
DEPARTMENT OF CHEMISTRY

Extraction of chemical
structures and reactions

from the literature

Daniel Mark Lowe
Pembroke College

This dissertation is submitted for the degree of Doctor of Philosophy

June 2012

http://en.wikipedia.org/wiki/File:Cambridge_University_Crest.svg

I

Disclaimer

This dissertation is the result of my own work and includes nothing which is the outcome of

work done in collaboration except where specifically indicated in the text.

This dissertation does not exceed the word limit (60000) set by the Chemistry Degree

Committee.

II

Abstract

The ever increasing quantity of chemical literature necessitates the creation of automated

techniques for extracting relevant information. This work focuses on two aspects: the conversion of

chemical names to computer readable structure representations and the extraction of chemical

reactions from text.

Chemical names are a common way of communicating chemical structure information. OPSIN

(Open Parser for Systematic IUPAC Nomenclature), an open source, freely available algorithm for

converting chemical names to structures was developed. OPSIN employs a regular grammar to direct

tokenisation and parsing leading to the generation of an XML parse tree. Nomenclature operations

are applied successively to the tree with many requiring the manipulation of an in-memory

connection table representation of the structure under construction. Areas of nomenclature

supported are described with attention being drawn to difficulties that may be encountered in name

to structure conversion. Results on sets of generated names and names extracted from patents are

presented. On generated names, recall of between 96.2% and 99.0% was achieved with a lower

bound of 97.9% on precision with all results either being comparable or superior to the tested

commercial solutions. On the patent names OPSIN’s recall was 2-10% higher than the tested

solutions when the patent names were processed as found in the patents. The uses of OPSIN as a

web service and as a tool for identifying chemical names in text are shown to demonstrate the direct

utility of this algorithm.

A software system for extracting chemical reactions from the text of chemical patents was

developed. The system relies on the output of ChemicalTagger, a tool for tagging words and

identifying phrases of importance in experimental chemistry text. Improvements to this tool

required to facilitate this task are documented. The structure of chemical entities are where possible

determined using OPSIN in conjunction with a dictionary of name to structure relationships.

Extracted reactions are atom mapped to confirm that they are chemically consistent. 424,621 atom

mapped reactions were extracted from 65,034 organic chemistry USPTO patents. On a sample of 100

of these extracted reactions chemical entities were identified with 96.4% recall and 88.9% precision.

Quantities could be associated with reagents in 98.8% of cases and 64.9% of cases for products

whilst the correct role was assigned to chemical entities in 91.8% of cases. Qualitatively the system

captured the essence of the reaction in 95% of cases. This system is expected to be useful in the

creation of searchable databases of reactions from chemical patents and in facilitating analysis of

the properties of large populations of reactions.

III

Acknowledgements

I would like to thank my supervisors, Professor Robert Glen and Professor Peter Murray-Rust,

for their guidance and advice. I would also like to thank Dr Peter Corbett, for his initial work on the

OPSIN codebase which was the precursor to the system that I developed, Dr Lezan Hawizy for her

work on ChemicalTagger and many useful discussions on extending it, Dr David Jessop for his

paragraph classifier, Albina Asadulina for her contribution to fused ring nomenclature support and

Dr Sam Adams for many fruitful discussions on cheminformatics algorithms. I would also like to

thank my colleagues at the Unilever Centre for providing such an enjoyable working environment. I

am very grateful to Boehringer Ingelheim for funding my research.

IV

Table of Contents

Disclaimer .. I

Abstract ... II

Table of Contents ... IV

Glossary ... XIII

Chapter 1 Introduction ... 1

1.1 Where can text mining be performed? .. 3

1.2 What can be text mined? ... 4

1.3 Overview of research project ... 4

Chapter 2 Tools and Methods .. 6

2.1 XML ... 6

2.2 Chemical Markup Language ... 7

2.3 SMILES... 8

2.4 InChI .. 10

2.5 Formal grammars .. 11

2.6 Automata .. 12

2.7 Regular expressions .. 14

2.8 OSCAR4 ... 15

2.9 ChemicalTagger .. 18

2.10 Apache Maven .. 22

2.11 Distributed version control ... 25

2.12 Continuous integration testing ... 26

V

Chapter 3 Conversion of Chemical Names to Structures ... 28

3.1 Introduction .. 28

3.1.1 History of systematic nomenclature.. 28

3.1.1 Classes of chemical name .. 29

3.1.2 General construction of systematic names ... 29

3.1.3 History of programmatic name to structure conversion ... 31

3.1.4 Current solutions ... 32

3.2 Development and implementation of OPSIN ... 34

3.2.1 Strategy for development of OPSIN .. 34

3.2.2 Architecture ... 34

3.2.3 Pre-processing ... 35

3.2.4 Tokenisation and parsing ... 36

3.2.4.1 Introduction .. 36

3.2.4.2 Tokenisation algorithm ... 37

3.2.4.3 Looking up tokens in the lexicon .. 40

3.2.4.4 Generation of parses .. 42

3.2.4.5 Drawbacks of a regular grammar ... 44

3.2.4.6 Right to left parsing .. 44

3.2.4.7 XML generation .. 45

3.2.5 CAS index name uninversion ... 45

3.2.6 Chemical word rule assignment .. 47

3.2.7 Component generation ... 49

3.2.7.1 XML Transformations ... 50

3.2.7.2 Generation of alkanes ... 51

VI

3.2.7.3 Generation of heteroatom hydrides... 53

3.2.7.4 Generation of heterogeneous heteroatom hydrides ... 53

3.2.7.5 Generation of hydrocarbon ring systems ... 54

3.2.7.5a Von Baeyer nomenclature .. 54

3.2.7.5b Monocyclic Spiro nomenclature ... 56

3.2.7.5c Other hydrocarbon ring nomenclature ... 58

3.2.7.6 Rejection of parses caused by nomenclature ambiguity 59

3.2.7.7 Handling of nomenclature irregularities .. 61

3.2.8 Connection table generation ... 63

3.2.9 Specific nomenclature handling .. 64

3.2.9.1 Groups with indeterminately positioned structural features 65

3.2.9.2 Traditional alkane/carboxylic acid locants ... 66

3.2.9.3 Skeletal replacement nomenclature .. 66

3.2.9.4 Conjunctive nomenclature ... 67

3.2.9.5 Suffix handling .. 68

3.2.9.6 Charge and oxidation numbers .. 71

3.2.9.7 Indication of saturation and unsaturation .. 72

3.2.9.7a Unsaturation terms ... 72

3.2.9.7b Hydro, dehydro, indicated hydrogen and added hydrogen 73

3.2.9.8 Subtractive nomenclature .. 75

3.2.9.9 Functional replacement .. 76

3.2.9.9a Infix Functional Replacement ... 76

3.2.9.9b Prefix Functional Replacement ... 78

3.2.9.10 Hantzsch-Widman nomenclature ... 81

3.2.9.11 Lambda convention .. 83

3.2.9.12 Fused Ring nomenclature ... 84

VII

3.2.9.12a Fused Ring System Construction .. 84

3.2.9.12b Benzo fusions .. 87

3.2.9.12c Multi-parent systems .. 87

3.2.9.12d Idealised grid construction ... 88

3.2.9.12e Grid orientation .. 91

3.2.9.12f Peripheral numbering .. 94

3.2.9.13 Bridges for fused ring systems .. 94

3.2.9.14 Ring assemblies ... 95

3.2.9.15 Polycyclic spiro nomenclature .. 97

3.2.9.16 ᴅ/ʟ stereochemistry .. 98

3.2.9.17 Amino acid nomenclature .. 99

3.2.9.18 Carbohydrate nomenclature .. 101

3.2.9.18a Systematic carbohydrate chains ... 102

3.2.10 Structure assembly .. 103

3.2.10.1 Substitutive nomenclature ... 103

3.2.10.2 Additive nomenclature ... 105

3.2.10.3 Multiplicative nomenclature .. 106

3.2.10.4 Functional class nomenclature ... 107

3.2.10.5 Structure-based polymer nomenclature .. 108

3.2.11 Kekulisation ... 109

3.2.12 Valency checking ... 110

3.2.13 Application of stoichiometry ... 111

3.2.13.1 Mixtures .. 111

3.2.13.2 Charge balancing .. 111

3.2.14 Stereochemistry handling .. 113

3.2.14.1 Detection of stereocentres ... 113

VIII

3.2.14.2 Applying stereochemistry ... 114

3.2.14.2a R/S/E/Z stereochemistry ... 115

3.2.14.2b Cis/trans stereochemistry .. 117

3.2.14.2c Alpha/beta stereochemistry ... 118

3.2.14.2d Carbohydrate stereochemistry ... 119

3.2.15 Ambiguous and formally incorrect chemical names ... 119

3.2.15.1 Implicit bracketing .. 120

3.2.15.2 Implicit spaces .. 121

3.2.16 Output formats .. 124

3.2.16.1 CML ... 124

3.2.16.2 SMILES... 125

3.2.16.3 InChI .. 126

3.3 Results and discussion .. 127

3.3.1 Methodology ... 127

3.3.1.1 Generated name test sets .. 127

3.3.1.2 Chemical patents test set ... 128

3.3.2 Data obtained .. 129

3.3.2.1 ACD/Name generated names ... 129

3.3.2.2 ChemBioDraw generated names .. 129

3.3.2.3 Lexichem generated names .. 130

3.3.2.4 Marvin generated names.. 130

3.3.2.5 Compounds from headings in USPTO Patents .. 131

3.3.3 Discussion .. 131

3.4 Implementations... 133

3.4.1 Java library ... 133

IX

3.4.2 Command-line interface .. 135

3.4.3 OPSIN web service ... 135

3.4.4 OPSIN Document Extractor.. 136

3.5 Areas for future work ... 138

3.5.1 Vocabulary ... 138

3.5.2 Carbohydrate nomenclature ... 139

3.5.3 Inorganic nomenclature .. 139

3.5.4 Stereochemistry ... 140

3.5.5 Nomenclature variants .. 140

3.5.6 Detection and handling of ambiguous names ... 141

3.5.7 Detection of typographical errors ... 141

3.5.8 Foreign language support .. 142

3.6 Conclusions ... 143

Chapter 4 Extraction of Chemical Reactions from the Patent Literature 144

4.1 Introduction .. 144

4.2 Previous attempts at text mining chemical reactions .. 145

4.2.1 Chemical Abstracts Service .. 145

4.2.2 University of Cambridge .. 146

4.2.3 University of Toronto ... 147

4.3 Corpus choice ... 147

4.4 Sectioning the relevant text within a patent .. 147

4.4.1 Archetypal experimental chemistry section .. 147

X

4.4.2 Sectioning workflow .. 148

4.4.3 Identifying paragraphs and headings .. 150

4.4.4 Paragraph classification ... 150

4.4.5 Chemical tagging .. 150

4.4.5.1 Improved tokenisation ... 150

4.4.5.2 Improved robustness of sentence parser ... 151

4.4.5.3 Recognition of new concepts ... 152

4.4.5.4 Improved recognition of existing concepts .. 152

4.4.5.5 Improved action phrase assignment .. 153

4.4.5.6 Improved extensibility .. 154

4.4.6 Identification of inline headings .. 154

4.4.7 Processing of headings .. 155

4.4.8 Processing of paragraphs ... 156

4.5 Section Parsing .. 156

4.5.1 Processing of chemical entities ... 158

4.5.1.1 Name to structure .. 158

4.5.1.2 Anaphora identification and resolution.. 158

4.5.1.3 Property Extraction ... 160

4.5.1.4 Chemical type assignment .. 160

4.5.2 Identification of discourse type ... 161

4.5.3 Chemical role assignment .. 162

4.5.3.1 Product Role ... 162

4.5.3.2 Reactant Role .. 162

4.5.3.3 Solvent Role .. 162

4.5.3.4 Catalyst Role ... 163

XI

4.6 Reaction mapping ... 164

4.6.1 Indigo reaction creation .. 164

4.6.2 Atom-atom mapping ... 165

4.6.3 Stoichiometry calculation .. 165

4.6.4 Output .. 166

4.7 Evaluation ... 168

4.7.1 Methodology ... 168

4.7.2 Results .. 169

4.7.2.1 Errors encountered ... 169

4.7.2.2 Overall statistics .. 170

4.7.2.3 Evaluated reaction quality .. 170

4.8 Discussion ... 171

4.9 Comparison to other approaches ... 173

4.10 Example use: solvent analysis ... 174

4.11 Limitations and areas for future work .. 175

4.11.1 Interrelation between taggers ... 175

4.11.2 Chemical entity type assignment .. 175

4.11.3 Solvents contained within another entity ... 175

4.11.4 Acid/Base workup steps .. 176

4.11.5 Additional roles .. 176

4.11.6 Structurally unknown intermediates ... 176

4.11.7 Presentation of reactions .. 176

4.11.8 Reaction conditions ... 176

XII

4.12 Conclusions ... 176

Chapter 5 Overall Summary of Results and Conclusions .. 178

References .. 180

Appendix A .. 192

Appendix B .. 193

Appendix C .. 194

XIII

Glossary

AST = Abstract Syntax Tree

CAS = Chemical Abstracts Service

ChEBI = Chemical Entities of Biological Interest

CIP = Cahn-Ingold-Prelog

CML = Chemical Markup Language

DTD = Document Type Definition

EPO = European Patent Office

InChI = IUPAC International Chemical Identifier

IPC = International Patent Classification

IUPAC = International Union of Pure and Applied Chemistry

MEMM = Maximum-Entropy Markov Model

OCR = Optical Character Recognition

OPSIN = Open Parser for Systematic IUPAC Nomenclature

OSCAR = Open Source Chemistry Analysis Routines

POS = Part Of Speech

SMILES = Simplified Molecular Input Line Entry Specification

USPTO = United States Patent and Trademark Office

WIPO = World Intellectual Property Organization

XML = eXtensible Markup Language

1

Chapter 1 Introduction

The scientific literature, comprising journal articles (Figure 1-1), patents (Figure 1-2) and

theses, is continuing to grow rapidly.

Figure 1-1 PubMed articles indexed per year from 1950-2011
1

Figure 1-2 World-wide chemistry patent applications per year from 2000-2009
2

Due to the size of the literature automated methods must be employed to allow identification

of relevant resources. Fortunately much of the literature is available in digital form whether by being

natively created as such or, in the case of legacy material, by being scanned. Optical character

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000
1

9
5

0

1
9

5
3

1
9

5
6

1
9

5
9

1
9

6
2

1
9

6
5

1
9

6
8

1
9

7
1

1
9

7
4

1
9

7
7

1
9

8
0

1
9

8
3

1
9

8
6

1
9

8
9

1
9

9
2

1
9

9
5

1
9

9
8

2
0

0
1

2
0

0
4

2
0

0
7

2
0

1
0

A
rt

ic
le

s
p

e
r

ye
ar

0

50000

100000

150000

200000

250000

300000

350000

400000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

P
at

e
n

t
ap

p
lic

at
io

n
s

p
e

r
ye

ar

2

recognition (OCR) is routinely employed on scanned documents to allow their text to be computer

readable. Using modern search engines, employing technologies such as Apache Lucene3, full text

searching is now routine; however such searches are not sufficient to allow domain specific queries

as traditional search engines have limited understanding of the content of the documents over

which they are searching.

Ontologies may be employed to formally encode the relation between entities in a domain

e.g. those that are hyponyms of other entities, and to encode terms that are synonymous with a

given concept in the ontology. Examples of such ontologies include the Gene Ontology4 and the

ChEBI5 (Chemical Entities of Biological Interest) ontology. Unlike some fields, the number of possible

entities in chemistry is essentially unbounded. For example, the number is of the order of 1060–10100

just for drug-like small molecule entities6. This, coupled with the use of various forms of systematic

nomenclature that lead to many names for the same chemical entity, makes the existence of an

ontology describing all possible chemical entities and their possible synonyms impractical.

For small molecules, a natural identifier is the chemical structure itself and hence much text

mining effort in chemistry has focused on the identification and conversion of textual and graphical

entities into chemical structures.

Textual chemical entities may be expressed in many ways including systematic nomenclature

such as IUPAC nomenclature, trivial names, chemical line identifiers e.g. InChI (Section 2.4) and

chemical formulae. In biomedical text mining identification of entities can be primarily achieved by

dictionary-based approaches7. In chemical text mining, however, dictionary-based approaches are

insufficient to recognise much systematic nomenclature, line identifiers and chemical formulae. As a

result, recent research on the identification of chemical entities from text has focused primarily on

machine-learning approaches8–15. More recently, grammar-based approaches have also been shown

to be applicable16.

Just as for the identification of textual chemical entities, resolution to chemical structures, in

the general case cannot be accomplished by dictionary approaches. As a result chemical name to

structure algorithms are required to allow the interpretation of systematic chemical nomenclature.

Corresponding efforts exist to extract chemical structures from images. Eight different

solutions have been reported, two of which are currently open source, that are under active

development 17–24. The area is rapidly progressing with new versions and new solutions significantly

increasing the percentage of chemical structure diagrams that can be recognised correctly. For

3

example, using one particular test set 69%25 (OSRA, 2009) to 88%22 (MolRec, 2012). With the growing maturity

of image to structure software, future research can be expected to increasingly leverage the

combination of the results of text mining and image to structure26.

Due to concerns over the accuracy of image to structure software, at the time the project was

initiated, and the pre-existence of an actively developed open source image to structure solution it

was decided to focus this research project solely on extracting information from text.

The lack of an open source name to structure algorithm with useful levels of performance

necessitated the development of such a name to structure algorithm as a critical part of this project.

This forms the first part of this project.

1.1 Where can text mining be performed?

Much of the chemical literature published in journals remains behind pay-walls with policies

on text mining that differ significantly between publishers and, often with restrictions and/or

charges attached27. A further problem is that no standardised data format exists for the

representation of journal articles meaning that some level of adaption is likely to be required for a

tool to work with articles from a particular journal.

Patents also provide a vast resource of chemical information, yet have the key advantage of

being in the public domain. More recent patents also have the advantage of being presented in

standardised data formats. Historically, access to bulk patent downloads has been difficult, but, with

the recent collaboration between the USPTO (United States Patent and Trademark Office) and

Google Patents28, the entire archive of US Patents can now be downloaded trivially.

Other important sources of patents include the European Patent Office (EPO), Japan Patent

Office, Korean Intellectual Property Office and the State Intellectual Property Office of the People's

Republic of China. It should, however, be considered that the most important patents are likely to

be filed at multiple patent offices. The World Intellectual Property Organization (WIPO) is an

important source of patent applications that are intended to be processed at multiple patent offices

but have not yet reached the “national phase” where they are examined by the national patent

offices.

Due to their ease of access and lack of OCR mistakes, USPTO patent applications from 2008 to

2011 forms the corpus used for text mining in this project.

4

1.2 What can be text mined?

Text mining has seen widespread use in bioinformatics for discovering relationships between

entities e.g. chemical interactions with Cytochrome P450 29–31 or protein-protein interactions32. Uses

in chemistry have been more limited including annotation of entities33 (cf. the RSC’s Project

Prospect), the association of linked and/or calculated data with identified entities34,35 (cf.

ChemAxon’s Chemicalize), and allowing patents to be structure searchable though large scale

extraction of chemical structures (cf. SureChem36, IBM BAO strategic IP insight platform37).

No large scale attempt at automatically extracting reactions from the literature has been

attempted which is the problem this project will address. Such a system has the potential to allow

more precise queries of the mined reactions and to improve knowledge driven reaction prediction

algorithms38.

1.3 Overview of research project

Chapter 2 describes the theory and software solutions that underlie the solutions that have

been developed. Covered topics include, computer readable chemical structure serialisations,

grammars and automata, software developed for identifying chemical entities and annotating

experimental chemistry text, and techniques that help provide a productive software development

environment.

Chapter 3 describes the development of OPSIN, a chemical name to structure algorithm. Other

existing and historic attempts at name to structure are discussed followed by a detailed description

of the processes that allow OPSIN to convert a name into a computer readable structure

representation. The forms of nomenclature supported by OPSIN are described, exemplified and,

where of sufficient complexity, the algorithms used to process them are described. OPSIN’s

performance is evaluated on sets of generated chemical names and names extracted from patents.

The various ways that OPSIN is used including as a command-line interface, web service and tool for

identifying systematic chemical names in free text are described.

Chapter 4 describes the development of software for the automated extraction of reactions

from patents. Previous attempts are discussed followed by a detailed description of the reaction

extraction system that has been developed. This covers the steps of identifying experimental

sections, determining the type and role of chemical entities and finally producing an atom-atom map

5

between the reactants and product/s. Precision and recall estimates are derived from a subset of the

four years of USPTO patents over which the system has been run.

Chapter 5 summarises the outcomes and future directions of this project.

6

Chapter 2 Tools and Methods

2.1 XML

XML (eXtensible Markup Language) is a standard for encoding information using mark-up in a

way that is machine-readable. An XML document may contain elements, attributes, text nodes,

comments, processing instructions, namespace declarations and doctype declarations. To explain the

first three of these, Figure 2-1 will be used as an example. The document is formed of elements,

made of labelled start and end tags, in this case inventory and vehicle. An element may be

associated with zero or more attributes e.g. wheels. An element may also have zero or more text

children e.g. ‘car’. To be well formed i.e. valid, an XML document must have a single root from which

all other elements are ultimately descendants.

<inventory>

 <vehicle wheels="4">car</vehicle>

 <vehicle wheels="3">tricycle</vehicle>

 <vehicle wheels="2">bicycle</vehicle>

</inventory>

Figure 2-1 A simple XML document. The inventory element is the root node of this document.

Comments appear in XML documents outside of other mark-up enclosed between ‘<!--’ and

‘-->’ strings and are often used to give additional information to a human reader.

A processing instruction is enclosed within ‘<?’ and ‘?>’ strings and is intended to give an

instruction to the application processing the document, for example, that the document should be

rendered using a certain style sheet.

A namespace is declared using the reserved attribute name ‘xmlns’ and is used to uniquely

define element and attribute names (Figure 2-2). A good use for namespaces is when merging XML

content from two sources that may have conflicting element names or attributes with the same

name but different semantics. Assuming different namespaces were used in the two different

documents, elements with the same name can be distinguished.

7

<document xmlns:financial="http://foo.bar.org/financial"

xmlns:geographical="http://foo.bar.org/geographical">

 <financial:bank employees="5000" />

 <geographical:bank location="River Tyne" />

</document>

Figure 2-2 Example of namespaces to differentiate between elements with the same name

 A doctype may appear at the start of a document and associates the XML document with a

Document Type Definition (DTD). A DTD defines the basic structure of a document e.g. which

elements are allowed, which elements an element may have as children, what the content of a

particular attribute may be etc.

XML is a versatile data format with uses including web pages, databases and information

exchange over HTTP. While the format is fairly verbose this comes with the advantage that

semantics are explicit rather than implicit as in some other formats. As the format is typically not

compressed to a binary format, the format also has the advantage of often being human

understandable and being editable in standard text editing tools.

XML is employed extensively in OPSIN (Chapter 3) for encoding on-disk resources and as an in-

memory representation of a parse tree. Reading XML files and manipulating in-memory

representations of XML is achieved using the XOM Java XML API39,40.

2.2 Chemical Markup Language

Chemical Markup Language (CML) 41 is the application of XML to hold chemical data. CML was

developed by Professors Murray-Rust and Rzepa and initially announced in 199542. Since then the

format has evolved through numerous revisions and is now supported by many commercial and

open source chemistry applications.

A simple use case of CML is to encode molecular structure (Figure 2-3). The

elements/attributes that are allowed in CML, their allowed values for attributes and the allowed

children for each element are encoded in a schema43,44 which may be used for validation of CML45. If

no appropriate elements are available in CML then additional information may be recorded by the

use of elements or attributes outside of the CML namespace.

8

<cml xmlns="http://www.xml-cml.org/schema">

 <molecule id="m1">

 <atomArray>

 <atom id="a1" elementType="C"/>

 <atom id="a2" elementType="C"/>

 <atom id="a4" elementType="O"/>

 <atom id="a5" elementType="H"/>

 <atom id="a6" elementType="H"/>

 <atom id="a7" elementType="H"/>

 <atom id="a8" elementType="H"/>

 <atom id="a9" elementType="H"/>

 <atom id="a10" elementType="H"/>

 </atomArray>

 <bondArray>

 <bond id="a1_a2" atomRefs2="a1 a2" order="S"/>

 <bond id="a1_a4" atomRefs2="a1 a4" order="S"/>

 <bond id="a1_a5" atomRefs2="a1 a5" order="S"/>

 <bond id="a1_a6" atomRefs2="a1 a6" order="S"/>

 <bond id="a2_a7" atomRefs2="a2 a7" order="S"/>

 <bond id="a2_a8" atomRefs2="a2 a8" order="S"/>

 <bond id="a2_a9" atomRefs2="a2 a9" order="S"/>

 <bond id="a4_a10" atomRefs2="a4 a10" order="S"/>

 </bondArray>

 </molecule>

</cml>

Figure 2-3 A CML document describing the connectivity of ethanol

CML has been extended to cover computational chemistry46, spectral data47 and polymers48. It

has also been extended to cover chemical reactions49. This method of encoding chemical reactions is

employed in Section 4.6.4 for serialising reactions that have been extracted from the patent

literature.

2.3 SMILES

SMILES50 (Simplified Molecular Input Line Entry Specification), published by Daylight in 198850,

is now a widely supported convention for representing a chemical connection table as a string of

ASCII text. The proliferation of applications that can read and/or write SMILES can be explained by its

favourable properties compared to other contemporary line formats. These include its terseness,

ease with which readers and writers can be written and that SMILES are relatively intelligible and

writeable by humans.

Figure 2-4 shows a SMILES string; the string is read from left to right to generate the atoms

and bonds of the molecule. The format contains many optimisations to reduce the length of the

representation and improve readability; hydrogen may be implicit on organic atoms, and bonds are

9

implicitly single or implicitly of type aromatic between aromatic atoms. Full details of the SMILES

specification are available from the OpenSMILES project51 and Daylight52.

N[C@H](C(=O)O)Cc1ccccc1

Figure 2-4 SMILES and structure for L-phenylalanine

The main limitation of SMILES is that it is not intrinsically a canonical format, meaning that a

single connection table can be represented by multiple SMILES (Figure 2-5). While implementations

exist that produce a canonical representation, including implementations in open source toolkits

such as the CDK53 and OpenBabel54, no standard implementation has been agreed upon making

canonical SMILES unsuitable for an interoperable canonical descriptor.

Figure 2-5 Examples of legal SMILES: CCO, OCC, C(O)C, C(C)O, CC1.O1, C1.O2.C12

Other limitations stem from the approximation of molecules as static graphs with well-defined

bond orders. These include the inability to recognise that two molecules are tautomers of each

other or, in the case of mesomers and bonds to metals, that two molecules are identical but simply

represented differently, as exemplified in Figure 2-6. These problems, as well as the problem of

having a universal canonical form are largely addressed by InChI (Section 2.4).

CC[Mg]Br CC[Mg+].[Br-]

Figure 2-6 Two representations of Ethylmagnesium bromide and their canonical SMILES (generated by

OpenBabel)

SMILES are employed by OPSIN as representations for fragments of chemical names and are

one of the program’s output formats. They are also employed in the reaction extraction code for use

as output and to allow data exchange with the Indigo toolkit55.

10

2.4 InChI

InChI or IUPAC International Chemical Identifier56 is a canonical identifier for chemical

compounds. InChIs are formed of layers, in such a way that layers may be removed from right to left

of the InChI without affecting the meaning of the remaining layers (Figure 2-7). This unique feature

of InChI can be utilised to determine at what layer two molecules differ. For example if the InChIs of

two molecules failed to match as is, but matched with the stereochemical layer removed, it can be

deduced that the two molecules differ just in stereochemistry.

Figure 2-7 Standard InChI string with layers annotated

Unlike SMILES, InChI does not suffer from problems with the representation of organic groups

for which multiple valence bond representations are possible (Figure 2-8);

SMILES: [O-][N+](=O)c1ccccc1

InChI=1S/C6H5NO2/c8-7(9)6-4-2-1-3-5-6/h1-5H

SMILES: O=N(=O)c1ccccc1

InChI=1S/C6H5NO2/c8-7(9)6-4-2-1-3-5-6/h1-5H

Figure 2-8 InChIs and SMILES for two different representations of nitrobenzene. Both representations

yield the same InChI, whereas the SMILES differ.

InChI=1S/C4H7ClFN/c1-4(5,7)2-3-6/h2-3H,7H2,1H3/p+1/b3-2+/t4-/m0/s1/i1D

Version string

Chemical formula

Atom connections

Hydrogen atoms

Charge

Stereochemical: double bond,
tetrahedral, parity, overall chirality

Isotopic

11

For simple inorganic compounds the same InChI will be produced regardless of whether ionic

or covalent representation is used (cf. Figure 2-6). However, as illustrated in Figure 2-9, multiple

InChIs are possible for those inorganic compounds with bonding not found in organic compounds,

such as the haptic covalent bonding between the π electrons of the cyclopentadienyl rings and the d

electrons of the iron in ferrocene.

InChI=1S/2C5H5.Fe/c2*1-2-4-5-3-1;/h2*1-5H; InChI=1S/2C5H5.Fe/c2*1-2-4-5-3-1;/h2*1-
5H;/q2*-1;+2

Figure 2-9 Two possible depictions of ferrocene and the two different InChIs they produce

InChIs may be standard or non-standard, with standard InChIs being distinguished by the

presence of the ‘S’ at the end of the version string (Figure 2-7). Unlike a standard InChI, a non-

standard InChI may include a fixed-H layer that allows specification of a particular tautomer and/or a

reconnected layer that explicitly includes bonds to metal atoms. A non-standard InChI may also have

experimental InChI flags enabled such as those for detecting more forms of tautomerisation.

2.5 Formal grammars

A formal grammar is formed of a disjoint set of terminal and non-terminal symbols, with

production rules specifying the replacements allowed for each non-terminal symbol. A terminal

symbol is a literal character in the language to be recognised whilst a non-terminal symbol will have

an associated production rule which defines it in terms of other terminal symbols or non-terminal

symbols.

12

An example of a formal grammar for some simple mathematical expressions could be:

equation ::= bracketed-expression | expression

bracketed-expression ::= “(” expression “)”

expression ::= (bracketed-expression | digit+) operator (

bracketed-expression | digit+)

digit ::= “0” | “1” | “2” | “3”| “4” | “5” | “6” | “7” | “8” | “9”

operator ::= “+” | “-“ | “×” | “÷”

In this grammar, each line is a production rule. The terminal symbols are the following

characters: ()01233456789+-×÷ whilst the non-terminal symbols are all the other terms. A

formal grammar must also have a non-terminal symbol which is designated as the start symbol,

which in this case is equation.

The types of languages that a grammar can express are related to what restrictions, if any, are

put on the allowed form of the production rules. Chomsky57 defined four types of grammar which in

order of increasing expressivity are regular, context-free, context-sensitive and unrestricted (Table

2-1).

Grammar Language recognised Production rules

Unrestricted Recursively enumerable α β

Context-sensitive Context-sensitive αAβ αγβ

Context-free Context-free A α

Regular Regular A a
A Ba

or
A a

A aB
Table 2-1 The different classes of grammars, the languages they recognise and the production rules

they support. Greek symbols are any combination of terminals or non-terminal symbols, capital letters are

non-terminals and lower case symbols are terminals (including the empty string).

Regular grammars and Context-free grammars will be returned to when discussing the

grammar employed by OPSIN (Section 3.2.4) and ChemicalTagger (Section 2.9), respectively.

2.6 Automata

An automaton is a mathematical construct formed of states, and transitions between those

states. An automaton has an alphabet which includes the symbols that may occur in the input to the

13

automaton. An automaton of the appropriate type (Table 2-2) may be used to check that a given

input is acceptable to a given grammar.

Grammar Type Automaton type

Unrestricted Turing machine

Context-sensitive Linear bounded automaton

Context-free Pushdown automaton

Regular Finite state automaton
Table 2-2 Automaton types required to process the archetypal grammar types

As this work only employs regular and context-free grammars this exposition will focus on the

properties of the corresponding automata for these grammars.

A finite state automaton (FSA) is the simplest automaton and is demonstrated by the example

shown in Figure 2-10. Each circle is a state and every arrow is a transition. When the automaton is

“run” over a given input, the input is consumed character by character with an appropriate

transition being attempted after consumption of each character. The character that must be

consumed for a transition to be allowed is indicated next to the arrow. If no appropriate transition is

possible then the input is not acceptable to the grammar. The automaton continues through the

input until all characters have been consumed at which point examination of whether the FSA is in

an accept state (double circle in diagram) indicates whether the input was accepted by the grammar.

Figure 2-10 A finite state automaton that matches “methane”, “ethane” and “ethene”

A pushdown automaton is the same as a FSA but with the exception of also having a stack. The

top of this stack may be inspected to determine which transition to make and as part of performing

a transition an entry may be added or removed from the stack. Figure 2-11 demonstrates a context-

free grammar and Figure 2-12 shows a pushdown automaton that could describe it.

expression = bracketed-expression | “a” ;

bracketed-expression = “(“ , (bracketed-expression | “a”) , “)” ;

Figure 2-11 A context-free grammar; a stack is required to keep track of the nesting

14

Figure 2-12 A possible state machine for the grammar from Figure 2-11

2.7 Regular expressions

Regular expressions are a widely supported method of encoding patterns for finding strings. A

true regular expression can always be expressed using a regular grammar (cf. Section 2.5) and the

expression it describes can be matched by a finite state automaton (cf. Section 2.6). Due to the

widespread usage of Perl-esque regular expressions, which are capable of matching languages that

are less restrictive than even context-free languages, it is useful to draw a distinction between true

regular expressions and “regexes”. Regexes may contain operators that necessitate such operations

as look ahead, look behind and references to named capture groups.

At its simplest, a regular expression is just the string for which one wishes to search.

Metacharacters may be used to achieve more expressive searches (Table 2-3). To match the literal

metacharacter the character is preceded by a forward slash. Forward slashes also proceed

abbreviated character classes e.g. \d for digits, \D for non-digits, \s for whitespace and \S for non-

whitespace.

Append bracket
to stack

Remove bracket
from stack

Accept empty
string if stack is

empty

15

Metacharacter/s Meaning

. Match any character

[]
Mark the start and end of the description for a
single character e.g. [ab] is either ‘a’ or ‘b’; [a-z]

is any of the 24 lower case characters

[^]
As above but matches a character that does not

meet the description

^ Start of string

$ End of string

()
Demarcate a sub expression. In regexes this is by

default also a capturing group

* Indicates the preceding expression should be
repeated 0 or more times

? Indicates the preceding expression is optional

+ Indicates the preceding expression should be
repeated 1 or more times

{m,n} Indicates a range of number of times the
preceding expression should be repeated

| Indicates a choice between the expressions
either side of the operator

\ Used to indicate a literal metacharacter or a
shorthand character class

Table 2-3 Regular expression metacharacters

Regular expressions are used as the input to build OPSIN’s grammar, describing the form of

systematic chemical names. Regexes are employed in various places throughout all projects.

2.8 OSCAR4

OSCAR (Open Source Chemistry Analysis Routines) began as a tool for checking experimental

data58. The library, now in its fourth major revision, contains functionality for extracting chemical

entities from free text as well as, where possible resolving them to structures or ontology identifiers

(e.g. ChEBI ids5). The functionality for identifying and interpreting experimental data sections is also

retained.

As OSCAR has developed, so have the algorithms employed. This is especially pronounced in

the area of identifying chemical names. The original dictionary lookup approach was supplemented

by the addition of heuristic identification of chemical entities through regular expressions59, N-gram

analysis60 and finally by a maximum-entropy Markov model (MEMM)9. In this context, N-gram

analysis refers to calculating a probability that a word is chemical from the analysis of occurrences of

the constituent one to four letter sequences in the word as compared to known occurrences in a

training set of chemical and non-chemical words. A MEMM is used to predict the labels for a

16

sequence, in this case a sequence of tokens. OSCAR has a separate MEMM model for each of the

entity types that are not found by string matching. These entity types are chemical, reaction e.g.

hydroxylation, chemical adjective and enzyme. Features employed by the MEMM models include 1-4

character N-grams, the suffix of the token, whether it appears in any word lists e.g. English words,

and adjacent tokens to a given token.

The current version of OSCAR is OSCAR414 which differs from previous incarnations by being

divided into modules using Maven (cf. section 2.10 and Figure 2-13). This allows for independent

aspects of the program to be utilised without bringing in the entirety of OSCAR4.

17

Figure 2-13 Interdependencies between the modules of OSCAR4

OSCAR4 is indirectly employed in this work as a tagger and tokeniser for use in

ChemicalTagger (Section 2.9). To improve ChemicalTagger’s performance some improvements were

made to OSCAR4’s tokeniser (Section 4.4.5.1). Input was also put into developing the OPSIN

dictionary which is an implementation of OSCAR4’s IChemNameDict interface backed by OPSIN.

18

2.9 ChemicalTagger

ChemicalTagger61 is a tool for annotating chemical text that was developed in the Murray-Rust

group of the Unilever Centre, Cambridge. Its overall function is to attempt to extract semantic

information from chemistry documents and, in particular, from experimental sections. Figure 2-14

gives a schematic of the program’s architecture.

19

Figure 2-14 Architecture of ChemicalTagger

20

The input to the program is a string of text, typically a paragraph. The first step in the

workflow involves the Formatter normalising the input. For example, all hyphens are normalised

to a single hyphen type.

 The next step is tokenisation. ChemicalTagger has a tokenisation interface which is

implemented by both an OSCAR4 tokeniser and a simpler whitespace tokeniser. For synthetic

chemistry text, the OSCAR4 tokeniser typically performs better and hence was used in this work.

Some specific tokenisations that are unlikely to be performed by more general tokenisers are

performed by the sub-tokeniser, the most important of which is the tokenising of numbers directly

concatenated to a unit. For example ‘50ml’ is tokenised to [‘50’, ‘ml’]. This is necessary to allow such

cases to be recognised as two tokens, hence allowing the numeric value and unit to be separately

tagged.

The tokenised input is then passed through a series of taggers which implement a tagger

interface allowing easy addition of more taggers. By default, the system employs a regex tagger, an

OSCAR4 tagger and a part of speech (POS) tagger, provided by OpenNLP62.

The regex tagger identifies chemistry related terms. For example, verbs relating to chemical

processes such as ‘heated’, and adjectives relating to chemicals e.g. ‘anhydrous’. For greater

specificity later in the workflow, some prepositions are explicitly tagged, e.g. ‘in’ has its own tag. The

OSCAR4 tagger tags chemicals, as well as some enzymes, chemical adjectives and reaction

adjectives. The POS tagger tags all tokens with a POS tag using the Penn Tree bank POS tags63. For

the cases where the POS tag is the literal character, the tag is changed e.g. ‘.’ becomes ‘STOP’. The

results from the taggers are then combined using a user tuneable order of preference as a decider in

the case where more than one tagger produces a tag for a token.

A limitation that is quickly encountered with naive regex tagging of key words is polysemy, the

capacity for the same word to have multiple meanings dependent on context. One of the more

common and important distinctions that needs to be made is between a word being a verb or an

adjective e.g. ‘the solution was concentrated using’ as compared to ‘concentrated sulfuric acid’.

These problems, as well as a few special cases indicative of excessive tokenisation, are identified and

corrected by hand crafted rules, prior to producing the final lists of tokens and tags. Table 2-4 shows

an example input after tokenisation and then after tagging.

21

Input To a vigorously stirred solution of pyridine in THF (40mL)

Tokenised To a vigorously stirred solution of pyridine in THF (40 mL)

Tagged TO DT RB JJ-CHEM NN-CHEMENTITY IN-OF OSCAR-CM IN-IN OSCAR-CM -LRB- CD NN-VOL -RRB-

Table 2-4 Example of ChemicalTagger output after tokenisation and output after tagging. Bold terms

are identified by the regex tagger, italicised by the OSCAR4 tagger and the remaining two tokens by the POS

tagger. Note that ‘stirred’ is initially tagged as a VB-STIR before subsequently being corrected, during tag

correction, to a JJ-CHEM due to its adjacency to an NN-CHEMENTITY.

The lists of tags and tokens are then interlaced and given to the chemical sentence parser.

This parser is prebuilt from an ANTLR364 grammar. This grammar has been hand-written to describe

the makeup of experimental chemistry paragraphs. ANTLR3 grammars nominally describe a subset

of context-free grammars but may also include “semantic predicates”. A semantic predicate allows

the execution of a Boolean method to determine whether or not a production rule in the grammar

may be used. Such a method may examine the current token or any previous or future token and

execute arbitrary code to make its decision. In principle, the method could even have persistent

state allowing the parsing of languages requiring greater expressivity than a context-free grammar.

The chemical sentence parser will attempt to break the input down into a tree structure called

an abstract syntax tree (AST). This is formed of sentences which in turn are formed of phrases e.g.

“NounPhrase”, “VerbPhrase”, “PrepPhrase”. Phrases are formed of other phrases, compound

constructs such as “MOLECULE”s or of tags. At its deepest level the tree will be formed entirely of

tags which correspond to the tags originally input to the sentence parser.

The AST is subsequently converted to XML and enriched by the annotation of phrase types

and roles for some molecules. Assignment of phrases is achieved by looking for the presence of

certain tags. For example a phrase would be annotated as a “Yield” if it contained a VB-Yield.

Solvents are identified by their presence after key words when in certain phrases, such as “Dissolve”

and “Wash” phrases. Roles may also be assigned from a successful match with the Hearst pattern65

[MOLECULE] ‘as a’ [NN-CHEMENTITY], or from a molecule being mentioned as being ‘in’ another

molecule, indicating the latter molecule to likely be a solvent. Figure 2-15 shows an example of the

final XML output.

22

<Document>

 <Sentence>

 <PrepPhrase>

 <TO>To</TO>

 <NounPhrase>

 <DT>a</DT>

 <RB>vigorously</RB>

 <JJ-CHEM>stirred</JJ-CHEM>

 <NN-CHEMENTITY>solution</NN-CHEMENTITY>

 <PrepPhrase>

 <IN-OF>of</IN-OF>

 <NounPhrase>

 <ActionPhrase type="Dissolve">

 <MOLECULE>

 <OSCARCM>

 <OSCAR-CM>pyridine</OSCAR-CM>

 </OSCARCM>

 </MOLECULE>

 <IN-IN>in</IN-IN>

 <MOLECULE role="Solvent">

 <OSCARCM>

 <OSCAR-CM>THF</OSCAR-CM>

 </OSCARCM>

 <QUANTITY>

 <_-LRB->(</_-LRB->

 <VOLUME>

 <CD>40</CD>

 <NN-VOL>mL</NN-VOL>

 </VOLUME>

 <_-RRB->)</_-RRB->

 </QUANTITY>

 </MOLECULE>

 </ActionPhrase>

 </NounPhrase>

 </PrepPhrase>

 </NounPhrase>

 </PrepPhrase>

 </Sentence>

</Document>

Figure 2-15 Final ChemicalTagger output for the input from Table 2-4.

The output from ChemicalTagger is vital to many aspects of the reaction extraction system

described in Chapter 4. As a result significant effort was made, during this project, to improve

ChemicalTagger’s performance and extend it to identify concepts of importance for extracting

reactions as further described in Section 4.4.5.

2.10 Apache Maven

Science often works by building on prior achievements and the same is true of software

development. When building more advanced software, it is typically easier and quicker to employ

23

existing solutions to problems as dependencies rather than attempting to re-implement their

functionality. As the number of dependencies of a project increases, managing these dependencies

can become time consuming. The Apache Maven build system66 offers numerous advantages,

especially in managing larger projects with many dependencies.

The system works by each project corresponding to an artifact, or multiple artifacts in the case

of a project made from multiple modules. Each artifact is assigned a groupId, artifactId and version

description e.g.

 <artifactId>chemicalTagger</artifactId>

 <groupId>uk.ac.cam.ch</groupId>

 <version>1.3.1</version>

The artifactId is the name of the project/module and the groupId is a unique string which is

typically a domain name that you control. The combination of these fields should be sufficient to

uniquely identify a particular artifact. For released artifacts, the version number will typically be

numeric and for a given artifactId/groupId must be unique. For rapid development, it is often useful

for upstream projects to be able to depend on the latest version of a dependency without the need

to constantly update the dependency version. This can be accomplished by adding the special suffix

‘–SNAPSHOT’ to the version description string of the artifact. As a snapshot version of an artifact

changes with time, snapshot versions of dependencies should not be relied upon for releases.

Artifacts are stored in Maven repositories which, typically, are internet accessible. From these

repositories, the artifacts that a project requests are downloaded for local use. These dependencies

may in turn have their own dependencies which are recursively acquired. Figure 2-16 shows an

example of the result of this for the InChI module of OPSIN.

24

Figure 2-16 Dependency hierarchy for the opsin-inchi module

All the projects involved in this work were either natively available via Maven, or were

manually added to our Maven repository. As can be seen from Figure 2-17, advanced projects can

easily require a non-trivial number of dependencies.

Indirect dependencies

Direct dependencies

Scope in which dependency is required
e.g. test is just for running unit tests

25

Figure 2-17: How the open source projects involved in this project relate to each other. Green projects

are projects developed predominantly for this project whilst yellow projects are those in which significant

improvements were undertaken. Utility and unit testing libraries are not shown.

2.11 Distributed version control

In larger software development projects, such as the ones involved in this work, version

control is essential. Version control allows a developer to associate a message with each set of

changes that are made to a project’s code or dependent files. Reverting the state of particular files

or the whole project to an older revision is then trivial and is useful when one needs to investigate

the effect that a particular change had on a program’s output or to reinstate previously removed

functionality. On larger projects, the version control system must support multiple developers

committing changes, to which an elegant solution is a distributed version control system.

 Under a distributed version control system each developer has a local repository into which

their changes are committed. A notable advantage of this approach is that significant changes to a

program can be done incrementally and only distributed when the program is once again stable.

26

Change sets can be transferred between repositories by “pushing” or “pulling”. For accessibility,

backup purposes and for clarity as to what is the latest code, it is useful to have a central repository

on a web-based site such as Bitbucket67 or GitHub68 that is readily accessible to all involved. It should

be noted that such a repository is only the central repository by convention as it does not differ in

structure from any of the other repositories.

The software developed as part of this thesis employs Mercurial69 for version control, due to

its wide support and ease of use, and Bitbucket for code hosting.

2.12 Continuous integration testing

As projects get larger it is highly useful to be able to define tests indicating the expected

output of methods for a given input. These can be used to assure that changes have not broken

existing functionality and that added functionality is functioning as expected. When coding in Java,

an easy way of implementing such tests is by using JUnit70. A continuous integration service can be

set up to constantly, or periodically, query a repository for changes. If a change has been committed,

the service automatically builds the project and runs its unit tests. If a failure in building the project

or running its unit tests is detected, the developers of the project can be emailed allowing them to

immediately look into the cause of the failure. The Jenkins71 continuous integration service was used

for this purpose (Figure 2-18).

For Maven projects, Jenkins can be configured to automatically deploy snapshot versions of

the project to a Maven repository allowing the project’s dependents to instantly benefit from the

updated version. Additionally, Maven projects that Jenkins is aware of, which depend on such a

project can be automatically built and tested to check that the updated dependency has not caused

problems in any of these upstream projects. For example, whenever OSCAR4 is updated, OSCAR4

will be built and tested. The same will then happen for ChemicalTagger, and then the patent

reaction extraction project, as each depends on the previous project.

27

Figure 2-18 View of selected projects from Jenkins. The coloured orb indicates at a glance whether the

project’s last build was successful (green), had unit test failures (yellow) or failed (red). The “weather”

pictogram indicates the stability of previous builds.

28

Chapter 3 Conversion of Chemical Names to Structures

This chapter describes the work undertaken in this project on the successful development of

OPSIN (Open Parser for Systematic IUPAC Nomenclature) an open source chemical name to

structure algorithm. A paper based on the work more fully described in this chapter was published in

the Journal of Chemical Information and Modelling72. The paper was the journal’s most accessed

paper during the month it was published and was among the top 20 most accessed for the year in

March 2012. OPSIN was also included in a review of open source cheminformatics applications73.

3.1 Introduction

3.1.1 History of systematic nomenclature

Compared to most spoken languages systematic chemical nomenclature is a relatively recent

invention with initial codification at the 1892 Geneva conference74. This conference defined a system

of nomenclature, known as the Geneva system, allowing the specification of simple compounds (e.g.

hydrocarbons) with substituents and common functional groups. This system evolved through

multiple recommendations75–80 into what is now known as IUPAC nomenclature. The interested

reader is referred to Smith Jr.’s review paper documenting the history of systematic organic

nomenclature81.

The Chemical Abstracts Service (CAS)82,83 and Beilstein have also developed systematic

nomenclature for use in Chemical Abstracts and Beilstein’s Handbook of Organic Chemistry

respectively. These nomenclature systems employ for the most part the same vocabulary and

operations as IUPAC nomenclature but are designed to uniquely assign a name to each compound.

As a result the nomenclature operations they describe are approximately a subset of those

documented by the IUPAC.

An additional consideration when producing an alphabetical listing of chemicals is that

structurally related compounds should be listed closely together. This is achieved in CAS

nomenclature through the use of inverted index names which place the parent group in front of the

group’s substituents e.g. ‘4-aminobenzenesulfonamide’ becomes ‘benzenesulfonamide, 4-amino-’.

Traditionally some substitutions of common parent groups yielded different trivial names which

would likely end up far apart in the index. To alleviate this problem, CAS index names have become

steadily more systematic by the removal of trivial names in favour of systematic parent group names

(Figure 3-1).

29

Figure 3-1 CAS index name: Benzenesulfonamide, 4-amino- (trivial name: sulfanilamide)

3.1.1 Classes of chemical name

Chemical names may be broadly categorised as systematic, semi-systematic and trivial (Figure

3-2). A trivial name cannot be decomposed into morphemes and can only be understood by

dictionary lookup. If a trivial name is substituted in a logical manner then the name is semi-

systematic. Names in which the parent group and all substituents are named in such a way that their

structures may be deduced by breaking them down into morphemes are systematic.

Figure 3-2 1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione (systematic), 1,3,7-trimethylxanthine (semi-

systematic), caffeine (trivial)

This categorisation is made far more blurry by the presence of retained trivial names in IUPAC

nomenclature. These are groups that are preferred over their systematic alternatives (e.g. ‘purine’)

or even in some cases the only allowed option. For example the alkane chains of length less than five

e.g. methane and ethane are trivial as they do not start with a morpheme indicating the number of

carbons in the chain. Names such as ‘monane’ and ‘diane’ would be systematic but are unknown.

3.1.2 General construction of systematic names

The order of construction of a systematic substitutive name is outlined in Figure 3-3.

30

Figure 3-3 Components of a substitutive name

 Detachable prefixes:

These are terms such as ‘ethyl’, ‘chloro’ etc. They describe groups that will be

attached to the parent compound. Formally these describe radicals and are referred

to as substituents in this text.

 Hydro/dehydro prefixes:

E.g ‘dihydro’. These describe the addition or removal of hydrogen from a system.

They are used inconsistently as if they were a detachable or non-detachable prefix.

 Non-detachable prefixes:

E.g. ‘aza’, ‘1H-‘, ‘cyclo’, ‘methano’, ‘benzo’ etc. These prefixes are used to modify the

parent group e.g. changing atom element type, cyclising the structure, adding

bridges etc.

 Name of parent:

E.g. ‘meth’, ‘benzene’, ‘acet’ etc. This is the name of the parent group.

 Endings:

These are employed on alkanes and some natural products to indicate unsaturation

e.g. ‘ene’.

 Suffixes:

There are two types of suffixes, cumulative suffixes that may be used in combination

with other suffixes e.g. ‘ium’, ‘yl’ and functional suffixes that describe the

functionality of the group and only one of which may be present e.g. ‘amide’, ‘oic

acid’.

Other components that may appear in multiple parts of a chemical name include:

Detachable
Prefixes

Hydro/dehydro
prefixes

Non-detachable
prefixes

Name of
parent

Suffixes Endings
(ane/ene/yne)

31

 Locants:

These may be numeric, Greek characters or an element symbol (which may be used

in conjunction with a non-element symbol locant). Locants indicate the position on

the parent group referred to by the operation that the locant precedes.

 Multipliers:

These indicate that an operation should be performed multiple times.

 Stereodescriptors:

These are used to indicate the stereochemistry of a detachable prefix or parent

group.

3.1.3 History of programmatic name to structure conversion

Efforts to employ computers to extract information from chemical names dates back to the

work of Garfield in 196284,85. His program decomposed simple substitutive chemical names, formed

of acyclic components, into their composite morphemes. Each morpheme can then be treating as

either specifying a molecular formula e.g. ‘prop’ = C3 or modifying the molecular formula e.g. ‘ene’

indicates the presence of a double bond. A relatively simple formula was then employed to calculate

the hydrogen count from the heavy atom composition and the number of double bonds, hence

yielding a molecular formula. A molecular formula could then be used as a search parameter, for

example to search for compounds of identical composition in formula indexes of resources such as

Chemical Abstracts.

CAS published in 1967 and 197486,87 on an in-house tool for converting chemical names in CAS

nomenclature to structures. The aims were to verify that the names were syntactically valid and

ultimately that they agreed with the structure that was present in the CAS registry. The approach

interpreted chemical names in a left to right manner, without the use of a formal grammar. The

program is documented as supporting fused ring nomenclature (via dictionary lookup), bridges,

hydro prefixes, prefix functional replacement of oxygen by sulfur, von Baeyer nomenclature, spiro

nomenclature, conjunctive nomenclature, skeletal replacement, ring assemblies of two rings, and

special cases of subtractive nomenclature. As the inverted index form of chemical names is most

often used in CAS nomenclature, this tool is able to handle uninverted names through a special case

that inverts them.

32

In the 1980s, work at the University of Hull by Kirby et al. yielded a name to structure

algorithm based upon a formal grammar88–93. Their solution parsed chemical names from right to left

using a context-free grammar. The series of publications noted that technically IUPAC nomenclature

is a context-sensitive language if one enforces the order of enclosing marks (from outermost to

innermost: “{”, “[”, “(”), but if one does not enforce this order of bracket nesting the language is

then context-free. These publications also acknowledged that, beyond bracketing, much of IUPAC

nomenclature can be expressed by a regular grammar; which is the approach that is utilised by

OPSIN (Section 3.2.4).

Another interesting solution was CHEMNAME, developed by Chugai Pharmaceuticals in Japan.

This solution has been published through a series of seven Japanese conference papers from 1991-

2005. All these papers are written in Japanese making it difficult for non-Japanese readers to

understand the details of the solutions and algorithms described. The most recent papers in the

series describe advanced capabilities such as algorithmic handling of fused ring systems and support

for natural product nomenclature94–96.

3.1.4 Current solutions

At the time of starting this project in 2008, two open source attempts at performing chemical

name to structure were identified: ChemNomParse97 from the University of Manchester and OPSIN60

from the University of Cambridge. ChemNomParse had not been updated since 2003 and in testing

was found to only support alkanes, cycloalkanes, simple substitution from common substituents and

common suffixes. Precision was also found to be poor primarily due to terminal suffixes being

systematically misplaced (Figure 3-4).

Figure 3-4 Output for 3-chloropropanamide from the ChemNomParse GUI. The suffix is placed at the

end of the chain rather than the beginning.

33

OPSIN (Open Parser for Systematic IUPAC nomenclature) was a component of OSCAR3, a tool

for performing chemical text mining. The program supported alkanes, unsaturation and cyclisation

of alkanes, most Hantzsch-Widman nomenclature, bicyclo von Baeyer systems, mono spiro systems

with two rings, substitutive nomenclature, common suffixes, hydro and indicated hydrogen prefixes

and multi word names for esters/acyl halides/salts.

A review of the area98 gave the following contemporary description of OPSIN:

“OPSIN is presently limited to the decoding of basic IUPAC nomenclature but can handle

bicyclic systems, and saturated heterocycles. OPSIN does not currently deal with stereochemistry,

organometallics and many other expected domains of nomenclature”

Commercial solutions are available from ACD/Labs99, Bio-Rad Laboratories100, PerkinElmer

(formerly CambridgeSoft)101, ChemAxon102, ChemInnovation103, InfoChem104 and OpenEye105. With

the exception of PerkinElmer’s solution none of these approaches have been detailed in the

literature.

PerkinElmer’s solution, Name=Struct106, takes a lenient approach to chemical nomenclature

with the intention of supporting not just well formed names but names with minor mistakes, names

that explicitly contradict nomenclature recommendations and even names conforming to no formal

nomenclature recommendations. To this end Name=Struct takes a more relaxed approach to

tokenisation choosing to always recognise the longest allowed token at each character with ad hoc

rules preventing incorrect tokenisations and any punctuation being allowed to delimit tokens.

Tokens are associated with one or more meanings ordered in a hierarchy of preference with

disambiguation being achieved by examination of the token’s local environment. This process is

described in detail in a patent from CambridgeSoft107. The Name=Struct algorithm is incorporated

into ChemBioDraw.

MDL have a European patent that covers software to extract chemical information and in

particular reactions from text108. The patent describes a software application named Reverse

AutoNom. This software does not appear to be commercially available to the public.

The Heidelberg Institute for Theoretical Studies (formerly European Media Laboratories) has

also investigated this problem and produced CLP(name2structure)109. This application differs

somewhat from the previous solutions as it aims to be able to represent ambiguous chemical names.

34

This software is not currently distributed and it is unclear from the paper where the described

system lies between a proof of concept and a comprehensive solution.

3.2 Development and implementation of OPSIN

3.2.1 Strategy for development of OPSIN

The current version of OPSIN was arrived at by the incremental addition of areas of

nomenclature. The most important aspect when adding support for a new area of nomenclature was

to make sure that as new names became parsable that they either produced the intended

interpretation or the case was recognised as not being currently supported and hence no structure

was returned. In this way new nomenclature can be added whilst maintaining high precision.

As new nomenclature often required new functionality e.g. the ability to specify

stereochemistry, the underlying capabilities of the program were also incrementally updated. As

much nomenclature was not considered in the program’s original design, refactoring of existing

functionality was frequently required to provide a framework that could elegantly support both the

added and existing nomenclature.

The version of OPSIN documented in this thesis ultimately shares very little in common with

the version of OPSIN inherited in 2008. The current codebase of approximately 27,000 lines of Java is

nearly an order of magnitude larger and even areas of nomenclature nominally supported by the

original program have been overhauled to allow more complete support.

All subsequent references to OPSIN refer to version 1.2.0. This is latest released version as of

the time of writing and was released on the 6th December 2011. Unless explicitly stated to the

contrary all chemical names and nomenclature mentioned are supported and correctly

interpretable. As OPSIN is designed to be employed on real world names, not all names given as

exemplars strictly conform to IUPAC recommendations. Depictions for exemplars are generated by

the ChemBioDraw12 using SMILES produced by OPSIN.

3.2.2 Architecture

OPSIN is written in Java with grammar and token definitions described in XML. A schematic of

OPSIN’s workflow is presented in Figure 3-5. The following subsections describe and discuss the

implementation of the components of this workflow, with specific examples used to exemplify the

types of nomenclature that are handled.

35

Figure 3-5 Components of OPSIN’s architecture, showing the process from chemical name through to a

structure

3.2.3 Pre-processing

To simplify the recognition of terms by the parser a normalisation step based on simple string

manipulation was incorporated. This manipulation is used to normalise the majority of

representations for Greek characters, primes and other miscellaneous symbols. Additionally the

36

traditional British spelling of sulfur is normalised to remove the requirement of having two lexical

variants for all terms incorporating the substring ‘sulf’. After normalisation all characters in the

chemical name are printable ASCII characters. This property is utilised as a speed optimisation during

tokenisation (Section 3.2.4.3). Examples of the result of this string normalisation can be seen in Table

3-1.

Input string Normalised output string

λ lambda

lambda lambda

.lambda. lambda

$l lambda

sulphuric acid sulfuric acid

` '

′ '

“ ''

⁗ ''''

± +-

ᴅ D

æ ae

é e
Table 3-1 Example input and normalised output

3.2.4 Tokenisation and parsing

3.2.4.1 Introduction

Chemical nomenclature can be thought of as being an artificial language. However unlike most

artificial languages, such as programming languages, the morphemes of chemical names are often

not delimited. As a result, tokenisation of chemical names must, at least to some extent, rely on a

predefined lexicon of what may be found in a chemical name. The approach taken by Corbett and

Murray-Rust60 was to create all possible tokenisations for a chemical name based on the program’s

lexicon. However, as such an approach does not take into account the context, many tokenisations

will ultimately be found to be incorrect. For example ‘propan-2-ol’ would be tokenised to [‘prop’,

‘an’, ‘-’, ‘2-’, ‘ol’] and [‘propa’, ‘n-’, ‘2-’, ‘ol’], for which the latter is clearly wrong (the ‘n-’ token is the

same that would be found in ‘n-butane’). As all possible tokenisations must be generated, assuming

the number of places where tokenisation is ambiguous is n, and that each instance results in two

possibilities, this approach leads to n2 possible tokenisations. In longer systematic names, this can

cause an impractically large number of tokenisations to be generated and for the tokenisation

processes to take an unacceptably long time.

37

The approach taken by Kirby et al.90 avoided this problem by associating the morphemes with

terminal symbols from their formal grammar. During parsing, identified morphemes may then be

restricted to those with terminal symbols that are valid at that point in the grammar. The approach

favoured the longest identified morpheme, with backtracking and selection of a shorter morpheme

being performed if at a point in the chemical name no appropriate morphemes can be identified. An

apparent drawback of this approach is that in cases where the grammar is ambiguous and selection

of a shorter morpheme would yield an alternate parse this tokenisation would not be discovered.

The approach taken by OPSIN is similar to the approach of Kirby et al. except that all possible

parses are evaluated.

3.2.4.2 Tokenisation algorithm

Before this system is explained, it should be first qualified what is actually being tokenised.

Rather than attempting to write a grammar that describes all possible chemical names OPSIN’s

grammar instead describes a chemical “word” which in this context refers to the smallest meaningful

unit of language. A chemical name relates to these words by the following grammar:

Chemical ::= Word+

Word ::= Substituent | Full | FunctionalTerm

Substituent ::= Token+

Full ::= Substituent* MainGroup

MainGroup ::= Token+

FunctionalTerm ::= Token+

Where a “substituent” word describes a fragment of a chemical compound e.g. ‘ethyl’, a “full”

word describes a standalone chemical word e.g. ‘benzene’ or ‘ethylbenzene’ and a “functional term”

describes a modification term e.g. ‘ester’.

Table 3-2 gives a few examples of the result of dividing chemical names into words. ‘Vitamin

C’ is interpreted as one word, as only when considered as a single unit does it have its intended

meaning. Similarly ‘acetic acid’ is treated as one word as ‘acid’ on its own is not currently treated as

being meaningful. It should be emphasised that the definition of a word is not defined by whitespace

and instead the tokenisation process will determine the word boundaries.

38

Name Number of Words Word Types

Ethanoate 1 Full

Ethyl 1 Substituent

Ethylethanoate 1 Full

Ethyl ethanoate 2 Substituent, Full

Acetic acid 1 Full

Acetic anhydride 2 Full, Functional term

Vitamin C 1 Full
Table 3-2 Examples of chemical names with the number of words and types, as determined by OPSIN.

OPSIN’s grammar, as of v1.2.0, describes 123 discrete classes of token. Each token class can

either correspond to a list of tokens (e.g. ‘benzen’, ‘pyridin’ etc.) or, for classes that are not practical

to enumerate, to a regular expression that describes all tokens of that class (e.g. an expression for a

locant or for von Baeyer nomenclature). These lists of tokens and regular expressions are present in

external XML resource files allowing the easy addition of new vocabulary. Individual tokens are

associated in this XML with attributes containing semantic information, such as for ‘pyridin’ the

structure of pyridine and for ‘tetra’ that its value is 4. Additionally, the type of element that will

ultimately be created for this token when OPSIN produces its XML parse tree is indicated, e.g.

“group” and “multiplier” for ‘pyridin’ and ‘tetra’ respectively.

The 123 token classes in the grammar are represented for convenience as single characters

(which to avoid confusion with characters in the chemical name will be referred to as token

characters) and are each associated with a short textual description of their meaning (cf. Appendix

C). The grammar dictates which arrangements of these token characters are allowed.

The arrangements of the token characters are expressed as a large regular expression. This is

then compiled into a deterministic finite-state automaton using the dk.brics.automaton package110.

A deterministic finite-state automaton is formed of states, with each state having a set of allowed

transitions. These transitions correspond to the set of token characters that the automaton may

consume when in that state. Each transition leads the automaton to a new state. States that

correspond to an acceptable end point are called “accept states”. In OPSIN’s grammar, these always

correspond to a transition involving the endOfSubstituent, endOfMainGroup or

endOfFunctionalGroup token character.

To make maintaining and updating this regular expression tractable, it is expressed in terms of

the descriptions of the grammar token characters, with aliases used for complex expressions. For

example, there is an expression called “ringGroup” that describes any single ring, any von Baeyer

ring system or any trivial ring system. “ringGroup” is then used as part of the expression for ring

39

assemblies, fused systems and certain spiro systems. In v1.2.0 this regular expression alone is 1103

characters and the complete grammar is a 251,224 character long regular expression.

As previously mentioned, OPSIN does not treat whitespace as a hard delimiter; determination

of what is considered a breaking white space and a white space that is part of a token is instead

determined as a result of how the name has been tokenised. Tokenisation and parsing occurs

simultaneously as follows:

 From the current state in the discrete finite automaton the list of allowed transitions

is checked to determine which token characters are allowable next.

 For each allowed next token character, attempt to match all corresponding tokens

and regular expressions against the start of the chemical name.

 If a match is successful, the grammar token character and token is recorded and this

process is repeated with the state now being the state to which the transition led.

 The process terminates when no more of the name can be tokenised. The

tokenisations that include the largest part of the name and end in an accept state are

returned.

This process is performed iteratively and multiple routes may be found through the

automaton yielding multiple parses. A parse is only successful if in addition to the requirement of

ending in an accept state the next character in the name is a white space or the end of the name

(Figure 3-6).

40

Figure 3-6 Example of how OPSIN’s parser can quickly reject ungrammatical tokenisations. Note the

paths through the automaton, and how only one parse reaches an acceptable end point.

3.2.4.3 Looking up tokens in the lexicon

To make the tokenisation/parsing process as fast as possible OPSIN employs a radix trie to

store vocabulary tokens. A trie is a tree data structure in which strings sharing a common prefix

share a common node (Figure 3-7). Each node accepts a single character and may have up to as

many children as there are in the alphabet. The time taken to look up whether a string is present in a

trie is practically independent of the number of lexicon entries and instead scales linearly with the

length of the string that is being looked up hence yielding excellent performance even with a large

lexicon.

propan-2-ol

[prop]an-2-ol

[prop][an]-2-ol

[prop][an][-]2-ol

[prop][an][-][2-]ol

X

[propa]n-2-ol

[prop][an][]-2-ol

End of main

group

[prop][an][-][2-][ol][]

X

41

Figure 3-7 A trie describing indol, indolizin, indolin, inden, indazol and indan. Circular nodes are

accepting nodes

Due to the wide lexical variety in chemical names, especially trivial names, a standard trie is

memory inefficient and hence a radix trie is employed by OPSIN. In a radix trie, nodes with only a

single child are merged with their child such that all non-accepting nodes have more than one child

(Figure 3-8).

42

Figure 3-8 A radix trie describing indol, indolizin, indolin, inden, indazol and indan. Circular nodes are

accepting nodes

A trie data structure can also be used to efficiently check for the existence of prefixes that

differ by a small change such as a character insertion, deletion or transposition. Whilst not

investigated in this work, extending OPSIN to suggest spelling corrections in an efficient manner is

hence believed to be highly tractable.

 The regular expressions that correspond to the non-enumerable token classes are compiled in

advance into deterministic finite-state automata which, like the trie, have run time solely dependent

on the length of string matched i.e. independent of the complexity of the regular expression the

state machine describes. The process of compiling regular expressions to deterministic finite-state

automata can be quite slow especially for the regular expression that describes the grammar; hence

the resultant deterministic finite-state automata are serialised and only updated if the regular

expressions that generate them are altered.

3.2.4.4 Generation of parses

Each word that OPSIN is able to parse will produce one or more parses; a parse being formed

of a list of token/token class pairs. All possible combinations of the parses for each word are then

generated. For the majority of chemical names, this process results in only one parse for the

chemical name as each constituent word could be parsed unambiguously (Figure 3-9).

43

Figure 3-9 Number of parses generated from parsable IUPAC names in the December 2011 ChEBI

database
5

An example of a name in the 4 parses category was: ‘3,7,11,15-tetramethylhexadeca-

2,6,10,14-tetraen-1-yl diphosphate’ for which the following tokenisations were generated:

[3,7,11,15-, tetra, meth, yl, hexa, deca, -, 2,6,10,14-, tetra, en, -, 1-, yl] [di, phosphate]

[3,7,11,15-, tetra, meth, yl, hexa, deca, -, 2,6,10,14-, tetra, en, -, 1-, yl] [diphosphate]

[3,7,11,15-, tetra, meth, yl, hexadeca, -, 2,6,10,14-, tetra, en, -, 1-, yl] [di, phosphate]

[3,7,11,15-, tetra, meth, yl, hexadeca, -, 2,6,10,14-, tetra, en, -, 1-, yl] [diphosphate]

As the same token may appear in multiple token classes multiple parses doesn’t necessarily

indicate ambiguity in tokenisation.

While the path through the finite state automaton, described by OPSIN’s grammar, is

unambiguous for a given sequence of token characters in practice we do not know a priori the token

classes involved or even the tokenisation. The parser instead investigates all token class/token pairs

that are acceptable to the grammar and match the chemical name. Ambiguity can arise from

different senses of a word, e.g. oxide can be a synonym for ether (‘diethyl oxide’) or mean the

addition of oxygen (‘trimethylphosphine oxide’). This can only be disambiguated in the next step,

where the relationship between the words is considered. The other reason is that a term could

44

exhibit ambiguity that is non-trivial to disambiguate. For example ‘tetradecyl’ is parsed as

[tetradec][yl] or [tetra][dec][yl]. Cases of this type are rare and have been dealt with, on a case by

case basis, as part of the Component Generation component (cf. Section 3.2.7.6).

3.2.4.5 Drawbacks of a regular grammar

The only significant drawback encountered in representing chemical nomenclature using a

regular grammar has been the problem of representing recursive bracketing. Areas in which

bracketing is not recursive, such as bracketed ring assemblies, are handled precisely by the

grammar. In a regular grammar, one cannot express (to an infinite depth) a language of the form

…((a))… where the number of open and close brackets is identical. It is, however, allowed to

write the same expression in a form where the number of open and close brackets can be any

number i.e. not necessarily matched. Hence, OPSIN only matches opening and closing brackets with

each other after the parsing stage (Section 3.2.7.1).

3.2.4.6 Right to left parsing

By default, OPSIN parses names from left to right, but by reversing the automata that

describes the grammar/non-enumerable token classes and employing tries with reversed strings, it

can also be used from right to left with near identical results. Differences arise primarily from

reasons outside of the parser e.g. the rightToLeft tokenisation routine currently does not remove

whitespace within brackets and cannot handle the presence of extraneous words such as ‘compound

with’. Genuine differences in principle may arise from the fact that the non-enumerable token class

automata are greedy e.g. historically 3,4'-Bi-pyridinyl could only be parsed from right to left because

3,4'-Bi- was parsed as two locants where 4'-Bi means the atom of Bismuth that is attached to an

atom with locant 4'!

The number of states in the reversed chemical grammar automaton is significantly lower,

4885 states as compared to 10747 in the left to right variant, indicating that there should be fewer

routes through the automaton. This did not however translate into any improvement in tokenisation

speed. The ability to parse from right to left is currently solely employed to assist in debugging which

part of an unparsable name is at fault. For example, in a name such as ‘1,3-dimethyl-4-unknownyl-

benzene’ OPSIN from left to right would be able to say ‘1,3-dimethyl-’ was a substituent and the

name was parsable up to ‘1,3-dimethyl-4-’. From right to left, OPSIN would determine that ‘benzene’

was a full term and that the name was parsable up to ‘yl-benzene’. Hence, this combination would

single out the point of failure and identify “unknown(yl)” as a potential vocabulary term.

45

3.2.4.7 XML generation

After parsing, an XML element is created for every token, except those that lack semantic

meaning (e.g. an optional ‘e’ or an optional hyphen), to yield an XML parse tree. It should be noted

that tokens from different token classes need not create different elements. For example, ‘chloro’

and ‘meth’ are tokens in different token classes but both produce a “group” element. These

elements become children of substituent, root and functionalTerm elements with the

special end of word grammar token characters being used to facilitate this chunking. These in turn

are children of word elements. This is best illustrated with an example (Figure 3-10).

<molecule name="ethyl (1R,5S)-8-(chloromethyl)-8-azabicyclo[3.2.1]oct-2-ene-3-carboxylate">

 <word type="substituent" value="ethyl">

 <substituent>

 <group value="CC" labels="1/2" valType="SMILES" usableAsAJoiner="yes" type="chain"

subType="alkaneStem">eth</group>

 <suffix value="yl" type="inline">yl</suffix>

 </substituent>

 </word>

 <word type="full" value="(1R,5S)-8-(chloromethyl)-8-azabicyclo[3.2.1]oct-2-ene-3-

carboxylate">

 <substituent>

 <stereoChemistry type="stereochemistryBracket">(1R,5S)-</stereoChemistry>

 <locant>8-</locant>

 <openbracket value="(">(</openbracket>

 <group value="-Cl" labels="none" valType="SMILES" type="substituent"

subType="halideOrPseudoHalide">chloro</group>

 </substituent>

 <substituent>

 <group value="C" labels="1" valType="SMILES" usableAsAJoiner="yes" type="chain"

subType="alkaneStem">meth</group>

 <suffix value="yl" type="inline">yl</suffix>

 <closebracket value=")">)</closebracket>

 <hyphen value="-">-</hyphen>

 </substituent>

 <root>

 <locant>8-</locant>

 <heteroatom value="N" valType="SMILES">aza</heteroatom>

 <multiplier value="2" type="VonBaeyer">bi</multiplier>

 <vonBaeyer>cyclo[3.2.1]</vonBaeyer>

 <group value="CCCCCCCC" labels="1/2/3/4/5/6/7/8" valType="SMILES" usableAsAJoiner="yes"

type="chain" subType="alkaneStem" subsequentUnsemanticToken="-">oct</group>

 <locant>2-</locant>

 <unsaturator value="2" subsequentUnsemanticToken="-">ene</unsaturator>

 <locant>3-</locant>

 <suffix value="carboxylate" type="root">carboxylate</suffix>

 </root>

 </word>

</molecule>

Figure 3-10 XML parse tree produced for ‘ethyl (1R,5S)-8-(chloromethyl)-8-azabicyclo[3.2.1]oct-2-ene-3-

carboxylate’. For this name, only one parse is produced.

3.2.5 CAS index name uninversion

CAS index names are employed by CAS to allow the parent group that denotes the most senior

functionality of a molecule to be at the front of the name and hence used for indexing. This offers

significant advantages for alphabetic indexing in which the same group with different substituents

46

could end up in completely different places in the index. The process for inversion of chemical

names is briefly documented in the CAS nomenclature guidelines83. For the simple cases the index

name is simply the parent group followed by a comma, termed the inversion comma, and then the

substituents each ending in a hyphen (e.g. Figure 3-11).

Figure 3-11 CAS name: benzene, ethyl- IUPAC name: ethylbenzene

The inversion is somewhat more complicated when functional class nomenclature is employed

(Figure 3-12), when multiplicative nomenclature is involved (Figure 3-13) or when esters are

involved (Figure 3-14).

Figure 3-12 CAS name: Disulfide, bis(2-chloroethyl) IUPAC name: Bis(2-chloroethyl) disulfide or 1,2-

bis(2-chloroethyl)disulfane Note that the substituent does not have a hyphen indicating that it is not a prefix of

the ‘disulfide’

Figure 3-13 CAS name: Benzoic acid, 4,4’-methylenebis[2-chloro- IUPAC name: 4,4'-Methylenebis[2-

chlorobenzoic acid] Note that the index name has unbalanced brackets as compared to the uninverted name!

Figure 3-14 CAS name: Phosphoric acid, ethyl dimethyl ester IUPAC name: ethyl dimethyl phosphate

Note the change from phosphoric acid to phosphate

47

OPSIN supports CAS index names by performing an uninversion step prior to parsing.

Uninversion is attempted when ‘, ’ is found in a chemical name. A comma followed by a space should

be present in all well-formed CAS index names. The uninversion process involves the following steps:

 Split name on ‘, ’; the first entry in this array should be the parent group.

 Verify that if the parent group contains the space character that the words beyond the

first are either ‘acid’ or something OPSIN’s parser understands.

 Iterate through the other members of the array. There should only be one but this is

not enforced.

 A phrase like ‘compound with’ is ignored and a flag is set indicating subsequent words

should be appended to the final name.

 The array entry under consideration is split into words by splitting on the space

character.

 If a word ends with a hyphen it is a substituent. If the substituent is missing a closing

bracket, a closing bracket is added to the parent group.

 If it didn’t end in a hyphen OPSIN’s parser is used to determine word type. This is used

to determine how these words are added to the name. Substituents will be

substituents involved in functional class nomenclature and hence go at the front of

the name. Functional terms are appended to the end of the name. If the functional

term is ‘ester’, the suffix of the parent group is modified. Full terms are treated in the

same way as functional terms if they end in ‘ate’, ‘ite’ or are a hydrohalide. If they do

not uninversion fails.

 If the word is a CAS collective index it is ignored e.g. ‘(9CI)’.

 The final name is formed from space separated substituents for functional class

nomenclature then concatenated substituents and the parent group, followed by

space separated functionalTerms and mixture components.

3.2.6 Chemical word rule assignment

After parsing has been completed, a chemical name will have been tokenised into substituent,

full and functional term words. “Word Rules” describe the interactions between these words. For

48

example, in ‘ethyl ethanoate’ (a substituent and a full word), the word rule ‘ester’ will be assigned

indicating that the ethyl group should be connected to the charged oxygen on the ethanoate with

the charge removed. Without word rules, OPSIN would not know how the ethyl fragment and

ethanoate group interact. OPSIN’s current word rules are listed in Table 3-3. Most word rules are

only employed by chemical names using functional class nomenclature (Section 3.2.10.4).

Word Rule Example

acetal Propanal dimethyl acetal

additionCompound Carbon tetrachloride

acidHalideOrPseudoHalide Cyanic chloride

amide Nitrous amide

anhydride Acetic anhydride

biochemicalEster Adenosine 5'-triphosphate

carbonylDerivative Propanone oxime

divalentFunctionalGroup Diethyl ether

ester Ethyl ethanoate

functionalClassEster Acetic acid ethyl ester

functionGroupAsGroup Cyanide

glycol Ethylene glycol

glycolEther Ethylene glycol monomethyl ether

hydrazide Phosphoric hydrazide

monovalentFunctionalGroup Ethyl alcohol

multiEster Ethyl propyl methylphosphonate

oxide Thiophene 1,1-dioxide

polymer Poly(ethylene)

simple Ethylbenzene

substituent Chloro
Table 3-3 Word rules and examples names that correspond to them

Word rule assignment is achieved by a mixture of looking at the string value of words, in

particular the functional terms e.g. ‘ester’, and looking in more detail at the XML OPSIN has

generated for a particular word. The following are two examples of word rules employed by OPSIN:

 <wordRule name="ester" type="full">

 <word type="substituent" />

 <word type="full" endsWithRegex= "\S(at[e]?|amid[e]?|it[e]?)[\]\)\}]*"/>
 </wordRule>

 <wordRule name="monovalentFunctionalGroup" type="full">

 <word type="substituent" />

 <word type="functionalTerm" functionalGroupType="monoValentStandaloneGroup"/>

 </wordRule>

Additional word rules can be added trivially by adding entries such as the above to the

appropriate XML file but must be backed up by code within the program, describing the operations

that the word rule requires.

49

When a word rule matches, the XML for the matched word elements are nested within a new

containing wordRule element.

Word rules may be nested, allowing the interpretation of nested functional class

nomenclature. For example, ‘choline hydrogen sulfate’ is first matched by the ester word rule and

then by the biochemicalEster word rule (Figure 3-15).

<molecule name="choline hydrogen sulfate">

 <wordRule type="full" wordRule="biochemicalEster" value="choline hydrogen sulfate">

 <wordRule wordRule="simple" type="full" value="choline">

 <word type="full" value="choline"/>

 </wordRule>

 <wordRule type="full" wordRule="ester" value="hydrogen sulfate">

 <word type="substituent" value="hydrogen"/>

 <word type="full" value="sulfate"/>

 </wordRule>

 </wordRule>

</molecule>

Figure 3-15 choline hydrogen sulfate and its corresponding XML after word rule assignment. Contents

of word elements not shown for clarity.

If the molecule element has multiple wordRule children this is indicative that the name

describes either an ionic substance or a mixture. For (semi)metal halides/oxides it may be unclear as

to whether it is best to represent the structure covalently or ionically. This is determined at the word

rule assignment stage using cuts off on a quantitative van Arkel diagram111. For giant covalent

structures a known limitation is that neither the ionic nor covalent form are good representations.

Stoichiometry is determined by multipliers at the start of the words or specified after the name (cf.

Section 3.2.13.1).

If no word rules match, a rule exists that allows substituents to be combined with other

substituents or full words so that for example ‘ethyl benzene’ is interpreted initially as a substituent

and a full word but then is converted to just one full word ‘ethyl-benzene’. At the end of word rules

assignment, all words should have been assigned to a word rule otherwise an error is thrown.

Whether this error is thrown for names that correspond to the substituent word rule (names

formally representing radicals), e.g. ‘ethyl’, is controlled by a user-configurable switch.

3.2.7 Component generation

Component generation deals with processing nomenclature that can be efficiently acted upon

without access to a connection table representation of the fragments.

50

3.2.7.1 XML Transformations

Some terms which are described in the grammar by regular expressions are not monolithic in

nature and become more amenable if broken down further. Additionally some terms can benefit

from normalisation. The XML parse tree may be manipulated to achieve this. Table 3-4 summarises

these transformations/normalisations.

Term Example How it is handled

Superscript indication in locants N^4 N4 Superscript indication removed as
ambiguity is not introduced

Provisional recommendation for
indicating a heteroatom

attached to a numeric locant

4-N N4 Transformed into the older nomenclature
for this type of locant

Greek character name in locant ALPHA alpha Lower cased (OPSIN locants are case
sensitive)

Added hydrogen in locant 2(9H) 2 and 9H Added hydrogen removed from locant and
added hydrogen element created

Locant that also indicates
stereochemistry

1(S) 1 and 1S Stereochemistry removed from locant and
locanted stereochemistry element created

Carbohydrate style locants 2,4,6 tri O
O2,O4,O6 tri

Transformed into more general form

Ortho/meta/para locants o 1,ortho Normalisation to full lower case word.
Context sensitive addition of implicit ‘1’

locant

Indicated hydrogen 1H,2H 1H 2H Indicated hydrogen blocks split up and
locant attributes set

Stereochemistry (1R, 2R) 1R 2R Converted to individual stereochemistry
elements with locant attribute where

locants provided

Infixes thi oic acid oic
acid

Infixes become an attribute of the
following suffix except in cases where
multiplier use is ambiguous (Section

3.2.9.9a)

“Suffix prefixes” sulfonic acid ic
acid

“suffix prefix” becomes an attribute of the
following suffix

Lambda Convention 1lambda4,5
1lambda4 4,5

Lambda Convention either assigned as an
attribute of an adjacent heteroatom

replacement term or formed into a new
element with appropriate locant attribute

Table 3-4 Summary of XML transformations performed

As OPSIN does not employ a context-free grammar, no attempt at bracket matching is done at

the grammar level. The only depth present in the XML parse tree is the division of a name into

substituent, root and functionalTerm elements (Figure 3-16). Bracketing depth is

subsequently added in by matching openbracket and closebracket elements (Figure 3-17).

51

The type of bracket i.e. round, curly or square is currently ignored. Any unmatched brackets will be

reported and the parse will be rejected.

<substituent>

 <openbracket value="(">(</openbracket>

 <group value="-Cl" labels="none" valType="SMILES" type="substituent"

 subType="halideOrPseudoHalide">chloro</group>

</substituent>

<substituent>

 <group value="C" labels="1" valType="SMILES" usableAsAJoiner="yes"

 type="chain" subType="alkaneStem">meth</group>

 <suffix value="yl" type="inline">yl</suffix>

 <closebracket value=")">)</closebracket>

</substituent>

Figure 3-16 XML parse tree prior to bracket matching

<bracket>

 <substituent>

 <group value="-Cl" labels="none" valType="SMILES" type="substituent"

 subType="halideOrPseudoHalide">chloro</group>

 </substituent>

 <substituent>

 <group value="C" labels="1" valType="SMILES" usableAsAJoiner="yes"

 type="chain" subType="alkaneStem">meth</group>

 <suffix value="yl" type="inline">yl</suffix>

 </substituent>

</bracket>

Figure 3-17 XML parse tree after bracket matching

3.2.7.2 Generation of alkanes

Example

dodectetractkiliane

General Syntax units? tens? hundreds? thousands? unsaturation

The vast majority of alkane names are systematic in nature (Table 3-5) and hence, as the

syntax for generating them is straightforward, it makes sense to generate them algorithmically

rather than via enumeration. Even though only alkanes 1-4 and 11 are trivial in nature for

implementation purposes it is simplest to just consider alkanes of lengths 1-9 as trivial. All other

alkanes of lengths 10+ can then be considered as systematic allowing OPSIN to support creation of

alkanes of length up to 9999112. The length of the chain may be calculated from summing the

number of thousands/hundreds/tens/units in the name e.g. dodectetractkiliane is 2 + 10 + 400 +

1000 = 1412. OPSIN allows the creation of an alkane of length 11 either systematically (hendecane)

or trivially (undecane). Numbering of alkanes is achieved by simply numbering the chain from one

end to the other.

52

Alkane stem Chain Length Systematic?

meth (systematic = hen) 1 ✗

eth (systematic = do) 2 ✗

prop (systematic = tri) 3 ✗

but (systematic = tetr) 4 ✗

pent 5 ✓

hex 6 ✓

hept 7 ✓

oct 8 ✓

non 9 ✓

dec 10 ✓

undec (systematic = hendec) 11 ✗

dodec 12 ✓

n/a 13+ ✓
Table 3-5 Alkane stems and whether they can be formed systematically

Isomers of alkanes in general are formed by systematic nomenclature but for a limited set of

isomers a traditional method involving modifiers may be employed (Table 3-6). OPSIN implements

these modifiers systematically by generating appropriate SMILES for the branched alkane chain. Care

is taken to avoid generating nonsensical structure e.g. ‘isopropane’ and to respect cases where these

modifiers are not used systematically e.g. ‘t-octyl’.

Modifier Meaning Example

n or normal Straight chain (default
behaviour)

n-butane

t or tert Atom that suffixes apply to is
bonded to two methyl groups

and the remaining atoms in
the chain

tert-pentyl

i or iso The opposite end of the chain
to which suffixes apply has

two methyl groups attached to
the penultimate atom

isopentyl

s or sec The second atom in the chain
is used for suffixes (hence

meaningless if the alkane does
not have a suffix)

sec-pentyl

neo The opposite end of the chain
to which suffixes apply has

three methyl groups attached
to the penultimate atom

neohexane
Table 3-6 Modifier prefixes for producing alkane isomers

53

3.2.7.3 Generation of heteroatom hydrides

Example

pentaphosphane

General Syntax multiplier heteroatomhydride

For chains of non-metals other than carbon and boron the chain may be named by the

combination of a multiplier with the name of the hydride77 (Rule 2.2.2). OPSIN implements this

algorithmically to generate appropriate SMILES. Care is taken to avoid confusion between this

nomenclature and cases where multiple copies of the hydride are being referred to e.g. ‘1,4-

diazanyl-benzene’. Numbering is the same as for alkanes.

3.2.7.4 Generation of heterogeneous heteroatom hydrides

Example

disilazane

General Syntax multiplier heteroatom heteroatom unsaturation

If a chain is made of alternating heteroatoms it may be named by a multiplier in front of a

heteroatom, where the multiplier indicates the count of that heteroatom in the chain, followed by

the other heteroatom in the chain77(Rule 2.2.3). OPSIN implements this algorithmically to generate

appropriate SMILES. The SMILES generated depend on whether or not the chain is prefixed with

‘cyclo’ as this changes the composition of the chain (Figure 3-18). Numbering is the same as for

alkanes.

Figure 3-18 disiloxane (left) and cyclodisiloxane (right)

The nomenclature of heterogenous heteroatom hydrides overlaps with the syntax of

Hantzsch-Widman nomenclature for six-membered rings (Section 3.2.9.10). The two nomenclatures

are distinguishable by considering that in Hantzsch-Widman nomenclature the first heteroatom is of

higher priority than the second, whilst for heterogenous heteroatom hydrides, the opposite is

always true (Figure 3-19).

54

Figure 3-19 dioxathiane. Left: a HW interpretation. Right: incorrect heterogeneous heteroatom hydride

interpretation

3.2.7.5 Generation of hydrocarbon ring systems

3.2.7.5a Von Baeyer nomenclature

Example

bicyclo[3.2.1]octane

General Syntax multiplier cyclo von Baeyer descriptor alkane

The von Baeyer system113 is used to name polyalicyclic ring systems. This differs from fused

ring nomenclature (Section 3.2.9.11) which is generally applied to systems containing at least one

unsaturated ring. This distinction arises primarily from the reduction in comprehensibility when a

nomenclature is applied outside of its domain rather than any difference in expressive power.

To understand von Baeyer nomenclature, first some terms need to be defined:

Bridgehead: An atom which is bonded to three or more atoms of the ring system

Bridge: A connection between two bridgeheads. This could be an unbranched chain of atoms, an
atom or a bond. The latter two can be thought of as bridges of length 1 and 0 respectively.

For a system to be polycylic it must necessarily have at least two bridgeheads and three

bridges. Two bridgeheads are selected and the lengths of three bridges between them form the start

of the von Baeyer descriptor. If there are no further bridges then naming is complete e.g. Figure

3-20.

55

Figure 3-20 bicyclo[2.2.2]octane. This structure can be clearly seen to contain 3 bridges of length 2

between its bridgehead atoms.

Any bridges beyond the third are called secondary bridges and require locants to indicate

which bridgehead atom they are between. Numbering is assigned in the order that bridges are

created (Figure 3-21).

Figure 3-21 tricyclo[2.2.1.1
2,5

]octane. The numbers correspond to the numbering the von Baeyer

descriptor defines for the system. Red is the first bridge, blue is the second bridge, green is the third and

purple is the fourth bridge (a secondary bridge).

The von Baeyer descriptor is almost always followed by a description of an alkane, although a

heteroatom hydride (Section 3.2.7.3) is also allowed (Figure 3-22). The length of the alkane chain

can, and indeed is by OPSIN, checked to assure that it is equal to the sum of the length of the bridges

plus two. Additionally the multiplier preceding the von Baeyer descriptor is verified as being equal to

the number of bridges plus one.

Figure 3-22 tetracyclo[3.3.1.0

2,4
.0

6,8
]nonaphosphane

OPSIN interprets von Baeyer nomenclature by algorithmically generating appropriate SMILES.

Where superscript indication is missing OPSIN heuristically attempts to determine what is a locant

and what is a bridge length indication by assuming the locant will be larger (secondary bridges are

typically short in length as longer bridges are preferred for the earlier bridges in the name).

All features of von Baeyer nomenclature are supported with the exception of alternating

heteroatom chains. This limitation is due to the difficulty in determining which heteroatom should

56

be used such as to have the correct number of each heteroatom in the system with no atom being

the neighbour of a heteroatom of the same element and also due to the negligible usage of this

nomenclature. This difficulty can be seen in the fact that specialised nomenclature is required in

some cases to actually specify which heteroatom is at locant 1! (Figure 3-23).

Figure 3-23 1N-tricyclo[3.3.1.1
2,4

]pentasilazane (not OPSIN interpretable) or 1,3,5,7,10-pentaaza-

2,4,6,8,9-pentasilatricyclo[3.3.1.1
2,4

]decane (preferred name
78

, OPSIN interpretable)

3.2.7.5b Monocyclic Spiro nomenclature

Example

dispiro[4.2.4.2]tetradecane

General Syntax multiplier? spiro von Baeyer descriptor alkane

A spiro fusion is one in which two rings share a single atom. Ring systems formed of

monocyclic rings (i.e. not fused rings) may be named in a similar way to von Baeyer

nomenclature114(Rule SP-1)
.

The von Baeyer descriptor is interpreted from left to right using a carbon atom that will

become a spiro centre upon construction of the ring system. The first number in the descriptor

describes the number of carbon atoms forming the link from the starting atom back to itself.

Subsequent numbers describe the number of carbon atoms forming a link to a new spiro atom or

back to a previous spiro atom. Algorithmically, the point at which the numbers begin describing links

back to previous spiro centres may be determined by examination of the starting multiplier which

indicates how many spiro centres are expected in the ring system. Numbering proceeds in the order

that the links are created (Figure 3-24).

57

Figure 3-24 dispiro[4.3.2.1]dodecane. Atom 1 is the starting spiro atom. Atoms 2-4 are described by the

‘4’ from the descriptor, atoms 6-8 by the ‘3’, atoms 10-11 by the ‘2’ and atom 12 by the ‘1’.

For tri and higher spiro systems it is in some cases recommended and other cases required

that superscripted locants be used to indicate which spiro atom a link connects to (Figure 3-25).

Figure 3-25 trispiro[2.2.2.2.2.2]pentadecane (left) and trispiro[2.2.2
6
.2.2

11
.2

3
]pentadecane (right)

showing the effect of superscripted locants

The use of superscripts is also essential if a spiro atom is visited more than twice e.g. Figure

3-26.

Figure 3-26 7λ
6
-thiatrispiro[2.0.2.2

7
.3

7
.2

4
.3

3
]heptadecane

OPSIN interprets this nomenclature by algorithmically generating the SMILES described by the

von Baeyer descriptor. A check is performed to verify that the number of atoms in the von Baeyer

58

descriptor + the indicated number of spiro atoms as given by the multiplier is equal to the number of

atoms in the alkane following the von Baeyer descriptor. Unlike in the case of von Baeyer

nomenclature OPSIN requires indication that number are superscripted; the reason for this is that it

is not possible to know from the name’s syntax whether or not a number is expected to be followed

by a superscripted number (cf. Figure 3-25).

OPSIN supports all rules for spiro systems formed from monocyclic rings with the exception of

the generalisation to heteroatom hydrides instead of alkanes.

3.2.7.5c Other hydrocarbon ring nomenclature

The IUPAC nomenclature of fused rings115(Rule Fr-2.1) defines numerous micro syntaxes for

naming specific types of hydrocarbon ring systems. OPSIN has complete support for all of these

micro syntaxes. They are implemented by using the value of the required locant/multiplier to

algorithmically generate the SMILES for the ring system (Table 3-7). All of these systems have a

minimum value below which they are undefined e.g. [2]annulene is undefined as a ring of size 2 is

impossible.

Example Nomenclature description

[8]annulene

Defines a ring with the maximum number of
non-cumulative double bonds of size given by

the bracketed number

hexacene

A chain of n linearly fused benzene rings, where
n is defined by the multiplier

hexaphene

A chain of (n/2) + 1 (or (n + 1)/2 if n is odd)
linearly fused benzene rings fused at 120o to

(n/2) - 1 (or ((n + 1)/2) - 1 if n is odd) more
linearly fused benzene rings, where n is defined

by the multiplier

octalene

Two rings of size n, with the maximum number
of non-cumulative double bonds, where n is

defined by the multiplier

59

triphenylene

n benzene rings fused to alternating sides of a
ring of size 2n, where n is defined by the

multiplier

tetranaphthylene

n naphthalene rings 2,3-fused to alternating
sides of a ring of size 2n, where n is defined by

the multiplier

hexahelicene

n benzene rings fused in a helical arrangement,
where n is defined by the multiplier

Table 3-7 Micro syntaxes for generating hydrocarbon ring systems

3.2.7.6 Rejection of parses caused by nomenclature ambiguity

While for most names with multiple parses, all bar one will fail when performing detailed

processing of the name’s nomenclature, there exist some cases where multiple interpretations are

plausible. Usually one of these interpretations can be readily seen to be more likely than the other,

often due to one interpretation not unambiguously describing a single structure. Known cases of this

type can typically be dealt with early in the name to structure process.

One example is the ambiguity between longer alkane chains and shorter multiplied alkanes

(Figure 3-27). This arises due to OPSIN allowing a multiplier to apply to any group including an

60

alkaneStem. IUPAC nomenclature recognises this ambiguity and solves it by the use of group

multipliers when multiple shorter chains are desired e.g. ‘tetrakis(decyl)’. OPSIN follows these

recommendations except in the case where the multiplier is immediately preceded by as many

locants as the multiplier’s value in which case the multiple shorter chains interpretation is used.

Figure 3-27 tetradecyl correct (left) and incorrect (right) interpretations

A similar, but undocumented, ambiguity occurs between multiplied phenyl rings and

“polyaphene” rings (Section 3.2.7.5c). As the polyaphene interpretation is ambiguous it is not chosen

unless prefixed by a locant which would locate the “yl” to a specific atom.

Figure 3-28 Interpretations of tetraphenyl. Left: [tetra][phenyl] Right: [tetra][phen][yl]

Figure 3-29 shows another ambiguity. In this case the phenol derivative is preferred unless the

“ol” is locanted.

Figure 3-29 Interpretations of thiophenol. Left: [thio][phenol] Right: [thiophen][ol]

Another undocumented ambiguity occurs with heteroatom hydrides (Section 3.2.7.3)

combining both the “ene” and “ium” suffix with elision of the ‘e’ on the “ene” (Figure 3-30). This

clash could be avoided through the use of locants.

Figure 3-30 Incorrect interpretation of diselenium

61

3.2.7.7 Handling of nomenclature irregularities

IUPAC nomenclature due to its inclusion of so many recommendations has accumulated a

large number of oddities which for the most part can be dealt with prior to conversion of SMILES to

structures. Handling of irregularities generally involves modification of SMILES for a group or

rejection of the parse. The following are examples of aspects of nomenclature that are considered

irregular to OPSIN and hence special cased.

 Presence of ‘acid’ after ‘ic’ is enforced except when followed by another word within

the same word rule e.g. ‘acetic anhydride’ is allowed

 Methylenedioxy is treated as a single group and may be used to form bridges

 Multiplied ‘ethylene’s and ‘propylene’s when followed by ‘glycol’ indicate a chain

interspersed with oxygens (Figure 3-31)

Figure 3-31 tetraethylene glycol

 ‘Xanthic acid’ and chalcogen analogues are entirely unrelated to ‘xanthene’. ‘Xanthyl’

is related to ‘xanthene’.

 Some groups have implicit locants by convention e.g. ‘anthrone’ = ‘9(10H)-anthrone’

 ‘phospho’ has a different meaning in a biochemical context to an organic chemistry

context (Figure 3-32). OPSIN determines this by looking at whether the next group is

an amino acid/biochemical group/carbohydrate.

Figure 3-32 Organic interpretation of ‘phospho’ (left) and biochemical interpretation (right)

 ‘cysteic acid’ is not a synonym for ‘cysteine’

 ‘acrylamide’ is not a substituted amide ion (amide can mean [NH2-])

 If a group directly follows ‘azo’, or the like, it is implicitly multiplied (Figure 3-33)

62

Figure 3-33 azobenzene = azodibenzene

 Acids bonded to Coenzyme A always connect via an acyl even if the name states ‘yl’

rather than ‘oyl’. Additionally even if the acid is a di-acid only one end is an acyl group

(Figure 3-34).

Figure 3-34 Malonyl-CoA

 ‘keto’ can be a synonym of ‘oxo’ or mean that a carbohydrate, specifically a ketose, is

in the open chain form.

 fluoroantimonic acid is not a derivative of antimonic acid (Figure 3-35). Similar

problems exist with some other inorganic acids.

Figure 3-35 fluoroantimonic acid (left) antimonic acid (right). Systematically fluoroantimonic acid would

be antimonic acid with a hydroxyl replaced by fluorine

 ‘-quinone’ is treated in the same ways as ‘-dione’ e.g. it may be prefixed with two

locants.

 ‘-ylium’ may mean the removal of a hydride ion or the formation of an acylium group

(Figure 3-36)

Figure 3-36 acetylium (left) and ethanylium (right)

63

 Multiplied phosphates may refer either to a chain of phosphates or to multiple

phosphate ions (Figure 3-37). OPSIN uses the chain interpretations in preference up to

a length of five phosphates.

Figure 3-37 triphosphate, most likely (left); less likely (right)

3.2.8 Connection table generation

For processing more advanced nomenclature it is necessary to generate an in memory

connection table representation for the fragments of the name under consideration. OPSIN achieves

this using a custom SMILES reader. SMILES are read in character by character using a stack to keep

track of the atom to which the next atom will be bonded. All common features of SMILES including

stereochemistry are supported with some nonstandard extensions to include information not

allowed in standard SMILES.

The most significant difference between normal SMILES readers and OPSIN’s SMILES reader is

in its interpretation of hydrogen counts. OPSIN’s hydrogen model assumes that all substitutable

hydrogen are implicit hence one can instead just consider the valency of an atom and from that

calculate the number of hydrogens. In SMILES hydrogen may be implicit, treated as a property of an

atom or treated in the same way as other atoms. The implicit case does not require explicit handling

as OPSIN knows about the expected valences for organic atoms. When hydrogen atoms are treated

like normal atoms, or they are the property of a non-p block metal, they are considered

unsubstitutable.

In the case where hydrogen are a property of an atom OPSIN attempts to determine whether

the total incoming bond order including hydrogens is consistent with the atom being in one of its

standard valences. In the case that the atom is charged OPSIN attempts to understand the atom as

the uncharged atom in a standard valency with a certain number of protons added or removed e.g.

[NH4+] is interpreted as being in its normal valency with 1 proton added. If it is not possible to

consider the atom as being in one of the expected valences a hint about the minimum final valency

of the atom is set.

64

OPSIN supports two extensions that more naturally map to the concepts present in OPSIN’s

hydrogen handling model. The first is the use of ‘H?’ within a square bracket which is interpreted as

indicating the atom has implicit hydrogen in the same way as the organic subset are interpreted. For

example ‘[SiH?]’ is interpreted to be the same as [SiH4].

The other is the ability to explicitly set the valency of an atom using the Lambda Convention

(Section 3.2.9.11). This is done using the pipe character followed by the Lambda Convention valency

e.g. [P|3] = [PH3]. The Lambda Convention extension is useful for specifying the valency of atoms in

square brackets that when finally used will have valency higher than the sum of the intra-fragment

bond orders e.g. the fragment describing ‘selenoether’ is [Se|2]. Describe this fragment as [Se] is

incorrect as this implies 0 valency whilst [SeH2] whilst also acceptable is somewhat misleading as the

fragment is really a bare selenium known to form 2 bonds. The Lambda Convention extension also

allows OPSIN’s valency check to be bypassed e.g. F(=O)O is rejected but [F|3](=O)O is accepted as it

has been made explicit that the fluorine is expected to be that valency.

Lower case symbols in SMILES correspond to aromaticity. In OPSIN’s SMILES reader it instead

directly corresponds to the IUPAC’s concept of maximum number of non-cumulative double bonds.

This allows OPSIN to know that it may assign double bonds to atoms that cannot in their normal

valency accept double bonds (Figure 3-38). OPSIN allows aromatic antimony and tellurium to allow

rings with such atoms to be treated analogously to those containing arsenic and selenium.

SMILES
[cH2]1ccn2cccc12 1H-pyrrolizine 3H-pyrrolizine pyrrolizin-4-ium

Figure 3-38 SMILES for pyrrolizine and structures that may be ultimately generated. Note that OPSIN

would also accept c1ccn2cccc12 even though this is not valid SMILES.

3.2.9 Specific nomenclature handling

The majority of nomenclature manipulation occurs in the section named Component

Processing in the architecture diagram (Section 3.2.2). To allow locanted operations to precede

unlocanted operations, skeletal replacement nomenclature and all indications of

saturation/unsaturation are handled during Structure Assembly. Note that in the cases of ring

assemblies and polycyclic spiro systems (which fall under Component Processing) these pieces of

65

nomenclature are applied prior to Structure Assembly so that the complete ring assembly or

polycyclic spiro system may be assembled prior to Structure Assembly.

3.2.9.1 Groups with indeterminately positioned structural features

Example

1,3-xylene

General Syntax locant trivialGroup

Some trivial names do not describe a particular structure but instead multiple structures. In

these cases locants preceding the trivial name may be used to specify a specific structure. In some

cases such as for ‘camphorsulfonic acid’ (Figure 3-39) unless specified otherwise a particular locant is

assumed.

Figure 3-39 camphorsulfonic acid or more precisely 10-camphorsulfonic acid

To avoid the need to enumerate all possible combinations of locants in front of a group, OPSIN

includes attributes for adding groups (cf. 1,3-xylene), higher order bonds (Figure 3-40) and

heteroatoms (Figure 3-41) to a group

66

Figure 3-40 1-pyrazoline (left) and 3-pyrazoline (right)

Figure 3-41 1,8-naphthyridine (left) and 2,7-naphthyridine (right)

3.2.9.2 Traditional alkane/carboxylic acid locants

Greek locants may be used instead of numbers for locants on simple alkanes (Figure 3-42) and

carboxylic acids (Figure 3-43). To allow application to systematic as well as trivial groups OPSIN adds

these locants algorithmically. OPSIN starts numbering from the first atom/atom at which the suffix

applies. Care is taken to skip the first atom in the case where acid functionality is bonded to this

atom e.g. ‘ic acid’ but NOT ‘carboxylic acid’. Labelling proceeds along the chain as long as each atom

has one unvisited carbon neighbour i.e. branches terminate labelling. Cyclic atoms are not labelled

and terminate labelling. Groups with more than one acid group are not labelled.

Figure 3-42 Traditional Greek locants on pentane

Figure 3-43 Traditional Greek locants on butyric acid/butanoic acid

3.2.9.3 Skeletal replacement nomenclature

Skeletal replacement nomenclature 76 (Rule B-4) or “a” nomenclature refers to replacing carbon

atoms in a parent structure with heteroatoms. The name “a” nomenclatures come from the fact

that all the prefixes employed end with ‘a’ (Table 3-8). These prefixes, typically locanted, indicate

which carbons should be replaced by heteroatoms e.g. Figure 3-44. OPSIN supports the full

complement of “a” prefixes.

67

Heteroatom “a” prefix Plus proton Minus hydride Minus proton Plus hydride

Oxygen oxa oxonia oxidanylia oxidanida oxidanuida

Sulfur thia thionia sulfanylia sulfanida sulfanuida

Nitrogen aza azonia azanylia azanida azanuida

Phosphorus phospha phosphonia phosphanylia phosphanida phosphanuida
Table 3-8 Sample “a” prefixes for skeletal heteroatom replacement and charged analogues

Figure 3-44 1-thia-4-aza-2,6-disilacyclohexane

This nomenclature may be used in combination with the Lambda Convention if the

replacement heteroatom is not in its standard valency (cf. Section 3.2.9.11).

3.2.9.4 Conjunctive nomenclature

Example

benzeneethanol

General Syntax ring acylic group with functionality

Conjunctive nomenclature76(Rules C-51 – C-58) may be applied to systems formed of a cyclic

component and an acyclic component containing the principle functional group. The acyclic

component is numbered using Greek letters to avoid ambiguity with locants on the cyclic

component (Figure 3-45). OPSIN implements conjunctive nomenclature by resolving the

nomenclature that defines the ring system, resolving suffixes onto the acyclic component,

renumbering the acyclic component, cloning the acyclic component if necessary (Figure 3-46) and

then merging the fragments using appropriate locants or heuristically. To support 76(Rules C-812.3) which

states that radicals terminated by ‘amine’ may be used in conjunctive nomenclature ‘ylamine’ is an

allowed suffix in the grammar for conjunctive nomenclature (Figure 3-47).

68

Figure 3-45 α-chloro-β-methyl-1-naphthalenepropionic acid

 Figure 3-46 2,3-naphthalenediacetic acid

Figure 3-47 fluorene-2-ethylamine. This is handled in the same way as ‘fluorene-2-ethanamine’ by

giving ‘ylamine’ the same meaning as ‘amine’ in this context.

3.2.9.5 Suffix handling

In IUPAC nomenclature suffixes are used to describe the principal functional group, to indicate

addition/removal of charge and to indicate the presence of radicals.

OPSIN categorises suffixes into three types: normal suffixes, radical adding suffixes and charge

modification suffixes. Further subdivisions are made to discriminate which are allowed to be

69

preceded by “suffix prefixes” and/or infixes. Modification of suffixes comes under functional

replacement (Section 3.2.9.9).

In general, the grammar is only specific enough to say which types of suffix are allowed on a

group but is incapable of saying specifically which suffixes are allowed. This is insufficiently specific,

not all suffixes are valid on all groups (Figure 3-48) and the same suffix may have different meanings

on different groups (Figure 3-49).

Figure 3-48 An incorrect interpretation of ‘acetal’ (correct name acetaldehyde)

Figure 3-49 ‘yl’ has different meanings on different acidStems. Acetyl (left) and lauryl (right)

To define the effects of suffixes and to enforce rules about which groups suffixes may apply

to, OPSIN uses external rules files (Figure 3-50). Adding more suffixes can be done by modifying

these files but this is seldom required as the number of base suffixes in IUPAC names is finite with

the vast number of possible suffixes coming from the use of infixes which OPSIN implements

algorithmically (Section 3.2.9.9).

70

Figure 3-50 Flowchart for handling suffixes. The group in question is the group to which the suffix will

apply.

OPSIN defines suffixes through the use of one or more of the rules outlined in Table 3-9.

71

Suffix Rule Description

addgroup Adds a group defined by SMILES. Optionally the
groups may be labelled, have radicals indicated

or have “functional atoms” indicated

addSuffixPrefixIfNonePresentAndCyclic Typically used to add a carbon atom before a
suffix e.g. ‘pyrazinoic acid’ is interpreted the

same as ‘pyrazincarboxylic acid’ would be

setOutAtom Sets an atom to be a radical. The valency may
also be specified

changecharge Used to specify the change in charge and
number of protons added/removed

addFunctionalAtomsToHydroxyGroups Makes all hydroxyl oxygens functional

chargeHydroxyGroups Makes all hydroxyl oxygens negatively charged

removeOneDoubleBondedOxygen Removes a double bonded oxygen

convertHydroxyGroupsToOutAtoms For each hydroxyl group removed a radical is
added

convertHydroxyGroupsToPositiveCharge For each hydroxyl group removed the charge is
increase by one

Table 3-9 Rules used to define the effects of suffixes

OPSIN handles most suffixes as being the addition of a small group to a parent group but for

inorganic acids OPSIN instead uses the suffix to mutate the structure of the acid (Figure 3-51).

Figure 3-51 carbonic acid (left), carbonyl (middle) and carbonate (right). ‘yl’ and ‘ate’ employ the

convertHydroxyGroupsToOutAtoms and chargeHydroxyGroups rules respectively

3.2.9.6 Charge and oxidation numbers

Example
methylmercury(1+) or methylmercury(II)

General Syntax element (chargeSpecification | oxidationNumber)

Elements, especially inorganic elements, may have their charge specified by a bracketed

signed number. This can be trivially interpreted by setting the appropriate charge on the referenced

atom.

Oxidation numbers are indicated using a bracketed roman number and indicate the charge

that the atom would have if all its ligands were removed along with the electron pairs that were

shared with the atom. OPSIN does not in general support inorganic coordinate nomenclature so

72

attempts have only been made to make sure oxidation numbers are interpreted correctly when used

in conjunction with ligands that share names with prefixes used in organic nomenclature.

Generally neutral and cationic ligands are simply the name of the ligand. As there is no suffix

present to indicate that the group is a substituent, OPSIN cannot currently support these names.

Hence OPSIN is allowed to make the assumption that all substituents are negative ligands with the

exception of ‘carbonyl’ and ‘nitrosyl’ (Figure 3-52).

Figure 3-52 dichlorotetracarbonylmolybdenum(II). The two chloro ligands formally donate 1- charge to

the molybdenum which would be 2+ with no ligands making the compound overall neutral

3.2.9.7 Indication of saturation and unsaturation

3.2.9.7a Unsaturation terms

Example

hexa-1,3-dien-5-yne

General Syntax alkaneStem (locant? multiplier? unsaturator)+

Unsaturation on hydrocarbons76(Rule A-3) is indicated using ‘en(e)’ and ‘yn(e)’. Grammatically

‘an(e)’ is similar but distinct as it may not be locanted and adds no information e.g. ‘ethyl’ =

‘ethanyl’. Unsaturation of natural products ending in ‘an’, ‘ane’ or ‘anine’ is also indicated in this way

(Figure 3-53).

73

Figure 3-53 Pregn-4-en-20-yne

Where all single bonds are not equivalent, a locant is used to specify one atom in the bond to

be unsaturated. The atom at the other end of the bond is implicitly the one with the locant that is 1

higher. If this is not the case, a compound locant may be used to explicitly specify the atom at the

other end of the bond (Figure 3-54). OPSIN treats compound locants as if they were normal locants

until the point where unsaturation is applied, at which point such locants are inspected to determine

if they have a bracketed section.

Figure 3-54 bicyclo[8.5.1]hexadec-1(15)-ene. The double bond goes between the atoms with locants 1

and 15

3.2.9.7b Hydro, dehydro, indicated hydrogen and added hydrogen

Example

2,7-dihydro-1H-azepine

General Syntax (locant? multiplier hydro)* (indicatedHydrogen)? ringSystem

Cyclic compounds are saturated and unsaturated using the prefixes hydro and dehydro

respectively. As these prefixes refer to the atoms of a bond they should be in multiples of two.

74

OPSIN implements hydro not by actually creating double bonds but by unsetting the flag

indicating that the atom may be involved in a conjugated π-system. Dehydro conversely sets the

flag. These flags are used when performing kekulisation on the ring system (cf. Section 3.2.11).

When dehydro is applied to atoms that already have the flag set an explicit triple bond is indicated

(Figure 3-55). Care is taken when applying unlocanted hydro prefixes to take into account which

atoms will implicitly have their flag unset due to having insufficient valency for a double bond due to

the addition of a suffix or substituent. Hydro prefixes are in preference used on atoms that would

otherwise be capable of supporting double bonds.

Figure 3-55 1,2-didehydrobenzene (trivial name: benzyne)

Indicated hydrogen atoms are used to indicate an atom in a ring system not involved in a

double bond (Figure 3-56). Added hydrogen atoms are used to indicate the addition of a hydrogen to

an atom in a ring system as a result of the addition of a suffix (Figure 3-57). Both indicated and

added hydrogen are implemented by unsetting the aforementioned flag.

Figure 3-56 1H-pyrrole (left) and 3H-pyrrole (right)

Figure 3-57 isoquinolin-4a(2H)-yl

‘Perhydro’ has historically76(Rule A-23.1) been used to indicate that all atoms in a ring system are

unsaturated (Figure 3-58).

75

Figure 3-58 perhydroanthracene

3.2.9.8 Subtractive nomenclature

Subtractive nomenclature is used to indicate the removal of a group. It is comparatively rare in

organic nomenclature and hence OPSIN only supports the most common usage; the removal of a

hydroxyl using ‘deoxy’ (Figure 3-59). Addition of other single atom subtractive terms such as

‘desmethyl’ can be done at the vocabulary level but is likely to be of limited benefit due to such

terms most often being used to modify trivial names e.g. drug names, that are absent from OPSIN’s

vocabulary.

Figure 3-59 2-deoxy-ᴅ-ribose, an example of subtractive nomenclature

OPSIN implements subtractive nomenclature by normalising subtractive terms to be non-

detachable prefixes (an assumption is made that such terms are likely to apply to a

biochemical/carbohydrate fragment) then applying the term to the adjacent group. Care must be

taken when removing atoms at chiral centres; if the centre is subsequently substituted this can be

thought of as replacing the atom by a hydrogen atom which in turn is replaced hence preserving

stereochemistry (Figure 3-60). As OPSIN has implicit hydrogens this is achieved by inserting a

reference to a dummy “deoxyHydrogen” which will be replaced by a reference to either a hydrogen

atom or a substituent atom when hydrogens are made explicit. At this point it can be determined

whether the centre still is a stereocentre (cf. Section 3.2.14).

Figure 3-60 2-amino-2-deoxy-ᴅ-ribose, note that stereochemistry is retained at position 2

76

3.2.9.9 Functional replacement

Functional replacement involves the replacement of oxygen atoms/hydroxyl groups with

other atoms or groups77(Rule 3.4 and Table 8). This replacement may be indicated by the use of either

prefixes or infixes with more recent recommendations tending to encourage infixes due to reduced

possibilities for ambiguities. OPSIN treats functional replacements as far as possible as systematic

operations. For example, OPSIN does not have ‘thiol’ in its list of suffixes as this can be systematically

derived by combination of ‘thi’ with the suffix ‘ol’.

3.2.9.9a Infix Functional Replacement

Example

methanedithioic acid

General Syntax (multiplier? infix o?)+ suffix

Infix replacement replaces oxygen atoms/hydroxyl groups within a following suffix. OPSIN

implements all IUPAC infixes with the exception of chalcogen analogues of peroxo involving two

different chalcogens as these require currently unsupported nomenclature to be used

unambiguously.

77

Infix Transformation

amid(o) -O N

azid(o) -O N=[N+]=[N-]

bromid(o) -O Br

chlorid(o) -O Cl

cyanatid(o) -O OC#N

cyanid(o) -O C#N

dithioperox(o) -O- SS

diselenoperox(o) -O- [Se][Se]

ditelluroperox(o) -O- [Te][Te]

fluorid(o) -O F

hydrazid(o) -O NN

hydrazon(o) =O =NN

imid(o) =O =N

iodid(o) -O I

isocyanatid(o) -O N=C=O

isocyanid(o) -O [N+]#[C-]

isothiocyanatid(o) -O N=C=S

isoselenocyanatid(o) -O N=C=[Se]

isotellurocyanatid(o) -O N=C=[Te]

nitrid(o) =O and -O #N

perox(o) -O- OO

selen(o) =O or -O =[Se] or -[SeH]

tellur(o) =O or -O =[Te] or -[TeH]

thi(o) =O or -O =S or -[SH]

thiocyanatid(o) -O SC#N

selenocyanatid(o) -O [Se]C#N

tellurocyanatid(o) -O [Te]C#N

hydroxim(o) =O =NO
Table 3-10 OPSIN supported infixes and the transformations they describe. Hydroxim is not an IUPAC

endorsed infix.

A multiplied infix may be formally ambiguous if no brackets are used to clarify whether the

infix is multiplied or the infixed suffix is multiplied (Figure 3-61). OPSIN disambiguates by inspection

of multiplier type e.g. bis implies multiplication of the infixed suffix and by examining the number of

available oxygen (Figure 3-62)

Figure 3-61 ethanedithioic acid (left, OPSIN interpretation). Incorrect interpretation (right)

78

Figure 3-62 butandithione. The name clearly indicates two thione suffixes as the ‘one’ suffix only

describes one oxygen atom.

Due to some infixes accepting more than one bond order to an oxygen, these must be acted

on last to avoid problems with more specific infixes failing to apply (Figure 3-63).

Figure 3-63 ethanoic acid (left) ethanthioimidic acid (right). The thio could apply to either oxygen whilst

the imid may only apply to the double bonded oxygen

If the atom to which infix replacement applies is ambiguous this ambiguity needs to be

recorded as it may be resolvable later (Figure 3-64).

Figure 3-64 S-methyl ethanthioate (left) and O-methyl ethanthioate (right)

3.2.9.9b Prefix Functional Replacement

Example

1-chloro-2,4-diimidotricarbonic acid

General Syntax (locant? multiplier? prefix)+ group

The prefixes in Table 3-11 may be employed for functional replacement. It can be quickly seen

that many are identical to those employed as substituents in substitutive nomenclature hence to as

far as possible avoid ambiguity, prefix functional replacement is typically only recommended for

certain non-carboxylic acids.

79

Prefix OPSIN classification

amido dedicatedFunctionalReplacementPrefix

azido halideOrPseudoHalide

bromo halideOrPseudoHalide

chloro halideOrPseudoHalide

cyanato halideOrPseudoHalide

cyano halideOrPseudoHalide

dithioperoxy Currently Unsupported

diselenoperoxy Currently Unsupported

ditelluroperoxy Currently Unsupported

fluoro halideOrPseudoHalide

hydrazido dedicatedFunctionalReplacementPrefix

hydrazono hydrazono

imido dedicatedFunctionalReplacementPrefix

iodo halideOrPseudoHalide

isocyanato halideOrPseudoHalide

isocyano halideOrPseudoHalide

isothiocyanato halideOrPseudoHalide

isoselenocyanato halideOrPseudoHalide

isotellurocyanato halideOrPseudoHalide

nitrido dedicatedFunctionalReplacementPrefix

peroxy peroxy

seleno chalcogen

telluro chalcogen

thio chalcogen

thiocyanato Currently Unsupported

selenocyanato Currently Unsupported

tellurocyanato Currently Unsupported
Table 3-11 Prefixes for functional replacement listed by the IUPAC. Each of these prefixes corresponds

to and has the same meaning as the infixes described in the previous section.

OPSIN implements this nomenclature by first classifying whether a substituent may be a

functional replacement prefix and if it is classifies it as one of the following: chalcogen,

halideOrPseudoHalide, dedicatedFunctionalReplacementPrefix, hydrazono or peroxy.

OPSIN restricts chalcogen replacement to non-carboxylic acids, the suffixes of trivial carboxylic

acid stems and to aldehyde suffixes. In the case that a group has no oxygen within applicable suffixes

oxygen atoms within the group may be replaced. Allowing replacement on oxygen atoms within

groups allows for support of chalcogen analogues of trivial names (Figure 3-65). Explicitly adding

chalcogen analogues of trivial names to OPSIN’s vocabulary is generally not preferred as beside the

extra effort in generating such entries, two parses will be produced: one with the chalcogen

replacement prefix as a separate token and one in which it is part of the trivial name. For chalcogen

analogues of rings used as components in fused ring nomenclature including the chalcogen analogue

80

in the program’s vocabulary is necessary as the grammar does not allow a prefix to precede a ring

within a fused ring system.

Figure 3-65 Phenol (left) and thiophenol (right). Note that ‘thiophenol’ is not in OPSIN’s vocabulary

As with infix replacement, chalcogen replacement may be ambiguous and this ambiguity is

noted as it may be resolvable later.

Peroxy replacement is treated in the same way as chalcogen replacement except that only

functional oxygen atoms and etheric oxygens are considered. OPSIN prefers etheric oxygen atoms to

functional oxygen atoms allowing the intended interpretation for names like peroxydicarbonic acid

to be generated (Figure 3-66).

Figure 3-66 peroxydicarbonic acid

OPSIN only supports the use of dedicatedFunctionalReplacementPrefixes on non-carboxylic

acids and enforces that they must be used for functional replacement.

Hydrazono and halideOrPseudoHalide functional replacement terms are also restricted to non-

carboxylic acids with the additional restriction that insufficient substitutable hydrogen should be

present on the atoms indicated hence precluding the substitution interpretation (Figure 3-67).

Figure 3-67 chlorophosphoric acid (functional replacement) or chlorophosphonic acid (substitution as

the phosphorus in phosphonic acid has a hydrogen atom) or phosphorochloridic acid (infix functional

replacement)

81

Care is taken when performing both infix and prefix functional replacement to have the

correct charges on the modified section of the molecule and to correctly annotate which atoms are

“functional atoms” (Figure 3-68).

Figure 3-68 Acetate (left) and peroxyacetate (right). Note that the charge on the replacement

functionality is dependent on the original functionality and that the functional atom has effectively moved.

3.2.9.10 Hantzsch-Widman nomenclature

Example

1,3,5-triazine

General Syntax locant? (multiplier? heteroatom)+ HWstem

Hantzsch-Widman nomenclature116 is used to describe the structure of heteromonocycles i.e.

individual rings containing at least one heteroatom. The system initially applied only to nitrogen,

oxygen, sulfur and selenium but through various recommendations has been extended such that it

now can be applied to all p-block elements except the noble gases. Traditionally mercury has also

been included in the system although the 2004 provisional recommendations do not recommend its

use78. A Hantzsch-Widman name is formed of one or more prefixes (Table 3-12), describing the

heteroatoms in the ring, followed by a stem (Table 3-13) describing the size of the ring and whether

or not it is unsaturated e.g. ‘1,3-oxazole’. Prefixes are preceded by locants indicating the position of

the heteroatoms.

82

Element Prefix*

fluorine fluora

chlorine chlora

bromine broma

iodine ioda

oxygen oxa

sulfur thia

selenium selena

tellurium tellura

nitrogen aza

phosphorus phospha

arsenic arsa

antimony stiba

bismuth bisma

silicon sila

germanium germa

tin stanna

lead plumba

boron bora

aluminium aluma

gallium galla

indium indiga

thallium thalla
Table 3-12 Hantzsch-Widman system

prefixes *Note that the final ‘a’ is elided prior to a

vowel

Ring Size Unsaturated Saturated

3 irene
irine (nitrogen

containing)

irane
iridine (nitrogen

containing)
4 ete etane

etidine (nitrogen

containing)
5 ole olane

olidine (nitrogen

containing)
6 ine/inine ane/inane

7 epine epane

8 ocine ocane

9 onine onane

10 ecine ecane

Table 3-13 Hantzsch-Widman system stems

Note that the final ‘e’ on the stems is optional

The choice of stem for six-membered rings is dependent on the heteroatoms present in the

ring and is required to avoid conflicts between Hantzsch-Widman rings and heteroatom hydrides or

heteroatom chains (cf. Section 3.2.7.3).

OPSIN has complete support for Hantzsch-Widman nomenclature including the now

deprecated support for rings with one double bond 76 (Rule B-1.2) (Figure 3-69) and deprecated

heteroatom prefixes.

Figure 3-69 2-oxazoline; Note that the 2 refers to the position of the double bond. The position of the

oxygen and nitrogen are 1,3 by widely accepted convention.

83

To avoid the previously mentioned ambiguity between heteroatom hydrides and Hantzsch-

Widman nomenclature, OPSIN has explicit categories in its grammar for heteroatom prefixes that

may be used with the ‘ine’ and ‘ane’ stems (Figure 3-70).

Figure 3-70 The correct interpretation of azane (left) and an incorrect Hantzsch-Widman interpretation

(right). OPSIN only generates one parse for ‘azane’ which corresponds to the former.

The stem is used to generate a ring with appropriate saturation onto which heteroatoms are

substituted. Exceptions are made to support certain ring systems having certain locants by

convention e.g. ‘oxazole’ = ‘1,3-oxazole’. Additionally certain systems which will rarely mean the

Hantzsch-Widman ring are blocked e.g. ‘thiol’ or ‘seleninic acid’. The complete ring system may be

subsequently used as a component in other nomenclature such as fused ring nomenclature (Section

3.2.9.11) or polycyclic spiro nomenclature (Section 3.2.9.15).

OPSIN handles the names of fused ring components recommended in FR-2.2.1(c)115, for

heteromonocycles of size greater than 10 atoms, as an extension of the Hantzsch-Widman system

(Figure 3-71).

Figure 3-71 [1,4,9,12]oxatriazacyclopentadecine

3.2.9.11 Lambda convention

IUPAC nomenclature has a concept of standard bonding number (Table 3-14) where bonding

number is defined by the sum of the bond orders of all bonds to an atom. Typically an atom will have

this standard bonding number hence no attempt needs to be made to specify it. If the atom is not in

84

its standard bonding number, and does not implicitly have a non-standard bonding number (e.g.

phosphorane is defined as a phosphorus atom with bonding number 5), the Lambda Convention117

should be employed.

Standard bonding number Elements

3 B Al Ga In Tl

4 C Si Ge Sn Pb

3 N P As Sb Bi

2 O S Se Te Po

1 F Cl Br I At
Table 3-14 Standard bonding numbers

The Lambda Convention may be applied to heteroatoms used in skeletal

replacement/Hantzsch-Widman nomenclature or directly to a group (Figure 3-72). OPSIN fully

supports the Lambda Convention. In OPSIN’s implementation care must be taken to distinguish

between the case where the locant before the λ is needed to locate a heteroatom and cases where

the locant is purely for use by the Lambda Convention.

Figure 3-72 Examples of the Lambda Convention: 2λ

6
-trisulfane (left) and 1,6,6aλ

4
-trithiapentalene

(right)

3.2.9.12 Fused Ring nomenclature

Fused ring nomenclature115 is used to name polycyclic ring systems especially ones containing

unsaturated rings. All rings in the ring system will be ortho-fused (i.e. have a bond in common) to at

least one other ring.

3.2.9.12a Fused Ring System Construction

Example

furo[3,2-b]thieno[2,3-e]pyridine

General Syntax (fusionComponent fusionBracket)+ parentComponent

Fused ring nomenclature names are created using the names of trivially named fused ring

systems, ring systems named as in Section 3.2.7.5c and individual ring names. These will hitherto be

85

referred to as components with the rightmost component being the parent component. Atoms

shared by multiple components are considered to be part of both components for the purpose of

name construction (Figure 3-73). Cyclised alkanes when used as fusion components are treated as

implicitly unsaturated in this nomenclature.

Figure 3-73 pyrano[2',3':4,5]cyclohepta[1,2-g]quinoline showing the components

The fusion brackets in the name describe how each component is connected to the next

component. All bar references to the parent component employ numbers to refer to atoms. The

parent component is instead treated as if it had no locants and instead bonds are referred to using

letters (Figure 3-74). The letters typically are in the same order as the original numeric locants,

except in cases where the numeric locants of the peripheral atoms are not continuous (e.g. acridine).

In these cases the letters use the order the atoms would be in if the system were systematically

numbered. It should be noted that purine is an exception to this.

Figure 3-74 pyrano[2',3':4,5]cyclohepta[1,2-g]quinoline showing the internal ring numbering. This

numbering is unrelated to the final numbering of the complete system

To reconstruct the fused ring system, the name is read from right to left and the components

are successively fused. Components are primed, double primed etc. depending on how many

components removed from the parent component they are.

Components may also be multiplied (Figure 3-75). Multiplied components are primed but may

not be fused onto hence avoiding the introduction of numbering ambiguity.

Pyran

Quinoline

Cyclohepta-1,3,5-triene

86

Figure 3-75 difuro[3,2-b:3',4'-e]pyridine

A fusion bracket specifies the atoms that are to be fused in each fusion (except for fusion

brackets to the parent compound which specify bonds). However there are many cases in which

some locants may be omitted or the entire fusion bracket omitted. In these cases OPSIN internally

generates a fusion bracket with the missing locants added before proceeding as normal (e.g. Figure

3-76 and Figure 3-77).

Figure 3-76 pyrazino[g]quinoxaline becomes pyrazino[2,3-g]quinoxaline

Figure 3-77 1H-naphtho[2,3][1,2,3]triazole becomes 1H-naphtho[2,3-d][1,2,3]triazole

Bridgehead atoms are typically omitted from fusion brackets (Figure 3-78). To get a complete

list of atoms to be used in a fusion OPSIN iterates over the component's atoms from the atom

indicated by the starting locant to the atom indicated by the ending locant. This list will include all

atoms including bridgheads.

Figure 3-78 naphtho[2,1,8-def]quinoline (interpreted as if it were written naphtho[2,1,8a,8-

def]quinoline)

87

This procedure for handling missing locants appears to be similar to that described by

Matsuura94 with the exception that OPSIN never employs numeric locants to describe atoms to use

on the parent component.

With the exception of benzo fusions (Section 3.2.9.12b) and multi-parent systems (Section

3.2.9.12c), OPSIN does not support the inclusion of fused ring systems created by fused ring

nomenclature as fusion components. All other aspects of fused ring system construction are

believed to be supported.

3.2.9.12b Benzo fusions

Example

3-benzoxepine

General Syntax locant benz(o) parentComponent

As a special case heterobicylic systems containing a benzene ring are named using a different

syntax. Benzene is fused to the parent component and then the locant before the ‘benzo’ is used to

assign the position of heteroatoms in the complete system. Although not made explicit in the

nomenclature recommendations, for implementation purposes the heteroatoms must be

considered to be repositioned, as their absence would mean that numbering does not necessarily

start on the parent component.

Such systems may be used as fusion components and hence are processed prior to other

fusion nomenclature.

3.2.9.12c Multi-parent systems

Example

benzo[1,2-f:4,5-g']diindole

General Syntax (fusionComponent fusionBracket multiplier)+ parentComponent

When there are multiple candidates for the parent component and all candidates are fused to

the same component, this part of the ring system may be named as a multi-parent system. For these

88

systems, a multiplier is used to indicate that a component is replicated and locants are used to

indicate where these components are fused.

As long as the pairs of inter-parent components are identical, the system can also be used in

cases involving more than one inter-parent component (Figure 3-79).

Figure 3-79 anthra[2'',1'',9'':4,5,6;6'',5'',10'':4',5',6']diisoquinolino[2,1-a:2',3'-a']diperimidine

 Multi-parent systems may have further fusion performed on them and hence are processed

after benzo fusions, but prior to other fusion nomenclature. The whole multi-parent system can be

thought of as being the parent component for further fusion.

3.2.9.12d Idealised grid construction

Once the fused ring system has been constructed it is numbered by OPSIN. This is achieved by

determining the preferred layout of the ring system on an idealised 2D grid, determining the

preferred orientation and then determining the preferred peripheral numbering. The first of these

steps is significantly complicated by not all sizes of rings tessellating. The system works perfectly for

six-membered rings, but for all other ring sizes manipulation of ring shape or multiple orientations

are possible (Figure 3-80).

89

Figure 3-80 Ring shapes considered by OPSIN. Ring shapes that are recommended by Fused Ring and

Bridged Fused Ring Nomenclature (1998)
115

 but not by the 2004 draft recommendations
78

 are not considered

by OPSIN.

First, OPSIN determines the rings that comprise the fused ring system. This is achieved by

calculating the smallest set of smallest rings (SSSR) from the complete ring system. These rings are

then associated with their neighbouring rings.

Starting from a ring with the minimum number of neighbouring rings, ring connection tables

are created. Multiple ring connection tables may be created as multiple orientations of the ring

shapes may need to be considered for 5- and 7-membered rings (Figure 3-81). OPSIN considers the

minimum possible number of orientations needed to enumerate all possibilities grid layouts. For

example, when a ring is only involved in one fusion, only one orientation needs to be considered as

the different orientations only effect the calculated position of other rings relative to the starting

fusion bond. Additionally, OPSIN does not consider orientations of 5-membered rings involving

fusion to the elongated bond if other orientations are possible. An example of a complete ring

connection table may be seen in Figure 3-82.

Figure 3-81 Orientations potentially considered for 5- and 7-membered rings

90

Ring Ring shape Direction Neighbouring Ring

benzene standard 1 pyridine

pyridine standard 0 cyclopenta

cyclopenta enterFromLeftHouse 4 pyridine

pyridine standard -3 benzene

Figure 3-82 Ring connection table for cyclopenta[c]isoquinoline. The depiction shows the orientation

described by this table. The depiction often, such as in this case, does not represent the final orientation of the

system. Numbers are used to indicate the directions from a ring to a neighbouring ring on the idealised grid.

An example of a case where multiple orientations of a 5-membered ring need to be

considered to evaluate all possible grid layouts is shown in Figure 3-83 .

Figure 3-83 Layouts for benzo[b]cycloocta[jk]fluorine ignoring rotations and reflections. These layouts

are indistinguishable until peripheral numbering is considered (right layout preferred).

Next, OPSIN attempts to eliminate those connection tables with more distorted rings.

Distorted rings are recognised by the direction from one ring to another not being the opposite of

the direction from the other ring back to the first ring. Generation of connection tables for ring

systems that may only be drawn with distorted rings is a known limitation in OPSIN’s

implementation (Figure 3-84).

Figure 3-84 Distorted ring possibilities for cyclobuta[def]phenanthrene. OPSIN only currently considers

the left one. The right one is the preferred layout for numbering.

2

±4 0

-1
-2

-3

1 3

91

For rings of sizes greater than 8, OPSIN supports the special case where all such rings are only

fused to one other ring (Figure 3-85) but does not support the general case as this would require

consideration of multiple ring orientations. As the IUPAC recommendations115 acknowledge

potential problems with the naming of systems containing such rings, and as these systems are also

quite rare, this is not considered a significant limitation to OPSIN’s implementation.

Figure 3-85 1-methyl-5H-cyclotrideca[b]naphthalene

3.2.9.12e Grid orientation

At this stage there may still be multiple ring connection tables corresponding to different grid

layouts. Typically, the rules for orientation of the ring system may be used to rule out all grid layouts

bar one.

The rules are as follows:

 Maximum number of rings in a horizontal row

This is implemented by iterating over a ring connection table and counting the number of

rings where the direction between the rings is identical. The directions which yield the largest

number of rings in a line are returned. When multiple ring connection tables are considered, only

the combinations of ring connection table and directions that meet this criterion are considered

further.

92

Figure 3-86 Example of ring counts for different directions

For each applicable ring connection table/direction combination, a grid layout is generated

with the given direction defining the horizontal row, i.e. a rotation may be required as compared to

the starting ring connection table. If the grid layout has overlapping atoms that grid layout is

rejected. This is a minor limitation in OPSIN’s implementation, as this is only valid to do when a

layout without overlapping atoms actually exists.

 Maximum number of rings in upper right quadrant

 Minimum number of rings in lower left quadrant

 Maximum number of rings above the horizontal row

To check a grid layout against these criteria the grid must be divided up into quadrants. The

horizontal divider is defined by the horizontal row and the vertical divider by the mid-point of the

horizontal row. The horizontal row is the row with maximum rings in a line. A given grid layout may

have multiple rows of rings that meet this requirement hence the division of the system into

quadrants must be performed using each possible horizontal row (Figure 3-87).

93

Figure 3-87 Lines showing the quadrants for the two possible horizontal row candidates of this grid

layout. The right interpretation is preferred as more rings are in the upper right quadrant.

Counting the occupancy of quadrants is relatively simple with rings contributing a ¼ if the

origin is located within a ring, ½ if an axis passes through a ring or otherwise 1 to a particular

quadrant. With the quadrant occupancies calculated one can calculate which combinations of grid

layout, horizontal row and quadrant give the preferred upper right quadrant.

For each of these combinations, the grid layout is then flipped appropriately such as to place

the preferred quadrant in the upper right. The peripheral atoms are then evaluated starting from the

uppermost, rightmost ring. These criteria apply entirely to the idealised grid layout and are not

affected by how the system would look if drawn. If the candidate ring has no non-fusion atoms the

next ring in a clockwise direction is used. The peripheral atoms of the system are then visited

starting from most counter-clockwise atom in this ring and proceeding in a clockwise manner around

the periphery of the ring system.

Especially for simple fused ring systems, multiple possible numberings (Figure 3-88) are

possible and hence the criteria to determine the preferred peripheral numbering must be applied.

Figure 3-88 Possible orientations of thiopyrano[3,2-b]pyridine without considering peripheral

numbering rules. Numbering in all cases would start at the top of the right ring.

94

3.2.9.12f Peripheral numbering

Preferred peripheral numbering is determined by comparing the lists of possible periphery

atoms. Rules include prioritising the list with the earliest heteroatom, the highest priority

heteroatom, the earliest fusion carbon atom etc.

OPSIN then iterates over the preferred list numbering the atoms. Numbering increases

monotonically except when carbon bridge heads are encountered which are instead labelled with

the current number followed by an ascending letter (Figure 3-89).

Figure 3-89 7H-difuro[2,3-e:2',3'-g]indole

OPSIN does not implement all of the rules for numbering interior atoms (i.e. those not on the

periphery) of fused ring systems meaning incorrect numbering may be produced for these atoms in

some cases.

3.2.9.13 Bridges for fused ring systems

Example

4a,8a-propanoquinoline

General Syntax locant? bridge bridgeFormingO fusedring

Bridges may be used, in IUPAC nomenclature, on trivially named fused ring systems or those

systematically named fused ring systems that could not be named if the bridge were considered part

of the fused ring system. The bridge is a non-detachable feature and should be placed adjacent to

the fused ring system. A bridge may be a divalent alkyl group, a heteroatom equivalent, a divalent

trivial ring or even a mixture of these.

95

OPSIN only supports the case where a bridge is an alkane or a divalent oxygen atom (or

chalcogen equivalent) (Figure 3-90). Practically, this did not appear to be a significant source of

failure during evaluation. However, adding further support for bridging nomenclature should not be

technically difficult if required in the future.

Figure 3-90 6,12-epoxy-5,13-methanobenzo[4,5]cyclohepta[1,2-f]isochromene

3.2.9.14 Ring assemblies

Example

2,2':6',2''-terpyridyl

General Syntax locant? multiplier ring radicalSuffix?

A ring assembly 76 (Rules A-51 – A-56) is defined as a system comprising of two or more cyclic systems

joined together by single or double bonds such that the number of bonds between the rings is one

less than the number of rings. A cyclic system could be any ring or a fused ring system.

For the case when the rings involved are constitutionally identical, the IUPAC recommend

specific nomenclature that clearly indicates this relationship between the rings. Two slightly

different methods have been recommended for naming such systems: one employs additive

operations (no atoms added or removed when forming a bond) and the other employs conjunctive

operations (one hydrogen removed from each group when forming a bond) (Figure 3-91).

Figure 3-91 3,3'-bipyridine (conjunctive) or 3,3'-bipyridyl (additive)

96

The naming methods involve using the name of the ring system (conjunctive) or the name of

the radical of the ring system (additive) preceded by a Latin multiplier and, where necessary, a

locant to indicate which atoms in the rings are connected. As an exception, benzene rings always

use the radical name ‘phenyl’, e.g. ‘biphenyl’. An ortho/meta/para locant may be used instead of a

normal locant for six-membered rings with bonds that are all in the same relative positions (Figure

3-92).

Figure 3-92 p-quaterphenyl

OPSIN has support for all common ring assembly nomenclature. It does not support the use of

delta convention to specify a double bond between rings or the new locant system employing

superscripts introduced in the provisional recommendations78 (Figure 3-93). Due to the multitude of

ways that are used to represent superscripted characters rather than actual superscripted numbers,

it is hoped that this recommendation will not be included in the final recommendations.

Figure 3-93 1

1
,2

1
:2

2
,3

1
-tercyclopropane (new locant system; not OPSIN interpretable) 1,1′:2′,1′′-

tercyclopropane (current locant system; OPSIN interpretable)

Ring assemblies are handled by first converting an ortho/meta/para locant (if present) into the

explicit locant form normally used. Non-detachable features are then resolved onto the ring system

before the ring system is duplicated the appropriate number of times. Care is taken to distinguish

between features that apply to the individual ring or to the ring assemblage as the latter should not

be processed at this stage. The cloned ring systems are then bonded via the atoms indicated by the

supplied locants, or by heuristically chosen atoms if no locants are provided.

97

3.2.9.15 Polycyclic spiro nomenclature

Example

spiro[piperidine-4,9'-xanthene]

General Syntax multiplier? spiro openBracket ring (locant ring)+ closeBracket

To name spiro systems made from one or more polycyclic rings, nomenclature employing the

names of the constituent ring systems is used114(Rules Sp-2 – Sp-6). The general nomenclature for these

systems is to state the number of spiro centres followed by a bracketed section listing the

constituent ring systems and the locants of the atoms on them that are involved in spiro fusions

(Figure 3-94).

Figure 3-94 2"H,4"H-trispiro[cyclohexane-1,1'-cyclopentane-3',3"-cyclopenta[b]pyran-6",1'''-

cyclohexane]

When the ring systems involved are identical a contracted form is employed to avoid

repetition (Figure 3-95).

98

Figure 3-95 Examples of spiro systems with repeated ring systems: 3,3'-spirobi[indole] (left) and

3,3':6',6"-dispiroter[bicyclo[3.1.0]hexane] (right)

OPSIN supports the majority of common polycyclic spiro nomenclature but lacks complete

support. OPSIN currently lacks support for systems formed of a mixture of identical and non-

identical rings in which the identical rings are mentioned using multipliers e.g. trispiro[1,3,5-

trithiane-2,2':4,2":6,2'''-tris(bicyclo[2.2.1]heptane)]. Another limitation is that locants on ring

systems beyond the first should be in square brackets; as OPSIN uses the same expression for rings

inside and outside spiro systems this behaviour is supported only in cases where OPSIN allows

locants to be enclosed in square brackets outside of a spiro system e.g. 3H-spiro[1-benzofuran-2,1'-

cyclohex[2]ene] is unsupported.

OPSIN fully supports an older method of naming spiro systems76(Rule A-42) which instead has the

term ‘spiro’ and locants indicating the atoms involved in the spiro fusion between the ring systems

involved (Figure 3-96).

Figure 3-96 2H-indene-2-spiro-1'-cyclopentane

3.2.9.16 ᴅ/ʟ stereochemistry

ᴅ/ʟ stereochemistry is used to describe how the stereochemistry of a compound compares to

the stereochemistry of the two enantiomers of glyceraldehyde; ᴅ-glyceraldehyde and ʟ-

glyceraldehyde (Figure 3-97).

99

Figure 3-97 ᴅ-glyceraldehyde (left) and ʟ-glyceraldehyde (right)

As for both monosaccharides and amino acids one chiral form is significantly more prevalent

in nature it may be assumed that when unspecified that this is the form that is referred to (ᴅ for

monosaccharides and ʟ for amino acids). OPSIN supports this convention by storing such compounds

with their stereochemistry defined as in their natural form. ᴅ/ʟ stereochemistry can then be simply

treated as a modification of this stereochemistry e.g. ᴅ- indicates that the stereochemistry of an

amino acid should be inverted whilst ʟ- indicates it may be left as is.

Due to this implementation, ᴅ/ʟ stereochemistry’s rare use in general organic nomenclature

e.g. ᴅ-α-Amino-β-phenylpropionic acid is unsupported.

3.2.9.17 Amino acid nomenclature

Example

ʟ-leucinamide

General Syntax ᴅ/ʟ? trivialAminoAcidName suffix?

Amino acid nomenclature118 provides succinct names for amino acids, amino acid derivatives

and polymeric amino acids in peptides. The nomenclature essentially consists of the trivial names for

the common amino acids in conjunction with suffix rules that differ slightly from those of general

organic nomenclature.

As compared to other carboxylic acids, amino acid nomenclature is only codified for a subset

of the suffixes supported in general organic nomenclature. A few quirks that needed to be taken into

account when implementing suffixes rules for amino acids were:

 ‘ol’ and ‘al’ are valid suffixes (e.g. glycinol) . It should also be noted that on di-acids

that these suffixes must be locanted.

 The absence of a suffix is the equivalent of the ‘ic acid’ suffix

100

 ‘yl’ means acyl i.e. what ‘oyl’ often means

 Locanted ‘yl’ means add a radical

 ‘o’ may be used to add a radical to the amino nitrogen e.g. glycino

When constructing a peptide the names of the acyl groups of amino acids may be

concatenated (Figure 3-98). As brackets are not required, to assure the correct interpretation OPSIN

adds implicit brackets (Figure 3-99).

Figure 3-98 threonylglycylglycylglycine

Figure 3-99 ʟ-arginyl-O-phosphono-ʟ-seryl-ʟ-alanyl-ʟ-proline, interpreted as ((ʟ-arginyl-O-phosphono-ʟ-

seryl)-ʟ-alanyl)-ʟ-proline

OPSIN supports the majority of common amino acid nomenclature. OPSIN does not support

the use of ᴅ/ʟ on achiral amino acids that are made chiral by substitution.

101

3.2.9.18 Carbohydrate nomenclature

Example

α-ᴅ-glucopyranose

General Syntax α/β? ᴅ/ʟ? carbohydrateStem suffix+

Carbohydrate nomenclature119 may be employed to more succinctly name saccharides. All

aldoses and 2-ketoses (Figure 3-100) of length up to 6 carbons have trivial names with each

diastereomer having a different name. A specific enantiomer is indicated by the use of ᴅ/ʟ in front of

the trivial name, which relates the configuration of the highest-numbered carbon stereocentre (the

configurational atom) to that of ᴅ/ʟ- glyceraldehyde (Figure 3-101, cf. Section 3.2.9.16).

Figure 3-100 Structure of aldoses (left) and ketoses (right) where n is 1 or more and m is 0 or more. A 2-

ketose is one in which at least one of the m’s is 0.

Figure 3-101 ᴅ-glucose (left) and ʟ-glucose (right)

To create carbohydrate derivatives either the trivial name of the carbohydrate without the

terminal ‘se’ or a systematically defined stem may be used (Section 3.2.9.18a). This is then followed

by suffixes indicating additions or modifications to the chain.

Monosaccharides most commonly are found in a cyclic form as a hemiacetal or a hemiketal so

one of the most common suffixes employed indicates the ring size formed when the carbohydrate

cyclises. For example furanose for a 5-membered ring or pyranose for a 6-membered ring (Figure

102

Anomeric centre
Configurational atom /
Anomeric reference atom

3-102). Cyclisation forms an additional stereocentre referred to as the anomeric centre. The

configuration of this centre is specified using either α or β. These specify the relationship between

the stereochemistry at the anomeric reference atom and the anomeric centre. The anomeric

reference atom and configurational atom are always synonymous unless the carbohydrate stem has

been systematically defined.

Figure 3-102 α-ᴅ-galactofuranose. ᴅ-galactose cyclised to form a 5 member ring.

OPSIN supports cyclising all IUPAC endorsed trivial carbohydrate names but does not currently

support cyclisation of systematically defined stems, or any other suffixes.

3.2.9.18a Systematic carbohydrate chains

Example

ʟ-ribo-ᴅ-manno-nonose

General Syntax (ᴅ/ʟ? configurationalPrefix)+ chainLength suffix+

Monosaccharides lacking trivial names may be named using configuration prefixes derived

from the names of the trivial aldoses. These prefixes specify that the defined stereocentres have the

same stereochemistry as the aldose from which the prefix was derived. The number of stereocentres

the prefixes define should be exactly the same as the number of stereocentres that are in the sugar.

Of note from an implementation perspective the configuration prefixes refer to the final structure of

the sugar e.g. after subtractive nomenclature has been performed (Figure 3-103).

103

Figure 3-103 3,6-Dideoxy-ʟ-threo-ʟ-talodecose. threo specifies the configuration at 2 centres and talo at

4. A decose has 8 stereocentres but two are removed by removal of hydroxyl groups.

Any trivial carbohydrate chain name may be specified using this nomenclature e.g. ᴅ-glucose =

ᴅ-gluco-hexose.

3.2.10 Structure assembly

3.2.10.1 Substitutive nomenclature

Example

2,4,6-trinitrotoluene

General Syntax (locant? multiplier? substituent)+ parentGroup

The substitutive operation is the most common method of connecting fragments in organic

chemical nomenclature. A substitutive operation involves the replacement of one, or more,

hydrogen atoms by another fragment. The number of hydrogens replaced is determined by the

valency of the radical on the replacement fragment e.g. ‘yl’ =1, ‘ylidene’ =2 etc. Substitutive

nomenclature is performed recursively on the substituents/brackets respecting bracketing so as to

ensure the correct groups are substituted.

OPSIN supports two special cases of substitutive nomenclature. Perhalogeno terms e.g.

‘perchloro’ indicate that all substitutable hydrogens have been replaced by the indicated halogen

(Figure 3-104).

104

Figure 3-104 perfluoro(decahydro-1-methylnaphthalene)

The other special case is for bridging substituents such as epoxy, epithio and methylenedioxy.

Unlike fused ring bridges these may be applied to systems that are not fused rings and additionally

are often treated as detachable prefixes. Bridging substituents differ from normal substituents in

that they may be preceded by two locants indicating the two atoms to which the bridging

substituent attaches (Figure 3-105).

Figure 3-105 3',4'-Methylenedioxy-α-pyrrolidinopropiophenone. The substitution of the benzene ring

by methylenedioxy yields the 1,3-Benzodioxole ring system.

OPSIN supports alphanumeric (e.g. ‘1’, ‘3a’), Greek (e.g. ‘beta’), element symbol locants (e.g.

‘N’) and element symbol locants in combination with alphanumeric locants (e.g. ‘N4’ or ‘4-N’). All

locant types may contain primes. Element symbol locants are assigned algorithmically using a series

of empirically defined heuristics that reproduce the labelling IUPAC has specified for certain nitrogen

containing suffixes. Locants that combine an alphanumeric component with an element symbol

locant are not assigned, as in most cases such locants will never be referred to. Instead, when such a

locant is requested, the atom corresponding to the alphanumeric part of the locant is looked up and

then a search for an atom that is connected either directly or through atoms without alphanumeric

locants is initiated to find the atom matching the element symbol portion of the locant. The

expected element symbol locant may differ from that assigned when the molecule was considered

105

as a whole as the element symbol locant will be based off just the atoms connected to the point in

the molecule being investigated (cf. the two different atoms referred to as N’ in Figure 3-106).

Figure 3-106 1-N′,1-N′-diethyl-1-N′′′ ′′,1-N′′′ ′′,3-N'-trimethylcyclohexane-1,1,3-tricarbohydrazonohydrazide

3.2.10.2 Additive nomenclature

An additive operation involves the joining of two fragments together without loss of atoms. In

the context of joining fragments this typically applies to the bonding of radicals together (e.g. Figure

3-107). Some operations in functional class nomenclature (Section 3.2.10.4) are also formally

additive operations.

Figure 3-107 Methyl and sulfonyl are combined via an additive operation to create the prefix

methylsulfonyl

As additive operations may only occur between substituents that are adjacent within a

chemical name, OPSIN performs additive operations prior to performing substitutive operations.

Without this ordering of operations some names that are not perfectly formed, but are in common

106

parlance considered unambiguous, e.g. methylsulfonylcyclohexane become ambiguous. In this case

the methyl may be interpreted as a substituent of the cyclohexane if it is not first additively bonded

to the sulfonyl.

Implementation of this nomenclature is significantly complicated by ambiguity in some

substituents as to whether or not they are multi-valent radicals (Figure 3-108). The left-hand

interpretation for these two substituents implies a substitutive operation interpretation in which a

double bond is formed.

Figure 3-108 Interpretations of methylene (left) and imino (right)

Another ambiguity that affects a small number of substituents relates to the valency of the

radicals that the substituent possesses (Figure 3-109). This ambiguity occurs most often in

multiplicative nomenclature. The draft 2004 recommendations now only recommend the name

nitrilo for the left interpretation in Figure 3-109.

Figure 3-109 Interpretations of nitrilo in general organic nomenclature. The left interpretation is

preferred.

Disambiguation can be achieved in most cases by examining the adjacent substituent e.g. is it

a multi-valent radical.

3.2.10.3 Multiplicative nomenclature

Example

4,4'-methylenedioxydibenzoic acid

General Syntax locant? (substituent multiplier)+ parentGroup

Multiplicative nomenclature76(Rules C-72 to C-74) is used when a structure may be assembled from

multiple identical components. All substituents involved are multi-valent radicals with additive

operations connecting the substituents.

107

Multiplicative nomenclature is implemented as a special case of additive nomenclature. It is

detected by the presence of a multi-valent radical group followed by a multiplier equal to the

valency of the multi-valent radical group. Once multiplicative nomenclature has been detected,

groups are joined from left to right until the parent group is reached.

Additionally a special case is required to allow the case where a substituent that is not

obviously a multi-valent radical acts as one e.g. the benzylidene in Figure 3-110.

Figure 3-110 4,4'-benzylidenedi-o-toluidine

3.2.10.4 Functional class nomenclature

Example

ethyl alcohol

General Syntax groupOrSubstituent functionalTerm

Functional class nomenclature involves a group, often a substituent, followed by a class name.

Traditionally, in the case where the group is a substituent, this nomenclature was called

radicofunctional nomenclature. OPSIN has specific rules for dealing with different types of functional

class nomenclature which roughly parallel the word rules mentioned in Section 3.2.6. For example

the same code may be used for all “carbonyl derivatives” e.g. oximes, hydrazones, semicarbazones

and imides.

Some class names may be related to a chemical structure that will either be bonded onto the

preceding fragment (e.g. ‘cyanate’ or ‘ketone’) or replace an atom on a preceding fragment (e.g.

‘oxime’). Some of these fragments may even be substituted and hence are best treated as normal

groups prior to being incorporated into the preceding fragment (Figure 3-111).

108

Figure 3-111 hexan-3-one 4,4-diphenylsemicarbazone

Other class names such as ‘ester’ (Figure 3-112) or ‘acetal’ (Figure 3-113) are purely used to

determine what operation needs to be performed on the groups that are present.

Figure 3-112 ʟ-alanine methyl ester, constituent parts (left) and final structure (right)

Figure 3-113 propanal dimethyl acetal, constituent parts (left) and final structure (right)

3.2.10.5 Structure-based polymer nomenclature

Example

poly[oxyethylene]

General Syntax poly substituent+

Polymers may be represented in IUPAC nomenclature by naming the repeat unit preceded by

‘poly’120. With the addition of only a few special cases, OPSIN is able to support the nomenclature

used to describe a repeat unit as part of its general handling of additive nomenclature.

109

Figure 3-114 poly[(benzo[1,2-d:4,5-d']bis[1,3]thiazole-2,6-diyl)-1,4-phenyleneoxy-1,3-phenylene(1,3,5,7-

tetraoxo-1,2,3,5,6,7-hexahydrobenzo[1,2-c:4,5-c']dipyrrole-2,6-diyl)-1,3-phenyleneoxy-1,4-phenylene]

A special case was required to handle the fact that ‘imino’ and ‘methylene’ are used nearly

exclusively as linkers in polymer nomenclature whilst in general nomenclature they can often refer

to a double bonded atom (Figure 3-115).

Figure 3-115 OPSIN’s interpretations of poly(imino-2,2-dimethylpentamethyleneiminoazelaoyl) (left)

and imino-2,2-dimethylpentamethyleneiminoazelaoyl (right)

Another special case was required for those groups with three or more connections that only

have two in polymer nomenclature (Figure 3-116)

Figure 3-116 Interpretations of nitrilo in polymer nomenclature. Note that for nitrilo this is in direct

contradiction with the 2004 draft recommendations which specify that nitrilo should refer only to the

interpretation with three connections cf. Figure 3-109

3.2.11 Kekulisation

During the assembly of fragments, double bonds on atoms in rings are not explicit. Instead

they are represented using the flag indicating that the atom may be involved in a π system, that was

mentioned previously in connection with SMILES reading (Section 3.2.8) and operations that

add/remove hydrogen (Section 3.2.9.7b). Before performing kekulisation this flag is removed from

any atoms which by forming a double bond would end up in an unusual valency. It is also removed

from atoms that are adjacent only to atoms that may not form double bonds.

110

For kekulisation to be successful there must be an even number of atoms possessing the flag.

If there are an odd number of atoms, an atom with the flag is selected via a series of heuristics to be

eliminated from use in double bond formation. These heuristics are in order of priority:

 An atom that was indicated as having hydrogen in the original fragment

 An atom that is adjacent to only one atom with the flag set

 An atom adjacent to two bridgehead atoms

 A heteroatom

 An arbitrarily chosen atom

The algorithm adds double bonds first to atoms that have only one neighbour to which they

are capable of being double bonded. Subsequently bonds in which at most one atom is a bridgehead

may be considered followed finally by bonds in which both are bridgeheads. A more rigorous

solution allowing backtracking when placing double bonds, such that an earlier misplaced double

bond will not prevent kekulisation, is a possible future improvement. Nonetheless, except in cases

where the position of indicated hydrogen has been underspecified and the name is hence

ambiguous, cases of this algorithm failing are extremely rare.

3.2.12 Valency checking

Once all the fragments have been assembled a check is performed on the valency of each

atom. The valency is checked either against the highest known stable valency for that atom’s

element/charge, or against the Lambda Convention specified valency (taking into account protons

added/removed by charge modifying suffixes). If a valency check fails, then the name is rejected.

A rationalisation for the decision to reject such structures rather than producing a hypervalent

interpretation is that in substitutive nomenclature it is impossible to generate a hypervalent

structure (without the Lambda Convention) as only as many hydrogens as are present on the atom

when in its standard valency may be substituted. This means that a name that produces a

hypervalent structure is not only chemically suspect but also formally incorrect.

111

3.2.13 Application of stoichiometry

3.2.13.1 Mixtures

Example

methylene chloride compound with octanol (2:1)

General Syntax component (compound with)? component+ stoichiometry

Mixtures may be specified by stating the components of the mixture followed by indication of

stoichiometry. Often the components are separated by a term like ‘compound with’. OPSIN has a

small list of terms that are accepted between chemical names and subsequently ignored to achieve

this.

Indication of mixture stoichiometry is recognised and stripped from the name prior to

tokenisation/parsing. Once word rules have been assigned, the indicated stoichiometry is added as

an attribute of each top level wordRule. As top level word rules correspond to separate structures,

there is expected to be stoichiometry indication for as many components as there are top level word

rules. Once processing of the word rules has been completed their contents are multiplied out

appropriately.

3.2.13.2 Charge balancing

Example

magnesium chloride

(fully specified this name would be magnesium(2+) dichloride)

Compounds described in the chemical literature are typically intended to be overall charge

neutral. As a result indication of explicit stoichiometry is often omitted. The problem is further

complicated by metals, which often have their charge omitted. If the compound is formed of more

than one component and is not charge neutral, OPSIN goes through a series of heuristics to attempt

to balance the charge on the compound. These are:

 If a metal is uncharged and has fewer bonds than its typical oxidation state, it

indicates that it is a candidate for being made into a cation.

112

 Potential cationic metals are set to their typical charges (Figure 3-117)

Figure 3-117 sodium chloride. The sodium is set to its standard charge of +1 resulting in a neutral

compound

 If setting the metal to its typical charge doesn’t satisfy the charge imbalance a higher

charge is tried if a higher charge is known to be possible (Figure 3-118)

Figure 3-118 thallium trichloride. Thallium is typically thallium(1+) but as there are known to be three

chlorides thallium(3+) is assumed.

 Where stoichiometry is undefined and the choice of component/s to multiply is

unambiguous, components are multiplied. Components may only be multiplied by

integers (Figure 3-119).

Figure 3-119 iron(3+) sulfate. Typically only one component needs to be multiplied, but in some cases

such as this both are.

 A metal has its charge set lower than its typical charge (Figure 3-120)

Figure 3-120 magnesium monochloride. As there is explicitly only one chloride the number of chlorides

may not be adjusted. Hence the charge on the magnesium is adjusted

 A salt is neutralised76(Rule C816.4) (Figure 3-121)

113

Figure 3-121 caffeine citrate. Citrate in isolation would be treated as a tri anion but as there is another

compound present it is treated as if it were citric acid.

3.2.14 Stereochemistry handling

3.2.14.1 Detection of stereocentres

Tetrahedral (e.g. Figure 3-122) and double bond (Figure 3-123) stereochemistry are commonly

found in organic chemicals.

Figure 3-122 (R)-bromochlorofluoromethane (left) and (S)-bromochlorofluoromethane (right)

Figure 3-123 (E)-but-2-ene (left) and (Z)-but-2-ene (right)

As when unambiguous to do so locants are often omitted from stereochemistry prefixes, any

rigorous solution to this area must be capable of detecting stereocentres. For this purpose, OPSIN

employs a derivative of the InChI canonicalisation algorithm121,122 to label atom environments.

Hydrogen are made explicit prior to stereocentre perception and hence do not present a problem.

Higher bond orders are handled, in an analogous way to the Cahn-Ingold-Prelog (CIP) sequence

rules123–125, by treating all bonds as if they were single and adding additional atoms to the atoms at

both ends of the higher order bond. The end result is that each constitutionally distinct atom

environment is given its own environment number.

These atom environments are then used to identify true stereocentres126 i.e. stereocentres

that do not require the existence of other stereocentres in the molecule to be stereocentres. For

114

detecting tetrahedral stereocentres, a list of atoms to consider is generated by finding those that

correspond to known atom/bond configurations that may be tetrahedral stereocentres (Figure

3-124). This approximately corresponds to the stereocentres detected by InChI122(Table 8).

Figure 3-124 Examples of tetrahedral stereocentres recognised by OPSIN. X and Y are two atoms in

different environments that are bonded together.

OPSIN ignores those centres that nominally meet these criteria but in reality would not be

stereocentres due to simple resonance or tautomerism. Again this approximately corresponds to the

specification of InChI although the case depicted in Figure 3-125 is not explicitly mentioned in the

specifications.

Figure 3-125 Due to resonance this structure is achiral

The list of true stereocentres is then produced by checking that all atoms neighbouring the

potential stereocentre are in different atom environments.

Double bond stereocentres are found by analysing the atom environments at either end of a

double bond. Each atom in the double bond is expected to be bonded to a total of 3 atoms unless

the atom is nitrogen in which case 2 is acceptable with the third “atom” being a lone pair.

OPSIN does not currently detect cumulene stereochemistry although doing so would not be

technically challenging.

If an atom in a fragment has defined stereochemistry but is not identified as a stereocentre

this information is removed as it is assumed that the atom is no longer a stereocentre in the final

molecule e.g. substitution of a hydrogen atom may have made two substituents equivalent.

3.2.14.2 Applying stereochemistry

OPSIN performs stereochemistry operations in the order: locanted stereochemistry,

carbohydrate stereochemical prefixes, unlocanted stereochemistry; whilst tracking which

115

stereocentres have had their configuration set. As it is not uncommon for a structure with implicit

stereochemistry to have this stereochemistry overridden, these cases are not considered as having

set the configuration of the stereocentres. OPSIN currently considers five distinct types of

stereochemistry R and S, E and Z, cis and trans, alpha and beta, and carbohydrate stereochemistry.

3.2.14.2a R/S/E/Z stereochemistry

For R, S, E and Z stereochemistry once an appropriate stereocentre has been identified the

“ligands” i.e. connected atoms, must be ranked using the CIP system. OPSIN’s implementation

includes support for rules 1 (higher atomic number preferred to lower) and 2 (higher isotope

preferred to lower), which deal with constitutional differences between ligands. A failure is reported

if ligands cannot be distinguished.

The 1982 revision to the CIP system124 introduced the concept of hierarchical digraphs. A

hierarchical digraph is an acylic graph representation of the bonding within a ligand. The

transformation from the connection table of a ligand to a digraph involves two transformations:

 Bonds of order greater than 1 are represented as single bonds with attached

duplicated atoms (called ghost atoms) e.g.:

 Bonds that join to an atom previously visited by that branch of the digraph instead

join to a ghost atom which is not further bonded e.g.:

116

Rules 1 and 2 involve comparing the hierarchical digraphs for each ligand with rule 2 only

being invoked if rule 1 fails to distinguish the ligand. This comparison starts from the first layer of

atoms from the stereocentre. Evaluation proceeds on a layer by layer basis with a subsequent layer

only being investigated if the prior layer failed to distinguish the ligands. It should be noted that the

ordering of atoms in each layer is determined by the priority of atoms in the previous layer, and only

when a tie is encountered by the relative priority of the atoms within the layer.

OPSIN’s implementation is notable in that it only lazily evaluates the digraph. As typically

ranking may be determined within the first couple of layers, this approach is computationally faster

and more memory efficient, especially for larger molecules (Figure 3-126).

Figure 3-126 Hierarchal diagraph for piperidin-2-yl and cyclohexyl ligands. The two ligands are

distinguished by OPSIN at the 2
nd

 level as [N,C,H] has higher priority than [C,C,H] with no further enumeration

of the digraph required.

OPSIN also implements a corner case in rule 1 (rule 1b125) in which two ligands may be

constitutionally different but have identical hierarchical digraphs (Figure 3-127). In this case ghost

atoms must be distinguished from non-ghost atoms and the position of the atom the ghost atom is a

duplicate of in the digraph is taken into account.

117

Figure 3-127 (5S)-bicyclo[3.1.0]hex-2-ene

From the combination of ordered ligands and a stereodescriptor, e.g. R/S/E/Z, it is then simple

to define the stereochemistry of a tetrahedral centre or double bond.

3.2.14.2b Cis/trans stereochemistry

Cis and trans are initially interpreted as referring to the relative stereochemistry of two

substituents on a ring. OPSIN does not have general support for detecting pseudo-asymmetric atoms

but has support for such stereocentres in this particular case. A ring system is investigated to find

tetrahedral atoms that either have one hydrogen or are connected to a fragment outside of the ring

system. If there are exactly two of them, their configuration may be set to be relatively cis or trans.

To do this the smallest set of smallest rings is calculated, allowing a list of all bonds not involved in

fusions to be compiled. From these bonds two paths joining the stereocentres should be

discoverable (Figure 3-128). This knowledge of the positioning of atoms at one stereocentre relative

to the positioning of atoms at the other stereocentre allows OPSIN to construct descriptions of the

stereochemistry that assure that the two centres will be cis/trans to each other. If one atom has

predefined stereochemistry, care is taken to leave that stereocentre as defined and have the other

stererocentre’s configuration be relative to the predefined stereocentre.

118

Figure 3-128 trans-2,6-dimethyl-2,6-dihydronaphthalene. Coloured atoms show the paths defining the

periphery of the molecule. By using the atoms at either end of the blue path and at either end of the green

path in the same place in the generated stereochemistry descriptions one can tie the configuration of the two

stereocentres together.

OPSIN also allows cis/trans to be used as an alternative to E/Z to specify double bond

stereochemistry but only in the special case where one group at either end of the double bond is

hydrogen. Without this criterion, it is formally ambiguous as to which groups are being defined as

cis/trans to each other.

3.2.14.2c Alpha/beta stereochemistry

Alpha/beta stereochemistry is used to indicate on which side of a plane a group is positioned.

OPSIN only current supports alpha/beta stereochemistry in conjunction with natural product

nomenclature127 (RF-10). In natural product nomenclature, a particular depiction of the molecule is

designated as the preferred orientation and it is with respect to this that alpha/beta stereochemistry

is defined. OPSIN encodes this information by associating each natural product that supports

alpha/beta stereochemistry with a list of the peripheral atoms of the natural product when read in a

clockwise direction. The positioning within this list of the adjacent periphery atoms to the

stereocentre, the atom to which alpha/beta is referring and the alpha/beta itself, is sufficient to

define the stereo configuration (Figure 3-129).

Figure 3-129 17β-Hydroxy-8α,9β,10α-androst-4-en-3-one

119

3.2.14.2d Carbohydrate stereochemistry

Carbohydrate stereochemistry is only employed on the systematic carbohydrate stems

described previously in Section 3.2.9.18a. OPSIN’s vocabulary has these carbohydrate stems with

their stereocentres configured such that the hydroxyl groups would point right on a Fischer

projection (Figure 3-130). The configuration prefixes can then be simply implemented as a list of ‘r’s

and ‘l’s indicating whether or not the configuration at each centre should be retained or flipped. For

example ᴅ-gluco is expressed as “r/l/r/r”. To be valid a carbohydrate name must have every

stereocentre in its stem, which still exists after substitutive and subtractive nomenclature operations

have been applied, defined by configurational prefixes.

“hexose” ᴅ-gluco- ᴅ-gluco-hexose

Figure 3-130 Fischer projection for ᴅ-gluco-hexose showing the method of constructing the

stereochemistry for the complete name

3.2.15 Ambiguous and formally incorrect chemical names

When a chemical name is underspecified e.g. lacking sufficient brackets or locants it may

become ambiguous and formally describe multiple structures. OPSIN has been empirically tuned to

attempt to generate the interpretation of a name that is most likely in common usage, with an

implicit assumption that an input chemical name is intended to describe a particular structure. This

is very similar to one of Brecher’s principles for a chemical nomenclature interpretation system106:

“The meaning of logically ambiguous names is determined by common usage”. The addition of

implicit brackets or spaces may be sufficient to give a formally ambiguous or highly unlikely name, an

unambiguous and likely interpretation. Heuristics for making these alterations are dealt with in the

following subsections.

120

3.2.15.1 Implicit bracketing

Implicit bracketing is employed by OPSIN in cases where substitution onto the rightmost

group, in the current scope, of a chemical name is not intended (Figure 3-131).

Figure 3-131 Allowed interpretations of aminomethylbenzene. The boxed interpretation is produced by

OPSIN by implicitly bracketing the name to (aminomethyl)benzene

Figure 3-131 depicts four structures consistent with the name, aminomethylbenzene. There is

only one possible structure where the aminomethyl is a substituent on the benzene ring, whereas if

the amino and methyl groups are direct substituents of the ring, there are three structural isomers.

In general, OPSIN adds implicit brackets to attempt to yield a name with only one possible (non-

degenerate) structural isomer, although perception of atom environments is not currently done to

rigorously achieve this.

In general OPSIN implicitly brackets names, when two substituents are directly adjacent (e.g.

no intervening locants/multipliers) to each other and the latter substituent has the

usableAsAJoiner attribute. This attribute is generally present on substituents which possess

only one substitutable hydrogen (e.g. formyl), all substitutable hydrogen on the same atom (e.g.

sulfamoyl) or are a multi-radical accepting additive bonds (e.g. carbonyl).

OPSIN distinguishes between the case in which substituents are directly concatenated and the

case in which they are separated by a hyphen; only the former are implicitly bracketed. This heuristic

was found to be useful for interpreting chemical names generated by Lexichem.

When implicit brackets are added, locants could apply to the implicit bracket or the contents

within it (Figure 3-132).

121

Figure 3-132 4-dimethylaminotoluene, interpreted as 4-(dimethylamino)toluene (left) but 2-

aminopropylbenzene, interpreted as (2-aminopropyl)benzene (right)

Similarly multipliers could apply to the implicit bracket or to the contents within it (Figure

3-133).

Figure 3-133 1,3,4-trimethylthiobenzene, interpreted as 1,3,4-tri(methylthio)benzene (left) but 1,3,4-

trimethylbutylbenzene, interpreted as (1,3,4-trimethylbutyl)benzene (right)

Determining whether the locants and multipliers of the first substituent should be placed

within the implicit bracket is heuristically determined by OPSIN considering whether the locant may

apply to the other groups within the implicit bracket, the group itself or a group onto which it may

be substituted. If a multiplier is a group multiplier e.g. ‘bis’ this is used as a hint that the multiplier

describes multiplication of the implicit bracket (Figure 3-134).

Figure 3-134 bismethylaminomethane, interpreted as bis(methylamino)methane (left) but

dimethylaminomethane interpreted as (dimethylamino)methane (right)

3.2.15.2 Implicit spaces

Spaces are used in functional class nomenclature to separate the functional class of the

compound from the substituent group. In most cases the absence of the space, with strict

application of this rule, leads either to a name with a highly unlikely interpretation (Figure 3-135) or

to a name with no interpretation e.g. ethylalcohol.

122

Figure 3-135 ethylchloride. Strictly this interpretation is not allowed as chloride possesses no

substitutable hydrogen.

Hence, OPSIN does not enforce the presence of a space before a functional term and instead

will treat such examples as if there were implicitly a space between the substituent and functional

class term. This is done by having this construct of a substituent directly followed by a functional

term actually present in the chemical grammar. The reason for this choice is that the parser is greedy

and will consume as much input as it can interpret. A consequence of this is that if this construct

were not in the grammar, chalcogen analogues of functional class terms would not be considered.

This is because the chalcogen prefix would always be parsed by the grammar as a substituent

instead of being considered as part of the functional term (Figure 3-136).

Figure 3-136 ethylthiocyanate or ethyl thiocyanate (left), ethylthio cyanate (right). For the space

omitted name OPSIN generates parses for both interpretations before disambiguating in favour of the left-

hand interpretation on the basis of having a longer functional term.

For esters disambiguation is more difficult as the space omitted form also produces a distinct

chemically sensible interpretation (Figure 3-137).

Figure 3-137 tert-butylacetate (left) and tert-butyl acetate (right)

Analysis of patents made it clear that strictly applying the IUPAC rules and treating such

names as substituted anions was inappropriate.

OPSIN employs the following heuristics to distinguish between the cases where the omission

of the space was intended and those in which an ester interpretation was intended. These criteria

are applied before substituents are multiplied e.g. diethyl would be treated as one substituent.

 The first substituent in the name must have no locant and must be univalent. The

multiplier (if present) in front of the substituent must not exceed the number of

functional atoms present in the ‘ate’/ ‘ite’ group.

123

 If the parent group has exactly one substituent the ester interpretation is preferred if:

o Substitution onto the ‘ate’/ ‘ite’ group would lead to ambiguity. Ambiguity is

determined through an analysis of the environments in which substitutable

hydrogen are found using the same environment labelling as is employed

during stereochemistry handling

o It is prefixed with the multiplier ‘mono’

o The substituent is a straight chain alkyl chain followed by

formate/methanoate/acetate/ethanoate. Such names produce an

unambiguous anion interpretation but would not normally be named like this

e.g. ethylethanoate would be called butanoate

 If the parent group has multiple substituents the ester interpretation is preferred if:

o All substituents other than the first have locants (Figure 3-138)

o The ‘ate’/ ‘ite’ group has insufficient substitutable hydrogen atoms if and

only if the substitution interpretation is assumed

Figure 3-138 tert-butyl-4-vinylperbenzoate is interpreted as tert-butyl 4-vinylperbenzoate

Spaces may also be omitted in functional class names where the functional group is a divalent

group and hence two substituents are expected. A long standing exception allows for one

substituent to be omitted if both substituents are identical (Figure 3-139).

Figure 3-139 diethyl ether or ethyl ether (omitted substituent) or diethylether (omitted space) or

ethylether (omitted substituent and space)

124

When two concatenated substituents are present before such functional groups OPSIN

assumes that a space is omitted unless a locant is provided on the first substituent indicating that it

connects to the second substituent.

3.2.16 Output formats

After a name has been interpreted, an OPSIN Fragment will have been generated that

includes the molecule(s) described by the chemical name. This internal format may then be

serialised to CML, SMILES or InChI.

3.2.16.1 CML

OPSIN’s Fragment, Atom, Bond, AtomParity and BondStereo classes all contain a

method to produce a CML serialisation which can be useful for debugging. The process of serialising

a Fragment incorporates the results of serialising the constituent Atoms, Bonds, AtomParitys

and BondStereos. The CML serialisation differs from the other serialisations in that it also includes

the locants associated with each atom (Figure 3-140).

125

<cml convention="conventions:molecular" xmlns="http://www.xml-

cml.org/schema" xmlns:conventions="http://www.xml-cml.org/convention/"

xmlns:cmlDict="http://www.xml-cml.org/dictionary/cml/"

xmlns:nameDict="http://www.xml-cml.org/dictionary/cml/name/">

 <molecule id="m1">

 <name dictRef="nameDict:unknown">propane</name>

 <atomArray>

 <atom id="a1" elementType="C">

 <label value="1" dictRef="cmlDict:locant"/>

 <label value="alpha" dictRef="cmlDict:locant"/>

 </atom>

 <atom id="a2" elementType="C">

 <label value="2" dictRef="cmlDict:locant"/>

 <label value="beta" dictRef="cmlDict:locant"/>

 </atom>

 <atom id="a3" elementType="C">

 <label value="3" dictRef="cmlDict:locant"/>

 <label value="gamma" dictRef="cmlDict:locant"/>

 </atom>

 <atom id="a4" elementType="H"/>

 <atom id="a5" elementType="H"/>

 <atom id="a6" elementType="H"/>

 <atom id="a7" elementType="H"/>

 <atom id="a8" elementType="H"/>

 <atom id="a9" elementType="H"/>

 <atom id="a10" elementType="H"/>

 <atom id="a11" elementType="H"/>

 </atomArray>

 <bondArray>

 <bond id="a1_a2" atomRefs2="a1 a2" order="S"/>

 <bond id="a2_a3" atomRefs2="a2 a3" order="S"/>

 <bond id="a1_a4" atomRefs2="a1 a4" order="S"/>

 <bond id="a1_a5" atomRefs2="a1 a5" order="S"/>

 <bond id="a1_a6" atomRefs2="a1 a6" order="S"/>

 <bond id="a2_a7" atomRefs2="a2 a7" order="S"/>

 <bond id="a2_a8" atomRefs2="a2 a8" order="S"/>

 <bond id="a3_a9" atomRefs2="a3 a9" order="S"/>

 <bond id="a3_a10" atomRefs2="a3 a10" order="S"/>

 <bond id="a3_a11" atomRefs2="a3 a11" order="S"/>

 </bondArray>

 </molecule>

</cml>

Figure 3-140 Example of CML output

3.2.16.2 SMILES

OPSIN includes a SMILES writer that can convert its internal format to SMILES. The SMILES

writer includes support for everything that OPSIN’s internal format can represent about the

structure of a molecule, including stereochemistry. So as to produce shorter, more aesthetically

pleasing SMILES hydrogens are supressed on all organic atoms except for nitrogens with double

bond stereochemistry (Figure 3-141).

126

Figure 3-141 (Z)-ethanimine: C(/C)=N/[H] Note that without mentioning the hydrogen it is not possible

to express this stereochemistry

SMILES descriptions for individual atoms and bonds can usually be generated in isolation from

the rest of the molecule e.g. for an atom from its properties and hydrogen count. When

stereochemistry is involved it is more complex as the serialisation is affected by the ordering of

atoms within the SMILES string; hence the first step that the SMILES writer performs is a depth-first

traversal of the molecule defining the order in which the atoms will be serialised. Double bond

stereochemistry in conjugated systems is especially difficult as one must take into account the

direction of slashes used for the previous double bonds as the same slash is used in the definition of

the stereochemistry of both double bonds. OPSIN solves this by assigning consistent slash characters

to all bonds to non-implicit atoms, which are adjacent to double bonds with defined stereochemistry

before beginning writing of the SMILES string. In cases where neither group is an implicit hydrogen

this leads to superfluous slashes but as they are not contradictory this is not incorrect (Figure 3-142).

Figure 3-142 (1Z,3Z)-1-bromo-1-chloropenta-1,3-diene: Br\C(=C/C=C\C)\Cl

3.2.16.3 InChI

To create InChIs OPSIN employs the JNI-InChI library128. This allows the usage of InChI, a

natively C library, through Java, on the majority of systems. The conversion from OPSIN’s internal

format to JNI-InChI’s format is straightforward due to their near identical representations employed

for describing stereochemistry. OPSIN can produce either standard InChIs or InChIs with fixed

hydrogen layers. As IUPAC names generally specify a specific tautomer including the fixed hydrogen

layer is preferred.

127

As JNI-InChI is a very large dependency compared to OPSIN’s other dependencies, OPSIN is

divided into two Maven modules. One of these contains OPSIN’s core functionality, including CML

and SMILES output, whilst the other solely adds the ability to do InChI serialisation.

3.3 Results and discussion

Evaluating chemical name to structure performance while theoretically simple is impeded by

the difficulty of finding sufficiently large sets of accurately annotated name/structure pairs that are

representative of the names of interest.

A study by Eller129 found 26% of names in the analysed sample from the published literature to

be formally unacceptable. When testing name to structure performance it is important to be able to

know that conversion failures or unexpected name conversions are not just the result of the input

name being incorrect. Eller also noted that machine generated names from the three pieces of name

generation software tested (AutoNom 2000, ChemBioDraw and ACD/Name) produced formally

incorrect names in only 1% of cases. For this reason all testing on the precision of chemical name to

structure software has been performed on machine generated names. It should be noted that many

major chemical drawing programs (e.g. ChemBioDraw, Marvin Sketch, Accelrys Draw, ACD

ChemSketch) now incorporate structure to name algorithms, so finding machine generated chemical

names in the literature is becoming increasingly common.

It is important to know that the findings on generated names are still applicable to chemical

names “in the wild”. One of the most commercially important applications of name to structure is

locating chemical patents from the chemicals described within them. For this it is important to have

high recall on the names used in such patents to describe exemplified compounds.

3.3.1 Methodology

3.3.1.1 Generated name test sets

The SMILES and InChIs for 30,000 randomly selected compounds were downloaded from

PubChem, a database of more than 25 million small molecules. To randomly select the compounds,

PubChem IDs were generated by random number generation in the range of valid IDs with removal

of duplicates and revoked IDs until 30,000 valid IDs were generated.

The SMILES were then converted to names by ACD/Name 12.02, ChemBioDraw12, Lexichem

2.1.0 and Marvin 5.8.2. Due to an issue with ACD/Name’s SMILES to name conversion including

128

stereochemistry for double bonds, which did not have defined stereochemistry, an SDF generated by

Lexichem from the SMILES was instead used as input to ACD/Name. InChIs were generated from

these names by OPSIN 1.2.0, ChemBioDraw12, and Marvin 5.8.2. To give an indication of the

difference in performance between OPSIN 1.2.0 and the version of OPSIN available at the

commencement of this project, a version from November 2008 is included. As this version did not

directly output InChIs, these were instead generated from the program’s CML output using a simple

Pybel130 script as an interface to OpenBabel 2.3.1.

Determination of whether or not the InChIs were considered identical was made by

comparison of the layers that are present in standard InChIs. Where the InChIs were not identical it

was determined whether the layers that define the constitution of the molecule were identical. If

they were, this was classed as a “Stereochemical Discrepancy”, and, if they were different, this was

classed as a “Constitutional Discrepancy”.

As generated names are not expected to be correct in absolutely all cases a possible heuristic

for detecting such cases is by looking at the consensus of name to structure solutions. For the cases

where OPSIN failed to produce an identical InChI, the results of the other two name to structure

programs was examined to determine whether either of them arrived at the correct InChI. If no

solution could interpret a given name correctly this implies that the name may be suspect.

3.3.1.2 Chemical patents test set

USPTO patent applications that were filled in 2011 were downloaded from Google Patents131.

The patents were filtered to just those containing organic chemistry (IPC code: C07). For each

patent, heading elements were identified and their textual content passed to OSCAR4. Where

OSCAR4 identified exactly one entity of type chemical, the surface of the entity, i.e. the name, was

recorded. In the special case that the name (ignoring case) had been seen previously in the same or

a previous patent, the name was not recorded. This filtering step helps with the problem that not all

names present in headings will be exemplified compound names. A set of 248,846 names were

extracted in this manner. Manual inspection indicated that the names are predominantly systematic

in nature.

129

3.3.2 Data obtained

3.3.2.1 ACD/Name generated names

Figure 3-143 Comparison of performance on 29,718 ACD/Name 12.02 generated names

Names were tested as outputted by ACD/Name, with the exception that where present the

string ‘(non-preferred name)’ was removed from the end of names.

3.3.2.2 ChemBioDraw generated names

Figure 3-144 Comparison of performance on 29,414 ChemBioDraw12 generated names

0%

20%

40%

60%

80%

100%

OPSIN1.2.0 Marvin5.8.2 ChemBioDraw12 OPSIN
(11/11/08)

No Result

Constitutional

Discrepancy

Stereochemical

Discrepancy

Correctly Interpreted

0%

20%

40%

60%

80%

100%

OPSIN1.2.0 Marvin5.8.2 ChemBioDraw12 OPSIN
(11/11/08)

No Result

Constitutional

Discrepancy

Stereochemical
Discrepancy

Correctly Interpreted

130

Names were tested as outputted by ChemBioDraw.

3.3.2.3 Lexichem generated names

Figure 3-145 Comparison of performance on 29,301 Lexichem 2.1.0 generated names

Names were tested as outputted by Lexichem. On one exceptionally long systematic name

Marvin failed to produce a result within 30 minutes necessitating the manual exclusion of that

name.

3.3.2.4 Marvin generated names

Figure 3-146 Comparison of performance on 29,961 Marvin 5.8.2 generated names

0%

20%

40%

60%

80%

100%

OPSIN1.2.0 Marvin5.8.2 ChemBioDraw12 OPSIN
(11/11/08)

No Result

Constitutional

Discrepancy

Stereochemical

Discrepancy

Correctly Interpreted

0%

20%

40%

60%

80%

100%

OPSIN1.2.0 Marvin5.8.2 ChemBioDraw12 OPSIN
(11/11/08)

No Result

Constitutional

Discrepancy

Stereochemical
Discrepancy

Correctly Interpreted

131

Names were tested as outputted by Marvin.

3.3.2.5 Compounds from headings in USPTO Patents

Figure 3-147 Comparison of recall on 248,846 names extracted from USPTO patents by OSCAR4. Pre-

processed names were the result of passing the names through OPSIN’s pre-processor.

The results in Figure 3-147 are intentionally not presented as a percentage of the size of the

test set as at least 10% of the identified names are expected to be either false positives or contain

insufficient information to generate a connection table. Unlike in the generated names, UTF-8

characters beyond the ASCII subset were frequently encountered e.g. Greek letters (α) and primes

(′). A significant percentage of ChemBioDraw’s failures were purely due to the use of these

characters hence the names were passed through OPSIN pre-processor (Section 3.2.3) to allow

assessment of the level of nomenclature coverage rather than of ChemBioDraw12’s ability to

recognise non-ASCII characters. For names containing characters unrecognised by OPSIN’s pre-

processor the original name was retained.

3.3.3 Discussion

The results show that OPSIN has consistently high levels of recall (96.2% - 99.0%) and precision

(97.9%-99.3%) across all the sets of generated names. While precision as stated is high, many of the

0

50,000

100,000

150,000

200,000

ChemBioDraw12 Marvin5.8.2 OPSIN1.2.0 OPSIN
(11/11/08)

N
u

m
b

e
r

o
f

n
am

e
s

fo
r

w
h

ic
h

 S
M

IL
ES

 w
e

re
 g

e
n

e
ra

te
d

Names as written

Pre-processed names

132

failures maybe expected to be the result of the names being incorrect. Table 3-15 shows that the

majority of the names that OPSIN incorrectly interpreted, were also incorrectly interpreted by

Marvin and/or ChemBioDraw. In the paper on OPSIN72, an older version of OPSIN, on different sets

of generated names in which incorrect and ambiguous names were identified and excluded from the

precision calculations, was able to achieve precision in excess of 99.8%. Different sets of names were

used than those in the paper, as in the course of creation of the paper the author manually checked

all names that produced discrepant results to determine whether the fault lay with the name. This

analysis allowed, subsequently to the paper, for the majority of the genuine errors made by OPSIN

to be corrected, but as a result these sets cannot be considered unseen test sets.

 Sets of names

 ACDName12.02 ChemBioDraw12 Lexichem2.1.0 Marvin5.8.2

Can be converted
correctly by a
solution

4.1% 45.5% 7.7% 17.0%

Can't be correctly
converted but can
be incorrectly
converted

71.8% 51.8% 83.3% 68.4%

Can't be
converted by
either solution

24.1% 2.6% 9.0% 14.6%

Table 3-15 Analysis of how the union of ChemBioDraw and Marvin handled the names that OPSIN 1.2.0

produced discrepant results on.

OPSIN’s names showed a lower level of agreement with the starting structures when using

names generated by ACD/Name (Figure 3-143), as compared to when using names generated by the

other software. This arises from the use, by ACD/Name, of amino acid names without ᴅ/ʟ prefixes to

describe amino acid components of the structure without defined stereochemistry. The IUPAC

recommendations118(Rule 3AA-3.3) state that the meaning of an amino acid name without the prefix

depends on the context e.g. if the amino acid is known to come from a natural source it may be

assumed to be ʟ whilst if it known to be synthetic it may be assumed to indicate a racemate. OPSIN,

and indeed the other name to structure solutions tested, assumes the ʟ configuration in all cases

leading to apparent discrepancies in results.

In OPSIN’s publication72 it was found that ChemBioDraw was sensitive to the representation of

superscripts and Greek letters used by other structure to name packages e.g. $a for alpha or ^ to

indicate superscripts. Pre-processing the chemical names to use representations understood by

133

ChemBioDraw may slightly improve its performance on the ACD/Name, Lexichem and Marvin

generated names.

Across all four sets of names Marvin can be seen to have generated stereochemically

discrepant results in a large percentage of cases. This appeared to a large extent to be caused by

difficulties in its algorithm correctly identifying the stereocentre to which indicated stereochemistry

should be applied. For example ‘(S)-bromo(chloro)fluoromethane’ was interpreted without

stereochemistry whereas ‘bromo(chloro)fluoro-(S)-methane’ was correctly interpreted.

The results on the names extracted from patents (Figure 3-147) also showed excellent

performance from OPSIN, giving significantly higher recall than Marvin. Comparison to

ChemBioDraw is more difficult as dependent on whether or not the names are pre-processed OPSIN

either had slightly higher or slight lower recall. Correspondence with a ChemBioDraw developer

indicated that the lack of support for non-ASCII Unicode characters was a bug that would be

corrected in the next version.

The difference between OPSIN’s current performance and the level potentially achievable

with ChemBioDraw is likely to be explained by OPSIN’s lack of support for some areas of

carbohydrate nomenclature as well as ChemBioDraw’s greater leniency in handling names that do

not conform to codified nomenclature practices.

3.4 Implementations

3.4.1 Java library

OPSIN’s main mode of distribution is as a Java library typically including both the core and

InChI modules. The API has been designed to offer convenience methods for the most commonly

required capabilities in conjunction with more advanced configurability. The methods in the public

API of NameToStructure are listed below:

Method Output
parseToCML(String name) nu.xom.Element

parseToSmiles(String name) String

parseChemicalName(String name) OpsinResult

parseChemicalName(String name,

NameToStructureConfig n2sConfig)

OpsinResult

getOpsinParser() ParseRules

134

The parseToCML and parseToSmiles are convenience methods and allow the direct

conversion of a chemical name to the relevant format e.g. a CML document and a SMILES string

respectively, using the program’s default options. A CML document is returned as a XOM Element

object allowing in-memory manipulation or trivial serialisation to XML.

Alternatively the output may be an OpsinResult. This contains whether name

interpretation was successful, the error message that was returned (if applicable) and the name that

was interpreted. An OpsinResult may be lazily serialised to either CML or SMILES using the class’

methods.

If greater configurability is desired, a NameToStructureConfig object can be provided

that allows configuration of OPSIN’s options (Table 3-16).

Option Explanation Default value

allowRadicals Should names that formally describe radials be accepted
e.g. ethyl

false

detailedFailureAnalysis If a chemical name is uninterpretable should OPSIN parse
it from right to left to attempt to generate a more

informative error message

false

Table 3-16 OPSIN’s configurable options

The ParseRules object returned by getOpsinParser allows the parsing of words using

OPSIN’s grammar. This functionality is employed extensively by the OPSIN Document Extractor

(Section 3.4.4) but is not known to be employed elsewhere. Note that generally only a single word

may be parsed at a time e.g. ‘ethyl ethanoate’ will not be fully parsable but ‘ethyl’ or ‘ethanoate’ are

parsable.

If one wishes to debug OPSIN’s behaviour an end user may achieve this by setting the Log4J

log level to either debug or trace depending on the level of detail required.

 Library functions for InChI generation reside in the NameToInchi class in the InChI

module. Functions are available for the generation of an InChI with fixed-H layer or a StdInChI from

an OpsinResult. Convenience methods are also available to go directly from a name to either

form of InChI.

The library is available either from the project’s download page on BitBucket132 or from the

Maven central repository.

135

3.4.2 Command-line interface

When OPSIN is distributed in library form as an executable jar file, execution yields a

command line interface. Flags are available to set all of OPSIN’s configurable options, the desired

output format and verbosity (Figure 3-148). Verbose output corresponds to a Log4J log level of

debug. The same command-line is employed regardless of whether the InChI module is included,

hence to avoid the command-line interface depending on the InChI module, reflection is used to

check for the presence of the InChI functionality on the classpath. The command-line interface may

be used to perform batch processing by piping in a file of chemical names and directing the output

to an appropriate output file.

Figure 3-148 Screenshot of OPSIN command line help dialog showing available flags

3.4.3 OPSIN web service

The OPSIN web service133 provides access to OPSIN’s functionality to convert names to CML,

SMILES and InChI via a convenient web interface. Additionally the web interface can generate

depictions using the Indigo toolkit55. The Indigo toolkit is also used to enrich the CML with generated

2D coordinates.

Requests to the web interface may be either done using a browser by entering a chemical

name at opsin.ch.cam.ac.uk or programmatically by sending requests to opsin.ch.cam.ac.uk/opsin.

Requests may be made using content negotiation or by adding a suitable file extension to the

request (Table 3-17).

136

Request type Internet media type File extension

CML chemical/x-cml .cml

CML without 2d coordinates n/a* .no2d.cml

SMILES chemical/x-daylight-smiles .smi

InChI chemical/x-inchi .inchi

Depiction image/png .png
Table 3-17 Request types supported by the OPSIN web service. *chemical/x-no2d-cml is accepted but is

not a recognised internet mime type

The web service is employed by the Chemistry Add-in for Word134, a joint development

between the Unilever Centre and Microsoft, as a means of converting chemical names to chemical

objects.

The web service’s logs were analysed over a one week period in early December 2011 showing

requests from 171 unique IP addresses. Usage patterns varied from single names all the way through

to automated requests for 1000s of names. Analysis of failing web service requests has revealed that

the vast majority of failures have been caused by unrecognised trivial names (e.g. drug names),

spelling mistakes, non-English chemical names and non-names (e.g. SMILEs, molecular formulae

etc.). The few genuine failings have proven of some use in finding “bugs” and areas of unsupported

nomenclature.

When a failure is encountered the web service employs OPSIN’s reverse parsing to attempt to

identify the exact part of a name that is uninterpretable in the error response. Users of the service

have reported this to be useful in identifying and correcting errors in chemical names135.

3.4.4 OPSIN Document Extractor

The OPSIN Document Extractor136 attempts to find all sequences of words that are parsable by

OPSIN. This is assumed to indicate that, with a high degree of confidence, the identified strings are

chemical names. The program works as follows on a string of text:

 Whitespace tokenisation to form an array of words. The character indices of these words in the

original string are recorded.

 OPSIN’s pre-processor is employed to generate an array of normalised words which will be

operated on henceforth.

137

 Identification of stop words e.g. ‘on’, ‘one’, ‘at’. These are English words that can also be the

ending of chemical names (often German chemical names) and should be prevented from

forming chemical names.

 The words are parsed by OPSIN in pairs. Depending on whether or not OPSIN believes a word to

be interpretable on its own, the program may add one or both words to a buffer of successfully

parsed name fragments e.g. ‘ethyl benzene’ would be consumed in two cycles but ‘benzoic acid’

or ‘chloral hydrate’ would be consumed as one.

 If a pair of words is partially interpretable and the point of failure does not occur at a word

boundary, spaces are removed until either no improvement in the length of name that is

interpretable is noticed or the chemical name ends at a word boundary.

 As OPSIN knows the role of chemical words and whether they are valid on their own, intelligent

choices can be made as to whether space removal should be attempted. For example ‘benzene

sulfonamide’ should be ‘benzenesulfonamide’ but ‘pyridine acetic acid’ should be interpreted as

is, rather than treating the acetic acid as a conjunctive substituent of the pyridine ring.

 Punctuation at the end of a chemical name, or a bracketed section immediately following a

chemical name is ignored and indicates the chemical name is complete. A chemical name is also

indicated as being complete if a subsequent word cannot be interpreted as being chemical or

the end of the array of words is reached.

 Identified chemical names are classified as “complete”, “part”, “family” or “polymer”. “part”

names are names classified by OPSIN as substituents. “family” names are classed by OPSIN as

functional terms or are names that end in an ‘s’ which could not be interpreted by OPSIN.

“polymer” names start with the functional term ‘poly’ or ‘oligo’.

 An unbalanced opening bracket at the start of a chemical name, or an unbalanced closing

bracket at the end of a chemical name, is removed. Balanced brackets surrounding a chemical

name are removed. A terminal ‘-’ or ‘,’ is removed e.g. ‘ethyl-’ is recognised as ‘ethyl’

 The output is a list of identified chemical names which can be queried for the normalised

chemical name, the raw text, the chemical name classification, the start and end character

indices within the original string and the start and end positions within the array of words.

138

As the program knows whether punctuation is valid as part of a chemical name, individual

chemical names may still be extracted from lists of chemical names even in the presence of

erroneous whitespace (Table 3-18).

Input: ‘indane, 1,2, 3,4- tetrahydroquinoline, 3, 4-dihydro-2H-1, 4-benzoxazine, 1,5-naphthyridine, 1,
8- naphthyridine’

Identified chemical name Text value

indane indane

3,4-tetrahydroquinoline 3,4- tetrahydroquinoline

3,4-dihydro-2H-1,4-benzoxazine 3, 4-dihydro-2H-1, 4-benzoxazine

1,5-naphthyridine 1,5-naphthyridine

8-naphthyridine 8- naphthyridine

Table 3-18 Output from OPSIN Document Extractor on a list of chemical names containing erroneous

whitespace

The OPSIN Document Extractor is utilised as a tagger for use with ChemicalTagger (as

described in Section 4.4.5.6) and as an aid in name type assignment (as described in Section 4.5.1.4).

It should be emphasised that, whilst the approach taken by the OPSIN Document Extractor is rather

brute force in nature, it is still typically an order of magnitude faster than performing entity

recognition with OSCAR4. Hence, using the OPSIN Document Extractor as a complement to OSCAR4,

as is done in the work on reaction extraction described in Chapter 4 of this thesis, may be done with

minimal effect on performance.

3.5 Areas for future work

3.5.1 Vocabulary

Chemical name to structure is impossible when vocabulary unrecognised by the program is

encountered. Hence, an obvious improvement to OPSIN is the addition of more terms to its

vocabulary. This is especially important in the area of natural products, for which even the majority

of IUPAC recommended alkaloid and terpenoid trivial names, listed in the natural product

recommendation127 (Appendix), are yet to be added. A site offering an extensive list of trivial names

with corresponding systematic names and Japanese names was identified but unfortunately time

was insufficient to fully add more than just the acyclic trivial names137. Addition of trivial names is

complicated by the question of what category in the grammar to add the name to e.g. can the name

have suffixes, if so which suffixes? Other concerns are getting the numbering of the compound

correct when the compound has an accepted numbering system, and, especially in the case of

natural products, making sure the structure has correct stereochemistry. The stereochemistry

139

problem is made more difficult by the proliferation in databases of structures with slightly different

stereochemistry that have become erroneously associated with the same trivial name138.

The addition of vocabulary can also assist with the problem of trivial names that are

composed of understood morphemes which are then deconstructed into their apparent

morphemes. This poses a problem as the apparent morphemes may not precisely describe the

structure or may be wholly misleading (Figure 3-149). The addition of appropriate trivial names

allows the systematic interpretation to be overridden.

Figure 3-149 Methanophenazine (left) and a systematic interpretation of it (right)

3.5.2 Carbohydrate nomenclature

OPSIN currently possesses support for carbohydrates with the suffix ‘ose’ optionally infixed

with a ring size specifier to give suffixes such as ‘pyranose’. Adding support for more suffixes

especially those that allow groups named by carbohydrate nomenclature to be used as substituents

would yield a significant improvement in recall. Adding further suffix support is not entirely trivial

due to only some suffixes being locantable and some suffixes applying to multiple atoms but

extension of OPSIN’s existing mechanisms for handling similar cases should be sufficient.

Oligo saccharide nomenclature which employs arrows to indicate the linkage between

saccharides could be relatively trivially support by internal conversion to normal locants e.g.

α-ᴅ-glucopyranosyl-(14)-β-ᴅ-glucopyranose could be internally converted to:

O4-(α-ᴅ-glucopyranosyl)-β-ᴅ-glucopyranose

3.5.3 Inorganic nomenclature

Inorganic nomenclature is mostly unsupported by OPSIN. The reason for this stems from two

problems:

 Datively bonded substituents are often named by the name of the group e.g. ‘amine’,

‘pyridine’ etc. To classify these as substituents rather than parent groups one needs to

know that they are followed by an inorganic parent. Treating them as parent groups

will not work as they may be preceded by ligands that are expressed as substituents

140

e.g. ‘chloro’ which will be referring to the metal rather than the datively bonded

substituent e.g. ‘dichlorodipyridine platinum(II)’.

 OPSIN’s current internal format does not have good support for representing dative

bonds and other non-covalent interactions e.g. the interaction between the π

electrons and the iron atom in ferrocene. This same is also true to varying extents of

the formats to which OPSIN writes.

The issues of representing inorganics are dealt with by Clark139 who recommended the

introduction of a zero-order bond to the commonly used MDL chemical table file formats. This

would mostly solve the problems of representation although the exact semantics of the interactions

would be lost. It would also be insufficient to correctly represent systems with three centre two

electron covalent bonds e.g. diborane. In these systems representing one bond as a single bond and

the other as a zero order bond artificially introduces asymmetry.

Until support for file formats that allow better specification of inorganics becomes more

widespread improving support for inorganic nomenclature is unlikely to benefit most

cheminformatics applications.

3.5.4 Stereochemistry

Many forms of stereochemistry remain unsupported including endo, exo, syn, anti, r, s, e, z

and α/β stereochemistry on arbitrary ring systems. Adding rigorous detection for pseudo-

asymmetric centres would be an important precursor to further improving stereochemistry handling

by OPSIN. Currently only a limited subset of the pseudo-asymmetric centres are detected. For r, s, e

and z, extension of OPSIN’s implementation of the CIP rules would also be required.

3.5.5 Nomenclature variants

Even if OPSIN were to support all codified nomenclature, there still remains the long-tail of

nomenclature variants that appear, both intentionally and unintentionally, in “real world” use. This

is an unbounded problem as the chemistry community can always think of new ways to construct

chemical names that will be unexpected to a computer program. In this respect an approach like

that taken by Name=Struct may be advantageous over a grammar-based approach although this

must be weighed against the increase in erroneous structure conversions which will inevitably occur

when odd nomenclature is encountered.

141

3.5.6 Detection and handling of ambiguous names

OPSIN has not been designed to detect ambiguous chemical names and hence introducing

such functionality would involve substantial changes especially if alternative structure

interpretations were to be enumerated. The codebase now includes code for atom environment

detection and indeed this is actually employed for detection of ambiguity in the very specific case of

determining whether an ester interpretation is desired (Section 3.2.15.2). The application of this

technique to substitutive nomenclature operations would be sufficient to detect a significant

number of cases of ambiguity although structural ambiguity may be introduced by many other

nomenclature operations for which a similar analysis would also need to be performed.

A significant complicating factor is determining whether a name that is formally ambiguous

should be considered unambiguous by convention. In the example of p-aminomethylbenzene-

sulfonamide (Figure 3-150) the name is formally ambiguous as ‘aminomethyl’ is not bracketed. In

practice there is only one likely interpretation, as the name would otherwise contain a methyl group

that could be placed at multiple positions on the benzene ring whilst still being consistent with the

name.

Figure 3-150 p-aminomethylbenzene-sulfonamide

3.5.7 Detection of typographical errors

The problem of detecting and correcting typographical mistakes was investigated, during the

course of this project, yielding a proof of concept system. This worked by parsing the chemical name

to the point at which no further tokens could be found then determining if one operation could

change the chemical name such that it would match one of the tokens present in the allowed token

classes. These operations were substitution, insertion, deletion and transposition, which have been

found to account for 80% of typographical errors140. Due to the existence of morphemes in the same

token class that differ by only a single letter e.g. ‘amino’, ‘imino’, only substitutions between letters

that were adjacent on a US keyboard were allowed. Where multiple possible suggestions were

possible a heuristic, that chose the token that appeared more often in a training corpus, was

invoked.

142

This work yielded promising results. The only significant drawback being that, if the

typographic mistake was before the point in the name at which parsing failed, the mistake could not

be corrected as backtracking through the grammar’s finite state machine had not been

implemented. This work was not taken forward primarily due to concerns that the results would still

not be accurate enough for automated use in text mining. Nonetheless adding such functionality to

applications such as the OPSIN web service could be useful.

3.5.8 Foreign language support

OPSIN includes some support for German names purely by making the terminal ‘e’ at the end

of many chemical names optional. An experiment with adding further German vocabulary flagged up

an ambiguity that would be introduced in the parsing of ‘chloro-’. With the addition of the German

‘chlor’ this could then also be parsed as [chlor][o-] where ‘o-’ is an ortho locant, hence the German

specific vocabulary is currently not enabled to avoid introducing ambiguity into unambiguous English

names.

Figure 3-151 English: 2-Chloropyridine; German: 2-Chlorpyridin (unsupported due to ‘chlor’ not being in

vocabulary, ‘pyridin’ is allowed as OPSIN considers the ‘e’ optional)

A small proof of concept attempt was made to support Chinese chemical names indicating

that for Chinese many English morphemes could be simply replaced with Chinese characters due to

the underlying grammar being mostly the same. In some areas though the syntax was found not be

identical e.g. alkanes are ordered by hundreds, then tens then units whilst in English IUPAC names

the ordering is reversed. Modifying OPSIN’s grammar or enumerating such systematic constructions

are not especially elegant solutions. In languages such as French the ordering of words may be

different e.g. ‘acide formique’ which poses further problems.

Sayle141 described a method whereby names in foreign languages could be translated from,

and to, English through a mixture of word order rearrangement and morpheme string substitutions

(some of which were context sensitive). This is expected to be the more elegant solution although

the inherent disambiguation that a grammar-based system like OPSIN provides may give more

elegant solutions in cases where context sensitive substitutions are required.

143

3.6 Conclusions

This project has resulted in the creation of a fast, precise and extensible chemical name to

structure interpretation algorithm. By employing a strict grammar, OPSIN can elegantly fail on

chemical names that include nomenclature that is not yet supported. OPSIN is known to be

employed by AMBIT142, Cinfony143, the National Cancer Institute’s Chemical Identifier Resolver144,

Bioclipse145, LICSS146, OCMiner147, Digital Science’s SureChem36 and at the International Union of

Crystallography148, Dupont149, AstraZeneca150 and IBM151. This wide range of users encompasses text

mining efforts and more general applications in which name to structure can be a time saving

mechanism.

Newly synthesised compounds, and to a lesser extent reagents, are often referred to by

systematic names; hence the success of the work described in the next chapter on extracting

reactions from patents was only possible due to the high recall and precision afforded by OPSIN.

144

Chapter 4 Extraction of Chemical Reactions from the Patent

Literature

4.1 Introduction

Reaction databases are primarily employed by synthetic chemists to find ways to perform a

particular synthesis or synthetic step. They may already know the reaction they are interested in

performing and hence want to investigate the conditions employed in successful instances of the

reaction. Alternatively they may be interested in identifying reactions that would, or have the

potential to, lead to the formation of a particular moiety.

The largest reaction databases are the commercial CASREACT152,153 and Reaxys154,155 databases

each containing in excess of 30 million reactions. There are many smaller commercial databases e.g.

SPRESI156,157, Current Chemical Reactions158, Science of Synthesis159 and SORD160 (free to academics).

As compared to structural databases, where freely accessible databases like ChemSpider and

PubChem rival the size of the leading commercial databases, freely accessible reaction databases are

currently comparatively small in size. Such databases include the journal Organic Syntheses161 and

WebReactions162 which uses the ChemReact database, a subset of the SPRESI database.

Reaction databases are generally populated by manual abstraction of reactions from the

chemical literature. This is highly time consuming work and hence, due to the associated costs, large

scale abstraction is only practical for the largest commercial databases. Automated techniques for

reaction extraction have the potential, where primary literature is readily text minable as is the case

for patents, to allow the creation of large reaction databases with extremely low costs. Such

techniques may also find utility in expediting work to manually extract reactions from the literature

by providing crude extracted reactions which could then be tweaked by human curators.

This chapter describes the development of an open source system for the automatic

extraction of reactions from the chemical literature especially patents. The developed system was

presented at the spring 2012 ACS conference163. The description of the system unless specified

otherwise refers to v1.0 of the developed software.

145

4.2 Previous attempts at text mining chemical reactions

4.2.1 Chemical Abstracts Service

Blower et al.164–167 from the Chemical Abstracts Service published a series of papers spanning

the period 1983-1990 in which they discuss automated methods for extracting reactions from the

American Chemical Society’s Journal of Organic Chemistry. Their system modelled experimental

sections as being formed of a heading, a synthesis, a workup and a characterisation section with only

one resultant product. This model was found to describe over half the experimental sections they

encountered.

The original system165,166 worked by tokenising on common delimiters with appropriate rules

to differentiate between hyphens within chemical names and within other words. Words were

assigned part of speech tags or as chemical words by a mixture of dictionary lookup and looking at

the stem and suffix of words. A rule based system was used to disambiguate in cases where context

is necessary to accurately determine the part of speech. Assigning roles to reagents was partially

achieved using a “word expert” system that would be able to use surrounding words e.g. ‘in’ or

‘under’ to assign a likely role to each reagent. The words preceding and following each reagent were

then scanned for quantities which were associated with the appropriate reagent.

The discourse (heading/synthesis/workup/characterisation) was determined by a set of

criteria. The heading was determined by the absence of a verb in the words that made it up. The

synthesis section was not identified directly but instead assumed to be the content between the

heading and workup section. The workup section was identified by the presence of words from a list

a list of common operations performed at this stage e.g. crystallise, wash etc. The characterisation

section was identified by the presence of acronyms commonly associated with characterisation e.g.

mp, m/e etc.

The 1990 paper167 described a more refined approach taking inspiration from the previously

described system. Partial parsing of sentences is achieved using Augmented Transition Network

parsing; a parsing method based on the use of a finite state automaton that can accept words as

transitions and that allows nondeterministic transitions hence allowing recognition of content-free

languages. The parsing attempts to identify substance information, references to procedures,

time/temperature data, verb phrase and characterisation data. The system included some support

for general procedures (where a template for a reaction is given, optionally followed by specific

instances of the reaction in which not all reagents are specified), analogous syntheses (where a

146

compound is obtained in the same way as a previously described procedure) and parallel synthesis

(where the synthesis of several analogous compounds is given at once). The program was originally

intended to assist in abstracting for CASREACT. However, it was not deemed sufficiently accurate,

being able to produce “usable” results from 80-90% of simple synthesis paragraphs and only 60-70%

of the more complex cases.

While the reaction extraction system developed as part of this project is more sophisticated in

terms of chemical entity recognition and chemical entity resolution (something not even attempted

by the program) the range of experimental paragraph types supported still go beyond the scope of

what has been developed for this project.

4.2.2 University of Cambridge

Jessop et al168 developed a system, coined PatentEye, which was employed to extract

reactions from EPO patents. Verification of the structures of reaction products was attempted

through comparison of the result from a chemical name to structure algorithm (OPSIN), with those

obtained from an image to structure algorithm (OSRA). The structure could also be checked for

consistency with extracted NMR and mass spectra. With the version of OSRA utilised, the results

from image to structure conversion were insufficiently precise to allow verification of the products

with only 34% of a set of 200 images being converted exactly to the human reproduced structures.

Although the majority of NMR spectra could be successfully extracted, exactly predicting the peaks

in an NMR spectrum is a complicated process. This made it difficult to be sure that a spectrum was

or wasn’t consistent with a given product structure. While a case was firmly made for the utility of

capturing spectral information the case for using this information or image to structure results to

verify product information was less clear considering the relatively high accuracy of chemical name

to structure software, hence this was not pursued in the current work.

The workflow: sectioning of a document into experimental section, derivation of chemical

structures using OPSIN/OSCAR/OSRA and application of ChemicalTagger to identify reagents and

assign them roles and quantities, is broadly similar to the work described in this chapter. While with

the exception of the paragraph classifier (Section 4.4.4) there is no code in common between the

projects this project can be considered a spiritual successor. The most significant difference between

these projects is that the current work puts a far greater emphasis on the extracted structures. The

structures are used to assist in role assignment and facilitate the atom-mapping step that checks

that a reaction is feasible.

147

4.2.3 University of Toronto

Since 2001, ChemDraw binary CDX files and MDL Molfiles are available with USPTO patents

The CDX files are submitted by the patent applicant and hence offer another source of information

from which reactions may be extracted. Work at the University of Toronto has culminated in the

production of the SCRIPDB database of structures derived from these CDX files169. As of the end of

2010, SCRIPDB contained 10,840,646 molecule instances (molecules were de-duplicated on a per

patent basis). CDX files may also contain indication that compounds are involved in a reaction step

and the relationship between the reactions steps. 341,764 reaction steps were identified up till the

end of 2010. Correspondence with the author indicated that the number of reactions present in the

CDX files may be potentially up to double these values due to the CDX file in many cases having the

appropriate graphical elements (e.g. reaction arrow) but lacking the semantic indication that a

reaction is described.

4.3 Corpus choice

USPTO patents were chosen for this task due to the ease of acquiring large numbers of them

through Google Patents131 and due to the absence of optical character recognition induced noise in

post 1976 patents. Whilst USPTO patent applications are used throughout this chapter, the

described system would be equally applicable to patent grant text and is also known to work with

recent EPO patents due to the same XML tags being employed to designate headings and

paragraphs. For evaluating the effect of changes and identifying areas of weakness in the reaction

extraction system, a set of 106 patents that had been manually ascertained to contain reactions was

formed from the USPTO patent applications for the first week of 2008. Patents from that week were

not used when testing the final system.

4.4 Sectioning the relevant text within a patent

4.4.1 Archetypal experimental chemistry section

Experimental chemistry sections whilst still being free text are usually arranged in a

predictable manner. Typically, they start with a heading indicating the compound to be synthesised,

followed by a description of the synthesis, the workup steps undertaken and finally the

characterisation of the compound. Where the synthesis of a compound necessitates the synthesis of

intermediate compounds, typically each step of the synthesis is described separately with the final

step giving the overall target compound. An example of the first step of an experimental section is

148

shown in Figure 4-1, with its comprising sections annotated. A paragraph number is associated with

each paragraph in USPTO and EPO patents and may be used to uniquely identify a paragraph within

a given patent.

Figure 4-1 The start of a typical experimental section from a patent. The key features are annotated.

4.4.2 Sectioning workflow

Once a patent has been read in, the first challenge is to identify the experimental sections,

which entails discriminating experimental chemistry text from non-experimental chemistry text. If a

section is formed of multiple steps these must be associated with their parent section for the

purpose of later allowing anaphora that reference particular sections/steps to be resolved. This

process is shown schematically in Figure 4-2 .

Paragraph
number

Section heading

Section target
compound

Step target
compound

Synthesis

Characterisation

Workup

Step identifier

149

Figure 4-2 Schematic of processes employed in the segmentation of a document in steps, step headings

and section headings

150

4.4.3 Identifying paragraphs and headings

The majority of headings and paragraphs are identifiable in the XML provided by the USPTO

and EPO patent offices by the use of the element names heading and p. Headings that are present

at the start of paragraphs are only detected after chemical tagging (cf. Section 4.4.6). Empirically it

was found that paragraphs with ids starting with ‘h-’ followed by a number were often subheadings.

Paragraphs matching this criterion were considered as sub-headings rather than as paragraphs when

both a new line character was absent and ChemicalTagger found them to contain either a procedure

name or a chemical name.

4.4.4 Paragraph classification

When a paragraph is encountered, determination of whether or not it is an experimental

chemistry paragraph is made using a Naïve-Bayes classifier. This classifier is that previously described

by Jessop et al.168. The classifier was trained by splitting a manually classified corpus of paragraphs

evenly between training and testing. Once trained in this way, the classifier correctly identified

96.6% of experimental paragraphs as experimental and 89.9% of non-experimental as non-

experimental in the test set.

For this work, the entire corpus of paragraphs was used to train the Bayesian classifier. Leave

one out cross-validation gave results of 96.6% for identifying experimental and 90.7% for non-

experiment paragraphs, indicating that the performance of this classifier is likely to be negligibly

better than the one employed by Jessop.

4.4.5 Chemical tagging

The text of both headings and paragraphs are presented to ChemicalTagger to be marked up.

The general operation of ChemicalTagger is described in Section 2.9. The output from

ChemicalTagger is the primary input to the reaction extraction workflow and hence much effort has

been made as part of this project to improve the output of ChemicalTagger. By improving

ChemicalTagger it is also hoped that any other applications that rely on ChemicalTagger may benefit

from the improvements that have been implemented.

4.4.5.1 Improved tokenisation

ChemicalTagger has a tokeniser interface which for experimental chemistry text is most well

served by an implementation based on OSCAR4’s tokeniser. Improvements were made to OSCAR4’s

151

tokeniser including the additions of more common abbreviations and correcting cases of chemical

entities being erroneously split on hyphens and colons (Table 4-1).

Input OSCAR 4.0.2 OSCAR 4.1

conc. [conc][.] [conc.]

2,2':6',2''-terpyridine [2,2]['][:][6',2''-terpyridine] [2,2':6',2''-terpyridine]

NH4OH(aq) [NH4OH(aq)] [NH4OH][(][aq][)]

D-glycero-D-manno-heptose [D-glycero-D-manno][-][heptose] [D-glycero-D-manno-heptose]
Table 4-1 Examples of improvements made to OSCAR’s tokenisation

4.4.5.2 Improved robustness of sentence parser

When the ANTLR3 generated parser encounters input that is unacceptable to the grammar,

whether due to being unlexable or not conformant to the grammar, input is skipped until an

acceptable token may be consumed. The unrecognised input in such scenarios is, depending on the

version of ChemicalTagger, either ignored completely or captured in an UnmatchedPhrase. The

value of this element is the interleaved concatenation of the tokens and their tag values i.e. adjacent

tokens may have been merged and the relationship between tags and tokens has been lost for the

effected tokens. This undesirable behaviour can also lead to unexpected element content, if whilst in

a rule no suitable input can be found e.g. a MOLECULE element without any elements

corresponding to a chemical name.

To address this problem, the lexer was simplified to a whitespace tokeniser and the

Unmatched alternative was expanded to cover all tags present in the grammar. The grammar is

ordered such that this alternative is only tried, once all other rules for what a Sentence may

contain have failed (Figure 4-3).

152

<Document>

 <Sentence>

 <Unmatched>

 <CC>but</CC>

 </Unmatched>

 <Unmatched>

 <NEG>not</NEG>

 </Unmatched>

 <NounPhrase>

 <MOLECULE>

 <OSCARCM>

 <OSCAR-CM>benzene</OSCAR-CM>

 </OSCARCM>

 </MOLECULE>

 </NounPhrase>

 </Sentence>

</Document>

Figure 4-3 Example of output from a phrase with tokens that may only be recognised by falling back to

the Unmatched rule. The unexpected tokens are present in the output and remain associated with their tags.

4.4.5.3 Recognition of new concepts

Additions to ChemicalTagger’s regex tagger and chemical sentence parser facilitated the

recognition of yields, experimental procedures, chemical compound anaphora, pH conditions, the

number of equivalents of a compound used and the physical state of a compound. To allow the

detection of procedure/step names at the start of a paragraph that can be assumed to have that

purpose only from context e.g. ‘1)’, the grammar contains rules for detecting such cases that are

applied specifically to the first phrase of input.

4.4.5.4 Improved recognition of existing concepts

Significantly more variants of units used to define quantities associated with reagents are now

recognised. For example, improved tokenisation and recognition of the non-standard spelling ‘mole’

has corrected the exemplar issues given by Jessop170. The vocabulary for other terms recognised by

ChemicalTagger e.g. yield verbs, has also been improved.

The recall and precision of reagents/products is affected most by the MOLECULE and

UNNAMEDMOLECULE grammar rules. The former detects chemical entities with an associated name

whilst the latter detects chemical entities that are defined purely by an anaphora. In both cases data,

especially quantities such as amounts, volumes etc. must be contained within the rule so that the

grammar will place them as children of the MOLECULE/UNNAMEDMOLECULE hence showing the

association. Significant effort has been put into improving the coverage of these rules to attempt to

153

mitigate problems with entities either not being recognised or not being associated with quantities

that refer to them cf. Table 4-2.

Input ChemicalTagger rev 166 (14/1/2011) ChemicalTagger 1.3

sodium
hydroxide
solution
(50ml)

<NounPhrase>

 <MOLECULE>

 <OSCARCM>

 <OSCAR-CM>sodium</OSCAR-CM>

 <OSCAR-CM>hydroxide</OSCAR-CM>

 </OSCARCM>

 </MOLECULE>

 <NN-CHEMENTITY>solution</NN-

CHEMENTITY>

 <QUANTITY>

 <_-LRB->(</_-LRB->

 <VOLUME>

 <CD>50</CD>

 <NN-VOL>ml</NN-VOL>

 </VOLUME>

 <_-RRB->)</_-RRB->

 </QUANTITY>

</NounPhrase>

<NounPhrase>

 <MOLECULE>

 <OSCARCM>

 <OSCAR-CM>sodium</OSCAR-CM>

 <OSCAR-CM>hydroxide</OSCAR-CM>

 </OSCARCM>

 <NN-CHEMENTITY>solution</NN-

CHEMENTITY>

 <QUANTITY>

 <_-LRB->(</_-LRB->

 <VOLUME>

 <CD>50</CD>

 <NN-VOL>ml</NN-VOL>

 </VOLUME>

 <_-RRB->)</_-RRB->

 </QUANTITY>

 </MOLECULE>

</NounPhrase>

title
compound
as a
colourless
solid (52
mg, 23%
yield)

<NounPhrase>

 <NN>title</NN>

 <NN-CHEMENTITY>compound</NN-

CHEMENTITY>

</NounPhrase>

<PrepPhrase>

 <IN-AS>as</IN-AS>

 <NounPhrase>

 <DT>a</DT>

 <JJ>colourless</JJ>

 <NN-STATE>solid</NN-STATE>

 <MIXTURE>

 <_-LRB->(</_-LRB->

 <MASS>

 <CD>52</CD>

 <NN-MASS>mg</NN-MASS>

 </MASS>

 <COMMA>,</COMMA>

 <PERCENT>

 <CD>23</CD>

 <NN-PERCENT>%</NN-PERCENT>

 </PERCENT>

 <NN-YIELD>yield</NN-YIELD>

 <_-RRB->)</_-RRB->

 </MIXTURE>

 </NounPhrase>

</PrepPhrase>

<UNNAMEDMOLECULE>

 <JJ-COMPOUND>title</JJ-COMPOUND>

 <NN-CHEMENTITY>compound</NN-

CHEMENTITY>

 <IN-AS>as</IN-AS>

 <DT>a</DT>

 <JJ>colourless</JJ>

 <NN-STATE>solid</NN-STATE>

 <QUANTITY>

 <_-LRB->(</_-LRB->

 <MASS>

 <CD>52</CD>

 <NN-MASS>mg</NN-MASS>

 </MASS>

 <COMMA>,</COMMA>

 <YIELD>

 <PERCENT>

 <CD>23</CD>

 <NN-PERCENT>%</NN-PERCENT>

 </PERCENT>

 <NN-YIELD>yield</NN-YIELD>

 </YIELD>

 <_-RRB->)</_-RRB->

 </QUANTITY>

</UNNAMEDMOLECULE>

Table 4-2 Comparison of output from an older version of ChemicalTagger and the improved version

4.4.5.5 Improved action phrase assignment

The noun forms of certain verbs may in some cases be used to indicate an action e.g.

‘purification by gas chromatography’. Such phrases are now annotated with the action the noun

confers; in this case the phrase is a “Purify” phrase.

154

4.4.5.6 Improved extensibility

In collaboration with the primary author of ChemicalTagger, Dr. Hawizy, changes were made

to allow the program to accept an arbitrary number of taggers rather than having a hard coded

expectation of an OSCAR4 tagger, regex tagger and a POS tagger. This is achieved by passing a list of

taggers to ChemicalTagger, in which the position of the tagger in the list determines its priority.

For this work, the default regex tagger and POS tagger were used in conjunction with an

OSCAR4 tagger customised with a small stop word list, an OPSIN tagger and a trivial chemical name

tagger. The stop word list consisted of a small set of common mistakes that OSCAR4 was found to

make on the evaluation set of patents.

The OPSIN tagger is an implementation of the OPSIN Document Extractor and is included

primarily to identify cases where OSCAR4 might otherwise identify two entities within a single

chemical name. A common cause of such problems is the presence of erroneous whitespace causing

an apparently unmatched bracket to be tokenised separately from the rest of a chemical name. The

OPSIN Document Extractor is presented with the untokenised input string and can often recognise

chemical names containing erroneous whitespace as well as some complex chemical names

incorrectly recognised by OSCAR4.

The trivial chemical name tagger is designed to recognise chemical names that OSCAR doesn’t

currently recognise and those for which the regex tagger produces competing tags e.g. ‘Lawesson's

reagent’ in which reagent would be tagged as an NN-CHEMENTITY.

The prioritisation of the taggers is summarised in Table 4-3.

Priority Tagger Description

Highest Trivial Chemical Finds chemicals that neither OPSIN or OSCAR4 recognise

 OPSIN Finds chemicals that are parsable by OPSIN

 Regex Tags keywords e.g. yield words

 OSCAR4 Finds chemicals using a machine-learning approach

Lowest OpenNLP Tags part of speech
Table 4-3 Taggers employed and their priority

4.4.6 Identification of inline headings

Headings present at the start of paragraphs (Figure 4-4) must be detected and handled

separately from the rest of the paragraph. This is achieved by examination of ChemicalTagger’s

output for the start of the paragraph. Constructs such as a procedure identifier followed by a

155

suitable delimiter and phrases following patterns like “Synthesis of xxx” are identified as headings

and removed from the paragraph. All patterns operate on ChemicalTagger’s tags to allow more

lexical variations to be accepted. For example the “Synthesis of xxx” pattern would be implemented

as an examination of an initial NounPhrase for an NN-SYNTHESIZE tag followed by a

PrepPhrase element containing an IN-OF tag and a NounPhrase element. Identified inline

headings are then treated analogously to other headings.

4-Fluoro-2-methylbenzonitrile (31). A mixture of 2-bromo-5fluorotoluene (3.5 g, 18.5 mmol) and…
Figure 4-4 Example of a paragraph containing an inline heading (bold text)

4.4.7 Processing of headings

After a heading has been run through ChemicalTagger it is examined for molecule entities and

procedure names. Entities known to present as false positives in OSCAR4’s output are filtered out

using the regexes used for identifying molecules as being of type “false positive” (cf. Section 4.5.1.4).

Additionally, as OSCAR4 is known to classify strings of capital letters as chemicals, if the entirety of

the heading is formed of capital letters e.g. ‘ABSTRACT’, no molecule entities are recognised. If the

heading has a molecule entity and/or a procedure name the heading is assumed to be part of an

experimental section; otherwise the heading serves as a delimiter between experimental sections.

A procedure name is either associated with an experimental section or a reaction step

dependent on whether it is believed to be a sub-heading. A procedure name is determined to be a

sub-heading if it contains neither an NN_METHOD nor NN_EXAMPLE word or the procedure’s

NN_METHOD word is ‘stage’ or ‘step’ (Table 4-4). As previously mentioned, paragraphs with ids

starting with ‘h-’ are treated as sub-headings.

Example of heading procedure names Examples of sub-heading procedure names

Example 5 Step b

General procedure 3 1)

Method 2a 2.
Table 4-4 Examples of headings and subheadings

If a molecule entity is detected in a heading an attempt is made to identify a string within the

heading that appears to be an alias for the compound so that subsequent use of the alias may

resolve to that compound. A heading molecule is associated with a reaction step or an experimental

section dependent on whether or not an appropriate procedure name had been found indicating the

start of a reaction step.

156

4.4.8 Processing of paragraphs

Paragraphs, which were classified as experimental, are associated with the current reaction

step, when the current step or current experimental section, is associated with either a molecule

entity or a procedure name. The requirement of an appropriate preceding heading allows further

non-experimental paragraphs that passed though the paragraph classifier to be ignored. As a special

case, paragraphs containing a yield phrase within which resides a molecule entity are always added

to the current reaction step to allow for the case where the paragraph fully describes a reaction

whilst not being preceded by a heading.

4.5 Section Parsing

The identified sections are processed sequentially in the order that they were defined in the

patent using the scheme in Figure 4-5.

157

Figure 4-5 Schematic of processes employed to extract from reactions from an experimental chemistry

section.

158

4.5.1 Processing of chemical entities

4.5.1.1 Name to structure

The workflow relies on OSCAR4.1 for the resolution of chemical names, which in turn relies on

OPSIN 1.2.0, the chemical names present in the ChEBI database as of December 2011 and a

manually created dictionary of chemical formulae and common chemical abbreviations. This latter

dictionary was increased from 81 entries to 260 entries to afford better coverage of the

abbreviations used for common reagents in organic chemistry.

To allow better support for the combination of a systematic name with an adjacent

abbreviated name, where such cases are identified by the presence of a non-chemical hyphen, the

different parts of the name are handled separately and the SMILES and InChI then constructed by

merging the output for the two names. Merging of InChIs is achieved using the InChI library by

constructing an input containing all the structures. In the case where a name is uninterpretable and

has no delimiters identified by ChemicalTagger, if the name is found to contain exactly one slash or

dot or space, parsing of the substrings either side of the delimiter is attempted.

4.5.1.2 Anaphora identification and resolution

Chemical entities may be referred to by anaphora; that is terms that reference a previous

entity. Four types of anaphora are recognised: references to compound identifiers, references to

procedures, textual aliases and textual references to heading compounds.

A reference to a compound identifier is identified in ChemicalTagger’s output by the

encapsulating REFERENCETOCOMPOUND element (Figure 4-6).

<UNNAMEDMOLECULE>

 <NN-CHEMENTITY>compound</NN-CHEMENTITY>

 <REFERENCETOCOMPOUND>

 <CD>92</CD>

 </REFERENCETOCOMPOUND>

 <QUANTITY>

 <_-LRB->(</_-LRB->

 <MASS>

 <CD>107</CD>

 <NN-MASS>mg</NN-MASS>

 </MASS>

 <COMMA>,</COMMA>

 <AMOUNT>

 <CD>0.24</CD>

 <NN-AMOUNT>mmol</NN-AMOUNT>

 </AMOUNT>

 <_-RRB->)</_-RRB->

 </QUANTITY>

</UNNAMEDMOLECULE>

Figure 4-6 Compound 92 in this example is a reference to a previously defined chemical entity

159

A reference to a procedure is identified by the encapsulating PROCEDURE element (Figure

4-7). Only procedures mentioned within a molecule are assumed to be the source of the chemical

entity.

<MOLECULE>

 <OSCARCM>

 <OSCAR-CM>Chloropyrimidine</OSCAR-CM>

 </OSCARCM>

 <QUANTITY>

 <_-LRB->(</_-LRB->

 <MASS>

 <CD>0.5</CD>

 <NN-MASS>g</NN-MASS>

 </MASS>

 <COMMA>,</COMMA>

 <AMOUNT>

 <CD>1.75</CD>

 <NN-AMOUNT>mmol</NN-AMOUNT>

 </AMOUNT>

 <_-RRB->)</_-RRB->

 </QUANTITY>

 <IN-FROM>from</IN-FROM>

 <PROCEDURE>

 <NN-METHOD>step</NN-METHOD>

 <_-LRB->(</_-LRB->

 <NN-IDENTIFIER>c</NN-IDENTIFIER>

 <_-RRB->)</_-RRB->

 </PROCEDURE>

</MOLECULE>

Figure 4-7 Chloropyrimidine in this example is an anaphora for a particular chloropyrimidine from a

previous step.

If a chemical entity is associated with a bracketed chemical entity the two are assumed to be

synonyms (Figure 4-8). As the purpose of this is to improve recall if the synonym is subsequently

used, only cases in which one chemical entity is resolvable to a structure but the other is not are

considered. Subsequent mentions of the unresolvable name will yield the same structure as the

resolvable name.

<MOLECULE>

 <OSCARCM>

 <OSCAR-CM>N-Ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline</OSCAR-CM>

 </OSCARCM>

 <OSCARCM>

 <_-LRB->(</_-LRB->

 <OSCAR-CM>EEDQ</OSCAR-CM>

 <_-RRB->)</_-RRB->

 </OSCARCM>

</MOLECULE>

Figure 4-8 Example of a systematic chemical name and its abbreviation

Entities with a name matching the case insensitive regex:

(crude|desired|title[d]?|final|aimed|expected|anticipated) (compound|product)

160

are assumed to refer to heading compounds. Typically, this is the compound associated with the

heading of the current step. However, if this is the final step, or the step is not associated with a

compound, then the current section heading compound is assumed.

4.5.1.3 Property Extraction

Where present volumes, amount (i.e. number of mols), mass, molarity (i.e. concentration),

number of equivalents, pH, percent yield and the physical state of a compound may be extracted

from ChemicalTagger’s output. Association of these properties with a chemical entity is achieved by

the relevant elements being nested within the chemical entity in the ChemicalTagger output.

4.5.1.4 Chemical type assignment

Every chemical entity is assigned a type (Table 4-5).

Chemical Entity Type Description Examples

exact Describes a specific compound 2-chloroethanol, pyridine

definite reference Describes a specific compound but
relies on information described

elsewhere in the document

Compound 5, the pyridine
from example 2

chemical class Describes a series of compounds ether, pyridines

fragment Describes a radical or substructure
of a compound

ethyl, pyridine ring

false positive Not a chemical entity or one that
would not be expected to be part of

a chemical reaction (e.g. an NMR
solvent)

CDCl3, TLC

Table 4-5 Description of chemical entity types assigned by the system

False positives are recognised by the entities presence within an APPARATUS or

AtmospherePhrase phrase (as identified by chemical tagging) or being followed by a word

indicating the chemical entity is a surface e.g. ‘silica surface’. Additionally a series of regular

expressions are used to match NMR solvents as well as characterisation terms known to be

misidentified by OSCAR4 as chemicals.

Entities are recognised as being of type “chemical class” by being prefixed by the determiners

‘a’ or ‘an’, by being followed by the word ‘compound’ or ‘derivative’, by being a known function

class e.g. ‘aldehyde’, by being assigned as such by the OPSIN Document Extractor or by ending in a

plural ending.

161

 Entities are recognised as type “fragment” if they are followed by words like ‘group’ or ‘ring’

or are assigned as such by the OPSIN Document Extractor e.g. ‘ethyl’.

Any entity not explicitly assigned a type is assumed to be of type “exact”.

4.5.2 Identification of discourse type

Paragraphs are broken down into phrases by the top level phrase elements into which

ChemicalTagger has grouped the input. Each phrase is then classified as either synthesis or workup.

Phrases that form the characterisation section are not explicitly identified as the boundary between

workup and characterisation may occur within a phrase complicating exact identification of the

boundary. As it is practical to filter out the vast majority of chemical entities that are associated with

characterisation, characterisation sections are indirectly ignored by virtue of contributing no allowed

chemical entities.

The approach used to identify the discourse type assumes that all text up to the start of the

workup section relates to synthesis and hence discourse analysis concentrates on the identification

of phrases that relate to workup. It was found that phrases of types "Concentrate", "Degass",

"Dry", "Extract", "Filter", "Partition", "Precipitate", "Purify", "Recover",

"Remove", "Wash", "Quench" were associated with workup. Where a phrase does not fit into one

of these roles, the assumption is made that the phrase is of the same type (synthesis/workup) as the

preceding phrase.

In contrast to the literature solutions, the presence of a molecule possessing an associated

amount, yield or number of equivalents is used to indicate the return to a synthesis section. This

heuristic arises from the observation that the amounts of workup reagents are rarely precisely

specified and allows the support for multi-step reactions within the same paragraph. Additionally

the presence of a "Synthesize" or "Yield" phrase is assumed to indicate the end of a workup

section.

Figure 4-9 Typical experimental chemistry paragraph showing the different phrase types identified by

ChemicalTagger. In this case the dry phrase is used to indicate the start of the workup section.

Phrase types:

Synthesis

Workup

162

4.5.3 Chemical role assignment

A putative role in the reaction is assigned for each chemical entity that has not been excluded

due to being in a workup section or being of type “false positive” (Table 4-6).

Chemical role Description

product This is a compound produced as a result of a reaction

reactant A substance that undergoes a chemical change in a reaction

solvent A compound in which reactants are dissolved

catalyst A compound which is not consumed by a reaction and
accelerates a reaction

Table 4-6 Roles considered for chemical entities in a reaction

Role assignment is achieved through a mixture of the output of ChemicalTagger, analysis of

the local textual environment and lists of known solvents/catalysts.

4.5.3.1 Product Role

A chemical entity is assigned as being a product in these situations:

 It is associated with a percentage yield

 It is part of a noun phrase followed by ‘is synthesised’ (or a similar phrase)

 It is part of a yield phrase

 It is identified as being an anaphora to the current heading compound e.g. ‘title

compound’

4.5.3.2 Reactant Role

This is the default role assigned if no clear indication of an alternate role can be determined

from the text or textual environment.

4.5.3.3 Solvent Role

A chemical entity is assigned as being a solvent in these situations:

 ChemicalTagger assigns it as a solvent

 It corresponds to an InChI-less solvent e.g. brine

 It is proceeded by the words ‘in’, ‘in a mixture of’ or either of these followed by a

chemical entity and the word ‘and’

163

Once a reaction has been constructed, sensibility checks also ensure that if a reagent is listed

as both a solvent and reactant that all instances are reclassified as a solvent. Additionally if a

reaction does not have a solvent, a reagent without a specified amount may be assigned as a solvent

if its InChI matches that of a known solvent or its volume is imprecisely defined.

4.5.3.4 Catalyst Role

A chemical entity is assigned as a catalyst in these situations:

 ChemicalTagger assigns it as a catalyst

 Its name corresponds to a known catalyst

 Its InChI corresponds to a known catalyst

A chemical entity that is found to contain a transition metal atom which is absent from the

product molecule/s is considered to be a catalyst with a few exceptions for where a transition metal

is part of an oxidising agent and organocopper/zinc/mercury chemistry. These two exceptions are

enforced by identifying particular transition metals in high oxidation states and the presence of

carbon-metal bonds respectively.

164

4.6 Reaction mapping

Figure 4-10 Schematic of processes employed in converting putative reactions to atom-mapped

reactions

4.6.1 Indigo reaction creation

The extracted reactions are loaded into the Indigo toolkit (version 1.1-beta9) to provide atom-

mapping and depiction. This is accomplished using SMILES as the input format. To allow more

165

efficient atom-mapping and more aesthetic depictions, for each role, chemical entities that share

the same InChI are considered to be the same compound and hence are only added once to the

Indigo reaction.

Upon creation of the Indigo reaction, a check is done to ensure that the reaction has a

product, a total of at least two reactants/solvents/catalysts, and that none of the reactants have the

same structure as the product. It should be noted that these conditions may fail for correctly

identified reactions if SMILES could not be obtained for reactants and/or product.

4.6.2 Atom-atom mapping

In a well formed chemical reaction all atoms in the product/s must have come from the

reactants and hence any “reactions” for which this is not true should be rejected. One way of

achieving this is by performing atom-atom mapping (AAM). This is a technique for relating the atoms

of the reactants to those of the product. This is typically implemented using a maximum common

subgraph algorithm to find the maximum number of atoms in the product that may be accounted for

by a given reactant. The resultant mapping is not necessarily unique in terms of the atoms picked

within a reactant or even in terms of which reactants are used to provide atoms.

By default, Indigo attempts to match atoms with identical charge and valency in the reactant

and products and similarly attempts to match bonds with the same bond order. Hence for greater

leniency and to reflect some of the operations that may occur in real chemical reactions these

conditions are relaxed to allow changes in charge, valency and bond order.

In some reactions it was found that the solvent was also a reactant. To prevent such cases

resulting in incomplete atom mapping when atom mapping fails, an attempt is made to reclassify a

solvent as a reactant and AAM is repeated. Currently there is no method for reporting this dual role

and instead the solvent will be reported as a reactant.

4.6.3 Stoichiometry calculation

Where AAM was successful it may be used to calculate the stoichiometry of the reaction. The

stoichiometry of each reactant is assumed to be equal to the greatest number of times a particular

atom from the reactant appears in the product. This approach has several limitations; namely, that a

reactant will not be considered to contribute to the reaction if it either only contributes non-heavy

atoms or only contributes to an unstated side product and that the atom mappings may be wrong,

especially when the system has identified too many reactants.

166

4.6.4 Output

The list of all reactions and a list of mappable reactions are retrievable after a patent has been

processed. These reactions may be serialised to a graphical depiction (Figure 4-11) and CML (Figure

4-12). For mappable reactions, the graphical depiction will contain the results of the AAM.

Figure 4-11 Graphical depiction of an extracted reaction. The numbers indicate the mapping between

atoms in the reactants and products. The solvent is present above the arrow.

167

<?xml version="1.0" encoding="UTF-8"?>

<reaction xmlns="http://www.xml-cml.org/schema" xmlns:cmlDict="http://www.xml-

cml.org/dictionary/cml/" xmlns:nameDict="http://www.xml-cml.org/dictionary/cml/name/"

xmlns:unit="http://www.xml-cml.org/unit/" xmlns:cml="http://www.xml-cml.org/schema"

xmlns:dl="http://bitbucket.org/dan2097">

 <dl:reactionSmiles>[CH2:1]([n:3]1[cH:7][c:6](-

[c:8]2[cH:13][cH:12][n:11][c:10]3[nH:14][cH:15][cH:16][c:9]23)[c:5](-

[c:17]2[cH:23][cH:22][c:20]([NH2:21])[cH:19][cH:18]2)[n:4]1)[CH3:2].[O:24]=[C:25]=[N:26][c:27]

1[cH:32][cH:31][cH:30][cH:29][cH:28]1>c1cc[n]cc1>[CH2:1]([n:3]1[cH:7][c:6](-

[c:8]2[cH:13][cH:12][n:11][c:10]3[nH:14][cH:15][cH:16][c:9]23)[c:5](-

[c:17]2[cH:23][cH:22][c:20]([NH:21][C:25]([NH:26][c:27]3[cH:32][cH:31][cH:30][cH:29][cH:28]3)=

[O:24])[cH:19][cH:18]2)[n:4]1)[CH3:2]</dl:reactionSmiles>

 <productList>

 <product role="product">

 <molecule id="m0">

 <name dictRef="nameDict:unknown">title product</name>

 </molecule>

 <amount units="unit:percent yield">50.0</amount>

 <identifier dictRef="cml:smiles"

value="C(C)N1N=C(C(=C1)C1=C2C(=NC=C1)NC=C2)C2=CC=C(C=C2)NC(=O)NC2=CC=CC=C2"/>

 <identifier dictRef="cml:inchi" value="InChI=1/C25H22N6O/c1-2-31-16-22(20-12-14-26-24-

21(20)13-15-27-24)23(30-31)17-8-10-19(11-9-17)29-25(32)28-18-6-4-3-5-7-18/h3-

16H,2H2,1H3,(H,26,27)(H2,28,29,32)"/>

 <dl:entityType>definiteReference</dl:entityType>

 <dl:state>powder</dl:state>

 </product>

 </productList>

 <reactantList>

 <reactant role="reactant" count="1">

 <molecule id="m1">

 <name dictRef="nameDict:unknown">4-[1-ethyl-4-(1H-pyrrolo[2,3-b]pyridin-4-yl)-1H-

pyrazol-3-yl]aniline</name>

 </molecule>

 <amount units="unit:mmol">2.2</amount>

 <identifier dictRef="cml:smiles"

value="C(C)N1N=C(C(=C1)C1=C2C(=NC=C1)NC=C2)C2=CC=C(N)C=C2"/>

 <identifier dictRef="cml:inchi" value="InChI=1/C18H17N5/c1-2-23-11-16(14-7-9-20-18-

15(14)8-10-21-18)17(22-23)12-3-5-13(19)6-4-12/h3-11H,2,19H2,1H3,(H,20,21)"/>

 <dl:entityType>exact</dl:entityType>

 </reactant>

 <reactant role="reactant" count="1">

 <molecule id="m2">

 <name dictRef="nameDict:unknown">phenyl isocyanate</name>

 </molecule>

 <amount units="unit:mmol">2.4</amount>

 <identifier dictRef="cml:smiles" value="O=C=Nc1ccccc1"/>

 <identifier dictRef="cml:inchi" value="InChI=1/C7H5NO/c9-6-8-7-4-2-1-3-5-7/h1-5H"/>

 <dl:entityType>exact</dl:entityType>

 </reactant>

 </reactantList>

 <spectatorList>

 <spectator role="solvent">

 <molecule id="m3">

 <name dictRef="nameDict:unknown">pyridine</name>

 </molecule>

 <amount units="unit:mL">4</amount>

 <identifier dictRef="cml:smiles" value="c1ccncc1"/>

 <identifier dictRef="cml:inchi" value="InChI=1/C5H5N/c1-2-4-6-5-3-1/h1-5H"/>

 <dl:entityType>exact</dl:entityType>

 </spectator>

 </spectatorList>

</reaction>

Figure 4-12 CML output for the extracted reaction depicted in Figure 4-11

The CML output includes all the information extracted for a given reaction. For each chemical

entity this includes a role, an entity type (cf. Section 4.5.1.4), and where possible a chemical

structure (as SMILES and InChI), quantities e.g. volumes, amounts, weights etc. and the physical

state. If available the yield of the product is also recorded. Where AAM was successful the atom-

168

mapped reaction is included as reaction SMILES and the stoichiometry of the reactants are captured

by the count attribute with reactants that contribute no atoms to the products lacking a count

attribute.

4.7 Evaluation

4.7.1 Methodology

USPTO patent applications for the period of 2008 through to the end of 2011 were

downloaded from Google Patents131. The XML representation of the patents was inspected to

determine the IPC (International Patent Classification) codes associated with each patents. Only

patents containing the IPC code ‘C07’ were selected for processing. The ‘C’ refers to section C which

describes chemistry and metallurgy whilst the ‘07’ refers to sub category of organic chemistry. A

patent is associated with one or more IPC codes. Additionally patents from the first week of 2008

were not used as these were used to identify limitations in older versions of the reaction extraction

system.

This yielded a set of 65,034 patents on which the reaction extraction system was ran. For each

patent the reactions were serialised to depictions and CML with segregation of the output based on

whether or not AAM was successful. The file names of the serialised reactions include the paragraph

from which the reactions were extracted.

Whilst a successful atom mapping is a good indicator that a found reaction really is a reaction

other aspects of the output can be used to filter out dubious reactions hence additional criteria were

applied to produce a smaller but higher quality set of reactions. These were:

 Reactions containing any products that could not be resolved to structures were

excluded. This helps with some cases where the product is not resolved to a structure

but instead the counter ion from a salt is resolved. Cases where a product is described

in such a way that ChemicalTagger associates both a MOLECULE and an

UNNAMEDMOLECULE with different parts of the product’s description may be

unnecessarily excluded by this criterion.

 Reactions containing any entities of types: fragment or chemical class, were excluded

in order to exclude generic rather than specific reactions.

A sample of 100 randomly selected reactions was selected from this set to evaluate the quality

of the extracted reactions. For each selected reaction, chemical entities were manually identified

169

and associated with a role. If this role was not that the entity was a workup/characterisation reagent

then the entity type and quantities, that the reaction extraction system attempts to find, were also

manually identified.

The correctness of name to structure conversion was not evaluated as it is likely to be more

accurate than manual conversion by the average chemist. Cases where the reaction extraction

system missed reagents that were only implicitly described, for example, in a reaction being

performed analogously to a previous reaction, were not penalised as analogous reactions are

outside of the scope of the system as implemented.

4.7.2 Results

4.7.2.1 Errors encountered

Using v1.0 of the reaction extraction system, 10 of the 65,034 patents had to be manually

skipped due to either crashing the reaction extraction system (3 cases) or taking an unacceptably

long time to complete (7 cases). The results presented in this chapter are hence for the other 65,024

patents.

One crash was caused by an oversight in the way OPSIN generates parse combinations. This

occurred when processing a long series of fragments that had been erroneously identified as a single

name and resulted in an OutOfMemoryError. Another was caused by a StackOverflowError when

ChemicalTagger attempted to parse an exceptionally long sentence of bracketed molecules which

would each be associated with the previous in the parse tree. The other crash was caused by an

OutOfMemoryError when tagging a nearly 700,000 character long “sentence”. All the cases in which

a patent took an unacceptably long time to complete related to the AAM procedure. A timeout of 1

minute was specified for the AAM but a bug in Indigo-1.1-beta9 meant that a small minority of

reactions did not respect the timeout. This was reported to the developers of Indigo and fixed in

Indigo-1.1.

Using the subsequently released version of Indigo, fixing the bug in OPSIN and the OPSIN

Document Extractor, and limiting paragraphs/headings to 35,000 characters allowed the system to

run over all patents in the four year period without any manual intervention. The process took 84

hours using 1 thread for each year on an Intel Core i7-2600k. This is sufficiently fast to easily allow

the patent applications for a week to be analysed within a day of their public release.

170

4.7.2.2 Overall statistics

484,259 atom mapped reactions were extracted (Figure 4-13), of which 424,621 met the more

stringent criteria described in 4.7.1.

Figure 4-13 Number of patents with a given number of atom mapped reactions

4.7.2.3 Evaluated reaction quality

Table 4-7 indicates the precision/recall with which the entities involved in a chemical reaction

were identified. False positives may be workup reagents, characterisation reagents or not chemicals

at all. False negatives are those entities which are involved in the reaction but were not identified.

True Positives 474

False Positives 60

False Negatives 18

Precision 88.9%

Recall 96.4%

F1 score 92.5%
Table 4-7 Statistics for recognition of chemical entities (reagents and products)

Table 4-8 shows whether for correctly detected chemical entities with quantities specified in

the text, whether these were associated with the chemical entity. A quantity in this context could be

1

10

100

1,000

10,000

100,000

0 200 400 600 800 1000

N
u

m
b

e
r

o
f

p
at

e
n

ts
 w

it
h

 g
iv

e
n

 n
u

m
b

e
r

o
f

re
ac

ti
o

n
s

Number of extracted reactions

171

a yield, amount, weight, volume etc. If an entity has multiple quantities all must be correctly

associated to be considered a success.

Agent type Successful cases/total cases (%)

Reagents 317/321 (98.8%)

Products 48/74 (64.9%)
Table 4-8 Statistics for association of quantities with reagents/products possessing quantities

Table 4-9 shows for each chemical entity of a given role in the manually annotated reactions

(which is also found in the automatically extracted reactions) whether the extracted entity has that

role.

Role Successful cases/total cases (%)

Product 99/100 (99.0%)

Reactant 241/244 (98.8%)

Solvent 85/99 (85.9%)

Catalyst 10/24 (41.7%)

Other Spectator 0/7 (0%)

Overall 435/474 (91.8%)
Table 4-9 Statistics for association of roles with entities

4.8 Discussion

The number of patents containing a specified number of extracted reactions (Figure 4-13)

shows a power law distribution with respect to the number of reactions extracted from each patent.

The majority of patents have less than 10 reactions but a significant minority have greater than 100.

Patents with greater than 100 reactions account for only 1.59% of the patents processed but held

41.26% of the extracted reactions.

Recall of chemical entities (Table 4-7) was high (96.4%), whilst precision was somewhat lower.

This was primarily due to the classification of workup reagents, especially the first workup reagent,

as reactants. This is due to the text often just saying that the reagent was added without any

indication of the purpose. Heuristics involving the addition of a common solvent as the last step of a

reaction could be investigated.

Association of quantities (Table 4-8) with reagents was near perfect and can be considered a

solved problem. There appear to be only a finite number of ways in regular use for associating

quantities with chemical entities and all of them are supported by ChemicalTagger. Association of

quantities with the product was less successful. This was because this information is often present at

the end of an experimental section and only implicitly assumed to apply to the product. Heuristics

172

could be investigated for improving association of unassigned quantities with the product of the

reaction. This is expected to be especially applicable to unassigned yields as these will almost

invariably be the yield of the reaction.

 Assignment of roles (Table 4-9) was excellent for products (99.0%) and reactants (98.8%) but

worse for spectator reagents. For this evaluation, the definition of a catalyst was the strict definition

that the reagent is not consumed in the course of the reaction. As experimental descriptions

typically only describe the intended product and not the fate of the other reagents involved it is

often impossible to tell from just the text whether or not a reagent is a catalyst. This also made the

assignment of reagents as catalysts problematic for the manual annotations as the likely mechanism

of the reaction had to be investigated in some cases. Similarly, a reagent was considered a reactant

even if it did not contribute any heavy atoms to the product as long as it was believed to be

consumed by the reaction. Nonetheless, despite the difficulties in identifying catalysts the addition

of more known catalysts and the application of heuristics based around the relative quantity of

reagent used would yield improved results.

Overall only 22% of the extracted reactions were flawless by all the metrics evaluated i.e.

perfect entity recognition, quantity assignment and role assignment. However it should be borne in

mind that most failures were minor, for example: a yield not assigned to a product, a workup

reagent assigned as a reactant, etc. It should also be noted that some mistakes in chemical entity

identification are not visible in the graphic depiction. This happens when two copies of a reagent are

inadvertently identified (as happens if both a reagent and an anaphora to the reagent are

independently resolved), as they will have been merged (using InChI to check for identity) prior to

depiction.

The correct identification of product and major starting material is a somewhat more

qualitative but potentially more useful metric, especially for reaction searching, with the proviso that

there are no false positive entities that could be mistaken for either of these entities. This was true

of 95% of the evaluated reactions. There were several reasons for the failure with the other 5%. A

recurring problem was the difficulty in determining the meaning of a reference to a procedure as it

could mean:

 The compound produced at the end of that procedure

 The compound produced at the end of that procedure but only in the context of an

analogy to the current reaction

173

 The procedure itself

One failure involved a reaction being erroneously split into two reactions due to

ChemicalTagger misassigning ‘starting’ as a verb rather than as an adjective (in the context of ‘to

give (i) starting material’). This caused the yield phrase to end at the word ‘starting’ and hence the

true products ended up as the reactants for a second reaction. Another failure involved a reaction in

which some of the compounds were defined using anaphora to previously defined labelled

compounds. In this case the association between these previous compounds and their numeric

identifiers had not been made; hence preventing resolution of these anaphoric references.

4.9 Comparison to other approaches

PatentEye (Section 4.2.2) was evaluated, by Jessop, on ten weeks of EPO patents which

corresponded to a corpus of 667 patents. From these 4444 reactions were extracted of which a

subset was evaluated to assess the recall and precision of reagent, and recall of product

identification. The results were 64% recall and 78% precision for reagent identification with the

criteria for a true positive being that both the entity and associated quantities were found. Table 4-7

in conjunction with the 98.8% association of quantities with reagents suggests that the current

system may perform significantly better but a direct comparison is impossible without using the

same corpus. It should also be considered that as both PatentEye and the system developed for this

project rely on ChemicalTagger that improvements made to ChemicalTagger in the course of this

project would likely also improve PatentEye’s performance if it were updated.

The correct product was identified by PatentEye in 92% cases. The reason stated for the

failures were false positive chemical entities in headings that could not be converted to structures.

The fact that such “reactions” would always be rejected at the atom-mapping stage in the developed

system further complicates comparison.

Correspondence with the authors of SCRIPDB indicated that the database included 190,083

reaction steps from USPTO patents for the period of 2008-2011. Of these only 7,873 possess a

reaction arrow, a reagent and a product. As the source of the reactions is the CDX files rather than

the text it would be potentially interesting to assess the level of overlap between these resources as

a way of assessing how many reactions cannot be found from just the text. The results presently

indicate that significantly more reactions can be extracted from the text but the number present in

the CDX files may be understated due to reactions not being explicitly indicated as reactions and due

to the use of generic structures to describe multiple reactions in one diagram.

174

4.10 Example use: solvent analysis

Besides obvious use cases, such as reaction searching, a large database of reactions allows one

to start asking questions about the properties of the population of chemical reactions. For example,

which are the most common solvents employed (Figure 4-14).

Figure 4-14 The top 15 solvents by frequency of occurrence in reactions

To produce Figure 4-14 unique solvent InChIs were recorded for each reaction. Where a single

name indicates a mixture of solvents and hence produced one InChI this was split into its component

InChIs using the heuristic that a mixture of solvents would be composed of neutral components.

One can observe that a few solvents occur disproportionally more than others. In total 627

discrete InChIs were detected indicating a potentially long tail. The sum of all solvents beyond the

15th is still less than the instances for any of the top 3 solvents indicating that most of these solvents

are rarely used. A significant number of the InChIs that occurred very rarely are in fact not solvents

so the figure of 627 for total solvents encountered is likely to be somewhat of an overestimate.

Investigation of such cases could be useful for improving the precision of solvent detection.

With the growing importance of Green Chemistry171, there is increased interest in finding

alternatives to solvents, such as dichloromethane, that are known to have a negative environmental

0

10000

20000

30000

40000

50000

60000

175

impact172. Being able to identify analogous reactions that were run in greener solvents is a potential

use case.

4.11 Limitations and areas for future work

4.11.1 Interrelation between taggers

Conceptually, running a series of independent taggers is easy to understand and manipulate.

However, to work ideally in practice, some taggers need the knowledge provided by other taggers.

For example, the designation of words as chemicals and hence likely nouns would be useful to the

POS tagger, since it was found to occasionally tag longer chemical entities as adjectives resulting in

increased erroneous part of speech tag assignment to adjacent words.

Another example is in the regex tagger where certain words that are to be tagged may have a

different part of speech depending on the context they are used in. This means that ideally the regex

tagger should assign them different tags but as it has no knowledge of the context this is impossible

necessitating the use of ad hoc post tagging tag corrections. If the regex tagger were aware of the

tag assigned by the POS tagger this problem could often be resolved at the tagging step.

4.11.2 Chemical entity type assignment

Determiners in front of chemical names are used inconsistently. One would expect to be able

to use the presence of ‘a’/‘an’ to indicate that a chemical entity was describing a class of chemicals

and to use ‘the’ to indicate that the chemical entity referred to a particular substance referenced

previously. In practice, possibly due to not all patents being written by native speakers, the presence

of a determiner is insufficient to rule out the interpretation that a chemical entity is of type “exact”.

4.11.3 Solvents contained within another entity

In some cases the specification of the solvent is included through the use of a bracketed

description of the solvent immediately after the solute chemical entity. ChemicalTagger will

associate the bracketed description with the preceding solute entity rather than considering the

solvent as a distinct chemical entity. As a result the solvent is not recorded in these cases. Another

case where the solvent is not identified is where it is only implicitly described by an adjective e.g.

‘aqueous’ or ‘methanolic’. If the meaning of the adjective is understood determining the solvent

would be trivial.

176

4.11.4 Acid/Base workup steps

One of the leading causes of false positives was compounds that took part in an acid or base

workup step that were not identified as being part of the workup. This could be partially addressed

by allowing ChemicalTagger to identify the keyword ‘neutralise’ and hence identify neutralisation

steps.

4.11.5 Additional roles

The role of desiccant should be added to describe the common use of compounds like sodium

sulfate as drying agents. These compounds should be present in the list of spectator chemicals, but

are neither catalysts nor solvents.

4.11.6 Structurally unknown intermediates

It is not uncommon in a multi-step reaction to have intermediate compounds. Often for

brevity these compounds are referred to only by an important functional group e.g. ‘protected

amine’ or even just as a description of the substance e.g. ‘grey powder’. Currently such reactions

cannot be atom-mapped as the product of the first step of the reaction will have no structure. The

same is true if this compound is used as a starting material in the next reaction.

4.11.7 Presentation of reactions

The results of the AAM could be used to align the depictions of the reactants and products

making it clearer to see the transformation that has occurred.

4.11.8 Reaction conditions

Reaction conditions e.g. temperatures and the time taken for each step, are not currently

extracted. Extracting such information would be a simple extension as the two exemplified

properties are already appropriately tagged in ChemicalTagger’s output by the TempPhrase and

TimePhrase elements. Capturing such information was not seen as a high priority as reaction

searching is typically done by structure rather than by conditions and, at present, the extracted

reactions are not aimed to be a replacement for the original text.

4.12 Conclusions

This work has shown that it is practical to use text mining to build a large reaction database

from the publically available chemical literature, specifically patents, without human intervention.

The extracted reactions (as reaction SMILES) are publically available from the project’s BitBucket

177

page173 as is the code to perform the reaction extraction. With the input of more patent documents

the creation of a database of over a million reactions should be a relatively trivial undertaking. To

the best of the author’s knowledge such a database would become the largest publically accessible

reaction database. Such a resource could be extremely useful to both commercial and academic

institutions, particularly when they are unable to access fee requiring systems such as Reaxys or

SciFinder.

The development of the reaction extraction system has led to many improvements in

ChemicalTagger, OSCAR4, the OPSIN Document Extractor and OPSIN. Especially in the case of

ChemicalTagger, it is hoped that the improvements made will be of benefit to other users of these

libraries.

178

Chapter 5 Overall Summary of Results and Conclusions

The increasing size of the chemical literature on the one hand creates problems in identifying

informational resources, but on the other hand gives access to an ever increasing amount of

information. To address both these issues, this work has centred on the development and validation

of tools to text-mine literature for chemical information.

The development of the chemical name to structure algorithm OPSIN has been a key

achievement. The system employs a regular grammar and corresponding automaton to facilitate

tokenisation and parsing of chemical names. OPSIN was shown through examples and both artificial

and real world benchmarks, to have high coverage and precision on organic chemical nomenclature,

rivalling and often exceeding the commercial solutions tested. The algorithm is shown to be

applicable to named entity recognition and has been successfully included into a frequently utilised

public web service. Already, OPSIN itself appears to have achieved wide usage in the chemistry

community, and as other comparable open-source solutions are not currently available is likely to

increase in usage.

Building on the capabilities of OPSIN, in reliable and precise name to structure conversion, it

was used as a critical component in the creation of a system for extracting chemical reactions from

text-based literature. The system was demonstrated to be able to identify experimental sections and

identify chemical entities. The entities are assigned roles, types and associated with quantities

specified in the text. Finally atom-mapping is employed primarily to remove implausible reactions.

The system was validated by inputting text from over 65,000 patent applications, and sampling the

output of 424,621 extracted chemical reactions. This indicated a successful output in that 95% of

them captured the essence of the reaction.

The extraction process is fast and requires little human intervention making it highly scalable.

Hence the system could be used to facilitate much larger scale extraction of reactions from the

patent literature. This would prove useful not only for the more obvious usage by synthetic chemists

looking for routes of synthesis but also may prove useful in analysing trends in the chemistry used in

organic syntheses. The system has the potential to benefit the community by allowing access to a

large number of reactions without the restrictions or costs of traditional reaction searches.

Publishers of organic chemistry journals may also be interested as a way of adding value to their

articles by making them reaction searchable.

179

All of the software solutions developed as part of this project are open source and made freely

available via BitBucket (cf. Appendix A). In this way these projects may be used in a complementary

manner to other open source chemistry projects73. The potential also exists for them to be modified,

improved and extended, in ways not necessarily conceived of by the author, allowing for wider

usage than with traditionally more rigid commercial solutions. The software developed in this

project is expected to prove useful to the cheminformatics community and, in the case of more user

friendly services such as the OPSIN web service, the general chemistry community.

180

References

(1) Alexandru Dan Corlan. Medline trend: automated yearly statistics of PubMed results for any

query. http://www.webcitation.org/65RkD48SV (accessed Feb 14, 2012).

(2) Economics and Statistics Division, WIPO. World Intellectual Property Indicators, 2011 edition;

2011; http://www.wipo.int/ipstats/en/statistics/patents/.

(3) Apache Software Foundation. Apache Lucene. http://lucene.apache.org/ (accessed Feb 21,

2012).

(4) Ashburner, M.; Ball, C. A.; Blake, J. A.; Botstein, D.; Butler, H.; Cherry, J. M.; Davis, A. P.;

Dolinski, K.; Dwight, S. S.; Eppig, J. T.; Harris, M. A.; Hill, D. P.; Issel-Tarver, L.; Kasarskis, A.;

Lewis, S.; Matese, J. C.; Richardson, J. E.; Ringwald, M.; Rubin, G. M.; Sherlock, G. Gene

Ontology: tool for the unification of biology. Nature Genetics 2000, 25, 25–29.

(5) Degtyarenko, K.; de Matos, P.; Ennis, M.; Hastings, J.; Zbinden, M.; McNaught, A.; Alcantara,

R.; Darsow, M.; Guedj, M.; Ashburner, M. ChEBI: a database and ontology for chemical

entities of biological interest. Nucl. Acids Res. 2008, 36, D344–350.

(6) Schneider, G.; Fechner, U. Computer-based de novo design of drug-like molecules. Nat Rev

Drug Discov 2005, 4, 649–663.

(7) Liu, H.; Hu, Z. Z.; Torii, M.; Wu, C.; Friedman, C. Quantitative assessment of dictionary-based

protein named entity tagging. J Am Med Inform Assoc 2006, 13, 497–507.

(8) Wren, J. A scalable machine-learning approach to recognize chemical names within large

text databases. BMC Bioinformatics 2006, 7, S3.

(9) Corbett, P.; Copestake, A. Cascaded classifiers for confidence-based chemical named entity

recognition. BMC Bioinformatics 2008, 9, S4.

(10) Boudin, F.; Torres-Moreno, J.; El-Bèze, M. Mixing statistical and symbolic approaches for

chemical names recognition. Computational Linguistics and Intelligent Text Processing 2008,

334–343.

(11) Klinger, R.; Kolarik, C.; Fluck, J.; Hofmann-Apitius, M.; Friedrich, C. M. Detection of IUPAC

and IUPAC-like chemical names. Bioinformatics 2008, 24, i268.

(12) Grego, T.; Pęzik, P.; Couto, F. M.; Rebholz-Schuhmann, D. Identification of Chemical Entities

in Patent Documents. In Proceedings of the 10th International Work-Conference on Artificial

Neural Networks: Part II: Distributed Computing, Artificial Intelligence, Bioinformatics, Soft

Computing, and Ambient Assisted Living; IWANN ’09; Springer-Verlag: Berlin, Heidelberg,

2009; pp. 942–949.

181

(13) Sun, B.; Mitra, P.; Lee Giles, C.; Mueller, K. T. Identifying, Indexing, and Ranking Chemical

Formulae and Chemical Names in Digital Documents. ACM T Inform Syst 2011, 29, 12.

(14) Jessop, D. M.; Adams, S.; Willighagen, E. L.; Hawizy, L.; Murray-Rust, P. OSCAR4: a flexible

architecture for chemical text-mining. J Cheminf 2011, 41.

(15) Rocktäschel, T.; Weidlich, M.; Leser, U. ChemSpot: a hybrid system for chemical named

entity recognition. Bioinformatics 2012, 28, 1633–1640.

(16) Sayle, R.; Xie, P. H.; Muresan, S. Improved Chemical Text Mining of Patents with Infinite

Dictionaries and Automatic Spelling Correction. J. Chem. Inf. Model. 2011, 52, 51–62.

(17) Park, J.; Rosania, G.; Shedden, K.; Nguyen, M.; Lyu, N.; Saitou, K. Automated extraction of

chemical structure information from digital raster images. Chem. Cent. J. 2009, 3, 4.

(18) Filippov, I. V.; Nicklaus, M. C. Optical Structure Recognition Software To Recover Chemical

Information: OSRA, An Open Source Solution. J. Chem. Inf. Model. 2009, 49, 740–743.

(19) Valko, A. T.; Johnson, A. P. CLiDE Pro: The Latest Generation of CLiDE, a Tool for Optical

Chemical Structure Recognition. J. Chem. Inf. Model. 2009, 49, 780–787.

(20) Zimmermann, M. Chemical Structure Reconstruction with chemoCR. TREC-CHEM 2011 2011.

(21) Smolov, V.; Zentsev, F.; Rybalkin, M. Imago: open-source toolkit for 2D chemical structure

image recognition. TREC-CHEM 2011 2011.

(22) Sadawi, N. M.; Sexton, A. P.; Sorge, V. Chemical Structure Recognition: A Rule Based

Approach. In 19th Document Recognition and Retrieval Conference; 2012.

(23) Fujiyoshi, A.; Nakagawa, K.; Suzuki, M. Robust Method of Segmentation and Recognition of

Chemical Structure Images in ChemInfty. In Pre-Proceedings of the 9th IAPR International

Workshop on Graphics Recognition; Seoul, South Korea, 2011.

(24) Lounnas, V.; Vriend, G. AsteriX: A Web Server To Automatically Extract Ligand Coordinates

from Figures in PDF Articles. J. Chem. Inf. Model. 2012, 52, 568–576.

(25) Filippov, I. V.; Nicklaus, M. C.; Kinney, J. Improvements in Optical Structure Recognition

Application. In Document Analysis Systems Workshop; Boston, 2010.

(26) Yan, S.; Spangler, W. S.; Chen, Y. Cross Media Entity Extraction and Linkage for Chemical

Documents. In Twenty-Fifth AAAI Conference on Artificial Intelligence; San Francisco, 2011.

(27) Van Noorden, R. Trouble at the text mine. Nature 2012, 483, 134–135.

(28) Peter Pappas, J. R. B. USPTO Teams with Google to Provide Bulk Patent and Trademark Data

to the Public. http://www.uspto.gov/news/pr/2010/10_22.jsp (accessed Jun 4, 2012).

(29) Feng, C.; Yamashita, F.; Hashida, M. Automated Extraction of Information from the

Literature on Chemical-CYP3A4 Interactions. J. Chem. Inf. Model. 2007, 47, 2449–2455.

182

(30) Yamashita, F.; Feng, C.; Yoshida, S.; Itoh, T.; Hashida, M. Automated Information Extraction

and Structure−Activity Relationship Analysis of Cytochrome P450 Substrates. J. Chem. Inf.

Model. 2011, 51, 378–385.

(31) Jiao, D.; Wild, D. J. Extraction of CYP Chemical Interactions from Biomedical Literature Using

Natural Language Processing Methods. J. Chem. Inf. Model. 2009, 49, 263–269.

(32) Donaldson, I.; Martin, J.; de Bruijn, B.; Wolting, C.; Lay, V.; Tuekam, B.; Zhang, S.; Baskin, B.;

Bader, G. D.; Michalickova, K.; Pawson, T.; Hogue, C. W. PreBIND and Textomy – mining the

biomedical literature for protein-protein interactions using a support vector machine. BMC

Bioinformatics 2003, 4, 11.

(33) Batchelor, C. R.; Corbett, P. T. Semantic enrichment of journal articles using chemical named

entity recognition. In Proceedings of the 45th Annual Meeting of the ACL on Interactive

Poster and Demonstration Sessions; ACL ’07; Association for Computational Linguistics:

Stroudsburg, PA, 2007; pp. 45–48.

(34) Swain, M. chemicalize.org. J. Chem. Inf. Model. 2012, 52, 613–615.

(35) Pafilis, E.; O’Donoghue, S. I.; Jensen, L. J.; Horn, H.; Kuhn, M.; Brown, N. P.; Schneider, R.

Reflect: augmented browsing for the life scientist. Nat Biotechnol. 2009, 27, 508–510.

(36) Digital Science. SureChem. https://surechem.com/ (accessed Jun 4, 2012).

(37) Chen, Y.; Spangler, S.; Kreulen, J.; Boyer, S.; Griffin, T. D.; Alba, A.; Behal, A.; He, B.; Kato, L.;

Lelescu, A.; Kieliszewski, C.; Wu, X.; Zhang, L. SIMPLE: a strategic information mining

platform for licensing and execution. In Proceedings of the 2009 IEEE International

Conference on Data Mining Workshops; 2009; pp. 270–275.

(38) Kayala, M. A.; Azencott, C.-A.; Chen, J. H.; Baldi, P. Learning to Predict Chemical Reactions. J.

Chem. Inf. Model. 2011, 51, 2209–2222.

(39) Harold, E. R. XOM Design Principles. In Proceedings of Extreme Markup Languages;

Montréal, Québec, 2004.

(40) Elliotte R. Harold. XOM. http://www.xom.nu/ (accessed Jun 4, 2012).

(41) Murray-Rust, P.; Rzepa, H. S. Chemical Markup, XML, and the Worldwide Web. 1. Basic

Principles. J. Chem. Inf. Comput. Sci. 1999, 39, 928–942.

(42) Murray-Rust, P.; Rzepa, H. S. CML: Evolution and design. J Cheminf 2011, 3, 44.

(43) Murray-Rust, P.; Rzepa, H. S. Chemical Markup, XML, and the World Wide Web. 4. CML

Schema. J. Chem. Inf. Comput. Sci. 2003, 43, 757–772.

(44) Chemical Markup Language Schema 3. http://www.xml-cml.org/schema/ (accessed Jun 4,

2012).

183

(45) Joe Townsend. Chemical Markup Language Validator. http://validator.xml-cml.org/

(accessed Jun 4, 2012).

(46) García, A.; Murray-Rust, P.; Wakelin, J. The use of XML and CML in computational chemistry

and physics programs. In Proceedings of the UK e-Science All Hands Meeting 2004; 2004; pp.

1111–1114.

(47) Kuhn, S.; Helmus, T.; Lancashire, R. J.; Murray-Rust, P.; Rzepa, H. S.; Steinbeck, C.;

Willighagen, E. L. Chemical Markup, XML, and the World Wide Web. 7. CMLSpect, an XML

Vocabulary for Spectral Data. J. Chem. Inf. Model. 2007, 47, 2015–2034.

(48) Adams, N.; Winter, J.; Murray-Rust, P.; Rzepa, H. S. Chemical Markup, XML and the World-

Wide Web. 8. Polymer Markup Language. J. Chem. Inf. Model. 2008, 48, 2118–2128.

(49) Holliday, G. L.; Murray-Rust, P.; Rzepa, H. S. Chemical Markup, XML, and the World Wide

Web. 6. CMLReact, an XML Vocabulary for Chemical Reactions. J. Chem. Inf. Model. 2006,

46, 145–157.

(50) Weininger, D. SMILES, a chemical language and information system. 1. Introduction to

methodology and encoding rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36.

(51) OpenSMILES Specification. http://www.opensmiles.org (accessed Jun 4, 2012).

(52) Daylight Chemical Information Systems. Daylight Theory: SMILES.

http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html (accessed Jun 4, 2012).

(53) Steinbeck, C.; Han, Y.; Kuhn, S.; Horlacher, O.; Luttmann, E.; Willighagen, E. The Chemistry

Development Kit (CDK):  An Open-Source Java Library for Chemo- and Bioinformatics. J.

Chem. Inf. Comput. Sci. 2003, 43, 493–500.

(54) O’Boyle, N.; Banck, M.; James, C.; Morley, C.; Vandermeersch, T.; Hutchison, G. Open Babel:

An open chemical toolbox. J Cheminf 2011, 3, 33.

(55) GGA Software Services. Indigo Toolkit. http://ggasoftware.com/opensource/indigo

(accessed Jun 4, 2012).

(56) IUPAC. The IUPAC International Chemical Identifier (InChI). www.iupac.org/inchi/ (accessed

Jun 4, 2012).

(57) Chomsky, N. Three models for the description of language. IRE Trans. Inf. Theory 1956, 2,

113–124.

(58) Adams, S. E.; Goodman, J. M.; Kidd, R. J.; McNaught, A. D.; Murray-Rust, P.; Norton, F. R.;

Townsend, J. A.; Waudby, C. A. Experimental data checker: better information for organic

chemists. Org. Biomol. Chem. 2004, 2, 3067.

184

(59) Townsend, J. A.; Adams, S. E.; Waudby, C. A.; de Souza, V. K.; Goodman, J. M.; Murray-Rust,

P. Chemical documents: machine understanding and automated information extraction.

Org. Biomol. Chem. 2004, 2, 3294.

(60) Corbett, P.; Murray-Rust, P. High-Throughput Identification of Chemistry in Life Science

Texts. Lecture Notes in Comput. Sci. 2006, 4216, 107–118.

(61) Hawizy, L.; Jessop, D. M.; Adams, N.; Murray-Rust, P. ChemicalTagger: A tool for semantic

text-mining in chemistry. J Cheminf 2011, 3, 17.

(62) Apache OpenNLP. http://incubator.apache.org/opennlp/ (accessed Jun 4, 2012).

(63) Marcus, M. P.; Marcinkiewicz, M. A.; Santorini, B. Building a large annotated corpus of

English: The Penn Treebank. Computational Linguistics 1993, 19, 313–330.

(64) Parr, T. The definitive ANTLR reference: building domain-specific languages; Pragmatic

Bookshelf, 2007.

(65) Hearst, M. A. Automatic acquisition of hyponyms from large text corpora. In Proceedings of

the 14th International Conference on Computational Linguistics: Volume 2; 1992; pp. 539–

545.

(66) Apache Maven Home Page. http://maven.apache.org/ (accessed Jun 4, 2012).

(67) Atlassian. Bitbucket. https://bitbucket.org/ (accessed Jun 4, 2012).

(68) GitHub. https://github.com/ (accessed Jun 4, 2012).

(69) Mercurial SCM. http://mercurial.selenic.com/ (accessed Jun 4, 2012).

(70) JUnit. http://www.junit.org/ (accessed Jun 4, 2012).

(71) Jenkins. http://jenkins-ci.org/ (accessed Jun 4, 2012).

(72) Lowe, D. M.; Corbett, P. T.; Murray-Rust, P.; Glen, R. C. Chemical Name to Structure: OPSIN,

an Open Source Solution. J. Chem. Inf. Model. 2011, 51, 739–753.

(73) O’Boyle, N. M.; Guha, R.; Willighagen, E. L.; Adams, S. E.; Alvarsson, J.; Bradley, J.-C.;

Filippov, I. V.; Hanson, R. M.; Hanwell, M. D.; Hutchison, G. R.; James, C. A.; Jeliazkova, N.;

Lang, A. S.; Langner, K. M.; Lonie, D. C.; Lowe, D. M.; Pansanel, J.; Pavlov, D.; Spjuth, O.;

Steinbeck, C.; Tenderholt, A. L.; Theisen, K. J.; Murray-Rust, P. Open Data, Open Source and

Open Standards in chemistry: The Blue Obelisk five years on. J Cheminf 3, 37.

(74) Pictet, A. Le Congrès International de Genève pour la Réforme de la Nomenclature

Chimique. Archives des sciences physiques et naturelles: Geneva, 1892; Vol. 27, pp. 485–

520.

(75) Definitive Rules for Nomenclature of Organic Chemistry. J. Am. Chem. Soc. 1960, 82, 5545–

5574.

185

(76) IUPAC. Nomenclature of Organic Chemistry; Pergamon Press, Oxford, 1979.

(77) IUPAC. A Guide to IUPAC Nomenclature of Organic Compounds (Recommendations 1993);

Blackwell Scientific publications, 1993.

(78) IUPAC. Draft Nomenclature of Organic Chemistry.

http://old.iupac.org/reports/provisional/abstract04/favre_310305.html (accessed Jun 4,

2012).

(79) Nomenclature of Inorganic Chemistry: Recommendations 1990; Blackwell Scientific

Publications, 1990.

(80) Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005; Cambridge, UK: Royal

Society of Chemistry Publishing/IUPAC, 2005.

(81) Smith, H. A. The Centennial of Systematic Organic Nomenclature. J. Chem. Educ. 1992, 69,

863.

(82) Donaldson, N.; Powell, W. H.; Rowlett, R. J.; White, R. W.; Yorka, K. V. Chemical Abstracts

Index Names for Chemical Substances in the Ninth Collective Period. J. Chem. Doc. 1974, 14,

3–15.

(83) Chemical Abstracts Service. Naming and Indexing of Chemical Substances for Chemical

Abstracts. American Chemical Society 2007.

(84) Garfield, E. An Algorithm for Translating Chemical Names to Molecular Formulas. J. Chem.

Doc. 1962, 2, 177–179.

(85) Garfield, E. An Algorithm for Translating Chemical Names to Molecular Formulas. Essays of

an Information Scientist 1984, 7, 441–513.

(86) Vander Stouw, G. G.; Naznitsky, I.; Rush, J. E. Procedures for Converting Systematic Names

of Organic Compounds into Atom-Bond Connection Tables. J. Chem. Doc. 1967, 7, 165–169.

(87) Vander Stouw, G. G.; Elliott, P. M.; Isenberg, A. C. Automated Conversion of Chemical

Substance Names to Atom-Bond Connection Tables. J. Chem. Doc. 1974, 14, 185–193.

(88) Cooke-Fox, D. I.; Kirby, G. H.; Rayner, J. D. Computer translation of IUPAC systematic organic

chemical nomenclature. 1. Introduction and background to a grammar-based approach. J.

Chem. Inf. Comput. Sci. 1989, 29, 101–105.

(89) Cooke-Fox, D. I.; Kirby, G. H.; Rayner, J. D. Computer translation of IUPAC systematic organic

chemical nomenclature. 2. Development of a formal grammar. J. Chem. Inf. Comput. Sci.

1989, 29, 106–112.

186

(90) Cooke-Fox, D. I.; Kirby, G. H.; Rayner, J. D. Computer translation of IUPAC systematic organic

chemical nomenclature. 3. Syntax analysis and semantic processing. J. Chem. Inf. Comput.

Sci. 1989, 29, 112–118.

(91) Cooke-Fox, D. I.; Kirby, G. H.; Lord, M. R.; Rayner, J. D. Computer translation of IUPAC

systematic organic chemical nomenclature. 4. Concise connection tables to structure

diagrams. J. Chem. Inf. Comput. Sci. 1990, 30, 122–127.

(92) Cooke-Fox, D. I.; Kirby, G. H.; Lord, M. R.; Rayner, J. D. Computer translation of IUPAC

systematic organic chemical nomenclature. 5. Steroid nomenclature. J. Chem. Inf. Comput.

Sci. 1990, 30, 128–132.

(93) Kirby, G. H.; Lord, M. R.; Rayner, J. D. Computer translation of IUPAC systematic organic

chemical nomenclature. 6.(Semi) automatic name correction. J. Chem. Inf. Comput. Sci.

1991, 31, 153–160.

(94) Ikutoshi Matsuura. Development of a System for Translation of Chemical Name into 2D-

Structure (V). 26th Symposium on Chemical Information and Computer Science 2003, 101–

104.

(95) Ikutoshi Matsuura. Development of a System for Translation of Chemical Name into 2D-

Structure (VI). 27th Symposium on Chemical Information and Computer Science 2004, 63–66.

(96) Ikutoshi Matsuura. Development of a System for Translation of Chemical Name into 2D-

Structure (VII). 28th Symposium on Chemical Information and Computer Science 2005, 29–

32.

(97) University of Manchester. ChemNomParse. http://chemnomparse.sourceforge.net/

(accessed Jun 4, 2012).

(98) Banville, D. L. Chemical Information Mining: Facilitating Literature-Based Discovery; 1st ed.;

CRC Press, 2008.

(99) ACD/Name; ACD/Labs: Toronto, Canada; http://www.acdlabs.com/.

(100) Bio-Rad Laboratories. IUPAC DrawIt; Hercules, CA; http://www.bio-rad.com.

(101) Struct=Name; PerkinElmer: Cambridge, MA; http://www.cambridgesoft.com.

(102) Name to structure; ChemAxon: Budapest, Hungary; http://www.chemaxon.com/.

(103) NameExpert; ChemInnovation Software: San Diego, CA; http://www.cheminnovation.com.

(104) Name to structure; InfoChem: Munich, Germany; http://infochem.de/.

(105) Lexichem ToolKit; OpenEye Scientific Software: Santa Fe, NM; http://www.eyesopen.com.

(106) Brecher, J. Name=Struct:  A Practical Approach to the Sorry State of Real-Life Chemical

Nomenclature. J. Chem. Inf. Comput. Sci. 1999, 39, 943–950.

187

(107) Brecher, J. S. Method, system, and software for deriving chemical structural information. US

Patent 7,054,754, May 30, 2006.

(108) Lawson, A. J.; Roller, S.; Grotz, H.; Wisniewski, J. L.; Kelkheim, L. G. Method and software for

extracting chemical data. EPO Patent EP20050252713, November 1, 2006.

(109) Engelken, H. A System for Semantic Analysis of Chemical Compound Names. In Proceedings

of the ACL-IJCNLP 2009 Student Research Workshop; Suntec, Singapore, 2009; pp. 36–44.

(110) Møller, A. dk.brics.automaton – Finite-State Automata and Regular Expressions for Java.

http://www.brics.dk/automaton/ (accessed Jun 4, 2012).

(111) Jensen, W. B. A Quantitative van Arkel Diagram. J. Chem. Educ. 1995, 72, 395.

(112) Lozac’h, N. Extension of Rules A-1.1 and A-2.5 concerning numerical terms used in organic

chemical nomenclature (Recommendations 1986). Pure Appl. Chem. 1986, 58, 1693–1696.

(113) Moss, G. P. Extension and revision of the von Baeyer system for naming polycyclic

compounds (including bicyclic compounds). Pure Appl. Chem. 1999, 71, 513–529.

(114) Moss, G. P. Extension and revision of the nomenclature for spiro compounds. Pure Appl.

Chem. 1999, 71, 531–558.

(115) Moss, G. P. Nomenclature of Fused and Bridged Fused Ring Systems (IUPAC

Recommendations 1998). Pure Appl. Chem. 1998, 70, 143–216.

(116) Powell, W. Revision of the Extended Hantzsch-Widman System of Nomenclature for

Heteromonocycles. Pure Appl. Chem. 1983, 55, 409–416.

(117) Powell, W. Treatment of Variable Valence in Organic Nomenclature (Lambda Convention).

Pure Appl. Chem. 1984, 56, 769–778.

(118) Nomenclature and symbolism for amino acids and peptides (Recommendations 1983). Pure

Appl. Chem. 1984, 56, 595–624.

(119) McNaught, A. D. Nomenclature of carbohydrates (IUPAC Recommendations 1996). Pure

Appl. Chem. 1996, 68, 1919–2008.

(120) Kahovec, J.; Fox, R. B.; Hatada, K. Nomenclature of regular single-strand organic polymers

(IUPAC Recommendations 2002). Pure Appl. Chem. 2002, 74, 1921–1956.

(121) Tchekhovskoi, D. InChI Canonicalization Algorithm.

http://sourceforge.net/mailarchive/forum.php?thread_name=5.1.1.5.2.20050708111329.0

2502190%40email.nist.gov&forum_name=inchi-discuss (accessed Jun 4, 2012).

(122) InChI Technical Manual (Version 1.04). http://www.inchi-trust.org/downloads/ (accessed

Jun 4, 2012).

188

(123) Cahn, R. S.; Ingold, C.; Prelog, V. Specification of molecular chirality. Angew. Chem., Int. Ed.

Engl. 1966, 5, 385–415.

(124) Prelog, V.; Helmchen, G. Basic Principles of the CIP-System and Proposals for a Revision.

Angew. Chem., Int. Ed. Engl. 1982, 21, 567–583.

(125) Mata, P.; Lobo, A. M.; Marshall, C.; Johnson, A. P. The CIP sequence rules: Analysis and

proposal for a revision. Tetrahedron: Asymmetry 1993, 4, 657–668.

(126) Razinger, M.; Balasubramanian, K.; Perdih, M.; Munk, M. E. Stereoisomer generation in

computer-enhanced structure elucidation. J. Chem. Inf. Comput. Sci. 1993, 33, 812–825.

(127) Giles, P. M. Revised Section F: Natural products and related compounds. Pure Appl. Chem.

1999, 71, 587–643.

(128) Sam Adams. JNI-InChI. http://jni-inchi.sourceforge.net/ (accessed Jun 4, 2012).

(129) Eller, G. A. Improving the Quality of Published Chemical names with Nomenclature Software.

Molecules 2006, 11, 915–28.

(130) O’Boyle, N. M.; Morley, C.; Hutchison, G. R. Pybel: a Python wrapper for the OpenBabel

cheminformatics toolkit. Chemistry Central Journal 2008, 2.

(131) USPTO Patent Application Publication Full Text with Embedded Images.

http://www.google.com/googlebooks/uspto-patents-applications-text-with-embedded-

images.html (accessed Jun 4, 2012).

(132) OPSIN Source Code on Bitbucket. http://bitbucket.org/dan2097/opsin/ (accessed Jun 4,

2012).

(133) Lowe, D. M. OPSIN Web Service. http://opsin.ch.cam.ac.uk/ (accessed Jun 4, 2012).

(134) Murray-Rust, P.; Townsend, J.; Downing, J.; Dirks, L.; Wade, A.; Naim, O.; Galos, M.;

Haughton, T. Chemistry Add-in for Word - Microsoft Research.

http://research.microsoft.com/chem4word/ (accessed Jun 4, 2012).

(135) Southan, C. Synergies between ChemAxon’s chemicalize and other open resources to

extract structures from patents, discern SAR, and find intersects or similarities in PubChem.

Chemaxon UGM, Budapest, Hungary, May 23, 2012.

(136) Lowe, D. M. OPSIN Document Extractor. https://bitbucket.org/dan2097/opsin-document-

extractor (accessed Jun 4, 2012).

(137) Tomoyuki, S. English to Japanese trivial chemical names.

http://homepage1.nifty.com/nomenclator/triv/trivial.htm (accessed Jun 4, 2012).

(138) Williams, A. J.; Ekins, S. A quality alert and call for improved curation of public chemistry

databases. Drug Discovery Today 2011, 16, 747–750.

189

(139) Clark, A. M. Accurate Specification of Molecular Structures: The Case for Zero-Order Bonds

and Explicit Hydrogen Counting. J. Chem. Inf. Model. 2011, 51, 3149–3157.

(140) Damerau, F. J. A Technique for Computer Detection and Correction of Spelling Errors.

Communications of the ACM 1964, 7, 171–176.

(141) Sayle, R. Foreign Language Translation of Chemical Nomenclature by Computer. J. Chem. Inf.

Model. 2009, 49, 519–530.

(142) Jeliazkova, N.; Jeliazkov, V. AMBIT RESTful web services: an implementation of the OpenTox

application programming interface. J Cheminf 2011, 3, 18.

(143) O’Boyle, N. M.; Hutchison, G. R. Cinfony–combining Open Source cheminformatics toolkits

behind a common interface. Chemistry Central Journal 2008, 2, 24.

(144) Sitzmann, M. NCI/CADD Chemical Identifier Resolver.

http://cactus.nci.nih.gov/chemical/structure (accessed Jun 4, 2012).

(145) Willighagen, E. OPSIN used for a Bioclipse wizard. http://chem-bla-

ics.blogspot.com/2011/02/opsin-used-for-bioclipse-wizard.html (accessed Jun 4, 2012).

(146) Lawson, K. R.; Lawson, J. LICSS–A chemical spreadsheet in Microsoft Excel. Journal of

Cheminformatics 2012, 4, 3.

(147) Weber, L. Chemical Ontologies for Life Sciences. Chemaxon UGM, Budapest, Hungary, May

23, 2012.

(148) International Union of Crystallography; ChemAxon. International Union of Crystallography

chooses ChemAxon Name to Structure technology.

http://www.chemaxon.com/news/international-union-of-crystallography-chooses-

chemaxon-name-to-structure-technology/ (accessed Jun 4, 2012).

(149) Kinney, J. Validation and characterization of chemical structures derived from names and

images in scientific documents. 9th International Conference on Chemical Structures,

Noordwijkerhout, The Netherlands, June 7, 2011.

(150) Muresan, S. Automated spelling correction to improve recall rates of name-to-structure

tools for chemical text mining. Chemaxon UGM, Budapest, Hungary, May 17, 2011.

(151) OPSIN used for generating SMILES from extracted chemical names, Personal communication

from IBM 2011.

(152) Blake, J. E.; Dana, R. C. CASREACT: more than a million reactions. J. Chem. Inf. Comput. Sci.

1990, 30, 394–399.

(153) Chemical Abstracts Service. CAS Databases - CASREACT, Chemical Reactions.

http://www.cas.org/expertise/cascontent/casreact.html (accessed Jun 4, 2012).

190

(154) Goodman, J. Computer Software Review: Reaxys. J. Chem. Inf. Model. 2009, 49, 2897–2898.

(155) Elsevier Properties SA. Reaxys. https://www.reaxys.com/info/ (accessed Jun 4, 2012).

(156) Roth, D. L. SPRESIweb 2.1, a Selective Chemical Synthesis and Reaction Database. J. Chem.

Inf. Model. 2005, 45, 1470–1473.

(157) InfoChem. SPRESIweb. http://www.spresi.com/ (accessed Jun 4, 2012).

(158) Thomson Reuters. Current Chemical Reactions.

http://thomsonreuters.com/products_services/science/science_products/a-

z/current_chemical_reactions/ (accessed Jun 4, 2012).

(159) Thieme Chemistry. Science of Synthesis. http://www.science-of-

synthesis.com/en/products/reference-works/science-of-synthesis.html (accessed Jun 4,

2012).

(160) Wife, D. SORD (Selected Organic Reactions Database). http://www.sord.nl/ (accessed Jun 4,

2012).

(161) Organic Syntheses. http://www.orgsyn.org/ (accessed Jun 4, 2012).

(162) WebReactions. http://www.openmolecules.org/webreactions/ (accessed Jun 4, 2012).

(163) Lowe, D. M. Automated Extraction of Reactions from the Patent Literature. CINF#75, 243rd

ACS National Meeting & Exposition, San Diego, CA, March 27, 2012.

(164) Reeker, L. H.; Zamora, E. M.; Blower, P. E. Specialized information extraction: automatic

chemical reaction coding from English descriptions. In Proceedings of the first conference on

Applied natural language processing; Association for Computational Linguistics, 1983; pp.

109–116.

(165) Zamora, E. M.; Blower Jr, P. E. Extraction of chemical reaction information from primary

journal text using computational linguistics techniques. 1. Lexical and syntactic phases. J.

Chem. Inf. Comput. Sci. 1984, 24, 176–181.

(166) Zamora, E. M.; Blower Jr, P. E. Extraction of chemical reaction information from primary

journal text using computational linguistics techniques. 2. Semantic phase. J. Chem. Inf.

Comput. Sci. 1984, 24, 181–188.

(167) Ai, C. S.; Blower Jr, P. E.; Ledwith, R. H. Extraction of chemical reaction information from

primary journal text. J. Chem. Inf. Comput. Sci. 1990, 30, 163–169.

(168) Jessop, D. M.; Adams, S. E.; Murray-Rust, P. Mining Chemical Information from Open

Patents. Journal of Cheminformatics 2011, 3, 40.

(169) Heifets, A.; Jurisica, I. SCRIPDB: a portal for easy access to syntheses, chemicals and

reactions in patents. Nucl. Acids Res. 2011, 40, D428–D433.

191

(170) Jessop, D. M. Information extraction from chemical patents. Ph.D, University of Cambridge,

2011.

(171) Dunn, P. J. The importance of Green Chemistry in Process Research and Development.

Chemical Society Reviews 2012, 41, 1452.

(172) Hargreaves, C. R.; Manley, J. B. Collaboration to Deliver a Solvent Selection Guide for the

Pharmaceutical Industry. In ACS GCI Pharmaceutical Roundtable; ACS Green Chemistry

Institute, 2008.

(173) Lowe, D. M. Patent Reaction Extraction Project. https://bitbucket.org/dan2097/patent-

reaction-extraction (accessed Jun 4, 2012).

192

Appendix A

This project has resulted in the creation of a significant amount of code. For posterity the

versions of the software that were current at the point of writing this thesis are attached as

supporting information. For all projects both source code and binaries (inclusive of dependencies)

are included in the /code directory. Note that only the OPSIN binary is executable, the other projects

are exclusively used as libraries.

Software components developed for this project:

 OPSIN (version 1.2.0)

 OPSIN Document Extractor (version 1.0.1)

 OPSIN-ws (13th March 2012)

 Patent Reaction Extraction (version 1.0)

Newer versions of these software projects may be available from https://bitbucket.org/dan2097

The Patent Reaction Extraction code depends heavily on the improved versions of ChemicalTagger

and OSCAR4 that were developed for this project:

 ChemicalTagger (version 1.3.1)

 OSCAR4 (version 4.1)

Newer versions of these software projects may be available from https://bitbucket.org/wwmm

193

Appendix B

To allow reproduction of the results in this thesis, both the data sets and results are included

as supporting information for all cases where the size of the data did not make this impractical.

Chemical name to structure testing:

 /data/nameToStructure/Pubchem30000_dec2011 - Includes the Pubchem IDs, their

corresponding SMILES and InChIs, the names generated from ACD/Name,

ChemBioDraw, Lexichem and Marvin, and the InChIs generated by ChemBioDraw,

Marvin and OPSIN on these names. A summary of the results which was used to

generate Figure 3-143, Figure 3-144, Figure 3-145 and Figure 3-146 is included in

30000Pubchem_Dec11.xls.

 /data/nameToStructure/2011_oscar4_patentnames – Includes the chemical names

found by OSCAR4 in 2011 organic chemistry patent application headings, the names

after processing by OPSIN’s pre-processor and the SMILES generates from both sets of

names from ChemBioDraw, Marvin and OPSIN. These results were used to generate

Figure 3-147.

 /data/nameToStructure/ChebiDec11 – Includes names and corresponding SMILES

from compounds in the ChEBI database in December 2011. These names were used as

the input to produce the results for Figure 3-9.

Reaction extraction testing:

 /data/reactionExtraction/evaluation – Includes the automatically extracted reactions

randomly chosen for evaluation and the manual evaluation performed to test their

quality. A breakdown of the number of patent applications with a certain number of

reactions is also included as was used to generate Figure 4-13.

 /data/reactionExtraction/solvents – Includes the complete list of solvents and their

occurrence counts. This was used to generate Figure 4-14.

Due to size constraints including the 2008-2011 organic chemistry patent applications is not

practical but the ExtractOrganicChemistryPatents class used to filter patents to those containing IPC

code C07 is included in the Patent Reaction Extraction project.

194

Appendix C

Terms in OPSIN’s grammar:

Grammar Symbol Description Examples

a An 'a'

acetalClass acetal, ketal, hemiacetal, hemiketal

acidStem acet, valer, succin

alkaneStemHundreds hect, trict

alkaneStemModifier iso, neo, tert

alkaneStemTens dec, cos, icos

alkaneStemThousands killi, dili

alkaneStemTrivial meth, undec

alkaneStemUnits hen, do, tri

alphaBetaStereochemLocant 3beta

amineMeaningNitrilo amine as a substituent in the middle of a name

aminoAcidEndsInAn tryptoph

aminoAcidEndsInIc glutam, aspart

aminoAcidEndsInIne lys, alan, glutam

aminoAcidYl yl as in glycin-2-yl

ane
ane as in the ending of an alkane or heteroatom

analogue

anhydrideFunctionalGroup anhydride, peroxyanhydride

annulen [8]annulen

basicFunctionalClass ester, glycol, cyanohydrin

benzo benzo as in benzo as a fused ring component

bigCapitalH 5H-

bridgeFormingO 'o' as in ethano

canBeDlPrefixedSimpleGroup glucose, galactosamine

carbohydrateChain triose, hexose

carbohydrateConfigurationalPrefix glycero, gluco, manno

carbohydrateRingSize oxirose, furanose, pyranose

carbohydrateStem gluco, manno, fructo

chalcogenAcid sulfon, sulfin, tellur

chalcogenReplacement thio, seleno, telluro

chargeOrOxidationNumberSpecifier (IV), (2+)

closeBracket], },)

colonSeperatedLocant 1,2:3,4

comma A comma that is ignored after parsing

cyclicUnsaturableHydrocarbon menth, prism, adamant

cyclo cyclo as in cyclopropane

dispiroter 1,2':7',2''-dispiroter

divalentFunctionalGroup ketone, sulfone

dlStereochemistry D-, L-, Dg-

e An optional 'e'

elementaryAtom sodium, natrium, zirconium

elidedAMultiplier tetr, pent

195

endOfFunctionalGroup
Indicates the end of a functional group has been

reached

endOfMainGroup Indicates the end of the principal group

endOfSubstituent
Indicates the end of a substituent has been

reached

epoxy epoxy, epithio

FR2hydrocarbonComponent cen, len, helicen

functionalModifier poly

fusionBracket [4,5-d], [3',4':5,6]

fusionRing indolo, pyrido, pyrrolo

fusionRingAcceptsFrontLocants naphthyridino, phenanthrolino

groupMultiplier bis, tris, tetrakis

groupStemAllowingAllSuffixes hydrazin

groupStemAllowingInlineSuffixes amid, keten, formazan

hantzschWidmanSuffix iran, olan, inan

heteroAtom aza, azonia, azanylia, azanida

heteroAtomaElided az, thi

heteroStem alum, bor, oxid, sulf

hwAne
ane as in the ending of a Hantzsch-Widman

system

hwAneCompatible oxa, ox, thi

hwHeteroAtom aza, arsa, bisma

hwIne
ine as in the ending of a Hantzsch-Widman

system

hwIneCompatible oxa, thia, selena

hydro hydro, dehydro

hyphen An optional hyphen

implicitIc
Added after unsuffixed amino acids to simplify

systematic construction

ine ine as in the ine of glycine

infixableInlineSuffix oyl

inlineChargeSuffix ium, ylium, ide, uide

inlineSuffix yl, ylidyne, oyl, sulfonyl

inlineSuffixAllowingPrefixes amido, oyl

interSubstituentHyphen A hyphen between two substituents

lambdaConvention 3lambda5

lightRotation (+), (-), (+-)

locant 2, S-, alpha, N5

locantThatNeedsBrackets Subset of locantGroup

mono mono as in locanted monophosphate

monoNuclearNonCarbonAcid sulfam, azin, phosphon

monovalentFunctionalGroup alcohol, thiol

multipleFusor [2',3':3,4;2",3":6,7]

multiplyableFunctionalClass oxime, oxide

naturalProductRequiresUnsaturator morphin, androst

nitrogenHeteroStem az as in diazano

nonCarbonAcidNoAcyl diphosphon, boron, selen

o An optional euphonic o

196

oMeaningYl o as in glycino

openBracket [, {, (

optionalCloseBracket Same as closeBracket but ignored after parsing

optionalOpenBracket Same as openBracket but ignored after parsing

orthoMetaPara ortho, meta, para, o-, m-, p-

perhydro perhydro

relativeCisTrans r-5,c-5,t-7

repeatableInlineSuffix yl, ylidene

replacementInfix thi, perox, hydrazid, hydrazon

ringAssemblyMultiplier bi, ter, quarter

simpleCyclicGroup perbenzoic acid

simpleGroup hydroxide, chloroform, thiuram disulfide

simpleGroupClass
amine, carboxylic acid (groups that must be

substituted to not be generic)

simpleMultiplier di, tri, tetra

simpleSubstituent chloro, hydroxy, amino

spiro spiro as in a polycyclic spiro system

spiroDescriptor spiro[2.2]

spiroLocant
Subset of locantGroup used between

components of a spiro system

spiroOldMethod
spiro as in a polycyclic spiro system (deprecated

naming system)

standaloneMonovalentFunctionalGroup chloride, cyanide

stereochemistryBracket (2R), (2E,4Z)

structuralCloseBracket
Same as closeBracket but used to assist in

nomenclature interpretation

structuralOpenBracket
Same as openBracket but used to assist in

nomenclature interpretation

subtractivePrefix deoxy, desoxy

suffix one, ol, carboxylic acid

suffixableSubstituent sil, vin

suffixesThatCanBeModifiedByAPrefix amide, ate

suffixPrefix sulfon, sulfin, carbono

symPolycylicSpiro spirobi, spiroter

trivialRing benzen, pyridin, toluen

trivialRingSubstituent phenyl

trivialRingSubstituentAnySuffix pyrid, acrid

trivialRingSubstituentInlineOnly imidaz, tol

unbrackettedStereochem E, trans

unsaturator ene, en, yne

vonBaeyer cyclo[2.2.2]

vonBaeyerMultiplier bi, tri, tetra

ylamine ylamine (used in conjunctive nomenclature)

ylene ylene

