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Abstract

This thesis describes a new optimisation and new heurfstieaitomatically mark-
ing up XML documents. These are implemented in CEM, using PRMets. CEM
is significantly more general than previous systems, mgrkim large numbers of

hierarchical tags, using-gram models for large and a variety of escape methods.

Four corpora are discussed, including the bibliographypesof 14682 bibli-
ographies laid out in seven standard styles using tB&g® system and marked-
up in XML with every field from the original BTEX. Other corpora include the
ROCLING Chinese text segmentation corpus, the Computists’ Qamgue cor-
pus and the Reuters’ corpus. A detailed examination is ptedesf the methods
of evaluating mark up algorithms, including computatiom@bexity measures and
correctness measures from the fields of information retljetring processing, ma-

chine learning and information theory.

A new taxonomy of markup complexities is established andptioperties of
each taxon are examined in relation to the complexity of m@nkp documents.
The performance of the new heuristics and optimisationasrered using the four

corpora.

Keywords: hidden Markov models, HMM, PPM, Viterbi search, part-oésph

tagging, XML, markup, metadata.






Dedication

To Jacqui,

my trapping state.



Vi



Acknowledgements

Thank you my family, for always being there.

Thank you David, lan, Sally Jo and Matt for guidance, encgenaent and tech-
nical help.

Thank you to the Royal Society of New Zealand for funding tigtothe Mars-
den Fund.

Thank you to Reuters for the use of ‘Reuters Corpus, Volume 1lignan-
guage, 1996-08-20 to 1997-08-19'. Thank you to the ROCLINGIRIfor the
use of the ROCLING corpus. Thank you to Kenneth I. Laws for tke af the
Computists’ Communique.

Thank you to Pauline for handling the long-distance subioriss

Thank you my fellow students Carl, Catherine, Dana, Dave, @&veoff, Gor-
don, Hayley, Imene, Jack, John, Justin, Karl, Kathy, LinMark, Mark, Shane,
Stuart, Yingying, and everyone else in the New Zealand Bligitorary research
group. Thank you to the tutoring, secretarial and techrstzf.

Thank you Aimee, Aliene, Amanda, Andraus, Andrew, Andrewgdg Anne,
Anne, Barry, Belinda, Bill, Bob, Brent, Bret, Carolee, Caroline, €h€hristine,
Christine, Christine, Dale, Dave, Dave, David, David, Deboi2ee, Des, Douglas,
Erin, Erin, Gail Gayle, Gaylene, Georgina, Haylee, langd@&clane, Janice, Jenny,
Jenny, Kay, Kay, Kirsten, Kumar, Lee, Leigh, Leo, Linda, Liandy, Matt, Maz,
Micheal, Murray, Rachel, Rachel, Rachel, Rhonda, Roland, Roam, Sam, Sara,
Sarah, Shauna, Stuart, Sue, Terri, Terry, Terry, Toni, T&gyne, Wendy and
everyone else I've danced with in Christchurch, Hamilton¢land, London and
Oxford during the course of my enrolment.

Thank you to OUCS at Oxford for the use of their resources teHithis thesis.
Thank you to all the RTS crew for their encouragement. ThaakSebastian for
the BTpX and XML help.

vii



viii



Contents

Dedication v
Acknowledgements Vil
Table of Contents Xi
List of Figures Xiv
List of Tables XV
List of Algorithms XVii
1 Introduction 1
1.1 PlanoftheThesis . . . . . . ... . . . . .. . . ... . ...... 4
1.2 ThesisStatement . .. ... .. . . . . . . ... ... 4
2 Background 7
2.1 Thenatureoftext . . ... ... ... .. . . . . . . ... ..... 7
211 Ambiguity .. ... 8
2.1.2 Metadata . ... .. .. . . ... 9
2.2 Extraction of Textual Information . . . . ... .. ... ..... 10
2.2.1 RegularExpressions . .. ... .. ... . ... ..., 10
2.2.2 HandcraftedRules . ... ... ... ... ......... 11
2.2.3 Instance Based Machine Learning . . . . . ... ... ... 11
2.2.4 Information Extraction . . . . ... ... ... ....... 11
2.25 MarkovModelling . .. ... ... ............. 13
2.2.6 Trained versus Handcrafted Models . . . .. ... ... .. 14
2.2.7 Single Step versus Multiple Step Systems . . . . . .. .. 6. 1
2.3 COrrectness . . . . . . . i e 16
2.3.1 RecallandPrecision . .. ... ... ... ......... 17
2.3.2 EditDistance . . . . . ... . . . . ... 18
2.3.3 ConfusionMatrices . . . . . .. . . ... . . ... ... 19
234 Entropy . . . ... 20
2.3.5 Hybrid and Other Measures . . . . ... ... ....... 21
2.4 Efficiency . . . . ... 21
25 XMLTagS . . . . o v oo e e e 22
251 NestedTags . . . . . . .. .. . i i 23
25.2 AttributesofTags. . . . ... ... ... ... .. ..., 24
253 Otherlssues. . . . . . . . . . . . . 24



3 Models and Algorithms 27

3.1 MarkovModels . . . .. ... ... ... 27
3.2 HiddenMarkovModels . . . . ... ... ... ... .. ... ... 28
3.3 HigherOrderModels . . . .. ... ... ... ... ........ 29
3.4 Prediction by Partial Matching . . . . . ... ... .. ....... 33
3.5 GranularityofModels. . . . ... ... ... ... .. .. ..., 41
3.6 SearchinginModels . .. ... .. .. ... ... ... ..., 44
3.7 XMLandUnicode . . .. ... ... . . . ... ... 49
The System 51
41 Metadata . ... .. .. . . . ... e 51
4.1.1 Segmentation . . . .. . .. ... ... 51
4.1.2 Classification . . . ... ... ... ... .......... 53
4.1.3 Entity Extraction . . . .. ... .. ... .. .. ..., 54
4.1.4 Limitationsand Constraints . . . .. .. ... ... .... 55
4.2 Architecture . . . . . . .. 56
421 TheModel . ... ... ... ... .. ... .. ... ... 57
4.2.2 Differences between CEM and other systems . . . . .. .. 60
423 TheSearchTree . ... .. .. ... .. ... ....... 61
424 FullExclusion . . ... ... ................ 62
4.3 Optimisations and Heuristics . . . . . . .. ... ... ...... 3 6
4.3.1 \Viterbi Optimisation . . ... ... ... .. ........ 63
4.3.2 BestFirstOptimisation . . . . ... ... .......... 66
4.3.3 Automatic Tokenisation Heuristic . . . . . ... ... ... 67
4.3.4 AlphabetReduction . .. ... ... ............ 69
4.3.5 Maximum Lookahead Heuristic . . . . .. ... ... ... 69
43.6 TagCHeuristic . .. ... ... ... .. .......... 70
437 StateTying . . . . . . . 70
44 SearchSpace .. .. ... .. .. .. 72
4.4.1 The Semanticsof NestedTags . . . . ... ... ...... 75
45 TeahanSearch. .. .. ... ... ... ... .. .. ... ..., 75
4.6 Evaluation . . . .. ... . ... .. e 77
4.6.1 RecallandPrecision ... ... ... ............ 77
4.6.2 EditDistance . . . ... .. ... .. ... . .o 80
4.6.3 ConfusionMatrices. . . ... .. ... .. ... ...... 81
4.6.4 Type ConfusionMatrices . . . .. ... .. ... ...... 82
4.6.5 ENtropy . . . . . . . . 83
The Text 85
51 Computists’ COrpus . . . . . . . . i 85
5.2 Bibliography Corpus . . . . . .. .. ... .. .. ... .. ..., 87
5.3 Segmentation Corpus . . . . . . . . ... 94
54 Reuters’ Corpus . . . . . . o v i i e e e e 95
Results 97
6.1 PPM-SYversusPPMD . ... ... ................. 97
6.2 COrreCtness . . . . . . . . i i e e 99



6.2.1 Granularity and Heterogeneity . . . . . . .. ...
6.2.2 Computists’Corpus . . . . ... ... ... ...
6.2.3 Bibliography Corpus . . . .. .. ... .......
6.2.4 SegmentationCorpus . . . . . . ... .. ... ..
6.25 Reuters’Corpus . ... .. ... .. ... ...,
6.3 Baum-Welch Re-estimation . . . ... ... .......
6.4 Effectiveness of Optimisations and Heuristics . . . . ...... ..
6.41 BestFirst . ... ... ... ... ... . ...
6.4.2 Automatic Tokenisation . . ... .........
6.4.3 Alphabet Reduction . .. .............
6.4.4 Maximum Lookahead Heuristic . . . ... .. ..
6.45 TagCHeuristic . ... ... ... ..........
6.46 StateTying . ... ... ... .. ... ... ...

7 Conclusions

7.1 Reviewof Aims . . . . .. . .. ... .. ...
7.2 Performance of CEM and the New Techniques . . . . . .
7.3 Impact of Unicode and Document Orientation . . . . . . .
7.4 Limitationsof CEM . . . . . .. ... ... .. .. ...
7.5 Problems Suitable for CEM and Text Augmentation . . . . . ...
7.6 Training CorporaSizes . . . .. .. ... .. ... ....
7.7 Original Contributions . . . . . ... ... ... ......
7.8 OpenQuestions . . . . . ... .. ...

Bibliography

A Corpora Samples

A.l Computists’Corpus . . . . . . . . . . e
A.2 Bibliography Corpus . . . .. ... .. ... ... .....
A.3 SegmentationCorpus . . . . .. . ... ... ...
A4 Reuters’Corpus . . . . . . . ..o

Xi

... . 144
..... 5. 14



Xii



2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4

5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

List of Figures

Segmentation ambiguity in Chinese and Japanese . . . . ..... .
A limerick shown with and without secondary structure .. ... . .

Isomorphismin Markovmodels . . . ... .. ... .. ...

Three representations of the PPMD modelsfmatbbccabca. .

Thee model built fromeabaccbebabe . . . . . . . . . ... ..
Theo model built fromeabaccbebabe . . . . . . . . . ... ..
The expansion step in a Viterbi searclabbacbccbbab.... . . .
The next expansion step in a Viterbi searclaalfbaccbcbbab. .. .
The fourth expansion step in a Viterbi searcleabbaccbcbbab. ..

Schema structures for segmentation and classificataiigms . . .

Schema structure for the bibliography entity extracpooblem

The structure ofaCEM model . . . . . ... ... ......
The structure ofaPPMmodel . . ... ... .........
Viterbi search of a large searchspace . . . . ... ... ...
Viterbi searchfails . .. ... ... ... ... .........
The structure of a hidden Markov model, with state tying ... . .
Teahan and Viterbi search comparison . . . . . ... .. ..
A short quote fromHamlet . . . . ... .. ... .......
Inter-dependencies in a small entity extraction gabl. . . . . .

Corrections in the Computists’ Communique . . . . . . . ..
Data-flow diagram for creating the bibliography coliect . . . .

Schema for the bibliography corpus with all tags

Schema for bibliography corpus with tags used in th|S|£héW|th
Sstatetying) . . . . . ...
Schema for the bibliography corpus without state tying ... . . .

PPMD and PPM-SY in the Computists’ corpus . . . . . . ..
PPMD and PPM-SY in the segmentation corpus . . . . . . .
Correctness for documents in the Reuters’ corpus . . . . . ..
Correctness for the Reuters’corpus . . . . . . ... ... ...
Baum-Welch re-estimation . . . . . ... .. ... ......
Best first in the bibliography corpus (hierarchical) . . . .. . .
Best first in the bibliography corpus (non-hierarchical). . . . .
Best first for varying modelorders . . . . . . ... ... ...
Effect of best first and the number of training documents . .. . .
Effect of tokenisation on a group of hierarchical tags ... . . . .
Effect of tokenisation on a group of non-hierarchieglst . . . . .
Interaction between best first and tokenisation . . . . .. . ..

Xiii

. . 16.

... 98
....9. 9

112
131

... 114
. 116



6.13 The effects of alphabet reduction on finding a single.tag . . . . 130

6.14 The effects of alphabet reduction on finding multipfgsta . . . . . 132
6.15 Lookahead fortheametag . .. ... .. ... ... ....... 135
6.16 Lookahead fortheordtag . . . . . . . . . ... ... ... ..., 136
6.17 The TagC heuristic in the bibliography corpus (hienaal) . . . . 137
6.18 The TagC heuristic in the bibliography corpus (norrdrrehlcal) . 138
6.19 Entropy dropping with increased trainingdata . . . . ...... . . 141

Xiv



2.1

3.1
3.2

4.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

List of Tables

Metadata at different granularities . . . . . .. ... ... ... 10

A variety of linguistic problems tackled with HMMs . . . .... . 28
n-gram models and modelsoforder. . . . . ... ... ... .. 31
Searchspacesize . . .. ... .. . . .. ... ... . 00 75
Confusion matrices for the Computists’ corpus . . . . . . . ... 102
Accuracy for the Computists’ corpus . . . . . . . .. .. .. ... 031
Confusion matrix for the bibliography corpus withowate . . . . . 104
Confusion matrix for the bibliography corpus withte . . . . . . . 106
Type confusion matrix for the bibliography corpus fomysags . . 108
Example of effect of model sizeondefects . . . . . ... .. ... 109
Segmentationof Chinese . . . . . .. ... ... ... ....... 110
Occurrence tables for the Reuters’ corpus . . . . . .. ... . 121
Occurrence tables for the bibliography corpus . . . . . ...... . 125
Interaction betweenerrors . . . ... ... L L 261
Occurrence tables for the Computists’ corpus . . . . . . ... 126
Occurrence tables for the segmentation corpus . . . . . ... . 127
Folders used in alphabetreduction . . . . .. ... ... .. .. 129
Example of effect of lookahead on defects . . . . . .. .. .....134
Lookahead fortheordtag . . . . . .. .. ... ... ....... 136

Type confusion matrices, with and without state tymaufy tags) . 140
Type confusion matrices, with and without state tyiiegv(tags) . . 142

XV



XVi



A WN P

List of Algorithms

The complete search algorithm . . . . . ... .. ... ....... 44
The Viterbi search algorithm . . . . . .. .. ... ... ...... 45
The Teahan search algorithm . . . . . . ... .. ... ....... 46
The Baum-Welch algorithm . . . . . . ... ... ... .. .... 47

XVii



Chapter 1

Introduction

Timely news is in great demand, and the value increases ek is tightly fo-
cused on specific areas of interest to the readers. Ofteeneade interested in

specific organisations, dates and sources, so the fragment:

1997 was a record spending year for computer-industry mergersaaqdisi-
tions, and companies such as Compagq, Dell, IBM, and Hewlett-Packard a

still hot to buy what's left. [Infoworld Electric, 24Dec97. EduP.]

might be considerably more valuable to a reader if the osgdions, dates and

sources of information were marked up with> <d> and<s> tags, respectively:

<d>1997/d>was a record<d>spending yeat/d>for computer-industry
mergers and acquisitions, and companies such <as>Compag/o>,
<o>Dell</o>, <o>IBM</0>, and <o>Hewlett-Packaret/o>are still hot
to buy what's left. ks>Infoworld Electric</s>, <d>24Dec9&/d>.

<s>EduP</s>.]

The extraction of references to company names in parti¢atans the backbone
of systems such ag i nance. yahoo. com which aggregate news from many
hundreds of sources into thousands of tightly focused oaiteg)

Languages such as Chinese and Japanese are usually writteutwivhite-
space segmenting the characters into words. One of the fiesations that must
be performed by many information systems dealing with seghis to augment it

with segmentation information, for example/##&2rERER® IS augmented to

1



SW>IMEB < IW> <W>BR</W> <W>EB</W><W>B < /w><w>EFR</w>, ([ele-
mentary school][building interior][sports][area][cdnsction], i.e. the construction
of an elementary school indoor sports arena). Such segthxiecan then be used
in all the ways that words from a western language can be Bed he tags can
then be discarded to display the text in the original form sedito process the
text in the word-by-word fashion common to most westernrimi@tion systems, or
some combination of the two.

There are many thousands, perhaps many millions, of pemwed academic
papers available on the Internet, each with bibliographicies linking it to other

papers and materials, for example:

Donald E. Knuth. Semantics of context-free languages. Mathematidansys

Theory, 1968, 2(2), 127-145.

A competent researcher or librarian can readily separ#&ettiry into all the parts
necessary to find the document to which it refers. When therecaliections of
thousands of electronic documents, separating these mhamia huge, tedious
and error-prone task. What would be useful would be a systafrtabk the entry

and automatically augmented it as:

<entry>
<author>
<forenames-Donald E</forenames-
<surname-Knuth </surname-.
</author>
<title>Semantics of context-free languagdtle >.
<journal>Mathematical System Thearyjournal>,
<year>1968</year>,
<volume>2</volume>(<number-2</number>),
<pages-127-145</pages-.

<lentry>



Data in such an augmented format could then be used in a nuohlogrera-
tions, including interloaning a copy of the document, refatting the reference for
inclusion in another bibliography, citation analysis amgxying by date.

Digital library software is increasingly interacting witton-computer special-
ists on their own terms. This can be done using generic ated (witness the
success of the slim-line Google interface) or interfaciésred to the domain of the
users or the content. In order to provide this, the digitaidiy needs to know what
those terms are and how they apply to the documents in thectiolhs, whether
they are organisations, dates and sources or authors,aiilédates of publication.
Manual augmentation with this knowledge is typically exgiee, slow and incon-
sistent.

This thesis describes a method for automating text augriemsafor a large
class of problems covering all of these examples. Such tgxtnantation is per-
formed by building models from training text marked-up WKML tags, then us-
ing the models and searching to insert similar tags intonggext that does not
yet contain any tags. Building effective models requiressatgrable volumes of
training text with consistently used tags, and that theningi text be representa-
tive of testing text. The text augmentation described ia thesis covers a broader
range of information than preceding approaches, but idstat than most infor-
mation extraction systems in that all reasoning is finergg@j with no higher-level
or document-level reasoning, limiting the text augmenoteithat can be attempted.

The quality of text augmentation is evaluated by splittingnarked-up corpus
into a set of training documents and a set of testing docwsnaaining a model on
the former; stripping the tags from the latter; augmentimgdtripped testing docu-
ments using the model; and finally comparing the testing a@s as augmented
by the system with the original documents. Several diffeneathods to compare

the augmented document to the original are explored in lieisis.

3



1.1 Plan of the Thesis

Following this introduction, Chapter 2 gives the backgrotmdhe current work,
starting by examining the nature of text and an overview ofhogs of extracting
information from text. Approaches to evaluating the camess and efficiency of
the such extractions are then examined, together with waymnooding extracted
information in XML. Chapter 3 introduces Markov models bdribm text, and
algorithms for search using such models to extract infailonat

Chapter 4 discusses the architecture of the implementedmnsysind examines
the rationale for some of the design choices. It then pressambptimisation and a
number of heuristics, and examines the search spaces efatiffclasses of prob-
lems with respect to these. Chapter 5 introduces the coraaia this thesis.

Chapter 6 sets out the experimental results of the optirisand heuristics
on the corpora. Chapter 7 concludes the thesis with an ovevig¢he research,
a list of the original contributions, and a summary of unam®a questions. The

appendix contains samples from each of the corpora usedsindrk.

1.2 Thesis Statement

Text augmentation is the automated insertion of XML tage sdcuments in the
context of a digital library to make implicit textual infoation accessible to con-

ventional processing.

Text augmentation can be expanded to a larger class of pnshlean
those previously studied. It can be partitioned into thtasses of prob-
lem: segmentation, classification and entity extractioactEclass of
problem has distinctive properties, computational coxiptand types

of failure, necessitating different evaluation methodas.

Markov models and searching can be used to solve these preble

Given the context of their application, there are a numbeapdimisa-
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tions and heuristics which can be used to make these algwritom-

putationally tractable.

Text augmentation is a computational process by which ablamguage text is
augmented by the addition of XML tags to elucidate the imp&tructure. Three
different classes of text augmentation are discussed. 8ash has a structurally
different schema which affects the performance and evaluatf text augmenta-
tion.

Text augmentation is performed using statistical modgltachniques, such as
hidden Markov and PPM models, and using searching algosittarfind a good
augmentation. In the past, text augmentation has beenrpertbusing Teahan
search (see Section 4.5), but in this thesis a variety ofrigtgos is used. Viterbi
search is computationally intractable in many interestaad augmentation situa-
tions, but an optimisation of it, and a number of heuristec#,tcan be exploited,
given the application, to make searching computationasible.

To these ends, this thesis aims to:

1. Examine text augmentation problems, in the large, torgitdo determine
which are susceptible to automated text augmentation aethe@hsome sets

of problems are inherently easier than others.

2. Build a text augmentation system capable of solving at Essvide a range
of problems as existing low-human-input systems, with a@ yeventual

inclusion as part of a digital library system.
3. Locate and/or build corpora to test this system.

4. Find specific heuristics and optimisations which perferetl in relation to a

particular set of augmentation problems.

5. Evaluate both the text augmentation system and the tiesréd optimisa-

tions in the system.



These aims are reviewed in Section 7.1.



Chapter 2

Background

This chapter examines the background to the current workt filooks at the na-
ture of text, various types of ambiguities in natural langgigext and then examines
metadata, namely explicit information about text. Infotimia extraction systems,
whose purpose is to extract metadata from text, are theewgedand various meth-
ods of evaluating such extraction systems are examinedtiegwith methods of
evaluating the correctness and efficiency of such systemally; aspects of XML

and Unicode relevant to text augmentation are surveyed.

2.1 The nature of text

One task in text augmentation is the Chinese text segmemtatablem, the task
of segmenting a stream of Chinese characters into words.abkad often the first
step in Chinese information processing systems, since Ghise®rmally written
without explicit word delimiters. The task is made more tdvading by the fact that
line delimiters may occur anywhere, including betweerehsttn a word or digits in
a number [42].

The task is harder than it appears because Chinese text ig@amisi The text
shown in Figure 2.1(a)(i) (taken from [137]) can be segmeiaie shown in (ii) or
as shown in (iii), meaning ‘I like New Zealand flowers’ andiltd fresh broccol/’
respectively. Similarly the Japanese title shown in Figul€b)(i) (taken from [3])
can be segmented as shown in (ii) or as shown in (iii) meamresident both busi-

ness and general manager’ and ‘president (of) subsidiaiynéss (for) (the proper

7



S R 1 oy MBI & oUW IS
() (i) (iii)

(a) Chinese

#W?ﬁ#?ﬂfﬁ”ﬁ%ﬂm REKm #(_%ﬁﬁ”ﬁ m R ?ﬂ#?*ﬁg) W ZEHm
i i ii

(b) Japanese

Figure 2.1: Examples of segmentation ambiguity in eastrAlsiaguages.

name) Tsutomu, general manager’ respectively. Since disi$ four nouns and
thus identical from the point of view of a part of speech syst# is a particularly

ambiguous situation.

2.1.1 Ambiguity

Segmentation ambiguity is not confined to Asian languagelserd is a widely

circulated joke featuring sentence segmentation amlyiguiEnglish:

Dear John: | want a man who knows what love is all about. You are
generous, kind, thoughtful. People who are not like you atimbeing
useless and inferior. You have ruined me for other men. Iryéar
you. | have no feelings whatsoever when we're apart. | carobevér

happy—uwill you let me be yours? Gloria

and

Dear John: | want a man who knows what love is. All about you are
generous, kind, thoughtful people, who are not like you. Adobeing
useless and inferior. You have ruined me. For other men, rinyeeor
you, | have no feelings whatsoever. When we're apart, | camoteér

happy. Will you let me be? Yours, Gloria



There is an entire class of English expression, double dreemhich exploits
ambiguity of meaning [128]. This ambiguity is resolved gstontext—the style
and genre of a piece of text. A sentence with two possible mgarhas the more
risqué meaning if it appears in a Blackadder [38] script and hasebe isqé of
the two if it appears in a Reuters’ dispatch. There are alsodasf text in which
resolving ambiguity of meaning is not possible, a well-kmasxample of which is
Lewis Carroll's poem ‘Jabberwocky’.

Ambiguity resolution using context is an example of what moWwn in arti-
ficial intelligence as ‘common sense reasoning’. It is knaderbe difficult for
computers to resolve such ambiguity, with the difficultynlyiin the wide range
of world-knowledge and subtle reasoning that humans uselt@ shis class of
problem [107].

Partly to reduce the need for ambiguity resolution, the whetming majority
of text mining is performed on collections of text with umnifio style and genre.
Uniformity of linguistic style highlights the patterns asttuctures within the text

and the uniformity of genre ensures that the patterns havsaime meanings.

2.1.2 Metadata

Metadata means ‘a set of data that describes and gives datbather data’ [128].
Usually at the granularity of the document (the catalogueyedior a book or the
title and author of a web page), metadata can be at the chataeel [5] or cover
entire collections of documents (Table 2.1). In many systamd standards much
of the metadata is stored at the document level, even thdauglay apply to the
collection, section or even character level, because shilse level at which most
processing, storage, licensing, retrieval and transomsgperations take place. The
RDF standard [156] is notable for granularity independeaddressing, individual
tags (elements), documents or collections of documents.

This thesis centres on fine-grained metadata, at the ckamod word levels,



\ Granularitw Relevant metadata ]

Collection | Scope; purpose; coverage; copyright; maintenance status;
maintainer contact details;

Document | Author; title; date of publication; subject classification;
Section Topics; cross references;

Sentence | Semantic meanings;

Word Part of speech; glossary links; dictionary links; collation
order;

Character | Encoding; reading direction; case;

Table 2.1: Metadata at different granularities.

and how such metadata can be inferred from, and then andotdte the text it-
self. This process of augmenting the text is referred toxdsaiggmentation. It has
been previously called ‘tag insertion’ [136, 135], but thehor believes thatext

augmentationbetter portrays the action and intent of the process.

2.2 Extraction of Textual Information

A wide range of distinct approaches and many hybrid ones haee used to ex-
tract fine-grained information from text for various purpss This section reviews
several of them, including regular expressions, machiamieg and information
extraction. The following section examines how to measheecbrrectness of the

extraction.

2.2.1 Regular Expressions

Regular expressions are compact representations of a setngfsswhich can be
converted into a finite-state machine. The machine can @ffilyi recognise in-
stances of the set of strings within a stream of text. These&lrelationship to the
well-studied field of formal language parsing has led to tHe¥ng well under-
stood [2].

Regular expressions are the tool of choice for extractingrimétion with an

exact and precise format, such as email addresses, po%, aates and the like.
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They are, however, fragile in the face of mistakes, ambyoauriid stylistic variations

in the text.

2.2.2 Handcrafted Rules

Handcrafted rules or templates can also be used to extfactmation from text.
These typically involve searching for short fragments af t& regular expressions
within text, with each rule processed in order of precedendefortunately, sys-
tems of handcrafted rules can be complex and fragile in tbhe ¢&hanging input
data. They also scale poorly with the number classes ofrimdition being extracted,
particularly when there is a requirement that rules do netlap.

These systems typically can consider large windows andpally have access
to ‘out of band’ sources of information such as dictionaaesl name lists [17, 1,

74].

2.2.3 Instance Based Machine Learning

Instance based machine learning is a field concerned phméth classifying in-
stances into classes. Machine learning can be appliedttfi#], but requires that
the text be pre-segmented into instances, potentiallypdpsignificant information
and/or leading to large instances.

Machine learning handles noise and ambiguity significanélter than regular
expressions. Mis-classified instances, once detectedyecadded incrementally to
the training instances, allowing an existing model to benegfiand improved. The

widely-used Brill tagger [28] uses this approach as a prinnaeyhod.

2.2.4 Information Extraction

The field of information extraction typically involves mu#itep systems that first

extract atoms from text (using regular expressions, plaspeech tagging, etc.) and
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then use higher-order reasoning to solve ‘real world’ peats. The Text REtrieval
Conferences series (TREC) [53, 54, 142, 143] is built round rtetxteval tasks
and the Message Understanding Conferences (MUC) and Doclumdetstanding
Conferences (DUC) are built around competitions betweeresyst The intent is
to focus research and systems development towards spknifiwn targets.

MUC Named Entity [35] problems centre on the extraction ajgar nouns
(e.g. company names), often with subsidiary informatiag.(emarket symbols or
addresses) from stylised information sources, typicadlws articles such as the
Reuters’ corpus. The problems set in the MUC tracks explicguired the ex-
traction of facts from the texts into a separate databassasbquent higher-order
reasoning about those facts, in two separate systems. Maolyé multiple steps,
such as sentence and word segmentors, part-of-speechsalggeothesis genera-
tors, hypothesis evaluators and disambiguators [167].

The systems include many opportunities for encoding hafita or externally
curated domain knowledge, from the notion of the word embddd the word seg-
mentors, to domain-specific word lists used in the partpafesh tagger and hand-
crafted heuristics for template filling. Word lists incluligts of first names, cor-
porate names, colleges and universities, corporate ssiffixees and dates, world
regions and state codes [23]. Many of the systems use tranoeléls, either learnt
rules or Markov models, but only for an individual step of\sog the problem.

Many of these systems and corpora suffer from proper-nousicanty errors
(see Sections 2.1.1 and 5.1). Methods employed to overdoerenbiguity include
leveraging company and personal titledr (Ltd andCorp.) [22]) and deeper parsing
to detect structures such as standard formatting of platesa

The GATE system is a Java GUI framework for linguistic engmnay. It incor-
porates a wide variety of tools for using hand- or tool-gatent rules, and regular
expressions and links to gazetteers of cities and orgamsatTesting and evalua-

tion tools are included for classification problems. GATEuUses on the inclusion
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of extra-textual information:gazetteers, word-listamgmars and similar, and their
interactive development to solve particular problems.ldbdas tools for higher-
level reasoning about text§37, 22, 95]. GATE'’s choice to have a GUI enables it
to allow display and input of multiple texts and scripts: 2& supported.

Citeseer [80] uses a two-stage approach, with an edit distaratric to merge
similar references across the entire collection and thearacrafted ‘invariants
first’ heuristic that parses those parts of the referench thi¢ fewest differences
first and uses standard machine learning on them. The systésmable to leverage
two extra-document sources of information, tables of commestern personal
names and repetition of the same reference (often in sliglifterent form) in mul-
tiple documents. Citeseer does not parse the diversity afsfislat occur in the
bibliography corpus, instead focusing on the title and auttelds which are also
extracted from the start of documents and which link mostyetsexternal sources
in the bibliography at the end. The public interface of thee€ater system allows
end-users to correct the extracted fields and add the missieg. It is not clear

whether feedback from these corrections is applied to tleenal algorithms.

2.2.5 Markov Modelling

A number of systems and approaches have used Markov mod=dgaat informa-
tion from, or add information to, text. The early Xerox tagf#0, 39] uses hidden
Markov models and Viterbi search to good effect, but handleseen words and
novel contexts poorly.

Built using arithmetic encoder [102] models, one for ‘goaKitand one (called
a ‘confusion model’ [36]) for errors, the TMT (Text ModeltnToolkit) and later
SMI (Statistical Modelling Interface) systems [134, 36hcarrect errors in text and
classify textual fragments [133, 26]. With a large numbeotions and supporting

a wide range of static and adaptive models, SMI is entirepabé of solving the

Yhttp://gate. ac. uk/
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news and Chinese examples given in the opening Chapter, biltenbibliographic
example, because SMI models are not recursive; they caepgent a hierarchy
of textual fragments.

Arithmetic encoder models provide slightly more inforneatthan conventional
Markov models, providing an ordering of symbols as well asbpbilities repre-
sented using integer ratios. Integer ratios avoid usingifiggooint arithmetic to
whose inaccuracies arithmetic encoding is particularhsige. These steps make
SMI useful for both textual augmentation and full text coagsior?

Freitag and McCallum [46, 96] report work on a bibliographypme using
hand-crafted, then automatically shrunk, Markov modeisng good results. Fre-
itag and McCallum build models with increasingly complexstures in a similar
manner to Dynamic Markov Compression (DMC) [151], which arentlblended
using linear combination.

Recently Besagni et al. [15] have had some success in markitgolipgra-
phies using part of speech tagging, building chains of wipiahiis of speech oc-
cur in which bibliographic fields and then correcting fieldsng a post-processing
step. As with the post-processing performed in part of dp&sgging, this includes
super-adjacency. They use six tags and get a recall (se@1$2c3.1) of between
82% and 97% of the time for a corpus of 2500 references. Naifdhe failures
are complete failures, since sometimes part of a name igssitdly returned. This

may be useful, depending on the context.

2.2.6 Trained versus Handcrafted Models

The use of automatically trained models rather than haftécrenodels lends itself
to use in situations where training data is cheaper or maresaible than domain-
knowledgeable humans. With the increasing volumes of detidéedle at the cost of

transfer on the Internet and the relatively stable costludla, using large amounts

2 'Full text compression’ in this context means lossless o@sgion, as opposed to the lossy
compression often used for images which effectively dgsttext [151].
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of training data rather than people is likely to be an indreglg attractive choice.

While much of the freely available material for training mtdes of low or
questionable quality, the existence and growth of curaggdsitories such as the
Oxford Text Archive? the Linguistic Data Consortiufnand Project Gutenbetg
suggest that the availability of curated textual and lisaimaterials is increasing.

There are limits on what trained models can recognise, Isecatithe finite
training text available, their lack of ‘common sense’ reasg and various theo-
retic limits [13]. For example, most model training and téate building systems
cannot recognise structures characterised l@s thenn b's followed by n c's.
While systems can be built to recognise these structuresgartaularn, it is not
possible to recognise these structures for unknewsnwith a regular expression
while rejecting structures with different numbersas, b's andc’s. These limits
do not apply to handcrafted models. Handcrafted modelsmanthe well-known
difficulties of hand-building large, complex systems [8Bfldabour costs.

Building and maintaining a set of handcrafted rules or a hexfted model
may be more cost effective than building a corpus of docuseith the concepts
marked-up if the documents are sufficiently rare or suffityedifficult to handle
(for example they contain embedded private or confidemtiimrmation). Hand-
crafting is also more attractive if the concept is well urstieod by non-specialists,
meaning labour is relatively cheap.

Trained models also have the option of automated increrhempaovement by
using the Baum—-Welch algorithm [10, 11] in production sikmag. Long-term use
of Baum—Welch may result in divergence and poor performakimvever, if the
data seen in production is changing at a rate faster thanlittesgence, then using

the Baum-Welch may be advantageous. This thesis focusesinadmodels.

Shttp://ota.ahds. ac. uk/
4“http://ww. | dc. upenn. edu/
Shttp://ww. gut enberg. org/
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2.2.7 Single Step versus Multiple Step Systems

Multiple step text augmentation systems have an advantegiesingle step sys-
tems in allowing a different choice of algorithm for eachpsteroviding the system
builders with a wider range of options and making the intetiaie forms accessible
for ‘boosting’ using word lists and similar. A wider range dfoices for systems
builders enables them to hand-select algorithms that perfeell on the expected
input for the systems. Unfortunately, this often leads torgmerformance on other
input: other genre, other character encodings and othguéages.

Multiple step text augmentation systems also encourageerefisystem com-
ponents, such as the Brill part-of-speech tagger, which delyiused as a pre-
processor [37]. Single step augmentation systems can lsedeas a whole, but
are not as amenable to the development of UNIX-style ‘pigsli. Corpora used to
train models and rules are amenable to incremental developraither by adding
additional documents of the same type or by adding documeratdditional lan-
guages, as is common in corpora used in comparative lingslisteps can also be
arranged in a cascade or waterfall [68].

This thesis focuses on single-step markup processes usargovl models.
There is no theoretical reason why the systems and appreasee here could
not be used as individual steps within a multiple system,ttauing data for the
intermediate stages appears to be rarer, except wherediigliral step has already

been studied in isolation, as with part-of-speech tagging.

2.3 Correctness

The ultimate test of a computer system is in terms of intevastwith users—does
the system work correctly? Are any errors made, minor orstadphic? Is it fast
enough? Is it easy to use? Do the users like it? These questiowever, are hard

to phrase in terms that allow the answers to be compared aBystgms, versions
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of the same system, and software packages across time im¢heof changing
requirements, user expectations, groups of users andtogeeavironments. They
are also hard to ask of sub-systems that provide a subsehdctidnality required
by a full system.

There are, however, two features of overall performancehvare widely used
for comparing systems: correctness and efficiency. Thisoseexamines these and
how they can be applied to text augmentation.

The approaches to measuring correctness examined herdroomtbe fields of

information retrieval, string processing, machine leagrand information theory.

2.3.1 Recall and Precision

The information retrieval paradigm [122, 6] assumes thatexyj(single operation)
retrieves a set of items, some of which are relevant to theyg&waluation is based
around the question ‘Is item relevant and was it returned?’ The answer to this
guestion puts each item into one of four distinct classes positive (relevant and
retrieved), true negative (not relevant and not retrieviadge positive (not relevant
and retrieved) and false negative (relevant and not retiev
Accumulating counts of each of these four classes over & lamgnber of in-

dependent experiments allows the calculation of two hidgneel measures. Re-

call [31] is the proportion of all relevant items that werérieved:

number of relevant items retrieved true positives
Recall =

total number of relevant items in collection ~ true positives + false negatives

Precision is the proportion of retrieved items that areviaai¢

number of relevant items retrieved true positives

Precision = - - = — —
total number of items retrieved true positives + false positives
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Recall and precision represent a trade-off. A system couldmemany items
(for high recall and low precision) or few items (for low rélcand high precision)

and so they are sometimes expressed as their harmonic mean:

2 X recall X precision

F — measure = —
recall + precision

Often the number of false negatives is unknown, such as wéteieving doc-
uments from the World Wide Web, whose exact size is unknowrldrge [81].
When the number of false negatives is known (or can be reliablynated), an-
other measure, called ‘Fallout’ [84], which is a measure @i lyood the result is

as a result for the negated query, can be used:

Fallout number of irrelevant items retrieved false positives
allout = =
total number of irrelevant itemsin collection  false positives + true negatives

Fallout measures how effectively irrelevant items are wimad from the query
results. Fallout is rarely used, as it is sensitive to the sizthe collection and the
addition of clearly-irrelevant items to the collection. REgcprecision, and their
combination in the F-measure, are the primary means of atrafjicorrectness in

information retrieval systems.

2.3.2 Edit Distance

Edit distance is a standard technique in the string procgdsld. It is a well-
studied measure used in spelling correction [73, 89] (wiraresposes are common
because of the mechanics of typing) and Optical Charactergréom (OCR) [73]
(where swaps are common due to mis-recognition of one ctearéar another).
These research fields measure edit distance on data, whdreasised in text aug-

mentation, edit distance is used on combined data and ntataih an expectation
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that errors be closely linked to the metadata.

Edit distance is performed in terms of individual tags rathan tag-pairs. False
negatives (inserts) and false positives (deletes) areteduand then summed to get
an edit distance.

Edit distance is solely concerned with mistakes made ingagtmentation and
neither true negatives nor true positives impact on ediadice. Edit distance ex-
plicitly recognises the sequential nature of text but, bsearue positives are ig-
nored, the independence problems discussed in relatioectdl :and precision do
not occur in edit distance calculation. Teahan [133] usésdistance to evaluate
text augmentation and Nahm et al. [106] uses edit distane@ asput to a multi-
stage text mining system. All edit distances used in theectinwvork are normalised

for document length to give edits per character.

2.3.3 Confusion Matrices

Whereas recall and precision assume an underlying binasgifitation, confusion
matrices are a tool for evaluating many-class classifina@sks, and are widely
used in machine learning for evaluating such tasks [149 féHowing is a confu-

sion matrix for a classification problem witlclasses:

Q11 G2 - A1,
Q21 Q22 -+ Ao,
i1 Qiz o Qg

The matrix is square, with a row and a column for each class., in columnn
and rowm, is the number of symbols that should have been classifiddss:c that
were actually classified in clags. Correct classification is indicated when= m,
on the leading diagonal of the matrix.

Any non-zero numbers off the leading diagonal, indicatectassification and
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there is often symmetry about the diagonal. Non-zero nusimebotha,, ,,, and
an,n indicate that if symbols of class. can be mistaken for symbols of class
then symbols of class are also likely to be mistaken for symbols of classThis
ability to highlight confusion between tags makes the csiuin matrix an excellent
tool for fine-tuning tagsets and finding markup errors. Fa@amnegle, Bray et al. [26]
used a confusion matrix to find errors and demonstrate tlhagtrorrelation be-
tween name tags and place tags in the Computists’ corpus. slonfmatrices are

conventionally normalised by converting the rows into petages.

2.3.4 Entropy

Entropy is a measure from information theory widely usedignal processing,
error-correction and compression fields of computer seigh62, 151]. It is in-
versely related to probability. A ‘good’ augmentation ofttbas a high probability
and a low entropy (measured in bits per character) [13].

Unlike other measures of correctness, entropy does notureeessults against
a predefined answer, but rather measures how closely a sesuts matches a
model. This is effective in situations where perfect answee either unobtainable
or obtainable only at great expense.

For entropy measures to be an effective measurement ofaxycofan augmen-
tation of text, the model used to measure entropy must bgerdient of both the
testing and training data. This problem is closely relateithé over-fitting problem
in machine learning, and can be avoided by training two nolelseparate training
data and using one to augment the text and one to measurgyentro

If an independently trained model is unavailable, an un&@dimodel can be
used with an adaptive algorithm. This is the standard metlogy for measuring
the strength of lossless compression algorithms [152, 18]3,

An entropy measurement is relative to a model, and so conhiglgs clear

knowledge about the absolute quality of an augmentatiog:uder of augmented
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text is unable to infer as much from an entropy measuremeritoss a re-

call/precision pair or an edit distance. It can, howeverubed to compare the
relative merit of different augmentations of the same tpsayided the model cap-
tures pertinent details and the same model is used to ctddotdh entropy mea-

surements.

2.3.5 Hybrid and Other Measures

Many reports of text augmentation use a combination of nreaso report their
results. For example Bray [26] decomposed tag insertioruatiah in the Com-
putists’ corpus into a pair of operations, firstly segmemtiharacters into tokens
and, secondly, classifying the tokens into their respedtipes.

The segmentation operation was measured in terms of the eumt (false-
negativest false-positives), and classification of the segments wassared using
confusion matrices. Other systems use measures exprestds of their inter-
action with larger information systems, such as extractibacronyms [165] and

bibliographies [21].

2.4 Efficiency

Computer programs can be written in a wide variety of compateguages and run
on a wide variety of platforms. Since the efficiency of thesguages and platforms
varies widely, it is useful to compare algorithms indeperias their language and
platform. One methodology which allows this is time comgixanalysis using
‘big O notation’ [70]. The function is simplified to remove mstant factors and is
referred to a®.

Time complexity analysis is defined in terms of a charadierigperation—in
the case of tag insertion this is visiting a node in the seapate—and counting

how many times the operation is performed, and expressedf@scton of the
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parameters and input size of the algorithm.

The size of the search space is normalised by the documagthlém give a
measurement in terms of search space per character. Tleespewial cases when
searching at the start and end of documents, but for the cysed in this thesis
the initial and final characters in documents are low entrgpythey should not

effect this normalisation.

2.5 XML Tags

EXtensible Markup Language (XML) [25] tags have a hame (pe}yspan a (po-
tentially empty) range of text and have a (potentially emgst of attributes. The
tags may be nested, but only strictly hierarchically. Thiia,document has tags
indicating pages from the physical document, it may als@hags indicating lines
and, because each line is wholly within a page, the tags amarchical. A tag
which contains only hierarchical tags, or no tags at allaid 0 be well-balanced.

An XML document has an enclosing, top level, tag holding infation about
the document as a whole. An XML document that is well-baldnsesaid to be
well-formed.

XML cannot directly represent overlapping hierarchiescfsas the physical
and logical document layout), unlike the preceding SGMU [Bhich had a feature,
CONCUR, which permitted overlapping tags. XML can representinierarchical
tags using higher-order structures, using empty tags wiitibates which associate
them in pairs or in a sequence. The difficulties of tagginglaeyping structures,
and standard ways of overcoming them, are described in defaBO0].

There are several schema languages for describing which ¥g& may oc-
cur within other XML tags. The W3C schema language includesldN tag to
refer to any well-balanced tag [43]. Schemas which featueeANY tag are flexi-

ble but challenging to model, because literally anything loa encoded, including
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structures equivalent to entire documents of the type beiaked up.

2.5.1 Nested Tags

The XML standard largely attempts to avoid statements alboeit semantics
of tags and the semantics of nested tags, other than thelrfameledness.
It is tempting to extend practice in XHTML to cover XML. In XHML
<en<ahref="..." >...</a></em> is typically considered semantically equiv-
alent from<a href="..." ><em>...</em></a> because most presentation en-
gines (browsers) present these identically. Presentdtiamstomisation systems
such as CSS [24] and XSLT [155], however, have no difficultfedéntiating these
two situations and the XML standard is silent on their semsaefationship. One
can imagine a (fictional) programming language expressetMi in which the

semantics are clearly different. For example

<if cond="undefined(symbdl)}>
<define name=symbol >
<action/>
</define>

<[if >

has different semantics to

<define name=symbal >
<if cond =" undefined(symbdl)>
<action/>
<[if >

</define>
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The current work attempts to avoid making semantic assemgguch as this, ex-

cept explicitly in the state-tying heuristic (see Secticd. 4).

2.5.2 Attributes of Tags

The current work focuses exclusively on direct represemtatand does not con-
sider attributes during training or testing (with the exoap of attributes of the
document-level node). All of the corpora used in this thésige been created or
transformed, as described above, to convert attributegags.

Attributes are syntactic sugar and any XML document withiaites can be
transformed into one without attributes and back in a Iessfashion. For exam-
ple, the tag<word partofspeech=verld' >jump</word> can easily be transformed
to <word><verb>jump</verb></word> but such transforms can lead to combi-
natorial explosion of tags if there are large number of lattes or the attributes
contain large numbers of unique values. Real-valued at&sowould lead to an
infinite number of tags, one for each possible value. If trdepof attributes of a
tag is significant, the situation is significantly worse. ™ML standard is silent on
the question of whether the order of attributes is signitichat several subsidiary
standards, including XSLT [155] and DOM [154] do not evenmpieidiscovery of
the order of tags. The author knows of no use of an XML corpushith the order

of attributes is significant or of toolsets which supportpnecessing of such XML.

2.5.3 Other Issues

A key feature XML shares with many other natural languagegssing approaches
is the linearisation of language. While written languageossra wide range of
cultures is laid out in rectangular regions, whether redidtdéeright and top-to-

bottom, or bottom-to-top and right-to-left, digitised tarage—written or spoken—
is almost always linear to the detriment of any secondarargglar structure. For

example, the limerick shown in Figure 2.2 is shown twicet fivgh the secondary
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The limerick packs laughs anatomical

Into space that is quite economical.

But the good ones I've seen

So seldom are clean—

And the clean ones so seldom are comical.

(@)

The limerick packs laughs anatomical Into space that iseqegbnom-
ical. But the good ones I've seen So seldom are clean—And dancl
ones so seldom are comical.

(b)

Figure 2.2: A limerick shown with and without secondary stuwe.

rectangular structure and then without. The second fornheflimerick has the

same rhymes and cadence as the first but loss of the expltitngular structure

makes it harder to recognise. None of the data dealt withigntiesis has a strong
secondary rectangular structure.

XML can be canonicalised [25], a process which, amongstrdttiegs, stan-
dardises whitespace. This is a lossy operation, whitespateontain information,
particularly about line and paragraph boundaries whicbhsslhy canonicalisation.
For this reason all operations preparing the corpora ustniithesis are performed
without canonicalisation and preserve whitespace.

Standardisation for representing annotated linguistte daXML [25] is cur-
rently underway, led by the Architecture and Tools for Lirggic Analysis Systems
(ATLAS)® [78]. The standardisation work includes a content-indelpah method
of specifying regions and anchors in linear linguistic silgnand a query language
over those regions and anchors. Similar work, with greatgemented function-
ality, is being undertaken by the Linguistic Data Consortifia®, 19]. As with the

current work, these approaches embed the inferred infasmadithin the linguistic

Shttp://ww. nist.gov/speech/atl as/
"http://ww.ldc. upenn. edu/
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data rather than removing it to the document header or amnattdata store as in
most information extraction.

The current work is based on the Unicode and a subset of XMirictssthe
types of texts and annotations which can be easily workeal W¥ith the exception
of attributes, most of the important features of documemtsodern information
systems can be represented. By using Unicode and XML a rartggabpreparation
and processing tools is available. A range of corpora idatiai for reuse in XML
and, by using XML for the corpora produced in the current wénkir potential for

reuse is higher than if non-standard formats had been used.
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Chapter 3

Models and Algorithms

This chapter examines Markov models and some of the segralgorithms that
operate on them. Exhaustive treatment of many aspectsadumh here can be

found in the standard texts [63] and [13].

3.1 Markov Models

Markov models are Finite State Machines (FSMs) which cowsia finite number
of states and the transitions between them. In a probabik§M, each transition
has an associated probability and generates (or prediggnaol from some al-
phabet of symbols. The FSM has a set of start states (oftgnomd) and a set
of end states (again, often only one). A stream of data isrgéset by a FSM by
starting in one of the start states and moving through a ssawe of states (using
the current state’s probability density function to deter@the next state) until it
reaches an end state. An excellent review of the use of Martaxlels and similar
statistical techniques as applied to language processaimgpe found in McMahon
and Smith [99].

Markov models encapsulate the Markov assumption: that/éhee of the next
state is only influenced by the value of the state that diygqutceded it’ [41]. The
Markov assumption is useful because it gives a bound on hoshreystem context
needs to be modelled. Markov models produce probabilitgitefunctions, which

estimate the likelihood of each possible value for the n&tes
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Problem Observable Hidden ObservableHidden | Type Ref.
Sequence Sequence | Alphabet | Alphabet
Size Size

Chinese word Characters Words Large 2 Segmentation |[137]
segmentation

English sentencgWords Sentences |Large 2 Segmentation |[133]
segmentation

Part-of-speech || Words Word classes| Large ~ 50 Classification |[28]
tagging

Phone Digitised, audiq Phones Very large| Large Entity extrac{[166,
identification waveforms tion 33]

Table 3.1: Observable and hidden sequences for a varieingiistic problems
tackled with hidden Markov models.

3.2 Hidden Markov Models

Hidden Markov models (HMM) are composite models involvinguanber of hid-
den states each of which contains a complete Markov modeé hididen states
typically represent the information the model is desigredhfer, the words to be
segmented or the parts of speech to be distinguished between

Table 3.1 shows some of the wide variety of previous usesdufemn Markov
models in linguistic problems. Chinese word segmentatiahEmglish sentence
segmentation use simple models. Part-of-speech tagginighvnas already been
discussed, has a larger hidden alphabet and thus more mulateis.

Phone identification is a key step in voice recognition inckhdigitised audio
waves are mapped to phones, speech sounds, which are ldtartbwords [166].
HMMs are also widely used in computational biology [72, 9].27

A key property of hidden Markov models that makes them so lyideed in
these fields is that they handle noisy and ambiguous data wdike rule-based
systems which are based on a series of binary decisions amdlatively brittle in
the face of noise and ambiguity. Markov models are, howewach less convenient
for the extraction of pertinent details. While rule-basestegs have sets of rules,
typically with clear means of identifying the most importaiMarkov models have
matrices of hundreds, or even hundreds of thousands, of ewsyith none being

clearly more important than others.
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3.3 Higher Order Models

Higher order Markov models involve a relaxation of the Marlassumption, al-
lowing multiple states to be taken into account [41]: ‘thdéues of the next state
are only influenced by the values of thestates that directly preceded it'. Each
Markov model of ordek > 1 is isomorphic with a family of Markov models of
orderk — 1,k —2,k—3,---3,2,1.

Figure 3.1 shows this isomorphism for an FSM with a two-cbimmalphabet.
Figure 3.1(a) shows an order 3 Markov model, with a singleestad eight £3)
transitions, each starting and finishing in the single state transition probabili-
ties dependent on the previous two characters. Figure)3sh@ws an isomorphic
order 2 Markov model, in which the number of states has bedtipted by the
size of the alphabet. The same eight transitions shown iar&ig.1(a) appear in
Figure 3.1(b), with all transitions generating afeading to stata and ab leading
to stateb. Although the transition probabilities are still depenten the previ-
ous two characters, the immediately previous charactenpdigit in the state and
transitions are labelled with only the previous-but-onarelster.

Figure 3.1(c) shows an isomorphic order 1 Markov model: rmg¢ia¢ number
of states has been multiplied by the size of the alphabet;agaih the same 8
transitions appear. Generating a pair @6 ‘leads to stataa, generating ama then
ab leads to stat@ab, and so forth. In this case the proceeding two characters are
implicit in the state. Such order 1 models can then be usedftware and tools
such as HTK [166].

Computational linguistics uses terms suchvagam, uni-gram, bi-gram and tri-
gram [73, 120, 3] to denote the order of models, while infdrarasciences refer
to the order of models [4]. Table 3.2 shows the relationsl@fwben these two
terminologies.

Markov models are often represented using a table, witls cefiresenting the

transition probabilities between each pair of states aoll sgmbol, but these grow
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P(x=blx;_,=b,x,_,=b)
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N Qb x_,;=b,x_,=a)

P(x=alx_,=a.x_,=b) P(x=blx_=a.x_,=a)

P(x=alx_=b.x_,=b)

@

P(x.=blx,_,=a)

P(x, =al x,_,:b)
P(x,=blx,_,=b)

P(x;=alx_,=a)

P(x=blx_,=b)

P(x.=alx,_,=a)
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<a

)
\@/mm\)
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Figure 3.1: Isomorphism in Markov models. (a) an order 3 magé an order 2
model isomorphic to (a), (c) an order 1 model isomorphic jaa (b).
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n-gram | Order| Meaning |
—1|All symbols to be equal probability

Uni-gram 0| Symbol probability based on their frequency|in
training data

Bi-gram 1| Symbol probability based on their frequency|in
training data following the previous symbol

Tri-gram 2|Symbol probability based on their frequency|in

training data following the previous two symbols
Quad-gram 3| Symbol probability based on their frequency
training data following the previous three symbols

n

n-gram k — 1|Symbol probability based on their frequency
training data following the previous — 1 symbols
n + 1-gram k| Symbol probability based on their frequency
training data following the previous symbols

n

n

Table 3.2:n-gram models and models of order

large for high-order models, as the sizestsentries, wheres is the alphabet of
observable symbols anidis the order of the model. The isomorphism between
higher- and lower-order models preserves the number o$itrans, meaning that
the table for a lower-order model has the same number obsrds the higher-order:

it is not possible to reduce the table size by using the isphism demonstrated in
Figure 3.1.

Even with large amounts of training data, it is unlikely tbaéry state and tran-
sition of a high-order model is visited during training. Tiemaining untravelled
transitions have zero probability, meaning that the mod®} generate zero proba-
bilities for a sequence seen during testing. The probletteccthe ‘zero-frequency
problem’ [146], appears when no non-zero transition exrsts the current state
to the state that generates the next symbol in the obsersafleence. (In hidden
Markov models there can be more than one transition, eacttimgna different
symbol (or symbols) in the hidden sequence.) The zero-&equproblem is often
solved by shrinkage (also known as backing off and smootf84¢, namely the
use of a simpler model to estimate probabilities for zeespfiency transitions in
more complex models.

Many later systems use-gram methods together with specialised handling of
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novel characters. Such systems are effective in tacklinglpms such as Chinese
text segmentation partly because of the large charactemrsetived. Typically this
involves the introduction of a special token (or charactennodel the concept of
an unseen character.

The differences between this approach and the norrggthm models are high-
lighted by the handling of a known character between a pairovkl characters:
...abAdBfg... Inthe current work the unknown charactérandB are mod-
elled by escaping back to the ordeit model and the known characters seen
in a context which has never been seen before (an ordeodel). The introduc-
tion of a synthetic novel charactsrwould enable a probability of encountering the
sequence..a b N ... to be estimated, then.abNd...and...abNdN...
etc., all without escaping back to the ordet model. This effectively allows the
concept of ‘the character following a novel character’ tonhedelled, something
conventionalz-gram models cannot do. Part of the reason such techniqaesoar
important is that novel characters in Chinese text, like haxeds in English, are
often nouns [133]: significant information can be inferred@y from novelty.

The zero-frequency problem can solved using escape mejttd@ls a recursive
case of shrinkage in which unseen transition probabil#resestimated by reference
to a lower-order model. Other cases are also common in irg#tom extraction
systems, for example, Freitag et. al. [46] escape back tora general class of
tags rather than to a lower-order of model for the same tag.

There are several studies of the effectiveness of diffesembothing strate-
gies [34, 144], but there is @ priori reason why one should perform better than
another in the absence afpriori knowledge about the symbol distribution within
the model. An alternative approach to smoothing is to usekMaas a prescriptive
model and reject outright any sequence containing a zetmapitity. This approach
may be useful in closed systems or for carefully curatedararbut is unlikely to

result in robust systems in production environments.
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Two aspects of Markov models can be trained: the topology (ilhmber of
states and transitions between them) and the weights ofiéugil transitions. In
theory the former aspect can be folded into the latter beca(e a model with
a transition of zero probability is indistinguishable frame lacking the transition
and, (b) a model with a state which has only zero probabitéygitions to it is
indistinguishable from one lacking that state. In realdé/gituations, with bounded
training data, these are generally treated as separatéepr®b Model topology
is commonly a fixed pattern, variable but selected or trajpear to training the
transitions, or trained in parallel to training the traimgis (as in DMC [151]). One

fixed pattern of topology is used by PPM.

3.4 Prediction by Partial Matching

A Prediction by Partial Matching (PPM) model of orderexamines the previous
n characters to calculate a probability density functiontf@ next character. To
calculate the function, PPM keeps a record of sequencesabiaracters already
seen and the character that followed them. If a sequeneelb@racters is seen that
has not been seen before, then PPM ‘escapes’ back to sequéncel characters.
If a match is still not found, PPM escapes back to sequences-of, and so on,
eventually escaping back to the ordet, in which all characters in the observable
alphabet have the same probability.

The PPM model keeps the sequences of characters in a suéfixiig each
node labelled with the number of times the sequence has keear{E3]. This suffix
tree can be converted to a single state Markov model of ardet. The suffix tree
is an efficient representation of a sparse model (one fortwimiany of the possible
states have not been observed) because unused branched expanded. The
equivalent Markov model is an array in which all leaves aespnt, with those not

seen during training appearing as small probabilities. herd¢urrent work, suffix
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trees are used for all processing.

The PPM model is deterministic [75] (or subsequential [J@4}hat it always
has one transition for each output symbol. In this regardférd from the work of
Lafferty and McCallum which has built non-deterministic HNNbr similar tasks
to those seen in this thesis, using non-deterministic ¢mmdil random fields [75].

An additional benefit of the suffix-tree based Markov modeks the traditional
table models is that they greatly reduce the cost of intrmduextra symbols. In-
creasing the character set size from 8 bit ASCII to 32 bit Uekécimcurs a cost only
for those characters are actually used in the training sethen the—1 model is
escaped to.

PPM models may seem far removed from the way that humans déahat-
ural language text. However, as the following story reveilmay be closer to
the way that humans deal with natural language text whenhhbeg no linguistic

information about it [30]:

[A] typesetter working on a Greek text at the Oxford Univerétress
announced he’d found a mistake in the text. As the typesetiédn’t
read Greek, his colleagues and then his superiors dismigsedthaim.
But the man insisted. So finally an editor came down to the c@itipg
room. At first, she, too, dismissed the idea, but checkingenatrsely,
she found there was an error. Asked how he knew, the typeseiitk
he had been hand-picking letters for Greek texts for mosisgbtofes-
sional life and was sure that he’d never made the physicaértmpick

the two letters in that order before.

This implies that the typesetter had built an implicit modéwhich charac-
ters followed which other characters and had sufficient denfte in the model to
guestion the text.

PPM is an incremental compression algorithm [151] with twidedy-known

variants, PPMC and PPMD [57]. PPMD is used in other text-aamgation
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work [133, 26]. PPMC and PPMD differ in the probabilities yheut aside for
unexpected events, seeing a character in a context in wiéghhiave not seen that
character before. In a context in whi€h total characters and, distinct characters
have been seen, PPMC sets a% and PPMD sets asid%. Katz [67] takes
a different approach and for an ordemodel use%, where(,, is the count of the
number ofn grams that have been seen exactly once/dnslthe training text size.

PPMII is a PPM variant with special handling for the case inaktonly a sin-
gleton example of the current context has been seen duaimgtg. The occurrence
of such contexts rises with the model order to 60—-80% of aitexts. PPMII im-
plementations typically also use adaptive models, anda&ounts frequently to
favour text seen recently over text seen at the start ofitrgjno give good perfor-
mance on compression corpora [127].

As implemented in this thesis, the PPM model does not stareailities but
rather counts of occurrences. These counts are convettefdrivbabilities dynam-
ically using an escape method which allocates the prolalnétween seen and
unseen symbols in the observable alphabet [152].

Figure 3.2 shows three representations of the adaptive aréRPMD model
built from the stringeaabbccabca .. Thee represents the start of the string. Fig-
ure 3.2(a) is the suffix-tree representation. The tree isowiplete, for example the
c-labelled node marked has no transition to aa-labelled node because the string
eaabbccabca. . contains no sub-stringc. Figure 3.2(b) shows the occurrence ta-
bles for order—1, order 0 and order 1, which correspond to the root node of the
suffix tree, the first row of the suffix tree, and the leaves efghffix tree respec-
tively. Each non-zero entry in the order 1 table correspdods leaf in the tree
above, while each zero entry thus corresponds to missifg lea

Figure 3.2(c) shows the Markov models of ordel, order O and order 1. These
have the same structure as the occurrence tables in FiQfbg,3ut the occurrences

have been converted to probabilities using escape methdgéabh count in the
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order —1 and 0 tables is divided by the total of counts in the table to obtain
probability. Each non-zero count in the ordet table is divided by the total of
counts in that row plus one. The probability correspondmthe extra (plus one)
count is distributed among the zero counts.

Each type of XML tag corresponds to a hidden state and hasaaastepmodel
built for it. In the observable sequence the tags are mappesngle charac-
ter symbols. Thus the stringba<sometag-cbc</sometag-bab is mapped to
abacbwbab, with a different symbol corresponding to each pair of tag#h the
¢, seen earlier indicating the start of the string, being usedhe entire string
(what the XML standard refers to as the ‘document elemeri])[2Therefore if
abacbwbabis the entire string, it is representededbaccbcbabe.

A distinct PPM model is built for each tag, in this case é@ndo. The models
for e ando built from the stringeabarcbebabe are shown in Figures 3.3 and 3.4,
which have similar structures to Figure 3.2. Tdhmnodel is built from the stringe,
e3, ab, ba, ao, ob, ba, abandbe. Theo model is built from the sub-strings, cb,
bc” and co.

e occurs in theo model because it can be part of the alphabet in which the
context. Even though it cannot be seen within thenodel, it can appear in the
context which is carried into the model, for example in thiengteocoe.

When ac is seen in the model, a transition occurs from tlemodel to theo
model. When & is seen in the model, a transition occurs from tkemodel into
the previous model, in this case thenodel.

Figures 3.3 and 3.4 show how we can use Viterbi search to fedbst likely
sequence of tags in the sequemabbacbccbbah ., the first step of which is shown
in Figure 3.5, which has a lookahead of four. Between each wvibsls in the ob-
served sequence, the algorithm calculates the probablityere being a transition
within the hidden state (the right branch from each nodef, the probability of

there being a transition to the other hidden state (the tafidh from each node).
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Figure 3.5: The expansion step in a Viterbi searchaifbacbccbbab. ..

The probability for the left branch can be taken from the rigand tables in
Figure 3.4(c) (for states in themodel) or Figure 3.3(c) (for states in teenodel).
The probability for a right branch is the product of two prblb#ies, that of the
transition from one model into the other and of seeing thentesl character.

Following the expansion step shown in Figure 3.5 is a prusteg. Either node
x or nodey must be pruned from the search tree, taking all descendatitstw
Since nodez is the leaf with the highest probability and a descendant i@ther
thany, y must be pruned. Nodegande are discussed in Section 4.3.2.

Figure 3.6 shows the tree after pruning. Node Figure 3.5 has become
and there are a newand a newy based on the location & the lowest entropy
leaf. Figure 3.7 shows the situation two steps later. Fofithetime the algorithm
is about to prune the branch rather than thebranch, and insert atag.

Viterbi search says that even for this demonstration exampbokahead of four
is insufficient to guarantee an optimal tagging: the lookah®must be one more than
the sum of the order of the model (1) and the longest tag lef¥tReal examples

typically have significantly longer tag lengths (see thegasin Appendix A) and
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Figure 3.6: The next expansion step in a Viterbi searokabbacbccbbab. ..

often higher-order models, but for clarity a short lookah&as been used in this

example.

3.5 Granularity of Models

Many published reports of text mining, information retaéand other information
systems model text as words [61]. Thigriori assumption of segmentation into

words leads to two separate problems:

1. In many contexts it is not clear what is and is not a word. hglEh two
areas of ambiguity are contractions and abbreviationseftample ‘i.e.” and
‘can’t’) and sometimes joined words (for example ‘real-¢imvhich is used

variously as ‘realtime, ‘real time’ and ‘real-time’).

2. Words seen during testing (or practical application} #ra not seen during

training raise the ‘unknown-word problem’ [144]. This plein is a variant
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Figure 3.7: The fourth expansion step in a Viterbi searcéadibacbccbbab. ..
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of the zero-frequency problem (see Section 3.3). In maniesy®valuation
contexts, the problem is solved by leaking information fribva testing set to
the training set in the form of a ‘Perfect Lexicon’ contaigiavery word in
the system [17]. In production systems this approach is assiple because,
unless a constraint is placed on the system vocabularyaléedccontrolled
vocabularies’ [84, 105]), an unbounded number of words magden over

the life of the system.

Approaches to solving the unknown-word problem includegimgr all un-
seen words into a single class and treating all unknown wblsame, which
works surprisingly well for news articles in which most uokm words are
proper nouns, and escaping back to a character-level matgljring two

models, one at the word level and one at the character level.

An alternative to this is modelling text as a sequence ofadtars [133]. At first
glance neither of the problems discussed above affectacteabased models, but

similar problems arise at a different level of granularity.

1. Unicode allows combining character sequences—chasamidt from a base
character and combining characters, which add elementgite.iaccents or
enclosing circles). All characters in most living natuiduages (including
English, Maori and Mandarin) are representable withoutlwomg charac-

ters, but should a system see them in input, handling themokdgmatic.

2. Though the Unicode character set is bounded, it is suffigiéarge (many
tens of thousands of characters) that if characters arerigygmmetrically
distributed (as can be expected in natural languages [99),1énly rarely
will a system see an instance of every character. Unicodisasexpanding,
with more characters being added; in theory a productiotesysould see

characters which were undefined when the system was built.
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These character-level problems appear to be of a similareaif not a sim-
ilar frequency, to the word-level problems. This suggelsé the transition from
word to character level has not actually solved the wordllpvablems but rather

transformed them to a lower level.

3.6 Searching in Models

Once built, the models can be used to find the most likely sexpief hidden states
for a sequence of observed states. This is done using a deeeclin which each
node is labelled with a state in the model. Each node is atsgll&d with the sum
of all probabilities on the path between it and the root ofgbarch tree. Entropy
is inversely related to likelihood [126], and the most likekquence corresponds to

the leaf node with the lowest entropy.

oldLeaves « root;
while morelnputSymboldo
new Leaves — (;
for leaf € oldLeaveglo
newleaves «— ExpandLeaf(leaf)

CalculateEntropy(newleaves)
end

1 oldLeaves «— newLeaves ;
end

result «+ SelectLowestEntropyLeaf(oldLeaves)

Algorithm 1: The complete search algorithm.

An exhaustive, or complete, search for the most likely seqgeenvolves a
search space as deep as the sequence is long. This algasigimown in Algo-
rithm 1. The functionExpandLeaf takes a single leaf node in the search tree,
examines the state in the model with which it is labelled aofdkaa new leaf to the
search tree for each out-going transition from the statbemtodel. The function
Calculate Entropy calculates entropy of the each of these new leaves.

For many interesting sequences this search space is caiopatly infeasi-
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ble, but the ‘Viterbi search’ [140] algorithm provides a quutationally feasible
searches in situations when only local information matt€he Viterbi proof [140]
guarantees that Viterbi search will find the most likely sate, provided the model
determines the entropy for a node based on bounded locall&dge; rather than
on global knowledge required by the exhaustive searchukately Markov mod-
els, even high order Markov models, meet this criterion [90he length of the

sequence that must be modelled for this local knowledgellisccthe ‘lookahead'.

oldLeaves <+ root;
while morelnputSymboldo
new Leaves — (;
for leaf € oldLeaveglo
leaves +— ExpandLeaf(leaf)
CalculateEntropy(leaves)

AddLeavesToSet(newlLeaves,legves)
end

2 bestLeaf <+ SelectLowestEntropyLeaf(oldLeaves)

3 oldLeaves +— PruneBranch(bestLeaf, newLeaves)
end

result «+ SelectLowestEntropyLeaf(oldLeaves)

Algorithm 2: The Viterbi search algorithm.

Viterbi is a beam search, as shown in Algorithm 2. This is egped as a search
tree which is built independently of the Markov model in uset with pointers in
every node to a state in the model. The operattenne Branch takes aestLea f
from a selection ofiew Leaves, traces parents @kst Lea f up until it finds a node
which is the parent of every leaf inew Leaves and prunes all daughters from that
node except the one which lead9itat Leaf.

There is an alternative representation, that of a seartibdatn which nodes
from the search tree are not pruned but ‘merged’ with othelesawith identical
state in the underlying models. Merged nodes have the logrgsbpy of any of
the nodes from which they were merged, this representingnih@num entropy

path through the search tree (now a search lattice) to the.idte search lattice is
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either unified with the Markov model or has a similar strueturhis representation
is widely used in signal processing and reflects common eweglland hardware
implementations in that field [63].

The stack algorithm, a variant of Viterbi search, uses aeddlist rather than
an explicit search tree. The list is sorted by the entropyhefriode and initially
populated with the first symbol. The lowest entropy node isaeed from the list
and its children calculated and added to the list. The seamds when a leaf node
is found.

The Fano algorithm, related to the stack algorithm, doesuseta stack but
moves incrementally though the search tree guided by egntsaped thresholds,
revisiting many nodes, but using only tightly-bounded mgmitus making it suit-
able for implementation in hardware. The creeper algorithenhybrid of the stack
and Fano algorithms, using complex tables. All three oféhegorithms are de-
scribed in detail in Johannesson and Zigangirov, ChapteBp [6

Viterbi search implemented as a lattice or tree, the stagtrdéhm, the Fano
algorithm, and the creeper algorithm all represent diffeteade-offs between time
and space, and between simple and complex algorithms. Hnehstee represen-
tation is traditional in computer science, because it adlawnore direct comparison
with other forms of searching; it is used in this thesis fora@emnatural representa-

tion of the pruning explored in Section 4.3.

oldLeaves <+ root;
while morelnputSymboldo
new Leaves — (;
for leaf € oldLeaveglo
leaves +— ExpandLeaf(leaf)
CalculateEntropy(leaves)

AddLeavesToSet(newlLeaves,legves)
end

4 oldLeaves + SelectNLowestEntropyLeaves(newLeaves,N)
end

result «+ SelectLowestEntropyLeaf(oldLeaves)
Algorithm 3: The Teahan search algorithm.
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Algorithm 3 shows the Teahan search, a ‘Viterbi-inspireti3g] algorithm
which has been found effective [133]. Rather than search d fiistance ahead into
the search space on each increment, it only expand¥ tleevest entropy nodes at
each level in the tree (line 4).

The Teahan search algorithm is a heuristic: it is not guarahto find the lowest
entropy tagging. The Viterbi proof cannot usefully be apglio Teahan search.
This is because the only point at which Teahan search is giesm@ to search the
local search space at every step in the search is Wwhesnthe number of leaves
in the exhaustive search. At this point the Teahan searcheahdustive search
become identical.

For many interesting problems, limited amounts of data witrelated hidden
and observable sequences are available for training, batvdéh only observable
sequences abound. An algorithm to utilise these un-coeckzbservable sequences
was developed by Baum and is known as the Baum—-Welch algoritByifl, 118].
This (Algorithm 4) is similar to Viterbi search with the atidn of a step (line
5) that updates the model after the most likely branch has bmend [118, 90].
The UpdateModelfunction updates the hidden Markov model to include seeing

bestLeaf

oldLeaves < root;
while morelnputSymboldo
new Leaves — {;
for leaf € oldLeavesio
leaves «— ExpandLeaf(leaf)
CalculateEntropy(leaves)

AddLeavesToSet(newLeaves,leaves)
end

best Leaf <+ SelectLowestEntropyLeaf(oldLeaves)
5 UpdateModel(bestLeaf)

oldLeaves + PruneBranch(bestLeaf, newLeaves)
end

result <+ SelectLowestEntropyLeaf(oldLeaves)

Algorithm 4: The Baum—Welch algorithm.
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The Baum-Welch algorithm is a specialisation of ExpectaMaximisation
(EM) which is widely used in machine learning [149] and stiads [60]. McLachlan
and Krishnan [98] describe EM and the relationship betwéemd the Baum-—
Welch algorithm in detail and [18] discusses this relatiopsnathematically.

The Baum—Welch algorithm is the primary training mechanism deveral
information-extraction systems, for learning either transition probabilities [82,
125, 17] or the model structure [125], or both. In this thetii® Baum—-Welch
algorithm is used only for learning the transition probtilei, the Markov model
structure is imposed by the PPM algorithm and the hidden Mankodel structure
reflects the schema of the documents seen during training.

This thesis uses a variant of the Baum—-Welch algorithm, inciwvlain entire
document, or group of documents, has tags inserted whicthaneused to update
the model, rather than to perform tag insertion and modeistenation in such a
closely-linked manner. This approach precludes the pitiggibf intra-document
learning (lowering the entropy of a sequence of symbols ageébecause they have
already been seen) but allows the efficient use of non-agaptodels, and avoids
the cost of ‘unlearning’ during searching. The effect oftis likely to be most
significant for long, single-subject, documents which eamfrequent occurrences
of proper nouns and other features which are rare withinrhseat from, the training
corpus. Proper and rare nouns are typically introduced/liset forms [160] which
can then used to update the model for their less stylisecegulesit use. Without
the ability to update the model, subsequent uses of thert=atre likely to be
ambiguous.

Much research on the Baum—-Welch algorithm is performed inctiveext of
voice recognition [11, 118], where is it used at the phonellén adapting a model
to an individual's accent. In voice recognition, the obséie sequence is a discre-
tised representation of a continuous signal. The symbaoleardiscretised repre-

sentation can be ordered, for example, it is possible tolsty50 dB< 51 dB <<
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1000 dB. Much of this research cannot be applied to text becthesobservable
character set in text modelling (characters) has no usaipii¢it ordering.

The Baum-Welch algorithm is normally used during trainingpwidver, if the
sequence being modelled is changing slowly over time, dnefé is insufficient
training data to characterise the sequence sufficientigntle used during testing.
Unfortunately, if a feature is mis-modelled when first seie, reinforcement of
the Baum-Welch algorithm makes it much more likely that il & mis-modelled
when seen subsequently, even in contexts which could haredear if seen by a

model without re-estimation.

3.7 XML and Unicode

This section examines some issues with Unicode and XML asidithpact on the
corpora and algorithms used in this thesis. These issuaslanthe assumptions
Unicode makes about text, the semantics of nested XML tays,ttze order of
XML attributes. These issues are important because thegrpmdmuch later work
in this thesis.

XML is a standard [25] for encoding data and has emerged dsdlgng stan-
dard for encoding textual documents for archiving, acadestudy, interchange and
corpus building. XML uses Unicode [138] by default, allogia large number of
languages and writing systems to be represented. Unicoleswarious assump-

tions which make it significantly easier to reason about textuding:

e That characters are unique entities from a finite set.
e That each character falls into exactly one character class.

e That the character class of each character is known.

These assumptions do not hold universally, not even for @ludchents held

in modern information systems. Handwritten texts or texistpd prior to the
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standardisation of book printing are particularly probéimbecause their digitisa-
tion commonly involves more semantic interpretation tHamdigitisation of later
printed works with known conventions. The Early English Be@unline project,
is an example of a real-world undertaking impacted by theseds. Unicode char-

acter classes are discussed in Section 4.3.3.

Thttp://ww. |ib.unich. edu/tcp/ eebo
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Chapter 4

The System

This chapter introduces the bulk of the new content in thsi#hestarting with a
new taxonomy for metadata markup problems. The architecfithe implemen-
tation is introduced, followed by a number of optimisati@ml heuristics imple-
mented within it. The search space of these optimisatiod$aaristics for various
metadata markup problems is then examined together withrtpact of metadata

problems on assessing experimental correctness.

4.1 Metadata

This thesis introduces a new taxonomy for fine granulardfesetadata problems:
in segmentation metadata, classification metadata, aitg er@tadata. The remain-
der of this section describes the taxa.

Metadata comprises encoded tags, in ranges of adjacemictéie which share
some property, and externalised as XML [25]. XML is a wideed metadata
format [156, 123, 147].

4.1.1 Segmentation

Segmentation problems involve finding the internal bouiedawithin text. The
boundaries can be linguistic (e.g. in word or sentence bawues), semantic (e.qg.
between topics) or both (e.g. between index or bibliogragftyies). Finding word

boundaries in Chinese, Japanese or Thai text and findingoRuipdaces to seg-
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Figure 4.1: Schema structures for segmentation and clzsiin problems. (a) The
Chinese text segmentation problem. (b) The part of speedingglassification
problem. (c) The Computists’ Communique classification poblDetails of these
problems and corpora in which they are studied are given irptéh&.

ment English, German and French words for line-end hyplemg?7] and all
well-known examples of segmentation problems.

As encoded in this thesis, all segmentation informatiores&mbyed by tag merg-
ing. If adjacent tags are merged, all segmentation infdonas lost because infor-
mation lies solely in where the tags start and end, ratherithahich type of tag a
piece of text falls.

Figure 4.1(a) is the schema for the Chinese text-segmentatablem. It has a
single root-node and a single type of child-tag below it. fEhie an instance of the
child-tag around each word. The schema for every segmentptbblem has this
shape, with a single type of child tag and all charactersiwitistances of that tag
type.

Various approaches have been used to segment text. Manpysgatéms used
simple lookup tables [157], which work surprisingly well orost text, except novel
characters not seen in training. Most text segmentaticiesysuse-gram models

or equivalent Markov models [137, 50, 117].
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Recent segmentation research directions include conditiorandom
fields [115], and using integrating segmentation with fiowality such as
part-of-speech tagging [58] and proper noun extractio@]16ombining segment-
ation with higher-level processing allows leveraging segtation to help solve
other natural-language processing problems and the sestilthe higher-level

processing to fine-tune the text segmentation.

4.1.2 Classification

Classification problems involve classifying textual elemseftypically words or
characters) into one of several classes. Many classificgtioblems are referred
to as tagging in the information extraction and documenteustdnding communi-
ties, but this name has been avoided, because all of thegmshdliscussed here
involve inserting tags—Iliterally ‘tagging’. The term ckaication is used in ma-
chine learning to refer to problems which involve placingm@stance into one of a
set of classes, and it is used here in the same manner.

Classification metadata is immune to tag merging. If two ashatags of the
same class are merged, no knowledge is lost, because thetegtinformation lies
solely in which type of tag text falls. Similarly if a tag islgpn two, no information
is lost, provided the two new tags cover the same characseisegprevious single
tag.

Figures 4.1(b) and (c) show the schema structures of cleet$iin problems.
The schemas have a single root node (representing the datyraed each of
the classes has a node directly connected to this root node.sdhema for ev-
ery classification problem has this shape, with a numberp#dyof child tags and
all characters within instances of these child tag types.

Much early work on classification problems was performed art-pf-speech
taggers, drawing on traditional debates on the role of grammlanguage. Several

early systems were grounded in distinct schools of lingutseory, but performed
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relatively poorly. Later approaches have used more gemsgaicstical modelling
techniques to better success.

The Brill tagger [28, 29] first trains a rule-based tagger dhtearns transfor-
mation rules based on the errors of the rule-based taggertrahsformation rules
allow for super-adjacency and higher-level reasoningheeiavailable to conven-
tional Markov models. Super-adjacency, looking not at irdiately adjacent words
but at those several words away, allows wildcard-like effedpplying rules is fast,
so the whole system runs quickly, and it is widely used and respected.

The MUC problems can be considered classification probleotshe focus is
on information extraction: the inferred information is reshbedded in the docu-
ment text, but either included in the document header or ¢etely separated from
the document. Many problems contain higher-order reagominside the scope of
text augmentation considered in this thesis. For exampketitle Presidentand
the nameBill Clinton can be inferred to refer to the same individual combined as
President Bill Clinton Classification can identify title and name, both together an
separately, but not perform the higher-order reasoningntothe instances or to

present the separate components combined into a singlersezu

4.1.3 Entity Extraction

A superset of segmentation and classification, entity ettm, finds bounded sec-
tions of text that belong to a particular class. If adjacagstare merged, some
information may be lost, since information lies both in wh&ymbols are in which
class of tag and in where the individual tags start and finish.

Because entities have both a range and a depth, it is possibdatities to be
nested, introducing extra complexity. Nesting of a tag iminother of the same
type is a technique used relatively widely in grammar-bdseglistics. It is not

inherently more complex than nesting a tag within a diffetgpe of tag:

However, the current work does not handle such cases gtgcafiexplained in section 7.4
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Figure 4.2: Schema structure for the bibliography entityastion problem. Details
of this problem and corpus in which it is studied are given imgtbr 5.

Figure 4.2 shows the schema structure for the bibliographgus, an example
of entity extraction in which the entities such as author egpnarticle, titles and
conference names are marked up. The schema for entity gatr@coblems allows
arbitrary nesting of tags.

Bray [26] showed that, on a small sample, hierarchical taggihpersonal
names into first and last parts hindered the overall ideatiba of names, but the hi-
erarchical tagging of email addresses into username angbais aided the identi-
fication of email addresses. The failure of hierarchicagag of names in this case
appears to be at least in part caused by the small number &sased. Wen [144]
used eight tags from an early version of the bibliographyusr(see Section 5.2)

and achieved an F-measure of 76%.

4.1.4 Limitations and Constraints

Text augmentation is not a universal method of inferringadata. There is a range

of text-augmentation problems that fall outside this tatag, including those with
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overlapping structures, those with attributes that aréicoaus numeric values, and
those with escapes to the XML Schema ANY tag. The taxonomyssiitable for
the coarser-grained metadata, such as document levellectimh level informa-
tion.

There are certain constraints derived from the XML taggisgdi(see Sec-

tion 2.5):

'_\

. Half the tags are opening tags,.. and half are closing tags;qgname-

N

. Only the most recently opened unclosed tag may be closéd ne

w

. Each opening tag must be separated from the correspoddisigg tag by at

least one data point from the underlying sequence.

4. No two tags of the same type are opened between any twootiis.a

ol

. Tags do not have attributes.

Constraints 1 and 2 are a restatement of the well-balancedmsstraint of
XML. Constraint 3 is not presentin XML, but is present in thereat representation
to rule out the proliferation of arbitrary numbers of empgs.

Constraint 4 is also not present in XML but is introduced harerder to make
the sets of tags enumerable, both a consequence of implatieenthoices and a
prerequisite for calculating the size of search spaceslaidkeof attributes has been

discussed in Section 2.5.2.

4.2 Architecture

The implementation used in this thesis is called ‘Collogiatropy Markup’ or
CEM. CEM is built in pure Java [52], no platform-dependentdityr bring used.
All input and output of data is performed using the Apachercés implementation

of the standard Java XML Document Object Model (DOM) [154].this thesis a
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Figure 4.3: The structure of a CEM model, hidden states (sgoaxes) with asso-
ciated PPM models (circles).

deliberately standards-based approach was taken largedgponse to difficulties
encountered Teahan’s [133] implementation.

CEM uses Unicode throughout and recursive modelling of tdgs)atter en-
abling it to tackle the more challenging entity-extracttasks, as well as those of
segmentation and classification. There are two main intelata-structures, the
model and the search tree. DOM is not used in the internaistatatures, because
when the software was first designed, the DOM was immaturatavas not clear

that it would prove as stable and effective as it has done.

4.2.1 The Model

The structure of the hidden Markov models implemented in CEBhown in Fig-
ure 4.3. Each of the circles is a PPM model in the form of a stiféig, as shown in
Figure 3.2. Each of the squares is a hidden state in the hislidekov model; the
associated PPM model is the Markov model for that hiddeme stat

The presence of two characters without a tag between theapiesented as
a transition between two states within the same PPM moded. pfésence of two
characters with one or more tags between them is represasatadseries of one
or more transitions between states in different PPM modeld¢tween states in

the same PPM model in the case of closing tags immediatdywfed by opening
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tags). Closing tags indicate transitions up, towards thé abthe hidden Markov
model and opening tags indicate transitions down, towdrel$staves of the model.
XML well-formedness is enforced by starting in the root af tiidden model at the
start of the sequence and by forcing a return to the root lariimg) close tags at the
end of the sequence.

Figure 4.4 shows the relationship between the suffix treeesgmtation of
Markov models used in CEM and a more traditional represamtatiNodes are
numbered for identification. The implementation uses ohg guffix tree during
training and testing, although it can output low-order Marknodels for manual
validation. Figure 4.4(b) is directly convertible to a tédouformat.

Each state is adjacent to an end state, because each statetesnsition from
it. When building PPM modelsy is treated as just another letter in the alphabet:
represents one third of the alphabet in Figure 4.4(b). Hamnltiple start and end
states is unusual for a Markov model used in an HMM, but isnaa@and efficient
to implement when suffix trees are used, because the suffaredave the extra
character added for hidden state transition prependéadtfis case), and be carried
from one hidden state to the next.

The CEM model is implemented as shown in Figure 4.4(a): a sirmpk, with
each node labelled with a character and a number. The treesegation allows
branches to be expanded as and when they are first seen dwaimggd, saving
memory on unseen branches.

Transition probabilities are computed dynamically fronuets, using escape
methods, in the manner of adaptive text compressors [1l46untSaather than
probabilities are stored, so the escape method can be ahaftge training. This
feature is desirable during experimentation, but unlikelpe important in produc-
tion environments.

CEM models are serialisable: they can be streamed to a filegy wandard

Java serialisation and later streamed back into memorgtintéodels are streamed
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Figure 4.4: The structure of a PPM model, (a) as a suffix tregjhich leaf nodes
(5—-13) are reached by navigating from the top of the tree ¢ianh an entropy
Is calculated, using the suffix of recently seen characterd,(b) as a finite state
machine using traditional Markov model notation, in whiclp@nter to a node
is used for state rather than a suffix and the next node is fbyrtdaversing the
transition labelled with the current character.
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through a gzip [88] stream reducing their size by approxatya®0%, primarily
because Java serialisation focuses on issues such asilpgréedal flexibility rather
than output size. No experiment was undertaken relatingittesof training texts
to the size of streamed or in-memory models. Streaming rsddednd from disk

allows the reuse of models across testing sessions.

4.2.2 Differences between CEM and other systems

There are two key architectural differences between CEM Blankodels and com-
parable systems: the handling of context between modeltharsymmetric, recur-
sive structure of the hidden states. This section examiresetdifferences in more
detail.

Systems such as HTK and SMI have Markov models with a singie state,
so that no matter how much context is taken into account witte models, each
transition between hidden states results in a completeoossntext. HTK partly
overcomes this by having a large number of hidden states onmglex structure.
When moving between hidden states, CEM prepends a singlectbiata the con-
text for each transition (and thus each tag that is openetbsed). This is seen,
for example, in thex symbol in Figure 4.4. For tagging problems with many fine-
grained, deeply-nested tags this can represent a consiedévas of context, but for
lightly-tagged text with a PPM model of non-trivial ordeketloss is less significant.

This retention of context allows for the efficient modellinfthe situation in
which tags are marked by a distinctive characters. For elgmpnsider the frag-
ments:

L.<x>[a] </Ix>b

and
L <x>a</x>]1b

When CEM calculates the entropy fbrwith an order 3 model, in each case

it has a full context to use for the calculation, and avoidsieed to escape to a
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lower-order model. This is not true for most other Markov mldchplementations.
CEM hidden models have a symmetric, recursive structuresatily the well-
formedness requirement of the XML from which it is automalicgenerated. This
differs from the flat (non recursive) model of SMI and gendéinde-state machine
model of HTK and other voice-recognition systems. The flatletas sufficient
for segmentation and classification problems, but not faityeextraction prob-
lems. The added complexity of a generic finite-state machineel is used in
voice recognition to represent models of sentence-lekgtire, based on separate
analysis and testing. While there are certainly areas ofaegmentation which
might benefit from such generic models, it is hard to imagio& khey would be

readily incorporated into CEM'’s low human-input approach.

4.2.3 The Search Tree

The search tree is the second of the two main data structuf@shii. Each node in

the search tree is labelled with:

the current character from the input stream;

any XML tags inserted immediately before the current chiarac

the current states in the hidden Markov and PPM models; and

the cumulative entropy of traversing from the root of therskdree to this

node.

There are two types of search tree implemented in CEM: Teabarc!s (see
Algorithm 3 on page 46) and maximum lookahead search. Whemthemum
lookahead is used with a sufficiently long lookahead, it isue tViterbi search.
Except where explicitly stated, the maximum lookaheadcteésee Algorithm 2

on page 45) is used.
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4.2.4 Full Exclusion

The PPM escape methods, as implemented in this thesis;, fidfa the standard
escape methods because they do not use full exclusion. §hahen an orden
model is escaped from back to an- 1 model, then — 1 model is not modified by
removing characters which appear in the ordenodel. Removal of these charac-
ters from then — 1 model is safe because they have already been considereal in th
n model. This variant has been dubbed PPM-SY after the igibathe author, to
differentiate it from other forms of PPM.

The effect of not using full exclusion is to modify slightlre action of the
escape methods used. As noted on page 32, there aspnori reason either to
think that one escape method should model a sequence Inetteiother, or when
using PPM for text augmentation to suggest that PPMD shaowutd lgetter results
than PPM-SY.

When using PPM to drive an arithmetic encoder, using PPM-Sildvequan-
der a small amount of probability whenever a model is escé@ed, resulting in
a longer coded text, and would thus be undesirable. In tegtrentation applica-
tions, the absolute entropy values are not important, drdyrelative values: the
coded text is never used or produced so the length is irneleva

The choice not to use full exclusion was made for reasonsfieicy: per-
forming set operations on large character sets in the irowy bf a computation
is understandably expensive. It is expected that the coltlloéxclusion will be
substantially higher for larger character sets than forlsongs. A version of PPM
with full exclusion is tested in Section 6.1.

The implementation of full exclusion calculates the exidnslynamically as it
occurs. An alternative implementation was considered irclviexclusions were
calculated the first time they were used, and then cachedefaser thereafter.
This would have consumed considerable extra memory, péatlg for the large

character-set segmentation corpus (see Section 5.3)hiohuhe size of the model
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was an issue.

4.3 Optimisations and Heuristics

The pruning of search trees using optimisations and hasi enable them to be
searched as efficiently as possible has a long history in atenpcience [71]. This
section applies this tradition to the search space of tegtnamtation. Optimisa-
tions are techniques that improve the efficiency of problewiisg without altering

correctness. Heuristics are techniques that improve freeesicy of problem solv-

ing but may potentially reduce correctness. This sectiokddirst at techniques
and then at how some of them affect the search spaces in tiffiexewt classes of

text augmentation.

4.3.1 Viterbi Optimisation

Viterbi search [140, 141] (Algorithm 2, page 45) is an opsation of complete
search (Algorithm 1, page 44), which Viterbi proved [1405he impact on cor-
rectness provided the lookaheat large enough and the encoding scheme has the
right properties. For text-augmentation problems ‘largeugh’ is the maximum
possible length of a tag, plus the order of the PPM model inpiss one.

Relating search-space size to the maximum length of the teigg) bnserted
means that some tags require smaller search spaces thas triserting short tags,
such as personal names or parts of speech, gains more agvdratan the Viterbi
search than do large tags such as {tgml> or <body> tags in XHTML [114]
which contain an entire document.

Figure 4.5 shows an example of Viterbi search space, with sawll black
triangle being the search space for the current incremexgte g5) and the large
triangle being the full search space (respectively the hakr thewhile loops in Al-

gorithm 2, page 45). Figure 4.5(a) shows the initial seapates of depthu + 1,
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Figure 4.5: Viterbi search of a large search space.
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before the first pruning of the search space, and the fulthespace of depth+ 1.
Figure 4.5(b) shows the second search space of degfter the first pruning. Fig-

ure 4.5(c) shows the search half-way though, and Figure}shpws the completed

search.

aaa()(}{)---(H)- (DG OGHx aaaa()(-)(H)(HD(})}aa

(@) (b)
ola{} ()oxo
ola { } () o x of|lxla{ } () oxo ?%%%%%88%
11 1y 1 1 "1"1 I'1"1"'1"'1 g1 S =
diii it s p aftitei iy ititiggt
T T PP PR LR i i g0, (|00 g0t
AR A A A A A R AR I RN b
IEEE O IS R RS I AN R
ERRRRSR{CIsta eI A RRt Ny
*|35 a9 7 9 a9 19 B 19| %[5 5§ G o oto %5 5557295
ol bk G mamllelddddiioloflolsgss5005

(c) (d) (e)

Figure 4.6: A set of models and sequences for which the \Visstumption does
not hold and Viterbi search fails. (a) a class of difficult seqces (b) a single
sequence (c) top-level Markov model (d) model#de) model foro. z=1 andy=1.

As the following contrived example illustrates, it is novadus that the Markov
assumption, and with it Viterbi proof, in any form holds faataral language text.
Figure 4.6 shows a Markov model with three hidden states aradidnabet of eight
symbols. Hidden moded models the contents of matchéd braces (d). Hidden
modelo models the contents of matchéll parentheses (d). The columns of zeros
in thex ando models indicate that no direct transitions between thenpassible,
and that transitions must be via the top-level Markov modetlieo hidden state.

Figure 4.6(a) shows a class of sequences which is problemvéh respect to
this model: parentheses and brackets used in ways that doatoh. Furthermore,

a repeating chain of parentheses and brackets can exteathtfiguity indefinitely
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until some other symbols, such asyaare seen. Figure 4.6(b) shows a string for
which Viterbi search will yield two equally likely hidden geences. The model
may be changed to prefer one over the other by changing (and adjusting the
other probabilities so that the sum is 1). However, such atisul still requires that
the search sees the end of the chain before pruning the desecit the start of the
chain.

Fortunately such situations are rare, none of the datasetemted in this thesis
appears to contain such sequences, and none has beendapdte literature.
Experience [136, 144, 145, 135, 26, 163] has shown that ictipeaViterbi search
does work on natural language text.

Figure 4.6 shows a situation in which Teahan Search (Algori8 on page 46)
performs admirably. Teahan Search expands a fixed numbedesrat each level
in the search tree so it is capable of exploring equal entboagches of the search
tree to an arbitrary depth, providing at each level one nedm feach branch is
expanded. However, if a branch has higher entropy (for eX@amiin Figure 4.6(c)
Is raised), then it will probably get pruned, even if the Ietvglobal entropy lies

down that branch of the search tree.

4.3.2 Best First Optimisation

The best first optimisation is based on the observation the¢ @ candidate aug-
mentation has been found and the entropy calculated, a#shadthin the search
space with higher entropy can be pruned immediately. If @yikandidate aug-
mentation can be found computationally cheaply, and théability distribution
function is steep (i.e. the model has high discriminatioing, search space can be
reduced considerably. In Figure 3¢has an log probability o{m = Télo and
nodez has an log probability of 25— = 7 = 55;: neitherw nor any other

child of e can have a lower log probability (and thus entropy) than d¢fiatode z,

so node: need not be expanded.
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The savings made from best first are difficult to calculateabse they depend
on the probability distribution function for each state e tmodel and the exact
sequence of symbols seen. In general, however, the savimtgsger for probability
density functions that are highly discriminative. Discimation generally increases
as models are better trained.

The CEM implementation finds a best first candidate by caliigdhe entropy
of the left most leaf (the only leaf reachable without insgytany tags). This is
the computationally cheapest leaf to find and in many sibaatit is a low-entropy
leaf, if not the lowest. Hardware and Field ProgrammableeGatay (FPGA)
implementations of Viterbi search may avoid the need foib first optimisation
by performing this part of the algorithm in parallel [140,114.21]. Such treatment

is not possible with text augmentation because of the saamifly larger lookahead.

4.3.3 Automatic Tokenisation Heuristic

The automatic tokenisation heuristic is based on the obiernvthat in many prob-
lems there are classes of characters between which no tagaewes. For example,
in the Computists’ and bibliography corpora, no tag ever cxbetween a pair of
lower-case letters or between a pair of whitespace chasadteno tag is ever seen
in a situation during training, and a sufficient amount oiiiray data has been seen,
it is reasonable not to consider inserting tags in such ipositduring testing. This
assumption may prove false, which is why automatic tokeioisas a heuristic not
an optimisation.

The saving in search space depends on the structure of théltexever, if text
were uniform words of four letters starting with a capitatée and separated from
the next by a space .(_, Abcd Efgh,...) and automatic tokenisation meant the
search did not have to consider inserting tags between phicsver-case letters,
two of every five nodes in the search space would not need taganded. Thi%

approximation is assumed throughout this chapter.
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Some types of contraction and abbreviation have a direcadtingn automatic
tokenisation. For example, the stridghn Anthony Smitimay have the same search
space ag. A. Smitheven though they differ markedly in length.

The CEM implementation keeps an occurrence table of posg#its of Uni-
code character classes [138], and counts how many tagsear&stveen each pair.
During augmentation, each node in the search tree is chéoksxke whether more
than a threshold number of tags has been seen between teatquair of character
classes, before considering whether to expand the seaeh@ommon threshold
values include -1, 0, 1 and the default 5.

Unicode characters are divided into a set of 28 classes. Tdst common
classes seen in the corpora used in this thesis are lowdettseuppercase letter,
other letter (common in the segmentation corpus), spacaap, line separator,
decimal digit number, and various classes of punctuatidme dlasses are partic-
ularly convenient in Java, which uses Unicode throughoB}. [Fhe ANSI C [59]
functionsisspace()isupper() isdigit(), etc. have a long history in parsing applica-
tions [2] and would almost certainly have performed wellhrstrole for the En-
glish language corpora. There are been proposals [5] fohmare sophisticated
character-level metadata systems in Unicode, but thessoamnsidered here.

One Unicode character class, the private use class, is/egstar ‘use by soft-
ware developers and end users who need a special set of ienarfac their appli-
cations. [These characters] are reserved for private uselamot have defined,
interpretable semantics except by private agreement][X3BM uses these to rep-
resent tags in character-level models, assigning a clegirtaceach tag to enable it
to be modelled as just another character within the PPM rsottet« in Figure 4.4
and theo, x ando in Figure 4.6. These characters are used by CEM only inter-
nally, and always mapped to or from full XML representatiaighe tags when

externalised.
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4.3.4 Alphabet Reduction

Alphabet reduction is a heuristic based on the same chardasses as automatic
tokenisation. In the bibliography corpus, repeating pag®f punctuation and cap-
italisation involving names in bibliographies were noticélames, which are com-
monly unique strings, remain a problem for the PPM model Wisees limited
context.

Alphabet reduction merges a class of characters into aestigdracter in the
model. For example, merging all upper case letteré tand all lower case let-
ters toa means thadohn A. Smith andJill K. Jones andand Yong X. Xiong and
all merge toAaaa A. Aaaaa aaa Throwing away this information homogenises
these names. Considerably less memory and training dateseat®d to produce
high-order models because alphabet reduction reduceszéhefsthe alphabet so
drastically. Empirically, alphabet reduction has raiseel tnaximum order of the
model to between 15 and 25. The performance of alphabettiedun practice is
examined in detail in Section 6.4.3.

This method is related to methods used elsewhere for findingngms [32,
160] using capitalisation patterns for generating cantdidaronyms, which are then
winnowed using other techniques. The benefits of alphahletcteon are hard to
model, as they depend on the gains from modelling at a higlder compared with

the loss of information about each character.

4.3.5 Maximum Lookahead Heuristic

The lookahead required by the Viterbi proof is not always needed in pragtand
previous work [133] suggests that the results of tag insertiommonly converge
at lookaheads much lower than The maximum lookahead heuristic is to select a
lower lookahead that represents a trade-off between d¢oges and efficiency. The
lower lookahead is denoted. If o’ is too low, the lowest entropy tagging may not

be found; this may be detectable during evaluation (seede2t3.4). Ifa’ is too
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high, the search space is unnecessarily large.

The CEM implementation collects statistics on the maximuze sif every tag,
but leaves the selection of a lower lookahead to the userp&Hfermance of maxi-
mum lookahead in practice is examined in detail in SectidmM6.Various methods

for limiting the depth of Viterbi search are discussed ingL1

4.3.6 TagC Heuristic

As presented so far, CEM considers every possible combmafitags whenever
it considers inserting any tags. In real documents, howexdy limited ranges
of permutations of tags are found. The TagC heuristic ir®ltracking dur-
ing training the set of all tag permutations seen. For examible training text
<entry> <author><forenames- Donald Ex</forenames- <surname-Knuth.
</surname-</author>... would add{ (<entry> <author- <forenames),
(</forenames <surname-) and (</surname- </author>)} to the set of permuta-
tions. When tags are inserted, only the permutations seeaiiirtg are considered
for insertion (plus closing tags at the end of the file to gota that all tags are
closed).

The TagC heuristic has no effect on segmentation problems(there are only
two states) and only limited effect on classification, beeaanly one tag can be
closed and one opened, limiting the number of permutatidhs.significantly more
complex schemas involved in entity extraction (see Figug® give considerable
scope for savings to be made. The savings will be greaterdimptex schemas
when a relatively small set of permutations is seen dur@igitng. The performance

of the TagC heuristic is discussed in Section 6.4.5.

4.3.7 State Tying

State tying is a widely-used heuristic in speech recogmiig®], which appears not

to have been used before in text modelling. The insight orclvistate tying is

70



(][]

Figure 4.7: The structure of a hidden Markov model, withestging. The squares
are hidden states, linked by the solid arrows of the modatsire and by dotted
arrows to their associated models.

built is that some states in a large model are similar not lanch but because they
model similar concepts. Thus in a speech-recognition systee models for the
second half of the words ‘hair’ and ‘pair’ are similar (or aakt they are for certain
dialects) even though the words themselves are differeshittaely may represent
different parts of speech. State tying uses a single undgriylarkov model to
model several hidden states. The hidden states are not dregjea higher level
the model tracks the difference between them—but they sh&BEM model and
should require significantly less training data. Figuresh@ws the hidden Markov
model shown in Figure 4.3 with two leaf states tied.

The key benefit of state tying is the ability to share trainilaga between rela-
tively common and relatively rare tags so as to achieve bpttdormance from the
same amount of training data. State tying only works onsiitraction problems,
because it requires at least two levels below the documentadie together. Tying
two states in a classification problem would leave two imdggtishable states. In a
segmentation problem there is one (non-root) state, wraanat be tied to itself.

By default CEM performs state tying on all states with the saag@ame The

effect ofnottying thenametag is examined in Section 6.4.6.
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4.4 Search Space

As discussed in Section 2.4, the efficiency of abstract cdenpaperations is ex-
pressed by complexity, using td¥z). In the case of the tag insertion methodology
presented here, the parameters are the numbers oft)agise( lookaheada) and
the size of the input is the length) of the text. This complexity is a reflection of
tagging action, rather than the complexity of the undegdyirtellectual or syntactic
complexity [16].

If « is a constant and: and y are unbounded positive variable®(u) <
O(x) < O(z") < O(uw?) < O(z¥). Algorithms with O(u¥) or greater are re-
ferred to as intractable and run in non-polynomial time onvemtional computer
equipment.

A line of investigation in the MUC conferences (see Sectidh4) was mea-
suring the inherent complexity in the web of atoms in the réuemtity tasks [7].
This approach relied on a uniform model of textual atomsaetéd into a relational
database and a network of inferred relations between thetmeadily adaptable
to the approach under consideration in this thesis. It wesostered was that tasks
considered in MUC-5, MUC-6 and MUC-7 had surprisingly similangplexity,
suggesting that the underlying complexity of textual ustherding tasks may not
be as great as that of the solutions presented here. Thieagbpis not applicable
to the present work because no web of atoms or equivalemtsteuis constructed
by systems such as CEM.

This thesis examines only the efficiency of text augmemalbip tag insertion,
rather than the building of models which is a prerequisitthts activity. There is
other work in the area of efficiently building models [97, 1,38t it is outside the
scope of this thesis. CEM builds the suffix tree with a hashetéioim the standard
Java libraries. The hash key is the character leading todte stored in the hash
value. Character counts are stored in the child node. Charemtets are stored

as Java longs and never rescaled (none of the corpora déalinvithis thesis are
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sufficiently large to overflow a long).

This analysis of search space is dependent on the constiiirdduced in Sec-
tion 4.1.4. Removing Constraint 3 would add an infinite numldemnapty tags into
the search space, and removing Constraint 4 would add anténfinmber of non-
empty tags. Therefore analysis includes recursive tagsotly when there is at
least one character between each two open tags of each type.

If a document contains a single character, it could potytiave tags inserted
either before or after that character. By Constraint 3, wharbifls empty tags,
any tags inserted into such a document must open before Hraathr and close
after it. By constraint 4, each tag can only open once. If theudeent is being
marked up using a set oftags, ther0, 1,2, 3, ... or t tags could occur before the
character, with the tags chosen being a permutation of thgs. Thus, the number

of combinations of tags that might be inserted prior to thst tharacter is:

t!

t
i=0 im (t =)

Constraint 3, which prevents the opening of tags that wouléropty, and Con-
straint 2 which requires that all open tags must be close@nsi¢he only tags
following the final character in any document are close tagching those tags re-
maining unclosed. Thus the number of taggings of the enticeighent is the same
as the combinations of tags that might be inserted priordditht character.

If a document with the single character ‘a’ is tagged with tive tags, <x>'
and ‘<y>’, then there ar&?_,,P, = 1 + 2 + 2 = 5 possible taggings.

In a document of two characters, the same tags might be @asprior to the
first character as in the case of a one-character documente tdgs may occur
between the first and second characters: tags may be clogesll@s opened. The

maximum number of tags that may be opened is directly relatede number of
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tags previously opened:

Z > A

7=0 k=0
wherei is the number of tags opened before the first character.
As before, the tags following the last character can onlyh#edosing tags
of already open tags. This gives the total number of taggioga two character

document as:

zt:(tpixzizzt:tpk> Zt: i+1) )th:th

=0 7=0 k=0 1=0 k=0

Thus, if a document with the two characters ‘ab’ is taggedlie two tags
the ‘<x>"and ‘<y>’, thenthereard x 1 x5+2x2x5+2x3 x5 =55
possible taggings. The formula on the right can be condidesamplified, but the
> %o Xk.—o tPr, factor can be factored out.

The number of taggings for a three-character documentislifoom this:

S 5 (o 8 S m))

=0 7J1=0k1=0 72=0 ko=0

:Zt:tP,-x Z zt: (ky —j1+i+1) x Zt:th2
i=0 j1=0 k1=0 k2=0
and each additional character in the document add$ a, >°;. _, : P, term to the
number of taggings, which i9(#?t!) = O(t!) = O(t!).

Classification is significantly simpler, because each chara@an be put into
only one oft classes, givingP, or t options, which iS0(t). Segmentation is even
simpler: either a tag is inserted or no tag is inserted, arpidecision, givingO(c)
wherec is a constant.

Table 4.1 gives the number of nodes in search spaces, firgtderting tags

between two characters in a document and then for inserdigg ihto an entire

document for each variant.
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4.4.1 The Semantics of Nested Tags

Permutation is a significant contributor to the search spaasicularly whert is
large. If the semantics of nested tags (see Section 2.5.69 @reanged so that
opening tags occurring between two adjacent characterseanantically equiva-
lent, independent of order (i.e. widely expected HTML / XHI Memantics), this
would change the permutation to a combination, substntiedlucing the search
space for entity extraction. Changing the semantics of ddsigs also drastically
reduces the maximum number of Markov models which would exled in the
case where tags are not used consistently, increasing éfielness of state tying
(see Section 4.3.7).

Segmentation and classification do not involve nested smg#heir semantics

are irrelevant.

4.5 Teahan Search

Not all of the optimisations and heuristics described abmae be applied to the
Teahan search algorithm. In particular, those that retapruning the depth of the
search space (the Viterbi and best-first optimisations tla@eanaximum lookahead
heuristic) cannot be used because the Teahan search doesnsader depth of
search. Automatic tokenisation, which applies to the naedeghich the search tree
can branch, can be used with Teahan search, as can the Tagglibauhich relates

to the width of the branching.

Algorithm SegmentationClassification Entity Extraction
per Character O(e) O(t) O(th)

Complete O(c™) o(tm) O(t™)

Viterbi O(c%) o(t*) O(tte)
Maximum Lookahead O(e) ot O(tta)

Table 4.1: Search space sizeis the number of tagg, is the document length,
a is the lookahead for Viterbi searchy, is the lookahead for maximum lookahead
search and is a constant.
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Entropy of node on the lowest entropy path
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Node in the search
(@)

Entropy of node on the lowest entropy path

QL |
X y

z
Node in the search

(b)

Figure 4.8: Scenarios in which Teahan search and Viterlochezn be expected to
perform differently, (a) Teahan search performs well and/{terbi search performs
well.

Both Teahan search and Viterbi search with maximum lookabeadeuristics
and it makes sense to ask which can be expected to perforem, wethightperform
better, than the other. There is a@riori reason to believe that one will perform
better in the general case, but in specific cases they perddferently. Viterbi
search can be expected to perform well in situations in wthieke is a great deal of
ambiguity (a small entropy difference between a large nurabeodes at the same
level) in the search tree, because it focuses on searchenguiient, immediate
context. Teahan search will perform better when the seamstams long sequences
of low ambiguity interspersed with short sequences of highiguity because, by
counting only the leaves, it is able to look effectively pastlong sequences of low

ambiguity.
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Figure 4.8 shows two scenarios which illustrate such saoat It shows the
entropy implications of inserting a single tag at variougf®in a sequence. In
Figure 4.8(a) all the points are high-entropy, excephdz which are low entropy.
Viterbi search with maximum lookahead is only capable oédaining whethex
or zis the better place to insert the tag if the difference betwtbem isa’ or less.
Teahan search is capable of making the differentiation nibemahat the separa-
tion, provided there are no (or relatively few) other lowreply branching options
betweenx andz. Figure 4.8(b) still hax andz but also has a range of relatively
low-entropy branching options betwermndy. In such a situation Teahan search
is likely to prune prematurely & whereas Viterbi search with maximum lookahead

is guaranteed to find the best option within tHenaximum lookahead.

4.6 Evaluation

This section examines how the measures of correctnessrftretluced in Sec-
tion 2.3 can be used in conjunction with the metadata taxgriatroduced in Sec-
tion 4.1. For each of the measures, each of the three taxaamiezd. A new

correctness measuiype confusion matricess introduced.

4.6.1 Recall and Precision

Recall, precision, and their combination in the F-measueethe primary means of
evaluating correctness in information-retrieval systelug the definition of what

constitutes a document varies for each type of text-augatientproblem.

Segmentation

For segmentation problems the evaluation question is ‘B@egment end between
one symbol and the next and was that segment end found?’ Rewhlprecision

are good measures for evaluating segmentation problenauseboth operate on
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to_be or_not to_be

(a)
<to>to</to>_<be>be</be>_<cc>or</cc>_<xnot-not</xnot>

_ <to>to</to>_<be>be</be>

(b)

Figure 4.9: A short quote from Hamlet. (a) without and (b)wtart of speech tags.

a binary distinction. Recall and precision are the standagthadology for mea-
suring correctness in the fields of Chinese text segmentHt® 145, 12, 50] and

Japanese text segmentation [3], both widely-studied settien problems.

Classification

For classification problems, the evaluation question ighks class predicted for
symboln correct?’, where symbols are the characters, words, seggesr docu-

ments being placed into classes. Recall and precision ardasthmethodology for
measuring correctness in the fields of part-of-speechngdgB, 76, 94] and genre
classification [66], which are probably the most widelyektal textual classification
problems.

Figure 4.9(a) shows a short quote from Hamlet and Figurd}tBé same quote
marked up using the tags of the Lancaster Oslo/Bergen pasaxch corpus [64].
Teahan’s work (from which this example is taken) [133] is advbased approach
and uses word-based evaluation mechanisms: there are 6 imatte sample and
they are all correctly tagged, giving 6 true-positives. @loger-based approaches
see only characters not words: there are 18 characteradingl5 spaces, all cor-
rectly tagged, giving 18 true-positives. Evaluation of théput from a character-
based system using a word-based evaluation might be coedidélowever, this
works for mistakes such as misclassification of an entiredwout fails when only
part of a word or a non-word character is misclassified. Tlaeeesimilar prob-

lems in evaluating Optical Character Recognition (OCR) at a \Wew&l when word
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boundaries can be incorrectly identified [73].

The core problem is that character-based approaches aseaxpressive and
can be wrong in ways that cannot be represented in convahtieord-based ap-
proaches. The reverse is not the case, however, and thet mitpuvord-based
system can be compared to that of a character-based systeenciitaracter level.

The expressiveness of character-based approaches digfiseadvantages in
some corpora. For example, dates in the Computists’ corpai¢(® 5.1) are ex-
pressed as a single word in the fodJan98which word-based approaches see
as a single word (unless they have customised word boussdageristics) and
are unable to do better that identifying it as a dateldte>19Jan9&/date>).
Character-based approaches are capable of breaking thatdatemponent parts
(<date><day>19</day><month>Jan</month><year-98</year- </date>).

The difference in expressiveness applies to all three tgptext augmentation
problem if the standard measurement technique is worddbaséis most obvious

in classification problems such as part of speech tagging.

Entity Extraction

Measuring entity extraction as an information retrievallgpem is challenging. The
four basic classes (true positives, false positives, fadgmtives and true negatives)
are accumulated over successive independent trials,ddiNth. well-balancedness
constraint (see page 56) introduces inter-dependencie®ée trials.

Figure 4.10 shows inter-dependencies in a small entityaetion problem. The
untagged input text is shown in Figure 4.10(a). The task iagert<name- and
<title> tags into the text, as shown in Figure 4.10(b). Figure 4)l€{ows an error:
the boundary between the first two names has been insertedintarect place:
the tag<name>Smolensky, P., Fox;/name> is a false positive. The independence
criterion is broken because seeing this false positive doepist preclude the pos-

sibility of seeing the tagcname-Smolensky, P</name>. It also precludes the
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Smolensky, P., Fox, B., King, R., and Lewis, C. Computer-aided
reasoned discourse. ..

@

<name>Smolensky, P., </name-<name-Fox, B.,
</name><name>King, R. </name>, and <name-Lewis, C.
</name><title>Computer-aided reasoned discourse:/title >

(b)

<name> Smolensky, P., Fox:/name- B., <name> King, R.
</name> , and<name> Lewis, C.</name> <title> Computer-
aided reasoned discourse</title>

(©

Figure 4.10: Inter-dependencies in a small entity extoagtiroblem.

possibility of seeing the tagnhame-Fox, B.,</name>.

The possibility of<name>-Smolensky, P., Fox;/name>, <name>Smolensky,
P., </name> and<name>Fox, B.,</name> as names is not precluded if the data
Is segmented into a relation before processing. Howeveh sagmented results
could not be merged back into XML using tags such as we arguisihese three
names are included.

Itis unclear whether breaking of the independence critematters. Certainly it
means that recall and precision results from entity-ektvagroblems are in some
way different from segmentation and classification resatsl not directly com-
parable. Recall and precision are the primary means of casguain the TREC,

MUC and DUC conferences (see Section 2.2.4).

4.6.2 Edit Distance

The correctness of all kinds of metadata used in text augatientcan be measured

using edit distance.
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4.6.3 Confusion Matrices

As with recall and precision, the effectiveness of confansmatrices on different

kinds of text augmentation problems varies.

Segmentation

Confusion matrices of segmentation problems representeneegte case in which
there are only two classes. The matrix contains the fourchasiasures from the

information retrieval paradigm and is a contingency table:

a1 a2 true positives  false positives

az; Q22 falsenegatives truenegatives

For this reason evaluating segmentation using a confusatmnor the informa-
tion retrieval metrics produce the same results, but tr@métion retrieval metrics

have higher level metrics (recall and precision) built ugoem.

Classification

Confusion matrices are the standard method of evaluatisgitilzation tasks [149].
Their only disadvantage is that they are somewhat verbspecally for problems

(such as part-of-speech tagging) which have a large nunilotaisses.

Entity Extraction

Confusion matrices have identical independence problemsctll and precision
when used to evaluation entity extraction from text. Cordnsnatrices assume an
underlying many-class classification task, but entity aotion in the most general
form is more general than this; it isreerarchicalmany-class classification task. If
the hierarchy depth is bounded in some way, it is possible-efine the problem
such that every possible state in the hierarchy is a new.cldss approach suffers

from problems of combinatoric explosion, leading to larg@arse, matrices which
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cannot be normalised, since this leads to division by zero.

4.6.4 Type Confusion Matrices

Type confusion matrices are a new extension of confusiomiceatsuitable for ap-
plication to hierarchical many-class classification tagkgery node in the hierarchy
is assigned a type, which is the most recently opened tagtypleeconfusion matrix

for a hierarchical classification problem witlclasses is:

ayi1 Aarz -+ Q14
Q21 Ag2 -+ Q24
i1 Qig o Gy

am.n IN cOlumnn and rowm is the number of symbols that should have been clas-
sified in a node of class that were actually classified in a node of class

Type confusion matrices can be used similarly to confusiatrices, but it
should be noted that information has been thrown away. Fameie, if the se-
guence..S. Kraus, and V. Subrahmanian.is.marked up as:

...<editor><name> <first>S </first> <last>Kraus </last></name>and
<name><first>V.</first><last>Subrahmaniar/last> </name> </editor>. ...
rather than as:

...<author><name> <first>S </first><last>Kraus </last></name-and -
<name> <first>V.</first><last>Subrahmaniasa/last> </name></author>. ..
theauthor/ editorconfusion would only be apparent in taedsub-sequence. Other
sub-sequences such Esaus, do not have the erroneous tag as an immediately
enclosing tag. This situation is much worse when dealiny aldsses whose only
content is other classes such ashifiodytag which always contains a single other
tag.

Type confusion matrices are applicable to any tag insegroblems. However,
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when applied to a classification problem, they degeneraectinfusion matrix be-
cause the immediately enclosing tag is the only tag. Wheriexpfd segmentation

problems, type confusion matrices degenerate to a comaygable (see page 81).

4.6.5 Entropy

All types of text augmentation can be evaluated using egptropre does need to be
taken to avoid using the same model or a model built from theesdata for both
augmentation and evaluation. If entropy is being used fatuation, it is normal
to either use an empty adaptive model or a model built frora datich is distinct
from the training, re-estimation or testing data.

When a tag insertion using a Viterbi algorithm, produces anrirect result, en-
tropy measurements can be used to determine whether thdéidawith the model
or the searching algorithm. If the result produced by tagritign has lower entropy
than the baseline (or ground truth) text, the model is flawedi{as not seen enough
training data, is not of sufficient order, or is attemptindinguistically model non-
linguistic features). If the experimental result has highetropy than the baseline
(or ground truth), the searching algorithm is flawed (i.ee af the heuristics is
making an assumption that does not hold for this text). Téihnique is used in

Section 6.4.3 to examine the effectiveness of the alphagaktetion heuristic.
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Chapter 5
The Text

In this chapter the four corpora used in this thesis are dhited, the problems
posed by the corpora are described and previous work sothiege, or similar,
problems is discussed.

In the information-retrieval paradigm, a collection of datents is called a ‘cor-
pus’ and is assumed to have some commonality: the documengstiaer from the
same source, cover the same topic, or are a representatigesaf a larger pop-
ulation of documents. Building corpora, especially thosthwich metadata about
and within the documents, can be expensive and time-comgumi

In the research community, corpora serve as pools of datexjaoratory re-
search [91, 92] and as benchmarks for comparative rese@b¢lo4]. This thesis
uses them for both these purposes. The corpora used herefemed to as: the
Computists’ corpus, the bibliography corpus, the Chinesegegmentation corpus
and the Reuters’ corpus. Each of these is discussed in tloavfolj sections. Short

samples of each can be found in Appendix 1.

5.1 Computists’ Corpus

The Computists’ corpus [136, 135, 148, 26, 144] is composasdsoies of a mag-
azine called ‘The Computists’ Communique’ converted from ASeXt to XML.

Each of the 38 issues is approximately 1200 words in lengiircansists of a num-
ber of short articles usually followed by a list of job opegsn Previous workers

marked up ten featuresdme location, organisation email source date money
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phone fax andurl) by hand, and then made corrections based on the results of th

Teahan's TMT [135].

(937) 255-2902<http://web.fie.com/htdoc/fed/afr/wri/any
/proc/any/07209802.htm. [CBD, 20Jul98.]

(@)

<p>(937) 255-2902/p>. << <u> http://web.fie.com/htdoc/fed/afr/wri/azyu>
/proc/any/07209802.htm. [ <s> CBD</s>, <d> 20Jul98&/d>.]

(b)

<p>(937) 255-2902/p>. &lt; <u> http://web.fie.com/htdoc/fed/afr/wri/any
/proc/any/07209802.hta/u>&gt;. [ <s> CBD</s>, <d>20Jul98</d>.]

(©)

Figure 5.1: Corrections in the Computists’ Communique. (a)dtginal text (b)
the text as received (c) the text used in this thesis.

For this thesis the data was converted from the XML-like fatmsed by TMT
into well-formed XML and a number of systemic errors coreect Figure 5.1(a)
shows two lines from corpus as it appears in the original textice that a URL has
been broken across a line break. Figure 5.1(b) shows thesensed by Teahan,
Bray and Wen [135, 26, 144]. Four tags have been added: phanbamuURL,
source and date. Only the first part of the URL has been margessia URL.
The insertion of the URL and email address (not shown) tagsdeas automat-
ically, inserted extra<’ and the URL detection failed when the URL had been
line-wrapped. The text also has un-escapeq “ >’ and ‘&’ (not shown) charac-
ters, which are non-well-formed XML. Figure 5.1(c) shows ame text with these
deficiencies corrected. This is the version used in thisshes

The corpus has a number of endemic ambiguity issues: (ajngist names
are listed as sources when derived from the mailing list butvinen creation of the
mailing list is announced; (b) many of the organisation nauparticularlyApple

were marked up intermittently and (c) many words are markedaincidentally.
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For example, in a discussion about computers from IBM and Siandglystems,
Sunis marked as an organisation even when used as a class of @mmRC is
never marked as an organisation. These issues, and thédactrganisations and
sources are named after places and people, and that plaes maenoften coined
from personal names, account for the many of errors preljiosaported [26, 144].

Several corrections to the corpus are made in this thesiggmpat to resolve
(b) and (c). Two passes were made over the corpus, markiggamisations (and
to a lesser extent sources) which had not been marked-ugw#ops work. This
revised corpus is used everywhere in this thesis excepio®ee2.2, where results
are compared with previous work and therefore the uncardedata must be used.
To the author’s knowledge the corpus is in the public dom@iopies are available
from the author.

Inserting the ten features into the Computists’ corpus iassilication problem.
Figure 4.1(c) shows the schema structure for the problera.MUC named entity
problems from the MUC conferences have strong correspaedeto thename

location, organisation source dateandmoneytags.

5.2 Bibliography Corpus

The bibliography corpus was created specifically for thesit from bibliography
records. It was designed to resemble the bibliographiesdian the computer sci-
ence technical report collection at the New Zealand Didifarary [153, 109].

The corpus consists of a large number of bibliographies rgeéee by the ATEX /

BIBTEX tool-chain which is widely used throughout technicallyemted scientific
disciplines. It is anticipated that a model trained on tHaibgraphy corpus may
be adaptable for academic fields which use humanitiesaitatbnventions by us-
ing the Baum—Welch algorithm (see Section 3.6), but this isexplored in this

thesis. Marking up bibliographies is a first step for sevaddivities, including doc-
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ument linking, bibliometrics [111] and a range of possilsitegrated reading list,
bibliography and citation systems, making it a desirabéguee for a digital library.

A collection of publicly available bibliographic databasbas been maintained
and expanded by other workers for a number of years. Sampleiblmgraphic
entries were taken from the same sources as this collecpbin,into 14682 bib-
liographies with up to 25 entries and formatted using theTgX and ETEX [77]
text-formatting systems. Seven of the standard biblidgyagiyles ébbrv, alpha,
apalike ieeetr, plain, siamandunsr) and several different page layout techniques
(article, bookandreporf) were used to mitigate secondary effects due to line, col-
umn and page wrapping.

Addition of metadata tags into the bibliographies changeddyout of entries;
line breaks and hyphenation, in particular, were radicelignged. To avoid this,
each bibliography was processed twice, once using theatdsdyle file and once
using a modified style file which inserted metadata tags atqanrts of the en-
tries. This process is shown in Figure 5.2. The upper halheffigure shows the
processing of the bibliography (.bib) using the unmodifigdesfile (.sty) to pro-
duce the laid-out bibliography (.bbl) usingeBX. This laid-out bibliography was
then processed to a PostScript (.ps) document u&lp Bnd dvips, and then the
PostScript document processed to a text file (.txt) upstxt. The lower half of
the figure shows the processing of the bibliography usingntbelified style file
to insert escaped XML tags. The resulting two text files waentmerged into
a single XML document, taking the layout, whitespace andcfuation from the
text derived from the unmodified style file and un-escapirgebcaped XML tags
from the text derived from the modified style file. The resigtbibliographies were
processed using the XML ‘preserve-space’ style to presghreespace.

There are several peculiarities in the corpus, largely liszaf how it was con-

structed.

Y http://1iinwwira.uka. de/ bibliography/index. htni

88



1. All first names are marked-up in a single tag rather thai éest name in
a separate tag. The BST language which the style files are written has
primitives for laying out names. Marking-up individual tirrames separately
would have required a modified BST interpreter rather thanifieoddBST

programs.

2. There are inconsistencies in the relative location otpuation and close tags
at the end of words. The period following an initial is an iretion of con-
traction, semantically part of the initial, whereas theigetrat the end of a
sentence is semantically separated from the word it follolwee tagging at-
tempts to reflect this, but there are some deeply ambigu@escparticularly
where an initial falls at the end of a sentence and the periistbfrth roles.

In such cases the punctuation has been included within ¢he ta

3. Splitting a large bibliography into many smaller onesaliecross-references
between entries unless both referrer and referent hapgptar in the same

smaller bibliography. Broken cross references appedf§s *

IATEX commands to generate non-ASCII characters in the text ax@pesd to
Unicode characters. The conversion is based upon the codsudoserved in the
corpus rather than a comprehensive list of commands, bluidas many common
mathematical symbols and letters from a wide variety of fesEuropean lan-
guages (Portuguese, Spanish, German, Polish, Swedish, Miast of the letters
appear in names, either in the name field or as referencesofdepm titles. A
few of the entries were entirely in French. Many bibliogramntries with non-
ASCII characters also occur in a Romanised form, with the n&&GK characters

converted to ASCII characters by bibliography creators.

2The author knows of no comprehensive description of the B@fuage; the implementation is
part of BBTEX. Itis a stack-based language in which sets of non-recairaicros (called ‘style files’)
are used to format convert entries in a standard format (fuchvagain, a canonical description
appears to be lacking) into bibliography entries confogriothe stylistic conventions of a particular
publication.
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Figure 5.2: Data-flow diagram for creating the bibliograghlylection.

Escaping non-ASCII characters rather then dropping thenmobthe corpus
made the corpus significantly less close to the computenseigechnical report
collection, but significantly closer to bibliographies asyt appear in the majority
of electronic documents, and closer to how they were intériddeappear. Other
researchers have discarded such bibliographies, at thefr6t5% [125].

Many of the discarded bibliographies contafigX macros which could never
be processed by standaftﬂ:_tXSome appear to be mis-typed macros, but there is
no way to distinguish these from macros which individuakegshers have defined
locally. There are also many sets of macros circulating Injestt- and language-
specific communities to represent features of interestimvitilose communities.
The lack of namespaces ifiTEX means that there is no easy way to differenti-
ate these, and because macro files are imported into the @ocwather than the
bibliography, isolated bibliographies contain no refeemo the file name which
defines (or redefines) macros.

The structure of the schema is shown in Figure 5.3. The talgyels B and C
indicate bibliographies marked-up according to certablibdgraphy and document
styles respectively. All combinations of these were usedmtreating the corpus.

Tags at level E correspond to tags of different types of dantmbeing referenced.
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Tags at level F correspond to the fields in bibliographic réso

The structure of names in thalHX format is somewhat unusual. With four
parts (first, last, van and jr), the structure reflects AnariEnglish names as con-
ceptualised in the 1980s, but handles rather poorly a nuoiideatures of names
as used internationally, particularly double-barrellachames, von partstarting
with a capital and names in which the given name follows threame. One of
the causes is systematic confusion between the portioreafidaine which is writ-
ten first and the given (as opposed to inherited, parentaljopo These issues are
compounded by the difficulties representing non-ASCII cti@rs in £TEX, for ex-
ample the need to encodeélineg as ‘C{\ ' { e} } | i ne, and the use of a simplistic
sorting algorithm for ordering the entries.

A number of different workarounds have been developed teef@BTX and
IATEX to ‘do the right thing’ in sorting, formatting and hyphemag particular names.
A collection of these can be found in the archives ofdlo@p. | ang. t ex news-
group. Other name formats, such as the Library of Congre$matyt lists [112]
used in the MARC [108, 48] format are actively curated, emapBuch issues to
be handled systematically, if not optimally. In this theske original BBTEX ter-
minology is used because it is precise and clear to worket$ao builders in the
field [77, 101].

Not all the tags shown in Figure 5.3 are used in this thesigurgi5.4 shows
only those tags in the corpus which are used in experimentssrhesis. Note, in
particular, that the tags at levels B, C and E in Figure 5.3 assing in Figure 5.4.
The variant schema structure shown in Figure 5.5, and exgdain Section 4.3.7,
Is used in experiments with state tying.

Freitag and McCallum [46, 96] report work on a similar, altbbunon-
hierarchical, corpus initially hand-crafted, then incesrtally improved using

Markov models. Citeseer [80] (see Section 2.2.4) also imshibliographic data,

3In the BBTEX model of names, fragments such &erf and ‘van det are referred to as the ‘von
part’.
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bibliography
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Figure 5.5: Schema for the bibliography corpus withoutestging.
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using a handcrafted multi-step algorithm.

5.3 Segmentation Corpus

The segmentation corpus was derived from the ROCLING segtientcorpus.
which contains about two million pre-segmented words, espnted in the Big5
coding scheme. The corpus was converted from Big5 encodingBqGuojia
Biaozhun) by Wen [137].

The corpus was further converted from GB encoding to Unicédier inserting
word tags, whitespace (but not punctuation) was removed anexhesplit on sen-
tence boundaries into 1000 documents of approximatelydgheessize. The XML
was output as ASCII to force all non-8-bit clean characterbeaonverted into
Unicode escapes to reduce the chance of handling errors.

In the resulting corpus, a two character word looks likevord>&#x065f16;-
&#x05019</word>. The corpus also includes western terms (for example, prope
nouns and currency symbols). A thorough review of Chinesestegmentation is
given in Teahan and Wen [137]. As the author neither readspeak Chinese, he
is unable to give a detailed analysis. The results of previeorkers are shown in
Table 6.7.

The segmentation corpus appears to suffer from the oveplynstic segment-
ation’ described by Wu and Fung [157]. This phenomenon isedy the ten-
dency for many segmentation algorithms to be biased towsmtler segments
when faced with even genuine ambiguity.

Insertingword tags into the segmentation corpus is a segmentation problem

Figure 4.1(a) shows the schema structure for the problem.
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5.4 Reuters’ Corpus

The Reuters’ corpus is a collection of news articles takemftioe Reuters’ news
wire and referred to by Reuters as ‘Reuters Corpus, Volume lljdBrignguage,
1996-08-20 to 1997-08-19'. The articles range from twoagaaph summaries of
financial information to in-depth articles on political a@efrary topics. The corpus
has been widely studied for a number of purposes, includixigpcategorisation and
clustering [62, 55], information extraction [45, 46, 118{thorship [68], and part
of speech tagging [46].

This is the sort of news discussed on page 1: automaticabriimg tags, either
as a first step in a more sophisticated information-extragirocess, or simply to
tag articles as being connected to the organisations aatidos. This process, or
one similar to it, is performed ubiquitously in the field ofwgaggregation.

The corpus was prepared for this thesis by taking the first adficles from the
full Reuters’ corpus, removing the document level metadite,(@uthor, topic and
copyright information) and passing it through the Brill tag¢28], a widely used
part-of-speech tagger that tags every word with a labeliicitates the role it plays
in speech. The tagger’s notion of what constitutes a wordnsesimes unusual—
Don'tis regarded as two words addllar/yenas one word—nbut the tagger was used
‘out of the box’ according to accepted practice [46, 119]dbtuments containing
URLSs, which confused the tagger’s parser, were removed. JlhBéuters’ corpus
contains many duplicates [69], but as with other corporaiafatmation systems,
the presence or absence of duplicates is not as importartiether the corpus is a
representative sample of the larger population of docusné&sitren that identical or
similar news articles commonly appear in a number of pubboaoutlets, having
duplicates and near-duplicates in the Reuters’ corpus igraddi correlation with
‘real-world’ news sources, rather than a sign of a flaw.

The full Reuters’ corpus is large (over 800,000 articles),dmly the first block

of articles is used here, since the behaviour of text augatienton large bodies of
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text is not the primary interest of this thesis and has beatiest elsewhere [133].
A complete explanation of the meanings of each of the 38 &gsritained in [94].
The text of the Reuters’ corpus is copyright Reuters and notddistribution.
Copies of the corpus are, however, available from Reuters.

Inserting part of speech tags into the Reuters’ corpus isssifieation problem.

Figure 4.1(b) on page 52 shows the schema structure for tgon.
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Chapter 6

Results

In this chapter the effects of applying the earlier discdsgaimisations and heuris-
tics to the four corpora discussed in the previous chapeeegamined. The cor-
rectness results are then given and, where possible, cethpgainst experimental
results given in the literature. The effects of Baum—Welclesgmation are ex-
amined and, finally, the effectiveness of individual opsations and heuristics are

examined.

6.1 PPM-SY versus PPMD

CEM normally uses PPM-SY, and in this section it is compareta ®RPMD . Fig-
ure 6.1 shows the search time per node of the search in the Gistspcorpus, for
a range of orders of model and a lookahead of six. The searzhiticreases less
than linearly for PPM-SY and more than linearly for PPMD.

Despite the use of leave-one-out cross-validation, theectress of PPM-SY
and PPMD was identical in all cases except for the case ofdtatibn Capitol
Hill, which was correctly identified as a location by PPMD usingleis of order
three and four when PPM-SY incorrectly identified it as araorgation. Using an
order-five model correctly identified it as a location.

Figure 6.2 shows the search time per node of the search in thesghsegment-
ation corpus, for a range of orders of model and a lookaheddusf The time
increases less than linearly for PPM-SY and more than lipdar PPMD. This

increase in the cost is substantially larger than in the Caistgucorpus, probably

97



Comparison of PPMD and PPM-SY in the Computists’ corpus
10 T T T T

time * 0.15012 + 3.506 —

Search time per node (milliseconds)

Order

Figure 6.1: Graph showing the speed of searching in the Castgutorpus for

PPMD and PPM-SY. A reference line is included to show thatsiteed for PPM-
SY is growing less than linearly with respect to model ord@mings are averaged
over leave-one-out cross-validation.
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Comparison of PPMD and PPM-SY in the segmentation corpus
11 T T T T

10

©
T

Search time per node (milliseconds)
~
T
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Figure 6.2: Graph showing the speed of searching in the sagien corpus for
PPMD and PPM-SY. All runs use 900 training documents andg@lestesting doc-
ument. Results shown are averages over 100 runs.

because of the significantly larger character set invollRRMD gave better results,

on average, than PPM-SY, with a difference in F-measure0o®3%, +0.02% and

+0.04% for orders one, two and three respectively.

6.2 Correctness

Correctness (see Section 2.3) is studied on a corpus-bysbgsis. Leave-one-out
cross-validation is used only for the Computists’ corpugsaose that corpus is so
small. In all other experiments, no cross validation is uesexept where specifically

stated.
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6.2.1 Granularity and Heterogeneity

Unfortunately text-mining systems of the type being exadim this thesis make
the assumption that text seen during training is the sanfeeasxt seen during test-
ing. In this sense they are not general-purpose systems wwdlg that PPM [133],
bzip [88] or gzip [124] are. How well this assumption hold iearfrom corpus
to corpus depending in the internal granularity and hetmedy. For the corpora

described in Chapter 5:

e The Chinese text-segmentation corpus was built from predgemised data,

no variation among the 1000 documents is apparent to therauth

e The Computists’ corpus contains documents which all havesanee struc-

ture, but with considerable variation on subject matter.

e The Bibliography corpus contains relatively homogeneousudeents with
two exceptions: (a) those documents generated from pdrsiiiagraphies
containing all publications by an individual, and (b) thalk®uments gen-
erated from forum bibliographies containing all publioas appearing in a
journal, conference or book series. These documents arelgran artifact
of the way the data was prepared—an insignificant number ef ©gviewed
articles are published in computer science which contdareaces to only a

single author or source.

e The Reuters’ corpus, by contrast, contains genuinely hgéer@ous articles,
ranging from short market-report articles, with columnsyameric figures,

to long in-depth articles of political commentary.

Only the Reuters’ corpus is evaluated both at a corpus lewehba document

level (see Section 6.2.5). The other corpora are evaluatde aorpus level.
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6.2.2 Computists’ Corpus

The Computists’ corpus has been previously studied by Braly (&g TMT, and
Wen [144]. Bray evaluated extraction based upon a confusiatiixn(see Sec-
tion 2.3.3) and this is reproduced in Table 6.1(a). Tabl&&®% and (c) show the con-
fusion matrices for CEM on the corrected data using maximurkdbead search
and Teahan search respectively. The values in (a) are negbisurvords, the values
in (b), (c) and (d) are in characters. Tissuetag is the background: both TMT and
CEM build Markov models for thessuetag but Bray does not report the full results
for this, so the CEM results in (b), (c) and (d) have an extra row

For most of the tags the CEM results were comparable to, githtiworse
than the results given in Bray. Because the Bray results aremges of words
correctly classified and the CEM results are percentagesapicters correctly clas-
sified, direct comparison between these results is diffiMlany of the mistakes
shown in Table 6.1 for both systems appear be connecteddasistencies, as de-
scribed in Section 5.1.

Three of the tags with the best performanaod,(email and money, deserve
close attention. The first two can be described using a regularession and the
last is uniquely and exclusively identified by a single chtea($). These proper-
ties make tag insertion much more consistent; they also mmadelling such tags
easier for certain kinds of models. Unfortunately it alsckesamarking-up using
Markov models pointless: except in extreme cases markiroywpgular expression
is always more efficient than marking-up using Markov moaeld searching.

The systemic confusion betwe@ame source location and organisation as
discussed in Chapter 5, is clear in all three confusion tabli#l greater confusion
for CEM than for TMT.

Another situation in which CEM performs much worse than theyBraalysis
is thefax tag. The most common type of error withx and phonetags in both

systems is where the fax numbers are mistaken for phone mambe>617-373-
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d n s I 0 u e p f m i
[d]ate 93.46 + 6.40
[n]Jame 89.35 + 1.31 150 7.48
[s]ource + 60.09 2.85 36.62
[llocaton + 81.64 4.69 12.89
[o]rg 256 2.56 1.6369.23 24.01
[ulrl 100.00
[e]mail 97.34 2.66
[p]hone 82.29 10.71
[flax 100.00
[m]oney 100.00
()
d n s I 0 u e p f m i #
[d]ate 91.18 + + + + + + 8.12| 10070
[n]Jame + 85.49 275 1.78 2.02 + + 7.27| 10494
[s]ource 1.13 5197 + 3.02 + + 41.71) 9983
[location| + 266 1.9672,38 4.79 + + 17.65 5155
[o]rg + 3.48 299 3.6627.50 + + + 60.99| 5688
[u]rl + + + + + 95.23 + + 3.11| 20023
[e]mail + + 114 + + + 9360 + + 3.30| 12164
[p]lhone 88.69 9.95 1.36 955
[flax 27.86 69.14 3.01 499
[m]oney + 99.47| + 1133
[i]ssue + + 1.14 + 147 + + + + 95.92| 317169
(b)
d n s I o] u e p f m i #
[d]ate 91.04 + + + + 8.22| 10098
[n]Jame 87.92 219 1.26 3.92 + 4.64| 11167
[s]source| + 1.27 64.02 + 5.99 + 27.81] 14229
[Nocation| + 246 1.2675.8211.38 + 8.75| 5534
[o]rg 257 2.13 4.2758.48 + 32.40| 12212
[u]rl + + + 95.90 + + 2.88| 20089
[e]mail + + + + + 1.08 94.70 3.38| 12186
[p]hone 75.03 8.88 16.10 969
[flax 16.43 57.11 26.45 499
[m]oney + + + 90.35| 7.98| 1140
[i]ssue + + + + 128 + + + + + 196.94 303100
(©)
d n s I o} u e p f m i #
[d]ate 92.23 + + + + 6.99| 10075
[n]Jame 92.46 + + 2.65 3.49| 11135
[s]source| + + 68.11 + 5.12 + 25.57| 13881
[location 1.62 + 8453 7.87 5.86| 5619
[o]rg + 2.03 2.47 2.3966.47 + 26.53| 12169
[u]rl + + + 96.48 1.00 2.25| 19668
[e]mail + + + + + 96.55 2.23| 12436
[p]hone 72.55 6.60 20.85 969
[flax 1.20 421 70.14 24.45 499
[m]oney + + + 88.80| 9.58| 1107
[i]ssue + + + + 1.09 + + + + + 197.48/ 301326
(d)

Table 6.1: Confusion matrices for the Computists’ corpus fajnfBray using
TMT [26] page 70, (b) from CEM/maximum lookahead using thesdata as Bray,
(c) from CEM/maximum lookahead using corrected data, (dnf@EM/Teahan
search using corrected data. Character counts (#) are iaatbes, all other values
are in percent,+’ indicates a figure lower than 0.99%. A lookahead of 6 was used

102



Author Recall Precision F-measure
Wen 65.29 73.35 69.09
CEM/maximum lookahead (Wen’s dat&)9.17 63.38 55.38
CEM/maximum lookahead (corrected)71.06 61.21 66.13
CEM/Teahan (corrected) 74.65 67.71 71.18

Table 6.2: Accuracy for the Compuitists’ corpus, from Wen [Igege 75 and from
the current work. A lookahead of 6 was used.

5358 /p>, <p>617-373-512%/p><f>Fax</f>. In CEM, because of the small
number offax tags seen (28 at most), the model for fartag is the closest to an
untrained model: it is the least biased against appareatigam sequences. The
range of characters seen in flag tag is narrow, but not significantly narrower than
phonetag. This results in errors such ast>REAL</f>basic <f>pp. 43-45</f>,
andUnix <f>ht://Di</f>g search

As predicted in Section 4.5, CEM with Viterbi search perfodtfferently
from CEM with Teahan search. With the ability of Teahan sedeclsee’ long
distances it might have been expected to correctly clapsibne and fax numbers,
which commonly have the differentiator at the end. Unfoattiety the numeric con-
tent of these tags, being effectively random digits, has @gtropy which lim-
ited the gains made here. The clearest improvements wegisits such a&/03)
306-0599 Faxwhich maximum lookahead search broke in two ap>(703) 306-
059%/p><f>Fax</f>, whereas Teahan search correctly marked-upfag703)
306-0599 Fax/f>.

Wen [144] expresses accuracy in terms of recall, precisiehearor rates for
each type of tag, as shown in Table 6.2. The Wen model is ttan&5 documents,
whereas this thesis uses leave-one-out cross-validairahé Computists’ corpus.
The apparent reason for the better performance of Teahachseahis case is that
many of the ambiguities are of type (a) rather than type @¥hown in Figure 4.8.
The values in Table 6.1 bear no direct relationship with ¢hosTable 6.2 because
the former are at the word (or character) level, whereasdtterlis the recall and

precision of whole tags (excluding the issue tag).
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Table 6.3: Confusion matrix for the bibliography corpus withnote Counts are in
characters, all other values are in percent;@ndicates a figure lower than 0.99%.
Order 6 models trained on 6000 documents and tested on 1@@0nemts with a
lookahead of 5.

6.2.3 Bibliography Corpus

Because the bibliography corpus was developed in the preteiy, there is not a
wide range of results from other systems to compare thetsefsam CEM against.
Wen [144] gives some results on three tggadlisher dateandpages from an early
version of the corpus, but these results are not sufficietgtgiled for comparison.
Table 6.3 shows the confusion matrix for a large number of taghe biblio-
graphy corpus. A significant number of the errors were cabyease of the note
field in BIBTEX. This field allows arbitrary text to be inserted at the encduofentry.

Often this extra text is an abbreviated reference (for exanipublished version of
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UWCS Tech. Report No. 226., 19¥4hformation which should ideally be in other
fields of the reference (such aecture Notes in Computer Science & tduld be
in the series and number fields) or a citation (suckmatum in it JPL 25:5, 2000,
pp. 541-542. In Table 6.3 the note tags were stripped prior to taggihg,text
previously included in them appeared at the document Ipadiuting the trained
model by adding noise.

The root of these errors is that the generation of the coraod @ll BBTEX
processing) assumes that ths|X file format is prescriptive, when in fact it is
descriptive: users will put whatever they need to intasipX file to get the entry to
look ‘right’ in the style they are using. This leads to a sitorin which the meaning
of bibliographic entries (when formatted for publicatiemxlear to researchers and
librarians passingly familiar with the field, but the corttehthe BBTgX fields does
not correspond to field definitions. No increase in lookah&athing data or model
order can remedy such a problem.

A different kind of error is seen at the boundary between titha list and
the document title because of the wide variation in layouhefauthor list and the
tendency of titles to start with lengthy proper nouns whioh easily mistaken for
author names. The first word or two of the title are sometinagged as author
names, either as part of the last genuine author name or gmeate name. This
kind of error is strongly linked to the lookahead (see sec@i@l.4): as more context
IS taken into account these errors diminish.

Table 6.4 shows a confusion matrix with thetetag added. The overall perfor-
mance is not substantially different, but that for thenbertag drops considerably.
This appears to be because many ofrtheetags contained numeric sequences (see
examples above) and separatmgtetags out from the background model enables
it to effectively model numbers.

Table 6.5 shows the type confusion matrix for the bibliogmaporpus. The

bibliographytag is still the document tag, but almost all the content & math
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Table 6.4: Confusion matrix for the bibliography corpus wiitte Counts are in
characters, all other values are in percentagey;’dridicates a figure lower than
0.99%. Order 6 models trained on 6000 documents and testé@@®@documents
with a lookahead of 5.
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bibbodytags which contain the bodies of the references (but notetheimg refer-
ence key in bibliography styles which use one).

Many of the characters mistakenly marked-ugbdbodyare punctuation (and
the note tag as explained above), whereas the errors intitlee column mainly
represent the first few words of thitle confused with the end of the preceding
authortag. As in Tables 6.3 and 6.4, there is confusion betviglenandbooktitle
becauséooktitleis used in the place aitle when there are two titles to a document
(i.e. a chapter title and a book title, or an article title @ncbllection title).

There is confusion between tipeiblisherandaddressags because mamub-
lisher tags have the address of the publisher included within thespecially in
entries forproceedingsandinproceedingsn which theaddressag is reserved for
the address of the conference rather than the publisher.

In Table 6.4, thenamefrom Table 6.3 has been split into five separate tags:
editor, author, name first andlast There is considerable confusion among the
various tags, but surprisingly little difference betweée éditor and nameags
because theameis almost always immediately followinglabbodystart tag while
aneditortag is in the middle of theibbodytag.

Table 6.6 shows the effect of increasing model order—as theéeiorder in-
creases, the experimental result converges with the eegbeesults, the number of
defects falling. Placing name tags is particularly chalag because of the diver-
sity in the way names are laid out in the training text.

The results given here appear much better than the figurea fiv other sys-
tems, such as [46]. However, such a direct comparison isshtapeapproximation
because of the different granularity at which the resuksraeasured and the dif-
ferent number of tags. Informal comparison of these resaltsicorrected resufts

listed on the Citeseer websitsuggest that a significantly better determination of

1The Citeseer system allows for users to correct or compiétmyraphic information. These
corrected entries are not considered here.
2http://citeseer.nj.nec.con cs
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+ + + + 99.84| 77,247




Order

Text

[5] <name><first>T. </first><last>Matsui</last> o ¢ <first>T. </first><last>-
Matsuokas/last> </name-and <name><first>S.</first> <last>Furui</last>-
</name> <title>/Smoothed N-best-based speaker adaptation for speec
cognition;’ ¢ in oProc. ICASSB</title> ’'<pages-97</pages- (<journal>-
Munich, Germany:/journal>), pp. <pages-1015-1018¢/pages- Apr. <date>-
1997</date>.

h re-

[5] <name> <first> T. </first> <last> Matsui</last> <first> T. </first> <last>
Matsuokas/last> </name> and<name> <first> S.</first> <last> Furui,</last>
</name> <title> /Smoothed N-best-based speaker adaptation for speechnr
ition," o in oProc. ICASSR/title> '<pages> 97</pages- (<journal> Mu-
nich, Germany/journal>), pp. <pages- 1015-1018c/pages- Apr. <date>-
1997 /date>.

2CO

[5] <name> <first> T.</first> <last> Matsui</last> </name> <name> <first>
T.</first> <last- Matsuokag/last> </name> and <name> <first> S.</first>-
<last> Furui</last>- </name> <title> /Smoothed N-best-based speaker a
tation for speech recognitiohg/title> in <booktitle> Proc. ICASSP '9g,
(eMunich, Germany),</booktitle> pp. <pages- 1015-1018;/pages- <date>-
Apr. 199 /date>.

dap-

[5] <name> <first> T.</first>¢ ¢ <last> Matsui</last> <first> T.</first>-
<last> Matsuokag/last> </name- and <name> <first> S</first> <last>-

Furui,</last>- </name> <title> /Smoothed N-best-based speaker adaptation for

speech recognitioh/title> in <booktitle> Proc. ICASSP ’'9%&/booktitle>-
(<address- Munich, Germany:/address), pp. <pages- 1015-1018s/pages--
<date> Apr. 1994/date>.

[5] <name> <first> T.<ffirst> o o<last> Matsui</last> <first> T.</first>-
<last> Matsuokas/last>- </name> and <name- <first> S.</first> <last>-

Furui</last>- </name> <title> /Smoothed N-best-based speaker adaptation for

speech recognitioh/title> in <booktitle> Proc. ICASSP ’'9%/booktitle>-
(<address Munich, Germany:/address), pp. <pages- 1015-1018¢/pages--
<date> Apr. 1997 /date>.

[5] <name> <first> T.</first> <last> Matsui</last> </name> <nhame> <first>
T.</first> <last> Matsuokag/last> </name> and <name> <first> S.</first>-

<last> Furui</last> </name> <title> /Smoothed N-best-based speaker adaptation

for speech recognitioh/title> in <booktitle> Proc. ICASSP '9% /booktitle>
(<address- Munich, Germany:/address), pp. <pages- 1015-1018s/pages--
<date> Apr. 1994/date>.

Expecteq

[5] <name> <first> T.</first> <last> Matsui</last> </name> <name> <first>
T.</first> <last>- Matsuokag/last> </name> and <name> <first> S.</first>-

<last> Furui</last> </name> <title> /Smoothed N-best-based speaker adaptation

for speech recognitioh/title> in <booktitle> Proc. ICASSP '9%/booktitle>-
(<address- Munich, Germany:/address), pp. <pages- 1015-1018&/pages- ,
<date> Apr. 199'4/date>.

Table 6.6: Example of effect of model size on defects, usingeis trained on 4000
documents and a lookahead of 5. Taggatics are incorrectly placede indicates
a missing tag.
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Author Corpus Recall Precision F-measure Perfect Ref.
Peng People’s Daily & Treebank 74.0 75.1 74.2 Yes [116]
Ponte & Croft People’s Daily & Xinhua 93.6 96.0 94.8 Yes [117]
Ponte & Croft People’s Daily & Xinhua 89.8 84.4 87.0 No [117]
Palmer TREC-5 — — 82.7 Yes [11B]
Teahan Xinhua 93.4 89.6 91.5 No [137]
CEM/Teahan ROCLING 97.8 98.1 97.9 No
CEM/Viterbi ROCLING 98.2 98.0 98.1 No

Table 6.7: Performance of Chinese text segmentors. Penféiciaites that the sys-
tem uses a perfect lexicon.
non-name structures by CEM and similar determination of rsdogeCEM and Mc-

Callum’s system described in [47, 75].

6.2.4 Segmentation Corpus

Segmentation of Chinese text is an archetypical segmenttagk and there are
many published recall and precision figures for this taskle'.7 shows a selection
of these, together with the best-case results obtaineciprigsent study for CEM
on the segmentation corpus described in Section 5.3. Mastgs use a perfect
lexicon: a list of all words which may be seen during testingd affectively solves
the zero frequency problem [146] but prevents the resutts foeing transferred
to many real-world problems. The difference between the Reate and Croft
results[117] in Table 6.7 shows the drop in performance gfstéesn used with and
without a perfect lexicon. Production systems typicallpmat assume access to a
perfect lexicon. There is a relationship between the petéacon and the order
—1 (or 0-gram) model in PPM, which includes all characters repriedda in the
character set,

The results from CEM using maximum lookahead search and CEM) U®a-
han search are similar, with the maximum lookahead seartbrpgng marginally
better. The Teahan search used 2000 leaves and averageddsf&#&3per character.
The maximum lookahead search used a lookahead of 6 and ade#@81 nodes
per character. Both used an order 3 model trained on 900 dodsraed 10 testing

documents.
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Taken at face value, the results for CEM are clearly bettertiase for the other
segmentation systems. However, most of the other systepeaafo be assessing
recall and precision on the number of whole words rather tdmeword boundaries,
which can double the perceived number of false positivesfalseé negatives for
isolated errors. This is because a single segmentation@&nocause the words on
either side of a boundary both to become false negativesth&néssue is that the
data used in the present work was sorted at the sentencedadet is not clear that
this was the case for the other reported results. Data wakingbe form it was
obtained in, and with no notes on the sorting or otherwiséeniterature, no extra
processing was performed.

CEM differs from Teahan’s TMT system in internal charactendiang. TMT
uses ASCII internally, breaking Unicode characters intotiplgl characters. Be-
cause of the way in which Unicode characters are laid outeratfailable 32 bits
(in ‘code pages’) there are a number of artifacts, the piynaguie being that novel
Unicode characters are always mapped to novel charactér\GEM, escaping
back to the order-1 model, but within TMT they may not escape back only as far
as the code page. As noted earlier, there isnmiori reason for preferring one
escape method over another (see Section 3.4) and thests rsulinlikely to be
generalisable beyond Chinese text segmentation.

Because of the large alphabet used in Chinese, the modelsgiomevdest or-
ders are large, making the problem significantly more diffithan it would be in a
smaller alphabet language such as English. No attempt lessrbade to optimise
the memory usage by CEM models, meaning that it cannot be osedilt! such

large models as Teahan’s TMT.

6.2.5 Reuters’ Corpus

Figures 6.3 and 6.4 show both recall and precision curvethoentity extraction

task in the Reuters’ corpus, with training on 7100 documentstasting on 100
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Figure 6.3: Graph of recall and precision against lookatfeadarious orders of
models for documents in the Reuters’ corpus.

documents. The difference between Figures 6.3 and 6.4 msilgnéty, as explained
in Section 6.2.1. Figure 6.3 shows recall and precisionutaled for each document
and then averaged over the testing set. Figure 6.4 showsdtaé and precision
calculated over the entire testing set. In every case shagall and precision are
highly correlated and similar.

The difference between Figures 6.3 and 6.4, up to six peesehgreatest at low
lookaheads, is caused by a number of shorter market-regimiea with columns
of figures which are easier to tag than are longer articlesrobee literary nature.
Fortunately, while the results are different, the trends till clearly the same:
incremental gains as the lookahead is increased. Unfdglyrihe prohibitive size
of large models prevented the creation of higher order nsodel

Overall, the performance of CEM was poor, as state-of-théaggers routinely
have recall and precision measures in the 90% range [28]r&hdts are particu-

larly disappointing since the baseline data was generatied @ finite-state based
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Figure 6.4: Graph of recall and precision against lookatfeadarious orders of
models for the Reuters’ corpus taken as a whole.

system (the Brill tagger) which word-level taggers have bedgle to emulate rela-
tively easily. There are two possible causes. Firstly, wastthe Brill tagger uses
a model and search context of a handful of words, CEM uses alraadesearch
context of a handful of characters. Secondly, CEM’s lineartext and lack of
super-adjacency handicapped it against the Brill taggechvises rule-based post-
processing which can examine not just immediate words, lmiememote words.
Small-scale investigations suggested that increasinghwoder and lookahead had

little effect.

6.3 Baum-Welch Re-estimation

The Baum—-Welch algorithm (see Section 3.6) allows untaggea @ be used to
boost models’ performance. This section looks at the agiptio of Baum—Welch

re-estimation in the bibliography corpus. This is pertindrecause, as has been
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Figure 6.5: Graph of edit distance with increasing re-estiom. Trained with 2110
abbrvdocuments, re-estimated with up to 2lddmdocuments, using thieg'st and
lasttags only, order 4 and lookahead of 3.

pointed out in Sections 5.2 and 6.2.3, the bibliography esiip significantly less
diverse than an uncurated bibliography collection in atdidibrary and it would
be beneficial to be able to generalise the models built onitii®graphy corpus to
these more diverse collections.

Figure 6.5 shows an attempt to generalise fromstbigrvbibliography format to
theacmbibliography format. Thabbrvformat is an abbreviated form with author
forenames initialised, while thecmformat is more standard style which includes
the full author forenames, if known. Only tiiest andlasttags are considered.

As might be expected, a model built on thlebrvformat and tested on them
format makes many errors. The line across Figure 6.5 at Q.884s per character
is the average number of edits over the entire 2ddrhdocuments without any re-
estimation. The most common error is the tagging tifsi tag as dasttag, which

Is seen by the edit distance metric as four separate errensoving one opening
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and one closing tag, and adding one opening and one cloging\taovel error is
the misidentification oéds(the token indicating the start of an editor list in #xam
format) as last name.

The 15-document average is a running average of the predibymints. It
shows a great deal of noise and no obvious pattern of inct@adecrease. The
cumulative average reaches 0.0323 edits per characteradiftt269 documents,
a significant drop from the 0.0342 edits per character withetestimation. Re-
estimation clearly reduces the edit distance in this casegring the average edit
distance for th@ecmdocuments. EM theory [60] predicts this is not a true conver-
gence (as an increasing proportion of the data is estimatbdrrthan true data, the
fidelity of the model slowly falls) but there is insufficierg-estimation data in this
example for this to become apparent.

The documents are processed here in random order, but thasesfare partic-
ularly sensitive to the order in which the documents aregssed. The first handful
of documents used in the re-estimation appear to be imgoitanay be worth ex-
ploring whether documents should be used ordered in somaengrerhaps those

with the lowest mutual-entropy first.

6.4 Effectiveness of Optimisations and Heuristics

The bibliography corpus is a useful dataset for evaluatiegeffectiveness of op-
timisations and heuristics because the wide variety of tagkse corpus allows a
selection of tags to be examined. The segmentation corplsasused because it

represents a widely-studied problem and a sharp contrtst tmbliography corpus.

6.4.1 Best First

Best first (Section 4.3.2) is an optimisation that exploits tfature of the maxi-

mum lookahead search, linking the discrimination of the ai®tb the search space
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Figure 6.6: Best first optimisation in hierarchical tag itieer. The lines are: a
author, editor, name first andlast, b name first andlast, c nameandlast d name
All runs used an order 3 model with 200 training documents asthgle testing
document.

required to find the lowest entropy tagging of a sequencenegpect to that model.

Figure 6.6 shows the effect of the best first optimisation loa hierarchical
(nested) tagauthor, editor, name first andlast in the bibliography corpus. In all
cases where the lookaheadsisl, the search space was significantly reduced. The
effect was greatest with the largest number of tags, becitige number of tags
increases, the chance that an observed sequence will haentoopy relative to a
particular model increases.

Figure 6.7 shows the effect of the best first optimisationh@nrton-hierarchical
tagsname pages date volumeandnumberin the bibliography corpus.

Figure 6.8 shows the effect of the best first optimisationtenatord tag in the
segmentation corpus. Without best first, the order of theehbds no impact on
the search space. Best first reduces the search space (algraith the effect

increasing as the order increases the discrimination ofrtbéel (b, c, d, and e).
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Figure 6.7: Best first optimisation in non-hierarchical tagartion. The lines are:
aname pagesdate volumeandnumber b name pagesdateandvolume ¢ name
pagesanddate d nameandpages e name All runs used an order 3 model with
200 training documents and a single testing document.
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Figure 6.8: The effect of best first evord for varying model orders. a labels nearly
co-incident quadruple lines representing the search sfacerders 1, 2, 3 and 4
without best first; b is order 1 with best first; c is order 2 vb#st first; d is order 3
with best first; e is order 4 with best first. All runs used 9G0rting documents and
a single testing document.
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Figure 6.9: Effect of best first when the number of trainingulnents is varied. All
runs use order 3 models with a lookahead of 6 and a singlegedticument from
the segmentation corpus. Entropy is the entropy of theesgtitire document with
respect to the model using for text augmentation, norméhsedocument length.
The documents in the segmentation corpus are significantiye homogeneous
than those in the bibliography corpus, resulting in less@on their respective
graphs.

Figure 6.9 shows how little the effectiveness of the bedt ifiweases with the
amount of training in the segmentation corpus. Without bestt the search space
is independent of the number of documents trained on, bhtheést first the search
space drops. Most of the drop occurred over the first 200itrgidlocuments, with
relatively little drop over the remaining 799 documentsgolocument was always
withheld for testing).

Figures 6.7, 6.8 and 6.9 each show the results for a singlendeat. This is be-
cause while the trends are the same (in all cases best firstvegperformance and
that improvement increases with model order) the size ofrtiprovement varies

considerably depending on the problem, and indeed the deativeing tackled. In
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all cases the results are representative of larger-scpkriexentation, but averaged
results are naturally smoother.

These findings are consistent with the expectations fronic®®ed.3.2. Well-
trained, high-order models allow the probability disttiba function to distinguish
accurately between likely and unlikely branches, and nsodéh many tags have
many more unlikely branches to prune. Given the good pedoie, the relatively
simple implementation and fact that no extra state is regquim the model, the best

first optimisation is valuable in these tag insertion praide

6.4.2 Automatic Tokenisation

Automatic tokenisation (see Section 4.3.3) is exploredgisiccurrence tables for
illustrative purposes. Table 6.8 shows an occurrence fablde Reuters’ corpus
after the start and end tags have been converted to speeiaharacters. In Ta-
ble 6.8(a) each row contains counts of characters appearthg corpus belonging
to each Unicode character class. Each column containssotitite character class
of the characters immediately following them. In Table B)8ach row contains
counts of characters in a Unicode character class that aoeoediately prior to a
tag (either a start tag or an end tag). Each column contamsts®f the class of
the character immediately following a tag. An empty cell able 6.8(b) indicates
that a pair of classes between which a tag has not been seemhactdit is rea-
sonable to assume need not be considered for inserting @alls that are empty
in Table 6.8(b) but occupied in Table 6.8(a) represent aigeraaving, particularly
if the number in the cell in Table 6.8(a) is high, as these aiespof characters
between which the search is not considered inserting tags.

The distinctive cross-shape in Table 6.8(b) is due to thetfet opening tags
usually follow a space character and are followed by almogtréng, while clos-
ing tags can be preceded by almost anything but are followeal §pace or\n’

character. This effect is reinforced by the uniform fornmattof the corpus. The
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First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 D7
UNASSIGNED 0| - B B B B B B B B B B B B - B
UPPERCASE LETTER 1 - 85k 223k 1k - - 30k 1k 57 2k 2 13k 73 1k 360k
LOWERCASE LETTER 2 - 2k 5m 254 - - im 13k 35 4k - 134k 24 6 6m
DECIMAL DIGIT NUMBER 9 - 1k 1k 145k - - 66k 5k 36 2k - 53k 267 52 275k
SPACE SEPARATOR 12| - - - - - 62k 1m - - - - - - - - 1m
CONTROL 15| - - - - - 54 69k - - - - - - - - | 69
PRIVATE USE 18| 7k 248k 1m 65k 1m 7k 7k 8k 8k 17 - 14k 2k 6k # 2m
DASH PUNCTUATION 20| - 3k 13k 5k - - 6k 4k 5 9 - 27 - 322 4| 33k
START PUNCTUATION 21 - 4k 1k 1k - - 206 131 - - - 92 99 713 8k
END PUNCTUATION 22| - 27 6 20 - - 7k 8 4 1 - 1k - 2 -| 8k
CONNECTOR PUNCTUATION| 23 | - - - - - - 3 - - - 119 - - - - | 122
OTHER PUNCTUATION 24| - 15k 18k 44k - - 139k 141 78 303 1 20k 8 18 |-238k
MATH SYMBOL 25| - 50 19 2k - - 475 8 4 1 - 39 16 44 2k
CURRENCY SYMBOL 26| - 13 36 9k - - 344 - 10 6 - 32 18 - 4 9k
MODIFIER SYMBOL 27| - - 5 - - - - - - - - - - - - 5
Sum 7k 360k 6m 275k 1m 69k 2m 33k 8k 8k 122 238k 2k 9k [5lIm

(a)

First Character Second Character Sum
Symbol # |0 1 2 9 12 15 18 20 21 22 23 24 25 26 7
UNASSIGNED 0 [ - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - - - - 30k - - - - - - - - - - | 30k
LOWERCASE LETTER 2 - - - - im - - - - - - - - - - im
DECIMAL DIGIT NUMBER 9 - - - - 66k - - - - - - - - - - | 66k
SPACE SEPARATOR 12| - 201k 1m 62k - - - 5k 8k 17 - 6k 2k 6k 4 1m
CONTROL 15| 7k 46k 302 3k 3 - - 3k 406 - - 7k 89 63 69k
PRIVATE USE 18| - - - - - - - - - - - - - - - -
DASH PUNCTUATION 20| - - - - 6k - - - - - - - - - - 6k
START PUNCTUATION 21| - - - - 206 - - - - - - - - - - | 206
END PUNCTUATION 22| - - - - 7k - - - - - - - - - - 7k
CONNECTOR PUNCTUATION| 23| - - - - 3 - - - - - - - - - - 3
OTHER PUNCTUATION 24 - - - - 139k - - - - - - - - - - | 139k
MATH SYMBOL 25| - - - - 475 - - - - - - - - - - | 418
CURRENCY SYMBOL 26| - - - - 344 - - - - - - - - - - | 344
MODIFIER SYMBOL 27| - - - - - - - - - - - - - - - -
Sum 7k 248k 1m 65k 1m - - 8k 8k 17 - 14k 2k 6k 1 2m

(b)

Table 6.8: Occurrence tables for the Reuters’ corpus. (deT&lall pairs of char-
acters. (b) Table of pairs of characters either side of a'lkhgnd ‘m’ indicate units
of a thousand and a million respectively.
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Figure 6.10: Effect of tokenisation on a group of hierarahtags. The lines are: a
name last, first, editor andauthor, b name last andfirst, c nameandlast d name
Each run was performed with 2000 training documents, onetgedocument and
order 3 models.

CONTROLS® character class includes’, “\r and EOF.

Figures 6.10 and 6.11 show the effect of tokenisation ofanadical and non-
hierarchical tags in the bibliography corpus. The reasoth®differences between
hierarchical and non-hierarchical tags is shown in Tal®e Bable 6.9(a) shows all
pairs of characters; Table 6.9(b) shows those either sitteeofametag, the sparse-
ness of the latter indicating that a procedure such as teagan has the potential
to make an improvement. The hierarchical tags shown in T&BiEe) are similar to
the non-hierarchical tags shown in Table 6.9(b), not bex#lusy are hierarchical
but because they are sequences of case-sensitive chamelietited with spaces,
commas and full-stops. The non-hierarchical tags showrab€lr6.9(d) by com-
parison have a significantly more diverse context. @iagetag is a sequence of

digits and case-sensitive characters aoldimeandnumbertags are strings of dig-

3The standard method of writing the names of Unicode chaiseted character classes is in
capitals.
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Figure 6.11: Effect of tokenisation on a group of non-hielng&ral tags. The lines
are: aname pages date volumeandnumber b name pages dateandvolume c
name pagesanddate d nameandpages e name Each run was performed with
2000 training documents, one testing document and orderdgls.o
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its commonly delimited by brackets and semicolons. Theltasuoccurrence table
Is much less sparse than the previous table.

Tokenisation potentially interacts with other errors. Egample, in Table 6.10
some errors on the bibliography corpus result from problenting the boundary
between the author list and the title tag. In this examptbena the first word of
the article title, has been split in two. The stridthenhas a slightly lower entropy
in the last tag than in the title tag, bait has never been seen in the last tag. @&he
has not been seen when the decision is taken whether or ntartdhe tag name
tag, so the word is split in two.

Whether the first or the second error is preferable will prdpdepend on the
application. As lookahead gets longer, such errors aretlgre=duced, but the
proper nouns commonly found at the start of titles are ofterg lwords (partic-
ularly corporate, place and personal names transliteratedEnglish) and remain
problematic even at long lookaheads.

Of 100 differences in correctness examined in the bibliplgyacorpus, using the
experimental scenario from Figure 6.10 but using 500 tgsdmcuments, 98 were
errors of the type shown by Table 6.10. Both the tokenisatimwhreon-tokenisation
results were incorrect but the non-tokenisation resuttevered more quickly. The
remaining were situations in which every tag occurred betware pairs of char-
acter classes.

The appearance of tags between novel or rare pairs of ckacdasses could be
guarded against by also inserting tags between charaet&sed seen fewer times
than a separate threshold (of the order of 25). In all casesimed this would have
solved the problem. If the training corpora is represeveathis should have little
effect on the search space.

Table 6.11(a) and (b) show the occurrence tables for the Ctstgucorpus and
all the tags within it. Table 6.11(b) is significantly lessasge than Table 6.8(a).

However, the frequently-occurring alpha-numeric pairtheupper left corner are
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First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 37
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 100k 375k 5k 26k 2k 127 2k 763 1k - 132k 362 2 1%49
LOWERCASE LETTER 2 - 2k 3m 4k 479k 60k 10k 16k 1k 5k 1 233k 1k - 5f 4m
DECIMAL DIGIT NUMBER 9 | 243 288 3k 384k 13k 4k 2 1k 56k 81k - 86k 88 - ] 632k
SPACE SEPARATOR 12| - 382k 367k 98k 37k - 84k 225 20k 756 9 6k 825 1 103m
CONTROL 15| 1k 34k 43k 17k 2 13k 1k 9 50k 3 - 359 47 1 14162k
PRIVATE USE 18| - 87k 469 6 83k 4k 3 - 1 - 1 70 17 - 1176k
DASH PUNCTUATION 20| - 7k 11k 2k 277 556 - - 2 14 - 49 -1 - 22
START PUNCTUATION 21| - 26k 2k 96k 128 2k 62 5 9 4 - 1k 15 - 1130k
END PUNCTUATION 22| - 9 75 17 49k 143 3 112 26 142 - 40k 24 1 90k
CONNECTOR PUNCTUATION| 23| - 6 5 - - - - - - - - - - - - 11
OTHER PUNCTUATION 24| - 6k 8k 23k 309k 76k 75k 1k 202 1k - 27k 32 - 1529k
MATH SYMBOL 25| - 622 589 282 747 152 - 36 6 24 - 81 579 - P 3k
CURRENCY SYMBOL 26| - - 1 4 - - - - - - - 1 - - - 6
MODIFIER SYMBOL 27| - 66 104 13 5 - - 2 - 1 - 8 - - -| 199
Sum 2k 649k 4m 632k 1Im 164k 172k 22k 130k 90k 11 529k 3k 6 199m
(a)
First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 47
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - - - - 124 - - - - - - 3 - - - | 127
LOWERCASE LETTER 2 - - 2 - 10k 44 - - - - - 5 - - - | 10k
DECIMAL DIGIT NUMBER 9 - - - - 2 - - - - - - - - - - 2
SPACE SEPARATOR 12| - 84k 454 2 - - - - 1 - 1 59 17 - 1| 84k
CONTROL 15| - 1k 7 2 - - - - - - - 2 - - - 1k
PRIVATE USE 18| - - - - - - - - - - - - - - - -
DASH PUNCTUATION 20| - - - - - - - - - - - - - - - -
START PUNCTUATION 21| - 62 - - - - - - - - - - - - - 62
END PUNCTUATION 22| - - - - 3 - - - - - - - - - - 3
CONNECTOR PUNCTUATION| 23 | - - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24| - 1 - - 73k 2k - - - - - - - -] 75k
MATH SYMBOL 25| - - - - - - - - - - - - - -
CURRENCY SYMBOL 26| - - - - - - - - - . - - .. -
MODIFIER SYMBOL 27| - - - - - - - - - . - - - . -
Sum - 85k 463 4 83k 2k - - 1 - 1 69 17 - 1| 172k
(b)
First Character Second Character Sum
Symbol # | 0 1 2 9 12 15 18 20 21 22 23 24 25 26 247
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASELETTER 1 - - - - 192 2 - - - - - 4 - - - | 198
LOWERCASELETTER 2 - 2 2 - 16k 208 - - - - - 168 - - - | 17k
DECIMAL _DIGIT_NUMBER 9 - - - - 3 - - - - - - - - - - 3
SPACESEPARATOR 12| - 168k 659 2 - - - - 5 - 4 93 37 - -| 169k
CONTROL 15| - 2k 6 2 - - - - 1 - - 1 - - - 2k
PRIVATE.USE 18| - - - - - - - - - - - - - - - -
DASH_PUNCTUATION 20| - - - - - - - - - - - - - - - -
START_.PUNCTUATION 21| - 56 - - - - - - - - - - - - - 56
END_PUNCTUATION 22| - - - - 32 1 - - - - - - - - - 33
CONNECTORPUNCTUATION | 23| - - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24| - 1 - - 152k 3k - - - 56 - - - - - | 156k
MATH _SYMBOL 25| - 1 - - - - - - - - - - - - - 1
CURRENCY.SYMBOL 26| - - - - - - - - - - - - - - - -
MODIFIER.SYMBOL 27| - - - - - - - - - - - - - - - -
Sum - 171k 667 4 169k 3k - - 6 56 4 266 37 - { 345k
(©)
First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 37
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASELETTER 1 - - - - 143 1 - - 4 5 - 35 - - - | 188
LOWERCASELETTER 2 - 2 3 - 10k 55 - - - 619 - 290 - - -| 11k
DECIMAL _DIGIT_NUMBER 9 - - - - 8k 784 - - 11k 33k - 44k - - - | 99k
SPACESEPARATOR 12| - 97k 518 57k - - - - 3 - - 708 20 - 2|156k
CONTROL 15| - 2k 23 6k - - - - - - - 55 - - - | 9%
PRIVATE_USE 18| - - - - - - - - - - - - - - - -
DASH_PUNCTUATION 20| - - - - - - - - - 1 - 2 - - - 3
START_.PUNCTUATION 21| - 4k 6 29k - - - 1 1 - - 247 - - - | 33k
END_PUNCTUATION 22| - - - - 42 5 - - - 72 - 37 - - - | 156
CONNECTORPUNCTUATION | 23| - - - - - - - - - - - - - - - -
OTHER.PUNCTUATION 24| - 58 11 20k 101k 5k - - 8 31 - 38 - - -| 127k
MATH_SYMBOL 25| - - - - - - - - - - - - - - - -
CURRENCY.SYMBOL 26| - - - - - - - - - - - - - - - -
MODIFIER.SYMBOL 27| - - - - - - - - - - - - - - - -

Table 6.9: Occurrence tables for the bibliography corpa$.Table of all pairs of
characters. (b) Table of pairs of characters either sider@fraetag. (c) Table of
pairs of characters either side méme last, first, editor andauthortags. (d) Table
of pairs of characters either siderdme pages date volumeandnumbertags.
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Case Text

0 [Son] D. Song. Athena: A new efficient automatic checker angity
protocol analysis.

1 [Son] <name> <first> D.</first> <last> Song</last> </name>-
<name> <last> Athenax/last> </name> <title> A new efficient
automatic checker for security protocol analysisitle >

2 [Son] <name> <first> D.</first> <last> Song</last> </name>-
<name> <last> Athen</last> </name> <title> a: A new efficient
automatic checker for security protocol analysisitle >

Table 6.10: Interaction between errors. The unmarked-xip(®, the text with a
markup error (1) and with the first error confounded by a sde@mor which splits
a word in two (2).

First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 5k 10k 55 1k 39 1k 174 - 110 4 971 27 20k
LOWERCASE LETTER 2 451 198k 974 33k 1k 2k 896 - 116 40 10k 9 249k
DECIMAL DIGIT NUMBER 9 - 1k 52 4k 339 50 1k 234 - 88 1 746 359 8k
SPACE SEPARATOR 12 - 8k 29 1k 8k 2k 2k 163 1k - 1 418 609 -| 54k
CONTROL 15| - 897 2k 42 1k 2k 679 73 441 - 71 178 317 8k
PRIVATE USE 18|36 2k 1k 904 1k 179 36 31 51 35 - 2k 1k 2y510k
DASH PUNCTUATION 20| - 215 864 201 225 23 44 233 - 5 - 3 - 1k
START PUNCTUATION 21 - 616 171 67 1 - 611 - - - - 31 12 -l 1k
END PUNCTUATION 22| - - - - 352 828 14 - - 10 - 435 - -1 1k
CONNECTOR PUNCTUATION| 23| - 10 32 2 - 72 - - - - 4k 1 - - | 4k
OTHER PUNCTUATION 24| - 607 4k 350 7k 1k 303 8 - 948 - 1k 35 - 18k
MATH SYMBOL 25( - 3 41 18 427 30 1k 1 - 6 - 966 190 4 2k
CURRENCY SYMBOL 26| - - - 275 - - - - - - - - - - 275
Sum 36 20k 249k 8k 54k 8k 10k 1k 1k 1k 4k 18k 2k 27883k

(a)

First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 308 48 - 16 - 179 - 603 6 -1 1k
LOWERCASE LETTER 2 35 - 750 48 - 7 - 164 - 880 908 -| 2k
DECIMAL DIGIT NUMBER 9 | - - - 135 42 - 8 - 13 - 924 18 -| 1k
SPACE SEPARATOR 12| - 1k 397 804 - - 3B - - 4 8 230 2k
CONTROL 15|36 478 61 62 - - - - 13 - - 5 3 21 679
PRIVATE USE 18| - - - - - - - - - - - - - - -
DASH PUNCTUATION 20| - 3 4 19 - - - - - - - - - 18| 44
START PUNCTUATION 21| - 543 45 17 - - - - - - - - - 6| 611
END PUNCTUATION 22| - - - - 9 - - - - - - 5 - - 14
CONNECTOR PUNCTUATION| 23 | - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24| - 57 26 - 75 5 - - - - - 21 119 -| 303
MATH SYMBOL 25| - 24 1k 2 - - - - - - - 2 - - 1k
CURRENCY SYMBOL 26| - - - - - - - - - - - - - - -
Sum 36 2k 1k 904 1k 143 - 31 51 356 - 2k 1k 2{510k

(b)

Table 6.11: Occurrence tables for the Computists’ corpusTdhle of all pairs of
characters. (b) Table of pairs of characters either sidetad.a
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First Character Second Character Sum
Symbol # 0 1 2 5 9 11 18 20 21 22 23 24 25 2pb
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 3k 2k 470 61 - 1k 1 1 - 8 1 1| 8k
LOWERCASE LETTER 2 - 146 17k 696 4 - 4k 1 1 1 - - 7| 22k
OTHER LETTER 5 - 45 259 1m 524 - 1m - 56 389 225 5723m
DECIMAL DIGIT NUMBER | 9 - 18 346 1k 4k - 1k 2 - 383 262 62 7k
OTHER NUMBER 11| - - - - - - 3 - - - - - - - 3
PRIVATE USE 181999 3k 1k 1Im 2k 1 2m - 18k 20k 314k 28 9 1k 4m
DASH PUNCTUATION 20| - - 2 - 2 - - - - - - - - - 4
START PUNCTUATION 21| - - - 393 383 - 26k - 1 23 20 - - -| 27k
END PUNCTUATION 22| - 2 - 49 1 - 21k - 3 - 4 - - 1| 21k
OTHER PUNCTUATION 24| - 601 487 276k 54 2 28 - 8k 19 1 5 - 34815k
MATH SYMBOL 25| - 8 13 - - - 13 - - - - - - - 34
CURRENCY SYMBOL 26| - - - - - 9 - - - - - - - 9
OTHER SYMBOL 28| - 2 72 604 107 - 1k - 13 - - - - 9| 2k
Sum 999 8k 22k 3m 7k 3 4m 4 27k 21k 315k 34 9 2k 7m

(a)

First Character Second Character Sum
Symbol # 0 1 2 5 9 11 18 20 21 22 23 24 25 2P
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 126 15 875 34 - - - 46 259 482 4 - 45 1k
LOWERCASE LETTER 2 721 616 1k 30 - - - 33 1k 509 - - 9§ 4k
OTHER LETTER 5 1k 347 1m 2k 1 - - 17k 18k 304k - 8 1k 1m
DECIMAL DIGIT NUMBER | 9 - 29 58 878 22 - - - 12 110 246 24 - 2p 1k
OTHER NUMBER 11| - - - 3 - - - - - - - - - - 3
PRIVATE USE 18| - - - - -
DASH PUNCTUATION 20| - - - - - - - - - - - - - - -
START PUNCTUATION 21| - 1k 343 24k 130 - - - 92 6 55 - - 21 26k
END PUNCTUATION 22| - 15 2 12k 44 - - - 405 150 8k - - 27 21k
OTHER PUNCTUATION 241998 255 13 26k 67 - - - 821 30 221 - 1 2128k
MATH SYMBOL 25| - - - - - - - - - 5 8 - - - 13
CURRENCY SYMBOL 26| - - - - 9 - - - - - - - - - 9
OTHER SYMBOL 28| 1 70 83 1k 25 - - - 51 16 318 - - 87 1k
Sum 999 3k 1k im 2k 1 - - 18k 20k 314k 28 9 1k 2m

(b)

Table 6.12: Occurrence tables for the segmentation cofpy3able of all pairs of
characters. (b) Table of pairs of characters either sidead.a
mainly zero, so the heuristic is of some benefit.

Table 6.12 is the occurrence table for the segmentationusognd indicates
that the OTHER LETTER is by far the most common characterschasich is to
be expected since most Chinese characters fall into this.cléke nature of the
corpus means that all of the frequently-occurring pairsahl& 6.12(a) also appear
in Table 6.12(b) (as non-zeros), indicating that automiatkenisation is going to
have little effect on the search space in this corpus.

Figure 6.12 shows the interaction between best first anchis&gon for the
nametag. The addition of tokenisation to best first always redube search space,
but the effect is most noticeable at low lookaheads whenfiyssis less effective.
This is because automatic tokenisation prunes branchde afdarch tree without
having to expand the first node in the branch to calculatertregy.

Consistent with the expectations from Section 4.3.3, theselts show that au-

tomatic tokenisation improves performance on some datasietvever, it does not
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Figure 6.12: Effect of best first and automatic tokenisabomametag. Each run
was performed with 2000 training documents, one testingish@nt and order 3
models.

perform consistently well across all datasets, and a nupfiike corpora have noise
in the occurrence tables. Such noise is likely to be sigmiflgagreater in digital
library collections of heterogeneous documents of diverggn than in the curated
corpora used here. Anecdotal evidence of HTML and XHTML doents from the
Internet suggest that tags do occur in a significantly widerety of places than
in the corpora examined here. Automatic tokenisation regua small and tightly-
bounded amount of extra state per model in the form of an oecoe table.

Unlike best first, automatic tokenisation is not linked te tfiscrimination of
the models. This means it can perform well even for a poodingd model. The
reason that automatic tokenisation does not perform asas¢le occurrence table
method is that the PPM model already discriminates betweesetsituations and
that best first ensures that the branches that get prunedtbsatic tokenisation

are not explored anyway.
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Name Symbol Example

Null folder N Jones,Jill_K._and
Capitals folder c JONESJILL_K_AND
Case folder C Aaaaa,AaaaA._.aaa
Unicode folder u AaaaaPSAaaaSAPSaaa
Vowel folder \Y nvnvn,nvnnn..vnn

Vowel & case foldervVC Nvnvn,NvnnN..vnn

Table 6.13: Folders used in alphabet reduction.

6.4.3 Alphabet Reduction

Table 6.13 shows the six ‘folders’ used in the alphabet redn@xperiment. They
‘fold’ the alphabet used in the model, as their effects onmada string show.

The Null folder does not change the alphabet at all. The Capdkler removes
the distinction between upper and lower case. The Case flulikr all uppercase
letters to a single letter and all lowercase letters to alsifegter. The Unicode
folder folds each of the Unicode character classes (seeo8et3.3) to a single
character per class. The Vowel folder folds all vowels tongl& letter and all non-
vowels to a single letter. The Vowel and Case folder folds oygee vowels to a
single letter, lowercase vowels to a single letter, upp¥can-vowels to a single
letter and lowercase non-vowels to a single letter.

Figure 6.13 shows the results of these six folder;xamein the bibliography
corpus. Figure 6.13(a) shows the F-measure against theafrthee model for each
of the folders. The experiment was performed in 750 megahyftdeap memory,
and the data is shown only for those models and lookaheadshwbuld be built
and used in that memory.

The N folder performed best, but N models could only be bailbtder seven,
because of the large alphabet. The C models also performédmwiecould be built
to order 23. However, increasing order did not increase #réopnance because
useful information was thrown away by the folder. The ¢, V &@ models all

performed similarly poorly and could be built to orders be¢én seven and ten. The
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u models performed badly with an F-measure less than twesdpitk being able
to be built to order 18. This is particularly surprising givthat the u folder has
a close relationship with the C folder, which performed wdlhe reason for this
difference appears to be thatand ‘;’ are important in delimiting names and other
features in bibliographies and the u models were unablestmduish between these
characters.

Figure 6.13(b) shows the ratio of baseline to experimemtttbpy for the same
experiments while Figure 6.13(c) shows detail of the sartaiomship where the
ratio approaches one. As discussed previously (see page¢h@3@ntropy can be
used to determine whether the model or the search is respefsi a mis-tagging.
All data points with a ratio less than one indicate that theec®e was deficient (i.e.
the lookahead could be increased for greater correctnddsflata points where
the ratio is greater than one indicate that the model is @&fidnh some regard;
in the ideal situation the ratio is 1:1. There are three Yikehys in which the
model can be deficient: it may have seen insufficient traimiat, it may be of
insufficient order, or it may be failing to capture importéedtures of the data. 2000
training bibliographies (approximately 45,000 bibliogin& entries) would appear
to be sufficient training data: models with smaller alphalggtnerally require less
training data. Increasing the order of the u, V, ¢ and VC medkdarly moves the
ratio further from 1:1. Thus the problem is likely to be thiaé$e models are not
capturing important features of the data.

The upward trend in the entropy ratio for the C models of otdgher than 6
(Figure 6.13(c)) is consistent with the behaviour of PPM eisavhen the order is
increased beyond optimal. This species of over-fitting issed by the building of a
higher order model than there is training data availableaim effectively, leading
to many common states having their probabilities genenatethe escape method.

The increase in noise for the ratio of entropies (partidulfmr the u model) as

order increases is due to sampling effects.
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Figure 6.14 shows the same details as Figure 6.13 forrtagg pages date
volumeandnumberat a lower lookahead (necessary because of the greatlyaseule
search space caused by the additional tags). Performarkggure 6.14 was con-
sistently poorer than that in Figure 6.13, but the relatedgrmance of the folders
was similar. The one deviation from this is the c folder, wdhBsmeasure is similar
to the VC and V folders in Figure 6.13, but clearly superioFigure 6.14. This is
because thpagesdate volumeandnumbertags in Figure 6.14 are number-centric
rather than text-centric, so the loss of capitalisationsdus effect them as badly.

The large reductions in correctness shown in Figures 6.436alv strongly
suggest that, with the possible exception of C, alphabetctemuis unlikely to be

useful in production systems for such corpora.

6.4.4 Maximum Lookahead Heuristic

For the majority of tag-insertion problems, maximum loo&ati is problematic be-
cause the lookahead at which the accuracy becomes asyeriptotimputationally
infeasible. For problems with a small number of tags, maxmiookahead is ob-
tainable. Table 6.14 shows the effect of various lookaheduieg on a single bibli-
ographic entry. The result converges on the expected tekinna lookahead of 5,
much shorter than the maximum tag length~of0 which Viterbi search suggests
would be required.

The defects displayed in Table 6.14 are mainly of types direhscussed in
Section 6.2.3: confusion caused by the wide variety of namadts and confusion
between article titles and book titles. Similar defectsenalso seen in Table 6.6, in
which the same reference was used to examine the performatmoearying model
orders. However, as shown in Figure 6.15, there is oftenat gl of noise, and it
may not be clear whether the asymptote has been reached thrawtiee lookahead
must be increased.

The primary sources of errors when inserting pagesag were four-digit page
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lookahead text

1 [5] <name> <first> T.</first> <last>- Matsui</last- </name>-
o o<title> T.o o </title> <journal>¢ ¢ Matsuokag/journal> and
<name> <first> S</first> <last> Furui</last>- </name> <title>
IN-best-based speaker adaptation for speech recoghitidtitje>-
in <booktitle> Proc. ICASSP '9%/booktitle> (c<name>-
<first> Munich</first> </name> <title> Germanyo ),</title> pp.
<pages- 1015-1018x/pages- <date> Apr. 1997 /date>.

2 [5] <name> <first> T.</first><last> Matsui</last> ¢ o <first>-
T.</first> <last>- Matsuokas/last> </name- and <name--
<first> Sx</first> <last> Furui</last>- </name> <title> /N-
best-based speaker adaptation for speech recoghitidtitle> in
<booktitle> Proc. ICASSP '9%/booktitle> (<address- Munich,
Germany/address’), pp. <pages- 1015-1018;/pages- <date>-
Apr. 199&/date>.

3 [5] <name> <first> T.</first><last> Matsui</last>¢ ¢ <first>-
T.</ffirst> <last> Matsuokag/last- </name- and <name--
<first> S</first> <last> Furui</last- </name> <title> /N-
best-based speaker adaptation for speech recoghitidtitle> in
<booktitle> Proc. ICASSP '9%:/booktitle> (<address- Munich,
Germany/address’), pp. <pages- 1015-1018s/pages- <date>-
Apr. 199 /date>.

4 [5] <name> <first> T.</first> <last> Matsui</last>¢ o<first>-
T.</ffirst> <last> Matsuokag/last- </name- and <name--
<first> S</first> <last> Furui</last- </name- <title> /N-
best-based speaker adaptation for speech recoghitidtitle> in
<booktitle> Proc. ICASSP '9%/booktitle> (<address- Munich,
Germany/address-), pp. <pages- 1015-1018¢/pages- <date>-
Apr. 199 /date>.

5 [5] <name> <first> T.</first> <last> Matsui</last>- </hame>-
<name> <first> T.</first> <last> Matsuokasx/last> </name> and
<name> <first> S.</first> <last> Furui</last>- </name> <title>
IN-best-based speaker adaptation for speech recoghitidtitle > in
<booktitle> Proc. ICASSP '9%/booktitle> (<address- Munich,
Germany/address’), pp. <pages- 1015-1018;/pages- <date>-
Apr. 199&/date>.

baseline |[5] <hame> <first> T.</first> <last> Matsui</last> </name>-
<name> <first> T.</first> <last> Matsuokag/last> </name> and
<name> <first> S</first> <last> Furui</last>- </name> <title>
IN-best-based speaker adaptation for speech recoghitidtitje > in
<booktitle> Proc. ICASSP '9%:/booktitle> (<address- Munich,
Germany/address’), pp. <pages- 1015-1018¢/pages- <date>-
Apr. 199 /date>.

Table 6.14: Example of effect of lookahead on defects, usidgr 4 models trained
on 4000 documents. Tagsitalics are incorrectly placed: indicates a missing tag.
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Figure 6.15: Graph of recall, precision and search spacestigaokahead for the
singlenametag. Models trained on 2000 documents and tested on one @ntum
numbers that looked like years such E393-2002and features such asn+4,
which is a common format when the citation is taken from acted@ic copy and
the document length is known but not the location within @rgér journal or col-
lection. These sources of noise are compounded by vatiailithe length of
bibliographies, which may be as short as a single entry with onepagesag and
only onename These problems are not resolved by increasing the looklahea

Figure 6.16 shows the same analysis fontloed tag in the segmentation corpus.
The data from this graph (Table 6.15) show that while thecdespace increased by
five orders of magnitude, the recall and precision increagdess than one percent.
It is not clear why recall and precision cross-over in FiguBel5 and 6.16 as look-
ahead increases, but the levelling-off of increase in recal precision, indicative
and representative of larger samples, suggests that thelrdods not contain all
the information needed to make the underlying relevancisaets.

These results show that the maximum lookahead heuristibeaffective. In-
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Figure 6.16: Graph of recall, precision and search spacestdaokahead for the
wordtag. Models trained on 2000 documents and tested on one @émtum

Lookahead Search spagdrecall (%) Precision (%
(nodes per character)

1 6.00 97.10 97.37
2 27.26 97.83 97.79
3 86.22 97.82 97.53
4 241.07 97.73 98.21
5 633.54 97.74 98.21
6 1598.50 98.30 98.06
7 3976.08 97.72 97.59
8 9801.47 97.61 98.16
9 23457.08 97.77 97.87
10 58153.64 97.84 98.09
11 139079.05 97.71 98.02

Table 6.15: Table of recall, precision and search spacensigiiokahead for the
wordtag. The data is plotted in Figure 6.16.
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Figure 6.17: TagC heuristic in hierarchical tag insertibBrom steepest to shallow-
est the lines are: (aguthor, editor, name first andlast, (b) name first andlast
(c) nameandlast, (d) name All runs used an order 3 model with 200 training
documents and a single testing document.

creasing the lookahead beyond six has, in this case, noubbienefit to recall and

precision but is of great detriment to the search space.

6.4.5 TagC Heuristic

The TagC heuristic (Section 4.3.6) limits the number of telgbe considered for
insertion between two characters in a document. Figure ghbws the effect of
the TagC heuristic on the hierarchical temgthor, editor, name first andlast in
the bibliography corpus. In all cases the search space wased. Figure 6.18
shows the effect of the TagC heuristic on the non-hieraedhiegysname pages
date volumeandnumberin the bibliography corpus.

Results show the TagC heuristic to be consistent and sigmifidduch of the
pruning of the TagC heuristic is similar to that of the besdtfoptimisation. A

tag that is ruled out by the TagC heuristic has not been setimsimodel before,
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Figure 6.18: TagC optimisation in non-hierarchical tagemisn. From steepest
to shallowest the lines are: (apme pages date volumeandnumber (b) name
pages dateandvolume (c) name pagesanddate (d) nameandpages (e) name
All runs used an order 3 model with 200 training documents asthgle testing
document.
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meaning the PPM model must escape back to ordefsee Section 3.4), and im-
plying high entropy transitions. The structure of PPM medaleans an order
transition can be followed, at most, by an order 1 transition (except for the start
of sequence symbol), so an ordet transition can be penalised over an order
transition forn + 1 transitions. Many of the tags and tag sequences ruled otneby t
TagC heuristic would mean three or four order transitions and can be rapidly
pruned by the best first under normal circumstances.

The set of observed tag combinations is smaller in the gbdiphy corpus than
it may be in real-world corpora because, when integratiegdlgged and untagged
bibliographies (see Figure 5.2), placement of tags witpeesto inter-word white-
space was performed automatically and therefore condlist@iverse, real-world,

uncurated sources are unlikely to display this degree asistency.

6.4.6 State Tying

The opportunity to apply the state tying heuristic (seeiret.3.7) occurred only
once in the corpora studied, on thametag which may occur within theditor or
theauthortag in the bibliography corpus. The schema for the biblipgyadataset
with and without state tying are shown in Figure 5.4 and Fedbu5 respectively.
Figure 5.4 differs from Figure 5.5 in that tim@amesubtree has been cloned and a
copy appears for each parent. This section examines the #ffe duplication has
on the performance of the model.

Table 6.16 shows the type confusion matrices, with and wittstate tying,
for the bibliography corpus. Perhaps surprisingly, the keg leaf tagdirst and
last perform similarly in the two models. This is evidence thabdganodels were
built for these tags both with and without tying. At a slightligher level, the tying
performed noticeably better (more than 1%) at identifynagnetags, while without
tying performed noticeably better (more than 1%) at idgintd editor tags. This

later improvement appears to be because that proceediitgsseaften only have

139



ovl
0 PegYEY00| € YlIIM SJUSWNI0P 0OS U0 PaIsal pue Sjuswnaop 0009

0 paulel] s|apow 9 IapI0 %66 0 Uyl Jamo| ainbij e sayedipul ke ‘quadlad ul ale
ay1 uo xurew ay sudiydeibollgiq ayy Joj SadLew uoisnjuod adA] :9T°9 a|jqeL

sanfen ||y "Bulky aygmoyum si1ybu syl uo xurew ay) pue Bull a1els yum si 1s)

99.88 + + + + + + + + +
+ 8006 + + + + + 4+ 4+ 4+ + 302 709 464 180 15
3.01 83.93 376 221 + 3.49 2.85 + o+ o+
+ 4+ 9259 243 +  + 391 + 4+ 4+ o+
+ 152 4+ 4278950 +  1.87 194 +  + o+ +
+ 4+ 4+  + 9458 292 187 + +  + +
+ 4+ 4+ 4+ 1289478 + - 321 + 4+ 4+ o+
+ o+ + 4+ 4+ 99.04 + + + + o+
+ o+ + 4+ 4+ 4+ 9727 + + 101 + o+ o+
3.32 + 4+ 4+ 9479 + o+ o+ o+ 4+ o+

1.46 + 4+ 4+ 9697 + +
+ 128 + + + + 135 + 4+ 4+ + 9391 + 241 + +
+ 328 + + 4+ 4+ 4+ 4+ o+ 4 1279452 + 4+ +
313 +  + 4+ o+ o+ + 4+ 4+ 794 + 8729 + +
8.01 + + + 4+ 4+ + + + 361 157 + 8170 3.98
419 + + 4+ 4+ 4+ + + + 260 + 185 26887.30
=) =3 @ o 3 = o o o < > = 5 o S ©
g < ) ’ = e 2 5 % B
g ?
2
99.87 +  + +  + - +  + O+
+ 7714 + + + + + 4+ 4+ 4+ + 301 825 652 1.82 1.3
3.31 8588 333 139 + 2.82 2.62 + o+ o+
+ 4+ 9278 237 +  + 3.56 + o+ o+
159 + 5308770 + 249 191 + +  + +
+ 4+ 4+ 4+ 9435 331 155 + + + +
+ 4+ 4+ 4+ 14509449 + 310 +  +  +  +
+ 9895 + + 4+  + + o+
+ o+ + 4+ 4+ + 9687 + 1.06 118 +  +
2.09 + 4+ 4+ 4+ 4+ 959 + 111 + 4+ 4+ +
- +  + 4+ 96.09 153 -
+ 117 + + + + 170 + 4+ + + 9308 + 305 + +
263 + + 4+ o+ + o+ o+ 4+ 1.11 9554 +  +  +
+ 371 + o+ o+ o+ o+ 4+ o+ o+ 1023 + 8459 +  +
725 + 4+ o+ o+ o+ o+ o+ 4+ 457 1.85 4 81.47 3.77
354 + + 4+ 118 +  +  + 302 + 235 2868582




15| -

Entropy (bits/character)

05 | _

without tying
with tying -------

0 L L L L L L PR | L L
100 1000 10000

Training Files

Figure 6.19: Entropy dropping with increased training gdwai#h and without state
tying. Order 6 models tested on 500 documents with a loolhbga.

their last name given in bibliography entries and modelkaltor tags separately
from authortags allowed this information to be captured.

In the tags not directly related to names, the state tyingltseare slightly better
than the without state tying results, having a higher numbegsults on the leading
diagonal in nine of eleven cases. This is, perhaps, bechasgdte tying presented
a more consistent model of the concepts of names to the réisé shodel. Other
features of type confusion matrices for the bibliographypos are explained in
Section 6.2.3.

Figure 6.19 shows how entropy drops with increased traidiaig, with and
without state tying, for the tags shown in Table 6.16. Entrapth state tying
appears to be slightly less, but not consistently less,éh&iopy without state tying.
This is somewhat surprising since the motivation for ststegt was to achieve
better performance from the same amount of training dateti®e4.3.7), and this

appears not to be happening consistently. This is probaddguse the effect which
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Table 6.17: Type confusion matrices for the bibliographspes. The matrix on the
left is with state tying and the matrix on the right is withatiéite tying. All values
are in percent, at' indicates a figure lower than 0.99%. Order 6 models trained o
6000 documents and tested on 100 documents with a lookafi&ad o

Is noticeable in Table 6.16 is too small to be detected oves#mpling error.

Table 6.17 shows the type confusion matrices, with and witktate tying, for
the bibliography corpus for a greatly reduced set of tagspayed with Table 6.16.
The results do not show a clear pattern of similarity withstanghown in Table 6.16
for the larger set of tags, suggesting that the results argareerally applicable.

An unanticipated benefit of state tying is that the combinexti@ls are sig-
nificantly smaller than the separate models. The memoryuropson of models
increases linearly with extra tags but less than linearlyr wktra training data: if
two tags are tied together to use the same PPM model, memotyecsaved. The
CEM implementation uses memorgimely, no experimentation or tuning has been
used to reduce the memory consumption.

The state tying optimisation gives at best a marginal imgnoent in results,
but can be expected to lead to smaller models. Occam’s Ralzar ¢alled the
‘principle of parsimony’ or the ‘principle of simplicity’asserts that a simpler or
smaller model of a phenomenon is to be preferred over a maomplex or larger

one.
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Chapter 7

Conclusions

This thesis extended text augmentation to cover entityaetitm problems. It in-
vestigated three classes of text augmentation: segmamtatassification and entity
extraction, and described how they are connected to datagnitext mining and
related fields.

Segmentation, the computationally simplest class, irer®@kegmenting the text.
Information is encoded in where one segment ends and thestaetd. Tasks such as
Chinese text segmentation were evaluated using recall @otsmpn on the segment
boundaries.

Classification, which is more computationally expensivetb@gmentation, in-
volves classifying textual elements into one of severads#ga. Information is en-
coded in the class an element falls into. Classification tesksh as part of speech
tagging, have close ties to machine learning, and shareittith confusion matrix
evaluation method.

Entity extraction is the most computationally expensiasslof text augmenta-
tion. It marks-up textual fragments with a nested hierammhglasses and informa-
tion is encoded both in where fragments start and finish atitkiin type. Inserting
attribute-free XML into text is an entity-extraction tagkntity extraction was eval-

uated using type confusion matrixes and using edit distance
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7.1 Review of Aims

In Section 1.2 various aims were introduced; in this sectitay are examined to

determine whether they have been met.

1. Examine text-augmentation problems, in the large, to gitetm determine
which are susceptible to automated text augmentation anchehsbme sets

of problems are inherently easier than other.

Section 4.1 built a taxonomy of three taxa of text-augmemaproblems:
segmentation, classification and entity extraction. Ctatd@cand document
level metadata are poorly catered for. Section 4.1.4 cavarsnber of forms
of fine-grained metadata which does not sit within the taxandSections 4.4
and 6.4 examines the different static and dynamic perfoomanri various
searches over the different problems. Segmentation is ctatipnally eas-
ier than classification, which is computationally easiarntlentity extraction.

This aim has been met.

2. Build a text-augmentation system capable of solving at lassvide a range
of problems as existing low-human-input systems, with an ®@ywvéntual

inclusion as part of a digital library system.

Section 4.2 describes CEM, a system capable of solving a wadage of
text-augmentations problems than the immediately preveystems TMT
and SMI, which did not solve entity-extraction problems. CHisls low-
human-input and has a number of design characteristicsasicising Uni-

code throughout and using standard XML documents. This agrbken met.

3. Locate and/or build corpora to test this system.

The four corpora used in this thesis are described in Chaptdhg& Com-
putists’ corpus was developed from an earlier corpus; the&3a text seg-

mentation and Reuters’ corpora were existing corpora addpteuse. The

144



bibliography corpus was built as a model entity-extractorpus. This aim

has been met.

. Use specific heuristics and optimisations which perforefi im relation to a

particular set of augmentation problems.

The best first optimisation and automatic tokenisationhalet reduction,
maximum lookahead, TagC and state tying heuristics aregitdescin Chap-
ter 5 and used with particular types of augmentation proble8tate tying
is effective only on entity extraction problems (Sectio8.4) and TagC only
works on entity extraction and classification problems {i8ac4.3.6). This

aim has been met.
. Evaluate both the text-augmentation system and the himsretd optimisa-
tions in the system.

Chapter 6 contains a systematic evaluation of both the syasesrwhole and

individual heuristics and optimisations. This aim his bewst.

7.2 Performance of CEM and the New Techniques

The implementation, CEM, created for this thesis uses aantially different form

of model from that used by previous workers. The model noy atlbws fully

recursive modelling to deeply tagged XML, it also carrieateat between hidden

states, which avoids prejudicing entry to these states bideng escaping back to

low-order models. CEM also uses a significantly more efficiemtation on the

PPMD escape method avoiding full exclusion. Non-full esabn is a substantial

performance improvement over full-exclusion with mardjieas of correctness.

The best first optimisation leads to substantial gain. li¢tde argued that the

best first optimisation was an implementation detail rathan a true optimisa-

tion. It is, however, absent from the immediately precediygtem, Teahan's TMT.
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Hardware implementations of Viterbi search usually avb&lreed for the best first
optimisation by performing this step in parallel.

The maximum lookahead heuristic is used elsewhere and veagnsto work
in CEM to good effect. Unfortunately there is no apparanriori method for
selecting a maximum lookahead, other than by splitting akngood corpus into a
training corpus and a testing corpus. This technique isgtsstive once the Baum—
Walsh algorithm has been used to adapt the model to a supdrdet original
corpus.

CEM also implements two novel heuristics, TagC and autontakienisation,
to some advantage. Both are reliant on the consistency ofahmertg data and are
unlikely to be widely useful on uncurated diverse corporaeylalso largely prune
the search tree in ways that the best first optimisation aisogs effectively.

The state tying heuristic, which is widely used in voiceagaition systems,
was found to have little effect on the search space, but estline size of the hidden
Markov model by merging some of the underlying Markov moddishe seman-
tics of tag nesting are changed, state tying is likely to beenadfective. In either
case, it reduces the number of Markov models, and propaitioreduces the re-
quired volume of training data. The use of state tying inay, however, hampers
the convergence towards consistent tagging in the markddxtpby making the
Markov model that best matches a fragment accessible atpheultidden states.
This is likely to be a significant barrier to the incrementavelopment of corpora
using the system to improve the quality of the training tdkimay be possible to
enable state tying during training, and disable it durirggitg) and re-estimation to
restrict access to each Markov model to a single hidden, ¢shate standardising the
tagging.

Four corpora were used in this thesis. Marking-up the Chitedesegmentat-
ion corpus was a task on which CEM achieved an F-measure of @8%tg same

range as other systems and better than TMT. The Reuters’sargsiused in con-
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junction with the Brill part of speech tagger, but CEM perfodmoorly on this
classification task, because the PPM models in CEM have a loogdiext and lack
super-adjacency, a key aspect of the Brill tagger and othéopapeech taggers.

A detailed comparison of the performance of CEM and the siiiiMT system
on the Computists’ corpus showed that TMT performed condistéetter. The
differences were shown to be related to both the modellirayaatiers rather than
words, and the search algorithm.

The fourth corpus was the bibliography corpus, which wagl dseentity ex-
traction. CEM appeared to perform well, but the lack of a staddest corpus made
comparison with other systems difficult.

CEM includes the Baum—Welch algorithm: this was successfighd to help
adapt a model trained on one style of bibliography to markdfarent style. In
this thesis the Baum—Welch algorithm was evaluated usingditedistance metric.

CEM can be applied to solve a significantly wider range of poid than the
immediately preceding system (TMT), which could solve segtation and class-
ification problems but not entity extraction. CEM performeelivat both the simple
and complex ends of the computational spectrum. It was, hexvaot so well op-

timised for speed or memory consumption as TMT.

7.3 Impact of Unicode and Document Orientation

Use of Unicode solves many internationalisation issues,noti the unknown-
character problem: the character level equivalent of tHenawn word problem.
It also provides a set of cross-language character classegich word-level rules
and models can be built. The character classes are simigggroach to the char-
acter classes from the C programming language, which hawegaHistory of use
in parsers.

Encoding metadata, as a CEM does, in a single hierarchicattios of
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attribute-free XML tags, limits the classes of metadatd taa be represented, in
particular, overlapping structures and alternative pretations of the same pas-
sage. There are interesting sets of metadata that fallet@xcluded category, in
particular: overlapping hierarchies such as physical agitél document structure,
and metadata constructed from fragments scattered thootifie document text.
The view of the data and metadata as an annotated documbest tizan a col-
lection of facts has a number of impacts on further use, dveagh metadata held
in an external database could be processed to embed it inothergnt andvice
versa Firstly it makes the document more amenable to presenta@ metadata-
enhanced document, such as in a digital library or an XMLeakcument reposi-
tory. Secondly it makes the kinds of higher-level procegsised in the later stages
of many of the MUC systems harder, because these performatiges such as re-
lational joins which have no direct equivalent in an anredatocument. Thirdly it
makes the metadata significantly less amenable to exparséoin external systems,
many of which expect relations of data. Fourthly documearitcc, XML-native,
databases allow queries on the annotated XML documentaging aspects of the
documents which the querier might consider important wkiehmetadata extrac-
tor might not. The best representation for inferred metdathus likely to be

determined by the larger context and the intended uses of¢tadata.

7.4 Limitations of CEM

CEM has two broad sets of limitations, those imposed by mwodelnd search

techniques, and those due to the implementation of thobaitpees.

Attribute data CEM does not capture attribute data. For enumerable atsbut
this can be mitigated by XML transformations which transfggach possible
combination of attributes in each tag to a separate tag. &atireious at-

tributes this technique leads to an infinite number of tags. ot clear how
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many continuous attributes occur in linguistic corpora #uthor has seen
continuous attributes in spoken linguistic corpora (jaitrly in the time di-

mension) but not in written linguistic corpora.

Differentiable tags Tags that do not have different character distributions, or
whose character distributions PPM is unable to model, dabeanserted.
An extreme case of this might be the task of marking-up the@mumbered
digits in a decimal representation of While automating such a marking up
is possible, doing it with Viterbi search and learnt PPM nisde not. The

author is aware of no linguistic corpora for which this is asue.

Consistency Tags are assumed to be used consistently. This does not d¢rold f
many real-world situations, but curated textual corpoealscoming more
common. There are also various tools such asjtiglgich regularise some

aspects of HTML/XHTML.

These three limitations are shared with all directly corapée applications of
searching using Markov models, including TMT and HTK. Theos® set of limi-

tations are implementation-based, caused by choices miagele building CEM.

Number of tags CEM has an upper bound on the number of Markov models and
thus of tags modelled. The implementation represents tagg Wnicode
characters from the private use rangeE000-\uF8FF, of which 3 are re-
served as special markers. While an order of magnitude graiethe num-
ber of tags appearing in commonly used markup such as XHTMathML
and those appearing in this thesis, this limits the use dfrtagsformations as

work-arounds for other limitations.

Nesting of tags CEM cannot represent tags nested directly within tags ofdiees

type. This is currently impossible because in the searclesodly the tag is

! http://jtidy.sourceforge. net/
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noted and not whether it is opening or closing. None of thp@a@ examined
here displays such nesting and while it would be relativalgyeto fix, it
would involve an extra test in the inner loop of the searchrafoen, slowing
searching. An alternative to changing the implementataio transform the
text so that every odd-depth tag has a different name, amdube state-tying
to tie the odd and even tags together. HTK supports models asithese,

TMT does not.

Adaptive Models The PPM models implemented in CEM are not adaptive. This
means that the Baum—-Welch algorithm cannot be applied anythae the
document level, for example to allow intra-document legniThis is likely
to be a problem when the re-estimation text contains relgtifew but un-
usually large documents, allowing few re-estimation cgcléthe documents
are internally homogeneous, it may be possible to overctiséy splitting
them to increase the number of inter-document re-estimatyeles. Both

HTK and TMT can be adaptive.

Streaming documents Documents are held entirely in memory rather than being
streamed. Holding documents in memory consumes extra nyeriéhile
this was not a problem for corpora used in this work, whicheh@asonably
short documents, it would prevent processing of large derisa Documents
as large as 6MB (unmarked up size) have been successfulkethap. Doc-
ument length is linearly related to this aspect of memorysaomption. HTK

allows documents to be streamed, TMT does not.

Document-at-once processingAn entire XML document, rather than an XML
fragment, must be marked up at once. The command line tdaceeCEM
requires documents be read from the file system, one docuypeeriile. A
Java interface allowing arbitrary XML nodes to be markedexsts but is

not used in the experiments presented here. Marking-upndectfragments
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is important in interfacing CEM with other systems. Both HTKdahiMT

have interfaces allowing partial documents to be processed

Integer overflow The PPM models implemented in CEM implicitly assume that
none of their counters rolls over. This assumption holdessimore than
231 — 1 characters of training data (or combined training and teredion
data) are seen. HTK overcomes this limit by encoding prdib@si as
floating-point numbers rather than as ratios of integersT TdMercomes this
limit using integers that are scaled prior to overflow. Thielacould be

worked into CEM.

CEM does not have a mode of operation which calculates themnof entire
documents in each of the Markov models. This is used efiegtisy TMT for
calculation of whole document metadata such as languageyame:. Of these
implementation limitations, only making the PPM modelsgd& and removing

the upper bound on the number of tags would require extensdesign of CEM.

7.5 Problems Suitable for CEM and Text
Augmentation

There are several broad indicators that metadata will b&edarp well by CEM: it
should be relatively fine-grained, at the character, wonghoase level; it should be
discriminatable from the immediately surrounding texer#hshould be a training
corpus which matches the testing text sufficiently well tddoa model from (or
text available to build such corpus from); if the testingtiexchanging with time, it
should be changing sufficiently slowly that the model candsestimated to track
the changes.

Segmentation problems that meet these requirements athedsegmentation

of languages written without spaces between words (i.e. €&8kinJapanese and
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Thai) and locating potential hyphenation points in Eurapaguages (i.e. En-
glish, German and French). Classification problems that mhese requirements
include part-of-speech tagging, finding proper nouns, emalairesses, URLS, stock,
cross-references and similar classes of textual entikesity-extraction problems
that meet these requirements include marking-up biblges, title and frontis
pages, email headers, standard forms and other highlgtgtad sections of text.

Parsing of many computer programming languages, incluidgeme, Java
and C, into an XML representation is an entity-extractionbpem, although not
one CEM is ideal for, because of the length of structures waahl Parsing of the
Python language is not, and CEM is not capable of this taskcdheept ‘the same
indentation as the previous line’ cannot be learnt using PPM

In all cases, higher-order reasoning based on the inferetddata is beyond
the ability of CEM. For example, while it can find proper noun&nglish text, but
it cannot be used to find equivalences between different hosed for the same
subject, because this requires reasoning about on nooesdjgalues. Since this
higher-order reasoning is an integral part of many systeses in the wild, CEM

is unlikely to be a suitable drop-in replacement for manyeys.

7.6 Training Corpora Sizes

The relative success of text augmentation on the Compugstpus, with only 38
issues of 1200 words, shows that augmentation can be usefnlvehen trained
on relatively small volumes of text. Certainly this augméotais of high enough
quality to be used for transforming the document for prest@an to end users.
With F-measures as low as 55%, however, the augmented texidshe used with
care. In particular, the compilation of indexes and of eoted terms, in which
recurring terms contribute less than singly-occurringntesshould be avoided, as

this emphasises errors, which tend to be unique, singlyroiog items.
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Estimating the quantity of training text needed to produesults of a certain
quality is challenging because of the many factors thatemfide this, but it seems
apparent, supported by the experimental results in Chapteaémodel discrimi-
nation is key. For example in the Computists’ corpus, thdasscriminated URL
and email tags were augmented reliably, whereas the pd@tyiminated name,
organisation and location tags were augmented poorly,itdespnsiderably more
examples being seen in training.

The incremental development of the Computists’ corpus,thmyevith an ex-
amination of the errors of text augmentation systems |gpthie correction of the
training text, is likely to be particularly scalable, siritallows leveraging of work
already completed to converge on a consistently marked gguso Unfortunately,
incremental development may reveal flaws in the initial ag#tions, which are un-
likely to be rectifiable without considerable work.

The automated conversion of existing data and metadataictwrpus, as for
the bibliography corpus, has the advantage that the metadagxisting data is
presumably present for a reason, reflecting the use or mganithe data. The
conversion is automated, so if the conversion reveals ssswan be re-performed
completely.

Automatic conversion is limited to those corpora for whictu#table data source
can be found with suitable metadata, and those found arkelylio be structured
to allow for control of arbitrary variables of interest. T9ewth of curated reposi-
tories may increase the likelihood that a corpus alreadsteiat can be converted,

extended or developed to be suitable.

7.7 Original Contributions

A number of original contributions are made in this thesissy&tem called ‘Col-

loquial Entropy Markup’ or CEM was designed and implement€&M builds a
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hidden Markov model from a corpus of marked-up XML documemd uses vari-
ants of Viterbi search to augment unmarked-up XML documauitis tags in the
marked-up XML documents.

Four corpora were used. The Reuters’ and segmentation eorpguired rela-
tively little data preparation. The Computists’ corpus wagesmatically re-marked-
up. The bibliography corpus is a new corpus.

The following are the key novel aspects of the work preseim¢iis thesis.

e Partitioning of tag insertion problems into a coherent teory with three

taxa (Section 2.1.2).

e Exploration of the relationship between PPM (PredictionRaytial Match-

ing) models and Markov models (Section 3.3). Previouslighbd as [164].
e Expansion of text augmentation to include nested tags (€hdjpt

e The best first (Section 4.3.2) optimisation, the automatiemnisation (Sec-
tion 4.3.3), alphabet reduction (Section 4.3.4) and Tag€ctiSn 4.3.6)

heuristics.

e Detailed analysis of the search space size of tag inse@eation 4.4). Ear-

lier versions of this work were published as [162].

¢ Detailed analysis of the correctness measures for difféypes of tag inser-

tion problems and research methodology (Section 2.3).

e Development of an entropy-based technique to determinetheheag-
insertion errors are the result of a PPM modelling failureoba searching

failure (Section 2.3.4).

e A new extension of confusion matrices suitable for evahgtiierarchical

many-class classification problems (Section 4.6.4).
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7.8 Open Questions
There are a number of open questions not examined in thisthes

1. Whether the conceptualisation of context used here (aselwbkre) is
optimal. There is an alternative method for computing thetext of
the current character in a character stream. This was disedvdur-
ing the experimental work for this thesis, but not exploredhe con-
text for e in ...<a>ab</a><b>cd</b><c>e... can be ‘collapsed’ to
...<al><b/>e.... This could be achieved by substituting the character rep-
resenting the transition into the tag for the entire tagsHpiproach is likely to
be most successful where tag densities are highest, sunlpastiof-speech

tagging, where state-of-the-art systems take advantag@peir-adjacency.

2. Whether adding a default tag with an uninitialised (umied) model acces-
sible from every context would remove the tendency to plagla-entropy

sequences in the model with the least training data.

3. Whether different escape methods would reduce the tepdenmace high

entropy sequences in the model with the least training data.

4. Whether a more universal similarity metric such as Kolmmogaomplex-
ity [85, 86] might be an appropriate measure for comparirggeaces. This
would move evaluation to a theoretical framework indepabdéany partic-
ular approach to solving the problem and resolve some ofdh®ptexities of

evaluating performance.

5. Whether certain textual strings (suchReferencesn a line by itself) can
be used as synchronisation points in a finite automata s&hsis likely to
form part of the infrastructure integrating CEM into a possitigital library
structure, which will need ways of detecting when it is apiate to use

various tools such as CEM.

155



6. Whether Teahan search or Viterbi search will perform betieertain classes

of text-augmentation tasks.

All of these seem useful avenues of investigation, 1 and Agosignificantly
more novel than 2 and 3. Issues 5 and 6 are likely to be diracityimmediately

relevant to a practical production system.
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Appendix A
Corpora Samples

This appendix contains samples from each of the corporaiskga in Chapter 5
and used throughout this thesis. For reasons of space, @ntsitmave been
abbreviated, an ellipsis marks a point at which content leas lbemoved. All
documents are presented after preparation rather thae stdke in which they
were received.

A.1 Computists’ Corpus

The following is an issue from the Computists’ corpus. Theasris described in
Section 5.1.

<issue>
AlVol. 8, No. 1.1

IS <d>January 6, 199&/d>

CS<s>THE COMPUTISTS’ COMMUNIQUE/s>
" Careers beyond programmirig.

1&gt;&gt; <o>NSkK</0>news.

2&gt;&gt; Other funding.

3&gt;&gt; Career jobs.

In the beginning the Universe was created. This has made

a lot of people very angry and been widely regarded as a bad move.

— <n>Douglas Adams/n>. [<s>QotD</s>, <d>160ct9&/d>.]
Greetings, Computists!

The<s>Computists’ Communiqugs>will now arrive three times

<d>per week:/d>, on Tuesdays, Wednesdays, and Thursdays. Issues
will be shorter, for easy reading, and may vary a bit in length.

Part of each Wednesday issue will be a table of contents for

<d>that day/d>s CAJ jobs digest. (You can request the digest issue

if you see an interesting opportunity.) I'm reducing the number

of <d>publication weeks/d>to 40 (or 120 issues!), to give me more time
for Web work and other activities. That means there will be
about<d>one week/d><d>each montk:/d>with no <s>Communique/s>s, usually
with

a holiday or at the end of.d>the monthk:/d>. All to serve you better,

of course, but do get in touch with me if you have suggestions

about the changes.

Membership fees will hold steady at>last year:/d>'s level,

but with a new' departmental raté for groups of up to five

171



participants. At<m>$195</m>per year (or half of that outside thel>US</I>),
it should be attractive to lab directors and other group leaders.

(Please circulate copies of thes>Communique/s>to the appropriate

people. They can write to me or visit &tu>http://www.computists.coaiu>&gt;
to check out the service.) Members may offer-two-monthc/d>

free trials to friends, oxcd>three-montk:/d>free trials

(excluding their own dues) for groups.

My wife <n>Lily </n>will be taking over some of the renewal

billing communication, and will be getting in touch with you.

The captain is on holiday, but hicool job of <d>the week:/d>"

should return inkd>a week</d>or two. (Sometimes he just doesn't

find a cool enough job.) We're taking care of business,

so have a fun and prosperoysi>new yeak/d>!

1&gt;&gt; <o>NSk</0>news:

<0>NSk</o>'s Awards for the Integration of Research and Education

at Baccalaureate Institutions program will make 10-20 awards of

up to<m>$00K</m>. Eligibility is restricted to Carnegie Classification
Baccalaureate | and Il institutions and Specialized Technical

institutions that award only baccalaureate degrees. Deadlines

are <d>04Feb98&/d>for letters of intent<d>17Mar98</d>for preliminary
applications, and<d>17Jun9&/d>for full applications.

&lt; <u>http://Iwww.nsf.gov/od/osti/u>&gt;. [ <s>grants</s>, <d>23Dec9&/d>.]
<0>NSk</o>'s CISE and ENG directorates have a Combined
Research-Curriculum Development (CRCD) Program to support

dynamic, relevant engineering and CS/IS education.
<d>31Mar98</d>deadline.

&lt; <u>http://www.nsf.gov/cgi-bin/getpub?nsfo838>&gt;.

[ <n>Maria Zemankova/n>&lt; <e>mzemanko@nsf.gave>&gt;, <s>dbworld</s>,
<d>30Dec9%/d>.]

I have been poor and | have been rich. Rich is better.

— <n>Sophie Tucketr/n>, American singer. {s>DailyQuote</s>,
<d>02Jan9&/d>.]

<lissue>
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A.2 Bibliography Corpus

The following is a bibliography from the bibliography copurhe corpus is
described in Section 5.2.

<bibliography xsi:schemalocatiori=http://www.greenstone.otg

filename= /research/say1/bib/tmpib_files/graphics/2748.bib><plain><bibproc>
<p></p>References

<p></p>[1] <bibbody><article><author><name><first>Till
B.</first><last>Anders</last></name>-and

<name> <first>Wolfgang/first> <last>Jachmann</last></name> </author> <title >Cross
sections with polarized spin-lover2 particles in terms of helicity

amplitudes</title> <journal><emphasis-Journal of Mathematical

Physicsg</emphasis- </journal><volume>24</volume>(<number-12</number-): <pages-2847-
2854 </pages> <date><month>Decembet/month><year-1983</year> </date>.</article></bibbody:
<p></p>[2] <bibbody><article><author><name><first>V.
G.</first><last>Bagrov</last></name><name> <first>V.
V.</first><last>Belov/last></name-and <name> <first>1.
M.</first><last>Ternov</last></name> </author> <title>Quasiclassical

trajectory-coherent states of a particle in an arbitrary electromagnetic
field.</title><journal><emphasis-Journal of Mathematical

Physics</emphasis </journal><volume>24</volume>(<number-12</number-): <pages-2855-

2859</pages- <date><month>Decembet/month><year-1983</year> </date>.</article></bibbody:

<p></p>[25] <bibbody><article><author><name><first>W.
M.</first><last>Zheng</last></name></author> <title>The Darboux

transformation and solvable double-well potential models for Schrodinger

equations</title> <journal><emphasis-Journal of Mathematical

Physicsg/emphasis </journal><volume>25</volume>(<number-1</number-): <pages-88-
90,</pages><date><month>January/month><year>1984/year> </date>.</article></bibbody>
<p></p>Page<pagematter2 </pagematter

</bibproc></plain></bibliography>

If the output is indented to show the full structure, it apgess:

<bibliography xsi:schemalocation="http://www.greenstone.org” file-
name="[research/sayl/bib/tmpib_files/graphics/2748.bib*

<plain>
<bibproc>

<p> </p> References
<p> </p> [1]
<bibbody>

<article>
<author>
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<hame>
<first> Till B.</first>
<last> Anders</last>
</name> and
<name>
<first> Wolfgang</first>
<last> Jachmann</last>
</name>
</author>
<title> Cross
sections with polarized spin-1over2 particles in
terms of helicity amplitudes/title>
<journal>
<emphasis- Journal of Mathematical
Physics</emphasis
<ljournal>
<volume> 24</volume> (
<number- 12</number> ):
<pages- 2847-2854:/pages-
<date>
<month> Decembeg/month>

<year> 1983</year>
</date> .</article>
</bibbody>

<p> </p> [2]
<bibbody>
<article>
<author>
<name-
<first> V. G</first>
<last> Bagrov</last>
</name>
<name-
<first> V. V</first>
<last> Belov/last>
</name> and
<name-
<first> I. M. </first>
<last> Ternov</last>
</name>
</author>

<title> Quasiclassical trajectory-coherent states of
a particle in an arbitrary electromagnetic field/title>

<journal>
<emphasis- Journal of Mathematical Physics/emphasis-
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<ljournal>
<volume> 24</volume> (
<number> 12</number> ):
<pages> 2855-
2859</pages>
<date>
<month> Decembet/month>
<year> 1983</year>
</date> .</article>
</bibbody>

<p> </p> [25]
<bibbody>
<article>
<author>
<name>
<first> W. M.</first>
<last> Zheng</last>
</name>
</author>
<title> The Darboux transformation
and solvable double-well potential models for
Schrodinger equations/title>
<journal>
<emphasis- Journal of Mathematical
Physicss</emphasis-
<ljournal>
<volume> 25</volume> (
<number> 1</number> ):
<pages- 88-90</pages-
<date>
<month> January</month>
<year> 1984 /year>
</date> .</article>
</bibbody>

<p> </p> Page
<pagematter 2

</pagematter

</bibproc>
</plain>

</bibliography>
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A.3 Segmentation Corpus

The following is a single document from the segmentatiopasr Whitespace
appearing here is a side-effect of layout, the only whitespa the original file is a
terminal EOL. The corpus is described in Section 5.3.

<document

<word> &#20551 </word> <word> &#26230;&#21326x/word> <word>
&#39277;&#24215x /word> <word> &#20030;&#34892x /word> <word>
&#39041;&#22870x/word> <word> &#20856;&#31036x/word> <word>
&#65292;&#21040;&#2421 3 /word> <word> &#30495;&#30456< /word> <word>
&#22914;&#20309</word> <word> &#21602;</word> <word>
&#65311;&#19968</word> <word> &#12289;</word> <word>
&#36164;&#26684 < /word> <word>
&#65306;&#19969;&#32903;&#20013;/word> <word>
&#38498;&#22763x/word> <word> &#21363</word> <word> &#22240</word>
<word> &#39318;&#20808< /word>

</document
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A.4 Reuters’ Corpus

The following is a single document from the Reuters’ corpuse €orpus itself is
described in Section 5.4.

<documernt <NNP> PDCP</NNP> <NNP> Development/NNP> <NNP>
Bank</NNP> <VBD> said</VBD> <IN> on</IN> <NNP> Thursday/NNP>
<PRPSTRING its</PRPSTRING <NN> board</NN> <VBD> approvec/VBD>
<DT> the</DT> <NN> issue</NN> <IN> of</IN> <CD> one</CD> <CD>
billion </CD> <NN> pesos</NN> <JJ> worth</JJ> <IN> of</IN> <JJ>
convertible</JJ> <JJ> preferred</JJ> <CD> shares</CD>

<DT> The</DT> <NNS> proceeds://NNS> <IN> of</IN> <DT> the</DT> <NN>
issue</NN> <MD> will </MD> <VB> fund</VB> <NN> lending</NN> <NN>
operations</NN> <NN> computerisations/NN> <CC> and</CC> <VBG>
refurbishing</VBG> <IN> of</IN> <NN> branch</NN> <NN> officesg/NN>
<PRP> it</PRP> <JJ> said</JJ>

</document
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Abstract

This thesis describes a new optimisation and new heurfstieaitomatically mark-
ing up XML documents. These are implemented in CEM, using PRMets. CEM
is significantly more general than previous systems, mgrkim large numbers of

hierarchical tags, using-gram models for large and a variety of escape methods.

Four corpora are discussed, including the bibliographypesof 14682 bibli-
ographies laid out in seven standard styles using tB&g® system and marked-
up in XML with every field from the original BTEX. Other corpora include the
ROCLING Chinese text segmentation corpus, the Computists’ Qamgue cor-
pus and the Reuters’ corpus. A detailed examination is ptedesf the methods
of evaluating mark up algorithms, including computatiom@bexity measures and
correctness measures from the fields of information retljetring processing, ma-

chine learning and information theory.

A new taxonomy of markup complexities is established andptioperties of
each taxon are examined in relation to the complexity of m@nkp documents.
The performance of the new heuristics and optimisationasrered using the four

corpora.

Keywords: hidden Markov models, HMM, PPM, Viterbi search, part-oésph

tagging, XML, markup, metadata.
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Chapter 1

Introduction

Timely news is in great demand, and the value increases ek is tightly fo-
cused on specific areas of interest to the readers. Ofteeneade interested in

specific organisations, dates and sources, so the fragment:

1997 was a record spending year for computer-industry mergersaaqdisi-
tions, and companies such as Compagq, Dell, IBM, and Hewlett-Packard a

still hot to buy what's left. [Infoworld Electric, 24Dec97. EduP.]

might be considerably more valuable to a reader if the osgdions, dates and

sources of information were marked up with> <d> and<s> tags, respectively:

<d>1997/d>was a record<d>spending yeat/d>for computer-industry
mergers and acquisitions, and companies such <as>Compag/o>,
<o>Dell</o>, <o>IBM</0>, and <o>Hewlett-Packaret/o>are still hot
to buy what's left. ks>Infoworld Electric</s>, <d>24Dec9&/d>.

<s>EduP</s>.]

The extraction of references to company names in parti¢atans the backbone
of systems such ag i nance. yahoo. com which aggregate news from many
hundreds of sources into thousands of tightly focused oaiteg)

Languages such as Chinese and Japanese are usually writteutwivhite-
space segmenting the characters into words. One of the fiesations that must
be performed by many information systems dealing with seghis to augment it

with segmentation information, for example/##&2rERER® IS augmented to
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SW>IMEB < IW> <W>BR</W> <W>EB</W><W>B < /w><w>EFR</w>, ([ele-
mentary school][building interior][sports][area][cdnsction], i.e. the construction
of an elementary school indoor sports arena). Such segthxiecan then be used
in all the ways that words from a western language can be Bed he tags can
then be discarded to display the text in the original form sedito process the
text in the word-by-word fashion common to most westernrimi@tion systems, or
some combination of the two.

There are many thousands, perhaps many millions, of pemwed academic
papers available on the Internet, each with bibliographicies linking it to other

papers and materials, for example:

Donald E. Knuth. Semantics of context-free languages. Mathematidansys

Theory, 1968, 2(2), 127-145.

A competent researcher or librarian can readily separ#&ettiry into all the parts
necessary to find the document to which it refers. When therecaliections of
thousands of electronic documents, separating these mhamia huge, tedious
and error-prone task. What would be useful would be a systafrtabk the entry

and automatically augmented it as:

<entry>
<author>
<forenames-Donald E</forenames-
<surname-Knuth </surname-.
</author>
<title>Semantics of context-free languagdtle >.
<journal>Mathematical System Thearyjournal>,
<year>1968</year>,
<volume>2</volume>(<number-2</number>),
<pages-127-145</pages-.

<lentry>



Data in such an augmented format could then be used in a nuohlogrera-
tions, including interloaning a copy of the document, refatting the reference for
inclusion in another bibliography, citation analysis amgxying by date.

Digital library software is increasingly interacting witton-computer special-
ists on their own terms. This can be done using generic ated (witness the
success of the slim-line Google interface) or interfaciésred to the domain of the
users or the content. In order to provide this, the digitaidiy needs to know what
those terms are and how they apply to the documents in thectiolhs, whether
they are organisations, dates and sources or authors,aiilédates of publication.
Manual augmentation with this knowledge is typically exgiee, slow and incon-
sistent.

This thesis describes a method for automating text augriemsafor a large
class of problems covering all of these examples. Such tgxtnantation is per-
formed by building models from training text marked-up WKML tags, then us-
ing the models and searching to insert similar tags intonggext that does not
yet contain any tags. Building effective models requiressatgrable volumes of
training text with consistently used tags, and that theningi text be representa-
tive of testing text. The text augmentation described ia thesis covers a broader
range of information than preceding approaches, but idstat than most infor-
mation extraction systems in that all reasoning is finergg@j with no higher-level
or document-level reasoning, limiting the text augmenoteithat can be attempted.

The quality of text augmentation is evaluated by splittingnarked-up corpus
into a set of training documents and a set of testing docwsnaaining a model on
the former; stripping the tags from the latter; augmentimgdtripped testing docu-
ments using the model; and finally comparing the testing a@s as augmented
by the system with the original documents. Several diffeneathods to compare

the augmented document to the original are explored in lieisis.
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1.1 Plan of the Thesis

Following this introduction, Chapter 2 gives the backgrotmdhe current work,
starting by examining the nature of text and an overview ofhogs of extracting
information from text. Approaches to evaluating the camess and efficiency of
the such extractions are then examined, together with waymnooding extracted
information in XML. Chapter 3 introduces Markov models bdribm text, and
algorithms for search using such models to extract infailonat

Chapter 4 discusses the architecture of the implementedmnsysind examines
the rationale for some of the design choices. It then pressambptimisation and a
number of heuristics, and examines the search spaces efatiffclasses of prob-
lems with respect to these. Chapter 5 introduces the coraaia this thesis.

Chapter 6 sets out the experimental results of the optirisand heuristics
on the corpora. Chapter 7 concludes the thesis with an ovevig¢he research,
a list of the original contributions, and a summary of unam®a questions. The

appendix contains samples from each of the corpora usedsindrk.

1.2 Thesis Statement

Text augmentation is the automated insertion of XML tage sdcuments in the
context of a digital library to make implicit textual infoation accessible to con-

ventional processing.

Text augmentation can be expanded to a larger class of pnshlean
those previously studied. It can be partitioned into thtasses of prob-
lem: segmentation, classification and entity extractioactEclass of
problem has distinctive properties, computational coxiptand types

of failure, necessitating different evaluation methodas.

Markov models and searching can be used to solve these preble

Given the context of their application, there are a numbeapdimisa-
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tions and heuristics which can be used to make these algwritom-

putationally tractable.

Text augmentation is a computational process by which ablamguage text is
augmented by the addition of XML tags to elucidate the imp&tructure. Three
different classes of text augmentation are discussed. 8ash has a structurally
different schema which affects the performance and evaluatf text augmenta-
tion.

Text augmentation is performed using statistical modgltachniques, such as
hidden Markov and PPM models, and using searching algosittarfind a good
augmentation. In the past, text augmentation has beenrpertbusing Teahan
search (see Section 4.5), but in this thesis a variety ofrigtgos is used. Viterbi
search is computationally intractable in many interestaad augmentation situa-
tions, but an optimisation of it, and a number of heuristec#,tcan be exploited,
given the application, to make searching computationasible.

To these ends, this thesis aims to:

1. Examine text augmentation problems, in the large, torgitdo determine
which are susceptible to automated text augmentation aethe@hsome sets

of problems are inherently easier than others.

2. Build a text augmentation system capable of solving at Essvide a range
of problems as existing low-human-input systems, with a@ yeventual

inclusion as part of a digital library system.
3. Locate and/or build corpora to test this system.

4. Find specific heuristics and optimisations which perferetl in relation to a

particular set of augmentation problems.

5. Evaluate both the text augmentation system and the tiesréd optimisa-

tions in the system.



These aims are reviewed in Section 7.1.



Chapter 2

Background

This chapter examines the background to the current workt filooks at the na-
ture of text, various types of ambiguities in natural langgigext and then examines
metadata, namely explicit information about text. Infotimia extraction systems,
whose purpose is to extract metadata from text, are theewgedand various meth-
ods of evaluating such extraction systems are examinedtiegwith methods of
evaluating the correctness and efficiency of such systemally; aspects of XML

and Unicode relevant to text augmentation are surveyed.

2.1 The nature of text

One task in text augmentation is the Chinese text segmemtatablem, the task
of segmenting a stream of Chinese characters into words.abkad often the first
step in Chinese information processing systems, since Ghise®rmally written
without explicit word delimiters. The task is made more tdvading by the fact that
line delimiters may occur anywhere, including betweerehsttn a word or digits in
a number [42].

The task is harder than it appears because Chinese text ig@amisi The text
shown in Figure 2.1(a)(i) (taken from [137]) can be segmeiaie shown in (ii) or
as shown in (iii), meaning ‘I like New Zealand flowers’ andiltd fresh broccol/’
respectively. Similarly the Japanese title shown in Figul€b)(i) (taken from [3])
can be segmented as shown in (ii) or as shown in (iii) meamresident both busi-

ness and general manager’ and ‘president (of) subsidiaiynéss (for) (the proper
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(a) Chinese

#W?ﬁ#?ﬂfﬁ”ﬁ%ﬂm REKm #(_%ﬁﬁ”ﬁ m R ?ﬂ#?*ﬁg) W ZEHm
i i ii

(b) Japanese

Figure 2.1: Examples of segmentation ambiguity in eastrAlsiaguages.

name) Tsutomu, general manager’ respectively. Since disi$ four nouns and
thus identical from the point of view of a part of speech syst# is a particularly

ambiguous situation.

2.1.1 Ambiguity

Segmentation ambiguity is not confined to Asian languagelserd is a widely

circulated joke featuring sentence segmentation amlyiguiEnglish:

Dear John: | want a man who knows what love is all about. You are
generous, kind, thoughtful. People who are not like you atimbeing
useless and inferior. You have ruined me for other men. Iryéar
you. | have no feelings whatsoever when we're apart. | carobevér

happy—uwill you let me be yours? Gloria

and

Dear John: | want a man who knows what love is. All about you are
generous, kind, thoughtful people, who are not like you. Adobeing
useless and inferior. You have ruined me. For other men, rinyeeor
you, | have no feelings whatsoever. When we're apart, | camoteér

happy. Will you let me be? Yours, Gloria



There is an entire class of English expression, double dreemhich exploits
ambiguity of meaning [128]. This ambiguity is resolved gstontext—the style
and genre of a piece of text. A sentence with two possible mgarhas the more
risqué meaning if it appears in a Blackadder [38] script and hasebe isqé of
the two if it appears in a Reuters’ dispatch. There are alsodasf text in which
resolving ambiguity of meaning is not possible, a well-kmasxample of which is
Lewis Carroll's poem ‘Jabberwocky’.

Ambiguity resolution using context is an example of what moWwn in arti-
ficial intelligence as ‘common sense reasoning’. It is knaderbe difficult for
computers to resolve such ambiguity, with the difficultynlyiin the wide range
of world-knowledge and subtle reasoning that humans uselt@ shis class of
problem [107].

Partly to reduce the need for ambiguity resolution, the whetming majority
of text mining is performed on collections of text with umnifio style and genre.
Uniformity of linguistic style highlights the patterns asttuctures within the text

and the uniformity of genre ensures that the patterns havsaime meanings.

2.1.2 Metadata

Metadata means ‘a set of data that describes and gives datbather data’ [128].
Usually at the granularity of the document (the catalogueyedior a book or the
title and author of a web page), metadata can be at the chataeel [5] or cover
entire collections of documents (Table 2.1). In many systamd standards much
of the metadata is stored at the document level, even thdauglay apply to the
collection, section or even character level, because shilse level at which most
processing, storage, licensing, retrieval and transomsgperations take place. The
RDF standard [156] is notable for granularity independeaddressing, individual
tags (elements), documents or collections of documents.

This thesis centres on fine-grained metadata, at the ckamod word levels,



\ Granularitw Relevant metadata ]

Collection | Scope; purpose; coverage; copyright; maintenance status;
maintainer contact details;

Document | Author; title; date of publication; subject classification;
Section Topics; cross references;

Sentence | Semantic meanings;

Word Part of speech; glossary links; dictionary links; collation
order;

Character | Encoding; reading direction; case;

Table 2.1: Metadata at different granularities.

and how such metadata can be inferred from, and then andotdte the text it-
self. This process of augmenting the text is referred toxdsaiggmentation. It has
been previously called ‘tag insertion’ [136, 135], but thehor believes thatext

augmentationbetter portrays the action and intent of the process.

2.2 Extraction of Textual Information

A wide range of distinct approaches and many hybrid ones haee used to ex-
tract fine-grained information from text for various purpss This section reviews
several of them, including regular expressions, machiamieg and information
extraction. The following section examines how to measheecbrrectness of the

extraction.

2.2.1 Regular Expressions

Regular expressions are compact representations of a setngfsswhich can be
converted into a finite-state machine. The machine can @ffilyi recognise in-
stances of the set of strings within a stream of text. These&lrelationship to the
well-studied field of formal language parsing has led to tHe¥ng well under-
stood [2].

Regular expressions are the tool of choice for extractingrimétion with an

exact and precise format, such as email addresses, po%, aates and the like.
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They are, however, fragile in the face of mistakes, ambyoauriid stylistic variations

in the text.

2.2.2 Handcrafted Rules

Handcrafted rules or templates can also be used to extfactmation from text.
These typically involve searching for short fragments af t& regular expressions
within text, with each rule processed in order of precedendefortunately, sys-
tems of handcrafted rules can be complex and fragile in tbhe ¢&hanging input
data. They also scale poorly with the number classes ofrimdition being extracted,
particularly when there is a requirement that rules do netlap.

These systems typically can consider large windows andpally have access
to ‘out of band’ sources of information such as dictionaaesl name lists [17, 1,

74].

2.2.3 Instance Based Machine Learning

Instance based machine learning is a field concerned phméth classifying in-
stances into classes. Machine learning can be appliedttfi#], but requires that
the text be pre-segmented into instances, potentiallypdpsignificant information
and/or leading to large instances.

Machine learning handles noise and ambiguity significanélter than regular
expressions. Mis-classified instances, once detectedyecadded incrementally to
the training instances, allowing an existing model to benegfiand improved. The

widely-used Brill tagger [28] uses this approach as a prinnaeyhod.

2.2.4 Information Extraction

The field of information extraction typically involves mu#itep systems that first

extract atoms from text (using regular expressions, plaspeech tagging, etc.) and

11



then use higher-order reasoning to solve ‘real world’ peats. The Text REtrieval
Conferences series (TREC) [53, 54, 142, 143] is built round rtetxteval tasks
and the Message Understanding Conferences (MUC) and Doclumdetstanding
Conferences (DUC) are built around competitions betweeresyst The intent is
to focus research and systems development towards spknifiwn targets.

MUC Named Entity [35] problems centre on the extraction ajgar nouns
(e.g. company names), often with subsidiary informatiag.(emarket symbols or
addresses) from stylised information sources, typicadlws articles such as the
Reuters’ corpus. The problems set in the MUC tracks explicguired the ex-
traction of facts from the texts into a separate databassasbquent higher-order
reasoning about those facts, in two separate systems. Maolyé multiple steps,
such as sentence and word segmentors, part-of-speechsalggeothesis genera-
tors, hypothesis evaluators and disambiguators [167].

The systems include many opportunities for encoding hafita or externally
curated domain knowledge, from the notion of the word embddd the word seg-
mentors, to domain-specific word lists used in the partpafesh tagger and hand-
crafted heuristics for template filling. Word lists incluligts of first names, cor-
porate names, colleges and universities, corporate ssiffixees and dates, world
regions and state codes [23]. Many of the systems use tranoeléls, either learnt
rules or Markov models, but only for an individual step of\sog the problem.

Many of these systems and corpora suffer from proper-nousicanty errors
(see Sections 2.1.1 and 5.1). Methods employed to overdoerenbiguity include
leveraging company and personal titledr (Ltd andCorp.) [22]) and deeper parsing
to detect structures such as standard formatting of platesa

The GATE system is a Java GUI framework for linguistic engmnay. It incor-
porates a wide variety of tools for using hand- or tool-gatent rules, and regular
expressions and links to gazetteers of cities and orgamsatTesting and evalua-

tion tools are included for classification problems. GATEuUses on the inclusion

12



of extra-textual information:gazetteers, word-listamgmars and similar, and their
interactive development to solve particular problems.ldbdas tools for higher-
level reasoning about text§37, 22, 95]. GATE'’s choice to have a GUI enables it
to allow display and input of multiple texts and scripts: 2& supported.

Citeseer [80] uses a two-stage approach, with an edit distaratric to merge
similar references across the entire collection and thearacrafted ‘invariants
first’ heuristic that parses those parts of the referench thi¢ fewest differences
first and uses standard machine learning on them. The systésmable to leverage
two extra-document sources of information, tables of commestern personal
names and repetition of the same reference (often in sliglifterent form) in mul-
tiple documents. Citeseer does not parse the diversity afsfislat occur in the
bibliography corpus, instead focusing on the title and auttelds which are also
extracted from the start of documents and which link mostyetsexternal sources
in the bibliography at the end. The public interface of thee€ater system allows
end-users to correct the extracted fields and add the missieg. It is not clear

whether feedback from these corrections is applied to tleenal algorithms.

2.2.5 Markov Modelling

A number of systems and approaches have used Markov mod=dgaat informa-
tion from, or add information to, text. The early Xerox tagf#0, 39] uses hidden
Markov models and Viterbi search to good effect, but handleseen words and
novel contexts poorly.

Built using arithmetic encoder [102] models, one for ‘goaKitand one (called
a ‘confusion model’ [36]) for errors, the TMT (Text ModeltnToolkit) and later
SMI (Statistical Modelling Interface) systems [134, 36hcarrect errors in text and
classify textual fragments [133, 26]. With a large numbeotions and supporting

a wide range of static and adaptive models, SMI is entirepabé of solving the

Yhttp://gate. ac. uk/
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news and Chinese examples given in the opening Chapter, biltenbibliographic
example, because SMI models are not recursive; they caepgent a hierarchy
of textual fragments.

Arithmetic encoder models provide slightly more inforneatthan conventional
Markov models, providing an ordering of symbols as well asbpbilities repre-
sented using integer ratios. Integer ratios avoid usingifiggooint arithmetic to
whose inaccuracies arithmetic encoding is particularhsige. These steps make
SMI useful for both textual augmentation and full text coagsior?

Freitag and McCallum [46, 96] report work on a bibliographypme using
hand-crafted, then automatically shrunk, Markov modeisng good results. Fre-
itag and McCallum build models with increasingly complexstures in a similar
manner to Dynamic Markov Compression (DMC) [151], which arentlblended
using linear combination.

Recently Besagni et al. [15] have had some success in markitgolipgra-
phies using part of speech tagging, building chains of wipiahiis of speech oc-
cur in which bibliographic fields and then correcting fieldsng a post-processing
step. As with the post-processing performed in part of dp&sgging, this includes
super-adjacency. They use six tags and get a recall (se@1$2c3.1) of between
82% and 97% of the time for a corpus of 2500 references. Naifdhe failures
are complete failures, since sometimes part of a name igssitdly returned. This

may be useful, depending on the context.

2.2.6 Trained versus Handcrafted Models

The use of automatically trained models rather than haftécrenodels lends itself
to use in situations where training data is cheaper or maresaible than domain-
knowledgeable humans. With the increasing volumes of detidéedle at the cost of

transfer on the Internet and the relatively stable costludla, using large amounts

2 'Full text compression’ in this context means lossless o@sgion, as opposed to the lossy
compression often used for images which effectively dgsttext [151].
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of training data rather than people is likely to be an indreglg attractive choice.

While much of the freely available material for training mtdes of low or
questionable quality, the existence and growth of curaggdsitories such as the
Oxford Text Archive? the Linguistic Data Consortiufnand Project Gutenbetg
suggest that the availability of curated textual and lisaimaterials is increasing.

There are limits on what trained models can recognise, Isecatithe finite
training text available, their lack of ‘common sense’ reasg and various theo-
retic limits [13]. For example, most model training and téate building systems
cannot recognise structures characterised l@s thenn b's followed by n c's.
While systems can be built to recognise these structuresgartaularn, it is not
possible to recognise these structures for unknewsnwith a regular expression
while rejecting structures with different numbersas, b's andc’s. These limits
do not apply to handcrafted models. Handcrafted modelsmanthe well-known
difficulties of hand-building large, complex systems [8Bfldabour costs.

Building and maintaining a set of handcrafted rules or a hexfted model
may be more cost effective than building a corpus of docuseith the concepts
marked-up if the documents are sufficiently rare or suffityedifficult to handle
(for example they contain embedded private or confidemtiimrmation). Hand-
crafting is also more attractive if the concept is well urstieod by non-specialists,
meaning labour is relatively cheap.

Trained models also have the option of automated increrhempaovement by
using the Baum—-Welch algorithm [10, 11] in production sikmag. Long-term use
of Baum—Welch may result in divergence and poor performakimvever, if the
data seen in production is changing at a rate faster thanlittesgence, then using

the Baum-Welch may be advantageous. This thesis focusesinadmodels.

Shttp://ota.ahds. ac. uk/
4“http://ww. | dc. upenn. edu/
Shttp://ww. gut enberg. org/
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2.2.7 Single Step versus Multiple Step Systems

Multiple step text augmentation systems have an advantegiesingle step sys-
tems in allowing a different choice of algorithm for eachpsteroviding the system
builders with a wider range of options and making the intetiaie forms accessible
for ‘boosting’ using word lists and similar. A wider range dfoices for systems
builders enables them to hand-select algorithms that perfeell on the expected
input for the systems. Unfortunately, this often leads torgmerformance on other
input: other genre, other character encodings and othguéages.

Multiple step text augmentation systems also encourageerefisystem com-
ponents, such as the Brill part-of-speech tagger, which delyiused as a pre-
processor [37]. Single step augmentation systems can lsedeas a whole, but
are not as amenable to the development of UNIX-style ‘pigsli. Corpora used to
train models and rules are amenable to incremental developraither by adding
additional documents of the same type or by adding documeratdditional lan-
guages, as is common in corpora used in comparative lingslisteps can also be
arranged in a cascade or waterfall [68].

This thesis focuses on single-step markup processes usargovl models.
There is no theoretical reason why the systems and appreasee here could
not be used as individual steps within a multiple system,ttauing data for the
intermediate stages appears to be rarer, except wherediigliral step has already

been studied in isolation, as with part-of-speech tagging.

2.3 Correctness

The ultimate test of a computer system is in terms of intevastwith users—does
the system work correctly? Are any errors made, minor orstadphic? Is it fast
enough? Is it easy to use? Do the users like it? These questiowever, are hard

to phrase in terms that allow the answers to be compared aBystgms, versions
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of the same system, and software packages across time im¢heof changing
requirements, user expectations, groups of users andtogeeavironments. They
are also hard to ask of sub-systems that provide a subsehdctidnality required
by a full system.

There are, however, two features of overall performancehvare widely used
for comparing systems: correctness and efficiency. Thisoseexamines these and
how they can be applied to text augmentation.

The approaches to measuring correctness examined herdroomtbe fields of

information retrieval, string processing, machine leagrand information theory.

2.3.1 Recall and Precision

The information retrieval paradigm [122, 6] assumes thatexyj(single operation)
retrieves a set of items, some of which are relevant to theyg&waluation is based
around the question ‘Is item relevant and was it returned?’ The answer to this
guestion puts each item into one of four distinct classes positive (relevant and
retrieved), true negative (not relevant and not retrieviadge positive (not relevant
and retrieved) and false negative (relevant and not retiev
Accumulating counts of each of these four classes over & lamgnber of in-

dependent experiments allows the calculation of two hidgneel measures. Re-

call [31] is the proportion of all relevant items that werérieved:

number of relevant items retrieved true positives
Recall =

total number of relevant items in collection ~ true positives + false negatives

Precision is the proportion of retrieved items that areviaai¢

number of relevant items retrieved true positives

Precision = - - = — —
total number of items retrieved true positives + false positives

17



Recall and precision represent a trade-off. A system couldmemany items
(for high recall and low precision) or few items (for low rélcand high precision)

and so they are sometimes expressed as their harmonic mean:

2 X recall X precision

F — measure = —
recall + precision

Often the number of false negatives is unknown, such as wéteieving doc-
uments from the World Wide Web, whose exact size is unknowrldrge [81].
When the number of false negatives is known (or can be reliablynated), an-
other measure, called ‘Fallout’ [84], which is a measure @i lyood the result is

as a result for the negated query, can be used:

Fallout number of irrelevant items retrieved false positives
allout = =
total number of irrelevant itemsin collection  false positives + true negatives

Fallout measures how effectively irrelevant items are wimad from the query
results. Fallout is rarely used, as it is sensitive to the sizthe collection and the
addition of clearly-irrelevant items to the collection. REgcprecision, and their
combination in the F-measure, are the primary means of atrafjicorrectness in

information retrieval systems.

2.3.2 Edit Distance

Edit distance is a standard technique in the string procgdsld. It is a well-
studied measure used in spelling correction [73, 89] (wiraresposes are common
because of the mechanics of typing) and Optical Charactergréom (OCR) [73]
(where swaps are common due to mis-recognition of one ctearéar another).
These research fields measure edit distance on data, whdreasised in text aug-

mentation, edit distance is used on combined data and ntataih an expectation
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that errors be closely linked to the metadata.

Edit distance is performed in terms of individual tags rathan tag-pairs. False
negatives (inserts) and false positives (deletes) areteduand then summed to get
an edit distance.

Edit distance is solely concerned with mistakes made ingagtmentation and
neither true negatives nor true positives impact on ediadice. Edit distance ex-
plicitly recognises the sequential nature of text but, bsearue positives are ig-
nored, the independence problems discussed in relatioectdl :and precision do
not occur in edit distance calculation. Teahan [133] usésdistance to evaluate
text augmentation and Nahm et al. [106] uses edit distane@ asput to a multi-
stage text mining system. All edit distances used in theectinwvork are normalised

for document length to give edits per character.

2.3.3 Confusion Matrices

Whereas recall and precision assume an underlying binasgifitation, confusion
matrices are a tool for evaluating many-class classifina@sks, and are widely
used in machine learning for evaluating such tasks [149 féHowing is a confu-

sion matrix for a classification problem witlclasses:

Q11 G2 - A1,
Q21 Q22 -+ Ao,
i1 Qiz o Qg

The matrix is square, with a row and a column for each class., in columnn
and rowm, is the number of symbols that should have been classifiddss:c that
were actually classified in clags. Correct classification is indicated when= m,
on the leading diagonal of the matrix.

Any non-zero numbers off the leading diagonal, indicatectassification and
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there is often symmetry about the diagonal. Non-zero nusimebotha,, ,,, and
an,n indicate that if symbols of class. can be mistaken for symbols of class
then symbols of class are also likely to be mistaken for symbols of classThis
ability to highlight confusion between tags makes the csiuin matrix an excellent
tool for fine-tuning tagsets and finding markup errors. Fa@amnegle, Bray et al. [26]
used a confusion matrix to find errors and demonstrate tlhagtrorrelation be-
tween name tags and place tags in the Computists’ corpus. slonfmatrices are

conventionally normalised by converting the rows into petages.

2.3.4 Entropy

Entropy is a measure from information theory widely usedignal processing,
error-correction and compression fields of computer seigh62, 151]. It is in-
versely related to probability. A ‘good’ augmentation ofttbas a high probability
and a low entropy (measured in bits per character) [13].

Unlike other measures of correctness, entropy does notureeessults against
a predefined answer, but rather measures how closely a sesuts matches a
model. This is effective in situations where perfect answee either unobtainable
or obtainable only at great expense.

For entropy measures to be an effective measurement ofaxycofan augmen-
tation of text, the model used to measure entropy must bgerdient of both the
testing and training data. This problem is closely relateithé over-fitting problem
in machine learning, and can be avoided by training two nolelseparate training
data and using one to augment the text and one to measurgyentro

If an independently trained model is unavailable, an un&@dimodel can be
used with an adaptive algorithm. This is the standard metlogy for measuring
the strength of lossless compression algorithms [152, 18]3,

An entropy measurement is relative to a model, and so conhiglgs clear

knowledge about the absolute quality of an augmentatiog:uder of augmented
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text is unable to infer as much from an entropy measuremeritoss a re-

call/precision pair or an edit distance. It can, howeverubed to compare the
relative merit of different augmentations of the same tpsayided the model cap-
tures pertinent details and the same model is used to ctddotdh entropy mea-

surements.

2.3.5 Hybrid and Other Measures

Many reports of text augmentation use a combination of nreaso report their
results. For example Bray [26] decomposed tag insertioruatiah in the Com-
putists’ corpus into a pair of operations, firstly segmemtiharacters into tokens
and, secondly, classifying the tokens into their respedtipes.

The segmentation operation was measured in terms of the eumt (false-
negativest false-positives), and classification of the segments wassared using
confusion matrices. Other systems use measures exprestds of their inter-
action with larger information systems, such as extractibacronyms [165] and

bibliographies [21].

2.4 Efficiency

Computer programs can be written in a wide variety of compateguages and run
on a wide variety of platforms. Since the efficiency of thesguages and platforms
varies widely, it is useful to compare algorithms indeperias their language and
platform. One methodology which allows this is time comgixanalysis using
‘big O notation’ [70]. The function is simplified to remove mstant factors and is
referred to a®.

Time complexity analysis is defined in terms of a charadierigperation—in
the case of tag insertion this is visiting a node in the seapate—and counting

how many times the operation is performed, and expressedf@scton of the
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parameters and input size of the algorithm.

The size of the search space is normalised by the documagthlém give a
measurement in terms of search space per character. Tleespewial cases when
searching at the start and end of documents, but for the cysed in this thesis
the initial and final characters in documents are low entrgpythey should not

effect this normalisation.

2.5 XML Tags

EXtensible Markup Language (XML) [25] tags have a hame (pe}yspan a (po-
tentially empty) range of text and have a (potentially emgst of attributes. The
tags may be nested, but only strictly hierarchically. Thiia,document has tags
indicating pages from the physical document, it may als@hags indicating lines
and, because each line is wholly within a page, the tags amarchical. A tag
which contains only hierarchical tags, or no tags at allaid 0 be well-balanced.

An XML document has an enclosing, top level, tag holding infation about
the document as a whole. An XML document that is well-baldnsesaid to be
well-formed.

XML cannot directly represent overlapping hierarchiescfsas the physical
and logical document layout), unlike the preceding SGMU [Bhich had a feature,
CONCUR, which permitted overlapping tags. XML can representinierarchical
tags using higher-order structures, using empty tags wiitibates which associate
them in pairs or in a sequence. The difficulties of tagginglaeyping structures,
and standard ways of overcoming them, are described in defaBO0].

There are several schema languages for describing which ¥g& may oc-
cur within other XML tags. The W3C schema language includesldN tag to
refer to any well-balanced tag [43]. Schemas which featueeANY tag are flexi-

ble but challenging to model, because literally anything loa encoded, including
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structures equivalent to entire documents of the type beiaked up.

2.5.1 Nested Tags

The XML standard largely attempts to avoid statements alboeit semantics
of tags and the semantics of nested tags, other than thelrfameledness.
It is tempting to extend practice in XHTML to cover XML. In XHML
<en<ahref="..." >...</a></em> is typically considered semantically equiv-
alent from<a href="..." ><em>...</em></a> because most presentation en-
gines (browsers) present these identically. Presentdtiamstomisation systems
such as CSS [24] and XSLT [155], however, have no difficultfedéntiating these
two situations and the XML standard is silent on their semsaefationship. One
can imagine a (fictional) programming language expressetMi in which the

semantics are clearly different. For example

<if cond="undefined(symbdl)}>
<define name=symbol >
<action/>
</define>

<[if >

has different semantics to

<define name=symbal >
<if cond =" undefined(symbdl)>
<action/>
<[if >

</define>
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The current work attempts to avoid making semantic assemgguch as this, ex-

cept explicitly in the state-tying heuristic (see Secticd. 4).

2.5.2 Attributes of Tags

The current work focuses exclusively on direct represemtatand does not con-
sider attributes during training or testing (with the exoap of attributes of the
document-level node). All of the corpora used in this thésige been created or
transformed, as described above, to convert attributegags.

Attributes are syntactic sugar and any XML document withiaites can be
transformed into one without attributes and back in a Iessfashion. For exam-
ple, the tag<word partofspeech=verld' >jump</word> can easily be transformed
to <word><verb>jump</verb></word> but such transforms can lead to combi-
natorial explosion of tags if there are large number of lattes or the attributes
contain large numbers of unique values. Real-valued at&sowould lead to an
infinite number of tags, one for each possible value. If trdepof attributes of a
tag is significant, the situation is significantly worse. ™ML standard is silent on
the question of whether the order of attributes is signitichat several subsidiary
standards, including XSLT [155] and DOM [154] do not evenmpieidiscovery of
the order of tags. The author knows of no use of an XML corpushith the order

of attributes is significant or of toolsets which supportpnecessing of such XML.

2.5.3 Other Issues

A key feature XML shares with many other natural languagegssing approaches
is the linearisation of language. While written languageossra wide range of
cultures is laid out in rectangular regions, whether redidtdéeright and top-to-

bottom, or bottom-to-top and right-to-left, digitised tarage—written or spoken—
is almost always linear to the detriment of any secondarargglar structure. For

example, the limerick shown in Figure 2.2 is shown twicet fivgh the secondary
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The limerick packs laughs anatomical

Into space that is quite economical.

But the good ones I've seen

So seldom are clean—

And the clean ones so seldom are comical.

(@)

The limerick packs laughs anatomical Into space that iseqegbnom-
ical. But the good ones I've seen So seldom are clean—And dancl
ones so seldom are comical.

(b)

Figure 2.2: A limerick shown with and without secondary stuwe.

rectangular structure and then without. The second fornheflimerick has the

same rhymes and cadence as the first but loss of the expltitngular structure

makes it harder to recognise. None of the data dealt withigntiesis has a strong
secondary rectangular structure.

XML can be canonicalised [25], a process which, amongstrdttiegs, stan-
dardises whitespace. This is a lossy operation, whitespateontain information,
particularly about line and paragraph boundaries whicbhsslhy canonicalisation.
For this reason all operations preparing the corpora ustniithesis are performed
without canonicalisation and preserve whitespace.

Standardisation for representing annotated linguistte daXML [25] is cur-
rently underway, led by the Architecture and Tools for Lirggic Analysis Systems
(ATLAS)® [78]. The standardisation work includes a content-indelpah method
of specifying regions and anchors in linear linguistic silgnand a query language
over those regions and anchors. Similar work, with greatgemented function-
ality, is being undertaken by the Linguistic Data Consortifia®, 19]. As with the

current work, these approaches embed the inferred infasmadithin the linguistic

Shttp://ww. nist.gov/speech/atl as/
"http://ww.ldc. upenn. edu/
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data rather than removing it to the document header or amnattdata store as in
most information extraction.

The current work is based on the Unicode and a subset of XMirictssthe
types of texts and annotations which can be easily workeal W¥ith the exception
of attributes, most of the important features of documemtsodern information
systems can be represented. By using Unicode and XML a rartggabpreparation
and processing tools is available. A range of corpora idatiai for reuse in XML
and, by using XML for the corpora produced in the current wénkir potential for

reuse is higher than if non-standard formats had been used.
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Chapter 3

Models and Algorithms

This chapter examines Markov models and some of the segralgorithms that
operate on them. Exhaustive treatment of many aspectsadumh here can be

found in the standard texts [63] and [13].

3.1 Markov Models

Markov models are Finite State Machines (FSMs) which cowsia finite number
of states and the transitions between them. In a probabik§M, each transition
has an associated probability and generates (or prediggnaol from some al-
phabet of symbols. The FSM has a set of start states (oftgnomd) and a set
of end states (again, often only one). A stream of data isrgéset by a FSM by
starting in one of the start states and moving through a ssawe of states (using
the current state’s probability density function to deter@the next state) until it
reaches an end state. An excellent review of the use of Martaxlels and similar
statistical techniques as applied to language processaimgpe found in McMahon
and Smith [99].

Markov models encapsulate the Markov assumption: that/éhee of the next
state is only influenced by the value of the state that diygqutceded it’ [41]. The
Markov assumption is useful because it gives a bound on hoshreystem context
needs to be modelled. Markov models produce probabilitgitefunctions, which

estimate the likelihood of each possible value for the n&tes
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Problem Observable Hidden ObservableHidden | Type Ref.
Sequence Sequence | Alphabet | Alphabet
Size Size

Chinese word Characters Words Large 2 Segmentation |[137]
segmentation

English sentencgWords Sentences |Large 2 Segmentation |[133]
segmentation

Part-of-speech || Words Word classes| Large ~ 50 Classification |[28]
tagging

Phone Digitised, audiq Phones Very large| Large Entity extrac{[166,
identification waveforms tion 33]

Table 3.1: Observable and hidden sequences for a varieingiistic problems
tackled with hidden Markov models.

3.2 Hidden Markov Models

Hidden Markov models (HMM) are composite models involvinguanber of hid-
den states each of which contains a complete Markov modeé hididen states
typically represent the information the model is desigredhfer, the words to be
segmented or the parts of speech to be distinguished between

Table 3.1 shows some of the wide variety of previous usesdufemn Markov
models in linguistic problems. Chinese word segmentatiahEmglish sentence
segmentation use simple models. Part-of-speech tagginighvnas already been
discussed, has a larger hidden alphabet and thus more mulateis.

Phone identification is a key step in voice recognition inckhdigitised audio
waves are mapped to phones, speech sounds, which are ldtartbwords [166].
HMMs are also widely used in computational biology [72, 9].27

A key property of hidden Markov models that makes them so lyideed in
these fields is that they handle noisy and ambiguous data wdike rule-based
systems which are based on a series of binary decisions amdlatively brittle in
the face of noise and ambiguity. Markov models are, howewach less convenient
for the extraction of pertinent details. While rule-basestegs have sets of rules,
typically with clear means of identifying the most importaiMarkov models have
matrices of hundreds, or even hundreds of thousands, of ewsyith none being

clearly more important than others.
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3.3 Higher Order Models

Higher order Markov models involve a relaxation of the Marlassumption, al-
lowing multiple states to be taken into account [41]: ‘thdéues of the next state
are only influenced by the values of thestates that directly preceded it'. Each
Markov model of ordek > 1 is isomorphic with a family of Markov models of
orderk — 1,k —2,k—3,---3,2,1.

Figure 3.1 shows this isomorphism for an FSM with a two-cbimmalphabet.
Figure 3.1(a) shows an order 3 Markov model, with a singleestad eight £3)
transitions, each starting and finishing in the single state transition probabili-
ties dependent on the previous two characters. Figure)3sh@ws an isomorphic
order 2 Markov model, in which the number of states has bedtipted by the
size of the alphabet. The same eight transitions shown iar&ig.1(a) appear in
Figure 3.1(b), with all transitions generating afeading to stata and ab leading
to stateb. Although the transition probabilities are still depenten the previ-
ous two characters, the immediately previous charactenpdigit in the state and
transitions are labelled with only the previous-but-onarelster.

Figure 3.1(c) shows an isomorphic order 1 Markov model: rmg¢ia¢ number
of states has been multiplied by the size of the alphabet;agaih the same 8
transitions appear. Generating a pair @6 ‘leads to stataa, generating ama then
ab leads to stat@ab, and so forth. In this case the proceeding two characters are
implicit in the state. Such order 1 models can then be usedftware and tools
such as HTK [166].

Computational linguistics uses terms suchvagam, uni-gram, bi-gram and tri-
gram [73, 120, 3] to denote the order of models, while infdrarasciences refer
to the order of models [4]. Table 3.2 shows the relationsl@fwben these two
terminologies.

Markov models are often represented using a table, witls cefiresenting the

transition probabilities between each pair of states aoll sgmbol, but these grow
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P(x=blx;_,=b,x,_,=b)

P(x=alx_ =a,x_,=a) P(x.=blx_,=a,x_,=b)

N Qb x_,;=b,x_,=a)

P(x=alx_,=a.x_,=b) P(x=blx_=a.x_,=a)

P(x=alx_=b.x_,=b)

@

P(x.=blx,_,=a)

P(x, =al x,_,:b)
P(x,=blx,_,=b)

P(x;=alx_,=a)

P(x=blx_,=b)

P(x.=alx,_,=a)

(b)
P(x=a)
(ad

<a

)
\@/mm\)

(€)

Figure 3.1: Isomorphism in Markov models. (a) an order 3 magé an order 2
model isomorphic to (a), (c) an order 1 model isomorphic jaa (b).
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n-gram | Order| Meaning |
—1|All symbols to be equal probability

Uni-gram 0| Symbol probability based on their frequency|in
training data

Bi-gram 1| Symbol probability based on their frequency|in
training data following the previous symbol

Tri-gram 2|Symbol probability based on their frequency|in

training data following the previous two symbols
Quad-gram 3| Symbol probability based on their frequency
training data following the previous three symbols

n

n-gram k — 1|Symbol probability based on their frequency
training data following the previous — 1 symbols
n + 1-gram k| Symbol probability based on their frequency
training data following the previous symbols

n

n

Table 3.2:n-gram models and models of order

large for high-order models, as the sizestsentries, wheres is the alphabet of
observable symbols anidis the order of the model. The isomorphism between
higher- and lower-order models preserves the number o$itrans, meaning that
the table for a lower-order model has the same number obsrds the higher-order:

it is not possible to reduce the table size by using the isphism demonstrated in
Figure 3.1.

Even with large amounts of training data, it is unlikely tbaéry state and tran-
sition of a high-order model is visited during training. Tiemaining untravelled
transitions have zero probability, meaning that the mod®} generate zero proba-
bilities for a sequence seen during testing. The probletteccthe ‘zero-frequency
problem’ [146], appears when no non-zero transition exrsts the current state
to the state that generates the next symbol in the obsersafleence. (In hidden
Markov models there can be more than one transition, eacttimgna different
symbol (or symbols) in the hidden sequence.) The zero-&equproblem is often
solved by shrinkage (also known as backing off and smootf84¢, namely the
use of a simpler model to estimate probabilities for zeespfiency transitions in
more complex models.

Many later systems use-gram methods together with specialised handling of
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novel characters. Such systems are effective in tacklinglpms such as Chinese
text segmentation partly because of the large charactemrsetived. Typically this
involves the introduction of a special token (or charactennodel the concept of
an unseen character.

The differences between this approach and the norrggthm models are high-
lighted by the handling of a known character between a pairovkl characters:
...abAdBfg... Inthe current work the unknown charactérandB are mod-
elled by escaping back to the ordeit model and the known characters seen
in a context which has never been seen before (an ordeodel). The introduc-
tion of a synthetic novel charactsrwould enable a probability of encountering the
sequence..a b N ... to be estimated, then.abNd...and...abNdN...
etc., all without escaping back to the ordet model. This effectively allows the
concept of ‘the character following a novel character’ tonhedelled, something
conventionalz-gram models cannot do. Part of the reason such techniqaesoar
important is that novel characters in Chinese text, like haxeds in English, are
often nouns [133]: significant information can be inferred@y from novelty.

The zero-frequency problem can solved using escape mejttd@ls a recursive
case of shrinkage in which unseen transition probabil#resestimated by reference
to a lower-order model. Other cases are also common in irg#tom extraction
systems, for example, Freitag et. al. [46] escape back tora general class of
tags rather than to a lower-order of model for the same tag.

There are several studies of the effectiveness of diffesembothing strate-
gies [34, 144], but there is @ priori reason why one should perform better than
another in the absence afpriori knowledge about the symbol distribution within
the model. An alternative approach to smoothing is to usekMaas a prescriptive
model and reject outright any sequence containing a zetmapitity. This approach
may be useful in closed systems or for carefully curatedararbut is unlikely to

result in robust systems in production environments.
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Two aspects of Markov models can be trained: the topology (ilhmber of
states and transitions between them) and the weights ofiéugil transitions. In
theory the former aspect can be folded into the latter beca(e a model with
a transition of zero probability is indistinguishable frame lacking the transition
and, (b) a model with a state which has only zero probabitéygitions to it is
indistinguishable from one lacking that state. In realdé/gituations, with bounded
training data, these are generally treated as separatéepr®b Model topology
is commonly a fixed pattern, variable but selected or trajpear to training the
transitions, or trained in parallel to training the traimgis (as in DMC [151]). One

fixed pattern of topology is used by PPM.

3.4 Prediction by Partial Matching

A Prediction by Partial Matching (PPM) model of orderexamines the previous
n characters to calculate a probability density functiontf@ next character. To
calculate the function, PPM keeps a record of sequencesabiaracters already
seen and the character that followed them. If a sequeneelb@racters is seen that
has not been seen before, then PPM ‘escapes’ back to sequéncel characters.
If a match is still not found, PPM escapes back to sequences-of, and so on,
eventually escaping back to the ordet, in which all characters in the observable
alphabet have the same probability.

The PPM model keeps the sequences of characters in a suéfixiig each
node labelled with the number of times the sequence has keear{E3]. This suffix
tree can be converted to a single state Markov model of ardet. The suffix tree
is an efficient representation of a sparse model (one fortwimiany of the possible
states have not been observed) because unused branched expanded. The
equivalent Markov model is an array in which all leaves aespnt, with those not

seen during training appearing as small probabilities. herd¢urrent work, suffix
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trees are used for all processing.

The PPM model is deterministic [75] (or subsequential [J@4}hat it always
has one transition for each output symbol. In this regardférd from the work of
Lafferty and McCallum which has built non-deterministic HNNbr similar tasks
to those seen in this thesis, using non-deterministic ¢mmdil random fields [75].

An additional benefit of the suffix-tree based Markov modeks the traditional
table models is that they greatly reduce the cost of intrmduextra symbols. In-
creasing the character set size from 8 bit ASCII to 32 bit Uekécimcurs a cost only
for those characters are actually used in the training sethen the—1 model is
escaped to.

PPM models may seem far removed from the way that humans déahat-
ural language text. However, as the following story reveilmay be closer to
the way that humans deal with natural language text whenhhbeg no linguistic

information about it [30]:

[A] typesetter working on a Greek text at the Oxford Univerétress
announced he’d found a mistake in the text. As the typesetiédn’t
read Greek, his colleagues and then his superiors dismigsedthaim.
But the man insisted. So finally an editor came down to the c@itipg
room. At first, she, too, dismissed the idea, but checkingenatrsely,
she found there was an error. Asked how he knew, the typeseiitk
he had been hand-picking letters for Greek texts for mosisgbtofes-
sional life and was sure that he’d never made the physicaértmpick

the two letters in that order before.

This implies that the typesetter had built an implicit modéwhich charac-
ters followed which other characters and had sufficient denfte in the model to
guestion the text.

PPM is an incremental compression algorithm [151] with twidedy-known

variants, PPMC and PPMD [57]. PPMD is used in other text-aamgation
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work [133, 26]. PPMC and PPMD differ in the probabilities yheut aside for
unexpected events, seeing a character in a context in wiéghhiave not seen that
character before. In a context in whi€h total characters and, distinct characters
have been seen, PPMC sets a% and PPMD sets asid%. Katz [67] takes
a different approach and for an ordemodel use%, where(,, is the count of the
number ofn grams that have been seen exactly once/dnslthe training text size.

PPMII is a PPM variant with special handling for the case inaktonly a sin-
gleton example of the current context has been seen duaimgtg. The occurrence
of such contexts rises with the model order to 60—-80% of aitexts. PPMII im-
plementations typically also use adaptive models, anda&ounts frequently to
favour text seen recently over text seen at the start ofitrgjno give good perfor-
mance on compression corpora [127].

As implemented in this thesis, the PPM model does not stareailities but
rather counts of occurrences. These counts are convettefdrivbabilities dynam-
ically using an escape method which allocates the prolalnétween seen and
unseen symbols in the observable alphabet [152].

Figure 3.2 shows three representations of the adaptive aréRPMD model
built from the stringeaabbccabca .. Thee represents the start of the string. Fig-
ure 3.2(a) is the suffix-tree representation. The tree isowiplete, for example the
c-labelled node marked has no transition to aa-labelled node because the string
eaabbccabca. . contains no sub-stringc. Figure 3.2(b) shows the occurrence ta-
bles for order—1, order 0 and order 1, which correspond to the root node of the
suffix tree, the first row of the suffix tree, and the leaves efghffix tree respec-
tively. Each non-zero entry in the order 1 table correspdods leaf in the tree
above, while each zero entry thus corresponds to missifg lea

Figure 3.2(c) shows the Markov models of ordel, order O and order 1. These
have the same structure as the occurrence tables in FiQfbg,3ut the occurrences

have been converted to probabilities using escape methdgéabh count in the
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order —1 and 0 tables is divided by the total of counts in the table to obtain
probability. Each non-zero count in the ordet table is divided by the total of
counts in that row plus one. The probability correspondmthe extra (plus one)
count is distributed among the zero counts.

Each type of XML tag corresponds to a hidden state and hasaaastepmodel
built for it. In the observable sequence the tags are mappesngle charac-
ter symbols. Thus the stringba<sometag-cbc</sometag-bab is mapped to
abacbwbab, with a different symbol corresponding to each pair of tag#h the
¢, seen earlier indicating the start of the string, being usedhe entire string
(what the XML standard refers to as the ‘document elemeri])[2Therefore if
abacbwbabis the entire string, it is representededbaccbcbabe.

A distinct PPM model is built for each tag, in this case é@ndo. The models
for e ando built from the stringeabarcbebabe are shown in Figures 3.3 and 3.4,
which have similar structures to Figure 3.2. Tdhmnodel is built from the stringe,
e3, ab, ba, ao, ob, ba, abandbe. Theo model is built from the sub-strings, cb,
bc” and co.

e occurs in theo model because it can be part of the alphabet in which the
context. Even though it cannot be seen within thenodel, it can appear in the
context which is carried into the model, for example in thiengteocoe.

When ac is seen in the model, a transition occurs from tlemodel to theo
model. When & is seen in the model, a transition occurs from tkemodel into
the previous model, in this case thenodel.

Figures 3.3 and 3.4 show how we can use Viterbi search to fedbst likely
sequence of tags in the sequemabbacbccbbah ., the first step of which is shown
in Figure 3.5, which has a lookahead of four. Between each wvibsls in the ob-
served sequence, the algorithm calculates the probablityere being a transition
within the hidden state (the right branch from each nodef, the probability of

there being a transition to the other hidden state (the tafidh from each node).
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Figure 3.5: The expansion step in a Viterbi searchaifbacbccbbab. ..

The probability for the left branch can be taken from the rigand tables in
Figure 3.4(c) (for states in themodel) or Figure 3.3(c) (for states in teenodel).
The probability for a right branch is the product of two prblb#ies, that of the
transition from one model into the other and of seeing thentesl character.

Following the expansion step shown in Figure 3.5 is a prusteg. Either node
x or nodey must be pruned from the search tree, taking all descendatitstw
Since nodez is the leaf with the highest probability and a descendant i@ther
thany, y must be pruned. Nodegande are discussed in Section 4.3.2.

Figure 3.6 shows the tree after pruning. Node Figure 3.5 has become
and there are a newand a newy based on the location & the lowest entropy
leaf. Figure 3.7 shows the situation two steps later. Fofithetime the algorithm
is about to prune the branch rather than thebranch, and insert atag.

Viterbi search says that even for this demonstration exampbokahead of four
is insufficient to guarantee an optimal tagging: the lookah®must be one more than
the sum of the order of the model (1) and the longest tag lef¥tReal examples

typically have significantly longer tag lengths (see thegasin Appendix A) and
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Figure 3.6: The next expansion step in a Viterbi searokabbacbccbbab. ..

often higher-order models, but for clarity a short lookah&as been used in this

example.

3.5 Granularity of Models

Many published reports of text mining, information retaéand other information
systems model text as words [61]. Thigriori assumption of segmentation into

words leads to two separate problems:

1. In many contexts it is not clear what is and is not a word. hglEh two
areas of ambiguity are contractions and abbreviationseftample ‘i.e.” and
‘can’t’) and sometimes joined words (for example ‘real-¢imvhich is used

variously as ‘realtime, ‘real time’ and ‘real-time’).

2. Words seen during testing (or practical application} #ra not seen during

training raise the ‘unknown-word problem’ [144]. This plein is a variant
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Figure 3.7: The fourth expansion step in a Viterbi searcéadibacbccbbab. ..
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of the zero-frequency problem (see Section 3.3). In maniesy®valuation
contexts, the problem is solved by leaking information fribva testing set to
the training set in the form of a ‘Perfect Lexicon’ contaigiavery word in
the system [17]. In production systems this approach is assiple because,
unless a constraint is placed on the system vocabularyaléedccontrolled
vocabularies’ [84, 105]), an unbounded number of words magden over

the life of the system.

Approaches to solving the unknown-word problem includegimgr all un-
seen words into a single class and treating all unknown wblsame, which
works surprisingly well for news articles in which most uokm words are
proper nouns, and escaping back to a character-level matgljring two

models, one at the word level and one at the character level.

An alternative to this is modelling text as a sequence ofadtars [133]. At first
glance neither of the problems discussed above affectacteabased models, but

similar problems arise at a different level of granularity.

1. Unicode allows combining character sequences—chasamidt from a base
character and combining characters, which add elementgite.iaccents or
enclosing circles). All characters in most living natuiduages (including
English, Maori and Mandarin) are representable withoutlwomg charac-

ters, but should a system see them in input, handling themokdgmatic.

2. Though the Unicode character set is bounded, it is suffigiéarge (many
tens of thousands of characters) that if characters arerigygmmetrically
distributed (as can be expected in natural languages [99),1énly rarely
will a system see an instance of every character. Unicodisasexpanding,
with more characters being added; in theory a productiotesysould see

characters which were undefined when the system was built.
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These character-level problems appear to be of a similareaif not a sim-
ilar frequency, to the word-level problems. This suggelsé the transition from
word to character level has not actually solved the wordllpvablems but rather

transformed them to a lower level.

3.6 Searching in Models

Once built, the models can be used to find the most likely sexpief hidden states
for a sequence of observed states. This is done using a deeeclin which each
node is labelled with a state in the model. Each node is atsgll&d with the sum
of all probabilities on the path between it and the root ofgbarch tree. Entropy
is inversely related to likelihood [126], and the most likekquence corresponds to

the leaf node with the lowest entropy.

oldLeaves « root;
while morelnputSymboldo
new Leaves — (;
for leaf € oldLeaveglo
newleaves «— ExpandLeaf(leaf)

CalculateEntropy(newleaves)
end

1 oldLeaves «— newLeaves ;
end

result «+ SelectLowestEntropyLeaf(oldLeaves)

Algorithm 1: The complete search algorithm.

An exhaustive, or complete, search for the most likely seqgeenvolves a
search space as deep as the sequence is long. This algasigimown in Algo-
rithm 1. The functionExpandLeaf takes a single leaf node in the search tree,
examines the state in the model with which it is labelled aofdkaa new leaf to the
search tree for each out-going transition from the statbemtodel. The function
Calculate Entropy calculates entropy of the each of these new leaves.

For many interesting sequences this search space is caiopatly infeasi-
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ble, but the ‘Viterbi search’ [140] algorithm provides a quutationally feasible
searches in situations when only local information matt€he Viterbi proof [140]
guarantees that Viterbi search will find the most likely sate, provided the model
determines the entropy for a node based on bounded locall&dge; rather than
on global knowledge required by the exhaustive searchukately Markov mod-
els, even high order Markov models, meet this criterion [90he length of the

sequence that must be modelled for this local knowledgellisccthe ‘lookahead'.

oldLeaves <+ root;
while morelnputSymboldo
new Leaves — (;
for leaf € oldLeaveglo
leaves +— ExpandLeaf(leaf)
CalculateEntropy(leaves)

AddLeavesToSet(newlLeaves,legves)
end

2 bestLeaf <+ SelectLowestEntropyLeaf(oldLeaves)

3 oldLeaves +— PruneBranch(bestLeaf, newLeaves)
end

result «+ SelectLowestEntropyLeaf(oldLeaves)

Algorithm 2: The Viterbi search algorithm.

Viterbi is a beam search, as shown in Algorithm 2. This is egped as a search
tree which is built independently of the Markov model in uset with pointers in
every node to a state in the model. The operattenne Branch takes aestLea f
from a selection ofiew Leaves, traces parents @kst Lea f up until it finds a node
which is the parent of every leaf inew Leaves and prunes all daughters from that
node except the one which lead9itat Leaf.

There is an alternative representation, that of a seartibdatn which nodes
from the search tree are not pruned but ‘merged’ with othelesawith identical
state in the underlying models. Merged nodes have the logrgsbpy of any of
the nodes from which they were merged, this representingnih@num entropy

path through the search tree (now a search lattice) to the.idte search lattice is
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either unified with the Markov model or has a similar strueturhis representation
is widely used in signal processing and reflects common eweglland hardware
implementations in that field [63].

The stack algorithm, a variant of Viterbi search, uses aeddlist rather than
an explicit search tree. The list is sorted by the entropyhefriode and initially
populated with the first symbol. The lowest entropy node isaeed from the list
and its children calculated and added to the list. The seamds when a leaf node
is found.

The Fano algorithm, related to the stack algorithm, doesuseta stack but
moves incrementally though the search tree guided by egntsaped thresholds,
revisiting many nodes, but using only tightly-bounded mgmitus making it suit-
able for implementation in hardware. The creeper algorithenhybrid of the stack
and Fano algorithms, using complex tables. All three oféhegorithms are de-
scribed in detail in Johannesson and Zigangirov, ChapteBp [6

Viterbi search implemented as a lattice or tree, the stagtrdéhm, the Fano
algorithm, and the creeper algorithm all represent diffeteade-offs between time
and space, and between simple and complex algorithms. Hnehstee represen-
tation is traditional in computer science, because it adlawnore direct comparison
with other forms of searching; it is used in this thesis fora@emnatural representa-

tion of the pruning explored in Section 4.3.

oldLeaves <+ root;
while morelnputSymboldo
new Leaves — (;
for leaf € oldLeaveglo
leaves +— ExpandLeaf(leaf)
CalculateEntropy(leaves)

AddLeavesToSet(newlLeaves,legves)
end

4 oldLeaves + SelectNLowestEntropyLeaves(newLeaves,N)
end

result «+ SelectLowestEntropyLeaf(oldLeaves)
Algorithm 3: The Teahan search algorithm.
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Algorithm 3 shows the Teahan search, a ‘Viterbi-inspireti3g] algorithm
which has been found effective [133]. Rather than search d fiistance ahead into
the search space on each increment, it only expand¥ tleevest entropy nodes at
each level in the tree (line 4).

The Teahan search algorithm is a heuristic: it is not guarahto find the lowest
entropy tagging. The Viterbi proof cannot usefully be apglio Teahan search.
This is because the only point at which Teahan search is giesm@ to search the
local search space at every step in the search is Wwhesnthe number of leaves
in the exhaustive search. At this point the Teahan searcheahdustive search
become identical.

For many interesting problems, limited amounts of data witrelated hidden
and observable sequences are available for training, batvdéh only observable
sequences abound. An algorithm to utilise these un-coeckzbservable sequences
was developed by Baum and is known as the Baum—-Welch algoritByifl, 118].
This (Algorithm 4) is similar to Viterbi search with the atidn of a step (line
5) that updates the model after the most likely branch has bmend [118, 90].
The UpdateModelfunction updates the hidden Markov model to include seeing

bestLeaf

oldLeaves < root;
while morelnputSymboldo
new Leaves — {;
for leaf € oldLeavesio
leaves «— ExpandLeaf(leaf)
CalculateEntropy(leaves)

AddLeavesToSet(newLeaves,leaves)
end

best Leaf <+ SelectLowestEntropyLeaf(oldLeaves)
5 UpdateModel(bestLeaf)

oldLeaves + PruneBranch(bestLeaf, newLeaves)
end

result <+ SelectLowestEntropyLeaf(oldLeaves)

Algorithm 4: The Baum—Welch algorithm.
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The Baum-Welch algorithm is a specialisation of ExpectaMaximisation
(EM) which is widely used in machine learning [149] and stiads [60]. McLachlan
and Krishnan [98] describe EM and the relationship betwéemd the Baum-—
Welch algorithm in detail and [18] discusses this relatiopsnathematically.

The Baum—Welch algorithm is the primary training mechanism deveral
information-extraction systems, for learning either transition probabilities [82,
125, 17] or the model structure [125], or both. In this thetii® Baum—-Welch
algorithm is used only for learning the transition probtilei, the Markov model
structure is imposed by the PPM algorithm and the hidden Mankodel structure
reflects the schema of the documents seen during training.

This thesis uses a variant of the Baum—-Welch algorithm, inciwvlain entire
document, or group of documents, has tags inserted whicthaneused to update
the model, rather than to perform tag insertion and modeistenation in such a
closely-linked manner. This approach precludes the pitiggibf intra-document
learning (lowering the entropy of a sequence of symbols ageébecause they have
already been seen) but allows the efficient use of non-agaptodels, and avoids
the cost of ‘unlearning’ during searching. The effect oftis likely to be most
significant for long, single-subject, documents which eamfrequent occurrences
of proper nouns and other features which are rare withinrhseat from, the training
corpus. Proper and rare nouns are typically introduced/liset forms [160] which
can then used to update the model for their less stylisecegulesit use. Without
the ability to update the model, subsequent uses of thert=atre likely to be
ambiguous.

Much research on the Baum—-Welch algorithm is performed inctiveext of
voice recognition [11, 118], where is it used at the phonellén adapting a model
to an individual's accent. In voice recognition, the obséie sequence is a discre-
tised representation of a continuous signal. The symbaoleardiscretised repre-

sentation can be ordered, for example, it is possible tolsty50 dB< 51 dB <<
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1000 dB. Much of this research cannot be applied to text becthesobservable
character set in text modelling (characters) has no usaipii¢it ordering.

The Baum-Welch algorithm is normally used during trainingpwidver, if the
sequence being modelled is changing slowly over time, dnefé is insufficient
training data to characterise the sequence sufficientigntle used during testing.
Unfortunately, if a feature is mis-modelled when first seie, reinforcement of
the Baum-Welch algorithm makes it much more likely that il & mis-modelled
when seen subsequently, even in contexts which could haredear if seen by a

model without re-estimation.

3.7 XML and Unicode

This section examines some issues with Unicode and XML asidithpact on the
corpora and algorithms used in this thesis. These issuaslanthe assumptions
Unicode makes about text, the semantics of nested XML tays,ttze order of
XML attributes. These issues are important because thegrpmdmuch later work
in this thesis.

XML is a standard [25] for encoding data and has emerged dsdlgng stan-
dard for encoding textual documents for archiving, acadestudy, interchange and
corpus building. XML uses Unicode [138] by default, allogia large number of
languages and writing systems to be represented. Unicoleswarious assump-

tions which make it significantly easier to reason about textuding:

e That characters are unique entities from a finite set.
e That each character falls into exactly one character class.

e That the character class of each character is known.

These assumptions do not hold universally, not even for @ludchents held

in modern information systems. Handwritten texts or texistpd prior to the
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standardisation of book printing are particularly probéimbecause their digitisa-
tion commonly involves more semantic interpretation tHamdigitisation of later
printed works with known conventions. The Early English Be@unline project,
is an example of a real-world undertaking impacted by theseds. Unicode char-

acter classes are discussed in Section 4.3.3.

Thttp://ww. |ib.unich. edu/tcp/ eebo
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Chapter 4

The System

This chapter introduces the bulk of the new content in thsi#hestarting with a
new taxonomy for metadata markup problems. The architecfithe implemen-
tation is introduced, followed by a number of optimisati@ml heuristics imple-
mented within it. The search space of these optimisatiod$aaristics for various
metadata markup problems is then examined together withrtpact of metadata

problems on assessing experimental correctness.

4.1 Metadata

This thesis introduces a new taxonomy for fine granulardfesetadata problems:
in segmentation metadata, classification metadata, aitg er@tadata. The remain-
der of this section describes the taxa.

Metadata comprises encoded tags, in ranges of adjacemictéie which share
some property, and externalised as XML [25]. XML is a wideed metadata
format [156, 123, 147].

4.1.1 Segmentation

Segmentation problems involve finding the internal bouiedawithin text. The
boundaries can be linguistic (e.g. in word or sentence bawues), semantic (e.qg.
between topics) or both (e.g. between index or bibliogragftyies). Finding word

boundaries in Chinese, Japanese or Thai text and findingoRuipdaces to seg-
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Figure 4.1: Schema structures for segmentation and clzsiin problems. (a) The
Chinese text segmentation problem. (b) The part of speedingglassification
problem. (c) The Computists’ Communique classification poblDetails of these
problems and corpora in which they are studied are given irptéh&.

ment English, German and French words for line-end hyplemg?7] and all
well-known examples of segmentation problems.

As encoded in this thesis, all segmentation informatiores&mbyed by tag merg-
ing. If adjacent tags are merged, all segmentation infdonas lost because infor-
mation lies solely in where the tags start and end, ratherithahich type of tag a
piece of text falls.

Figure 4.1(a) is the schema for the Chinese text-segmentatablem. It has a
single root-node and a single type of child-tag below it. fEhie an instance of the
child-tag around each word. The schema for every segmentptbblem has this
shape, with a single type of child tag and all charactersiwitistances of that tag
type.

Various approaches have been used to segment text. Manpysgatéms used
simple lookup tables [157], which work surprisingly well orost text, except novel
characters not seen in training. Most text segmentaticiesysuse-gram models

or equivalent Markov models [137, 50, 117].
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Recent segmentation research directions include conditiorandom
fields [115], and using integrating segmentation with fiowality such as
part-of-speech tagging [58] and proper noun extractio@]16ombining segment-
ation with higher-level processing allows leveraging segtation to help solve
other natural-language processing problems and the sestilthe higher-level

processing to fine-tune the text segmentation.

4.1.2 Classification

Classification problems involve classifying textual elemseftypically words or
characters) into one of several classes. Many classificgtioblems are referred
to as tagging in the information extraction and documenteustdnding communi-
ties, but this name has been avoided, because all of thegmshdliscussed here
involve inserting tags—Iliterally ‘tagging’. The term ckaication is used in ma-
chine learning to refer to problems which involve placingm@stance into one of a
set of classes, and it is used here in the same manner.

Classification metadata is immune to tag merging. If two ashatags of the
same class are merged, no knowledge is lost, because thetegtinformation lies
solely in which type of tag text falls. Similarly if a tag islgpn two, no information
is lost, provided the two new tags cover the same characseisegprevious single
tag.

Figures 4.1(b) and (c) show the schema structures of cleet$iin problems.
The schemas have a single root node (representing the datyraed each of
the classes has a node directly connected to this root node.sdhema for ev-
ery classification problem has this shape, with a numberp#dyof child tags and
all characters within instances of these child tag types.

Much early work on classification problems was performed art-pf-speech
taggers, drawing on traditional debates on the role of grammlanguage. Several

early systems were grounded in distinct schools of lingutseory, but performed
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relatively poorly. Later approaches have used more gemsgaicstical modelling
techniques to better success.

The Brill tagger [28, 29] first trains a rule-based tagger dhtearns transfor-
mation rules based on the errors of the rule-based taggertrahsformation rules
allow for super-adjacency and higher-level reasoningheeiavailable to conven-
tional Markov models. Super-adjacency, looking not at irdiately adjacent words
but at those several words away, allows wildcard-like effedpplying rules is fast,
so the whole system runs quickly, and it is widely used and respected.

The MUC problems can be considered classification probleotshe focus is
on information extraction: the inferred information is reshbedded in the docu-
ment text, but either included in the document header or ¢etely separated from
the document. Many problems contain higher-order reagominside the scope of
text augmentation considered in this thesis. For exampketitle Presidentand
the nameBill Clinton can be inferred to refer to the same individual combined as
President Bill Clinton Classification can identify title and name, both together an
separately, but not perform the higher-order reasoningntothe instances or to

present the separate components combined into a singlersezu

4.1.3 Entity Extraction

A superset of segmentation and classification, entity ettm, finds bounded sec-
tions of text that belong to a particular class. If adjacagstare merged, some
information may be lost, since information lies both in wh&ymbols are in which
class of tag and in where the individual tags start and finish.

Because entities have both a range and a depth, it is possibdatities to be
nested, introducing extra complexity. Nesting of a tag iminother of the same
type is a technique used relatively widely in grammar-bdseglistics. It is not

inherently more complex than nesting a tag within a diffetgpe of tag:

However, the current work does not handle such cases gtgcafiexplained in section 7.4
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Figure 4.2: Schema structure for the bibliography entityastion problem. Details
of this problem and corpus in which it is studied are given imgtbr 5.

Figure 4.2 shows the schema structure for the bibliographgus, an example
of entity extraction in which the entities such as author egpnarticle, titles and
conference names are marked up. The schema for entity gatr@coblems allows
arbitrary nesting of tags.

Bray [26] showed that, on a small sample, hierarchical taggihpersonal
names into first and last parts hindered the overall ideatiba of names, but the hi-
erarchical tagging of email addresses into username angbais aided the identi-
fication of email addresses. The failure of hierarchicagag of names in this case
appears to be at least in part caused by the small number &sased. Wen [144]
used eight tags from an early version of the bibliographyusr(see Section 5.2)

and achieved an F-measure of 76%.

4.1.4 Limitations and Constraints

Text augmentation is not a universal method of inferringadata. There is a range

of text-augmentation problems that fall outside this tatag, including those with
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overlapping structures, those with attributes that aréicoaus numeric values, and
those with escapes to the XML Schema ANY tag. The taxonomyssiitable for
the coarser-grained metadata, such as document levellectimh level informa-
tion.

There are certain constraints derived from the XML taggisgdi(see Sec-

tion 2.5):

'_\

. Half the tags are opening tags,.. and half are closing tags;qgname-

N

. Only the most recently opened unclosed tag may be closéd ne

w

. Each opening tag must be separated from the correspoddisigg tag by at

least one data point from the underlying sequence.

4. No two tags of the same type are opened between any twootiis.a

ol

. Tags do not have attributes.

Constraints 1 and 2 are a restatement of the well-balancedmsstraint of
XML. Constraint 3 is not presentin XML, but is present in thereat representation
to rule out the proliferation of arbitrary numbers of empgs.

Constraint 4 is also not present in XML but is introduced harerder to make
the sets of tags enumerable, both a consequence of implatieenthoices and a
prerequisite for calculating the size of search spaceslaidkeof attributes has been

discussed in Section 2.5.2.

4.2 Architecture

The implementation used in this thesis is called ‘Collogiatropy Markup’ or
CEM. CEM is built in pure Java [52], no platform-dependentdityr bring used.
All input and output of data is performed using the Apachercés implementation

of the standard Java XML Document Object Model (DOM) [154].this thesis a
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Figure 4.3: The structure of a CEM model, hidden states (sgoaxes) with asso-
ciated PPM models (circles).

deliberately standards-based approach was taken largedgponse to difficulties
encountered Teahan’s [133] implementation.

CEM uses Unicode throughout and recursive modelling of tdgs)atter en-
abling it to tackle the more challenging entity-extracttasks, as well as those of
segmentation and classification. There are two main intelata-structures, the
model and the search tree. DOM is not used in the internaistatatures, because
when the software was first designed, the DOM was immaturatavas not clear

that it would prove as stable and effective as it has done.

4.2.1 The Model

The structure of the hidden Markov models implemented in CEBhown in Fig-
ure 4.3. Each of the circles is a PPM model in the form of a stiféig, as shown in
Figure 3.2. Each of the squares is a hidden state in the hislidekov model; the
associated PPM model is the Markov model for that hiddeme stat

The presence of two characters without a tag between theapiesented as
a transition between two states within the same PPM moded. pfésence of two
characters with one or more tags between them is represasatadseries of one
or more transitions between states in different PPM modeld¢tween states in

the same PPM model in the case of closing tags immediatdywfed by opening
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tags). Closing tags indicate transitions up, towards thé abthe hidden Markov
model and opening tags indicate transitions down, towdrel$staves of the model.
XML well-formedness is enforced by starting in the root af tiidden model at the
start of the sequence and by forcing a return to the root lariimg) close tags at the
end of the sequence.

Figure 4.4 shows the relationship between the suffix treeesgmtation of
Markov models used in CEM and a more traditional represamtatiNodes are
numbered for identification. The implementation uses ohg guffix tree during
training and testing, although it can output low-order Marknodels for manual
validation. Figure 4.4(b) is directly convertible to a tédouformat.

Each state is adjacent to an end state, because each statetesnsition from
it. When building PPM modelsy is treated as just another letter in the alphabet:
represents one third of the alphabet in Figure 4.4(b). Hamnltiple start and end
states is unusual for a Markov model used in an HMM, but isnaa@and efficient
to implement when suffix trees are used, because the suffaredave the extra
character added for hidden state transition prependéadtfis case), and be carried
from one hidden state to the next.

The CEM model is implemented as shown in Figure 4.4(a): a sirmpk, with
each node labelled with a character and a number. The treesegation allows
branches to be expanded as and when they are first seen dwaimggd, saving
memory on unseen branches.

Transition probabilities are computed dynamically fronuets, using escape
methods, in the manner of adaptive text compressors [1l46untSaather than
probabilities are stored, so the escape method can be ahaftge training. This
feature is desirable during experimentation, but unlikelpe important in produc-
tion environments.

CEM models are serialisable: they can be streamed to a filegy wandard

Java serialisation and later streamed back into memorgtintéodels are streamed
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Figure 4.4: The structure of a PPM model, (a) as a suffix tregjhich leaf nodes
(5—-13) are reached by navigating from the top of the tree ¢ianh an entropy
Is calculated, using the suffix of recently seen characterd,(b) as a finite state
machine using traditional Markov model notation, in whiclp@nter to a node
is used for state rather than a suffix and the next node is fbyrtdaversing the
transition labelled with the current character.
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through a gzip [88] stream reducing their size by approxatya®0%, primarily
because Java serialisation focuses on issues such asilpgréedal flexibility rather
than output size. No experiment was undertaken relatingittesof training texts
to the size of streamed or in-memory models. Streaming rsddednd from disk

allows the reuse of models across testing sessions.

4.2.2 Differences between CEM and other systems

There are two key architectural differences between CEM Blankodels and com-
parable systems: the handling of context between modeltharsymmetric, recur-
sive structure of the hidden states. This section examiresetdifferences in more
detail.

Systems such as HTK and SMI have Markov models with a singie state,
so that no matter how much context is taken into account witte models, each
transition between hidden states results in a completeoossntext. HTK partly
overcomes this by having a large number of hidden states onmglex structure.
When moving between hidden states, CEM prepends a singlectbiata the con-
text for each transition (and thus each tag that is openetbsed). This is seen,
for example, in thex symbol in Figure 4.4. For tagging problems with many fine-
grained, deeply-nested tags this can represent a consiedévas of context, but for
lightly-tagged text with a PPM model of non-trivial ordeketloss is less significant.

This retention of context allows for the efficient modellinfthe situation in
which tags are marked by a distinctive characters. For elgmpnsider the frag-
ments:

L.<x>[a] </Ix>b

and
L <x>a</x>]1b

When CEM calculates the entropy fbrwith an order 3 model, in each case

it has a full context to use for the calculation, and avoidsieed to escape to a
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lower-order model. This is not true for most other Markov mldchplementations.
CEM hidden models have a symmetric, recursive structuresatily the well-
formedness requirement of the XML from which it is automalicgenerated. This
differs from the flat (non recursive) model of SMI and gendéinde-state machine
model of HTK and other voice-recognition systems. The flatletas sufficient
for segmentation and classification problems, but not faityeextraction prob-
lems. The added complexity of a generic finite-state machineel is used in
voice recognition to represent models of sentence-lekgtire, based on separate
analysis and testing. While there are certainly areas ofaegmentation which
might benefit from such generic models, it is hard to imagio& khey would be

readily incorporated into CEM'’s low human-input approach.

4.2.3 The Search Tree

The search tree is the second of the two main data structuf@shii. Each node in

the search tree is labelled with:

the current character from the input stream;

any XML tags inserted immediately before the current chiarac

the current states in the hidden Markov and PPM models; and

the cumulative entropy of traversing from the root of therskdree to this

node.

There are two types of search tree implemented in CEM: Teabarc!s (see
Algorithm 3 on page 46) and maximum lookahead search. Whemthemum
lookahead is used with a sufficiently long lookahead, it isue tViterbi search.
Except where explicitly stated, the maximum lookaheadcteésee Algorithm 2

on page 45) is used.
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4.2.4 Full Exclusion

The PPM escape methods, as implemented in this thesis;, fidfa the standard
escape methods because they do not use full exclusion. §hahen an orden
model is escaped from back to an- 1 model, then — 1 model is not modified by
removing characters which appear in the ordenodel. Removal of these charac-
ters from then — 1 model is safe because they have already been considereal in th
n model. This variant has been dubbed PPM-SY after the igibathe author, to
differentiate it from other forms of PPM.

The effect of not using full exclusion is to modify slightlre action of the
escape methods used. As noted on page 32, there aspnori reason either to
think that one escape method should model a sequence Inetteiother, or when
using PPM for text augmentation to suggest that PPMD shaowutd lgetter results
than PPM-SY.

When using PPM to drive an arithmetic encoder, using PPM-Sildvequan-
der a small amount of probability whenever a model is escé@ed, resulting in
a longer coded text, and would thus be undesirable. In tegtrentation applica-
tions, the absolute entropy values are not important, drdyrelative values: the
coded text is never used or produced so the length is irneleva

The choice not to use full exclusion was made for reasonsfieicy: per-
forming set operations on large character sets in the irowy bf a computation
is understandably expensive. It is expected that the coltlloéxclusion will be
substantially higher for larger character sets than forlsongs. A version of PPM
with full exclusion is tested in Section 6.1.

The implementation of full exclusion calculates the exidnslynamically as it
occurs. An alternative implementation was considered irclviexclusions were
calculated the first time they were used, and then cachedefaser thereafter.
This would have consumed considerable extra memory, péatlg for the large

character-set segmentation corpus (see Section 5.3)hiohuhe size of the model
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was an issue.

4.3 Optimisations and Heuristics

The pruning of search trees using optimisations and hasi enable them to be
searched as efficiently as possible has a long history in atenpcience [71]. This
section applies this tradition to the search space of tegtnamtation. Optimisa-
tions are techniques that improve the efficiency of problewiisg without altering

correctness. Heuristics are techniques that improve freeesicy of problem solv-

ing but may potentially reduce correctness. This sectiokddirst at techniques
and then at how some of them affect the search spaces in tiffiexewt classes of

text augmentation.

4.3.1 Viterbi Optimisation

Viterbi search [140, 141] (Algorithm 2, page 45) is an opsation of complete
search (Algorithm 1, page 44), which Viterbi proved [1405he impact on cor-
rectness provided the lookaheat large enough and the encoding scheme has the
right properties. For text-augmentation problems ‘largeugh’ is the maximum
possible length of a tag, plus the order of the PPM model inpiss one.

Relating search-space size to the maximum length of the teigg) bnserted
means that some tags require smaller search spaces thas triserting short tags,
such as personal names or parts of speech, gains more agvdratan the Viterbi
search than do large tags such as {tgml> or <body> tags in XHTML [114]
which contain an entire document.

Figure 4.5 shows an example of Viterbi search space, with sawll black
triangle being the search space for the current incremexgte g5) and the large
triangle being the full search space (respectively the hakr thewhile loops in Al-

gorithm 2, page 45). Figure 4.5(a) shows the initial seapates of depthu + 1,
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Figure 4.5: Viterbi search of a large search space.
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before the first pruning of the search space, and the fulthespace of depth+ 1.
Figure 4.5(b) shows the second search space of degfter the first pruning. Fig-

ure 4.5(c) shows the search half-way though, and Figure}shpws the completed

search.

aaa()(}{)---(H)- (DG OGHx aaaa()(-)(H)(HD(})}aa

(@) (b)
ola{} ()oxo
ola { } () o x of|lxla{ } () oxo ?%%%%%88%
11 1y 1 1 "1"1 I'1"1"'1"'1 g1 S =
diii it s p aftitei iy ititiggt
T T PP PR LR i i g0, (|00 g0t
AR A A A A A R AR I RN b
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*|35 a9 7 9 a9 19 B 19| %[5 5§ G o oto %5 5557295
ol bk G mamllelddddiioloflolsgss5005

(c) (d) (e)

Figure 4.6: A set of models and sequences for which the \Visstumption does
not hold and Viterbi search fails. (a) a class of difficult seqces (b) a single
sequence (c) top-level Markov model (d) model#de) model foro. z=1 andy=1.

As the following contrived example illustrates, it is novadus that the Markov
assumption, and with it Viterbi proof, in any form holds faataral language text.
Figure 4.6 shows a Markov model with three hidden states aradidnabet of eight
symbols. Hidden moded models the contents of matchéd braces (d). Hidden
modelo models the contents of matchéll parentheses (d). The columns of zeros
in thex ando models indicate that no direct transitions between thenpassible,
and that transitions must be via the top-level Markov modetlieo hidden state.

Figure 4.6(a) shows a class of sequences which is problemvéh respect to
this model: parentheses and brackets used in ways that doatoh. Furthermore,

a repeating chain of parentheses and brackets can exteathtfiguity indefinitely
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until some other symbols, such asyaare seen. Figure 4.6(b) shows a string for
which Viterbi search will yield two equally likely hidden geences. The model
may be changed to prefer one over the other by changing (and adjusting the
other probabilities so that the sum is 1). However, such atisul still requires that
the search sees the end of the chain before pruning the desecit the start of the
chain.

Fortunately such situations are rare, none of the datasetemted in this thesis
appears to contain such sequences, and none has beendapdte literature.
Experience [136, 144, 145, 135, 26, 163] has shown that ictipeaViterbi search
does work on natural language text.

Figure 4.6 shows a situation in which Teahan Search (Algori8 on page 46)
performs admirably. Teahan Search expands a fixed numbedesrat each level
in the search tree so it is capable of exploring equal entboagches of the search
tree to an arbitrary depth, providing at each level one nedm feach branch is
expanded. However, if a branch has higher entropy (for eX@amiin Figure 4.6(c)
Is raised), then it will probably get pruned, even if the Ietvglobal entropy lies

down that branch of the search tree.

4.3.2 Best First Optimisation

The best first optimisation is based on the observation the¢ @ candidate aug-
mentation has been found and the entropy calculated, a#shadthin the search
space with higher entropy can be pruned immediately. If @yikandidate aug-
mentation can be found computationally cheaply, and théability distribution
function is steep (i.e. the model has high discriminatioing, search space can be
reduced considerably. In Figure 3¢has an log probability o{m = Télo and
nodez has an log probability of 25— = 7 = 55;: neitherw nor any other

child of e can have a lower log probability (and thus entropy) than d¢fiatode z,

so node: need not be expanded.
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The savings made from best first are difficult to calculateabse they depend
on the probability distribution function for each state e tmodel and the exact
sequence of symbols seen. In general, however, the savimtgsger for probability
density functions that are highly discriminative. Discimation generally increases
as models are better trained.

The CEM implementation finds a best first candidate by caliigdhe entropy
of the left most leaf (the only leaf reachable without insgytany tags). This is
the computationally cheapest leaf to find and in many sibaatit is a low-entropy
leaf, if not the lowest. Hardware and Field ProgrammableeGatay (FPGA)
implementations of Viterbi search may avoid the need foib first optimisation
by performing this part of the algorithm in parallel [140,114.21]. Such treatment

is not possible with text augmentation because of the saamifly larger lookahead.

4.3.3 Automatic Tokenisation Heuristic

The automatic tokenisation heuristic is based on the obiernvthat in many prob-
lems there are classes of characters between which no tagaewes. For example,
in the Computists’ and bibliography corpora, no tag ever cxbetween a pair of
lower-case letters or between a pair of whitespace chasadteno tag is ever seen
in a situation during training, and a sufficient amount oiiiray data has been seen,
it is reasonable not to consider inserting tags in such ipositduring testing. This
assumption may prove false, which is why automatic tokeioisas a heuristic not
an optimisation.

The saving in search space depends on the structure of théltexever, if text
were uniform words of four letters starting with a capitatée and separated from
the next by a space .(_, Abcd Efgh,...) and automatic tokenisation meant the
search did not have to consider inserting tags between phicsver-case letters,
two of every five nodes in the search space would not need taganded. Thi%

approximation is assumed throughout this chapter.
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Some types of contraction and abbreviation have a direcadtingn automatic
tokenisation. For example, the stridghn Anthony Smitimay have the same search
space ag. A. Smitheven though they differ markedly in length.

The CEM implementation keeps an occurrence table of posg#its of Uni-
code character classes [138], and counts how many tagsear&stveen each pair.
During augmentation, each node in the search tree is chéoksxke whether more
than a threshold number of tags has been seen between teatquair of character
classes, before considering whether to expand the seaeh@ommon threshold
values include -1, 0, 1 and the default 5.

Unicode characters are divided into a set of 28 classes. Tdst common
classes seen in the corpora used in this thesis are lowdettseuppercase letter,
other letter (common in the segmentation corpus), spacaap, line separator,
decimal digit number, and various classes of punctuatidme dlasses are partic-
ularly convenient in Java, which uses Unicode throughoB}. [Fhe ANSI C [59]
functionsisspace()isupper() isdigit(), etc. have a long history in parsing applica-
tions [2] and would almost certainly have performed wellhrstrole for the En-
glish language corpora. There are been proposals [5] fohmare sophisticated
character-level metadata systems in Unicode, but thessoamnsidered here.

One Unicode character class, the private use class, is/egstar ‘use by soft-
ware developers and end users who need a special set of ienarfac their appli-
cations. [These characters] are reserved for private uselamot have defined,
interpretable semantics except by private agreement][X3BM uses these to rep-
resent tags in character-level models, assigning a clegirtaceach tag to enable it
to be modelled as just another character within the PPM rsottet« in Figure 4.4
and theo, x ando in Figure 4.6. These characters are used by CEM only inter-
nally, and always mapped to or from full XML representatiaighe tags when

externalised.
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4.3.4 Alphabet Reduction

Alphabet reduction is a heuristic based on the same chardasses as automatic
tokenisation. In the bibliography corpus, repeating pag®f punctuation and cap-
italisation involving names in bibliographies were noticélames, which are com-
monly unique strings, remain a problem for the PPM model Wisees limited
context.

Alphabet reduction merges a class of characters into aestigdracter in the
model. For example, merging all upper case letteré tand all lower case let-
ters toa means thadohn A. Smith andJill K. Jones andand Yong X. Xiong and
all merge toAaaa A. Aaaaa aaa Throwing away this information homogenises
these names. Considerably less memory and training dateseat®d to produce
high-order models because alphabet reduction reduceszéhefsthe alphabet so
drastically. Empirically, alphabet reduction has raiseel tnaximum order of the
model to between 15 and 25. The performance of alphabettiedun practice is
examined in detail in Section 6.4.3.

This method is related to methods used elsewhere for findingngms [32,
160] using capitalisation patterns for generating cantdidaronyms, which are then
winnowed using other techniques. The benefits of alphahletcteon are hard to
model, as they depend on the gains from modelling at a higlder compared with

the loss of information about each character.

4.3.5 Maximum Lookahead Heuristic

The lookahead required by the Viterbi proof is not always needed in pragtand
previous work [133] suggests that the results of tag insertiommonly converge
at lookaheads much lower than The maximum lookahead heuristic is to select a
lower lookahead that represents a trade-off between d¢oges and efficiency. The
lower lookahead is denoted. If o’ is too low, the lowest entropy tagging may not

be found; this may be detectable during evaluation (seede2t3.4). Ifa’ is too
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high, the search space is unnecessarily large.

The CEM implementation collects statistics on the maximuze sif every tag,
but leaves the selection of a lower lookahead to the userp&Hfermance of maxi-
mum lookahead in practice is examined in detail in SectidmM6.Various methods

for limiting the depth of Viterbi search are discussed ingL1

4.3.6 TagC Heuristic

As presented so far, CEM considers every possible combmafitags whenever
it considers inserting any tags. In real documents, howexdy limited ranges
of permutations of tags are found. The TagC heuristic ir®ltracking dur-
ing training the set of all tag permutations seen. For examible training text
<entry> <author><forenames- Donald Ex</forenames- <surname-Knuth.
</surname-</author>... would add{ (<entry> <author- <forenames),
(</forenames <surname-) and (</surname- </author>)} to the set of permuta-
tions. When tags are inserted, only the permutations seeaiiirtg are considered
for insertion (plus closing tags at the end of the file to gota that all tags are
closed).

The TagC heuristic has no effect on segmentation problems(there are only
two states) and only limited effect on classification, beeaanly one tag can be
closed and one opened, limiting the number of permutatidhs.significantly more
complex schemas involved in entity extraction (see Figug® give considerable
scope for savings to be made. The savings will be greaterdimptex schemas
when a relatively small set of permutations is seen dur@igitng. The performance

of the TagC heuristic is discussed in Section 6.4.5.

4.3.7 State Tying

State tying is a widely-used heuristic in speech recogmiig®], which appears not

to have been used before in text modelling. The insight orclvistate tying is
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(][]

Figure 4.7: The structure of a hidden Markov model, withestging. The squares
are hidden states, linked by the solid arrows of the modatsire and by dotted
arrows to their associated models.

built is that some states in a large model are similar not lanch but because they
model similar concepts. Thus in a speech-recognition systee models for the
second half of the words ‘hair’ and ‘pair’ are similar (or aakt they are for certain
dialects) even though the words themselves are differeshittaely may represent
different parts of speech. State tying uses a single undgriylarkov model to
model several hidden states. The hidden states are not dregjea higher level
the model tracks the difference between them—but they sh&BEM model and
should require significantly less training data. Figuresh@ws the hidden Markov
model shown in Figure 4.3 with two leaf states tied.

The key benefit of state tying is the ability to share trainilaga between rela-
tively common and relatively rare tags so as to achieve bpttdormance from the
same amount of training data. State tying only works onsiitraction problems,
because it requires at least two levels below the documentadie together. Tying
two states in a classification problem would leave two imdggtishable states. In a
segmentation problem there is one (non-root) state, wraanat be tied to itself.

By default CEM performs state tying on all states with the saag@ame The

effect ofnottying thenametag is examined in Section 6.4.6.
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4.4 Search Space

As discussed in Section 2.4, the efficiency of abstract cdenpaperations is ex-
pressed by complexity, using td¥z). In the case of the tag insertion methodology
presented here, the parameters are the numbers oft)agise( lookaheada) and
the size of the input is the length) of the text. This complexity is a reflection of
tagging action, rather than the complexity of the undegdyirtellectual or syntactic
complexity [16].

If « is a constant and: and y are unbounded positive variable®(u) <
O(x) < O(z") < O(uw?) < O(z¥). Algorithms with O(u¥) or greater are re-
ferred to as intractable and run in non-polynomial time onvemtional computer
equipment.

A line of investigation in the MUC conferences (see Sectidh4) was mea-
suring the inherent complexity in the web of atoms in the réuemtity tasks [7].
This approach relied on a uniform model of textual atomsaetéd into a relational
database and a network of inferred relations between thetmeadily adaptable
to the approach under consideration in this thesis. It wesostered was that tasks
considered in MUC-5, MUC-6 and MUC-7 had surprisingly similangplexity,
suggesting that the underlying complexity of textual ustherding tasks may not
be as great as that of the solutions presented here. Thieagbpis not applicable
to the present work because no web of atoms or equivalemtsteuis constructed
by systems such as CEM.

This thesis examines only the efficiency of text augmemalbip tag insertion,
rather than the building of models which is a prerequisitthts activity. There is
other work in the area of efficiently building models [97, 1,38t it is outside the
scope of this thesis. CEM builds the suffix tree with a hashetéioim the standard
Java libraries. The hash key is the character leading todte stored in the hash
value. Character counts are stored in the child node. Charemtets are stored

as Java longs and never rescaled (none of the corpora déalinvithis thesis are
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sufficiently large to overflow a long).

This analysis of search space is dependent on the constiiirdduced in Sec-
tion 4.1.4. Removing Constraint 3 would add an infinite numldemnapty tags into
the search space, and removing Constraint 4 would add anténfinmber of non-
empty tags. Therefore analysis includes recursive tagsotly when there is at
least one character between each two open tags of each type.

If a document contains a single character, it could potytiave tags inserted
either before or after that character. By Constraint 3, wharbifls empty tags,
any tags inserted into such a document must open before Hraathr and close
after it. By constraint 4, each tag can only open once. If theudeent is being
marked up using a set oftags, ther0, 1,2, 3, ... or t tags could occur before the
character, with the tags chosen being a permutation of thgs. Thus, the number

of combinations of tags that might be inserted prior to thst tharacter is:

t!

t
i=0 im (t =)

Constraint 3, which prevents the opening of tags that wouléropty, and Con-
straint 2 which requires that all open tags must be close@nsi¢he only tags
following the final character in any document are close tagching those tags re-
maining unclosed. Thus the number of taggings of the enticeighent is the same
as the combinations of tags that might be inserted priordditht character.

If a document with the single character ‘a’ is tagged with tive tags, <x>'
and ‘<y>’, then there ar&?_,,P, = 1 + 2 + 2 = 5 possible taggings.

In a document of two characters, the same tags might be @asprior to the
first character as in the case of a one-character documente tdgs may occur
between the first and second characters: tags may be clogesll@s opened. The

maximum number of tags that may be opened is directly relatede number of
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tags previously opened:

Z > A

7=0 k=0
wherei is the number of tags opened before the first character.
As before, the tags following the last character can onlyh#edosing tags
of already open tags. This gives the total number of taggioga two character

document as:

zt:(tpixzizzt:tpk> Zt: i+1) )th:th

=0 7=0 k=0 1=0 k=0

Thus, if a document with the two characters ‘ab’ is taggedlie two tags
the ‘<x>"and ‘<y>’, thenthereard x 1 x5+2x2x5+2x3 x5 =55
possible taggings. The formula on the right can be condidesamplified, but the
> %o Xk.—o tPr, factor can be factored out.

The number of taggings for a three-character documentislifoom this:

S 5 (o 8 S m))

=0 7J1=0k1=0 72=0 ko=0

:Zt:tP,-x Z zt: (ky —j1+i+1) x Zt:th2
i=0 j1=0 k1=0 k2=0
and each additional character in the document add$ a, >°;. _, : P, term to the
number of taggings, which i9(#?t!) = O(t!) = O(t!).

Classification is significantly simpler, because each chara@an be put into
only one oft classes, givingP, or t options, which iS0(t). Segmentation is even
simpler: either a tag is inserted or no tag is inserted, arpidecision, givingO(c)
wherec is a constant.

Table 4.1 gives the number of nodes in search spaces, firgtderting tags

between two characters in a document and then for inserdigg ihto an entire

document for each variant.

74



4.4.1 The Semantics of Nested Tags

Permutation is a significant contributor to the search spaasicularly whert is
large. If the semantics of nested tags (see Section 2.5.69 @reanged so that
opening tags occurring between two adjacent characterseanantically equiva-
lent, independent of order (i.e. widely expected HTML / XHI Memantics), this
would change the permutation to a combination, substntiedlucing the search
space for entity extraction. Changing the semantics of ddsigs also drastically
reduces the maximum number of Markov models which would exled in the
case where tags are not used consistently, increasing éfielness of state tying
(see Section 4.3.7).

Segmentation and classification do not involve nested smg#heir semantics

are irrelevant.

4.5 Teahan Search

Not all of the optimisations and heuristics described abmae be applied to the
Teahan search algorithm. In particular, those that retapruning the depth of the
search space (the Viterbi and best-first optimisations tla@eanaximum lookahead
heuristic) cannot be used because the Teahan search doesnsader depth of
search. Automatic tokenisation, which applies to the naedeghich the search tree
can branch, can be used with Teahan search, as can the Tagglibauhich relates

to the width of the branching.

Algorithm SegmentationClassification Entity Extraction
per Character O(e) O(t) O(th)

Complete O(c™) o(tm) O(t™)

Viterbi O(c%) o(t*) O(tte)
Maximum Lookahead O(e) ot O(tta)

Table 4.1: Search space sizeis the number of tagg, is the document length,
a is the lookahead for Viterbi searchy, is the lookahead for maximum lookahead
search and is a constant.
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Figure 4.8: Scenarios in which Teahan search and Viterlochezn be expected to
perform differently, (a) Teahan search performs well and/{terbi search performs
well.

Both Teahan search and Viterbi search with maximum lookabeadeuristics
and it makes sense to ask which can be expected to perforem, wethightperform
better, than the other. There is a@riori reason to believe that one will perform
better in the general case, but in specific cases they perddferently. Viterbi
search can be expected to perform well in situations in wthieke is a great deal of
ambiguity (a small entropy difference between a large nurabeodes at the same
level) in the search tree, because it focuses on searchenguiient, immediate
context. Teahan search will perform better when the seamstams long sequences
of low ambiguity interspersed with short sequences of highiguity because, by
counting only the leaves, it is able to look effectively pastlong sequences of low

ambiguity.
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Figure 4.8 shows two scenarios which illustrate such saoat It shows the
entropy implications of inserting a single tag at variougf®in a sequence. In
Figure 4.8(a) all the points are high-entropy, excephdz which are low entropy.
Viterbi search with maximum lookahead is only capable oédaining whethex
or zis the better place to insert the tag if the difference betwtbem isa’ or less.
Teahan search is capable of making the differentiation nibemahat the separa-
tion, provided there are no (or relatively few) other lowreply branching options
betweenx andz. Figure 4.8(b) still hax andz but also has a range of relatively
low-entropy branching options betwermndy. In such a situation Teahan search
is likely to prune prematurely & whereas Viterbi search with maximum lookahead

is guaranteed to find the best option within tHenaximum lookahead.

4.6 Evaluation

This section examines how the measures of correctnessrftretluced in Sec-
tion 2.3 can be used in conjunction with the metadata taxgriatroduced in Sec-
tion 4.1. For each of the measures, each of the three taxaamiezd. A new

correctness measuiype confusion matricess introduced.

4.6.1 Recall and Precision

Recall, precision, and their combination in the F-measueethe primary means of
evaluating correctness in information-retrieval systelug the definition of what

constitutes a document varies for each type of text-augatientproblem.

Segmentation

For segmentation problems the evaluation question is ‘B@egment end between
one symbol and the next and was that segment end found?’ Rewhlprecision

are good measures for evaluating segmentation problenauseboth operate on
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to_be or_not to_be

(a)
<to>to</to>_<be>be</be>_<cc>or</cc>_<xnot-not</xnot>

_ <to>to</to>_<be>be</be>

(b)

Figure 4.9: A short quote from Hamlet. (a) without and (b)wtart of speech tags.

a binary distinction. Recall and precision are the standagthadology for mea-
suring correctness in the fields of Chinese text segmentHt® 145, 12, 50] and

Japanese text segmentation [3], both widely-studied settien problems.

Classification

For classification problems, the evaluation question ighks class predicted for
symboln correct?’, where symbols are the characters, words, seggesr docu-

ments being placed into classes. Recall and precision ardasthmethodology for
measuring correctness in the fields of part-of-speechngdgB, 76, 94] and genre
classification [66], which are probably the most widelyektal textual classification
problems.

Figure 4.9(a) shows a short quote from Hamlet and Figurd}tBé same quote
marked up using the tags of the Lancaster Oslo/Bergen pasaxch corpus [64].
Teahan’s work (from which this example is taken) [133] is advbased approach
and uses word-based evaluation mechanisms: there are 6 imatte sample and
they are all correctly tagged, giving 6 true-positives. @loger-based approaches
see only characters not words: there are 18 characteradingl5 spaces, all cor-
rectly tagged, giving 18 true-positives. Evaluation of théput from a character-
based system using a word-based evaluation might be coedidélowever, this
works for mistakes such as misclassification of an entiredwout fails when only
part of a word or a non-word character is misclassified. Tlaeeesimilar prob-

lems in evaluating Optical Character Recognition (OCR) at a \Wew&l when word
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boundaries can be incorrectly identified [73].

The core problem is that character-based approaches aseaxpressive and
can be wrong in ways that cannot be represented in convahtieord-based ap-
proaches. The reverse is not the case, however, and thet mitpuvord-based
system can be compared to that of a character-based systeenciitaracter level.

The expressiveness of character-based approaches digfiseadvantages in
some corpora. For example, dates in the Computists’ corpai¢(® 5.1) are ex-
pressed as a single word in the fodJan98which word-based approaches see
as a single word (unless they have customised word boussdageristics) and
are unable to do better that identifying it as a dateldte>19Jan9&/date>).
Character-based approaches are capable of breaking thatdatemponent parts
(<date><day>19</day><month>Jan</month><year-98</year- </date>).

The difference in expressiveness applies to all three tgptext augmentation
problem if the standard measurement technique is worddbaséis most obvious

in classification problems such as part of speech tagging.

Entity Extraction

Measuring entity extraction as an information retrievallgpem is challenging. The
four basic classes (true positives, false positives, fadgmtives and true negatives)
are accumulated over successive independent trials,ddiNth. well-balancedness
constraint (see page 56) introduces inter-dependencie®ée trials.

Figure 4.10 shows inter-dependencies in a small entityaetion problem. The
untagged input text is shown in Figure 4.10(a). The task iagert<name- and
<title> tags into the text, as shown in Figure 4.10(b). Figure 4)l€{ows an error:
the boundary between the first two names has been insertedintarect place:
the tag<name>Smolensky, P., Fox;/name> is a false positive. The independence
criterion is broken because seeing this false positive doepist preclude the pos-

sibility of seeing the tagcname-Smolensky, P</name>. It also precludes the
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Smolensky, P., Fox, B., King, R., and Lewis, C. Computer-aided
reasoned discourse. ..

@

<name>Smolensky, P., </name-<name-Fox, B.,
</name><name>King, R. </name>, and <name-Lewis, C.
</name><title>Computer-aided reasoned discourse:/title >

(b)

<name> Smolensky, P., Fox:/name- B., <name> King, R.
</name> , and<name> Lewis, C.</name> <title> Computer-
aided reasoned discourse</title>

(©

Figure 4.10: Inter-dependencies in a small entity extoagtiroblem.

possibility of seeing the tagnhame-Fox, B.,</name>.

The possibility of<name>-Smolensky, P., Fox;/name>, <name>Smolensky,
P., </name> and<name>Fox, B.,</name> as names is not precluded if the data
Is segmented into a relation before processing. Howeveh sagmented results
could not be merged back into XML using tags such as we arguisihese three
names are included.

Itis unclear whether breaking of the independence critematters. Certainly it
means that recall and precision results from entity-ektvagroblems are in some
way different from segmentation and classification resatsl not directly com-
parable. Recall and precision are the primary means of casguain the TREC,

MUC and DUC conferences (see Section 2.2.4).

4.6.2 Edit Distance

The correctness of all kinds of metadata used in text augatientcan be measured

using edit distance.
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4.6.3 Confusion Matrices

As with recall and precision, the effectiveness of confansmatrices on different

kinds of text augmentation problems varies.

Segmentation

Confusion matrices of segmentation problems representeneegte case in which
there are only two classes. The matrix contains the fourchasiasures from the

information retrieval paradigm and is a contingency table:

a1 a2 true positives  false positives

az; Q22 falsenegatives truenegatives

For this reason evaluating segmentation using a confusatmnor the informa-
tion retrieval metrics produce the same results, but tr@métion retrieval metrics

have higher level metrics (recall and precision) built ugoem.

Classification

Confusion matrices are the standard method of evaluatisgitilzation tasks [149].
Their only disadvantage is that they are somewhat verbspecally for problems

(such as part-of-speech tagging) which have a large nunilotaisses.

Entity Extraction

Confusion matrices have identical independence problemsctll and precision
when used to evaluation entity extraction from text. Cordnsnatrices assume an
underlying many-class classification task, but entity aotion in the most general
form is more general than this; it isreerarchicalmany-class classification task. If
the hierarchy depth is bounded in some way, it is possible-efine the problem
such that every possible state in the hierarchy is a new.cldss approach suffers

from problems of combinatoric explosion, leading to larg@arse, matrices which
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cannot be normalised, since this leads to division by zero.

4.6.4 Type Confusion Matrices

Type confusion matrices are a new extension of confusiomiceatsuitable for ap-
plication to hierarchical many-class classification tagkgery node in the hierarchy
is assigned a type, which is the most recently opened tagtypleeconfusion matrix

for a hierarchical classification problem witlclasses is:

ayi1 Aarz -+ Q14
Q21 Ag2 -+ Q24
i1 Qig o Gy

am.n IN cOlumnn and rowm is the number of symbols that should have been clas-
sified in a node of class that were actually classified in a node of class

Type confusion matrices can be used similarly to confusiatrices, but it
should be noted that information has been thrown away. Fameie, if the se-
guence..S. Kraus, and V. Subrahmanian.is.marked up as:

...<editor><name> <first>S </first> <last>Kraus </last></name>and
<name><first>V.</first><last>Subrahmaniar/last> </name> </editor>. ...
rather than as:

...<author><name> <first>S </first><last>Kraus </last></name-and -
<name> <first>V.</first><last>Subrahmaniasa/last> </name></author>. ..
theauthor/ editorconfusion would only be apparent in taedsub-sequence. Other
sub-sequences such Esaus, do not have the erroneous tag as an immediately
enclosing tag. This situation is much worse when dealiny aldsses whose only
content is other classes such ashifiodytag which always contains a single other
tag.

Type confusion matrices are applicable to any tag insegroblems. However,
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when applied to a classification problem, they degeneraectinfusion matrix be-
cause the immediately enclosing tag is the only tag. Wheriexpfd segmentation

problems, type confusion matrices degenerate to a comaygable (see page 81).

4.6.5 Entropy

All types of text augmentation can be evaluated using egptropre does need to be
taken to avoid using the same model or a model built from theesdata for both
augmentation and evaluation. If entropy is being used fatuation, it is normal
to either use an empty adaptive model or a model built frora datich is distinct
from the training, re-estimation or testing data.

When a tag insertion using a Viterbi algorithm, produces anrirect result, en-
tropy measurements can be used to determine whether thdéidawith the model
or the searching algorithm. If the result produced by tagritign has lower entropy
than the baseline (or ground truth) text, the model is flawedi{as not seen enough
training data, is not of sufficient order, or is attemptindinguistically model non-
linguistic features). If the experimental result has highetropy than the baseline
(or ground truth), the searching algorithm is flawed (i.ee af the heuristics is
making an assumption that does not hold for this text). Téihnique is used in

Section 6.4.3 to examine the effectiveness of the alphagaktetion heuristic.

83



84



Chapter 5
The Text

In this chapter the four corpora used in this thesis are dhited, the problems
posed by the corpora are described and previous work sothiege, or similar,
problems is discussed.

In the information-retrieval paradigm, a collection of datents is called a ‘cor-
pus’ and is assumed to have some commonality: the documengstiaer from the
same source, cover the same topic, or are a representatigesaf a larger pop-
ulation of documents. Building corpora, especially thosthwich metadata about
and within the documents, can be expensive and time-comgumi

In the research community, corpora serve as pools of datexjaoratory re-
search [91, 92] and as benchmarks for comparative rese@b¢lo4]. This thesis
uses them for both these purposes. The corpora used herefemed to as: the
Computists’ corpus, the bibliography corpus, the Chinesegegmentation corpus
and the Reuters’ corpus. Each of these is discussed in tloavfolj sections. Short

samples of each can be found in Appendix 1.

5.1 Computists’ Corpus

The Computists’ corpus [136, 135, 148, 26, 144] is composasdsoies of a mag-
azine called ‘The Computists’ Communique’ converted from ASeXt to XML.

Each of the 38 issues is approximately 1200 words in lengiircansists of a num-
ber of short articles usually followed by a list of job opegsn Previous workers

marked up ten featuresdme location, organisation email source date money
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phone fax andurl) by hand, and then made corrections based on the results of th

Teahan's TMT [135].

(937) 255-2902<http://web.fie.com/htdoc/fed/afr/wri/any
/proc/any/07209802.htm. [CBD, 20Jul98.]

(@)

<p>(937) 255-2902/p>. << <u> http://web.fie.com/htdoc/fed/afr/wri/azyu>
/proc/any/07209802.htm. [ <s> CBD</s>, <d> 20Jul98&/d>.]

(b)

<p>(937) 255-2902/p>. &lt; <u> http://web.fie.com/htdoc/fed/afr/wri/any
/proc/any/07209802.hta/u>&gt;. [ <s> CBD</s>, <d>20Jul98</d>.]

(©)

Figure 5.1: Corrections in the Computists’ Communique. (a)dtginal text (b)
the text as received (c) the text used in this thesis.

For this thesis the data was converted from the XML-like fatmsed by TMT
into well-formed XML and a number of systemic errors coreect Figure 5.1(a)
shows two lines from corpus as it appears in the original textice that a URL has
been broken across a line break. Figure 5.1(b) shows thesensed by Teahan,
Bray and Wen [135, 26, 144]. Four tags have been added: phanbamuURL,
source and date. Only the first part of the URL has been margessia URL.
The insertion of the URL and email address (not shown) tagsdeas automat-
ically, inserted extra<’ and the URL detection failed when the URL had been
line-wrapped. The text also has un-escapeq “ >’ and ‘&’ (not shown) charac-
ters, which are non-well-formed XML. Figure 5.1(c) shows ame text with these
deficiencies corrected. This is the version used in thisshes

The corpus has a number of endemic ambiguity issues: (ajngist names
are listed as sources when derived from the mailing list butvinen creation of the
mailing list is announced; (b) many of the organisation nauparticularlyApple

were marked up intermittently and (c) many words are markedaincidentally.
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For example, in a discussion about computers from IBM and Siandglystems,
Sunis marked as an organisation even when used as a class of @mmRC is
never marked as an organisation. These issues, and thédactrganisations and
sources are named after places and people, and that plaes maenoften coined
from personal names, account for the many of errors preljiosaported [26, 144].

Several corrections to the corpus are made in this thesiggmpat to resolve
(b) and (c). Two passes were made over the corpus, markiggamisations (and
to a lesser extent sources) which had not been marked-ugw#ops work. This
revised corpus is used everywhere in this thesis excepio®ee2.2, where results
are compared with previous work and therefore the uncardedata must be used.
To the author’s knowledge the corpus is in the public dom@iopies are available
from the author.

Inserting the ten features into the Computists’ corpus iassilication problem.
Figure 4.1(c) shows the schema structure for the problera.MUC named entity
problems from the MUC conferences have strong correspaedeto thename

location, organisation source dateandmoneytags.

5.2 Bibliography Corpus

The bibliography corpus was created specifically for thesit from bibliography
records. It was designed to resemble the bibliographiesdian the computer sci-
ence technical report collection at the New Zealand Didifarary [153, 109].

The corpus consists of a large number of bibliographies rgeéee by the ATEX /

BIBTEX tool-chain which is widely used throughout technicallyemted scientific
disciplines. It is anticipated that a model trained on tHaibgraphy corpus may
be adaptable for academic fields which use humanitiesaitatbnventions by us-
ing the Baum—Welch algorithm (see Section 3.6), but this isexplored in this

thesis. Marking up bibliographies is a first step for sevaddivities, including doc-
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ument linking, bibliometrics [111] and a range of possilsitegrated reading list,
bibliography and citation systems, making it a desirabéguee for a digital library.

A collection of publicly available bibliographic databasbas been maintained
and expanded by other workers for a number of years. Sampleiblmgraphic
entries were taken from the same sources as this collecpbin,into 14682 bib-
liographies with up to 25 entries and formatted using theTgX and ETEX [77]
text-formatting systems. Seven of the standard biblidgyagiyles ébbrv, alpha,
apalike ieeetr, plain, siamandunsr) and several different page layout techniques
(article, bookandreporf) were used to mitigate secondary effects due to line, col-
umn and page wrapping.

Addition of metadata tags into the bibliographies changeddyout of entries;
line breaks and hyphenation, in particular, were radicelignged. To avoid this,
each bibliography was processed twice, once using theatdsdyle file and once
using a modified style file which inserted metadata tags atqanrts of the en-
tries. This process is shown in Figure 5.2. The upper halheffigure shows the
processing of the bibliography (.bib) using the unmodifigdesfile (.sty) to pro-
duce the laid-out bibliography (.bbl) usingeBX. This laid-out bibliography was
then processed to a PostScript (.ps) document u&lp Bnd dvips, and then the
PostScript document processed to a text file (.txt) upstxt. The lower half of
the figure shows the processing of the bibliography usingntbelified style file
to insert escaped XML tags. The resulting two text files waentmerged into
a single XML document, taking the layout, whitespace andcfuation from the
text derived from the unmodified style file and un-escapirgebcaped XML tags
from the text derived from the modified style file. The resigtbibliographies were
processed using the XML ‘preserve-space’ style to presghreespace.

There are several peculiarities in the corpus, largely liszaf how it was con-

structed.

Y http://1iinwwira.uka. de/ bibliography/index. htni
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1. All first names are marked-up in a single tag rather thai éest name in
a separate tag. The BST language which the style files are written has
primitives for laying out names. Marking-up individual tirrames separately
would have required a modified BST interpreter rather thanifieoddBST

programs.

2. There are inconsistencies in the relative location otpuation and close tags
at the end of words. The period following an initial is an iretion of con-
traction, semantically part of the initial, whereas theigetrat the end of a
sentence is semantically separated from the word it follolwee tagging at-
tempts to reflect this, but there are some deeply ambigu@escparticularly
where an initial falls at the end of a sentence and the periistbfrth roles.

In such cases the punctuation has been included within ¢he ta

3. Splitting a large bibliography into many smaller onesaliecross-references
between entries unless both referrer and referent hapgptar in the same

smaller bibliography. Broken cross references appedf§s *

IATEX commands to generate non-ASCII characters in the text ax@pesd to
Unicode characters. The conversion is based upon the codsudoserved in the
corpus rather than a comprehensive list of commands, bluidas many common
mathematical symbols and letters from a wide variety of fesEuropean lan-
guages (Portuguese, Spanish, German, Polish, Swedish, Miast of the letters
appear in names, either in the name field or as referencesofdepm titles. A
few of the entries were entirely in French. Many bibliogramntries with non-
ASCII characters also occur in a Romanised form, with the n&&GK characters

converted to ASCII characters by bibliography creators.

2The author knows of no comprehensive description of the B@fuage; the implementation is
part of BBTEX. Itis a stack-based language in which sets of non-recairaicros (called ‘style files’)
are used to format convert entries in a standard format (fuchvagain, a canonical description
appears to be lacking) into bibliography entries confogriothe stylistic conventions of a particular
publication.
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Figure 5.2: Data-flow diagram for creating the bibliograghlylection.

Escaping non-ASCII characters rather then dropping thenmobthe corpus
made the corpus significantly less close to the computenseigechnical report
collection, but significantly closer to bibliographies asyt appear in the majority
of electronic documents, and closer to how they were intériddeappear. Other
researchers have discarded such bibliographies, at thefr6t5% [125].

Many of the discarded bibliographies contafigX macros which could never
be processed by standaftﬂ:_tXSome appear to be mis-typed macros, but there is
no way to distinguish these from macros which individuakegshers have defined
locally. There are also many sets of macros circulating Injestt- and language-
specific communities to represent features of interestimvitilose communities.
The lack of namespaces ifiTEX means that there is no easy way to differenti-
ate these, and because macro files are imported into the @ocwather than the
bibliography, isolated bibliographies contain no refeemo the file name which
defines (or redefines) macros.

The structure of the schema is shown in Figure 5.3. The talgyels B and C
indicate bibliographies marked-up according to certablibdgraphy and document
styles respectively. All combinations of these were usedmtreating the corpus.

Tags at level E correspond to tags of different types of dantmbeing referenced.
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Figure 5.3: Schema for the bibliography corpus with all tags
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Tags at level F correspond to the fields in bibliographic réso

The structure of names in thalHX format is somewhat unusual. With four
parts (first, last, van and jr), the structure reflects AnariEnglish names as con-
ceptualised in the 1980s, but handles rather poorly a nuoiideatures of names
as used internationally, particularly double-barrellachames, von partstarting
with a capital and names in which the given name follows threame. One of
the causes is systematic confusion between the portioreafidaine which is writ-
ten first and the given (as opposed to inherited, parentaljopo These issues are
compounded by the difficulties representing non-ASCII cti@rs in £TEX, for ex-
ample the need to encodeélineg as ‘C{\ ' { e} } | i ne, and the use of a simplistic
sorting algorithm for ordering the entries.

A number of different workarounds have been developed teef@BTX and
IATEX to ‘do the right thing’ in sorting, formatting and hyphemag particular names.
A collection of these can be found in the archives ofdlo@p. | ang. t ex news-
group. Other name formats, such as the Library of Congre$matyt lists [112]
used in the MARC [108, 48] format are actively curated, emapBuch issues to
be handled systematically, if not optimally. In this theske original BBTEX ter-
minology is used because it is precise and clear to worket$ao builders in the
field [77, 101].

Not all the tags shown in Figure 5.3 are used in this thesigurgi5.4 shows
only those tags in the corpus which are used in experimentssrhesis. Note, in
particular, that the tags at levels B, C and E in Figure 5.3 assing in Figure 5.4.
The variant schema structure shown in Figure 5.5, and exgdain Section 4.3.7,
Is used in experiments with state tying.

Freitag and McCallum [46, 96] report work on a similar, altbbunon-
hierarchical, corpus initially hand-crafted, then incesrtally improved using

Markov models. Citeseer [80] (see Section 2.2.4) also imshibliographic data,

3In the BBTEX model of names, fragments such &erf and ‘van det are referred to as the ‘von
part’.
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bibliography

bibbody

journal address publisher

Figure 5.4: Schema for bibliography corpus with tags usetisithesis (with state
tying).

bibliography
bibbody
author title journal editor address publisher date
ame year month
last first last jr last

Figure 5.5: Schema for the bibliography corpus withoutestging.
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using a handcrafted multi-step algorithm.

5.3 Segmentation Corpus

The segmentation corpus was derived from the ROCLING segtientcorpus.
which contains about two million pre-segmented words, espnted in the Big5
coding scheme. The corpus was converted from Big5 encodingBqGuojia
Biaozhun) by Wen [137].

The corpus was further converted from GB encoding to Unicédier inserting
word tags, whitespace (but not punctuation) was removed anexhesplit on sen-
tence boundaries into 1000 documents of approximatelydgheessize. The XML
was output as ASCII to force all non-8-bit clean characterbeaonverted into
Unicode escapes to reduce the chance of handling errors.

In the resulting corpus, a two character word looks likevord>&#x065f16;-
&#x05019</word>. The corpus also includes western terms (for example, prope
nouns and currency symbols). A thorough review of Chinesestegmentation is
given in Teahan and Wen [137]. As the author neither readspeak Chinese, he
is unable to give a detailed analysis. The results of previeorkers are shown in
Table 6.7.

The segmentation corpus appears to suffer from the oveplynstic segment-
ation’ described by Wu and Fung [157]. This phenomenon isedy the ten-
dency for many segmentation algorithms to be biased towsmtler segments
when faced with even genuine ambiguity.

Insertingword tags into the segmentation corpus is a segmentation problem

Figure 4.1(a) shows the schema structure for the problem.
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5.4 Reuters’ Corpus

The Reuters’ corpus is a collection of news articles takemftioe Reuters’ news
wire and referred to by Reuters as ‘Reuters Corpus, Volume lljdBrignguage,
1996-08-20 to 1997-08-19'. The articles range from twoagaaph summaries of
financial information to in-depth articles on political a@efrary topics. The corpus
has been widely studied for a number of purposes, includixigpcategorisation and
clustering [62, 55], information extraction [45, 46, 118{thorship [68], and part
of speech tagging [46].

This is the sort of news discussed on page 1: automaticabriimg tags, either
as a first step in a more sophisticated information-extragirocess, or simply to
tag articles as being connected to the organisations aatidos. This process, or
one similar to it, is performed ubiquitously in the field ofwgaggregation.

The corpus was prepared for this thesis by taking the first adficles from the
full Reuters’ corpus, removing the document level metadite,(@uthor, topic and
copyright information) and passing it through the Brill tag¢28], a widely used
part-of-speech tagger that tags every word with a labeliicitates the role it plays
in speech. The tagger’s notion of what constitutes a wordnsesimes unusual—
Don'tis regarded as two words addllar/yenas one word—nbut the tagger was used
‘out of the box’ according to accepted practice [46, 119]dbtuments containing
URLSs, which confused the tagger’s parser, were removed. JlhBéuters’ corpus
contains many duplicates [69], but as with other corporaiafatmation systems,
the presence or absence of duplicates is not as importartiether the corpus is a
representative sample of the larger population of docusné&sitren that identical or
similar news articles commonly appear in a number of pubboaoutlets, having
duplicates and near-duplicates in the Reuters’ corpus igraddi correlation with
‘real-world’ news sources, rather than a sign of a flaw.

The full Reuters’ corpus is large (over 800,000 articles),dmly the first block

of articles is used here, since the behaviour of text augatienton large bodies of
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text is not the primary interest of this thesis and has beatiest elsewhere [133].
A complete explanation of the meanings of each of the 38 &gsritained in [94].
The text of the Reuters’ corpus is copyright Reuters and notddistribution.
Copies of the corpus are, however, available from Reuters.

Inserting part of speech tags into the Reuters’ corpus isssifieation problem.

Figure 4.1(b) on page 52 shows the schema structure for tgon.
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Chapter 6

Results

In this chapter the effects of applying the earlier discdsgaimisations and heuris-
tics to the four corpora discussed in the previous chapeeegamined. The cor-
rectness results are then given and, where possible, cethpgainst experimental
results given in the literature. The effects of Baum—Welclesgmation are ex-
amined and, finally, the effectiveness of individual opsations and heuristics are

examined.

6.1 PPM-SY versus PPMD

CEM normally uses PPM-SY, and in this section it is compareta ®RPMD . Fig-
ure 6.1 shows the search time per node of the search in the Gistspcorpus, for
a range of orders of model and a lookahead of six. The searzhiticreases less
than linearly for PPM-SY and more than linearly for PPMD.

Despite the use of leave-one-out cross-validation, theectress of PPM-SY
and PPMD was identical in all cases except for the case ofdtatibn Capitol
Hill, which was correctly identified as a location by PPMD usingleis of order
three and four when PPM-SY incorrectly identified it as araorgation. Using an
order-five model correctly identified it as a location.

Figure 6.2 shows the search time per node of the search in thesghsegment-
ation corpus, for a range of orders of model and a lookaheddusf The time
increases less than linearly for PPM-SY and more than lipdar PPMD. This

increase in the cost is substantially larger than in the Caistgucorpus, probably
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Comparison of PPMD and PPM-SY in the Computists’ corpus
10 T T T T

time * 0.15012 + 3.506 —

Search time per node (milliseconds)

Order

Figure 6.1: Graph showing the speed of searching in the Castgutorpus for

PPMD and PPM-SY. A reference line is included to show thatsiteed for PPM-
SY is growing less than linearly with respect to model ord@mings are averaged
over leave-one-out cross-validation.
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Comparison of PPMD and PPM-SY in the segmentation corpus
11 T T T T

10

©
T

Search time per node (milliseconds)
~
T

0.5 1 15 2 25 3 35

Figure 6.2: Graph showing the speed of searching in the sagien corpus for
PPMD and PPM-SY. All runs use 900 training documents andg@lestesting doc-
ument. Results shown are averages over 100 runs.

because of the significantly larger character set invollRRMD gave better results,

on average, than PPM-SY, with a difference in F-measure0o®3%, +0.02% and

+0.04% for orders one, two and three respectively.

6.2 Correctness

Correctness (see Section 2.3) is studied on a corpus-bysbgsis. Leave-one-out
cross-validation is used only for the Computists’ corpugsaose that corpus is so
small. In all other experiments, no cross validation is uesexept where specifically

stated.
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6.2.1 Granularity and Heterogeneity

Unfortunately text-mining systems of the type being exadim this thesis make
the assumption that text seen during training is the sanfeeasxt seen during test-
ing. In this sense they are not general-purpose systems wwdlg that PPM [133],
bzip [88] or gzip [124] are. How well this assumption hold iearfrom corpus
to corpus depending in the internal granularity and hetmedy. For the corpora

described in Chapter 5:

e The Chinese text-segmentation corpus was built from predgemised data,

no variation among the 1000 documents is apparent to therauth

e The Computists’ corpus contains documents which all havesanee struc-

ture, but with considerable variation on subject matter.

e The Bibliography corpus contains relatively homogeneousudeents with
two exceptions: (a) those documents generated from pdrsiiiagraphies
containing all publications by an individual, and (b) thalk®uments gen-
erated from forum bibliographies containing all publioas appearing in a
journal, conference or book series. These documents arelgran artifact
of the way the data was prepared—an insignificant number ef ©gviewed
articles are published in computer science which contdareaces to only a

single author or source.

e The Reuters’ corpus, by contrast, contains genuinely hgéer@ous articles,
ranging from short market-report articles, with columnsyameric figures,

to long in-depth articles of political commentary.

Only the Reuters’ corpus is evaluated both at a corpus lewehba document

level (see Section 6.2.5). The other corpora are evaluatde aorpus level.
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6.2.2 Computists’ Corpus

The Computists’ corpus has been previously studied by Braly (&g TMT, and
Wen [144]. Bray evaluated extraction based upon a confusiatiixn(see Sec-
tion 2.3.3) and this is reproduced in Table 6.1(a). Tabl&&®% and (c) show the con-
fusion matrices for CEM on the corrected data using maximurkdbead search
and Teahan search respectively. The values in (a) are negbisurvords, the values
in (b), (c) and (d) are in characters. Tissuetag is the background: both TMT and
CEM build Markov models for thessuetag but Bray does not report the full results
for this, so the CEM results in (b), (c) and (d) have an extra row

For most of the tags the CEM results were comparable to, githtiworse
than the results given in Bray. Because the Bray results aremges of words
correctly classified and the CEM results are percentagesapicters correctly clas-
sified, direct comparison between these results is diffiMlany of the mistakes
shown in Table 6.1 for both systems appear be connecteddasistencies, as de-
scribed in Section 5.1.

Three of the tags with the best performanaod,(email and money, deserve
close attention. The first two can be described using a regularession and the
last is uniquely and exclusively identified by a single chtea($). These proper-
ties make tag insertion much more consistent; they also mmadelling such tags
easier for certain kinds of models. Unfortunately it alsckesamarking-up using
Markov models pointless: except in extreme cases markiroywpgular expression
is always more efficient than marking-up using Markov moaeld searching.

The systemic confusion betwe@ame source location and organisation as
discussed in Chapter 5, is clear in all three confusion tabli#l greater confusion
for CEM than for TMT.

Another situation in which CEM performs much worse than theyBraalysis
is thefax tag. The most common type of error withx and phonetags in both

systems is where the fax numbers are mistaken for phone mambe>617-373-
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d n s I 0 u e p f m i
[d]ate 93.46 + 6.40
[n]Jame 89.35 + 1.31 150 7.48
[s]ource + 60.09 2.85 36.62
[llocaton + 81.64 4.69 12.89
[o]rg 256 2.56 1.6369.23 24.01
[ulrl 100.00
[e]mail 97.34 2.66
[p]hone 82.29 10.71
[flax 100.00
[m]oney 100.00
()
d n s I 0 u e p f m i #
[d]ate 91.18 + + + + + + 8.12| 10070
[n]Jame + 85.49 275 1.78 2.02 + + 7.27| 10494
[s]ource 1.13 5197 + 3.02 + + 41.71) 9983
[location| + 266 1.9672,38 4.79 + + 17.65 5155
[o]rg + 3.48 299 3.6627.50 + + + 60.99| 5688
[u]rl + + + + + 95.23 + + 3.11| 20023
[e]mail + + 114 + + + 9360 + + 3.30| 12164
[p]lhone 88.69 9.95 1.36 955
[flax 27.86 69.14 3.01 499
[m]oney + 99.47| + 1133
[i]ssue + + 1.14 + 147 + + + + 95.92| 317169
(b)
d n s I o] u e p f m i #
[d]ate 91.04 + + + + 8.22| 10098
[n]Jame 87.92 219 1.26 3.92 + 4.64| 11167
[s]source| + 1.27 64.02 + 5.99 + 27.81] 14229
[Nocation| + 246 1.2675.8211.38 + 8.75| 5534
[o]rg 257 2.13 4.2758.48 + 32.40| 12212
[u]rl + + + 95.90 + + 2.88| 20089
[e]mail + + + + + 1.08 94.70 3.38| 12186
[p]hone 75.03 8.88 16.10 969
[flax 16.43 57.11 26.45 499
[m]oney + + + 90.35| 7.98| 1140
[i]ssue + + + + 128 + + + + + 196.94 303100
(©)
d n s I o} u e p f m i #
[d]ate 92.23 + + + + 6.99| 10075
[n]Jame 92.46 + + 2.65 3.49| 11135
[s]source| + + 68.11 + 5.12 + 25.57| 13881
[location 1.62 + 8453 7.87 5.86| 5619
[o]rg + 2.03 2.47 2.3966.47 + 26.53| 12169
[u]rl + + + 96.48 1.00 2.25| 19668
[e]mail + + + + + 96.55 2.23| 12436
[p]hone 72.55 6.60 20.85 969
[flax 1.20 421 70.14 24.45 499
[m]oney + + + 88.80| 9.58| 1107
[i]ssue + + + + 1.09 + + + + + 197.48/ 301326
(d)

Table 6.1: Confusion matrices for the Computists’ corpus fajnfBray using
TMT [26] page 70, (b) from CEM/maximum lookahead using thesdata as Bray,
(c) from CEM/maximum lookahead using corrected data, (dnf@EM/Teahan
search using corrected data. Character counts (#) are iaatbes, all other values
are in percent,+’ indicates a figure lower than 0.99%. A lookahead of 6 was used
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Author Recall Precision F-measure
Wen 65.29 73.35 69.09
CEM/maximum lookahead (Wen’s dat&)9.17 63.38 55.38
CEM/maximum lookahead (corrected)71.06 61.21 66.13
CEM/Teahan (corrected) 74.65 67.71 71.18

Table 6.2: Accuracy for the Compuitists’ corpus, from Wen [Igege 75 and from
the current work. A lookahead of 6 was used.

5358 /p>, <p>617-373-512%/p><f>Fax</f>. In CEM, because of the small
number offax tags seen (28 at most), the model for fartag is the closest to an
untrained model: it is the least biased against appareatigam sequences. The
range of characters seen in flag tag is narrow, but not significantly narrower than
phonetag. This results in errors such ast>REAL</f>basic <f>pp. 43-45</f>,
andUnix <f>ht://Di</f>g search

As predicted in Section 4.5, CEM with Viterbi search perfodtfferently
from CEM with Teahan search. With the ability of Teahan sedeclsee’ long
distances it might have been expected to correctly clapsibne and fax numbers,
which commonly have the differentiator at the end. Unfoattiety the numeric con-
tent of these tags, being effectively random digits, has @gtropy which lim-
ited the gains made here. The clearest improvements wegisits such a&/03)
306-0599 Faxwhich maximum lookahead search broke in two ap>(703) 306-
059%/p><f>Fax</f>, whereas Teahan search correctly marked-upfag703)
306-0599 Fax/f>.

Wen [144] expresses accuracy in terms of recall, precisiehearor rates for
each type of tag, as shown in Table 6.2. The Wen model is ttan&5 documents,
whereas this thesis uses leave-one-out cross-validairahé Computists’ corpus.
The apparent reason for the better performance of Teahachseahis case is that
many of the ambiguities are of type (a) rather than type @¥hown in Figure 4.8.
The values in Table 6.1 bear no direct relationship with ¢hosTable 6.2 because
the former are at the word (or character) level, whereasdtterlis the recall and

precision of whole tags (excluding the issue tag).
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Table 6.3: Confusion matrix for the bibliography corpus withnote Counts are in
characters, all other values are in percent;@ndicates a figure lower than 0.99%.
Order 6 models trained on 6000 documents and tested on 1@@0nemts with a
lookahead of 5.

6.2.3 Bibliography Corpus

Because the bibliography corpus was developed in the preteiy, there is not a
wide range of results from other systems to compare thetsefsam CEM against.
Wen [144] gives some results on three tggadlisher dateandpages from an early
version of the corpus, but these results are not sufficietgtgiled for comparison.
Table 6.3 shows the confusion matrix for a large number of taghe biblio-
graphy corpus. A significant number of the errors were cabyease of the note
field in BIBTEX. This field allows arbitrary text to be inserted at the encduofentry.

Often this extra text is an abbreviated reference (for exanipublished version of
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UWCS Tech. Report No. 226., 19¥4hformation which should ideally be in other
fields of the reference (such aecture Notes in Computer Science & tduld be
in the series and number fields) or a citation (suckmatum in it JPL 25:5, 2000,
pp. 541-542. In Table 6.3 the note tags were stripped prior to taggihg,text
previously included in them appeared at the document Ipadiuting the trained
model by adding noise.

The root of these errors is that the generation of the coraod @ll BBTEX
processing) assumes that ths|X file format is prescriptive, when in fact it is
descriptive: users will put whatever they need to intasipX file to get the entry to
look ‘right’ in the style they are using. This leads to a sitorin which the meaning
of bibliographic entries (when formatted for publicatiemxlear to researchers and
librarians passingly familiar with the field, but the corttehthe BBTgX fields does
not correspond to field definitions. No increase in lookah&athing data or model
order can remedy such a problem.

A different kind of error is seen at the boundary between titha list and
the document title because of the wide variation in layouhefauthor list and the
tendency of titles to start with lengthy proper nouns whioh easily mistaken for
author names. The first word or two of the title are sometinagged as author
names, either as part of the last genuine author name or gmeate name. This
kind of error is strongly linked to the lookahead (see sec@i@l.4): as more context
IS taken into account these errors diminish.

Table 6.4 shows a confusion matrix with thetetag added. The overall perfor-
mance is not substantially different, but that for thenbertag drops considerably.
This appears to be because many ofrtheetags contained numeric sequences (see
examples above) and separatmgtetags out from the background model enables
it to effectively model numbers.

Table 6.5 shows the type confusion matrix for the bibliogmaporpus. The

bibliographytag is still the document tag, but almost all the content & math
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Table 6.4: Confusion matrix for the bibliography corpus wiitte Counts are in
characters, all other values are in percentagey;’dridicates a figure lower than
0.99%. Order 6 models trained on 6000 documents and testé@@®@documents
with a lookahead of 5.
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bibbodytags which contain the bodies of the references (but notetheimg refer-
ence key in bibliography styles which use one).

Many of the characters mistakenly marked-ugbdbodyare punctuation (and
the note tag as explained above), whereas the errors intitlee column mainly
represent the first few words of thitle confused with the end of the preceding
authortag. As in Tables 6.3 and 6.4, there is confusion betviglenandbooktitle
becauséooktitleis used in the place aitle when there are two titles to a document
(i.e. a chapter title and a book title, or an article title @ncbllection title).

There is confusion between tipeiblisherandaddressags because mamub-
lisher tags have the address of the publisher included within thespecially in
entries forproceedingsandinproceedingsn which theaddressag is reserved for
the address of the conference rather than the publisher.

In Table 6.4, thenamefrom Table 6.3 has been split into five separate tags:
editor, author, name first andlast There is considerable confusion among the
various tags, but surprisingly little difference betweée éditor and nameags
because theameis almost always immediately followinglabbodystart tag while
aneditortag is in the middle of theibbodytag.

Table 6.6 shows the effect of increasing model order—as theéeiorder in-
creases, the experimental result converges with the eegbeesults, the number of
defects falling. Placing name tags is particularly chalag because of the diver-
sity in the way names are laid out in the training text.

The results given here appear much better than the figurea fiv other sys-
tems, such as [46]. However, such a direct comparison isshtapeapproximation
because of the different granularity at which the resuksraeasured and the dif-
ferent number of tags. Informal comparison of these resaltsicorrected resufts

listed on the Citeseer websitsuggest that a significantly better determination of

1The Citeseer system allows for users to correct or compiétmyraphic information. These
corrected entries are not considered here.
2http://citeseer.nj.nec.con cs
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Order

Text

[5] <name><first>T. </first><last>Matsui</last> o ¢ <first>T. </first><last>-
Matsuokas/last> </name-and <name><first>S.</first> <last>Furui</last>-
</name> <title>/Smoothed N-best-based speaker adaptation for speec
cognition;’ ¢ in oProc. ICASSB</title> ’'<pages-97</pages- (<journal>-
Munich, Germany:/journal>), pp. <pages-1015-1018¢/pages- Apr. <date>-
1997</date>.

h re-

[5] <name> <first> T. </first> <last> Matsui</last> <first> T. </first> <last>
Matsuokas/last> </name> and<name> <first> S.</first> <last> Furui,</last>
</name> <title> /Smoothed N-best-based speaker adaptation for speechnr
ition," o in oProc. ICASSR/title> '<pages> 97</pages- (<journal> Mu-
nich, Germany/journal>), pp. <pages- 1015-1018c/pages- Apr. <date>-
1997 /date>.

2CO

[5] <name> <first> T.</first> <last> Matsui</last> </name> <name> <first>
T.</first> <last- Matsuokag/last> </name> and <name> <first> S.</first>-
<last> Furui</last>- </name> <title> /Smoothed N-best-based speaker a
tation for speech recognitiohg/title> in <booktitle> Proc. ICASSP '9g,
(eMunich, Germany),</booktitle> pp. <pages- 1015-1018;/pages- <date>-
Apr. 199 /date>.

dap-

[5] <name> <first> T.</first>¢ ¢ <last> Matsui</last> <first> T.</first>-
<last> Matsuokag/last> </name- and <name> <first> S</first> <last>-

Furui,</last>- </name> <title> /Smoothed N-best-based speaker adaptation for

speech recognitioh/title> in <booktitle> Proc. ICASSP ’'9%&/booktitle>-
(<address- Munich, Germany:/address), pp. <pages- 1015-1018s/pages--
<date> Apr. 1994/date>.

[5] <name> <first> T.<ffirst> o o<last> Matsui</last> <first> T.</first>-
<last> Matsuokas/last>- </name> and <name- <first> S.</first> <last>-

Furui</last>- </name> <title> /Smoothed N-best-based speaker adaptation for

speech recognitioh/title> in <booktitle> Proc. ICASSP ’'9%/booktitle>-
(<address Munich, Germany:/address), pp. <pages- 1015-1018¢/pages--
<date> Apr. 1997 /date>.

[5] <name> <first> T.</first> <last> Matsui</last> </name> <nhame> <first>
T.</first> <last> Matsuokag/last> </name> and <name> <first> S.</first>-

<last> Furui</last> </name> <title> /Smoothed N-best-based speaker adaptation

for speech recognitioh/title> in <booktitle> Proc. ICASSP '9% /booktitle>
(<address- Munich, Germany:/address), pp. <pages- 1015-1018s/pages--
<date> Apr. 1994/date>.

Expecteq

[5] <name> <first> T.</first> <last> Matsui</last> </name> <name> <first>
T.</first> <last>- Matsuokag/last> </name> and <name> <first> S.</first>-

<last> Furui</last> </name> <title> /Smoothed N-best-based speaker adaptation

for speech recognitioh/title> in <booktitle> Proc. ICASSP '9%/booktitle>-
(<address- Munich, Germany:/address), pp. <pages- 1015-1018&/pages- ,
<date> Apr. 199'4/date>.

Table 6.6: Example of effect of model size on defects, usingeis trained on 4000
documents and a lookahead of 5. Taggatics are incorrectly placede indicates
a missing tag.
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Author Corpus Recall Precision F-measure Perfect Ref.
Peng People’s Daily & Treebank 74.0 75.1 74.2 Yes [116]
Ponte & Croft People’s Daily & Xinhua 93.6 96.0 94.8 Yes [117]
Ponte & Croft People’s Daily & Xinhua 89.8 84.4 87.0 No [117]
Palmer TREC-5 — — 82.7 Yes [11B]
Teahan Xinhua 93.4 89.6 91.5 No [137]
CEM/Teahan ROCLING 97.8 98.1 97.9 No
CEM/Viterbi ROCLING 98.2 98.0 98.1 No

Table 6.7: Performance of Chinese text segmentors. Penféiciaites that the sys-
tem uses a perfect lexicon.
non-name structures by CEM and similar determination of rsdogeCEM and Mc-

Callum’s system described in [47, 75].

6.2.4 Segmentation Corpus

Segmentation of Chinese text is an archetypical segmenttagk and there are
many published recall and precision figures for this taskle'.7 shows a selection
of these, together with the best-case results obtaineciprigsent study for CEM
on the segmentation corpus described in Section 5.3. Mastgs use a perfect
lexicon: a list of all words which may be seen during testingd affectively solves
the zero frequency problem [146] but prevents the resutts foeing transferred
to many real-world problems. The difference between the Reate and Croft
results[117] in Table 6.7 shows the drop in performance gfstéesn used with and
without a perfect lexicon. Production systems typicallpmat assume access to a
perfect lexicon. There is a relationship between the petéacon and the order
—1 (or 0-gram) model in PPM, which includes all characters repriedda in the
character set,

The results from CEM using maximum lookahead search and CEM) U®a-
han search are similar, with the maximum lookahead seartbrpgng marginally
better. The Teahan search used 2000 leaves and averageddsf&#&3per character.
The maximum lookahead search used a lookahead of 6 and ade#@81 nodes
per character. Both used an order 3 model trained on 900 dodsraed 10 testing

documents.
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Taken at face value, the results for CEM are clearly bettertiase for the other
segmentation systems. However, most of the other systepeaafo be assessing
recall and precision on the number of whole words rather tdmeword boundaries,
which can double the perceived number of false positivesfalseé negatives for
isolated errors. This is because a single segmentation@&nocause the words on
either side of a boundary both to become false negativesth&néssue is that the
data used in the present work was sorted at the sentencedadet is not clear that
this was the case for the other reported results. Data wakingbe form it was
obtained in, and with no notes on the sorting or otherwiséeniterature, no extra
processing was performed.

CEM differs from Teahan’s TMT system in internal charactendiang. TMT
uses ASCII internally, breaking Unicode characters intotiplgl characters. Be-
cause of the way in which Unicode characters are laid outeratfailable 32 bits
(in ‘code pages’) there are a number of artifacts, the piynaguie being that novel
Unicode characters are always mapped to novel charactér\GEM, escaping
back to the order-1 model, but within TMT they may not escape back only as far
as the code page. As noted earlier, there isnmiori reason for preferring one
escape method over another (see Section 3.4) and thests rsulinlikely to be
generalisable beyond Chinese text segmentation.

Because of the large alphabet used in Chinese, the modelsgiomevdest or-
ders are large, making the problem significantly more diffithan it would be in a
smaller alphabet language such as English. No attempt lessrbade to optimise
the memory usage by CEM models, meaning that it cannot be osedilt! such

large models as Teahan’s TMT.

6.2.5 Reuters’ Corpus

Figures 6.3 and 6.4 show both recall and precision curvethoentity extraction

task in the Reuters’ corpus, with training on 7100 documentstasting on 100
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Figure 6.3: Graph of recall and precision against lookatfeadarious orders of
models for documents in the Reuters’ corpus.

documents. The difference between Figures 6.3 and 6.4 msilgnéty, as explained
in Section 6.2.1. Figure 6.3 shows recall and precisionutaled for each document
and then averaged over the testing set. Figure 6.4 showsdtaé and precision
calculated over the entire testing set. In every case shagall and precision are
highly correlated and similar.

The difference between Figures 6.3 and 6.4, up to six peesehgreatest at low
lookaheads, is caused by a number of shorter market-regimiea with columns
of figures which are easier to tag than are longer articlesrobee literary nature.
Fortunately, while the results are different, the trends till clearly the same:
incremental gains as the lookahead is increased. Unfdglyrihe prohibitive size
of large models prevented the creation of higher order nsodel

Overall, the performance of CEM was poor, as state-of-théaggers routinely
have recall and precision measures in the 90% range [28]r&hdts are particu-

larly disappointing since the baseline data was generatied @ finite-state based
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Figure 6.4: Graph of recall and precision against lookatfeadarious orders of
models for the Reuters’ corpus taken as a whole.

system (the Brill tagger) which word-level taggers have bedgle to emulate rela-
tively easily. There are two possible causes. Firstly, wastthe Brill tagger uses
a model and search context of a handful of words, CEM uses alraadesearch
context of a handful of characters. Secondly, CEM’s lineartext and lack of
super-adjacency handicapped it against the Brill taggechvises rule-based post-
processing which can examine not just immediate words, lmiememote words.
Small-scale investigations suggested that increasinghwoder and lookahead had

little effect.

6.3 Baum-Welch Re-estimation

The Baum—-Welch algorithm (see Section 3.6) allows untaggea @ be used to
boost models’ performance. This section looks at the agiptio of Baum—Welch

re-estimation in the bibliography corpus. This is pertindrecause, as has been
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Figure 6.5: Graph of edit distance with increasing re-estiom. Trained with 2110
abbrvdocuments, re-estimated with up to 2lddmdocuments, using thieg'st and
lasttags only, order 4 and lookahead of 3.

pointed out in Sections 5.2 and 6.2.3, the bibliography esiip significantly less
diverse than an uncurated bibliography collection in atdidibrary and it would
be beneficial to be able to generalise the models built onitii®graphy corpus to
these more diverse collections.

Figure 6.5 shows an attempt to generalise fromstbigrvbibliography format to
theacmbibliography format. Thabbrvformat is an abbreviated form with author
forenames initialised, while thecmformat is more standard style which includes
the full author forenames, if known. Only tiiest andlasttags are considered.

As might be expected, a model built on thlebrvformat and tested on them
format makes many errors. The line across Figure 6.5 at Q.884s per character
is the average number of edits over the entire 2ddrhdocuments without any re-
estimation. The most common error is the tagging tifsi tag as dasttag, which

Is seen by the edit distance metric as four separate errensoving one opening
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and one closing tag, and adding one opening and one cloging\taovel error is
the misidentification oéds(the token indicating the start of an editor list in #xam
format) as last name.

The 15-document average is a running average of the predibymints. It
shows a great deal of noise and no obvious pattern of inct@adecrease. The
cumulative average reaches 0.0323 edits per characteradiftt269 documents,
a significant drop from the 0.0342 edits per character withetestimation. Re-
estimation clearly reduces the edit distance in this casegring the average edit
distance for th@ecmdocuments. EM theory [60] predicts this is not a true conver-
gence (as an increasing proportion of the data is estimatbdrrthan true data, the
fidelity of the model slowly falls) but there is insufficierg-estimation data in this
example for this to become apparent.

The documents are processed here in random order, but thasesfare partic-
ularly sensitive to the order in which the documents aregssed. The first handful
of documents used in the re-estimation appear to be imgoitanay be worth ex-
ploring whether documents should be used ordered in somaengrerhaps those

with the lowest mutual-entropy first.

6.4 Effectiveness of Optimisations and Heuristics

The bibliography corpus is a useful dataset for evaluatiegeffectiveness of op-
timisations and heuristics because the wide variety of tagkse corpus allows a
selection of tags to be examined. The segmentation corplsasused because it

represents a widely-studied problem and a sharp contrtst tmbliography corpus.

6.4.1 Best First

Best first (Section 4.3.2) is an optimisation that exploits tfature of the maxi-

mum lookahead search, linking the discrimination of the ai®tb the search space
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Figure 6.6: Best first optimisation in hierarchical tag itieer. The lines are: a
author, editor, name first andlast, b name first andlast, c nameandlast d name
All runs used an order 3 model with 200 training documents asthgle testing
document.

required to find the lowest entropy tagging of a sequencenegpect to that model.

Figure 6.6 shows the effect of the best first optimisation loa hierarchical
(nested) tagauthor, editor, name first andlast in the bibliography corpus. In all
cases where the lookaheadsisl, the search space was significantly reduced. The
effect was greatest with the largest number of tags, becitige number of tags
increases, the chance that an observed sequence will haentoopy relative to a
particular model increases.

Figure 6.7 shows the effect of the best first optimisationh@nrton-hierarchical
tagsname pages date volumeandnumberin the bibliography corpus.

Figure 6.8 shows the effect of the best first optimisationtenatord tag in the
segmentation corpus. Without best first, the order of theehbds no impact on
the search space. Best first reduces the search space (algraith the effect

increasing as the order increases the discrimination ofrtbéel (b, c, d, and e).
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Figure 6.7: Best first optimisation in non-hierarchical tagartion. The lines are:
aname pagesdate volumeandnumber b name pagesdateandvolume ¢ name
pagesanddate d nameandpages e name All runs used an order 3 model with
200 training documents and a single testing document.
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Figure 6.8: The effect of best first evord for varying model orders. a labels nearly
co-incident quadruple lines representing the search sfacerders 1, 2, 3 and 4
without best first; b is order 1 with best first; c is order 2 vb#st first; d is order 3
with best first; e is order 4 with best first. All runs used 9G0rting documents and
a single testing document.
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Figure 6.9: Effect of best first when the number of trainingulnents is varied. All
runs use order 3 models with a lookahead of 6 and a singlegedticument from
the segmentation corpus. Entropy is the entropy of theesgtitire document with
respect to the model using for text augmentation, norméhsedocument length.
The documents in the segmentation corpus are significantiye homogeneous
than those in the bibliography corpus, resulting in less@on their respective
graphs.

Figure 6.9 shows how little the effectiveness of the bedt ifiweases with the
amount of training in the segmentation corpus. Without bestt the search space
is independent of the number of documents trained on, bhtheést first the search
space drops. Most of the drop occurred over the first 200itrgidlocuments, with
relatively little drop over the remaining 799 documentsgolocument was always
withheld for testing).

Figures 6.7, 6.8 and 6.9 each show the results for a singlendeat. This is be-
cause while the trends are the same (in all cases best firstvegperformance and
that improvement increases with model order) the size ofrtiprovement varies

considerably depending on the problem, and indeed the deativeing tackled. In
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all cases the results are representative of larger-scpkriexentation, but averaged
results are naturally smoother.

These findings are consistent with the expectations fronic®®ed.3.2. Well-
trained, high-order models allow the probability disttiba function to distinguish
accurately between likely and unlikely branches, and nsodéh many tags have
many more unlikely branches to prune. Given the good pedoie, the relatively
simple implementation and fact that no extra state is regquim the model, the best

first optimisation is valuable in these tag insertion praide

6.4.2 Automatic Tokenisation

Automatic tokenisation (see Section 4.3.3) is exploredgisiccurrence tables for
illustrative purposes. Table 6.8 shows an occurrence fablde Reuters’ corpus
after the start and end tags have been converted to speeiaharacters. In Ta-
ble 6.8(a) each row contains counts of characters appearthg corpus belonging
to each Unicode character class. Each column containssotitite character class
of the characters immediately following them. In Table B)8ach row contains
counts of characters in a Unicode character class that aoeoediately prior to a
tag (either a start tag or an end tag). Each column contamsts®f the class of
the character immediately following a tag. An empty cell able 6.8(b) indicates
that a pair of classes between which a tag has not been seemhactdit is rea-
sonable to assume need not be considered for inserting @alls that are empty
in Table 6.8(b) but occupied in Table 6.8(a) represent aigeraaving, particularly
if the number in the cell in Table 6.8(a) is high, as these aiespof characters
between which the search is not considered inserting tags.

The distinctive cross-shape in Table 6.8(b) is due to thetfet opening tags
usually follow a space character and are followed by almogtréng, while clos-
ing tags can be preceded by almost anything but are followeal §pace or\n’

character. This effect is reinforced by the uniform fornmattof the corpus. The
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First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 D7
UNASSIGNED 0| - B B B B B B B B B B B B - B
UPPERCASE LETTER 1 - 85k 223k 1k - - 30k 1k 57 2k 2 13k 73 1k 360k
LOWERCASE LETTER 2 - 2k 5m 254 - - im 13k 35 4k - 134k 24 6 6m
DECIMAL DIGIT NUMBER 9 - 1k 1k 145k - - 66k 5k 36 2k - 53k 267 52 275k
SPACE SEPARATOR 12| - - - - - 62k 1m - - - - - - - - 1m
CONTROL 15| - - - - - 54 69k - - - - - - - - | 69
PRIVATE USE 18| 7k 248k 1m 65k 1m 7k 7k 8k 8k 17 - 14k 2k 6k # 2m
DASH PUNCTUATION 20| - 3k 13k 5k - - 6k 4k 5 9 - 27 - 322 4| 33k
START PUNCTUATION 21 - 4k 1k 1k - - 206 131 - - - 92 99 713 8k
END PUNCTUATION 22| - 27 6 20 - - 7k 8 4 1 - 1k - 2 -| 8k
CONNECTOR PUNCTUATION| 23 | - - - - - - 3 - - - 119 - - - - | 122
OTHER PUNCTUATION 24| - 15k 18k 44k - - 139k 141 78 303 1 20k 8 18 |-238k
MATH SYMBOL 25| - 50 19 2k - - 475 8 4 1 - 39 16 44 2k
CURRENCY SYMBOL 26| - 13 36 9k - - 344 - 10 6 - 32 18 - 4 9k
MODIFIER SYMBOL 27| - - 5 - - - - - - - - - - - - 5
Sum 7k 360k 6m 275k 1m 69k 2m 33k 8k 8k 122 238k 2k 9k [5lIm

(a)

First Character Second Character Sum
Symbol # |0 1 2 9 12 15 18 20 21 22 23 24 25 26 7
UNASSIGNED 0 [ - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - - - - 30k - - - - - - - - - - | 30k
LOWERCASE LETTER 2 - - - - im - - - - - - - - - - im
DECIMAL DIGIT NUMBER 9 - - - - 66k - - - - - - - - - - | 66k
SPACE SEPARATOR 12| - 201k 1m 62k - - - 5k 8k 17 - 6k 2k 6k 4 1m
CONTROL 15| 7k 46k 302 3k 3 - - 3k 406 - - 7k 89 63 69k
PRIVATE USE 18| - - - - - - - - - - - - - - - -
DASH PUNCTUATION 20| - - - - 6k - - - - - - - - - - 6k
START PUNCTUATION 21| - - - - 206 - - - - - - - - - - | 206
END PUNCTUATION 22| - - - - 7k - - - - - - - - - - 7k
CONNECTOR PUNCTUATION| 23| - - - - 3 - - - - - - - - - - 3
OTHER PUNCTUATION 24 - - - - 139k - - - - - - - - - - | 139k
MATH SYMBOL 25| - - - - 475 - - - - - - - - - - | 418
CURRENCY SYMBOL 26| - - - - 344 - - - - - - - - - - | 344
MODIFIER SYMBOL 27| - - - - - - - - - - - - - - - -
Sum 7k 248k 1m 65k 1m - - 8k 8k 17 - 14k 2k 6k 1 2m

(b)

Table 6.8: Occurrence tables for the Reuters’ corpus. (deT&lall pairs of char-
acters. (b) Table of pairs of characters either side of a'lkhgnd ‘m’ indicate units
of a thousand and a million respectively.
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Figure 6.10: Effect of tokenisation on a group of hierarahtags. The lines are: a
name last, first, editor andauthor, b name last andfirst, c nameandlast d name
Each run was performed with 2000 training documents, onetgedocument and
order 3 models.

CONTROLS® character class includes’, “\r and EOF.

Figures 6.10 and 6.11 show the effect of tokenisation ofanadical and non-
hierarchical tags in the bibliography corpus. The reasoth®differences between
hierarchical and non-hierarchical tags is shown in Tal®e Bable 6.9(a) shows all
pairs of characters; Table 6.9(b) shows those either sitteeofametag, the sparse-
ness of the latter indicating that a procedure such as teagan has the potential
to make an improvement. The hierarchical tags shown in T&BiEe) are similar to
the non-hierarchical tags shown in Table 6.9(b), not bex#lusy are hierarchical
but because they are sequences of case-sensitive chamelietited with spaces,
commas and full-stops. The non-hierarchical tags showrab€lr6.9(d) by com-
parison have a significantly more diverse context. @iagetag is a sequence of

digits and case-sensitive characters aoldimeandnumbertags are strings of dig-

3The standard method of writing the names of Unicode chaiseted character classes is in
capitals.
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Figure 6.11: Effect of tokenisation on a group of non-hielng&ral tags. The lines
are: aname pages date volumeandnumber b name pages dateandvolume c
name pagesanddate d nameandpages e name Each run was performed with
2000 training documents, one testing document and orderdgls.o
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its commonly delimited by brackets and semicolons. Theltasuoccurrence table
Is much less sparse than the previous table.

Tokenisation potentially interacts with other errors. Egample, in Table 6.10
some errors on the bibliography corpus result from problenting the boundary
between the author list and the title tag. In this examptbena the first word of
the article title, has been split in two. The stridthenhas a slightly lower entropy
in the last tag than in the title tag, bait has never been seen in the last tag. @&he
has not been seen when the decision is taken whether or ntartdhe tag name
tag, so the word is split in two.

Whether the first or the second error is preferable will prdpdepend on the
application. As lookahead gets longer, such errors aretlgre=duced, but the
proper nouns commonly found at the start of titles are ofterg lwords (partic-
ularly corporate, place and personal names transliteratedEnglish) and remain
problematic even at long lookaheads.

Of 100 differences in correctness examined in the bibliplgyacorpus, using the
experimental scenario from Figure 6.10 but using 500 tgsdmcuments, 98 were
errors of the type shown by Table 6.10. Both the tokenisatimwhreon-tokenisation
results were incorrect but the non-tokenisation resuttevered more quickly. The
remaining were situations in which every tag occurred betware pairs of char-
acter classes.

The appearance of tags between novel or rare pairs of ckacdasses could be
guarded against by also inserting tags between charaet&sed seen fewer times
than a separate threshold (of the order of 25). In all casesimed this would have
solved the problem. If the training corpora is represeveathis should have little
effect on the search space.

Table 6.11(a) and (b) show the occurrence tables for the Ctstgucorpus and
all the tags within it. Table 6.11(b) is significantly lessasge than Table 6.8(a).

However, the frequently-occurring alpha-numeric pairtheupper left corner are
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First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 37
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 100k 375k 5k 26k 2k 127 2k 763 1k - 132k 362 2 1%49
LOWERCASE LETTER 2 - 2k 3m 4k 479k 60k 10k 16k 1k 5k 1 233k 1k - 5f 4m
DECIMAL DIGIT NUMBER 9 | 243 288 3k 384k 13k 4k 2 1k 56k 81k - 86k 88 - ] 632k
SPACE SEPARATOR 12| - 382k 367k 98k 37k - 84k 225 20k 756 9 6k 825 1 103m
CONTROL 15| 1k 34k 43k 17k 2 13k 1k 9 50k 3 - 359 47 1 14162k
PRIVATE USE 18| - 87k 469 6 83k 4k 3 - 1 - 1 70 17 - 1176k
DASH PUNCTUATION 20| - 7k 11k 2k 277 556 - - 2 14 - 49 -1 - 22
START PUNCTUATION 21| - 26k 2k 96k 128 2k 62 5 9 4 - 1k 15 - 1130k
END PUNCTUATION 22| - 9 75 17 49k 143 3 112 26 142 - 40k 24 1 90k
CONNECTOR PUNCTUATION| 23| - 6 5 - - - - - - - - - - - - 11
OTHER PUNCTUATION 24| - 6k 8k 23k 309k 76k 75k 1k 202 1k - 27k 32 - 1529k
MATH SYMBOL 25| - 622 589 282 747 152 - 36 6 24 - 81 579 - P 3k
CURRENCY SYMBOL 26| - - 1 4 - - - - - - - 1 - - - 6
MODIFIER SYMBOL 27| - 66 104 13 5 - - 2 - 1 - 8 - - -| 199
Sum 2k 649k 4m 632k 1Im 164k 172k 22k 130k 90k 11 529k 3k 6 199m
(a)
First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 47
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - - - - 124 - - - - - - 3 - - - | 127
LOWERCASE LETTER 2 - - 2 - 10k 44 - - - - - 5 - - - | 10k
DECIMAL DIGIT NUMBER 9 - - - - 2 - - - - - - - - - - 2
SPACE SEPARATOR 12| - 84k 454 2 - - - - 1 - 1 59 17 - 1| 84k
CONTROL 15| - 1k 7 2 - - - - - - - 2 - - - 1k
PRIVATE USE 18| - - - - - - - - - - - - - - - -
DASH PUNCTUATION 20| - - - - - - - - - - - - - - - -
START PUNCTUATION 21| - 62 - - - - - - - - - - - - - 62
END PUNCTUATION 22| - - - - 3 - - - - - - - - - - 3
CONNECTOR PUNCTUATION| 23 | - - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24| - 1 - - 73k 2k - - - - - - - -] 75k
MATH SYMBOL 25| - - - - - - - - - - - - - -
CURRENCY SYMBOL 26| - - - - - - - - - . - - .. -
MODIFIER SYMBOL 27| - - - - - - - - - . - - - . -
Sum - 85k 463 4 83k 2k - - 1 - 1 69 17 - 1| 172k
(b)
First Character Second Character Sum
Symbol # | 0 1 2 9 12 15 18 20 21 22 23 24 25 26 247
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASELETTER 1 - - - - 192 2 - - - - - 4 - - - | 198
LOWERCASELETTER 2 - 2 2 - 16k 208 - - - - - 168 - - - | 17k
DECIMAL _DIGIT_NUMBER 9 - - - - 3 - - - - - - - - - - 3
SPACESEPARATOR 12| - 168k 659 2 - - - - 5 - 4 93 37 - -| 169k
CONTROL 15| - 2k 6 2 - - - - 1 - - 1 - - - 2k
PRIVATE.USE 18| - - - - - - - - - - - - - - - -
DASH_PUNCTUATION 20| - - - - - - - - - - - - - - - -
START_.PUNCTUATION 21| - 56 - - - - - - - - - - - - - 56
END_PUNCTUATION 22| - - - - 32 1 - - - - - - - - - 33
CONNECTORPUNCTUATION | 23| - - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24| - 1 - - 152k 3k - - - 56 - - - - - | 156k
MATH _SYMBOL 25| - 1 - - - - - - - - - - - - - 1
CURRENCY.SYMBOL 26| - - - - - - - - - - - - - - - -
MODIFIER.SYMBOL 27| - - - - - - - - - - - - - - - -
Sum - 171k 667 4 169k 3k - - 6 56 4 266 37 - { 345k
(©)
First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26 37
UNASSIGNED 0 - - - - - - - - - - - - - - - -
UPPERCASELETTER 1 - - - - 143 1 - - 4 5 - 35 - - - | 188
LOWERCASELETTER 2 - 2 3 - 10k 55 - - - 619 - 290 - - -| 11k
DECIMAL _DIGIT_NUMBER 9 - - - - 8k 784 - - 11k 33k - 44k - - - | 99k
SPACESEPARATOR 12| - 97k 518 57k - - - - 3 - - 708 20 - 2|156k
CONTROL 15| - 2k 23 6k - - - - - - - 55 - - - | 9%
PRIVATE_USE 18| - - - - - - - - - - - - - - - -
DASH_PUNCTUATION 20| - - - - - - - - - 1 - 2 - - - 3
START_.PUNCTUATION 21| - 4k 6 29k - - - 1 1 - - 247 - - - | 33k
END_PUNCTUATION 22| - - - - 42 5 - - - 72 - 37 - - - | 156
CONNECTORPUNCTUATION | 23| - - - - - - - - - - - - - - - -
OTHER.PUNCTUATION 24| - 58 11 20k 101k 5k - - 8 31 - 38 - - -| 127k
MATH_SYMBOL 25| - - - - - - - - - - - - - - - -
CURRENCY.SYMBOL 26| - - - - - - - - - - - - - - - -
MODIFIER.SYMBOL 27| - - - - - - - - - - - - - - - -

Table 6.9: Occurrence tables for the bibliography corpa$.Table of all pairs of
characters. (b) Table of pairs of characters either sider@fraetag. (c) Table of
pairs of characters either side méme last, first, editor andauthortags. (d) Table
of pairs of characters either siderdme pages date volumeandnumbertags.
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Case Text

0 [Son] D. Song. Athena: A new efficient automatic checker angity
protocol analysis.

1 [Son] <name> <first> D.</first> <last> Song</last> </name>-
<name> <last> Athenax/last> </name> <title> A new efficient
automatic checker for security protocol analysisitle >

2 [Son] <name> <first> D.</first> <last> Song</last> </name>-
<name> <last> Athen</last> </name> <title> a: A new efficient
automatic checker for security protocol analysisitle >

Table 6.10: Interaction between errors. The unmarked-xip(®, the text with a
markup error (1) and with the first error confounded by a sde@mor which splits
a word in two (2).

First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 5k 10k 55 1k 39 1k 174 - 110 4 971 27 20k
LOWERCASE LETTER 2 451 198k 974 33k 1k 2k 896 - 116 40 10k 9 249k
DECIMAL DIGIT NUMBER 9 - 1k 52 4k 339 50 1k 234 - 88 1 746 359 8k
SPACE SEPARATOR 12 - 8k 29 1k 8k 2k 2k 163 1k - 1 418 609 -| 54k
CONTROL 15| - 897 2k 42 1k 2k 679 73 441 - 71 178 317 8k
PRIVATE USE 18|36 2k 1k 904 1k 179 36 31 51 35 - 2k 1k 2y510k
DASH PUNCTUATION 20| - 215 864 201 225 23 44 233 - 5 - 3 - 1k
START PUNCTUATION 21 - 616 171 67 1 - 611 - - - - 31 12 -l 1k
END PUNCTUATION 22| - - - - 352 828 14 - - 10 - 435 - -1 1k
CONNECTOR PUNCTUATION| 23| - 10 32 2 - 72 - - - - 4k 1 - - | 4k
OTHER PUNCTUATION 24| - 607 4k 350 7k 1k 303 8 - 948 - 1k 35 - 18k
MATH SYMBOL 25( - 3 41 18 427 30 1k 1 - 6 - 966 190 4 2k
CURRENCY SYMBOL 26| - - - 275 - - - - - - - - - - 275
Sum 36 20k 249k 8k 54k 8k 10k 1k 1k 1k 4k 18k 2k 27883k

(a)

First Character Second Character Sum
Symbol # 0 1 2 9 12 15 18 20 21 22 23 24 25 26
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 308 48 - 16 - 179 - 603 6 -1 1k
LOWERCASE LETTER 2 35 - 750 48 - 7 - 164 - 880 908 -| 2k
DECIMAL DIGIT NUMBER 9 | - - - 135 42 - 8 - 13 - 924 18 -| 1k
SPACE SEPARATOR 12| - 1k 397 804 - - 3B - - 4 8 230 2k
CONTROL 15|36 478 61 62 - - - - 13 - - 5 3 21 679
PRIVATE USE 18| - - - - - - - - - - - - - - -
DASH PUNCTUATION 20| - 3 4 19 - - - - - - - - - 18| 44
START PUNCTUATION 21| - 543 45 17 - - - - - - - - - 6| 611
END PUNCTUATION 22| - - - - 9 - - - - - - 5 - - 14
CONNECTOR PUNCTUATION| 23 | - - - - - - - - - - - - - - -
OTHER PUNCTUATION 24| - 57 26 - 75 5 - - - - - 21 119 -| 303
MATH SYMBOL 25| - 24 1k 2 - - - - - - - 2 - - 1k
CURRENCY SYMBOL 26| - - - - - - - - - - - - - - -
Sum 36 2k 1k 904 1k 143 - 31 51 356 - 2k 1k 2{510k

(b)

Table 6.11: Occurrence tables for the Computists’ corpusTdhle of all pairs of
characters. (b) Table of pairs of characters either sidetad.a
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First Character Second Character Sum
Symbol # 0 1 2 5 9 11 18 20 21 22 23 24 25 2pb
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 - 3k 2k 470 61 - 1k 1 1 - 8 1 1| 8k
LOWERCASE LETTER 2 - 146 17k 696 4 - 4k 1 1 1 - - 7| 22k
OTHER LETTER 5 - 45 259 1m 524 - 1m - 56 389 225 5723m
DECIMAL DIGIT NUMBER | 9 - 18 346 1k 4k - 1k 2 - 383 262 62 7k
OTHER NUMBER 11| - - - - - - 3 - - - - - - - 3
PRIVATE USE 181999 3k 1k 1Im 2k 1 2m - 18k 20k 314k 28 9 1k 4m
DASH PUNCTUATION 20| - - 2 - 2 - - - - - - - - - 4
START PUNCTUATION 21| - - - 393 383 - 26k - 1 23 20 - - -| 27k
END PUNCTUATION 22| - 2 - 49 1 - 21k - 3 - 4 - - 1| 21k
OTHER PUNCTUATION 24| - 601 487 276k 54 2 28 - 8k 19 1 5 - 34815k
MATH SYMBOL 25| - 8 13 - - - 13 - - - - - - - 34
CURRENCY SYMBOL 26| - - - - - 9 - - - - - - - 9
OTHER SYMBOL 28| - 2 72 604 107 - 1k - 13 - - - - 9| 2k
Sum 999 8k 22k 3m 7k 3 4m 4 27k 21k 315k 34 9 2k 7m

(a)

First Character Second Character Sum
Symbol # 0 1 2 5 9 11 18 20 21 22 23 24 25 2P
UNASSIGNED 0 - - - - - - - - - - - - - - -
UPPERCASE LETTER 1 126 15 875 34 - - - 46 259 482 4 - 45 1k
LOWERCASE LETTER 2 721 616 1k 30 - - - 33 1k 509 - - 9§ 4k
OTHER LETTER 5 1k 347 1m 2k 1 - - 17k 18k 304k - 8 1k 1m
DECIMAL DIGIT NUMBER | 9 - 29 58 878 22 - - - 12 110 246 24 - 2p 1k
OTHER NUMBER 11| - - - 3 - - - - - - - - - - 3
PRIVATE USE 18| - - - - -
DASH PUNCTUATION 20| - - - - - - - - - - - - - - -
START PUNCTUATION 21| - 1k 343 24k 130 - - - 92 6 55 - - 21 26k
END PUNCTUATION 22| - 15 2 12k 44 - - - 405 150 8k - - 27 21k
OTHER PUNCTUATION 241998 255 13 26k 67 - - - 821 30 221 - 1 2128k
MATH SYMBOL 25| - - - - - - - - - 5 8 - - - 13
CURRENCY SYMBOL 26| - - - - 9 - - - - - - - - - 9
OTHER SYMBOL 28| 1 70 83 1k 25 - - - 51 16 318 - - 87 1k
Sum 999 3k 1k im 2k 1 - - 18k 20k 314k 28 9 1k 2m

(b)

Table 6.12: Occurrence tables for the segmentation cofpy3able of all pairs of
characters. (b) Table of pairs of characters either sidead.a
mainly zero, so the heuristic is of some benefit.

Table 6.12 is the occurrence table for the segmentationusognd indicates
that the OTHER LETTER is by far the most common characterschasich is to
be expected since most Chinese characters fall into this.cléke nature of the
corpus means that all of the frequently-occurring pairsahl& 6.12(a) also appear
in Table 6.12(b) (as non-zeros), indicating that automiatkenisation is going to
have little effect on the search space in this corpus.

Figure 6.12 shows the interaction between best first anchis&gon for the
nametag. The addition of tokenisation to best first always redube search space,
but the effect is most noticeable at low lookaheads whenfiyssis less effective.
This is because automatic tokenisation prunes branchde afdarch tree without
having to expand the first node in the branch to calculatertregy.

Consistent with the expectations from Section 4.3.3, theselts show that au-

tomatic tokenisation improves performance on some datasietvever, it does not
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Figure 6.12: Effect of best first and automatic tokenisabomametag. Each run
was performed with 2000 training documents, one testingish@nt and order 3
models.

perform consistently well across all datasets, and a nupfiike corpora have noise
in the occurrence tables. Such noise is likely to be sigmiflgagreater in digital
library collections of heterogeneous documents of diverggn than in the curated
corpora used here. Anecdotal evidence of HTML and XHTML doents from the
Internet suggest that tags do occur in a significantly widerety of places than
in the corpora examined here. Automatic tokenisation regua small and tightly-
bounded amount of extra state per model in the form of an oecoe table.

Unlike best first, automatic tokenisation is not linked te tfiscrimination of
the models. This means it can perform well even for a poodingd model. The
reason that automatic tokenisation does not perform asas¢le occurrence table
method is that the PPM model already discriminates betweesetsituations and
that best first ensures that the branches that get prunedtbsatic tokenisation

are not explored anyway.
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Name Symbol Example

Null folder N Jones,Jill_K._and
Capitals folder c JONESJILL_K_AND
Case folder C Aaaaa,AaaaA._.aaa
Unicode folder u AaaaaPSAaaaSAPSaaa
Vowel folder \Y nvnvn,nvnnn..vnn

Vowel & case foldervVC Nvnvn,NvnnN..vnn

Table 6.13: Folders used in alphabet reduction.

6.4.3 Alphabet Reduction

Table 6.13 shows the six ‘folders’ used in the alphabet redn@xperiment. They
‘fold’ the alphabet used in the model, as their effects onmada string show.

The Null folder does not change the alphabet at all. The Capdkler removes
the distinction between upper and lower case. The Case flulikr all uppercase
letters to a single letter and all lowercase letters to alsifegter. The Unicode
folder folds each of the Unicode character classes (seeo8et3.3) to a single
character per class. The Vowel folder folds all vowels tongl& letter and all non-
vowels to a single letter. The Vowel and Case folder folds oygee vowels to a
single letter, lowercase vowels to a single letter, upp¥can-vowels to a single
letter and lowercase non-vowels to a single letter.

Figure 6.13 shows the results of these six folder;xamein the bibliography
corpus. Figure 6.13(a) shows the F-measure against theafrthee model for each
of the folders. The experiment was performed in 750 megahyftdeap memory,
and the data is shown only for those models and lookaheadshwbuld be built
and used in that memory.

The N folder performed best, but N models could only be bailbtder seven,
because of the large alphabet. The C models also performédmwiecould be built
to order 23. However, increasing order did not increase #réopnance because
useful information was thrown away by the folder. The ¢, V &@ models all

performed similarly poorly and could be built to orders be¢én seven and ten. The
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Figure 6.13: The effects of alphabet reduction on findingrtametag of biblio-
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u models performed badly with an F-measure less than twesdpitk being able
to be built to order 18. This is particularly surprising givthat the u folder has
a close relationship with the C folder, which performed wdlhe reason for this
difference appears to be thatand ‘;’ are important in delimiting names and other
features in bibliographies and the u models were unablestmduish between these
characters.

Figure 6.13(b) shows the ratio of baseline to experimemtttbpy for the same
experiments while Figure 6.13(c) shows detail of the sartaiomship where the
ratio approaches one. As discussed previously (see page¢h@3@ntropy can be
used to determine whether the model or the search is respefsi a mis-tagging.
All data points with a ratio less than one indicate that theec®e was deficient (i.e.
the lookahead could be increased for greater correctnddsflata points where
the ratio is greater than one indicate that the model is @&fidnh some regard;
in the ideal situation the ratio is 1:1. There are three Yikehys in which the
model can be deficient: it may have seen insufficient traimiat, it may be of
insufficient order, or it may be failing to capture importéedtures of the data. 2000
training bibliographies (approximately 45,000 bibliogin& entries) would appear
to be sufficient training data: models with smaller alphalggtnerally require less
training data. Increasing the order of the u, V, ¢ and VC medkdarly moves the
ratio further from 1:1. Thus the problem is likely to be thiaé$e models are not
capturing important features of the data.

The upward trend in the entropy ratio for the C models of otdgher than 6
(Figure 6.13(c)) is consistent with the behaviour of PPM eisavhen the order is
increased beyond optimal. This species of over-fitting issed by the building of a
higher order model than there is training data availableaim effectively, leading
to many common states having their probabilities genenatethe escape method.

The increase in noise for the ratio of entropies (partidulfmr the u model) as

order increases is due to sampling effects.
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Figure 6.14: The effects of alphabet reduction on findingtiphel tags in the bib-
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Figure 6.14 shows the same details as Figure 6.13 forrtagg pages date
volumeandnumberat a lower lookahead (necessary because of the greatlyaseule
search space caused by the additional tags). Performarkggure 6.14 was con-
sistently poorer than that in Figure 6.13, but the relatedgrmance of the folders
was similar. The one deviation from this is the c folder, wdhBsmeasure is similar
to the VC and V folders in Figure 6.13, but clearly superioFigure 6.14. This is
because thpagesdate volumeandnumbertags in Figure 6.14 are number-centric
rather than text-centric, so the loss of capitalisationsdus effect them as badly.

The large reductions in correctness shown in Figures 6.436alv strongly
suggest that, with the possible exception of C, alphabetctemuis unlikely to be

useful in production systems for such corpora.

6.4.4 Maximum Lookahead Heuristic

For the majority of tag-insertion problems, maximum loo&ati is problematic be-
cause the lookahead at which the accuracy becomes asyeriptotimputationally
infeasible. For problems with a small number of tags, maxmiookahead is ob-
tainable. Table 6.14 shows the effect of various lookaheduieg on a single bibli-
ographic entry. The result converges on the expected tekinna lookahead of 5,
much shorter than the maximum tag length~of0 which Viterbi search suggests
would be required.

The defects displayed in Table 6.14 are mainly of types direhscussed in
Section 6.2.3: confusion caused by the wide variety of namadts and confusion
between article titles and book titles. Similar defectsenalso seen in Table 6.6, in
which the same reference was used to examine the performatmoearying model
orders. However, as shown in Figure 6.15, there is oftenat gl of noise, and it
may not be clear whether the asymptote has been reached thrawtiee lookahead
must be increased.

The primary sources of errors when inserting pagesag were four-digit page
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lookahead text

1 [5] <name> <first> T.</first> <last>- Matsui</last- </name>-
o o<title> T.o o </title> <journal>¢ ¢ Matsuokag/journal> and
<name> <first> S</first> <last> Furui</last>- </name> <title>
IN-best-based speaker adaptation for speech recoghitidtitje>-
in <booktitle> Proc. ICASSP '9%/booktitle> (c<name>-
<first> Munich</first> </name> <title> Germanyo ),</title> pp.
<pages- 1015-1018x/pages- <date> Apr. 1997 /date>.

2 [5] <name> <first> T.</first><last> Matsui</last> ¢ o <first>-
T.</first> <last>- Matsuokas/last> </name- and <name--
<first> Sx</first> <last> Furui</last>- </name> <title> /N-
best-based speaker adaptation for speech recoghitidtitle> in
<booktitle> Proc. ICASSP '9%/booktitle> (<address- Munich,
Germany/address’), pp. <pages- 1015-1018;/pages- <date>-
Apr. 199&/date>.

3 [5] <name> <first> T.</first><last> Matsui</last>¢ ¢ <first>-
T.</ffirst> <last> Matsuokag/last- </name- and <name--
<first> S</first> <last> Furui</last- </name> <title> /N-
best-based speaker adaptation for speech recoghitidtitle> in
<booktitle> Proc. ICASSP '9%:/booktitle> (<address- Munich,
Germany/address’), pp. <pages- 1015-1018s/pages- <date>-
Apr. 199 /date>.

4 [5] <name> <first> T.</first> <last> Matsui</last>¢ o<first>-
T.</ffirst> <last> Matsuokag/last- </name- and <name--
<first> S</first> <last> Furui</last- </name- <title> /N-
best-based speaker adaptation for speech recoghitidtitle> in
<booktitle> Proc. ICASSP '9%/booktitle> (<address- Munich,
Germany/address-), pp. <pages- 1015-1018¢/pages- <date>-
Apr. 199 /date>.

5 [5] <name> <first> T.</first> <last> Matsui</last>- </hame>-
<name> <first> T.</first> <last> Matsuokasx/last> </name> and
<name> <first> S.</first> <last> Furui</last>- </name> <title>
IN-best-based speaker adaptation for speech recoghitidtitle > in
<booktitle> Proc. ICASSP '9%/booktitle> (<address- Munich,
Germany/address’), pp. <pages- 1015-1018;/pages- <date>-
Apr. 199&/date>.

baseline |[5] <hame> <first> T.</first> <last> Matsui</last> </name>-
<name> <first> T.</first> <last> Matsuokag/last> </name> and
<name> <first> S</first> <last> Furui</last>- </name> <title>
IN-best-based speaker adaptation for speech recoghitidtitje > in
<booktitle> Proc. ICASSP '9%:/booktitle> (<address- Munich,
Germany/address’), pp. <pages- 1015-1018¢/pages- <date>-
Apr. 199 /date>.

Table 6.14: Example of effect of lookahead on defects, usidgr 4 models trained
on 4000 documents. Tagsitalics are incorrectly placed: indicates a missing tag.
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Figure 6.15: Graph of recall, precision and search spacestigaokahead for the
singlenametag. Models trained on 2000 documents and tested on one @ntum
numbers that looked like years such E393-2002and features such asn+4,
which is a common format when the citation is taken from acted@ic copy and
the document length is known but not the location within @rgér journal or col-
lection. These sources of noise are compounded by vatiailithe length of
bibliographies, which may be as short as a single entry with onepagesag and
only onename These problems are not resolved by increasing the looklahea

Figure 6.16 shows the same analysis fontloed tag in the segmentation corpus.
The data from this graph (Table 6.15) show that while thecdespace increased by
five orders of magnitude, the recall and precision increagdess than one percent.
It is not clear why recall and precision cross-over in FiguBel5 and 6.16 as look-
ahead increases, but the levelling-off of increase in recal precision, indicative
and representative of larger samples, suggests that thelrdods not contain all
the information needed to make the underlying relevancisaets.

These results show that the maximum lookahead heuristibeaffective. In-
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Figure 6.16: Graph of recall, precision and search spacestdaokahead for the
wordtag. Models trained on 2000 documents and tested on one @émtum

Lookahead Search spagdrecall (%) Precision (%
(nodes per character)

1 6.00 97.10 97.37
2 27.26 97.83 97.79
3 86.22 97.82 97.53
4 241.07 97.73 98.21
5 633.54 97.74 98.21
6 1598.50 98.30 98.06
7 3976.08 97.72 97.59
8 9801.47 97.61 98.16
9 23457.08 97.77 97.87
10 58153.64 97.84 98.09
11 139079.05 97.71 98.02

Table 6.15: Table of recall, precision and search spacensigiiokahead for the
wordtag. The data is plotted in Figure 6.16.
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Figure 6.17: TagC heuristic in hierarchical tag insertibBrom steepest to shallow-
est the lines are: (aguthor, editor, name first andlast, (b) name first andlast
(c) nameandlast, (d) name All runs used an order 3 model with 200 training
documents and a single testing document.

creasing the lookahead beyond six has, in this case, noubbienefit to recall and

precision but is of great detriment to the search space.

6.4.5 TagC Heuristic

The TagC heuristic (Section 4.3.6) limits the number of telgbe considered for
insertion between two characters in a document. Figure ghbws the effect of
the TagC heuristic on the hierarchical temgthor, editor, name first andlast in
the bibliography corpus. In all cases the search space wased. Figure 6.18
shows the effect of the TagC heuristic on the non-hieraedhiegysname pages
date volumeandnumberin the bibliography corpus.

Results show the TagC heuristic to be consistent and sigmifidduch of the
pruning of the TagC heuristic is similar to that of the besdtfoptimisation. A

tag that is ruled out by the TagC heuristic has not been setimsimodel before,
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Figure 6.18: TagC optimisation in non-hierarchical tagemisn. From steepest
to shallowest the lines are: (apme pages date volumeandnumber (b) name
pages dateandvolume (c) name pagesanddate (d) nameandpages (e) name
All runs used an order 3 model with 200 training documents asthgle testing
document.
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meaning the PPM model must escape back to ordefsee Section 3.4), and im-
plying high entropy transitions. The structure of PPM medaleans an order
transition can be followed, at most, by an order 1 transition (except for the start
of sequence symbol), so an ordet transition can be penalised over an order
transition forn + 1 transitions. Many of the tags and tag sequences ruled otneby t
TagC heuristic would mean three or four order transitions and can be rapidly
pruned by the best first under normal circumstances.

The set of observed tag combinations is smaller in the gbdiphy corpus than
it may be in real-world corpora because, when integratiegdlgged and untagged
bibliographies (see Figure 5.2), placement of tags witpeesto inter-word white-
space was performed automatically and therefore condlist@iverse, real-world,

uncurated sources are unlikely to display this degree asistency.

6.4.6 State Tying

The opportunity to apply the state tying heuristic (seeiret.3.7) occurred only
once in the corpora studied, on thametag which may occur within theditor or
theauthortag in the bibliography corpus. The schema for the biblipgyadataset
with and without state tying are shown in Figure 5.4 and Fedbu5 respectively.
Figure 5.4 differs from Figure 5.5 in that tim@amesubtree has been cloned and a
copy appears for each parent. This section examines the #ffe duplication has
on the performance of the model.

Table 6.16 shows the type confusion matrices, with and wittstate tying,
for the bibliography corpus. Perhaps surprisingly, the keg leaf tagdirst and
last perform similarly in the two models. This is evidence thabdganodels were
built for these tags both with and without tying. At a slightligher level, the tying
performed noticeably better (more than 1%) at identifynagnetags, while without
tying performed noticeably better (more than 1%) at idgintd editor tags. This

later improvement appears to be because that proceediitgsseaften only have
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Figure 6.19: Entropy dropping with increased training gdwai#h and without state
tying. Order 6 models tested on 500 documents with a loolhbga.

their last name given in bibliography entries and modelkaltor tags separately
from authortags allowed this information to be captured.

In the tags not directly related to names, the state tyingltseare slightly better
than the without state tying results, having a higher numbegsults on the leading
diagonal in nine of eleven cases. This is, perhaps, bechasgdte tying presented
a more consistent model of the concepts of names to the réisé shodel. Other
features of type confusion matrices for the bibliographypos are explained in
Section 6.2.3.

Figure 6.19 shows how entropy drops with increased traidiaig, with and
without state tying, for the tags shown in Table 6.16. Entrapth state tying
appears to be slightly less, but not consistently less,éh&iopy without state tying.
This is somewhat surprising since the motivation for ststegt was to achieve
better performance from the same amount of training dateti®e4.3.7), and this

appears not to be happening consistently. This is probaddguse the effect which

141



>0 mI O R ® 1~ O
NS oo last NGRN ,©en
DD ] © -
trt+ gy tad++g9
D ()]
8LLeR author LR
“'&@'8""“' —|—,_n',_,-58'++
®© ) o
80 editor 8N
+ A gH++ + G+
0] o0}
2 & name s 3
+og ted A+ +to ta
(o0] (0]
[e0] i o™ A
& ® 5@ = @ bibliographyid &5 in § & <

Table 6.17: Type confusion matrices for the bibliographspes. The matrix on the
left is with state tying and the matrix on the right is withatiéite tying. All values
are in percent, at' indicates a figure lower than 0.99%. Order 6 models trained o
6000 documents and tested on 100 documents with a lookafi&ad o

Is noticeable in Table 6.16 is too small to be detected oves#mpling error.

Table 6.17 shows the type confusion matrices, with and witktate tying, for
the bibliography corpus for a greatly reduced set of tagspayed with Table 6.16.
The results do not show a clear pattern of similarity withstanghown in Table 6.16
for the larger set of tags, suggesting that the results argareerally applicable.

An unanticipated benefit of state tying is that the combinexti@ls are sig-
nificantly smaller than the separate models. The memoryuropson of models
increases linearly with extra tags but less than linearlyr wktra training data: if
two tags are tied together to use the same PPM model, memotyecsaved. The
CEM implementation uses memorgimely, no experimentation or tuning has been
used to reduce the memory consumption.

The state tying optimisation gives at best a marginal imgnoent in results,
but can be expected to lead to smaller models. Occam’s Ralzar ¢alled the
‘principle of parsimony’ or the ‘principle of simplicity’asserts that a simpler or
smaller model of a phenomenon is to be preferred over a maomplex or larger

one.
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Chapter 7

Conclusions

This thesis extended text augmentation to cover entityaetitm problems. It in-
vestigated three classes of text augmentation: segmamtatassification and entity
extraction, and described how they are connected to datagnitext mining and
related fields.

Segmentation, the computationally simplest class, irer®@kegmenting the text.
Information is encoded in where one segment ends and thestaetd. Tasks such as
Chinese text segmentation were evaluated using recall @otsmpn on the segment
boundaries.

Classification, which is more computationally expensivetb@gmentation, in-
volves classifying textual elements into one of severads#ga. Information is en-
coded in the class an element falls into. Classification tesksh as part of speech
tagging, have close ties to machine learning, and shareittith confusion matrix
evaluation method.

Entity extraction is the most computationally expensiasslof text augmenta-
tion. It marks-up textual fragments with a nested hierammhglasses and informa-
tion is encoded both in where fragments start and finish atitkiin type. Inserting
attribute-free XML into text is an entity-extraction tagkntity extraction was eval-

uated using type confusion matrixes and using edit distance

143



7.1 Review of Aims

In Section 1.2 various aims were introduced; in this sectitay are examined to

determine whether they have been met.

1. Examine text-augmentation problems, in the large, to gitetm determine
which are susceptible to automated text augmentation anchehsbme sets

of problems are inherently easier than other.

Section 4.1 built a taxonomy of three taxa of text-augmemaproblems:
segmentation, classification and entity extraction. Ctatd@cand document
level metadata are poorly catered for. Section 4.1.4 cavarsnber of forms
of fine-grained metadata which does not sit within the taxandSections 4.4
and 6.4 examines the different static and dynamic perfoomanri various
searches over the different problems. Segmentation is ctatipnally eas-
ier than classification, which is computationally easiarntlentity extraction.

This aim has been met.

2. Build a text-augmentation system capable of solving at lassvide a range
of problems as existing low-human-input systems, with an ®@ywvéntual

inclusion as part of a digital library system.

Section 4.2 describes CEM, a system capable of solving a wadage of
text-augmentations problems than the immediately preveystems TMT
and SMI, which did not solve entity-extraction problems. CHisls low-
human-input and has a number of design characteristicsasicising Uni-

code throughout and using standard XML documents. This agrbken met.

3. Locate and/or build corpora to test this system.

The four corpora used in this thesis are described in Chaptdhg& Com-
putists’ corpus was developed from an earlier corpus; the&3a text seg-

mentation and Reuters’ corpora were existing corpora addpteuse. The
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bibliography corpus was built as a model entity-extractorpus. This aim

has been met.

. Use specific heuristics and optimisations which perforefi im relation to a

particular set of augmentation problems.

The best first optimisation and automatic tokenisationhalet reduction,
maximum lookahead, TagC and state tying heuristics aregitdescin Chap-
ter 5 and used with particular types of augmentation proble8tate tying
is effective only on entity extraction problems (Sectio8.4) and TagC only
works on entity extraction and classification problems {i8ac4.3.6). This

aim has been met.
. Evaluate both the text-augmentation system and the himsretd optimisa-
tions in the system.

Chapter 6 contains a systematic evaluation of both the syasesrwhole and

individual heuristics and optimisations. This aim his bewst.

7.2 Performance of CEM and the New Techniques

The implementation, CEM, created for this thesis uses aantially different form

of model from that used by previous workers. The model noy atlbws fully

recursive modelling to deeply tagged XML, it also carrieateat between hidden

states, which avoids prejudicing entry to these states bideng escaping back to

low-order models. CEM also uses a significantly more efficiemtation on the

PPMD escape method avoiding full exclusion. Non-full esabn is a substantial

performance improvement over full-exclusion with mardjieas of correctness.

The best first optimisation leads to substantial gain. li¢tde argued that the

best first optimisation was an implementation detail rathan a true optimisa-

tion. It is, however, absent from the immediately precediygtem, Teahan's TMT.
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Hardware implementations of Viterbi search usually avb&lreed for the best first
optimisation by performing this step in parallel.

The maximum lookahead heuristic is used elsewhere and veagnsto work
in CEM to good effect. Unfortunately there is no apparanriori method for
selecting a maximum lookahead, other than by splitting akngood corpus into a
training corpus and a testing corpus. This technique isgtsstive once the Baum—
Walsh algorithm has been used to adapt the model to a supdrdet original
corpus.

CEM also implements two novel heuristics, TagC and autontakienisation,
to some advantage. Both are reliant on the consistency ofahmertg data and are
unlikely to be widely useful on uncurated diverse corporaeylalso largely prune
the search tree in ways that the best first optimisation aisogs effectively.

The state tying heuristic, which is widely used in voiceagaition systems,
was found to have little effect on the search space, but estline size of the hidden
Markov model by merging some of the underlying Markov moddishe seman-
tics of tag nesting are changed, state tying is likely to beenadfective. In either
case, it reduces the number of Markov models, and propaitioreduces the re-
quired volume of training data. The use of state tying inay, however, hampers
the convergence towards consistent tagging in the markddxtpby making the
Markov model that best matches a fragment accessible atpheultidden states.
This is likely to be a significant barrier to the incrementavelopment of corpora
using the system to improve the quality of the training tdkimay be possible to
enable state tying during training, and disable it durirggitg) and re-estimation to
restrict access to each Markov model to a single hidden, ¢shate standardising the
tagging.

Four corpora were used in this thesis. Marking-up the Chitedesegmentat-
ion corpus was a task on which CEM achieved an F-measure of @8%tg same

range as other systems and better than TMT. The Reuters’sargsiused in con-
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junction with the Brill part of speech tagger, but CEM perfodmoorly on this
classification task, because the PPM models in CEM have a loogdiext and lack
super-adjacency, a key aspect of the Brill tagger and othéopapeech taggers.

A detailed comparison of the performance of CEM and the siiiiMT system
on the Computists’ corpus showed that TMT performed condistéetter. The
differences were shown to be related to both the modellirayaatiers rather than
words, and the search algorithm.

The fourth corpus was the bibliography corpus, which wagl dseentity ex-
traction. CEM appeared to perform well, but the lack of a staddest corpus made
comparison with other systems difficult.

CEM includes the Baum—Welch algorithm: this was successfighd to help
adapt a model trained on one style of bibliography to markdfarent style. In
this thesis the Baum—Welch algorithm was evaluated usingditedistance metric.

CEM can be applied to solve a significantly wider range of poid than the
immediately preceding system (TMT), which could solve segtation and class-
ification problems but not entity extraction. CEM performeelivat both the simple
and complex ends of the computational spectrum. It was, hexvaot so well op-

timised for speed or memory consumption as TMT.

7.3 Impact of Unicode and Document Orientation

Use of Unicode solves many internationalisation issues,noti the unknown-
character problem: the character level equivalent of tHenawn word problem.
It also provides a set of cross-language character classegich word-level rules
and models can be built. The character classes are simigggroach to the char-
acter classes from the C programming language, which hawegaHistory of use
in parsers.

Encoding metadata, as a CEM does, in a single hierarchicattios of
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attribute-free XML tags, limits the classes of metadatd taa be represented, in
particular, overlapping structures and alternative pretations of the same pas-
sage. There are interesting sets of metadata that fallet@xcluded category, in
particular: overlapping hierarchies such as physical agitél document structure,
and metadata constructed from fragments scattered thootifie document text.
The view of the data and metadata as an annotated documbest tizan a col-
lection of facts has a number of impacts on further use, dveagh metadata held
in an external database could be processed to embed it inothergnt andvice
versa Firstly it makes the document more amenable to presenta@ metadata-
enhanced document, such as in a digital library or an XMLeakcument reposi-
tory. Secondly it makes the kinds of higher-level procegsised in the later stages
of many of the MUC systems harder, because these performatiges such as re-
lational joins which have no direct equivalent in an anredatocument. Thirdly it
makes the metadata significantly less amenable to exparséoin external systems,
many of which expect relations of data. Fourthly documearitcc, XML-native,
databases allow queries on the annotated XML documentaging aspects of the
documents which the querier might consider important wkiehmetadata extrac-
tor might not. The best representation for inferred metdathus likely to be

determined by the larger context and the intended uses of¢tadata.

7.4 Limitations of CEM

CEM has two broad sets of limitations, those imposed by mwodelnd search

techniques, and those due to the implementation of thobaitpees.

Attribute data CEM does not capture attribute data. For enumerable atsbut
this can be mitigated by XML transformations which transfggach possible
combination of attributes in each tag to a separate tag. &atireious at-

tributes this technique leads to an infinite number of tags. ot clear how
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many continuous attributes occur in linguistic corpora #uthor has seen
continuous attributes in spoken linguistic corpora (jaitrly in the time di-

mension) but not in written linguistic corpora.

Differentiable tags Tags that do not have different character distributions, or
whose character distributions PPM is unable to model, dabeanserted.
An extreme case of this might be the task of marking-up the@mumbered
digits in a decimal representation of While automating such a marking up
is possible, doing it with Viterbi search and learnt PPM nisde not. The

author is aware of no linguistic corpora for which this is asue.

Consistency Tags are assumed to be used consistently. This does not d¢rold f
many real-world situations, but curated textual corpoealscoming more
common. There are also various tools such asjtiglgich regularise some

aspects of HTML/XHTML.

These three limitations are shared with all directly corapée applications of
searching using Markov models, including TMT and HTK. Theos® set of limi-

tations are implementation-based, caused by choices miagele building CEM.

Number of tags CEM has an upper bound on the number of Markov models and
thus of tags modelled. The implementation represents tagg Wnicode
characters from the private use rangeE000-\uF8FF, of which 3 are re-
served as special markers. While an order of magnitude graiethe num-
ber of tags appearing in commonly used markup such as XHTMathML
and those appearing in this thesis, this limits the use dfrtagsformations as

work-arounds for other limitations.

Nesting of tags CEM cannot represent tags nested directly within tags ofdiees

type. This is currently impossible because in the searclesodly the tag is

! http://jtidy.sourceforge. net/
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noted and not whether it is opening or closing. None of thp@a@ examined
here displays such nesting and while it would be relativalgyeto fix, it
would involve an extra test in the inner loop of the searchrafoen, slowing
searching. An alternative to changing the implementataio transform the
text so that every odd-depth tag has a different name, amdube state-tying
to tie the odd and even tags together. HTK supports models asithese,

TMT does not.

Adaptive Models The PPM models implemented in CEM are not adaptive. This
means that the Baum—-Welch algorithm cannot be applied anythae the
document level, for example to allow intra-document legniThis is likely
to be a problem when the re-estimation text contains relgtifew but un-
usually large documents, allowing few re-estimation cgcléthe documents
are internally homogeneous, it may be possible to overctiséy splitting
them to increase the number of inter-document re-estimatyeles. Both

HTK and TMT can be adaptive.

Streaming documents Documents are held entirely in memory rather than being
streamed. Holding documents in memory consumes extra nyeriéhile
this was not a problem for corpora used in this work, whicheh@asonably
short documents, it would prevent processing of large derisa Documents
as large as 6MB (unmarked up size) have been successfulkethap. Doc-
ument length is linearly related to this aspect of memorysaomption. HTK

allows documents to be streamed, TMT does not.

Document-at-once processingAn entire XML document, rather than an XML
fragment, must be marked up at once. The command line tdaceeCEM
requires documents be read from the file system, one docuypeeriile. A
Java interface allowing arbitrary XML nodes to be markedexsts but is

not used in the experiments presented here. Marking-upndectfragments
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is important in interfacing CEM with other systems. Both HTKdahiMT

have interfaces allowing partial documents to be processed

Integer overflow The PPM models implemented in CEM implicitly assume that
none of their counters rolls over. This assumption holdessimore than
231 — 1 characters of training data (or combined training and teredion
data) are seen. HTK overcomes this limit by encoding prdib@si as
floating-point numbers rather than as ratios of integersT TdMercomes this
limit using integers that are scaled prior to overflow. Thielacould be

worked into CEM.

CEM does not have a mode of operation which calculates themnof entire
documents in each of the Markov models. This is used efiegtisy TMT for
calculation of whole document metadata such as languageyame:. Of these
implementation limitations, only making the PPM modelsgd& and removing

the upper bound on the number of tags would require extensdesign of CEM.

7.5 Problems Suitable for CEM and Text
Augmentation

There are several broad indicators that metadata will b&edarp well by CEM: it
should be relatively fine-grained, at the character, wonghoase level; it should be
discriminatable from the immediately surrounding texer#hshould be a training
corpus which matches the testing text sufficiently well tddoa model from (or
text available to build such corpus from); if the testingtiexchanging with time, it
should be changing sufficiently slowly that the model candsestimated to track
the changes.

Segmentation problems that meet these requirements athedsegmentation

of languages written without spaces between words (i.e. €&8kinJapanese and
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Thai) and locating potential hyphenation points in Eurapaguages (i.e. En-
glish, German and French). Classification problems that mhese requirements
include part-of-speech tagging, finding proper nouns, emalairesses, URLS, stock,
cross-references and similar classes of textual entikesity-extraction problems
that meet these requirements include marking-up biblges, title and frontis
pages, email headers, standard forms and other highlgtgtad sections of text.

Parsing of many computer programming languages, incluidgeme, Java
and C, into an XML representation is an entity-extractionbpem, although not
one CEM is ideal for, because of the length of structures waahl Parsing of the
Python language is not, and CEM is not capable of this taskcdheept ‘the same
indentation as the previous line’ cannot be learnt using PPM

In all cases, higher-order reasoning based on the inferetddata is beyond
the ability of CEM. For example, while it can find proper noun&nglish text, but
it cannot be used to find equivalences between different hosed for the same
subject, because this requires reasoning about on nooesdjgalues. Since this
higher-order reasoning is an integral part of many systeses in the wild, CEM

is unlikely to be a suitable drop-in replacement for manyeys.

7.6 Training Corpora Sizes

The relative success of text augmentation on the Compugstpus, with only 38
issues of 1200 words, shows that augmentation can be usefnlvehen trained
on relatively small volumes of text. Certainly this augméotais of high enough
quality to be used for transforming the document for prest@an to end users.
With F-measures as low as 55%, however, the augmented texidshe used with
care. In particular, the compilation of indexes and of eoted terms, in which
recurring terms contribute less than singly-occurringntesshould be avoided, as

this emphasises errors, which tend to be unique, singlyroiog items.
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Estimating the quantity of training text needed to produesults of a certain
quality is challenging because of the many factors thatemfide this, but it seems
apparent, supported by the experimental results in Chapteaémodel discrimi-
nation is key. For example in the Computists’ corpus, thdasscriminated URL
and email tags were augmented reliably, whereas the pd@tyiminated name,
organisation and location tags were augmented poorly,itdespnsiderably more
examples being seen in training.

The incremental development of the Computists’ corpus,thmyevith an ex-
amination of the errors of text augmentation systems |gpthie correction of the
training text, is likely to be particularly scalable, siritallows leveraging of work
already completed to converge on a consistently marked gguso Unfortunately,
incremental development may reveal flaws in the initial ag#tions, which are un-
likely to be rectifiable without considerable work.

The automated conversion of existing data and metadataictwrpus, as for
the bibliography corpus, has the advantage that the metadagxisting data is
presumably present for a reason, reflecting the use or mganithe data. The
conversion is automated, so if the conversion reveals ssswan be re-performed
completely.

Automatic conversion is limited to those corpora for whictu#table data source
can be found with suitable metadata, and those found arkelylio be structured
to allow for control of arbitrary variables of interest. T9ewth of curated reposi-
tories may increase the likelihood that a corpus alreadsteiat can be converted,

extended or developed to be suitable.

7.7 Original Contributions

A number of original contributions are made in this thesissy&tem called ‘Col-

loquial Entropy Markup’ or CEM was designed and implement€&M builds a
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hidden Markov model from a corpus of marked-up XML documemd uses vari-
ants of Viterbi search to augment unmarked-up XML documauitis tags in the
marked-up XML documents.

Four corpora were used. The Reuters’ and segmentation eorpguired rela-
tively little data preparation. The Computists’ corpus wagesmatically re-marked-
up. The bibliography corpus is a new corpus.

The following are the key novel aspects of the work preseim¢iis thesis.

e Partitioning of tag insertion problems into a coherent teory with three

taxa (Section 2.1.2).

e Exploration of the relationship between PPM (PredictionRaytial Match-

ing) models and Markov models (Section 3.3). Previouslighbd as [164].
e Expansion of text augmentation to include nested tags (€hdjpt

e The best first (Section 4.3.2) optimisation, the automatiemnisation (Sec-
tion 4.3.3), alphabet reduction (Section 4.3.4) and Tag€ctiSn 4.3.6)

heuristics.

e Detailed analysis of the search space size of tag inse@eation 4.4). Ear-

lier versions of this work were published as [162].

¢ Detailed analysis of the correctness measures for difféypes of tag inser-

tion problems and research methodology (Section 2.3).

e Development of an entropy-based technique to determinetheheag-
insertion errors are the result of a PPM modelling failureoba searching

failure (Section 2.3.4).

e A new extension of confusion matrices suitable for evahgtiierarchical

many-class classification problems (Section 4.6.4).
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7.8 Open Questions
There are a number of open questions not examined in thisthes

1. Whether the conceptualisation of context used here (aselwbkre) is
optimal. There is an alternative method for computing thetext of
the current character in a character stream. This was disedvdur-
ing the experimental work for this thesis, but not exploredhe con-
text for e in ...<a>ab</a><b>cd</b><c>e... can be ‘collapsed’ to
...<al><b/>e.... This could be achieved by substituting the character rep-
resenting the transition into the tag for the entire tagsHpiproach is likely to
be most successful where tag densities are highest, sunlpastiof-speech

tagging, where state-of-the-art systems take advantag@peir-adjacency.

2. Whether adding a default tag with an uninitialised (umied) model acces-
sible from every context would remove the tendency to plagla-entropy

sequences in the model with the least training data.

3. Whether different escape methods would reduce the tepdenmace high

entropy sequences in the model with the least training data.

4. Whether a more universal similarity metric such as Kolmmogaomplex-
ity [85, 86] might be an appropriate measure for comparirggeaces. This
would move evaluation to a theoretical framework indepabdéany partic-
ular approach to solving the problem and resolve some ofdh®ptexities of

evaluating performance.

5. Whether certain textual strings (suchReferencesn a line by itself) can
be used as synchronisation points in a finite automata s&hsis likely to
form part of the infrastructure integrating CEM into a possitigital library
structure, which will need ways of detecting when it is apiate to use

various tools such as CEM.
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6. Whether Teahan search or Viterbi search will perform betieertain classes

of text-augmentation tasks.

All of these seem useful avenues of investigation, 1 and Agosignificantly
more novel than 2 and 3. Issues 5 and 6 are likely to be diracityimmediately

relevant to a practical production system.
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Appendix A
Corpora Samples

This appendix contains samples from each of the corporaiskga in Chapter 5
and used throughout this thesis. For reasons of space, @ntsitmave been
abbreviated, an ellipsis marks a point at which content leas lbemoved. All
documents are presented after preparation rather thae stdke in which they
were received.

A.1 Computists’ Corpus

The following is an issue from the Computists’ corpus. Theasris described in
Section 5.1.

<issue>
AlVol. 8, No. 1.1

IS <d>January 6, 199&/d>

CS<s>THE COMPUTISTS’ COMMUNIQUE/s>
" Careers beyond programmirig.

1&gt;&gt; <o>NSkK</0>news.

2&gt;&gt; Other funding.

3&gt;&gt; Career jobs.

In the beginning the Universe was created. This has made

a lot of people very angry and been widely regarded as a bad move.

— <n>Douglas Adams/n>. [<s>QotD</s>, <d>160ct9&/d>.]
Greetings, Computists!

The<s>Computists’ Communiqugs>will now arrive three times

<d>per week:/d>, on Tuesdays, Wednesdays, and Thursdays. Issues
will be shorter, for easy reading, and may vary a bit in length.

Part of each Wednesday issue will be a table of contents for

<d>that day/d>s CAJ jobs digest. (You can request the digest issue

if you see an interesting opportunity.) I'm reducing the number

of <d>publication weeks/d>to 40 (or 120 issues!), to give me more time
for Web work and other activities. That means there will be
about<d>one week/d><d>each montk:/d>with no <s>Communique/s>s, usually
with

a holiday or at the end of.d>the monthk:/d>. All to serve you better,

of course, but do get in touch with me if you have suggestions

about the changes.

Membership fees will hold steady at>last year:/d>'s level,

but with a new' departmental raté for groups of up to five
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participants. At<m>$195</m>per year (or half of that outside thel>US</I>),
it should be attractive to lab directors and other group leaders.

(Please circulate copies of thes>Communique/s>to the appropriate

people. They can write to me or visit &tu>http://www.computists.coaiu>&gt;
to check out the service.) Members may offer-two-monthc/d>

free trials to friends, oxcd>three-montk:/d>free trials

(excluding their own dues) for groups.

My wife <n>Lily </n>will be taking over some of the renewal

billing communication, and will be getting in touch with you.

The captain is on holiday, but hicool job of <d>the week:/d>"

should return inkd>a week</d>or two. (Sometimes he just doesn't

find a cool enough job.) We're taking care of business,

so have a fun and prosperoysi>new yeak/d>!

1&gt;&gt; <o>NSk</0>news:

<0>NSk</o>'s Awards for the Integration of Research and Education

at Baccalaureate Institutions program will make 10-20 awards of

up to<m>$00K</m>. Eligibility is restricted to Carnegie Classification
Baccalaureate | and Il institutions and Specialized Technical

institutions that award only baccalaureate degrees. Deadlines

are <d>04Feb98&/d>for letters of intent<d>17Mar98</d>for preliminary
applications, and<d>17Jun9&/d>for full applications.

&lt; <u>http://Iwww.nsf.gov/od/osti/u>&gt;. [ <s>grants</s>, <d>23Dec9&/d>.]
<0>NSk</o>'s CISE and ENG directorates have a Combined
Research-Curriculum Development (CRCD) Program to support

dynamic, relevant engineering and CS/IS education.
<d>31Mar98</d>deadline.

&lt; <u>http://www.nsf.gov/cgi-bin/getpub?nsfo838>&gt;.

[ <n>Maria Zemankova/n>&lt; <e>mzemanko@nsf.gave>&gt;, <s>dbworld</s>,
<d>30Dec9%/d>.]

I have been poor and | have been rich. Rich is better.

— <n>Sophie Tucketr/n>, American singer. {s>DailyQuote</s>,
<d>02Jan9&/d>.]

<lissue>
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A.2 Bibliography Corpus

The following is a bibliography from the bibliography copurhe corpus is
described in Section 5.2.

<bibliography xsi:schemalocatiori=http://www.greenstone.otg

filename= /research/say1/bib/tmpib_files/graphics/2748.bib><plain><bibproc>
<p></p>References

<p></p>[1] <bibbody><article><author><name><first>Till
B.</first><last>Anders</last></name>-and

<name> <first>Wolfgang/first> <last>Jachmann</last></name> </author> <title >Cross
sections with polarized spin-lover2 particles in terms of helicity

amplitudes</title> <journal><emphasis-Journal of Mathematical

Physicsg</emphasis- </journal><volume>24</volume>(<number-12</number-): <pages-2847-
2854 </pages> <date><month>Decembet/month><year-1983</year> </date>.</article></bibbody:
<p></p>[2] <bibbody><article><author><name><first>V.
G.</first><last>Bagrov</last></name><name> <first>V.
V.</first><last>Belov/last></name-and <name> <first>1.
M.</first><last>Ternov</last></name> </author> <title>Quasiclassical

trajectory-coherent states of a particle in an arbitrary electromagnetic
field.</title><journal><emphasis-Journal of Mathematical

Physics</emphasis </journal><volume>24</volume>(<number-12</number-): <pages-2855-

2859</pages- <date><month>Decembet/month><year-1983</year> </date>.</article></bibbody:

<p></p>[25] <bibbody><article><author><name><first>W.
M.</first><last>Zheng</last></name></author> <title>The Darboux

transformation and solvable double-well potential models for Schrodinger

equations</title> <journal><emphasis-Journal of Mathematical

Physicsg/emphasis </journal><volume>25</volume>(<number-1</number-): <pages-88-
90,</pages><date><month>January/month><year>1984/year> </date>.</article></bibbody>
<p></p>Page<pagematter2 </pagematter

</bibproc></plain></bibliography>

If the output is indented to show the full structure, it apgess:

<bibliography xsi:schemalocation="http://www.greenstone.org” file-
name="[research/sayl/bib/tmpib_files/graphics/2748.bib*

<plain>
<bibproc>

<p> </p> References
<p> </p> [1]
<bibbody>

<article>
<author>
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<hame>
<first> Till B.</first>
<last> Anders</last>
</name> and
<name>
<first> Wolfgang</first>
<last> Jachmann</last>
</name>
</author>
<title> Cross
sections with polarized spin-1over2 particles in
terms of helicity amplitudes/title>
<journal>
<emphasis- Journal of Mathematical
Physics</emphasis
<ljournal>
<volume> 24</volume> (
<number- 12</number> ):
<pages- 2847-2854:/pages-
<date>
<month> Decembeg/month>

<year> 1983</year>
</date> .</article>
</bibbody>

<p> </p> [2]
<bibbody>
<article>
<author>
<name-
<first> V. G</first>
<last> Bagrov</last>
</name>
<name-
<first> V. V</first>
<last> Belov/last>
</name> and
<name-
<first> I. M. </first>
<last> Ternov</last>
</name>
</author>

<title> Quasiclassical trajectory-coherent states of
a particle in an arbitrary electromagnetic field/title>

<journal>
<emphasis- Journal of Mathematical Physics/emphasis-
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<ljournal>
<volume> 24</volume> (
<number> 12</number> ):
<pages> 2855-
2859</pages>
<date>
<month> Decembet/month>
<year> 1983</year>
</date> .</article>
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A.3 Segmentation Corpus

The following is a single document from the segmentatiopasr Whitespace
appearing here is a side-effect of layout, the only whitespa the original file is a
terminal EOL. The corpus is described in Section 5.3.
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A.4 Reuters’ Corpus

The following is a single document from the Reuters’ corpuse €orpus itself is
described in Section 5.4.

<documernt <NNP> PDCP</NNP> <NNP> Development/NNP> <NNP>
Bank</NNP> <VBD> said</VBD> <IN> on</IN> <NNP> Thursday/NNP>
<PRPSTRING its</PRPSTRING <NN> board</NN> <VBD> approvec/VBD>
<DT> the</DT> <NN> issue</NN> <IN> of</IN> <CD> one</CD> <CD>
billion </CD> <NN> pesos</NN> <JJ> worth</JJ> <IN> of</IN> <JJ>
convertible</JJ> <JJ> preferred</JJ> <CD> shares</CD>

<DT> The</DT> <NNS> proceeds://NNS> <IN> of</IN> <DT> the</DT> <NN>
issue</NN> <MD> will </MD> <VB> fund</VB> <NN> lending</NN> <NN>
operations</NN> <NN> computerisations/NN> <CC> and</CC> <VBG>
refurbishing</VBG> <IN> of</IN> <NN> branch</NN> <NN> officesg/NN>
<PRP> it</PRP> <JJ> said</JJ>
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