first><last>Subrahmanian</last></name></author>. . .

theauthor/ editorconfusion would only be apparent in theandsub-sequence. Other

sub-sequences such asKraus, do not have the erroneous tag as an immediately

enclosing tag. This situation is much worse when dealing with classes whose only

content is other classes such as thebibbodytag which always contains a single other

tag.

Type confusion matrices are applicable to any tag insertionproblems. However,

82

when applied to a classification problem, they degenerate toa confusion matrix be-

cause the immediately enclosing tag is the only tag. When applied to segmentation

problems, type confusion matrices degenerate to a contingency table (see page 81).

4.6.5 Entropy

All types of text augmentation can be evaluated using entropy. Care does need to be

taken to avoid using the same model or a model built from the same data for both

augmentation and evaluation. If entropy is being used for evaluation, it is normal

to either use an empty adaptive model or a model built from data which is distinct

from the training, re-estimation or testing data.

When a tag insertion using a Viterbi algorithm, produces an incorrect result, en-

tropy measurements can be used to determine whether the fault lies with the model

or the searching algorithm. If the result produced by tag insertion has lower entropy

than the baseline (or ground truth) text, the model is flawed (i.e. has not seen enough

training data, is not of sufficient order, or is attempting tolinguistically model non-

linguistic features). If the experimental result has higher entropy than the baseline

(or ground truth), the searching algorithm is flawed (i.e. one of the heuristics is

making an assumption that does not hold for this text). This technique is used in

Section 6.4.3 to examine the effectiveness of the alphabet-reduction heuristic.

83

84

Chapter 5

The Text

In this chapter the four corpora used in this thesis are introduced, the problems

posed by the corpora are described and previous work solvingthese, or similar,

problems is discussed.

In the information-retrieval paradigm, a collection of documents is called a ‘cor-

pus’ and is assumed to have some commonality: the documents are either from the

same source, cover the same topic, or are a representative sample of a larger pop-

ulation of documents. Building corpora, especially those with rich metadata about

and within the documents, can be expensive and time-consuming.

In the research community, corpora serve as pools of data forexploratory re-

search [91, 92] and as benchmarks for comparative research [65, 64]. This thesis

uses them for both these purposes. The corpora used here are referred to as: the

Computists’ corpus, the bibliography corpus, the Chinese text-segmentation corpus

and the Reuters’ corpus. Each of these is discussed in the following sections. Short

samples of each can be found in Appendix 1.

5.1 Computists’ Corpus

The Computists’ corpus [136, 135, 148, 26, 144] is composed ofissues of a mag-

azine called ‘The Computists’ Communique’ converted from ASCII text to XML.

Each of the 38 issues is approximately 1200 words in length and consists of a num-

ber of short articles usually followed by a list of job openings. Previous workers

marked up ten features (name, location, organisation, email, source, date, money,

85

phone, fax andurl) by hand, and then made corrections based on the results of the

Teahan’s TMT [135].

(937) 255-2902.<http://web.fie.com/htdoc/fed/afr/wri/any
/proc/any/07209802.htm>. [CBD, 20Jul98.]

(a)

<p>(937) 255-2902</p>. <<<u> http://web.fie.com/htdoc/fed/afr/wri/any</u>
/proc/any/07209802.htm>. [<s> CBD</s>, <d> 20Jul98</d>.]

(b)

<p>(937) 255-2902</p>. < <u> http://web.fie.com/htdoc/fed/afr/wri/any
/proc/any/07209802.htm</u>>. [<s> CBD</s>, <d>20Jul98</d>.]

(c)

Figure 5.1: Corrections in the Computists’ Communique. (a) theoriginal text (b)
the text as received (c) the text used in this thesis.

For this thesis the data was converted from the XML-like format used by TMT

into well-formed XML and a number of systemic errors corrected. Figure 5.1(a)

shows two lines from corpus as it appears in the original text, notice that a URL has

been broken across a line break. Figure 5.1(b) shows the textas used by Teahan,

Bray and Wen [135, 26, 144]. Four tags have been added: phone number, URL,

source and date. Only the first part of the URL has been marked-up as a URL.

The insertion of the URL and email address (not shown) tags wasdone automat-

ically, inserted extra ‘<’ and the URL detection failed when the URL had been

line-wrapped. The text also has un-escaped ‘<’, ‘ >’ and ‘&’ (not shown) charac-

ters, which are non-well-formed XML. Figure 5.1(c) shows the same text with these

deficiencies corrected. This is the version used in this thesis.

The corpus has a number of endemic ambiguity issues: (a) mailing-list names

are listed as sources when derived from the mailing list but not when creation of the

mailing list is announced; (b) many of the organisation names (particularlyApple)

were marked up intermittently and (c) many words are marked up coincidentally.

86

For example, in a discussion about computers from IBM and Sun Microsystems,

Sunis marked as an organisation even when used as a class of computers. PC is

never marked as an organisation. These issues, and the fact that organisations and

sources are named after places and people, and that place names are often coined

from personal names, account for the many of errors previously reported [26, 144].

Several corrections to the corpus are made in this thesis to attempt to resolve

(b) and (c). Two passes were made over the corpus, marking-uporganisations (and

to a lesser extent sources) which had not been marked-up in previous work. This

revised corpus is used everywhere in this thesis except Section 6.2.2, where results

are compared with previous work and therefore the uncorrected data must be used.

To the author’s knowledge the corpus is in the public domain.Copies are available

from the author.

Inserting the ten features into the Computists’ corpus is a classification problem.

Figure 4.1(c) shows the schema structure for the problem. The MUC named entity

problems from the MUC conferences have strong correspondences to thename,

location, organisation, source, dateandmoneytags.

5.2 Bibliography Corpus

The bibliography corpus was created specifically for this thesis from bibliography

records. It was designed to resemble the bibliographies found in the computer sci-

ence technical report collection at the New Zealand DigitalLibrary [153, 109].

The corpus consists of a large number of bibliographies generated by the LATEX /

BIBTEX tool-chain which is widely used throughout technically-oriented scientific

disciplines. It is anticipated that a model trained on the bibliography corpus may

be adaptable for academic fields which use humanities citation conventions by us-

ing the Baum–Welch algorithm (see Section 3.6), but this is not explored in this

thesis. Marking up bibliographies is a first step for severalactivities, including doc-

87

ument linking, bibliometrics [111] and a range of possible integrated reading list,

bibliography and citation systems, making it a desirable feature for a digital library.

A collection of publicly available bibliographic databases1 has been maintained

and expanded by other workers for a number of years. Samples of bibliographic

entries were taken from the same sources as this collection,split into 14682 bib-

liographies with up to 25 entries and formatted using the BIBTEX and LATEX [77]

text-formatting systems. Seven of the standard bibliography styles (abbrv, alpha,

apalike, ieeetr, plain, siamandunsrt) and several different page layout techniques

(article, bookandreport) were used to mitigate secondary effects due to line, col-

umn and page wrapping.

Addition of metadata tags into the bibliographies changed the layout of entries;

line breaks and hyphenation, in particular, were radicallychanged. To avoid this,

each bibliography was processed twice, once using the standard style file and once

using a modified style file which inserted metadata tags around parts of the en-

tries. This process is shown in Figure 5.2. The upper half of the figure shows the

processing of the bibliography (.bib) using the unmodified style file (.sty) to pro-

duce the laid-out bibliography (.bbl) using BIBTEX. This laid-out bibliography was

then processed to a PostScript (.ps) document using LATEX anddvips, and then the

PostScript document processed to a text file (.txt) usingps2txt. The lower half of

the figure shows the processing of the bibliography using themodified style file

to insert escaped XML tags. The resulting two text files were then merged into

a single XML document, taking the layout, whitespace and punctuation from the

text derived from the unmodified style file and un-escaping the escaped XML tags

from the text derived from the modified style file. The resulting bibliographies were

processed using the XML ‘preserve-space’ style to preservewhitespace.

There are several peculiarities in the corpus, largely because of how it was con-

structed.
1 http://liinwww.ira.uka.de/bibliography/index.html

88

1. All first names are marked-up in a single tag rather than each first name in

a separate tag. The BST language2 in which the style files are written has

primitives for laying out names. Marking-up individual first names separately

would have required a modified BST interpreter rather than modified BST

programs.

2. There are inconsistencies in the relative location of punctuation and close tags

at the end of words. The period following an initial is an indication of con-

traction, semantically part of the initial, whereas the period at the end of a

sentence is semantically separated from the word it follows. The tagging at-

tempts to reflect this, but there are some deeply ambiguous cases, particularly

where an initial falls at the end of a sentence and the period fills both roles.

In such cases the punctuation has been included within the tag.

3. Splitting a large bibliography into many smaller ones breaks cross-references

between entries unless both referrer and referent happen toappear in the same

smaller bibliography. Broken cross references appear as ‘[?] ’.

LATEX commands to generate non-ASCII characters in the text are escaped to

Unicode characters. The conversion is based upon the commands observed in the

corpus rather than a comprehensive list of commands, but includes many common

mathematical symbols and letters from a wide variety of Western European lan-

guages (Portuguese, Spanish, German, Polish, Swedish, etc.). Most of the letters

appear in names, either in the name field or as references to people in titles. A

few of the entries were entirely in French. Many bibliography entries with non-

ASCII characters also occur in a Romanised form, with the non-ASCII characters

converted to ASCII characters by bibliography creators.

2The author knows of no comprehensive description of the BST language; the implementation is
part of BIBTEX. It is a stack-based language in which sets of non-recursive macros (called ‘style files’)
are used to format convert entries in a standard format (for which again, a canonical description
appears to be lacking) into bibliography entries conforming to the stylistic conventions of a particular
publication.

89

BibTeX

BibTeX

.sty

.sty

.txt.bbl .ps

.bbl .ps .txt

.xml.bib

merge

Figure 5.2: Data-flow diagram for creating the bibliographycollection.

Escaping non-ASCII characters rather then dropping them outof the corpus

made the corpus significantly less close to the computer science technical report

collection, but significantly closer to bibliographies as they appear in the majority

of electronic documents, and closer to how they were intended to appear. Other

researchers have discarded such bibliographies, at the rate of 6.5% [125].

Many of the discarded bibliographies contain LATEX macros which could never

be processed by standard LATEXṠome appear to be mis-typed macros, but there is

no way to distinguish these from macros which individual researchers have defined

locally. There are also many sets of macros circulating in subject- and language-

specific communities to represent features of interest within those communities.

The lack of namespaces in LATEX means that there is no easy way to differenti-

ate these, and because macro files are imported into the document rather than the

bibliography, isolated bibliographies contain no reference to the file name which

defines (or redefines) macros.

The structure of the schema is shown in Figure 5.3. The tags atlevels B and C

indicate bibliographies marked-up according to certain bibliography and document

styles respectively. All combinations of these were used when creating the corpus.

Tags at level E correspond to tags of different types of documents being referenced.

90

bibliography

. . .

name

article bookincollection techreport manual proceeings phdthesis

author title journal editor address publisher date

abbrev alpha unsortieeetr siam acm plain

bibprocbibreportbibbookbibarticle

bibbody

year month

lastfirst jrlast

B

A

C

D

E. . .

F

G

H

Figure 5.3: Schema for the bibliography corpus with all tags.

91

Tags at level F correspond to the fields in bibliographic records.

The structure of names in the BIBTEX format is somewhat unusual. With four

parts (first, last, van and jr), the structure reflects American English names as con-

ceptualised in the 1980s, but handles rather poorly a numberof features of names

as used internationally, particularly double-barrelled surnames, von parts3 starting

with a capital and names in which the given name follows the surname. One of

the causes is systematic confusion between the portion of the name which is writ-

ten first and the given (as opposed to inherited, parental) portion. These issues are

compounded by the difficulties representing non-ASCII characters in LATEX, for ex-

ample the need to encode ‘Céline’ as ‘C{\’{e}}line,’ and the use of a simplistic

sorting algorithm for ordering the entries.

A number of different workarounds have been developed to force BIBTEX and

LATEX to ‘do the right thing’ in sorting, formatting and hyphenating particular names.

A collection of these can be found in the archives of thecomp.lang.tex news-

group. Other name formats, such as the Library of Congress authority lists [112]

used in the MARC [108, 48] format are actively curated, enabling such issues to

be handled systematically, if not optimally. In this thesis, the original BIBTEX ter-

minology is used because it is precise and clear to workers and tool builders in the

field [77, 101].

Not all the tags shown in Figure 5.3 are used in this thesis. Figure 5.4 shows

only those tags in the corpus which are used in experiments inthis thesis. Note, in

particular, that the tags at levels B, C and E in Figure 5.3 are missing in Figure 5.4.

The variant schema structure shown in Figure 5.5, and explained in Section 4.3.7,

is used in experiments with state tying.

Freitag and McCallum [46, 96] report work on a similar, although non-

hierarchical, corpus initially hand-crafted, then incrementally improved using

Markov models. Citeseer [80] (see Section 2.2.4) also involves bibliographic data,

3In the BIBTEX model of names, fragments such as ‘von’ and ‘van der’ are referred to as the ‘von
part’.

92

. . .

name

title editor address publisher date

year month

lastfirst jrlast

bibbody

bibliography

author journal

Figure 5.4: Schema for bibliography corpus with tags used inthis thesis (with state
tying).

. . .title editor address publisher date

month

bibbody

bibliography

author journal

lastfirst jrlast

yearname

lastfirst jrlast

name

Figure 5.5: Schema for the bibliography corpus without state tying.

93

using a handcrafted multi-step algorithm.

5.3 Segmentation Corpus

The segmentation corpus was derived from the ROCLING segmentation corpus.

which contains about two million pre-segmented words, represented in the Big5

coding scheme. The corpus was converted from Big5 encoding toGB (Guojia

Biaozhun) by Wen [137].

The corpus was further converted from GB encoding to Unicode. After inserting

word tags, whitespace (but not punctuation) was removed and the text split on sen-

tence boundaries into 1000 documents of approximately the same size. The XML

was output as ASCII to force all non-8-bit clean characters tobe converted into

Unicode escapes to reduce the chance of handling errors.

In the resulting corpus, a two character word looks like:<word>时-

候</word>. The corpus also includes western terms (for example, proper

nouns and currency symbols). A thorough review of Chinese text segmentation is

given in Teahan and Wen [137]. As the author neither reads norspeak Chinese, he

is unable to give a detailed analysis. The results of previous workers are shown in

Table 6.7.

The segmentation corpus appears to suffer from the overly ‘optimistic segment-

ation’ described by Wu and Fung [157]. This phenomenon is caused by the ten-

dency for many segmentation algorithms to be biased towardssmaller segments

when faced with even genuine ambiguity.

Insertingword tags into the segmentation corpus is a segmentation problem.

Figure 4.1(a) shows the schema structure for the problem.

94

5.4 Reuters’ Corpus

The Reuters’ corpus is a collection of news articles taken from the Reuters’ news

wire and referred to by Reuters as ‘Reuters Corpus, Volume 1, English language,

1996-08-20 to 1997-08-19’. The articles range from two-paragraph summaries of

financial information to in-depth articles on political or literary topics. The corpus

has been widely studied for a number of purposes, including text categorisation and

clustering [62, 55], information extraction [45, 46, 119],authorship [68], and part

of speech tagging [46].

This is the sort of news discussed on page 1: automatically inserting tags, either

as a first step in a more sophisticated information-extraction process, or simply to

tag articles as being connected to the organisations and locations. This process, or

one similar to it, is performed ubiquitously in the field of news aggregation.

The corpus was prepared for this thesis by taking the first 7471 articles from the

full Reuters’ corpus, removing the document level metadata (title, author, topic and

copyright information) and passing it through the Brill tagger [28], a widely used

part-of-speech tagger that tags every word with a label thatindicates the role it plays

in speech. The tagger’s notion of what constitutes a word is sometimes unusual—

Don’t is regarded as two words anddollar/yenas one word—but the tagger was used

‘out of the box’ according to accepted practice [46, 119]. 11documents containing

URLs, which confused the tagger’s parser, were removed. The full Reuters’ corpus

contains many duplicates [69], but as with other corpora andinformation systems,

the presence or absence of duplicates is not as important as whether the corpus is a

representative sample of the larger population of documents. Given that identical or

similar news articles commonly appear in a number of publication outlets, having

duplicates and near-duplicates in the Reuters’ corpus is a sign of correlation with

‘real-world’ news sources, rather than a sign of a flaw.

The full Reuters’ corpus is large (over 800,000 articles), but only the first block

of articles is used here, since the behaviour of text augmentation on large bodies of

95

text is not the primary interest of this thesis and has been studied elsewhere [133].

A complete explanation of the meanings of each of the 38 tags is contained in [94].

The text of the Reuters’ corpus is copyright Reuters and not forredistribution.

Copies of the corpus are, however, available from Reuters.

Inserting part of speech tags into the Reuters’ corpus is a classification problem.

Figure 4.1(b) on page 52 shows the schema structure for the problem.

96

Chapter 6

Results

In this chapter the effects of applying the earlier discussed optimisations and heuris-

tics to the four corpora discussed in the previous chapter are examined. The cor-

rectness results are then given and, where possible, compared against experimental

results given in the literature. The effects of Baum–Welch re-estimation are ex-

amined and, finally, the effectiveness of individual optimisations and heuristics are

examined.

6.1 PPM-SY versus PPMD

CEM normally uses PPM-SY, and in this section it is compared with PPMD . Fig-

ure 6.1 shows the search time per node of the search in the Computists’ corpus, for

a range of orders of model and a lookahead of six. The search time increases less

than linearly for PPM-SY and more than linearly for PPMD.

Despite the use of leave-one-out cross-validation, the correctness of PPM-SY

and PPMD was identical in all cases except for the case of the locationCapitol

Hill , which was correctly identified as a location by PPMD using models of order

three and four when PPM-SY incorrectly identified it as an organisation. Using an

order-five model correctly identified it as a location.

Figure 6.2 shows the search time per node of the search in the Chinese segment-

ation corpus, for a range of orders of model and a lookahead offour. The time

increases less than linearly for PPM-SY and more than linearly for PPMD. This

increase in the cost is substantially larger than in the Computists’ corpus, probably

97

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7

S
ea

rc
h

tim
e

pe
r

no
de

 (
m

ill
is

ec
on

ds
)

Order

Comparison of PPMD and PPM-SY in the Computists’ corpus

time * 0.15012 + 3.506
PPMD

PPM-SY

Figure 6.1: Graph showing the speed of searching in the Computists’ corpus for
PPMD and PPM-SY. A reference line is included to show that thespeed for PPM-
SY is growing less than linearly with respect to model order.Timings are averaged
over leave-one-out cross-validation.

98

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0.5 1 1.5 2 2.5 3 3.5

S
ea

rc
h

tim
e

pe
r

no
de

 (
m

ill
is

ec
on

ds
)

Order

Comparison of PPMD and PPM-SY in the segmentation corpus

PPMD
PPM-SY

Figure 6.2: Graph showing the speed of searching in the segmentation corpus for
PPMD and PPM-SY. All runs use 900 training documents and a single testing doc-
ument. Results shown are averages over 100 runs.

because of the significantly larger character set involved.PPMD gave better results,

on average, than PPM-SY, with a difference in F-measure of+0.03%, +0.02% and

+0.04% for orders one, two and three respectively.

6.2 Correctness

Correctness (see Section 2.3) is studied on a corpus-by-corpus basis. Leave-one-out

cross-validation is used only for the Computists’ corpus, because that corpus is so

small. In all other experiments, no cross validation is usedexcept where specifically

stated.

99

6.2.1 Granularity and Heterogeneity

Unfortunately text-mining systems of the type being examined in this thesis make

the assumption that text seen during training is the same as the text seen during test-

ing. In this sense they are not general-purpose systems in the way that PPM [133],

bzip [88] or gzip [124] are. How well this assumption hold varies from corpus

to corpus depending in the internal granularity and heterogeneity. For the corpora

described in Chapter 5:

• The Chinese text-segmentation corpus was built from pre-homogenised data,

no variation among the 1000 documents is apparent to the author.

• The Computists’ corpus contains documents which all have thesame struc-

ture, but with considerable variation on subject matter.

• The Bibliography corpus contains relatively homogeneous documents with

two exceptions: (a) those documents generated from personal bibliographies

containing all publications by an individual, and (b) thosedocuments gen-

erated from forum bibliographies containing all publications appearing in a

journal, conference or book series. These documents are entirely an artifact

of the way the data was prepared—an insignificant number of peer reviewed

articles are published in computer science which contain references to only a

single author or source.

• The Reuters’ corpus, by contrast, contains genuinely heterogeneous articles,

ranging from short market-report articles, with columns ofnumeric figures,

to long in-depth articles of political commentary.

Only the Reuters’ corpus is evaluated both at a corpus level and at a document

level (see Section 6.2.5). The other corpora are evaluated at the corpus level.

100

6.2.2 Computists’ Corpus

The Computists’ corpus has been previously studied by Bray [26], using TMT, and

Wen [144]. Bray evaluated extraction based upon a confusion matrix (see Sec-

tion 2.3.3) and this is reproduced in Table 6.1(a). Tables 6.1(b) and (c) show the con-

fusion matrices for CEM on the corrected data using maximum lookahead search

and Teahan search respectively. The values in (a) are measured in words, the values

in (b), (c) and (d) are in characters. Theissuetag is the background: both TMT and

CEM build Markov models for theissuetag but Bray does not report the full results

for this, so the CEM results in (b), (c) and (d) have an extra row.

For most of the tags the CEM results were comparable to, but slightly worse

than the results given in Bray. Because the Bray results are percentages of words

correctly classified and the CEM results are percentages of characters correctly clas-

sified, direct comparison between these results is difficult. Many of the mistakes

shown in Table 6.1 for both systems appear be connected to inconsistencies, as de-

scribed in Section 5.1.

Three of the tags with the best performance (url, email and money), deserve

close attention. The first two can be described using a regular expression and the

last is uniquely and exclusively identified by a single character ($). These proper-

ties make tag insertion much more consistent; they also makemodelling such tags

easier for certain kinds of models. Unfortunately it also makes marking-up using

Markov models pointless: except in extreme cases marking upby regular expression

is always more efficient than marking-up using Markov modelsand searching.

The systemic confusion betweenname, source, location andorganisation, as

discussed in Chapter 5, is clear in all three confusion tables, with greater confusion

for CEM than for TMT.

Another situation in which CEM performs much worse than the Bray analysis

is the fax tag. The most common type of error withfax andphonetags in both

systems is where the fax numbers are mistaken for phone numbers: <p>617-373-

101

d n s l o u e p f m i
[d]ate 93.46 + 6.40
[n]ame 89.35 + 1.31 1.50 7.48
[s]ource + 60.09 2.85 36.62
[l]ocaton + 81.64 4.69 12.89
[o]rg 2.56 2.56 1.6369.23 24.01
[u]rl 100.00
[e]mail 97.34 2.66
[p]hone 82.29 10.71
[f]ax 100.00
[m]oney 100.00

(a)
d n s l o u e p f m i #

[d]ate 91.18 + + + + + + 8.12 10070
[n]ame + 85.49 2.75 1.78 2.02 + + 7.27 10494
[s]ource 1.13 51.97 + 3.02 + + 41.71 9983
[l]ocation + 2.66 1.96 72,38 4.79 + + 17.65 5155
[o]rg + 3.48 2.99 3.6627.50 + + + 60.99 5688
[u]rl + + + + + 95.23 + + 3.11 20023
[e]mail + + 1.14 + + + 93.60 + + 3.30 12164
[p]hone 88.69 9.95 1.36 955
[f]ax 27.86 69.14 3.01 499
[m]oney + 99.47 + 1133
[i]ssue + + 1.14 + 1.47 + + + + 95.92 317169

(b)
d n s l o u e p f m i #

[d]ate 91.04 + + + + 8.22 10098
[n]ame 87.92 2.19 1.26 3.92 + 4.64 11167
[s]source + 1.27 64.02 + 5.99 + 27.81 14229
[l]ocation + 2.46 1.26 75.82 11.38 + 8.75 5534
[o]rg 2.57 2.13 4.2758.48 + 32.40 12212
[u]rl + + + 95.90 + + 2.88 20089
[e]mail + + + + + 1.08 94.70 3.38 12186
[p]hone 75.03 8.88 16.10 969
[f]ax 16.43 57.11 26.45 499
[m]oney + + + 90.35 7.98 1140
[i]ssue + + + + 1.28 + + + + + 96.94 303100

(c)
d n s l o u e p f m i #

[d]ate 92.23 + + + + 6.99 10075
[n]ame 92.46 + + 2.65 3.49 11135
[s]source + + 68.11 + 5.12 + 25.57 13881
[l]ocation 1.62 + 84.53 7.87 5.86 5619
[o]rg + 2.03 2.47 2.3966.47 + 26.53 12169
[u]rl + + + 96.48 1.00 2.25 19668
[e]mail + + + + + 96.55 2.23 12436
[p]hone 72.55 6.60 20.85 969
[f]ax 1.20 4.21 70.14 24.45 499
[m]oney + + + 88.80 9.58 1107
[i]ssue + + + + 1.09 + + + + + 97.48 301326

(d)

Table 6.1: Confusion matrices for the Computists’ corpus (a) from Bray using
TMT [26] page 70, (b) from CEM/maximum lookahead using the same data as Bray,
(c) from CEM/maximum lookahead using corrected data, (d) from CEM/Teahan
search using corrected data. Character counts (#) are in characters, all other values
are in percent, ‘+’ indicates a figure lower than 0.99%. A lookahead of 6 was used.

102

Author Recall Precision F-measure
Wen 65.29 73.35 69.09
CEM/maximum lookahead (Wen’s data)49.17 63.38 55.38
CEM/maximum lookahead (corrected)71.06 61.21 66.13
CEM/Teahan (corrected) 74.65 67.71 71.18

Table 6.2: Accuracy for the Computists’ corpus, from Wen [144] page 75 and from
the current work. A lookahead of 6 was used.

5358</p>, <p>617-373-5121</p><f>Fax</f>. In CEM, because of the small

number offax tags seen (28 at most), the model for thefax tag is the closest to an

untrained model: it is the least biased against apparently random sequences. The

range of characters seen in thefax tag is narrow, but not significantly narrower than

phonetag. This results in errors such as:<f>REAL</f>basic, <f>pp. 43-45</f>,

andUnix <f>ht://Di</f>g search.

As predicted in Section 4.5, CEM with Viterbi search performed differently

from CEM with Teahan search. With the ability of Teahan searchto ‘see’ long

distances it might have been expected to correctly classifyphone and fax numbers,

which commonly have the differentiator at the end. Unfortunately the numeric con-

tent of these tags, being effectively random digits, has high entropy which lim-

ited the gains made here. The clearest improvements were situations such as(703)

306-0599 Faxwhich maximum lookahead search broke in two as:<p>(703) 306-

0599</p><f>Fax</f>, whereas Teahan search correctly marked-up as<f>(703)

306-0599 Fax</f>.

Wen [144] expresses accuracy in terms of recall, precision and error rates for

each type of tag, as shown in Table 6.2. The Wen model is trained on 25 documents,

whereas this thesis uses leave-one-out cross-validation for the Computists’ corpus.

The apparent reason for the better performance of Teahan search in this case is that

many of the ambiguities are of type (a) rather than type (b), as shown in Figure 4.8.

The values in Table 6.1 bear no direct relationship with those in Table 6.2 because

the former are at the word (or character) level, whereas the latter is the recall and

precision of whole tags (excluding the issue tag).

103

name

pages

date

volume

number

title

journal

booktitle

publisher

address

bibliography

character
count

97
.8

0
1.

46
+

+
+

+
+

62
6,

91
7

98
.7

9
+

+
+

+
14

0,
26

0
+

+
97

.3
2

+
1.

07
+

+
+

+
+

16
1,

12
8

+
+

+
95

.3
2

+
1.

05
+

+
+

+
2.

99
31

,1
82

+
+

1.
32

96
.5

4
+

+
+

1.
03

11
,3

21
1.

47
+

92
.5

8
+

3.
84

+
+

1.
53

1,
51

0,
75

7
+

+
+

1.
31

94
.5

5
+

+
+

3.
17

27
6,

28
5

+
+

+
7.

54
+

88
.6

1
+

+
2.

83
27

2,
45

8
+

+
+

+
3.

45
1.

72
+

82
.7

1
3.

82
6.

93
98

,6
70

+
+

+
+

2.
32

+
1.

62
3.

92
86

.7
7

3.
99

10
1,

18
7

0.
61

+
+

+
+

2.
31

6.
55

2.
56

1.
37

1.
01

84
.6

8
93

7,
92

8

Table 6.3: Confusion matrix for the bibliography corpus withoutnote. Counts are in
characters, all other values are in percent, a ‘+’ indicates a figure lower than 0.99%.
Order 6 models trained on 6000 documents and tested on 1000 documents with a
lookahead of 5.

6.2.3 Bibliography Corpus

Because the bibliography corpus was developed in the presentstudy, there is not a

wide range of results from other systems to compare the results from CEM against.

Wen [144] gives some results on three tags (publisher, dateandpages) from an early

version of the corpus, but these results are not sufficientlydetailed for comparison.

Table 6.3 shows the confusion matrix for a large number of tags in the biblio-

graphy corpus. A significant number of the errors were causedby use of the note

field in BIBTEX. This field allows arbitrary text to be inserted at the end ofan entry.

Often this extra text is an abbreviated reference (for example: (Published version of

104

UWCS Tech. Report No. 226., 1974)), information which should ideally be in other

fields of the reference (such asLecture Notes in Computer Science 866should be

in the series and number fields) or a citation (such asErratum in it JPL 25:5, 2000,

pp. 541–542.). In Table 6.3 the note tags were stripped prior to tagging, the text

previously included in them appeared at the document level,polluting the trained

model by adding noise.

The root of these errors is that the generation of the corpus (and all BIBTEX

processing) assumes that the BIBTEX file format is prescriptive, when in fact it is

descriptive: users will put whatever they need to into a BIBTEX file to get the entry to

look ‘right’ in the style they are using. This leads to a situation in which the meaning

of bibliographic entries (when formatted for publication)is clear to researchers and

librarians passingly familiar with the field, but the content of the BIBTEX fields does

not correspond to field definitions. No increase in lookahead, training data or model

order can remedy such a problem.

A different kind of error is seen at the boundary between the author list and

the document title because of the wide variation in layout ofthe author list and the

tendency of titles to start with lengthy proper nouns which are easily mistaken for

author names. The first word or two of the title are sometimes tagged as author

names, either as part of the last genuine author name or as a separate name. This

kind of error is strongly linked to the lookahead (see section 6.4.4): as more context

is taken into account these errors diminish.

Table 6.4 shows a confusion matrix with thenotetag added. The overall perfor-

mance is not substantially different, but that for thenumbertag drops considerably.

This appears to be because many of thenotetags contained numeric sequences (see

examples above) and separatingnotetags out from the background model enables

it to effectively model numbers.

Table 6.5 shows the type confusion matrix for the bibliography corpus. The

bibliography tag is still the document tag, but almost all the content is now with

105

nam
e

pages

date

volum
e

num
ber

title

journal

booktitle

publisher

address

note

bibliography

character
count

97.75 + 1.14 + + + + + 67807
98.32 + + + 13245

+ 96.40 + 1.41 0.05 1.16 + + + 15275
+ 96.09 + 1.17 0.09 + + 1.63 3426

1.22 87.13 1.82 2.84 6.99 987
2.20 + + + 91.89 + 3.84 + + + + 150900

+ 1.08 94.30 + 1.18 1.22 2.05 29738
+ + + 5.42 + 90.90 + + + 1.49 27407
1.14 4.96 1.89 1.1283.20 2.11 1.90 3.69 11178
+ + + 1.78 + 1.39 6.82 85.14 1.38 1.95 12715
+ + + 2.43 + 1.55 + 93.40 1.17 16476
+ + + + 1.57 3.12 3.54 1.49 + + 87.49 82518

Table
6.4:

C
onfusion

m
atrix

for
the

bibliography
corpus

w
ith
n

o
te.

C
ounts

are
in

characters,
all

other
values

are
in

percentage,
a

‘
+

’
indicates

a
figure

low
er

than
0.99%

.
O

rder
6

m
odels

trained
on

6000
docum

ents
and

tested
on

100
docum

ents
w

ith
a

lookahead
of5.

106

bibbodytags which contain the bodies of the references (but not the leading refer-

ence key in bibliography styles which use one).

Many of the characters mistakenly marked-up asbibbodyare punctuation (and

the note tag as explained above), whereas the errors in thetitle column mainly

represent the first few words of thetitle confused with the end of the preceding

author tag. As in Tables 6.3 and 6.4, there is confusion betweentitle andbooktitle

becausebooktitleis used in the place oftitle when there are two titles to a document

(i.e. a chapter title and a book title, or an article title anda collection title).

There is confusion between thepublisherandaddresstags because manypub-

lisher tags have the address of the publisher included within them,especially in

entries forproceedingsand inproceedingsin which theaddresstag is reserved for

the address of the conference rather than the publisher.

In Table 6.4, thenamefrom Table 6.3 has been split into five separate tags:

editor, author, name, first and last. There is considerable confusion among the

various tags, but surprisingly little difference between the editor and nametags,

because thenameis almost always immediately following abibbodystart tag while

aneditor tag is in the middle of thebibbodytag.

Table 6.6 shows the effect of increasing model order—as the model order in-

creases, the experimental result converges with the expected results, the number of

defects falling. Placing name tags is particularly challenging because of the diver-

sity in the way names are laid out in the training text.

The results given here appear much better than the figures given for other sys-

tems, such as [46]. However, such a direct comparison is at best an approximation

because of the different granularity at which the results are measured and the dif-

ferent number of tags. Informal comparison of these resultsto uncorrected results1

listed on the Citeseer website2 suggest that a significantly better determination of

1The Citeseer system allows for users to correct or complete bibliographic information. These
corrected entries are not considered here.

2 http://citeseer.nj.nec.com/cs

107

bibbody

editor

author

nam
e

first

last

pages

date

volum
e

num
ber

title

journal

booktitle

publisher

address

bibliography

character
count

79.51 + + + + + + + + + + 7.47 5.17 1.78 1.55 255,064
3.15 85.11 2.98 1.94 + 3.84 2.57 + + + 12,432
+ + 92.58 2.47 + + 3.86 + + 26,446
1.46 + 4.17 89.51 + 1.82 2.11 + + + 20,261
+ + + 94.68 2.87 1.90 + + + + 79,359
+ + + 1.33 94.61 + 3.32 + + + + 149,929
+ + + + 99.09 + + + + + 56,241
+ + + 97.17 + + 1.01 + 1.07 + + 64,928
2.56 + + 95.31 + + + + + + 12,805
+ + + + 97.73 + + 4,321
1.25 + + + 1.25 + + 93.73 + 2.61 + 0.16 602,944
3.19 + + + + 1.01 95.00 + + + 118,350
2.99 + + + + 10.17 + 85.37 + + 114,846
9.29 + + + + + + + 4.65 1.53 + 80.04 3.20 40,286
3.87 + + + + + + + + 2.41 + 2.16 2.33 87.94 48,225
+ + + + 99.84 77,247

Table
6.5:

Type
confusion

m
atrix

for
the

bibliography
corpu

s
for

m
any

tags.
C

har-
acter

counts
(#)

are
in

characters,
allother

values
are

in
pe

rcent,
a

‘+
’indicates

a
figure

low
er

than
0.99%

.
O

rder
6

m
odels

trained
on

6000
docum

e
nts

and
tested

on
300

docum
ents

w
ith

a
lookahead

of5.

108

Order Text
0 [5] <name><first>T. </first><last>Matsui,</last> ¦ ¦<first>T. </first><last>-

Matsuoka,</last> </name>and <name><first>S.</first> <last>Furui,</last>-
</name> <title>/Smoothed N-best-based speaker adaptation for speech re-
cognition,"¦ in ¦Proc. ICASSP¦</title> ’<pages>97,</pages> (<journal>-
Munich, Germany</journal>), pp. <pages>1015–1018,</pages> Apr. <date>-
1997</date>.

1 [5] <name> <first> T. </first> <last> Matsui,</last> <first> T. </first> <last>
Matsuoka,</last> </name> and<name> <first> S.</first> <last> Furui,</last>
</name> <title> /Smoothed N-best-based speaker adaptation for speech recogn-
ition,"¦ in ¦Proc. ICASSP</title> ’<pages> 97,</pages> (<journal> Mu-
nich, Germany</journal>), pp. <pages> 1015–1018,</pages> Apr. <date>-
1997</date>.

2 [5] <name> <first> T.</first> <last> Matsui,</last> </name> <name> <first>
T.</first> <last> Matsuoka,</last> </name> and <name> <first> S.</first>-
<last> Furui,</last> </name> <title> /Smoothed N-best-based speaker adap-
tation for speech recognition,"</title> in <booktitle> Proc. ICASSP ’97¦,
(¦Munich, Germany¦),</booktitle> pp. <pages> 1015–1018,</pages> <date>-
Apr. 1997</date>.

3 [5] <name> <first> T.</first>¦ ¦ <last> Matsui,</last> <first> T.</first>-
<last> Matsuoka,</last> </name> and <name> <first> S.</first> <last>-
Furui,</last> </name> <title> /Smoothed N-best-based speaker adaptation for
speech recognition,"</title> in <booktitle> Proc. ICASSP ’97,</booktitle>-
(<address> Munich, Germany</address>), pp. <pages> 1015–1018,</pages>-
<date> Apr. 1997</date>.

4 [5] <name> <first> T.</first> ¦ ¦<last> Matsui,</last> <first> T.</first>-
<last> Matsuoka,</last> </name> and <name> <first> S.</first> <last>-
Furui,</last> </name> <title> /Smoothed N-best-based speaker adaptation for
speech recognition,"</title> in <booktitle> Proc. ICASSP ’97,</booktitle>-
(<address> Munich, Germany</address>), pp. <pages> 1015–1018,</pages>-
<date> Apr. 1997</date>.

5 [5] <name> <first> T.</first> <last> Matsui,</last> </name> <name> <first>
T.</first> <last> Matsuoka,</last> </name> and <name> <first> S.</first>-
<last> Furui,</last> </name> <title> /Smoothed N-best-based speaker adaptation
for speech recognition,"</title> in <booktitle> Proc. ICASSP ’97,</booktitle>
(<address> Munich, Germany</address>), pp. <pages> 1015–1018,</pages>-
<date> Apr. 1997</date>.

Expected [5] <name> <first> T.</first> <last> Matsui,</last> </name> <name> <first>
T.</first> <last> Matsuoka,</last> </name> and <name> <first> S.</first>-
<last> Furui,</last> </name> <title> /Smoothed N-best-based speaker adaptation
for speech recognition,"</title> in <booktitle> Proc. ICASSP ’97,</booktitle>-
(<address> Munich, Germany</address>), pp. <pages> 1015–1018</pages> ,
<date> Apr. 1997</date>.

Table 6.6: Example of effect of model size on defects, using models trained on 4000
documents and a lookahead of 5. Tags initalics are incorrectly placed.¦ indicates
a missing tag.

109

Author Corpus Recall Precision F-measure Perfect Ref.
Peng People’s Daily & Treebank 74.0 75.1 74.2 Yes [116]
Ponte & Croft People’s Daily & Xinhua 93.6 96.0 94.8 Yes [117]
Ponte & Croft People’s Daily & Xinhua 89.8 84.4 87.0 No [117]
Palmer TREC-5 — — 82.7 Yes [113]
Teahan Xinhua 93.4 89.6 91.5 No [137]
CEM/Teahan ROCLING 97.8 98.1 97.9 No
CEM/Viterbi ROCLING 98.2 98.0 98.1 No

Table 6.7: Performance of Chinese text segmentors. Perfect indicates that the sys-
tem uses a perfect lexicon.

non-name structures by CEM and similar determination of names by CEM and Mc-

Callum’s system described in [47, 75].

6.2.4 Segmentation Corpus

Segmentation of Chinese text is an archetypical segmentation task and there are

many published recall and precision figures for this task. Table 6.7 shows a selection

of these, together with the best-case results obtained in the present study for CEM

on the segmentation corpus described in Section 5.3. Many systems use a perfect

lexicon: a list of all words which may be seen during testing and effectively solves

the zero frequency problem [146] but prevents the results from being transferred

to many real-world problems. The difference between the twoPonte and Croft

results[117] in Table 6.7 shows the drop in performance of a system used with and

without a perfect lexicon. Production systems typically cannot assume access to a

perfect lexicon. There is a relationship between the perfect lexicon and the order

−1 (or 0-gram) model in PPM, which includes all characters representable in the

character set,

The results from CEM using maximum lookahead search and CEM using Tea-

han search are similar, with the maximum lookahead search performing marginally

better. The Teahan search used 2000 leaves and averaged 5983nodes per character.

The maximum lookahead search used a lookahead of 6 and averaged 4081 nodes

per character. Both used an order 3 model trained on 900 documents and 10 testing

documents.

110

Taken at face value, the results for CEM are clearly better than those for the other

segmentation systems. However, most of the other systems appear to be assessing

recall and precision on the number of whole words rather thanon word boundaries,

which can double the perceived number of false positives andfalse negatives for

isolated errors. This is because a single segmentation error can cause the words on

either side of a boundary both to become false negatives. Another issue is that the

data used in the present work was sorted at the sentence level, and it is not clear that

this was the case for the other reported results. Data was used in the form it was

obtained in, and with no notes on the sorting or otherwise in the literature, no extra

processing was performed.

CEM differs from Teahan’s TMT system in internal character handling. TMT

uses ASCII internally, breaking Unicode characters into multiple characters. Be-

cause of the way in which Unicode characters are laid out in the available 32 bits

(in ‘code pages’) there are a number of artifacts, the primary one being that novel

Unicode characters are always mapped to novel characters within CEM, escaping

back to the order−1 model, but within TMT they may not escape back only as far

as the code page. As noted earlier, there is noa priori reason for preferring one

escape method over another (see Section 3.4) and these results are unlikely to be

generalisable beyond Chinese text segmentation.

Because of the large alphabet used in Chinese, the models for even modest or-

ders are large, making the problem significantly more difficult than it would be in a

smaller alphabet language such as English. No attempt has been made to optimise

the memory usage by CEM models, meaning that it cannot be used to build such

large models as Teahan’s TMT.

6.2.5 Reuters’ Corpus

Figures 6.3 and 6.4 show both recall and precision curves forthe entity extraction

task in the Reuters’ corpus, with training on 7100 documents and testing on 100

111

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

R
ec

al
l /

 p
re

ci
si

on
 (

%
)

Lookahead

Order 2
Order 3
Order 4
Order 5

Figure 6.3: Graph of recall and precision against lookaheadfor various orders of
models for documents in the Reuters’ corpus.

documents. The difference between Figures 6.3 and 6.4 is granularity, as explained

in Section 6.2.1. Figure 6.3 shows recall and precision calculated for each document

and then averaged over the testing set. Figure 6.4 shows the recall and precision

calculated over the entire testing set. In every case shown,recall and precision are

highly correlated and similar.

The difference between Figures 6.3 and 6.4, up to six percentand greatest at low

lookaheads, is caused by a number of shorter market-report articles with columns

of figures which are easier to tag than are longer articles of amore literary nature.

Fortunately, while the results are different, the trends are still clearly the same:

incremental gains as the lookahead is increased. Unfortunately the prohibitive size

of large models prevented the creation of higher order models.

Overall, the performance of CEM was poor, as state-of-the-art taggers routinely

have recall and precision measures in the 90% range [28]. Theresults are particu-

larly disappointing since the baseline data was generated using a finite-state based

112

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3

R
ec

al
l /

 p
re

ci
si

on
 (

%
)

Lookahead

Order 2
Order 3
Order 4
Order 5

Figure 6.4: Graph of recall and precision against lookaheadfor various orders of
models for the Reuters’ corpus taken as a whole.

system (the Brill tagger) which word-level taggers have beenable to emulate rela-

tively easily. There are two possible causes. Firstly, whereas the Brill tagger uses

a model and search context of a handful of words, CEM uses a model and search

context of a handful of characters. Secondly, CEM’s linear context and lack of

super-adjacency handicapped it against the Brill tagger which uses rule-based post-

processing which can examine not just immediate words, but more remote words.

Small-scale investigations suggested that increasing model order and lookahead had

little effect.

6.3 Baum–Welch Re-estimation

The Baum–Welch algorithm (see Section 3.6) allows untagged data to be used to

boost models’ performance. This section looks at the application of Baum–Welch

re-estimation in the bibliography corpus. This is pertinent, because, as has been

113

 0.026

 0.028

 0.03

 0.032

 0.034

 0.036

 0.038

 0.04

 0.042

 0.044

 0 500 1000 1500 2000

E
di

t d
is

ta
nc

e
(e

di
ts

/c
ha

ra
ct

er
)

Re-estimation (files)

cumulative average
15 document average

Figure 6.5: Graph of edit distance with increasing re-estimation. Trained with 2110
abbrvdocuments, re-estimated with up to 2111acmdocuments, using thefirst and
last tags only, order 4 and lookahead of 3.

pointed out in Sections 5.2 and 6.2.3, the bibliography corpus is significantly less

diverse than an uncurated bibliography collection in a digital library and it would

be beneficial to be able to generalise the models built on the bibliography corpus to

these more diverse collections.

Figure 6.5 shows an attempt to generalise from theabbrvbibliography format to

theacmbibliography format. Theabbrv format is an abbreviated form with author

forenames initialised, while theacmformat is more standard style which includes

the full author forenames, if known. Only thefirst andlast tags are considered.

As might be expected, a model built on theabbrv format and tested on theacm

format makes many errors. The line across Figure 6.5 at 0.0342 edits per character

is the average number of edits over the entire 2111acmdocuments without any re-

estimation. The most common error is the tagging of afirst tag as alast tag, which

is seen by the edit distance metric as four separate errors: removing one opening

114

and one closing tag, and adding one opening and one closing tag. A novel error is

the misidentification ofeds(the token indicating the start of an editor list in theacm

format) as last name.

The 15-document average is a running average of the previous15 points. It

shows a great deal of noise and no obvious pattern of increaseor decrease. The

cumulative average reaches 0.0323 edits per character after all 1269 documents,

a significant drop from the 0.0342 edits per character without re-estimation. Re-

estimation clearly reduces the edit distance in this case, lowering the average edit

distance for theacmdocuments. EM theory [60] predicts this is not a true conver-

gence (as an increasing proportion of the data is estimated rather than true data, the

fidelity of the model slowly falls) but there is insufficient re-estimation data in this

example for this to become apparent.

The documents are processed here in random order, but these figures are partic-

ularly sensitive to the order in which the documents are processed. The first handful

of documents used in the re-estimation appear to be important. It may be worth ex-

ploring whether documents should be used ordered in some manner, perhaps those

with the lowest mutual-entropy first.

6.4 Effectiveness of Optimisations and Heuristics

The bibliography corpus is a useful dataset for evaluating the effectiveness of op-

timisations and heuristics because the wide variety of tagsin the corpus allows a

selection of tags to be examined. The segmentation corpus isalso used because it

represents a widely-studied problem and a sharp contrast tothe bibliography corpus.

6.4.1 Best First

Best first (Section 4.3.2) is an optimisation that exploits the nature of the maxi-

mum lookahead search, linking the discrimination of the models to the search space

115

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a ab

b

c

c

d

d

with best first
without

Figure 6.6: Best first optimisation in hierarchical tag insertion. The lines are: a
author, editor, name, first andlast; b name, first andlast; c nameandlast; d name.
All runs used an order 3 model with 200 training documents anda single testing
document.

required to find the lowest entropy tagging of a sequence withrespect to that model.

Figure 6.6 shows the effect of the best first optimisation on the hierarchical

(nested) tagsauthor, editor, name, first and last in the bibliography corpus. In all

cases where the lookahead is> 1, the search space was significantly reduced. The

effect was greatest with the largest number of tags, becauseas the number of tags

increases, the chance that an observed sequence will have low entropy relative to a

particular model increases.

Figure 6.7 shows the effect of the best first optimisation on the non-hierarchical

tagsname, pages, date, volumeandnumberin the bibliography corpus.

Figure 6.8 shows the effect of the best first optimisation on theword tag in the

segmentation corpus. Without best first, the order of the model has no impact on

the search space. Best first reduces the search space (a versusb), with the effect

increasing as the order increases the discrimination of themodel (b, c, d, and e).

116

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a b c d e

a b c d e

with best first
without

Figure 6.7: Best first optimisation in non-hierarchical tag insertion. The lines are:
aname, pages, date, volumeandnumber; b name, pages, dateandvolume; c name,
pagesanddate; d nameandpages; e name. All runs used an order 3 model with
200 training documents and a single testing document.

117

1

10

100

1000

10000

1 2 3 4 5 6 7

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a

b
c
d
e

with best first
without

Figure 6.8: The effect of best first onword for varying model orders. a labels nearly
co-incident quadruple lines representing the search spaces for orders 1, 2, 3 and 4
without best first; b is order 1 with best first; c is order 2 withbest first; d is order 3
with best first; e is order 4 with best first. All runs used 900 training documents and
a single testing document.

118

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600 700 800 900 1000
 0

 2

 4

 6

 8

 10

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

E
nt

ro
py

 (
bi

ts
/c

ha
ra

ct
er

)

Number of training files

search space with best first
search space without

entropy

Figure 6.9: Effect of best first when the number of training documents is varied. All
runs use order 3 models with a lookahead of 6 and a single testing document from
the segmentation corpus. Entropy is the entropy of the entire entire document with
respect to the model using for text augmentation, normalised for document length.

The documents in the segmentation corpus are significantly more homogeneous

than those in the bibliography corpus, resulting in less noise in their respective

graphs.

Figure 6.9 shows how little the effectiveness of the best first increases with the

amount of training in the segmentation corpus. Without bestfirst, the search space

is independent of the number of documents trained on, but with best first the search

space drops. Most of the drop occurred over the first 200 training documents, with

relatively little drop over the remaining 799 documents (one document was always

withheld for testing).

Figures 6.7, 6.8 and 6.9 each show the results for a single document. This is be-

cause while the trends are the same (in all cases best first improves performance and

that improvement increases with model order) the size of theimprovement varies

considerably depending on the problem, and indeed the document, being tackled. In

119

all cases the results are representative of larger-scale experimentation, but averaged

results are naturally smoother.

These findings are consistent with the expectations from Section 4.3.2. Well-

trained, high-order models allow the probability distribution function to distinguish

accurately between likely and unlikely branches, and models with many tags have

many more unlikely branches to prune. Given the good performance, the relatively

simple implementation and fact that no extra state is required in the model, the best

first optimisation is valuable in these tag insertion problems.

6.4.2 Automatic Tokenisation

Automatic tokenisation (see Section 4.3.3) is explored using occurrence tables for

illustrative purposes. Table 6.8 shows an occurrence tablefor the Reuters’ corpus

after the start and end tags have been converted to special-use characters. In Ta-

ble 6.8(a) each row contains counts of characters appearingin the corpus belonging

to each Unicode character class. Each column contains counts of the character class

of the characters immediately following them. In Table 6.8(b) each row contains

counts of characters in a Unicode character class that occurimmediately prior to a

tag (either a start tag or an end tag). Each column contains counts of the class of

the character immediately following a tag. An empty cell in Table 6.8(b) indicates

that a pair of classes between which a tag has not been seen andwhich it is rea-

sonable to assume need not be considered for inserting tags.Cells that are empty

in Table 6.8(b) but occupied in Table 6.8(a) represent a genuine saving, particularly

if the number in the cell in Table 6.8(a) is high, as these are pairs of characters

between which the search is not considered inserting tags.

The distinctive cross-shape in Table 6.8(b) is due to the fact that opening tags

usually follow a space character and are followed by almost anything, while clos-

ing tags can be preceded by almost anything but are followed by a space or ‘\n’

character. This effect is reinforced by the uniform formatting of the corpus. The

120

First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 27
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 85k 223k 1k - - 30k 1k 57 2k 2 13k 73 1k 1 360k
LOWERCASE LETTER 2 - 2k 5m 254 - - 1m 13k 35 4k - 134k 24 6 - 6m
DECIMAL DIGIT NUMBER 9 - 1k 1k 145k - - 66k 5k 36 2k - 53k 267 52 - 275k
SPACE SEPARATOR 12 - - - - - 62k 1m - - - - - - - - 1m
CONTROL 15 - - - - - 54 69k - - - - - - - - 69k
PRIVATE USE 18 7k 248k 1m 65k 1m 7k 7k 8k 8k 17 - 14k 2k 6k 4 2m
DASH PUNCTUATION 20 - 3k 13k 5k - - 6k 4k 5 9 - 27 - 322 - 33k
START PUNCTUATION 21 - 4k 1k 1k - - 206 131 - - - 92 99 713 - 8k
END PUNCTUATION 22 - 27 6 20 - - 7k 8 4 1 - 1k - 2 - 8k
CONNECTOR PUNCTUATION 23 - - - - - - 3 - - - 119 - - - - 122
OTHER PUNCTUATION 24 - 15k 18k 44k - - 139k 141 78 303 1 20k 8 18 -238k
MATH SYMBOL 25 - 50 19 2k - - 475 8 4 1 - 39 16 44 - 2k
CURRENCY SYMBOL 26 - 13 36 9k - - 344 - 10 6 - 32 18 - - 9k
MODIFIER SYMBOL 27 - - 5 - - - - - - - - - - - - 5
Sum 7k 360k 6m 275k 1m 69k 2m 33k 8k 8k 122 238k 2k 9k 511m

(a)
First Character Second Character Sum

Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 27
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - - - - 30k - - - - - - - - - - 30k
LOWERCASE LETTER 2 - - - - 1m - - - - - - - - - - 1m
DECIMAL DIGIT NUMBER 9 - - - - 66k - - - - - - - - - - 66k
SPACE SEPARATOR 12 - 201k 1m 62k - - - 5k 8k 17 - 6k 2k 6k 4 1m
CONTROL 15 7k 46k 302 3k 3 - - 3k 406 - - 7k 89 63 - 69k
PRIVATE USE 18 - - - - - - - - - - - - - - - -
DASH PUNCTUATION 20 - - - - 6k - - - - - - - - - - 6k
START PUNCTUATION 21 - - - - 206 - - - - - - - - - - 206
END PUNCTUATION 22 - - - - 7k - - - - - - - - - - 7k
CONNECTOR PUNCTUATION 23 - - - - 3 - - - - - - - - - - 3
OTHER PUNCTUATION 24 - - - - 139k - - - - - - - - - - 139k
MATH SYMBOL 25 - - - - 475 - - - - - - - - - - 475
CURRENCY SYMBOL 26 - - - - 344 - - - - - - - - - - 344
MODIFIER SYMBOL 27 - - - - - - - - - - - - - - - -
Sum 7k 248k 1m 65k 1m - - 8k 8k 17 - 14k 2k 6k 4 2m

(b)

Table 6.8: Occurrence tables for the Reuters’ corpus. (a) Table of all pairs of char-
acters. (b) Table of pairs of characters either side of a tag.‘k’ and ‘m’ indicate units
of a thousand and a million respectively.

121

 1

 10

 100

 1000

 1 2 3 4 5 6

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a

b

c
d

a

b

c

d

with tokenisation
without

Figure 6.10: Effect of tokenisation on a group of hierarchical tags. The lines are: a
name, last, first, editor andauthor; b name, last andfirst; c nameandlast; d name.
Each run was performed with 2000 training documents, one testing document and
order 3 models.

CONTROL3 character class includes ‘\n’, ‘\r’ and EOF.

Figures 6.10 and 6.11 show the effect of tokenisation of hierarchical and non-

hierarchical tags in the bibliography corpus. The reason for the differences between

hierarchical and non-hierarchical tags is shown in Table 6.9. Table 6.9(a) shows all

pairs of characters; Table 6.9(b) shows those either side ofthenametag, the sparse-

ness of the latter indicating that a procedure such as tokenisation has the potential

to make an improvement. The hierarchical tags shown in Table6.9(c) are similar to

the non-hierarchical tags shown in Table 6.9(b), not because they are hierarchical

but because they are sequences of case-sensitive characters delimited with spaces,

commas and full-stops. The non-hierarchical tags shown in Table 6.9(d) by com-

parison have a significantly more diverse context. Thedate tag is a sequence of

digits and case-sensitive characters andvolumeandnumbertags are strings of dig-

3The standard method of writing the names of Unicode characters and character classes is in
capitals.

122

 1

 10

 100

 1000

 1 2 3 4 5 6

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a b d d e a b c d e

without
with best first

Figure 6.11: Effect of tokenisation on a group of non-hierarchical tags. The lines
are: aname, pages, date, volumeandnumber; b name, pages, dateandvolume; c
name, pagesanddate; d nameandpages; e name. Each run was performed with
2000 training documents, one testing document and order 3 models.

123

its commonly delimited by brackets and semicolons. The resultant occurrence table

is much less sparse than the previous table.

Tokenisation potentially interacts with other errors. Forexample, in Table 6.10

some errors on the bibliography corpus result from problemsfinding the boundary

between the author list and the title tag. In this example,Athena, the first word of

the article title, has been split in two. The stringAthenhas a slightly lower entropy

in the last tag than in the title tag, buta: has never been seen in the last tag. Thea:

has not been seen when the decision is taken whether or not to start the tag name

tag, so the word is split in two.

Whether the first or the second error is preferable will probably depend on the

application. As lookahead gets longer, such errors are greatly reduced, but the

proper nouns commonly found at the start of titles are often long words (partic-

ularly corporate, place and personal names transliteratedinto English) and remain

problematic even at long lookaheads.

Of 100 differences in correctness examined in the bibliography corpus, using the

experimental scenario from Figure 6.10 but using 500 testing documents, 98 were

errors of the type shown by Table 6.10. Both the tokenisation and non-tokenisation

results were incorrect but the non-tokenisation results recovered more quickly. The

remaining were situations in which every tag occurred between rare pairs of char-

acter classes.

The appearance of tags between novel or rare pairs of character classes could be

guarded against by also inserting tags between character classes seen fewer times

than a separate threshold (of the order of 25). In all cases examined this would have

solved the problem. If the training corpora is representative, this should have little

effect on the search space.

Table 6.11(a) and (b) show the occurrence tables for the Computists’ corpus and

all the tags within it. Table 6.11(b) is significantly less sparse than Table 6.8(a).

However, the frequently-occurring alpha-numeric pairs inthe upper left corner are

124

First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 27
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 100k 375k 5k 26k 2k 127 2k 763 1k - 132k 362 2 19649k
LOWERCASE LETTER 2 - 2k 3m 4k 479k 60k 10k 16k 1k 5k 1 233k 1k - 57 4m
DECIMAL DIGIT NUMBER 9 243 288 3k 384k 13k 4k 2 1k 56k 81k - 86k 88 - 1 632k
SPACE SEPARATOR 12 - 382k 367k 98k 37k - 84k 225 20k 756 9 6k 825 1 1031m
CONTROL 15 1k 34k 43k 17k 2 13k 1k 9 50k 3 - 359 47 1 14162k
PRIVATE USE 18 - 87k 469 6 83k 4k 3 - 1 - 1 70 17 - 1 176k
DASH PUNCTUATION 20 - 7k 11k 2k 277 556 - - 2 14 - 49 - 1 - 22k
START PUNCTUATION 21 - 26k 2k 96k 128 2k 62 5 9 4 - 1k 15 - 1 130k
END PUNCTUATION 22 - 9 75 17 49k 143 3 112 26 142 - 40k 24 1 - 90k
CONNECTOR PUNCTUATION 23 - 6 5 - - - - - - - - - - - - 11
OTHER PUNCTUATION 24 - 6k 8k 23k 309k 76k 75k 1k 202 1k - 27k 32 - 1 529k
MATH SYMBOL 25 - 622 589 282 747 152 - 36 6 24 - 81 579 - 2 3k
CURRENCY SYMBOL 26 - - 1 4 - - - - - - - 1 - - - 6
MODIFIER SYMBOL 27 - 66 104 13 5 - - 2 - 1 - 8 - - - 199
Sum 2k 649k 4m 632k 1m 164k 172k 22k 130k 90k 11 529k 3k 6 1997m

(a)
First Character Second Character Sum

Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 27
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - - - - 124 - - - - - - 3 - - - 127
LOWERCASE LETTER 2 - - 2 - 10k 44 - - - - - 5 - - - 10k
DECIMAL DIGIT NUMBER 9 - - - - 2 - - - - - - - - - - 2
SPACE SEPARATOR 12 - 84k 454 2 - - - - 1 - 1 59 17 - 1 84k
CONTROL 15 - 1k 7 2 - - - - - - - 2 - - - 1k
PRIVATE USE 18 - - - - - - - - - - - - - - - -
DASH PUNCTUATION 20 - - - - - - - - - - - - - - - -
START PUNCTUATION 21 - 62 - - - - - - - - - - - - - 62
END PUNCTUATION 22 - - - - 3 - - - - - - - - - - 3
CONNECTOR PUNCTUATION 23 - - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24 - 1 - - 73k 2k - - - - - - - - - 75k
MATH SYMBOL 25 - - - - - - - - - - - - - - - -
CURRENCY SYMBOL 26 - - - - - - - - - - - - - - - -
MODIFIER SYMBOL 27 - - - - - - - - - - - - - - - -
Sum - 85k 463 4 83k 2k - - 1 - 1 69 17 - 1 172k

(b)
First Character Second Character Sum

Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 27
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASELETTER 1 - - - - 192 2 - - - - - 4 - - - 198
LOWERCASELETTER 2 - 2 2 - 16k 208 - - - - - 168 - - - 17k
DECIMAL DIGIT NUMBER 9 - - - - 3 - - - - - - - - - - 3
SPACESEPARATOR 12 - 168k 659 2 - - - - 5 - 4 93 37 - - 169k
CONTROL 15 - 2k 6 2 - - - - 1 - - 1 - - - 2k
PRIVATE USE 18 - - - - - - - - - - - - - - - -
DASH PUNCTUATION 20 - - - - - - - - - - - - - - - -
START PUNCTUATION 21 - 56 - - - - - - - - - - - - - 56
END PUNCTUATION 22 - - - - 32 1 - - - - - - - - - 33
CONNECTORPUNCTUATION 23 - - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24 - 1 - - 152k 3k - - - 56 - - - - - 156k
MATH SYMBOL 25 - 1 - - - - - - - - - - - - - 1
CURRENCYSYMBOL 26 - - - - - - - - - - - - - - - -
MODIFIER SYMBOL 27 - - - - - - - - - - - - - - - -
Sum - 171k 667 4 169k 3k - - 6 56 4 266 37 - - 345k

(c)
First Character Second Character Sum

Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 27
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASELETTER 1 - - - - 143 1 - - 4 5 - 35 - - - 188
LOWERCASELETTER 2 - 2 3 - 10k 55 - - - 619 - 290 - - - 11k
DECIMAL DIGIT NUMBER 9 - - - - 8k 784 - - 11k 33k - 44k - - - 99k
SPACESEPARATOR 12 - 97k 518 57k - - - - 3 - - 708 20 - 2 156k
CONTROL 15 - 2k 23 6k - - - - - - - 55 - - - 9k
PRIVATE USE 18 - - - - - - - - - - - - - - - -
DASH PUNCTUATION 20 - - - - - - - - - 1 - 2 - - - 3
START PUNCTUATION 21 - 4k 6 29k - - - 1 1 - - 247 - - - 33k
END PUNCTUATION 22 - - - - 42 5 - - - 72 - 37 - - - 156
CONNECTORPUNCTUATION 23 - - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24 - 58 11 20k 101k 5k - - 8 31 - 38 - - - 127k
MATH SYMBOL 25 - - - - - - - - - - - - - - - -
CURRENCYSYMBOL 26 - - - - - - - - - - - - - - - -
MODIFIER SYMBOL 27 - - - - - - - - - - - - - - - -

(d)

Table 6.9: Occurrence tables for the bibliography corpus. (a) Table of all pairs of
characters. (b) Table of pairs of characters either side of anametag. (c) Table of
pairs of characters either side ofname, last, first, editor andauthor tags. (d) Table
of pairs of characters either side ofname, pages, date, volumeandnumbertags.

125

Case Text
0 [Son] D. Song. Athena: A new efficient automatic checker for security

protocol analysis.
1 [Son] <name> <first> D.</first> <last> Song.</last> </name>-

<name> <last> Athena:</last> </name> <title> A new efficient
automatic checker for security protocol analysis.</title>

2 [Son] <name> <first> D.</first> <last> Song.</last> </name>-
<name> <last> Athen</last> </name> <title> a: A new efficient
automatic checker for security protocol analysis.</title>

Table 6.10: Interaction between errors. The unmarked-up text (0), the text with a
markup error (1) and with the first error confounded by a second error which splits
a word in two (2).

First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 5k 10k 55 1k 39 1k 174 - 110 4 971 27 - 20k
LOWERCASE LETTER 2 - 451 198k 974 33k 1k 2k 896 - 116 40 10k 9 - 249k
DECIMAL DIGIT NUMBER 9 - 1k 52 4k 339 50 1k 234 - 88 1 746 359 - 8k
SPACE SEPARATOR 12 - 8k 29k 1k 8k 2k 2k 163 1k - 1 418 609 - 54k
CONTROL 15 - 897 2k 42 1k 2k 679 73 441 - 71 178 317 - 8k
PRIVATE USE 18 36 2k 1k 904 1k 179 36 31 51 356 - 2k 1k 27510k
DASH PUNCTUATION 20 - 215 864 201 225 23 44 233 - 5 - 3 - - 1k
START PUNCTUATION 21 - 616 171 67 1 - 611 - - - - 31 129 - 1k
END PUNCTUATION 22 - - - - 352 828 14 - - 10 - 435 - - 1k
CONNECTOR PUNCTUATION 23 - 10 32 2 - 72 - - - - 4k 1 - - 4k
OTHER PUNCTUATION 24 - 607 4k 350 7k 1k 303 8 - 948 - 1k 35 - 18k
MATH SYMBOL 25 - 3 41 18 427 30 1k 1 - 6 - 966 190 - 2k
CURRENCY SYMBOL 26 - - - 275 - - - - - - - - - - 275
Sum 36 20k 249k 8k 54k 8k 10k 1k 1k 1k 4k 18k 2k 275383k

(a)
First Character Second Character Sum

Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - - - - 308 48 - 16 - 179 - 603 6 - 1k
LOWERCASE LETTER 2 - - 35 - 750 48 - 7 - 164 - 880 908 - 2k
DECIMAL DIGIT NUMBER 9 - - - - 135 42 - 8 - 13 - 924 18 - 1k
SPACE SEPARATOR 12 - 1k 397 804 - - - - 38 - - 4 8 230 2k
CONTROL 15 36 478 61 62 - - - - 13 - - 5 3 21 679
PRIVATE USE 18 - - - - - - - - - - - - - - -
DASH PUNCTUATION 20 - 3 4 19 - - - - - - - - - 18 44
START PUNCTUATION 21 - 543 45 17 - - - - - - - - - 6 611
END PUNCTUATION 22 - - - - 9 - - - - - - 5 - - 14
CONNECTOR PUNCTUATION 23 - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24 - 57 26 - 75 5 - - - - - 21 119 - 303
MATH SYMBOL 25 - 24 1k 2 - - - - - - - 2 - - 1k
CURRENCY SYMBOL 26 - - - - - - - - - - - - - - -
Sum 36 2k 1k 904 1k 143 - 31 51 356 - 2k 1k 27510k

(b)

Table 6.11: Occurrence tables for the Computists’ corpus. (a) Table of all pairs of
characters. (b) Table of pairs of characters either side of atag.

126

First Character Second Character Sum
Symbol # 0 1 2 5 9 11 18 20 21 22 23 24 25 26
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 3k 2k 470 61 - 1k 1 1 - 18 1 - 1 8k
LOWERCASE LETTER 2 - 146 17k 696 4 - 4k 1 1 1 - - - 7 22k
OTHER LETTER 5 - 45 259 1m 524 - 1m - 56 389 225 - - 5723m
DECIMAL DIGIT NUMBER 9 - 18 346 1k 4k - 1k 2 - 383 262 - - 62 7k
OTHER NUMBER 11 - - - - - - 3 - - - - - - - 3
PRIVATE USE 18 999 3k 1k 1m 2k 1 2m - 18k 20k 314k 28 9 1k 4m
DASH PUNCTUATION 20 - - 2 - 2 - - - - - - - - - 4
START PUNCTUATION 21 - - - 393 383 - 26k - 1 23 20 - - - 27k
END PUNCTUATION 22 - 2 - 49 1 - 21k - 3 - 4 - - 1 21k
OTHER PUNCTUATION 24 - 601 487 276k 54 2 28k - 8k 19 1 5 - 348315k
MATH SYMBOL 25 - 8 13 - - - 13 - - - - - - - 34
CURRENCY SYMBOL 26 - - - - - - 9 - - - - - - - 9
OTHER SYMBOL 28 - 2 72 604 107 - 1k - 13 - - - - 9 2k
Sum 999 8k 22k 3m 7k 3 4m 4 27k 21k 315k 34 9 2k 7m

(a)
First Character Second Character Sum

Symbol # 0 1 2 5 9 11 18 20 21 22 23 24 25 26
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 126 15 875 34 - - - 46 259 482 4 - 45 1k
LOWERCASE LETTER 2 - 721 616 1k 30 - - - 33 1k 509 - - 98 4k
OTHER LETTER 5 - 1k 347 1m 2k 1 - - 17k 18k 304k - 8 1k 1m
DECIMAL DIGIT NUMBER 9 - 29 58 878 22 - - - 12 110 246 24 - 26 1k
OTHER NUMBER 11 - - - 3 - - - - - - - - - - 3
PRIVATE USE 18 - - - - - - - - - - - - - - -
DASH PUNCTUATION 20 - - - - - - - - - - - - - - -
START PUNCTUATION 21 - 1k 343 24k 130 - - - 92 6 55 - - 21 26k
END PUNCTUATION 22 - 15 2 12k 44 - - - 405 150 8k - - 22 21k
OTHER PUNCTUATION 24 998 255 13 26k 67 - - - 821 30 221 - 1 21 28k
MATH SYMBOL 25 - - - - - - - - - 5 8 - - - 13
CURRENCY SYMBOL 26 - - - - 9 - - - - - - - - - 9
OTHER SYMBOL 28 1 70 83 1k 25 - - - 51 16 318 - - 87 1k
Sum 999 3k 1k 1m 2k 1 - - 18k 20k 314k 28 9 1k 2m

(b)

Table 6.12: Occurrence tables for the segmentation corpus.(a) Table of all pairs of
characters. (b) Table of pairs of characters either side of atag.

mainly zero, so the heuristic is of some benefit.

Table 6.12 is the occurrence table for the segmentation corpus and indicates

that the OTHER LETTER is by far the most common character class, which is to

be expected since most Chinese characters fall into this class. The nature of the

corpus means that all of the frequently-occurring pairs in Table 6.12(a) also appear

in Table 6.12(b) (as non-zeros), indicating that automatictokenisation is going to

have little effect on the search space in this corpus.

Figure 6.12 shows the interaction between best first and tokenisation for the

nametag. The addition of tokenisation to best first always reduces the search space,

but the effect is most noticeable at low lookaheads when bestfirst is less effective.

This is because automatic tokenisation prunes branches of the search tree without

having to expand the first node in the branch to calculate the entropy.

Consistent with the expectations from Section 4.3.3, these results show that au-

tomatic tokenisation improves performance on some datasets. However, it does not

127

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

with tokenisation, with best first
without tokenisation, with best first
with tokenisation, without best first

without tokenisation, without best first

Figure 6.12: Effect of best first and automatic tokenisationon nametag. Each run
was performed with 2000 training documents, one testing document and order 3
models.

perform consistently well across all datasets, and a numberof the corpora have noise

in the occurrence tables. Such noise is likely to be significantly greater in digital

library collections of heterogeneous documents of diverseorigin than in the curated

corpora used here. Anecdotal evidence of HTML and XHTML documents from the

Internet suggest that tags do occur in a significantly wider variety of places than

in the corpora examined here. Automatic tokenisation requires a small and tightly-

bounded amount of extra state per model in the form of an occurrence table.

Unlike best first, automatic tokenisation is not linked to the discrimination of

the models. This means it can perform well even for a poorly trained model. The

reason that automatic tokenisation does not perform as wellas the occurrence table

method is that the PPM model already discriminates between these situations and

that best first ensures that the branches that get pruned by automatic tokenisation

are not explored anyway.

128

Name Symbol Example
Null folder N Jones,Jill K. and
Capitals folder c JONES,JILL K AND
Case folder C Aaaaa,AaaaA. aaa
Unicode folder u AaaaaPSAaaaSAPSaaa
Vowel folder V nvnvn,nvnnn. vnn
Vowel & case folderVC Nvnvn,NvnnN. vnn

Table 6.13: Folders used in alphabet reduction.

6.4.3 Alphabet Reduction

Table 6.13 shows the six ‘folders’ used in the alphabet reduction experiment. They

‘fold’ the alphabet used in the model, as their effects on a sample string show.

The Null folder does not change the alphabet at all. The Capitals folder removes

the distinction between upper and lower case. The Case folderfolds all uppercase

letters to a single letter and all lowercase letters to a single letter. The Unicode

folder folds each of the Unicode character classes (see Section 4.3.3) to a single

character per class. The Vowel folder folds all vowels to a single letter and all non-

vowels to a single letter. The Vowel and Case folder folds uppercase vowels to a

single letter, lowercase vowels to a single letter, uppercase non-vowels to a single

letter and lowercase non-vowels to a single letter.

Figure 6.13 shows the results of these six folders onnamein the bibliography

corpus. Figure 6.13(a) shows the F-measure against the order of the model for each

of the folders. The experiment was performed in 750 megabytes of heap memory,

and the data is shown only for those models and lookaheads which could be built

and used in that memory.

The N folder performed best, but N models could only be built to order seven,

because of the large alphabet. The C models also performed well and could be built

to order 23. However, increasing order did not increase the performance because

useful information was thrown away by the folder. The c, V andVC models all

performed similarly poorly and could be built to orders between seven and ten. The

129

0

20

40

60

80

100

0 5 10 15 20 25

F
-m

ea
su

re
 (

%
)

Model order

N
V

VC
C
u
c

(a) F-measure

0

2

4

6

8

10

12

0 5 10 15 20 25

R
at

io

Model order

N
V

VC
C
u
c

(b) Ratio of baseline entropy to experimental entropy

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 5 10 15 20 25

R
at

io

Model order

N
V

VC
C
u
c

(c) Ratio of baseline entropy to experimental entropy (detail)

Figure 6.13: The effects of alphabet reduction on finding thenametag of biblio-
graphy corpus. Lookahead of 8, trained on 2000 documents andtested on 20 docu-
ments.

130

u models performed badly with an F-measure less than twenty despite being able

to be built to order 18. This is particularly surprising given that the u folder has

a close relationship with the C folder, which performed well. The reason for this

difference appears to be that ‘.’ and ‘,’ are important in delimiting names and other

features in bibliographies and the u models were unable to distinguish between these

characters.

Figure 6.13(b) shows the ratio of baseline to experimental entropy for the same

experiments while Figure 6.13(c) shows detail of the same relationship where the

ratio approaches one. As discussed previously (see page 83), the entropy can be

used to determine whether the model or the search is responsible for a mis-tagging.

All data points with a ratio less than one indicate that the search was deficient (i.e.

the lookahead could be increased for greater correctness).All data points where

the ratio is greater than one indicate that the model is deficient in some regard;

in the ideal situation the ratio is 1:1. There are three likely ways in which the

model can be deficient: it may have seen insufficient trainingdata, it may be of

insufficient order, or it may be failing to capture importantfeatures of the data. 2000

training bibliographies (approximately 45,000 bibliographic entries) would appear

to be sufficient training data: models with smaller alphabets generally require less

training data. Increasing the order of the u, V, c and VC models clearly moves the

ratio further from 1:1. Thus the problem is likely to be that these models are not

capturing important features of the data.

The upward trend in the entropy ratio for the C models of orderhigher than 6

(Figure 6.13(c)) is consistent with the behaviour of PPM models when the order is

increased beyond optimal. This species of over-fitting is caused by the building of a

higher order model than there is training data available to train effectively, leading

to many common states having their probabilities generatedvia the escape method.

The increase in noise for the ratio of entropies (particularly for the u model) as

order increases is due to sampling effects.

131

0

20

40

60

80

100

0 5 10 15 20 25

F
-m

ea
su

re
 (

%
)

Model order

N
V

VC
C
u
c

(a) F-measure

0

2

4

6

8

10

12

0 5 10 15 20 25

R
at

io

Model order

N
V

VC
C
u
c

(b) Ratio of baseline entropy and experimental entropy

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 5 10 15 20 25

R
at

io

Model order

N
V

VC
C
u
c

(c) Ratio of baseline entropy and experimental entropy (detail)

Figure 6.14: The effects of alphabet reduction on finding multiple tags in the bib-
liography corpus. Lookahead of 4, trained on 2000 documentsand tested on 20
documents.

132

Figure 6.14 shows the same details as Figure 6.13 for tagsname, pages, date,

volumeandnumberat a lower lookahead (necessary because of the greatly increased

search space caused by the additional tags). Performance inFigure 6.14 was con-

sistently poorer than that in Figure 6.13, but the relative performance of the folders

was similar. The one deviation from this is the c folder, whose F-measure is similar

to the VC and V folders in Figure 6.13, but clearly superior inFigure 6.14. This is

because thepages, date, volumeandnumbertags in Figure 6.14 are number-centric

rather than text-centric, so the loss of capitalisation does not effect them as badly.

The large reductions in correctness shown in Figures 6.13 and 6.14 strongly

suggest that, with the possible exception of C, alphabet reduction is unlikely to be

useful in production systems for such corpora.

6.4.4 Maximum Lookahead Heuristic

For the majority of tag-insertion problems, maximum lookahead is problematic be-

cause the lookahead at which the accuracy becomes asymptotic is computationally

infeasible. For problems with a small number of tags, maximum lookahead is ob-

tainable. Table 6.14 shows the effect of various lookahead values on a single bibli-

ographic entry. The result converges on the expected text within a lookahead of 5,

much shorter than the maximum tag length of∼ 60 which Viterbi search suggests

would be required.

The defects displayed in Table 6.14 are mainly of types already discussed in

Section 6.2.3: confusion caused by the wide variety of name formats and confusion

between article titles and book titles. Similar defects were also seen in Table 6.6, in

which the same reference was used to examine the performancewith varying model

orders. However, as shown in Figure 6.15, there is often a great deal of noise, and it

may not be clear whether the asymptote has been reached or whether the lookahead

must be increased.

The primary sources of errors when inserting thepagestag were four-digit page

133

lookahead text
1 [5] <name> <first> T.</first> <last> Matsui,</last> </name>-

¦ ¦<title> T.¦ ¦ </title> <journal>¦ ¦ Matsuoka,</journal> and
<name> <first> S.</first> <last> Furui,</last> </name> <title>

/N-best-based speaker adaptation for speech recognition,"</title>-
in <booktitle> Proc. ICASSP ’97,</booktitle> (¦<name>-
<first> Munich,</first> </name> <title> Germany¦),</title> pp.
<pages> 1015–1018,</pages> <date> Apr. 1997</date>.

2 [5] <name> <first> T.</first><last> Matsui,</last> ¦ ¦ <first>-
T.</first> <last> Matsuoka,</last> </name> and <name>-
<first> S.</first> <last> Furui,</last> </name> <title> /N-
best-based speaker adaptation for speech recognition,"</title> in
<booktitle> Proc. ICASSP ’97,</booktitle> (<address> Munich,
Germany</address>), pp. <pages> 1015–1018,</pages> <date>-
Apr. 1997</date>.

3 [5] <name> <first> T.</first><last> Matsui,</last>¦ ¦ <first>-
T.</first> <last> Matsuoka,</last> </name> and <name>-
<first> S.</first> <last> Furui,</last> </name> <title> /N-
best-based speaker adaptation for speech recognition,"</title> in
<booktitle> Proc. ICASSP ’97,</booktitle> (<address> Munich,
Germany</address>), pp. <pages> 1015–1018,</pages> <date>-
Apr. 1997</date>.

4 [5] <name> <first> T.</first> <last> Matsui,</last>¦ ¦<first>-
T.</first> <last> Matsuoka,</last> </name> and <name>-
<first> S.</first> <last> Furui,</last> </name> <title> /N-
best-based speaker adaptation for speech recognition,"</title> in
<booktitle> Proc. ICASSP ’97,</booktitle> (<address> Munich,
Germany</address>), pp. <pages> 1015–1018,</pages> <date>-
Apr. 1997</date>.

5 [5] <name> <first> T.</first> <last> Matsui,</last> </name>-
<name> <first> T.</first> <last> Matsuoka,</last> </name> and
<name> <first> S.</first> <last> Furui,</last> </name> <title>

/N-best-based speaker adaptation for speech recognition,"</title> in
<booktitle> Proc. ICASSP ’97,</booktitle> (<address> Munich,
Germany</address>), pp. <pages> 1015–1018,</pages> <date>-
Apr. 1997</date>.

baseline [5] <name> <first> T.</first> <last> Matsui,</last> </name>-
<name> <first> T.</first> <last> Matsuoka,</last> </name> and
<name> <first> S.</first> <last> Furui,</last> </name> <title>

/N-best-based speaker adaptation for speech recognition,"</title> in
<booktitle> Proc. ICASSP ’97,</booktitle> (<address> Munich,
Germany</address>), pp. <pages> 1015–1018,</pages> <date>-
Apr. 1997</date>.

Table 6.14: Example of effect of lookahead on defects, usingorder 4 models trained
on 4000 documents. Tags initalics are incorrectly placed.¦ indicates a missing tag.

134

 1

 4

 16

 64

 256

 1024

 4096

 16384

 0 2 4 6 8 10 12 14
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

R
ec

al
l/P

re
ci

si
on

 (
%

)

Lookahead

Search space
Recall

Precision

Figure 6.15: Graph of recall, precision and search space against lookahead for the
singlenametag. Models trained on 2000 documents and tested on one document.

numbers that looked like years such as1993–2002and features such asn–n+4,

which is a common format when the citation is taken from an electronic copy and

the document length is known but not the location within the larger journal or col-

lection. These sources of noise are compounded by variability in the length of

bibliographies, which may be as short as a single entry with only onepagestag and

only onename. These problems are not resolved by increasing the lookahead.

Figure 6.16 shows the same analysis for thewordtag in the segmentation corpus.

The data from this graph (Table 6.15) show that while the search space increased by

five orders of magnitude, the recall and precision increasedby less than one percent.

It is not clear why recall and precision cross-over in Figures 6.15 and 6.16 as look-

ahead increases, but the levelling-off of increase in recall and precision, indicative

and representative of larger samples, suggests that the model does not contain all

the information needed to make the underlying relevancy decisions.

These results show that the maximum lookahead heuristic canbe effective. In-

135

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 0 1 2 3 4 5 6 7 8 9
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

R
ec

al
l/P

re
ci

si
on

 (
%

)

Lookahead

Search space
Recall

Precision

Figure 6.16: Graph of recall, precision and search space against lookahead for the
word tag. Models trained on 2000 documents and tested on one document.

Lookahead Search spaceRecall (%) Precision (%)
(nodes per character)

1 6.00 97.10 97.37
2 27.26 97.83 97.79
3 86.22 97.82 97.53
4 241.07 97.73 98.21
5 633.54 97.74 98.21
6 1598.50 98.30 98.06
7 3976.08 97.72 97.59
8 9801.47 97.61 98.16
9 23457.08 97.77 97.87

10 58153.64 97.84 98.09
11 139079.05 97.71 98.02

Table 6.15: Table of recall, precision and search space against lookahead for the
word tag. The data is plotted in Figure 6.16.

136

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a b c d

a b c d

with TagC
without

Figure 6.17: TagC heuristic in hierarchical tag insertion.From steepest to shallow-
est the lines are: (a)author, editor, name, first and last; (b) name, first and last;
(c) nameand last; (d) name. All runs used an order 3 model with 200 training
documents and a single testing document.

creasing the lookahead beyond six has, in this case, no obvious benefit to recall and

precision but is of great detriment to the search space.

6.4.5 TagC Heuristic

The TagC heuristic (Section 4.3.6) limits the number of tagsto be considered for

insertion between two characters in a document. Figure 6.17shows the effect of

the TagC heuristic on the hierarchical tagsauthor, editor, name, first and last in

the bibliography corpus. In all cases the search space was reduced. Figure 6.18

shows the effect of the TagC heuristic on the non-hierarchical tagsname, pages,

date, volumeandnumberin the bibliography corpus.

Results show the TagC heuristic to be consistent and significant. Much of the

pruning of the TagC heuristic is similar to that of the best first optimisation. A

tag that is ruled out by the TagC heuristic has not been seen inthis model before,

137

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

S
ea

rc
h

sp
ac

e
(n

od
es

/c
ha

ra
ct

er
)

Lookahead

a b c d e

a b c d e

with TagC
without

Figure 6.18: TagC optimisation in non-hierarchical tag insertion. From steepest
to shallowest the lines are: (a)name, pages, date, volumeandnumber; (b) name,
pages, dateandvolume; (c) name, pagesanddate; (d) nameandpages; (e) name.
All runs used an order 3 model with 200 training documents anda single testing
document.

138

meaning the PPM model must escape back to order−1 (see Section 3.4), and im-

plying high entropy transitions. The structure of PPM models means an ordera

transition can be followed, at most, by an ordera + 1 transition (except for the start

of sequence symbol), so an order−1 transition can be penalised over an ordern

transition forn + 1 transitions. Many of the tags and tag sequences ruled out by the

TagC heuristic would mean three or four order−1 transitions and can be rapidly

pruned by the best first under normal circumstances.

The set of observed tag combinations is smaller in the bibliography corpus than

it may be in real-world corpora because, when integrating the tagged and untagged

bibliographies (see Figure 5.2), placement of tags with respect to inter-word white-

space was performed automatically and therefore consistently. Diverse, real-world,

uncurated sources are unlikely to display this degree of consistency.

6.4.6 State Tying

The opportunity to apply the state tying heuristic (see Section 4.3.7) occurred only

once in the corpora studied, on thenametag which may occur within theeditor or

theauthor tag in the bibliography corpus. The schema for the bibliography dataset

with and without state tying are shown in Figure 5.4 and Figure 5.5 respectively.

Figure 5.4 differs from Figure 5.5 in that thenamesubtree has been cloned and a

copy appears for each parent. This section examines the effect this duplication has

on the performance of the model.

Table 6.16 shows the type confusion matrices, with and without state tying,

for the bibliography corpus. Perhaps surprisingly, the twokey leaf tagsfirst and

last perform similarly in the two models. This is evidence that good models were

built for these tags both with and without tying. At a slightly higher level, the tying

performed noticeably better (more than 1%) at identifyingnametags, while without

tying performed noticeably better (more than 1%) at identifying editor tags. This

later improvement appears to be because that proceedings editors often only have

139

99.88 + + + + + + + + +
+ 80.06 + + + + + + + + + 3.02 7.09 4.64 1.80 1.54

3.01 83.93 3.76 2.21 + 3.49 2.85 + + +
+ + 92.59 2.43 + + 3.91 + + + +

+ 1.52 + 4.27 89.50 + 1.87 1.94 + + + +
+ + + + 94.58 2.92 1.87 + + + +
+ + + + 1.28 94.78 + + 3.21 + + + +
+ + + + + 99.04 + + + + +
+ + + + + + 97.27 + + 1.01 + + + +
3.32 + + + 94.79 + + + + + +
1.46 + + + 96.97 + +

+ 1.28 + + + + 1.35 + + + + 93.91 + 2.41 + +
+ 3.28 + + + + + + + + 1.27 94.52 + + +

3.13 + + + + + + + + 7.94 + 87.29 + +
8.01 + + + + + + + + 3.61 1.57 + 81.70 3.98
4.19 + + + + + + + + 2.60 + 1.85 2.68 87.30

bibliography

bibbody

editor

author

nam
e

first

last

pages

date

volum
e

num
ber

title

journal

booktitle

publisher

address

99.87 + + + + + + + +
+ 77.14 + + + + + + + + + 3.01 8.25 6.52 1.82 1.39

3.31 85.88 3.33 1.39 + 2.82 2.62 + + +
+ + 92.78 2.37 + + 3.56 + + +
1.59 + 5.30 87.70 + 2.49 1.91 + + + +
+ + + + 94.35 3.31 1.55 + + + +
+ + + + 1.45 94.49 + 3.10 + + + +
+ 98.95 + + + + + +
+ + + + + + 96.87 + 1.06 1.18 + +
2.09 + + + + + 95.99 + 1.11 + + + +
+ + + + 96.09 1.53 +

+ 1.17 + + + + 1.70 + + + + 93.08 + 3.05 + +
2.63 + + + + + + + + 1.11 95.54 + + +

+ 3.71 + + + + + + + + 10.23 + 84.59 + +
7.25 + + + + + + + + 4.57 1.85 + 81.47 3.77
3.54 + + + 1.18 + + + 3.02 + 2.35 2.86 85.82

Table
6.16:

Type
confusion

m
atrices

for
the

bibliography
co

rpus.
T

he
m

atrix
on

the
leftis

w
ith

state
tying

and
the

m
atrix

on
the

rightis
w

ithout
state

tying.
A

llvalues
are

in
percent,a

‘+’indicates
a

figure
low

er
than

0.99%
.

O
rder

6
m

odels
trained

o
n

6000
docum

ents
and

tested
on

500
docum

ents
w

ith
a

lookahead
o

f5.

140

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 1000 10000

E
nt

ro
py

 (
bi

ts
/c

ha
ra

ct
er

)

Training Files

without tying
with tying

Figure 6.19: Entropy dropping with increased training data, with and without state
tying. Order 6 models tested on 500 documents with a lookahead of 5.

their last name given in bibliography entries and modellingeditor tags separately

from authortags allowed this information to be captured.

In the tags not directly related to names, the state tying results are slightly better

than the without state tying results, having a higher numberof results on the leading

diagonal in nine of eleven cases. This is, perhaps, because the state tying presented

a more consistent model of the concepts of names to the rest ofthe model. Other

features of type confusion matrices for the bibliography corpus are explained in

Section 6.2.3.

Figure 6.19 shows how entropy drops with increased trainingdata, with and

without state tying, for the tags shown in Table 6.16. Entropy with state tying

appears to be slightly less, but not consistently less, thanentropy without state tying.

This is somewhat surprising since the motivation for state tying was to achieve

better performance from the same amount of training data (Section 4.3.7), and this

appears not to be happening consistently. This is probably because the effect which

141

98
.9

8
+

+
+

+
+

2.
85

88
.5

0
+

4.
86

+
2.

79
9.

91
+

81
.0

3
6.

36
+

2.
20

2.
86

1.
88

1.
68

93
.3

8
+

+
1.

10
+

+
+

94
.7

3
3.

85
2.

68
+

+
+

1.
49

95
.6

4

bibliography

name

editor

author

first

last

98
.5

3
+

+
+

+
1.

29
2.

57
89

.0
4

+
5.

45
1.

01
1.

74
10

.5
2

+
81

.3
6

5.
90

+
1.

78
3.

41
2.

44
2.

29
91

.7
8

+
+

1.
16

+
+

+
95

.9
6

2.
67

2.
48

+
+

1.
81

95
.5

6

Table 6.17: Type confusion matrices for the bibliography corpus. The matrix on the
left is with state tying and the matrix on the right is withoutstate tying. All values
are in percent, a ‘+’ indicates a figure lower than 0.99%. Order 6 models trained on
6000 documents and tested on 100 documents with a lookahead of 5.

is noticeable in Table 6.16 is too small to be detected over the sampling error.

Table 6.17 shows the type confusion matrices, with and without state tying, for

the bibliography corpus for a greatly reduced set of tags compared with Table 6.16.

The results do not show a clear pattern of similarity with those shown in Table 6.16

for the larger set of tags, suggesting that the results are not generally applicable.

An unanticipated benefit of state tying is that the combined models are sig-

nificantly smaller than the separate models. The memory consumption of models

increases linearly with extra tags but less than linearly with extra training data: if

two tags are tied together to use the same PPM model, memory can be saved. The

CEM implementation uses memory näively, no experimentation or tuning has been

used to reduce the memory consumption.

The state tying optimisation gives at best a marginal improvement in results,

but can be expected to lead to smaller models. Occam’s Razor (also called the

‘principle of parsimony’ or the ‘principle of simplicity’)asserts that a simpler or

smaller model of a phenomenon is to be preferred over a more complex or larger

one.

142

Chapter 7

Conclusions

This thesis extended text augmentation to cover entity extraction problems. It in-

vestigated three classes of text augmentation: segmentation, classification and entity

extraction, and described how they are connected to data mining, text mining and

related fields.

Segmentation, the computationally simplest class, involves segmenting the text.

Information is encoded in where one segment ends and the nextstarts. Tasks such as

Chinese text segmentation were evaluated using recall and precision on the segment

boundaries.

Classification, which is more computationally expensive than segmentation, in-

volves classifying textual elements into one of several classes. Information is en-

coded in the class an element falls into. Classification tasks, such as part of speech

tagging, have close ties to machine learning, and share withit the confusion matrix

evaluation method.

Entity extraction is the most computationally expensive class of text augmenta-

tion. It marks-up textual fragments with a nested hierarchyof classes and informa-

tion is encoded both in where fragments start and finish and intheir type. Inserting

attribute-free XML into text is an entity-extraction task.Entity extraction was eval-

uated using type confusion matrixes and using edit distances.

143

7.1 Review of Aims

In Section 1.2 various aims were introduced; in this sectionthey are examined to

determine whether they have been met.

1. Examine text-augmentation problems, in the large, to attempt to determine

which are susceptible to automated text augmentation and whether some sets

of problems are inherently easier than other.

Section 4.1 built a taxonomy of three taxa of text-augmentation problems:

segmentation, classification and entity extraction. Collection and document

level metadata are poorly catered for. Section 4.1.4 coversa number of forms

of fine-grained metadata which does not sit within the taxonomy. Sections 4.4

and 6.4 examines the different static and dynamic performance of various

searches over the different problems. Segmentation is computationally eas-

ier than classification, which is computationally easier than entity extraction.

This aim has been met.

2. Build a text-augmentation system capable of solving at least as wide a range

of problems as existing low-human-input systems, with an eye to eventual

inclusion as part of a digital library system.

Section 4.2 describes CEM, a system capable of solving a widerrange of

text-augmentations problems than the immediately previous systems TMT

and SMI, which did not solve entity-extraction problems. CEMhas low-

human-input and has a number of design characteristics suchas using Uni-

code throughout and using standard XML documents. This aim has been met.

3. Locate and/or build corpora to test this system.

The four corpora used in this thesis are described in Chapter 5. The Com-

putists’ corpus was developed from an earlier corpus; the Chinese text seg-

mentation and Reuters’ corpora were existing corpora adapted for use. The

144

bibliography corpus was built as a model entity-extractioncorpus. This aim

has been met.

4. Use specific heuristics and optimisations which perform well in relation to a

particular set of augmentation problems.

The best first optimisation and automatic tokenisation, alphabet reduction,

maximum lookahead, TagC and state tying heuristics are described in Chap-

ter 5 and used with particular types of augmentation problems. State tying

is effective only on entity extraction problems (Section 4.3.7) and TagC only

works on entity extraction and classification problems (Section 4.3.6). This

aim has been met.

5. Evaluate both the text-augmentation system and the heuristics and optimisa-

tions in the system.

Chapter 6 contains a systematic evaluation of both the systemas a whole and

individual heuristics and optimisations. This aim his beenmet.

7.2 Performance of CEM and the New Techniques

The implementation, CEM, created for this thesis uses a substantially different form

of model from that used by previous workers. The model not only allows fully

recursive modelling to deeply tagged XML, it also carries context between hidden

states, which avoids prejudicing entry to these states by avoiding escaping back to

low-order models. CEM also uses a significantly more efficientvariation on the

PPMD escape method avoiding full exclusion. Non-full exclusion is a substantial

performance improvement over full-exclusion with marginal less of correctness.

The best first optimisation leads to substantial gain. It could be argued that the

best first optimisation was an implementation detail ratherthan a true optimisa-

tion. It is, however, absent from the immediately precedingsystem, Teahan’s TMT.

145

Hardware implementations of Viterbi search usually avoid the need for the best first

optimisation by performing this step in parallel.

The maximum lookahead heuristic is used elsewhere and was shown to work

in CEM to good effect. Unfortunately there is no apparenta priori method for

selecting a maximum lookahead, other than by splitting a known-good corpus into a

training corpus and a testing corpus. This technique is lesseffective once the Baum–

Walsh algorithm has been used to adapt the model to a supersetof the original

corpus.

CEM also implements two novel heuristics, TagC and automatictokenisation,

to some advantage. Both are reliant on the consistency of the training data and are

unlikely to be widely useful on uncurated diverse corpora. They also largely prune

the search tree in ways that the best first optimisation also prunes effectively.

The state tying heuristic, which is widely used in voice-recognition systems,

was found to have little effect on the search space, but reduced the size of the hidden

Markov model by merging some of the underlying Markov models. If the seman-

tics of tag nesting are changed, state tying is likely to be more effective. In either

case, it reduces the number of Markov models, and proportionally reduces the re-

quired volume of training data. The use of state tying in thisway, however, hampers

the convergence towards consistent tagging in the marked uptext, by making the

Markov model that best matches a fragment accessible at multiple hidden states.

This is likely to be a significant barrier to the incremental development of corpora

using the system to improve the quality of the training text.It may be possible to

enable state tying during training, and disable it during testing and re-estimation to

restrict access to each Markov model to a single hidden state, thus standardising the

tagging.

Four corpora were used in this thesis. Marking-up the Chinesetext segmentat-

ion corpus was a task on which CEM achieved an F-measure of 98%,in the same

range as other systems and better than TMT. The Reuters’ corpus was used in con-

146

junction with the Brill part of speech tagger, but CEM performed poorly on this

classification task, because the PPM models in CEM have a linear context and lack

super-adjacency, a key aspect of the Brill tagger and other part-of-speech taggers.

A detailed comparison of the performance of CEM and the similar TMT system

on the Computists’ corpus showed that TMT performed consistently better. The

differences were shown to be related to both the modelling characters rather than

words, and the search algorithm.

The fourth corpus was the bibliography corpus, which was used for entity ex-

traction. CEM appeared to perform well, but the lack of a standard test corpus made

comparison with other systems difficult.

CEM includes the Baum–Welch algorithm: this was successfullyused to help

adapt a model trained on one style of bibliography to markup adifferent style. In

this thesis the Baum–Welch algorithm was evaluated using theedit-distance metric.

CEM can be applied to solve a significantly wider range of problems than the

immediately preceding system (TMT), which could solve segmentation and class-

ification problems but not entity extraction. CEM performed well at both the simple

and complex ends of the computational spectrum. It was, however, not so well op-

timised for speed or memory consumption as TMT.

7.3 Impact of Unicode and Document Orientation

Use of Unicode solves many internationalisation issues, but not the unknown-

character problem: the character level equivalent of the unknown word problem.

It also provides a set of cross-language character classes on which word-level rules

and models can be built. The character classes are similar inapproach to the char-

acter classes from the C programming language, which have a long history of use

in parsers.

Encoding metadata, as a CEM does, in a single hierarchical insertion of

147

attribute-free XML tags, limits the classes of metadata that can be represented, in

particular, overlapping structures and alternative interpretations of the same pas-

sage. There are interesting sets of metadata that fall into the excluded category, in

particular: overlapping hierarchies such as physical and logical document structure,

and metadata constructed from fragments scattered throughout the document text.

The view of the data and metadata as an annotated document rather than a col-

lection of facts has a number of impacts on further use, even though metadata held

in an external database could be processed to embed it in the document andvice

versa. Firstly it makes the document more amenable to presentation as a metadata-

enhanced document, such as in a digital library or an XML-based document reposi-

tory. Secondly it makes the kinds of higher-level processing used in the later stages

of many of the MUC systems harder, because these perform operations such as re-

lational joins which have no direct equivalent in an annotated document. Thirdly it

makes the metadata significantly less amenable to export foruse in external systems,

many of which expect relations of data. Fourthly document-centric, XML-native,

databases allow queries on the annotated XML documents, including aspects of the

documents which the querier might consider important whichthe metadata extrac-

tor might not. The best representation for inferred metadata is thus likely to be

determined by the larger context and the intended uses of themetadata.

7.4 Limitations of CEM

CEM has two broad sets of limitations, those imposed by modelling and search

techniques, and those due to the implementation of those techniques.

Attribute data CEM does not capture attribute data. For enumerable attributes,

this can be mitigated by XML transformations which transform each possible

combination of attributes in each tag to a separate tag. For continuous at-

tributes this technique leads to an infinite number of tags. It is not clear how

148

many continuous attributes occur in linguistic corpora, the author has seen

continuous attributes in spoken linguistic corpora (particularly in the time di-

mension) but not in written linguistic corpora.

Differentiable tags Tags that do not have different character distributions, or

whose character distributions PPM is unable to model, cannot be inserted.

An extreme case of this might be the task of marking-up the prime-numbered

digits in a decimal representation ofπ. While automating such a marking up

is possible, doing it with Viterbi search and learnt PPM models is not. The

author is aware of no linguistic corpora for which this is an issue.

Consistency Tags are assumed to be used consistently. This does not hold for

many real-world situations, but curated textual corpora are becoming more

common. There are also various tools such as jtidy1 which regularise some

aspects of HTML/XHTML.

These three limitations are shared with all directly comparable applications of

searching using Markov models, including TMT and HTK. The second set of limi-

tations are implementation-based, caused by choices made when building CEM.

Number of tags CEM has an upper bound on the number of Markov models and

thus of tags modelled. The implementation represents tags using Unicode

characters from the private use range\uE000–\uF8FF, of which 3 are re-

served as special markers. While an order of magnitude greater than the num-

ber of tags appearing in commonly used markup such as XHTML, MathML

and those appearing in this thesis, this limits the use of tagtransformations as

work-arounds for other limitations.

Nesting of tags CEM cannot represent tags nested directly within tags of the same

type. This is currently impossible because in the search nodes only the tag is

1 http://jtidy.sourceforge.net/

149

noted and not whether it is opening or closing. None of the corpora examined

here displays such nesting and while it would be relatively easy to fix, it

would involve an extra test in the inner loop of the search operation, slowing

searching. An alternative to changing the implementation is to transform the

text so that every odd-depth tag has a different name, and then use state-tying

to tie the odd and even tags together. HTK supports models such as these,

TMT does not.

Adaptive Models The PPM models implemented in CEM are not adaptive. This

means that the Baum–Welch algorithm cannot be applied any finer than the

document level, for example to allow intra-document learning. This is likely

to be a problem when the re-estimation text contains relatively few but un-

usually large documents, allowing few re-estimation cycles. If the documents

are internally homogeneous, it may be possible to overcome this by splitting

them to increase the number of inter-document re-estimation cycles. Both

HTK and TMT can be adaptive.

Streaming documentsDocuments are held entirely in memory rather than being

streamed. Holding documents in memory consumes extra memory. While

this was not a problem for corpora used in this work, which have reasonably

short documents, it would prevent processing of large documents. Documents

as large as 6MB (unmarked up size) have been successfully marked up. Doc-

ument length is linearly related to this aspect of memory consumption. HTK

allows documents to be streamed, TMT does not.

Document-at-once processingAn entire XML document, rather than an XML

fragment, must be marked up at once. The command line to interface CEM

requires documents be read from the file system, one documentper file. A

Java interface allowing arbitrary XML nodes to be marked-upexists but is

not used in the experiments presented here. Marking-up document fragments

150

is important in interfacing CEM with other systems. Both HTK and TMT

have interfaces allowing partial documents to be processed.

Integer overflow The PPM models implemented in CEM implicitly assume that

none of their counters rolls over. This assumption holds unless more than

231 − 1 characters of training data (or combined training and re-estimation

data) are seen. HTK overcomes this limit by encoding probabilities as

floating-point numbers rather than as ratios of integers. TMT overcomes this

limit using integers that are scaled prior to overflow. The latter could be

worked into CEM.

CEM does not have a mode of operation which calculates the entropy of entire

documents in each of the Markov models. This is used effectively by TMT for

calculation of whole document metadata such as language andgenre. Of these

implementation limitations, only making the PPM models adaptive and removing

the upper bound on the number of tags would require extensiveredesign of CEM.

7.5 Problems Suitable for CEM and Text

Augmentation

There are several broad indicators that metadata will be marked up well by CEM: it

should be relatively fine-grained, at the character, word orphrase level; it should be

discriminatable from the immediately surrounding text; there should be a training

corpus which matches the testing text sufficiently well to build a model from (or

text available to build such corpus from); if the testing text is changing with time, it

should be changing sufficiently slowly that the model can be re-estimated to track

the changes.

Segmentation problems that meet these requirements include the segmentation

of languages written without spaces between words (i.e. Chinese, Japanese and

151

Thai) and locating potential hyphenation points in European languages (i.e. En-

glish, German and French). Classification problems that meetthese requirements

include part-of-speech tagging, finding proper nouns, email addresses, URLs, stock,

cross-references and similar classes of textual entities.Entity-extraction problems

that meet these requirements include marking-up bibliographies, title and frontis

pages, email headers, standard forms and other highly-structured sections of text.

Parsing of many computer programming languages, includingScheme, Java

and C, into an XML representation is an entity-extraction problem, although not

one CEM is ideal for, because of the length of structures involved. Parsing of the

Python language is not, and CEM is not capable of this task: theconcept ‘the same

indentation as the previous line’ cannot be learnt using PPM.

In all cases, higher-order reasoning based on the inferred metadata is beyond

the ability of CEM. For example, while it can find proper nouns in English text, but

it cannot be used to find equivalences between different nouns used for the same

subject, because this requires reasoning about on non-adjacent values. Since this

higher-order reasoning is an integral part of many systems used in the wild, CEM

is unlikely to be a suitable drop-in replacement for many systems.

7.6 Training Corpora Sizes

The relative success of text augmentation on the Computists’corpus, with only 38

issues of 1200 words, shows that augmentation can be useful even when trained

on relatively small volumes of text. Certainly this augmentation is of high enough

quality to be used for transforming the document for presentation to end users.

With F-measures as low as 55%, however, the augmented text should be used with

care. In particular, the compilation of indexes and of extracted terms, in which

recurring terms contribute less than singly-occurring terms should be avoided, as

this emphasises errors, which tend to be unique, singly-occurring items.

152

Estimating the quantity of training text needed to produce results of a certain

quality is challenging because of the many factors that influence this, but it seems

apparent, supported by the experimental results in Chapter 6, that model discrimi-

nation is key. For example in the Computists’ corpus, the easily-discriminated URL

and email tags were augmented reliably, whereas the poorly-discriminated name,

organisation and location tags were augmented poorly, despite considerably more

examples being seen in training.

The incremental development of the Computists’ corpus, together with an ex-

amination of the errors of text augmentation systems leading the correction of the

training text, is likely to be particularly scalable, sinceit allows leveraging of work

already completed to converge on a consistently marked up corpus. Unfortunately,

incremental development may reveal flaws in the initial assumptions, which are un-

likely to be rectifiable without considerable work.

The automated conversion of existing data and metadata intoa corpus, as for

the bibliography corpus, has the advantage that the metadata in existing data is

presumably present for a reason, reflecting the use or meaning of the data. The

conversion is automated, so if the conversion reveals issues it can be re-performed

completely.

Automatic conversion is limited to those corpora for which asuitable data source

can be found with suitable metadata, and those found are unlikely to be structured

to allow for control of arbitrary variables of interest. Thegrowth of curated reposi-

tories may increase the likelihood that a corpus already exists that can be converted,

extended or developed to be suitable.

7.7 Original Contributions

A number of original contributions are made in this thesis. Asystem called ‘Col-

loquial Entropy Markup’ or CEM was designed and implemented.CEM builds a

153

hidden Markov model from a corpus of marked-up XML documentsand uses vari-

ants of Viterbi search to augment unmarked-up XML documentswith tags in the

marked-up XML documents.

Four corpora were used. The Reuters’ and segmentation corpora required rela-

tively little data preparation. The Computists’ corpus was systematically re-marked-

up. The bibliography corpus is a new corpus.

The following are the key novel aspects of the work presentedin this thesis.

• Partitioning of tag insertion problems into a coherent taxonomy with three

taxa (Section 2.1.2).

• Exploration of the relationship between PPM (Prediction byPartial Match-

ing) models and Markov models (Section 3.3). Previously published as [164].

• Expansion of text augmentation to include nested tags (Chapter 4).

• The best first (Section 4.3.2) optimisation, the automatic tokenisation (Sec-

tion 4.3.3), alphabet reduction (Section 4.3.4) and TagC (Section 4.3.6)

heuristics.

• Detailed analysis of the search space size of tag insertion (Section 4.4). Ear-

lier versions of this work were published as [162].

• Detailed analysis of the correctness measures for different types of tag inser-

tion problems and research methodology (Section 2.3).

• Development of an entropy-based technique to determine whether tag-

insertion errors are the result of a PPM modelling failure orof a searching

failure (Section 2.3.4).

• A new extension of confusion matrices suitable for evaluating hierarchical

many-class classification problems (Section 4.6.4).

154

7.8 Open Questions

There are a number of open questions not examined in this thesis:

1. Whether the conceptualisation of context used here (and elsewhere) is

optimal. There is an alternative method for computing the context of

the current character in a character stream. This was discovered dur-

ing the experimental work for this thesis, but not explored.The con-

text for e in . . .<a>abcd<c>e. . . can be ‘collapsed’ to

. . .<a/>e. . .. This could be achieved by substituting the character rep-

resenting the transition into the tag for the entire tag. This approach is likely to

be most successful where tag densities are highest, such as in part-of-speech

tagging, where state-of-the-art systems take advantage ofsuper-adjacency.

2. Whether adding a default tag with an uninitialised (untrained) model acces-

sible from every context would remove the tendency to place high-entropy

sequences in the model with the least training data.

3. Whether different escape methods would reduce the tendency to place high

entropy sequences in the model with the least training data.

4. Whether a more universal similarity metric such as Kolmogorov complex-

ity [85, 86] might be an appropriate measure for comparing sequences. This

would move evaluation to a theoretical framework independent of any partic-

ular approach to solving the problem and resolve some of the complexities of

evaluating performance.

5. Whether certain textual strings (such asReferenceson a line by itself) can

be used as synchronisation points in a finite automata sense.This is likely to

form part of the infrastructure integrating CEM into a possible digital library

structure, which will need ways of detecting when it is appropriate to use

various tools such as CEM.

155

6. Whether Teahan search or Viterbi search will perform better on certain classes

of text-augmentation tasks.

All of these seem useful avenues of investigation, 1 and 4 being significantly

more novel than 2 and 3. Issues 5 and 6 are likely to be directlyand immediately

relevant to a practical production system.

156

Bibliography

[1] Eugene Agichtein and Luis Gravano. Snowball: Extracting relations from
large plain-text collections. InProceedings of the Fifth ACM conference on
Digital libraries, pages 85–94, San Antonio, Texas, United States, 2000.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

[3] Rie Kubota Ando and Lillian Lee. Mostly unsupervised statistical segmentat-
ion of Japanese Kanji sequences.Journal of Natural Language Engineering,
9(2):127–149, August 2003.

[4] J. Anigbogu and A. Belaid. Hidden Markov models in text recognition.Inter-
national Journal of Pattern Recognition and Artificial Intelligence, 9(6):925–
958, 1995.

[5] Steven Atkin and Ryan Stansifer. A generalized mechanismfor Unicode
metadata. InProceedings of the Nineteenth International Unicode Confer-
ence, San Jose, California, USA, 10–14 September 2001.

[6] Ricardo Baeza-Yates and Berthier Ribeiro-Neto.Modern Information Re-
trieval. ACM / Addison–Wesley, Massachusetts, USA, 1999.

[7] Amit Bagga. Analyzing the complexity of a domain with respect to an Infor-
mation Extraction task. InProceedings of the Fifth Workshop on Very Large
Corpora, 1997.

[8] David Bainbridge, Dana McKay, Ian H. Witten, and Stefan Boddie. Green-
stone Digital Library Developer’s Guide. Digital Library Laboratory, Uni-
versity of Waikato, March 2004.

[9] Alex Bateman, Ewan Birney, Lorenzo Cerruti, Richard Durbin,Laurence
Etwiller, Sean R. Eddy, Sam Griffiths-Jones, Kevin L. Howe, Mhairi Mar-
shall, and Erik L. L. Sonnhammer. The Pfam protein families database.Nu-
cleic Acids Research, 28:263–266, 2000.

[10] Leonard E. Baum. An inequality and associated maximisation technique in
statistical estimation for probabilistic functions of a Markov process. In-
equalities, 3:1–8, 1972. Not sighted.

[11] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A max-
imisation techniques occurring in the statistical analysis of probabilistic func-
tions of markov chains.The Annals of Mathematical Statistics, 41(1):164–
171, 1970.

157

[12] Doug Beeferman, Adam Berger, and John D. Lafferty. Statistical models for
text segmentation.Machine Learning, 34(1-3):177–210, 1999.

[13] Timothy C. Bell, John G. Cleary, and Ian H. Witten.Text Compression.
Prentice Hall, Englewood Cliffs, New Jersey, USA, 1990.

[14] Timothy C. Bell, Ian H. Witten, and John G. Cleary. Modelingfor text com-
pression.ACM Computing Surveys, 21(4):557–591, December 1989.

[15] Dominique Besagni, Abdel Belaı̈d, and Nelly Benet. A segmentation method
for bibliographic references by contextual tagging of fields. In Proceedings
of the Seventh International Conference on Document Analysis and Recog-
nition, page 384, Edinburgh, Scotland, August 2003.

[16] Alan W. Biermann and Amit Bagga. Analyzing the complexityof a domain
with respect to an Information Extraction task. InProceedings of the Fifth
Workshop on Very Large Corpora, 1997.

[17] Daniel M. Bikel, Richard L. Schwartz, and Ralph M. Weischedel. An al-
gorithm that learns what’s in a name.Machine Learning, 34(1-3):211–231,
1999.

[18] Jeff A. Bilmes. A gentle tutorial on the EM algorithm and its application
to parameter estimation for Gaussian mixture and hidden Markov models.
Technical Report ICSI-TR-97-021, University of Berkeley, Massachusetts,
USA, 1997.

[19] Steven Bird, Peter Buneman, and Wang-Chiew Tan. Towards a query lan-
guage for annotation graphs. InProceedings of the Second International
Conference on Language Resources and Evaluation, pages 807–814, Paris,
France, 2000. European Language Resources Association.

[20] Steven Bird, Kazuaki Maeda, Xiaoyi Ma, Haejoong Lee, BethRandall, and
Salim Zayat. TableTrans, Multitrans, InterTrans and TreeTrans: Diverse
tools built on the annotation graph toolkit. InProceedings of the Third Inter-
national Conference on Language Resources and Evaluation, Paris, France,
2002.

[21] Kurt Bollacker, Steve Lawrence, and C. Lee Giles. CiteSeer: An autonomous
web agent for automatic retrieval and identification of interesting publica-
tions. In Katia P. Sycara and Michael Wooldridge, editors,Proceedings of
the Second International Conference on Autonomous Agents, pages 116–123,
New York, New York, USA, 1998. ACM Press.

[22] Kalina Bontcheva, Marin Dimitrov, Diana Maybard, Valentin Tablin, and
Hamish Cunningham. Shallow methods for named entity coreference reso-
lution. In Conference annuelle sur le Traitement Automatique des Langues
Naturelles, Nancy, France, 24–27 June 2002.

158

[23] A. Borthwick, J. Sterling, E. Agichtein, and R. Grishman.Nyu: Description
of the mene named entity system as used in MUC. InProceedings of the
Seventh Message Understanding Conference (MUC-7), 1998.

[24] Bert Bos, Tantek Çelik, Ian Hickson, and Håkon Wium Lie. Cascading
style sheets 2.1 specification. Technical report, World Wide Web Consor-
tium (W3C), 25 February 2004.

[25] Tim Bray, Jean Paoli, and C. Michael Sperberg-McQueen. EXtensible
Markup Language 1.0. Recommendation, The World Wide Web Consor-
tium, 10 February 1998.

[26] Zane C. Bray. Using compression models for text mining. Master’s thesis,
Department of Computer Science, University of Waikato, Hamilton, New
Zealand, July 1999.

[27] Alvis Brazma, Inge Jonassen, Ingvar Eidhammer, and David Gilbert. Ap-
proaches to the automatic discovery of patterns in biosequences.Journal of
Computational Biology, 5(2):277–304, 1998.

[28] Eric Brill. A simple rule-based part-of-speech tagger.In Proceedings of the
Third Conference on Applied Natural Language Processing, pages 152–155,
Trento, Italy, 1992.

[29] Eric Brill. Some advances in transformation-based partof speech tagging.
In Proceedings of the Twelth National Conference on Artificial Intelligence,
pages 722–727, 1994.

[30] John Seely Brown and Paul Duguid.The Social Life of Information. Harvard
Business School Press, Boston, Massachusetts, USA, March 2000. Excerpt
published in First Monday 5:4 April 2000.
http://www.firstmonday.org/issues/issue54/browncontents.html.

[31] M. Buckland and F. Gey. The relationship between recall and precision.
Journal of the American Society for Information Science, 45(1):12–19, 1994.

[32] Jeffrey T. Chang, Hinrich Schütze, and Russ B. Altman. Creating an on-
line dictionary of abbreviations from MEDLINE.Journal of the American
Medical Informatics Association, 23 July 2002.

[33] Eugene Charniak.Statistical Language Learning. MIT Press, Cambridge,
Massachusetts, USA, 1993.

[34] Stanley F. Chen and Joshua Goodman. An empirical study ofsmoothing
techniques for language modeling. In Arivind Joshi and Martha Palmer, edi-
tors,Proceedings of the Thirty-Fourth Annual Meeting of the Association for
Computational Linguistics, pages 310–318. Morgan Kaufmann, 1996.

[35] Nancy A. Chinchor. Overview of MUC-7/MET-2. InProceedings of the
Seventh Message Understanding Conference, April 1998.

159

[36] John G. Cleary and William J. Teahan. An open interface for probabilistic
models of text. In James A. Storer and Martin Cohn, editors,Proceedings of
the Data Compression Conference, 1999.

[37] Hamish Cunningham, Yorick Wilks, and Robert J. Gaizauskas. Gate—a gen-
eral architecture for text engineering. InSixteenth International Conference
on Computational Linguistics, volume 2, pages 1057–1060, Denmark, Au-
gust 1996.

[38] Richard Curtis, Ben Elton, and John Lloyd.Blackadder: the Whole Damn
Dynasty. Michael Joseph, London, England, 1998.

[39] Doug Cutting, Julian Kupiec, Jan Pedersen, and PenelopeSibun. A prac-
tical part-of-speech tagger. In Oliviero Stock, editor,Proceedings of the
Third Conference on Applied Natural Language Processing, pages 133–140,
Trento, Italy, April 1992.

[40] Doug Cutting and Jan Pedersen.The Xerox Part-of-Speech Tagger. Xerox
Palo Alto Research Center, Palo Alto, California, USA, v1.0 edition, 12 April
1993.

[41] E. B. Dynkin.Markov Processes. Springer, New York, 1965. Translated into
English by J. Fabius, V. Greenberg, A. Maitra and G. Majone.

[42] Tom Emerson. Segmentation of Chinese text.MultiLingual Computing &
Technology, 12(38), February 2003.

[43] David C. Fallside.XML Schema. The World Wide Web Consortium (W3C),
2 May 2001.

[44] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. RFC 2068:
HyperText Transfer Protocol — HTTP 1.1, January 1997.

[45] Dayne Freitag. Multistrategy learning for information extraction. InPro-
ceedings of the Fifthteenth International Conference on Machine Learning,
pages 161–169, San Francisco, California, USA, 1998. MorganKaufmann.

[46] Dayne Freitag and Andrew McCallum. Information extraction with HMM
structures learned by stochastic optimization. InProceedings of the American
Association for Artificial Intelligence Conference, pages 584–589, 2000.

[47] Dayne Freitag and Andrew Kachites McCallum. Information extraction with
HMMs and shrinkage. InProceedings of the American Association for Artifi-
cial Intelligence Workshop on Machine Learning for Information Extraction,
1999.

[48] Betty Furrie.Understanding MARC Bibliographic: Machine-Readable Cat-
aloging. Cataloging Distribution Service, Library of Congress, fifthedition,
1990.

160

[49] R. Gaizauskas and Y. Wilks. Information extraction: Beyond document re-
trieval. Journal of Documentation, 54(1):70–105, 1998.

[50] Xianping Ge, Wanda Pratt, and Padhraic Smyth. Discovering Chinese words
from unsegmented text. InResearch and Development in Information Re-
trieval, pages 271–272, 1999.

[51] Charles F. Goldfarb.The SGML Handbook. Oxford, 1990.

[52] James Gosling, Bill Joy, and Guy Steele.The Java Language Specification.
Addison–Wesley, Massachusetts, USA, 1996.

[53] Donna K. Harman. Overview of the first text retrieval conference. InPro-
ceedings of the First Text REtrieval Conference, pages 1–20, Gaithersburg,
Maryland, USA, 4–6 November 1992. National Institute of Standards and
Technology.

[54] Donna K. Harman. Overview of the fourth text retrieval conference. InPro-
ceedings of the Fourth Text REtrieval Conference, pages 1–24, Gaithersburg,
Maryland, USA, 1–3 November 1995. National Institute of Standards and
Technology.

[55] M. Hearst. Untangling text data mining. InProceedings of the Thirty seventh
Annual Meeting of the Association for Computational Linguistics, 1999.

[56] Chris Heegard and Stephen B. Wicker.Turbo Coding. Kluwer Academic
Publishers, 1999.

[57] Paul Glor Howard.The Design and Analysis of Efficient Lossless Data Com-
pression Systems. PhD thesis, Department of Computer Science, Brown Uni-
versity, June 1993.

[58] Akira Ishikawa. A functional operator-based morphological analysis of
Japanese. In14th International Conference of Applications of Prolog, Tokyo,
Japan, 20–22 October 2001.

[59] ISO-9899—Harmonized standard for the C programming language, 1990.

[60] Frederick Jelinek.Statistical Methods for Speech Recognition. MIT Press,
Boston, Massachusetts, USA, 1998.

[61] Thorsten Joachims. A probabilistic analysis of the Rocchio algorithm with
TF/IDF for text categorization. In Douglas H. Fisher, editor, Proceedings of
Fourteenth International Conference on Machine Learning, pages 143–151,
Nashville, USA, 1997. Morgan Kaufmann.

[62] Thorsten Joachims. Text categorization with support vector machines: learn-
ing with many relevant features. In Claire Nédellec and Ćeline Rouveirol,
editors,Proceedings of Tenth European Conference on Machine Learning,
pages 137–142, Chemnitz, Germany, 1998. Springer.

161

[63] Rolf Johannesson and Kamil Sh. Zigangirov.Fundamentals of Convolutional
Coding. Wiley, 1999.

[64] S. Johansson, G. Leech, and H. Goodluck. Manual of information to accom-
pany the Lancaster-Oslo-Bergen corpus of british english for use with digital
computers. Technical report, Bergen: Norwegian Computing Center for the
Humanities, 1978.

[65] Karen Sparck Jones and C. J. van Rijshergen. Report on the need for and
provision of an “ideal” information retrieval test collection. Technical report,
Cambridge University Computer Laboratory, December 1975.

[66] Jussi Karlgren and Douglass Cutting. Recognizing text genres with simple
metrics using discriminant analysis. InProceedings of the Fifteenth Inter-
national Conference on Computational Linguistics, volume II, pages 1071–
1075, Kyoto, Japan, 1994.

[67] Slava M. Katz. Estimation of probabilities from sparsedata for the language
model component of a speech recognizer.IEEE Transactions on Acoustics
Speech and Signal Processing, 35(3):400–401, March 1997.

[68] D. Khmelev and William J. Teahan. A repetition-based measure for verifica-
tion of text collections and for text categorization. InProceedings of the 26th
Annual International ACM SIGIR Conference (SIGIR), Toronto, Canada, 28
July–1 August 2003.

[69] Y Khmelev and William J. Teahan. A repetition-based measure for verifi-
cation of text collections and for text categorization. In26th Annual Inter-
national ACM Special Interest Group on Information Retrieval Conference
(SIGIR), Toronto, Canada, 28 July–1 August 2003.

[70] Jeffrey H. Kingston.Algorithms and Data Structures—Design, Correctness,
Analysis. Addison–Wesley, Massachusetts, USA, 1990.

[71] Donald E. Knuth.The Art of Computer Programming, volume 1, Fundamen-
tal Algorithms. Addison–Wesley, first edition, 1968.

[72] Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjolander, and David
Haussler. Hidden Markov models in computational biology: Applications to
protein modeling. Technical Report UCSC-CRL-93-32, Universityof Cali-
fornia at Santa Cruz, 1993.

[73] Karen Kukich. Techniques for automatically correcting words in text.ACM
Computing Surveys, 24(4):377–439, December 1992.

[74] Nicholas Kushmerick. Wrapper induction: Efficiency andexpressiveness.
Artificial Intelligence, 118:15–68, 1999.

[75] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling sequence

162

data. InProceedings of the Eighteenth International Conference on Machine
Learning, pages 282–289. Morgan Kaufmann, 2001.

[76] Corrin Lakeland. Part of speech tagging in statistical parsing. In M. Jason-
Smith, A. Renaud, and T. Wright, editors,Proceedings of the New Zealand
Computer Science Research Students’ Conference, pages 138–139, April
2001.

[77] Leslie Lamport.LATEX: A Document Preparation System: User’s Guide and
Reference Manual. Addison–Wesley, Massachusetts, USA, 1986.

[78] Christophe Laprun, Jonathan G. Fiscus, Sylvain Pajot, and John Garofolo.
A practical introduction to ATLAS. InHuman Language Technology, San
Diego, California, USA, 24–27 March 2002.

[79] Steve Lawrence and C. Lee Giles. Searching the World WideWeb. Science,
280(5360):98–100, 1998.

[80] Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digitallibraries and au-
tonomous citation indexing.IEEE Computer, 32(6):67–71, 1999.

[81] Steve Lawrence and Lee Giles. Accessibility of information on the web.
Nature, 400:107–109, 1999.

[82] T. R. Leek. Information extraction using hidden Markov models. Master’s
thesis, University of California, San Diego, USA, 1997.

[83] Douglas B. Lenat. CYC: A large-scale investment in knowledge infrastruc-
ture. Communications of the ACM, 38(11):33–38, 1995.

[84] D. D. Lewis. Evaluating Text Categorization. InProceedings of Speech and
Natural Language Workshop, pages 312–318. Morgan Kaufmann, 1991.

[85] Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul Vit́anyi. The similarity metric.
In Proceedings of the Fourteenth Annual Symposium on DiscreteAlgorithms,
pages 863–872, Baltimore, MD, 12–14 January 2003. ACM/SIAM.

[86] Ming Li and Paul M. B. Vitanyi.An Introduction to Kolmogorov Complexity
and Its Applications. Springer, Berlin, Germany, 1993.

[87] Hokon Wium Lie and Bert Bos.Cascading Style Sheets, level 1. The World
Wide Web Consortium (W3C), 17 December 1996.

[88] Jean loup Gailly.gzip v1.0, 1993. UNIX Manual page.

[89] Cláudio L. Lucchesi and Tomasz Kowaltowski. Applications of finite au-
tomata representing large vocabularies.Software—Practice and Experience,
23(1):15–300, January 1993.

[90] Helmut Lucke. Which stochastic models allow Baum-Welch training. IEEE
Transactions on Signal Processing, 44(11):2746–2756, November 1996.

163

[91] Hans Peter Luhn. A statistical approach to mechanised encoding and search-
ing of literary information.IBM Journal, pages 309–317, October 1957. Pre-
sented at the American Chemical Society meeting in Miami, April 8 1957.

[92] Hans Peter Luhn.Modern Trends in Documentation, chapter Auto-Encoding
of Documents for Information Retrieval Systems, pages 45–58. Pergamon
Press, London, England, 1959.

[93] Clifford Lynch. The battle to define the future of the bookin the digital
world. First Monday, 6(6), June 2001.

[94] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-
ing a large annotated corpus of English: The Penn Treebank.Computational
Linguistics, 19(2):313–330, 1994.

[95] Diana Maynard, Kalina Bontcheva, Horacio Saggion, Hamish Cunningham,
and Oana Hamza. Using a text engineering framework to build an extendable
and portable IE-based summarisation system. InProceedings of the ACL
Workshop on Text Summarisation, 2002.

[96] Andrew McCallum, Dayne Freitag, and Fernando Pereira. Maximum en-
tropy Markov models for information extraction and segmentation. InPro-
ceedings of the Seventeenth International Conference on Machine Learning,
pages 591–598. Morgan Kaufmann, 2000.

[97] Katherine J. McGowan. Efficient phrase hierarchy inference. Master’s thesis,
University of Waikato, Hamilton, New Zealand, 2002.

[98] Geoffrey J. McLachlan and Thriyambakam Krishnan.The EM Algorithm
and Extensions. Probability and Statistics. John Wiley & Sons, Indianapolis,
Indiana, USA, 1996.

[99] John G. McMahon and F. Jack Smith. A review of statistical language pro-
cessing techniques.Artificial Intelligence Review, 12(5):347–391, 1998.

[100] Rodger J. McNab, Ian H. Witten, and S. J. Boddie. A distributed digital li-
brary architecture incorporating different index styles.In Forum on Research
and Technology Advances in Digital Libraries, pages 36–45, Santa Barbara,
California, 1998. IEEE Computer Society Press, Los Alamitos.

[101] F. Mittelbach, M. Goossens, Braams, Carlisle, and Rowley. The LATEX Com-
panion. Addison–Wesley, second edition, 2004.

[102] Alistair Moffat, Timothy C. Bell, and Ian H. Witten. Lossless compres-
sion for text and images.International Journal of High-Speed Electronics,
8(1):179–231, 1997. Special issue on Signal Compression.

[103] Alistar Moffat. Lossless compression.The Computer Journal, 40(2/3):65–
66, 1997. Special Issue on Lossless Compression, Editorial.

164

[104] Mehryar Mohri and Michael Riley. Weighted determinization and minimiza-
tion for large vocabulary speech recognition. InProceedings of the Fifth Eu-
ropean Conference on Speech and Communication Technology, pages 131–
134, Rhodes, Greece, 1997.

[105] Manijya Rao Muddamalle. Natural language versus controlled vocabulary in
information retrieval: A case study in soil mechanics.Journal of the Ameri-
can Society for Information Science, 49(10):881–887, 1998.

[106] Un Yong Nahm, Mikhail Bilenko, and Raymond J. Mooney. Twoapproaches
to handling noisy variation in text mining. InInternational Conference on
Machine Learning Text Learning Workshop, pages 18–27, Sydney, Australia,
July 2002.

[107] Theodor H. Nelson.Computer Lib. Microsoft Press, Redmond, Washington,
1987. ‘Dream Machines’ by the same author in the same volume.

[108] Network Development and MARC Standards Office, Libraryof Congress.
MARC 21 Format for Bibliographic Data: Field List, 1999 english edition,
1999.

[109] Craig G. Nevill-Manning, T. Reed, and Ian H. Witten. Extracting text from
PostScript. Working Paper 97/10, Department of Computer Science, Univer-
sity of Waikato, April 1998.

[110] David M. Nichols, Kirsten Thomson, and Stuart A. Yeates. Usability and
open-source software development. In Elizabeth Kemp, ChrisPhillips, Kin-
shuk, and John Haynes, editors,Symposium on Computer Human Inter-
action, pages 49–54, Palmerston North, New Zealand, 6 July 2001. ACM
SIGCHI NZ.

[111] Joseph Z. Nitecki.Metalibrarianship: A Model for Intellectual Foundations
of Library Information Science. Published by Joanne Twining Williams at
the Texas Woman’s University, 1993. Volume 1 of the Nitecki Trilogy.

[112] Library of Congress.Library of Congress Classification Outline. Library of
Congress, 1990.

[113] David D. Palmer and John D. Burger. Chinese word segmentation and in-
formation retrieval. InProceedings of the Symposium on Cross-Language
Text and Speech Retrieval. American Association for Artificial Intelligence
Conference, 1997.

[114] Steven Pemberton, Daniel Austin, Jonny Axelsson, Tantek Celik, Doug Do-
miniak, Herman Elenbaas, Beth Epperson, Masayasu Ishikawa,Shin’ichi
Matsui, Shane McCarron, Ann Navarro, Subramanian Peruvemba, Rob Re-
lyea, Sebastian Schnitzenbaumer, and Peter Stark.XHTML—The Extensible
HyperText Markup Language—A Reformulation of HTML 4 in XML 1.0. The
World Wide Web Consortium, 1.0 edition, August 2002.

165

[115] Fuchun Peng, Fangfang Feng, and Andrew McCallum. Chinese segmentat-
ion and new word detection using conditional random fields. In Proceedings
of The 20th International Conference on Computational Linguistics, Geneva,
Switzerland, 23–27 August 2004.

[116] Fuchun Peng and Dale Schuurmans. Self-supervised Chinese word segment-
ation. Lecture Notes in Computer Science, 2189:238–248, 2001.

[117] Jay M. Ponte and W. Bruce Croft. USeg: a retargetable wordsegmentation
procedure for information retrieval. InSymposium on Document Analysis
and Information Retrieval, 1996.

[118] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition.Proceedings of the IEEE, 77(2):257–286,
February 1989.

[119] Martin Rajman and Romaric Besanon. Text mining knowledgeextraction
from unstructured textual data. InProceedings of the Sixth Conference of
International Federation of Classification Societies, Rome, Italy, 1998.

[120] R. Rosenfeld. A maximum entropy approach to adaptive statistical language
modeling.Computer, Speech and Language, 10:187– 228, 1996.

[121] M. S. Ryan and G. R. Nudd. The Viterbi algorithm. Warwick Research Re-
port RR238, Computer Science, University of Warwick, Coventry,England,
12 February 1993.

[122] Gerard Salton.Automatic Text Processing: The transformation, Analysis,
and Retrieval of Information by Computer. Addison–Wesley, Massachusetts,
USA, 1989.

[123] Dieter Scheffner and Johann-Christoph Freytag. The xml query execution
engine (xee). Technical Report hub-ib-157, Humboldt University Berlin,
Berlin, Germany 2001.

[124] Julian Seward.bzip2 v1.0. UNIX Manual page.

[125] Kristie Seymore, Andrew McCallum, and Ronald Rosenfeld.Learning hid-
den Markov model structure for information extraction. InProceedings of
the Sixteenth National Conference on Articial Intelligence:Workshop on
Machine Learning for Information Extraction, pages 37–42, Orlando, FL,
1999.

[126] Claude Elwood Shannon and Warren Weaver.The Mathematical Theory of
Communication. The University of Illinois Press, Urbana, Illinois, USA,
1964.

[127] Dmitry Shkarin. Ppm: One step to practicality. In James A. Storer and Martin
Cohn, editors,Proceedings of the 12th Data Compression Conference, pages
202–210. IEEE Press, 2002.

166

[128] John Simpson, editor.Oxford English Dictionary (Online edition). Oxford
University Press, Oxford, England, 2002.

[129] Tony C. Smith.N-gram Models of Agreement in Language. PhD thesis, Com-
puter Science Department, University of Waikato, Hamilton, New Zealand,
2001.

[130] C.M. Sperberg-McQueen and Lou Burnard.Guidelines for Electronic Text
Encoding and Interchange. Association for Computers and the Humanities
Association for Computational Linguistics and Associationfor Literary and
Linguistic Computing, Chicago, USA and Oxford, England.

[131] James A. Storer and Martin Cohn, editors.Data Compression Conference,
Snowbird, Utah, USA, 28–30 March 2000. IEEE.

[132] James A. Storer and Martin Cohn, editors.Data Compression Conference,
Snowbird, Utah, USA, 27–29 March 2001. IEEE.

[133] William J. Teahan.Modelling English Text. PhD thesis, Department of Com-
puter Science, University of Waikato, Hamilton, New Zealand, May 1998.

[134] William J. Teahan. An improved interface for probabilistic models of
text. Technical report, School of Computer and MathematicalSciences, The
Robert Gordon University, 2000.

[135] William J. Teahan and John G. Cleary. Tag based models ofEnglish text. In
Storer and Cohn [132], page 582.

[136] William J. Teahan and D. J. Harper. Combining PPM modelsusing a text
mining approach. In Storer and Cohn [131], pages 153–162.

[137] William J. Teahan, Yingying Wen, Roger McNab, and Ian H.Witten. A
compression-based algorithm for Chinese word segmentation. Computa-
tional Linguistics, 26(3):375–393, September 2000.

[138] The Unicode Consortium.The Unicode Standard—Worldwide Character
Encoding. Addison-Wesley, 1992.

[139] Michael B. Twidale, David M. Nichols, and Chris D. Paice.Browsing is a
collaborative process.Information Processing and Management, 33(6):761–
783, 1997.

[140] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptot-
ically optimal decoding algorithm.IEEE Transactions on Information The-
ory, 13:260–269, 1967.

[141] Andrew J. Viterbi and J. K. Omura.Principles of Digital Communication
and Coding. McGraw–Hill, 1979.

167

[142] Ellen M. Voorhees and Donna K. Harman. Overview of the fifth text retrieval
conference. InProceedings of the Fifth Text REtrieval Conference, pages 1–
28, Gaithersburg, Maryland, USA, 20–22 November 1996. National Institute
of Standards and Technology.

[143] Ellen M. Voorhees and Donna K. Harman. Overview of the tenth text re-
trieval conference. InProceedings of the Tenth Text REtrieval Conference,
pages 1–17, Gaithersburg, Maryland, USA, 13–16 November 2001. National
Institute of Standards and Technology.

[144] Yingying Wen. Text mining using HMM and PPM. Master’s thesis, Com-
puter Science, University of Waikato, Hamilton, New Zealand, July 2001.

[145] Ian H. Witten. Applications of lossless compression in adaptive text mining.
In Proc 2000 Conference on Information Sciences and Systems 2, pages 13–
18, Princeton, USA, March 2000.

[146] Ian H. Witten and Timothy C. Bell. The zero-frequency problem: Estimating
the probablitiies of novel events on adaptive text compression. IEEE Trans-
action of Information Theory, 37(4):1085–1094, 1991.

[147] Ian H. Witten and Stefan Boddie.Greenstone Digital Library Users Guide.
Digital Library Laboratory, University of Waikato, Hamilton, New Zealand,
2003.

[148] Ian H. Witten, Zane Bray, Malika Mahoui, and William J. Teahan. Using
language models for generic entity extraction. InProceedings of the Interna-
tional Conference on Machine Learning Workshop on Text Mining, 1999.

[149] Ian H. Witten and Eibe Frank.Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann, San
Francisco, 1999.

[150] Ian H. Witten, Rodger J. McNab, Steve Jones, Mark Apperley, David Bain-
bridge, and Sally Jo Cunningham. Managing complexity in a distibuted dig-
ital library. IEEE Computer, 32(2):6, Feburary 1999.

[151] Ian H. Witten, Alistair Moffat, and Timothy C. Bell.Managing Gigabytes —
Compressing and Indexing Documents and Images. Morgan Kaufmann, 2nd
edition, 1999.

[152] Ian H. Witten, R. M. Neal, and John G. Cleary. Arithmetic coding for data
compression.Communications of the ACM, 30(6):520–540, June 1987.

[153] Ian H. Witten, Craig G. Nevill-Manning, Rodger J. McNab,and Sally Jo
Cunningham. A public library based on full-text retrieval.Communications
of the Association for Computing Machinery, 41(4):71–75, April 1998.

[154] Lauren Wood. Document object model (dom) level 1 specification. Technical
report, World Wide Web Consortium (W3C), 1 October 1998.

168

[155] World Wide Web Consortium.XSL Transformations (XSLT), version 1.0
edition, 16 November 1999.

[156] The World Wide Web Consortium (W3C).RDF/XML Syntax Specification,
10 February 2004.

[157] Dekai Wu and Pascale Fung. Improving chinese tokenization with linguistic
filters on statistical lexical acquisition. InProceedings of the Fourth ACL
Conference on Applied Natural Language Processing, Stuttgart, Germany,
13–15 October 1994.

[158] Stuart Yeates. Automatic extraction of acronyms fromtext. In Stuart Yeates,
editor, Third New Zealand Computer Science Research Students’ Confer-
ence, pages 117–124, Hamilton, New Zealand, April 1999. University of
Waikato.

[159] Stuart Yeates.Colloquial Entropy Markup (CEM) Documentation. Univer-
sity of Waikato, javadoc package edition, 2005.

[160] Stuart Yeates, David Bainbridge, and Ian H. Witten. Using compression to
identify acronyms in text. In Storer and Cohn [131], page 582.A longer
version of this appears as [161].

[161] Stuart Yeates, David Bainbridge, and Ian H. Witten. Using compression to
identify acronyms in text. Working Paper 00/01, Departmentof Computer
Science, University of Waikato, Hamilton, New Zealand, January 2000. A
short version of this appears as [160].

[162] Stuart Yeates and Ian H. Witten. On tag insertion and its complexity. In
Ah-Hwee Tan and Philip Yu, editors,International Workshop on Text and
Web Mining: Pacific Rim International Conference on Artificial Intelligence
2000, pages 52–63, Melbourne, Australia, 28 August 2000.

[163] Stuart Yeates, Ian H. Witten, and David Bainbridge. Taginsertion complex-
ity. In Storer and Cohn [132], pages 243–252.

[164] Stuart A. Yeates. The relationship between hidden markov models and pre-
diction by partial matching models. InEighth Annual New Zealand Engi-
neering and Technology Postgraduate Conference, Hamilton, New Zealand,
30–31 August 2001. University of Waikato.

[165] Jeonghee Yi and Neel Sundaresan. Mining the web for acronyms using
the duality of patterns and relations. InProceedings of the Second Inter-
national Workshop on on Web Information and Data Management, pages
48–52, Kansas City, Missouri, USA, November 2–6 1999. ACM.

[166] Steve J. Young. The HTK Hidden Markov model ToolKit: Design and phi-
losophy. Technical Report CUED/F-INFENG/TR.152, Departmentof Engi-
neering, Cambridge University, September 1994.

169

[167] Shilong Yu, Shuanhu Bai, and Paul Wu. Description of theKent Ridge digital
labs system used for muc-7. InProceedings of the Fifth Workshop on Very
Large Corpora, 1997.

[168] Xiaodan Zhu, Mu Li, Jianfeng Gao, and Chang-Ning Huang.Single char-
acter chinese named entity recognition. InSecond SIGHAN Workshop on
Chinese Language Processing, Sapporo, Japan, 7–12 July 2003.

[169] George Kingsley Zipf. Human behavior and the principle of least effort;
An introduction to human ecology. Addison–Wesley, Massachusetts, USA,
1949. Republished 1965.

170

Appendix A
Corpora Samples

This appendix contains samples from each of the corpora discussed in Chapter 5
and used throughout this thesis. For reasons of space, documents have been
abbreviated, an ellipsis marks a point at which content has been removed. All
documents are presented after preparation rather than in the state in which they
were received.

A.1 Computists’ Corpus

The following is an issue from the Computists’ corpus. The corpus is described in
Section 5.1.

<issue>
AI Vol. 8, No. 1.1
IS<d>January 6, 1998</d>

CS<s>THE COMPUTISTS’ COMMUNIQUE</s>
"Careers beyond programming."
1>> <o>NSF</o>news.
2>> Other funding.
3>> Career jobs.

In the beginning the Universe was created. This has made
a lot of people very angry and been widely regarded as a bad move.
– <n>Douglas Adams</n>. [<s>QotD</s>, <d>16Oct97</d>.]
Greetings, Computists!
The<s>Computists’ Communique</s>will now arrive three times
<d>per week</d>, on Tuesdays, Wednesdays, and Thursdays. Issues
will be shorter, for easy reading, and may vary a bit in length.
Part of each Wednesday issue will be a table of contents for
<d>that day</d>’s CAJ jobs digest. (You can request the digest issue
if you see an interesting opportunity.) I’m reducing the number
of <d>publication weeks</d>to 40 (or 120 issues!), to give me more time
for Web work and other activities. That means there will be
about<d>one week</d><d>each month</d>with no<s>Communique</s>s, usually
with
a holiday or at the end of<d>the month</d>. All to serve you better,
of course, but do get in touch with me if you have suggestions
about the changes.
Membership fees will hold steady at<d>last year</d>’s level,
but with a new"departmental rate" for groups of up to five

171

participants. At<m>$195</m>per year (or half of that outside the<l>US</l>),
it should be attractive to lab directors and other group leaders.
(Please circulate copies of the<s>Communique</s>to the appropriate
people. They can write to me or visit <<u>http://www.computists.com</u>>
to check out the service.) Members may offer<d>two-month</d>

free trials to friends, or<d>three-month</d>free trials
(excluding their own dues) for groups.
My wife<n>Lily</n>will be taking over some of the renewal
billing communication, and will be getting in touch with you.
The captain is on holiday, but his"cool job of<d>the week</d>"
should return in<d>a week</d>or two. (Sometimes he just doesn’t
find a cool enough job.) We’re taking care of business,
so have a fun and prosperous<d>new year</d>!
1>> <o>NSF</o>news:
<o>NSF</o>’s Awards for the Integration of Research and Education
at Baccalaureate Institutions program will make 10-20 awards of
up to<m>$500K</m>. Eligibility is restricted to Carnegie Classification
Baccalaureate I and II institutions and Specialized Technical
institutions that award only baccalaureate degrees. Deadlines
are<d>04Feb98</d>for letters of intent,<d>17Mar98</d>for preliminary
applications, and<d>17Jun98</d>for full applications.
< <u>http://www.nsf.gov/od/osti</u>>. [<s>grants</s>, <d>23Dec97</d>.]
<o>NSF</o>’s CISE and ENG directorates have a Combined
Research-Curriculum Development (CRCD) Program to support
dynamic, relevant engineering and CS/IS education.
<d>31Mar98</d>deadline.
< <u>http://www.nsf.gov/cgi-bin/getpub?nsf9838</u>>.
[<n>Maria Zemankova</n>< <e>mzemanko@nsf.gov</e>>, <s>dbworld</s>,
<d>30Dec97</d>.]
...
I have been poor and I have been rich. Rich is better.
– <n>Sophie Tucker</n>, American singer. [<s>DailyQuote</s>,
<d>02Jan98</d>.]
</issue>

172

A.2 Bibliography Corpus

The following is a bibliography from the bibliography corpus. The corpus is
described in Section 5.2.

<bibliography xsi:schemaLocation="http://www.greenstone.org"
filename="/research/say1/bib/tmpbib files/graphics/2748.bib"><plain><bibproc>
<p></p>References
<p></p>[1] <bibbody><article><author><name><first>Till
B.</first><last>Anders</last></name>and
<name><first>Wolfgang</first><last>Jachmann.</last></name></author><title>Cross
sections with polarized spin-1over2 particles in terms of helicity
amplitudes.</title><journal><emphasis>Journal of Mathematical
Physics,</emphasis></journal><volume>24</volume>(<number>12</number>):<pages>2847-
2854,</pages><date><month>December</month><year>1983</year></date>.</article></bibbody>
<p></p>[2] <bibbody><article><author><name><first>V.
G.</first><last>Bagrov,</last></name><name><first>V.
V.</first><last>Belov,</last></name>and<name><first>I.
M.</first><last>Ternov.</last></name></author><title>Quasiclassical
trajectory-coherent states of a particle in an arbitrary electromagnetic
field.</title><journal><emphasis>Journal of Mathematical
Physics,</emphasis></journal><volume>24</volume>(<number>12</number>):<pages>2855-

2859,</pages><date><month>December</month><year>1983</year></date>.</article></bibbody>
. . .
<p></p>[25] <bibbody><article><author><name><first>W.
M.</first><last>Zheng.</last></name></author><title>The Darboux
transformation and solvable double-well potential models for Schrodinger
equations.</title><journal><emphasis>Journal of Mathematical
Physics,</emphasis></journal><volume>25</volume>(<number>1</number>):<pages>88-
90,</pages><date><month>January</month><year>1984</year></date>.</article></bibbody>
<p></p>Page<pagematter>2 </pagematter>
</bibproc></plain></bibliography>

If the output is indented to show the full structure, it appears as:

<bibliography xsi:schemaLocation=”http://www.greenstone.org” file-
name=”/research/say1/bib/tmpbib files/graphics/2748.bib”>

<plain>

<bibproc>

<p> </p> References

<p> </p> [1]
<bibbody>
<article>

<author>

173

<name>
<first> Till B.</first>
<last> Anders</last>

</name> and
<name>
<first> Wolfgang</first>
<last> Jachmann.</last>

</name>
</author>
<title> Cross

sections with polarized spin-1over2 particles in
terms of helicity amplitudes.</title>

<journal>
<emphasis> Journal of Mathematical

Physics,</emphasis>
</journal>
<volume> 24</volume> (
<number> 12</number>):
<pages> 2847-2854,</pages>
<date>
<month> December</month>

<year> 1983</year>
</date> .</article>

</bibbody>

<p> </p> [2]
<bibbody>
<article>

<author>
<name>
<first> V. G.</first>
<last> Bagrov,</last>

</name>
<name>
<first> V. V.</first>
<last> Belov,</last>

</name> and
<name>
<first> I. M.</first>
<last> Ternov.</last>

</name>
</author>

<title> Quasiclassical trajectory-coherent states of
a particle in an arbitrary electromagnetic field.</title>

<journal>
<emphasis> Journal of Mathematical Physics,</emphasis>

174

</journal>
<volume> 24</volume> (
<number> 12</number>):
<pages> 2855-

2859,</pages>
<date>
<month> December</month>
<year> 1983</year>

</date> .</article>

</bibbody>

. . .

<p> </p> [25]
<bibbody>
<article>

<author>
<name>
<first> W. M.</first>
<last> Zheng.</last>

</name>
</author>
<title> The Darboux transformation

and solvable double-well potential models for
Schrodinger equations.</title>

<journal>
<emphasis> Journal of Mathematical

Physics,</emphasis>
</journal>
<volume> 25</volume> (
<number> 1</number>):
<pages> 88-90,</pages>
<date>
<month> January</month>
<year> 1984</year>

</date> .</article>

</bibbody>

<p> </p> Page
<pagematter> 2

</pagematter>
</bibproc>
</plain>

</bibliography>

175

A.3 Segmentation Corpus

The following is a single document from the segmentation corpus. Whitespace
appearing here is a side-effect of layout, the only whitespace in the original file is a
terminal EOL. The corpus is described in Section 5.3.

<document>
<word> 假</word> <word> 晶华</word> <word>
饭店</word> <word> 举行</word> <word>
颁奖</word> <word> 典礼</word> <word>
，到底</word> <word> 真相</word> <word>
如何</word> <word> 呢</word> <word>
？一</word> <word> 、</word> <word>
资格</word> <word>
：丁肇中</word> <word>
院士</word> <word> 即</word> <word> 因</word>
<word> 首先</word>
...
</document>

176

A.4 Reuters’ Corpus

The following is a single document from the Reuters’ corpus. The corpus itself is
described in Section 5.4.

<document> <NNP> PDCP</NNP> <NNP> Development</NNP> <NNP>

Bank</NNP> <VBD> said</VBD> <IN> on</IN> <NNP> Thursday</NNP>

<PRPSTRING> its</PRPSTRING> <NN> board</NN> <VBD> approved</VBD>

<DT> the</DT> <NN> issue</NN> <IN> of</IN> <CD> one</CD> <CD>

billion</CD> <NN> pesos’</NN> <JJ> worth</JJ> <IN> of</IN> <JJ>
convertible</JJ> <JJ> preferred</JJ> <CD> shares.</CD>

<DT> The</DT> <NNS> proceeds</NNS> <IN> of</IN> <DT> the</DT> <NN>

issue</NN> <MD> will</MD> <VB> fund</VB> <NN> lending</NN> <NN>

operations,</NN> <NN> computerisation,</NN> <CC> and</CC> <VBG>

refurbishing</VBG> <IN> of</IN> <NN> branch</NN> <NN> offices,</NN>

<PRP> it</PRP> <JJ> said.</JJ>
...
</document>

177

