
Open Research Online
The Open University’s repository of research publications
and other research outputs

Analysing Java Identifier Names
Thesis

How to cite:

Butler, Simon Jonathan (2016). Analysing Java Identifier Names. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 2015 Simon Butler

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Analysing Java Identifier Names

Simon Butler B.Sc. (Hons) (Open)

A thesis submitted to

The Open University

in partial fulfilment of the requirements for the degree of

Doctor of Philosophy in Computing

Department of Computing and Communications

Faculty of Mathematics, Computing and Technology

The Open University

September 2015

Copyright c© 2015 Simon Butler

Abstract

Identifier names are the principal means of recording and communicating ideas in source

code and are a significant source of information for software developers and maintainers, and

the tools that support their work. This research aims to increase understanding of identifier

name content types — words, abbreviations, etc. — and phrasal structures — noun phrases,

verb phrases, etc. — by improving techniques for the analysis of identifier names. The

techniques and knowledge acquired can be applied to improve program comprehension tools

that support internal code quality, concept location, traceability and model extraction.

Previous detailed investigations of identifier names have focused on method names, and

the content and structure of Java class and reference (field, parameter, and variable) names

are less well understood.

I developed improved algorithms to tokenise names, and trained part-of-speech tagger

models on identifier names to support the analysis of class and reference names in a corpus

of 60 open source Java projects. I confirm that developers structure the majority of names

according to identifier naming conventions, and use phrasal structures reported in the litera-

ture. I also show that developers use a wider variety of content types and phrasal structures

than previously understood. Unusually structured class names are largely project-specific

naming conventions, but could indicate design issues. Analysis of phrasal reference names

showed that developers most often use the phrasal structures described in the literature and

used to support the extraction of information from names, but also choose unexpected phrasal

structures, and complex, multi-phrasal, names.

Using Nominal — software I created to evaluate adherence to naming conventions — I

found developers tend to follow naming conventions, but that adherence to published con-

ventions varies between projects because developers also establish new conventions for the

use of typography, content types and phrasal structure to support their work: particularly

to distinguish the roles of Java field names.

i

Acknowledgements

I would first like to thank my supervisors, Dr. Michel Wermelinger, Dr. Yijun Yu and Pro-

fessor Helen Sharp, without whose willingness to take me on as a student, their support, wise

advice, patience and forbearance I would have been unable to complete my research. Sec-

ondly, I would like to thank the staff of the Computing and Communications Department at

the Open University for their support over the years: questions at departmental conferences,

discussions and suggestions have all been very helpful and very much appreciated. In partic-

ular I am extremely grateful to Professor Marian Petre for the time she spends supporting

the Department’s PhD students and organising online sessions for part-time students.

My fellow students, both part- and full-time, have also been an important source of

support, advice, friendship and intellectual stimulation. I had the privilege to be part of

a relatively large and very enthusiastic cohort of part-time students who tried to make the

most of the opportunities available. Thank you in particular to Katie Wilkie, Mike Giddings,

Richard Doust, Chris Ireland, Peter Coles, Liz Clarke, Tezcan Dilshener, Tamara Lopez, Rien

Sach, Minh Tran, Lionel Montrieux, Paul Warren and Renato Cortinovis.

The Statistics Advisory Service at the Open University, and in particular Dr Álvaro Faria,

have been a valuable source of gratefully received advice. I am also grateful to Dr Ray Buse

and Dr Westley Weimer of the University of Virginia for kindly allowing me to use their

readability metric tool.

And lastly, but most definitely not least, I would like to thank my family for their support.

Tracey, my wife, who has tolerated my research and its impact on domestic life, and who

is looking forward to a new chapter in our lives. Yarrow, our daughter, who managed to

leave home twice during the course of my research — while there was definitely correlation,

causation was not so readily demonstrated (I hope). And also my aunt and uncle, Diana and

Gerald Downing, without whose timely generosity my research might not have progressed

beyond its early stages.

iii

Contents

Contents v

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Approach . 3

1.2 Dissertation Overview . 4

1.3 Publications . 9

2 Exploring the Relationship Between Identifier Names and Code Quality 11

2.1 Related Work . 12

2.2 Identifier Name Quality . 15

2.3 Source Code Quality . 18

2.3.1 FindBugs . 18

2.3.2 Source Code Quality Metrics . 18

2.4 Methodology . 19

2.4.1 Data Collection . 19

2.4.2 Statistical Analysis . 22

2.4.3 Threats to Validity . 24

2.5 Results . 25

2.5.1 Class Analysis . 25

2.5.2 Method Analysis . 26

2.6 Discussion . 30

v

Contents

2.7 Summary . 34

3 Identifier Name Extraction and Storage 37

3.1 The Corpus . 38

3.2 Existing Metamodels of Source Code . 38

3.3 Model Design and Implementation . 39

3.3.1 A Model for Source Code Vocabulary 39

3.3.2 Database Schema . 42

3.3.3 Database Access . 46

3.4 Identifier Name Extraction . 46

3.5 Summary . 48

4 Identifier Name Tokenisation 51

4.1 The Identifier Name Tokenisation Problem . 52

4.1.1 The Composition of Identifier Names 52

4.1.2 Tokenising Identifier Names . 53

4.2 Related Work . 56

4.3 An Improved Approach . 60

4.3.1 Oracles . 61

4.3.2 Tokenising Conventionally Constructed Identifier Names (RQ 2) 62

4.3.3 Tokenising Identifier Names Containing Digits (RQ 3) 63

4.3.4 Tokenising Single Case Identifier Names (RQ 2) 64

4.4 Experiments and Results . 68

4.4.1 INTT . 71

4.4.2 Comparison With Samurai . 72

4.4.3 Single Case Identifier Names . 73

4.4.4 Threats to Validity . 74

4.5 Discussion . 75

4.5.1 Identifier Names Containing Digits . 76

4.5.2 Limitations . 77

4.5.3 Future Work . 79

4.6 Summary . 79

vi

Contents

5 The Analysis of Class Identifier Names 83

5.1 Related Work . 84

5.2 Methodology . 87

5.2.1 Analysis of Grammatical Composition 88

5.2.2 Analysis of Inheritance . 89

5.2.3 Case Study . 90

5.3 Results . 90

5.3.1 Grammatical Structure (RQ 4) . 91

5.3.2 The Influence of Inheritance (RQ 5) 92

5.3.3 FreeMind . 97

5.3.4 Threats to Validity . 103

5.4 Discussion . 104

5.4.1 Future Work . 107

5.5 Summary . 107

6 Phrasal Analysis of Reference Identifier Names 109

6.1 Related Work . 110

6.2 Methodology . 113

6.2.1 The Dataset . 113

6.2.2 Partitioning Names . 115

6.2.3 PoS Tagging . 119

6.2.4 Phrasal Analysis . 120

6.2.5 Use of Known Abbreviations . 121

6.2.6 Threats to Validity . 122

6.3 Results . 123

6.3.1 Name Content Types (RQ 6) . 123

6.3.2 Phrasal Structures (RQ 7) . 125

6.4 Discussion . 129

6.4.1 Problems for PoS Tagging . 129

6.4.2 Boolean Names . 132

6.4.3 Abbreviations and Neologisms . 133

6.4.4 Future Work . 134

vii

Contents

6.5 Summary . 134

7 Adherence to Reference Naming Conventions 137

7.1 Related Work . 139

7.2 Methodology . 141

7.2.1 Naming Conventions . 141

7.2.2 Nominal . 142

7.2.3 Threats to Validity . 144

7.3 Checking Naming Conventions . 144

7.3.1 Name Content Conventions . 145

7.3.2 Typographical Conventions . 147

7.3.3 Reference Naming Conventions Tested 148

7.3.4 Other Conventions . 150

7.3.5 Conventions not Fully Tested . 150

7.4 Adherence to Specific Conventions (RQ 8) . 151

7.4.1 Typography . 151

7.4.2 Name Content . 153

7.4.3 Conventional Usage of Phrases . 153

7.5 Commonly Broken Conventions (RQ 9) . 155

7.5.1 Typography . 156

7.5.2 Ciphers and Type Acronyms . 156

7.5.3 Redundant Prefixes . 157

7.6 Discussion . 157

7.6.1 Naming Conventions . 158

7.6.2 Nominal . 158

7.6.3 Future Work . 159

7.7 Summary . 159

8 Conclusions and Future Work 161

8.1 Revisiting the Aims and Objectives . 161

8.2 Summary of Contributions . 165

8.3 Future Work . 166

viii

Contents

8.3.1 Name Token Content Types . 166

8.3.2 Identifier Name Tokenisation . 167

8.3.3 Inheritance Trees . 168

8.3.4 Neologisms . 168

8.3.5 PoS Tagging . 169

8.3.6 Naming Convention Specification and Testing 169

8.4 Personal Reflection . 170

8.5 Conclusion . 171

Bibliography 173

Appendices 183

Appendix A Glossary 185

Appendix B Corpus 189

Appendix C Database Schema 193

C.1 Program Entities . 193

C.2 Names and Tokens . 194

C.3 Type Names, Super Classes and Super Types 195

C.4 Method Signatures . 195

C.5 Species and Modifiers . 196

C.6 Projects, Packages and Files . 196

Appendix D Software and Data Created During the Research 199

D.1 Software . 199

D.1.1 INTT . 199

D.1.2 JIM . 199

D.1.3 JIMdb . 200

D.1.4 MDSC . 200

D.1.5 Nominal . 200

D.2 Data . 200

D.2.1 INVocD . 200

ix

Contents

Appendix E Penn Treebank Tags 203

E.1 Part of Speech Tags . 203

E.2 Phrase/Chunk Tags . 205

x

List of Figures

1.1 Schematic of the road map through dissertation with major contributions and

outline architectures of the tools indicating the role played by components

created during the research. 8

2.1 ROC Plot for the Non-Dictionary Words Flaw at the Method Level 28

3.1 The SVM source code model . 40

3.2 The INVocD database model . 42

3.3 Example SQL query to identify the start locations of toString() method dec-

larations in XOM . 44

3.4 Example SQL query to recover unique identifier names beginning with the

word ‘array’ . 44

3.5 JavaCC identifier terminal wrapped in a production 48

4.1 Distribution of the percentage of unique identifier names found in each category

for sixty Java projects . 70

5.1 Distribution of inheritance categories in 60 Java projects 93

5.2 Partial listing from freemind.main.StdFormatter 102

6.1 Proportions of most common field name phrasal structures in P 125

6.2 Proportions of most common non-boolean field name phrasal structures in P 126

6.3 Proportions of most common boolean field name phrasal structures in P . . . 127

7.1 Nominal rule definitions for AJC showing rule inheritance and overriding . . 143

xi

List of Tables

2.1 The Identifier Naming Style Guidelines Applied 16

2.2 Source Code Analysed . 19

2.3 Example Contingency Table . 22

2.4 Example Contingency Table . 23

2.5 Associations Between Naming Flaws and Priority One and Two Warnings at

Class Level . 26

2.6 Associations Between Naming Flaws and Methods Containing Priority One

and Two Warnings . 27

2.7 Associations Between Naming Flaws and Cyclomatic Complexity at the Method

Level . 29

2.8 Associations Between Naming Flaws and Readability and the Maintainability

Index at the Method Level . 30

4.1 Distribution of identifier name categories in datasets 69

4.2 Percentage distribution of identifier name categories by species 71

4.3 Percentage accuracies for INTT . 72

4.4 Percentage accuracies for Samurai . 73

5.1 Common Part of Speech Patterns and Frequencies for all projects 91

5.2 Distribution of inheritance categories for all projects 92

5.3 Relative frequency of most common grammar patterns by inheritance category 92

5.4 Relative frequency distribution of name inheritance within inheritance cate-

gories for all projects . 94

5.5 Common grammatical forms of class name component inheritance 95

xiii

List of Tables

5.6 Common part of speech patterns and frequencies for FreeMind 97

5.7 Distribution of inheritance categories for FreeMind 97

5.8 Common grammatical forms of class name component inheritance for FreeMind 98

5.9 Classes inspected in FreeMind . 100

6.1 Distribution of length (in tokens) of unique reference names 114

6.2 Distribution of proportions of unique boolean reference names 115

6.3 Ciphers and their corresponding types . 116

6.4 Distribution of proportions of declarations in each partition 118

6.5 Distribution of proportions of unique tokens within vocabulary and, parenthe-

sised, within all occurrences . 124

6.6 Mean proportion of 5 most common phrasal structures in P 126

6.7 Mean proportion of 5 most common phrasal structures for non-boolean decla-

rations in P . 127

6.8 Mean proportion of most common phrasal structures of boolean names in P . 128

7.1 JLS ciphers and their corresponding types . 146

7.2 Distribution of the percentage of declarations adhering to typography conven-

tions . 152

7.3 Distribution of declarations adhering to content rules of each convention. Paren-

thesised figures include declarations with redundant prefixes 154

7.4 Distribution of the usage of type acronyms in name declarations 154

7.5 Distribution of the proportions of declarations with expected phrasal structures155

7.6 Distribution of the usage of redundant prefixes 157

B.1 Corpus of 60 FLOSS Java Projects . 189

xiv

Chapter 1

Introduction

Source code serves two purposes. The first is, through the medium of a compiler or interpreter,

to provide a computer with the necessary instructions to execute the program expressed in

the source code. The second is to provide a means of communicating the problem solutions

used to create the program. Modern software projects consist of large amounts of source

code — sometimes many millions of lines of code — often written by multiple software de-

velopers, some of whom may never have met, and maintained by other developers who may

not have been part of the original development team. The costs of poor communication in

source code may be, at best, additional time spent understanding the code prior to under-

taking maintenance tasks, and, at worst, bugs that affect performance, and have commercial

consequences.

Identifier names are a significant source of information for software developers and main-

tainers, and the tools that support their work. Source code is read repeatedly by developers,

and at many levels of detail: for example, to extract package structure, to identify aspects

of software architecture, and to identify the implementation of particular functionality for

maintenance. Names can be used to support requirements tracing (Antoniol et al., 2002)

and concept location for program maintenance (Dilshener and Wermelinger, 2011; Hill, 2010;

Marcus and Poshyvanyk, 2005), and to determine the consistency of concepts expressed in

source code (Raţiu, 2009; Falleri et al., 2010; Nonnen et al., 2011).

Identifier names are strings consisting of abbreviations, acronyms and natural language

words. At their simplest names are single letter abbreviations, such as i used to repre-

sent a generic integer value, but may also be compounds of words representing entities (e.g.

1

Chapter 1. Introduction

TypeName), and states (e.g. isEmpty), as well as more complicated forms including sentence-

like structures. This research investigates two aspects of names: content type and phrasal

structure. By content type I mean the classification of the lexical content of individual tokens:

whether tokens are abbreviations, specialised abbreviations familiar to software practitioners,

acronyms or words. The term phrasal structure refers to the grammatical forms of names

suggested in naming conventions (Gosling et al., 2014; Vermeulen et al., 2000) and the widely

used model of names observed by Liblit et al. (2006) that names are phrases, or something

that might be recognised as part of a phrase.

Extraction of information from identifier names by software engineering tools to support

the work of developers is constrained by limitations to the understanding of how developers

structure identifier names, and what types of content are included in names. Indeed some

proposed methods of extracting information from identifier names assume developers follow

naming conventions: standardised rules, proposed by language designers, companies and

software practitioners, of the typography and content types used in names to make them

more readable. Liblit et al. (2006) observed the use of a wider variety of phrasal structures in

identifier names than suggested by naming conventions. Abebe and Tonella (2010) and Hill

(2010) use Liblit et al.’s observations to support the extraction of information from names.

Such approaches effectively extract information from a large proportion of names, but not

all.

The hypothesis investigated in this dissertation is that developers use content types, in-

cluding natural language content, in Java class and reference identifier names in ways that

are richer and more varied than those specified in naming conventions, and described in the

academic literature. A consequence of this hypothesis being correct is that software that pro-

cesses identifier names needs to be capable of intelligently processing common, unusual and

rare forms of name and their content in order to provide its intended service to the end-user.

Method names in Java — one of the four most widely used industrial programming lan-

guages — have been studied in detail and much is known about their composition and struc-

ture (Høst and Østvold, 2008, 2009). However, there have been only limited investigations of

class and reference (field, formal argument and local variable) names, which constitute around

62% of unique names and 72% of name declarations in the corpus of 60 FLOSS (F ree/Libre

and Open Source Software) Java projects (Chapter 3) studied. Limited understanding of

2

1.1. Approach

the content and structure of Java class and reference names constrains the effectiveness of

automated techniques developed by software engineering researchers that process and rely on

those names as a source of information.

This research seeks to improve understanding of the content and forms of class and ref-

erence identifier names created by developers. To that end I seek to answer the research

question:

“What types of content and phrasal structure do developers use in Java

class and reference names?”

1.1 Approach

The names investigated in this research are taken from software projects written in the Java

programming language. Java is strongly typed, which means, for example, where a value is

declared boolean it may hold only a boolean value, and, unlike C and C++, numeric values

cannot be treated as boolean values. Naming conventions suggest that developers name

boolean identifiers in a particular way, and empirical observations confirm this does happen

(Liblit et al., 2006). The advantage for name research of strong typing is that the role of a

name is defined by its type, and type does not change during execution.

The large number of names in software projects can make extensive analysis time-consu-

ming and, consequently, some empirical studies that analyse names have focused on names

found in a few projects. Høst and Østvold (2007) observed that names reflect the cognition

and idiosyncrasies of developers. Extending this argument to teams of developers implies

that the names found in any given project will reflect the idiosyncrasies of the development

team, as well as the application domain. Accordingly, studying the names found in a single

software project may not lead to generalisable conclusions, thus greater understanding of

names is likely to be achieved through the study of multiple projects. To support the study

names from a larger number of projects, without the overhead of repeatedly extracting names

from source code, I devised a means of creating and storing a corpus of names drawn from a

large number of diverse projects which is described in Chapter 3.

Names have first to be divided into their constituent components or tokens, prior to

analysis. Existing tools for the tokenisation of identifier names have limited functionality

3

Chapter 1. Introduction

and have not been made available by the researchers that created them. To support the work

described in this dissertation, I developed a new solution to identifier name tokenisation that

addresses some of the limitations of the published solutions (Chapter 4).

There are two principles that guide my approach. The first is that, as far as possible,

I avoid the assumption that software developers create only identifier names that adhere to

naming conventions, to ensure the content and structure of names is investigated without

bias. The second is that each technique developed should be able to be used in a practical

tool for software developers, which has implications for the design and publication of any

software solutions developed. Any technique developed should be able to be deployed on a

developer’s workstation and, ideally, be responsive enough to use in a typical IDE (Integrated

Development Environment). In addition, the implementation of any technique should be

published as a library so that it can be integrated with other tools.

1.2 Dissertation Overview

Chapter 2 describes a pilot study that provides evidence of a link between the quality of

identifier names and internal source code quality. The pilot study develops a connection

made by Buse and Weimer (2008) between source code readability and software quality.

Buse and Weimer’s readability metric is based on a number of qualities of source code, but

does not incorporate attributes of identifier names other than length. Given the multiple

quality attributes that might be assigned to a name, I hypothesised a connection between

naming and code quality. The pilot study applies a validated notion of identifier name quality

to assess the quality of names, and the relationship between names judged to be poor quality

and areas of source code identified as being of lesser quality by both static analysis and source

code metrics. The investigation raised a number of questions, including what constitutes a

good quality identifier name and how to analyse names to determine their quality, and informs

the hypothesis investigated in this dissertation.

Before addressing the main research question, I investigate three research questions which

focus on the creation of tools to support the research.

In Chapter 3 I discuss the techniques developed to extract identifier names from source

code and store them to support further analysis. In existing source code models identifier

names are attributes of abstract syntax tree (AST) nodes, which means names are not directly

4

1.2. Dissertation Overview

accessible. To identify an alternative model to support this research I investigate the research

question:

RQ 1 How can a model for source code be created where identifier

names and named AST nodes are both first class citizens?

The resulting model and its implementation as a database is used to create a corpus of

names and metadata from 60 open source Java projects. The corpus is the source of names

studied in the remainder of this dissertation. Names can be recovered from individual or

multiple projects and analysed without the overhead of extracting names from source code

each time. The metadata collected with the names means that the methods applied to the

names in the database can be applied with little modification, if any, to names on an abstract

syntax tree (AST). The tools and techniques described in this dissertation can be applied

both to develop software engineering tools further and used in an IDE to support the work

of developers.

An early step in the analysis of identifier names involves splitting or tokenising the name.

When beginning this research there were limitations to the main techniques developed for the

tokenisation of names that constrained detailed analysis of names. Methods had been imple-

mented to tokenise identifier names where developers follow simple typographical conventions.

However, three problems remained: the tokenisation of names containing an ambiguous ty-

pographical feature; ‘single case’ names, where typographical conventions have been ignored;

and the tokenisation of names containing digits, for which there are no typographical con-

ventions. The former issues are related and Chapter 4 addresses the following two research

questions:

RQ 2 How can more effective mechanisms to tokenise names with am-

biguous or no word boundaries be developed?; and

RQ 3 How can effective mechanisms to tokenise names containing digits

be developed?

The techniques developed in Chapter 4 are implemented in the identifier name tokenisa-

tion tool (INTT), a Java library, that is used to support the remainder of the research.

Having implemented tools to support the analysis of names, the remainder of the disser-

tation focuses on the principal research question. The research question is decomposed into

5

Chapter 1. Introduction

6 subsidiary questions (RQ 4–RQ 9) that each focus on an aspect of the principal research

question. Chapter 5 focuses on class names examining phrasal structure and the influence of

inheritance on names to address RQ 4 and RQ 5. Chapters 6 and 7 examine reference names.

RQ 6 and RQ 7 are addressed in Chapter 6 through investigation of the content types and

phrasal structure of reference names. RQ 8 and RQ 9, answered in Chapter 7, investigate

developers’ compliance with naming conventions.

Specifically, Chapter 5 investigates class names by addressing the research questions:

RQ 4 What phrasal structures do developers use in class names?; and

RQ 5 How do developers incorporate super class and interface names

in class names?

RQ 4 is investigated by analysing the structure and content of class names using the novel

approach of training a part of speech (PoS) tagger model for class names. Analysis to answer

RQ 5 investigates patterns of single generation inheritance in the corpus, identifying elements

of names from super class and super types that occur in the class name.

Attention turns to reference names in Chapter 6 to find answers to the following research

questions:

RQ 6 What content types do developers use to create reference names,

and to what extent is each content type used?; and

RQ 7 What phrasal structures do developers use in reference names,

and how are they related to Liblit et al.’s metaphors?

RQ 6 is answered with a survey of the diversity of name composition in the corpus. Names

composed of words and acronyms only are analysed using a specially trained PoS tagger model

to answer RQ 7.

So far, content types and phrasal structures have been examined with only limited refer-

ence to their context. Naming conventions, such as those specified by Gosling et al. (2014)

and Vermeulen et al. (2000), specify the forms of name that should be used, and the circum-

stances they should be used in. Conventions offer the developers of tools that process names

additional information that may support their analyses. Given the variety of name structures

and content types observed in the preceding chapter the question arises whether developers

6

1.2. Dissertation Overview

follow naming conventions, an assumption that researchers have used to support techniques

to extract information from identifier names. However there is limited empirical evidence of

the extent to which conventions are followed. In Chapter 7 I investigate the adherence to

naming conventions of reference names in the corpus by asking the research questions:

RQ 8 To what extent do projects adhere to particular naming conven-

tions or style?; and

RQ 9 Do some naming conventions tend to be broken more frequently

than others?

Adherence to naming conventions is evaluated using Nominal, a Java library I developed

to support the research, that evaluates characteristics of identifier names and contains a

declarative language to specify naming conventions.

Chapter 8 draws together conclusions about the techniques developed and the findings of

this research, and identifies some areas of future work.

The appendices include a glossary of terms, a list of the projects included in the corpus,

the database schema used for the corpus, software and data created during the research, and

a list of Penn Treebank tags. A road map of the dissertation is given in Figure 1.1 on page 8.

7

C
h

ap
ter

1.
In

tro
d

u
ctio

n
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 	

Exploratory	Study	
	

(Chapter	2)	
	

Corpus	Database	and	
Tokeniser	Development	

	
(Chapters	3	&	4)	

Contribution:	identification	of	
link	between	name	and	
source	code	quality	

Greater	diversity	in	name	
content	and	structure	

observed	than	described	in	
literature.	Hypothesis	formed.	

Identified	limitations	to	
existing	analytical	tools.	

	

Class	Name	Study	
	

(Chapter	5)	

Reference	Name	Study	
	

(Chapter	6)	

Reference	Naming		
Convention	Study	

	
(Chapter	7)	

Conclusions	
	

(Chapter	8)	

Data:	INVocD	corpus	of	60	
FLOSS	Java	projects	as	
database	

Contribution:	improved	
algorithms	for	tokenising	
names	

Software:	JIM	fact	extractor	
and	JIMdb	library	to	access	
INVocD	

Software:	INTT	name	tokeniser	library	

Data:	PoS	tagger	model	
trained	on	class	names	

Data:	PoS	tagger	model	
trained	on	reference	names	

Software:	multi-dictionary	
spell	checker	(MDSC)	

Coordinating	layer	

Java	Parsers	

JIMdb	 INTT	

Identifier	Name	Vocabulary	
Database	(INVocD)	

Ja
va
	Id
en

tif
ie
r	M

in
er
	(J
IM

)	A
rc
hi
te
ct
ur
e	

Identifier	Name	Vocabulary	
Database	(INVocD)		

JIMdb	

PoS	Tagger	Models	

Stanford	PoS	Tagger	

Stanford	Parser	
Multi-

Dictionary	
Spell	

Checker	
(MDSC)	

Coordinating	layer	

Nominal	

O
ut
lin
e	
ar
ch
ite

ct
ur
e	
of
	a
na

ly
tic
al
	to

ol
s	d

ev
el
op

ed
	a
nd

	u
se
d	
in
	C
ha
pt
er
s	5

-7
	

Software:	Nominal,	a	library	for	
checking	adherence	to	naming	
conventions	

Corpus	of	60	FLOSS	Java	projects	and	
improved	methods	of	tokenising	names.	

Contribution:	identification	of	
and	understanding	of	diverse	
class	name	structure	

Contribution:	quantification	of	
variety	of	content	types	used	
in	reference	names	in	corpus		

Contribution:	identification	of	
previously	unreported	phrasal	
structures	in	reference	names	

Unreported	and	unconventional	forms	of	name	found.		
How	closely	do	developers	follow	naming	conventions?	

Contribution:	quantification	of	
adherence	to	3	sets	of	naming	
conventions	in	projects	in	
corpus		

Contribution:	identification	of	
preference	for	abbreviations	
in	names	and	redundant	
prefixes	in	some	projects				Some	development	teams	create	

alternative	naming	conventions,	
particularly	for	Java	field	names.	

Majority	of	projects	in	corpus	
closely	follow	naming	conventions.	

Figure 1.1: Schematic of the road map through dissertation with major contributions and outline architectures of the tools indicating the role
played by components created during the research.

8

1.3. Publications

1.3 Publications

Parts of this dissertation are based on published conference papers, which are listed below

with the chapters they contribute to.

Butler, S.; Wermelinger, M.; Yu, Y. & Sharp, H. (2009) Relating Identifier Naming

Flaws and Code Quality: an empirical study. In Proceedings of the Working Conference

on Reverse Engineering, Lille, France, pp. 31–35. IEEE Computer Society. (Chapter 2)

Butler, S.; Wermelinger, M.; Yu, Y. & Sharp, H. (2010) Exploring the Influence of Iden-

tifier Names on Code Quality: an empirical study. In Proceedings of the 14th European

Conference on Software Maintenance and Reengineering, Madrid, Spain, pp. 159–168.

IEEE Computer Society. (Chapter 2)

Butler, S.; Wermelinger, M.; Yu, Y. & Sharp, H. (2011a) Improving the Tokenisation of

Identifier Names, In Proceedings of the 25th European Conference on Object-Oriented

Programming, Lancaster, UK, pp. 130–154. Springer, LNCS 6813. (Chapter 4)

Butler, S.; Wermelinger, M.; Yu, Y. & Sharp, H. (2011b) Mining Java Class Naming

Conventions. In Proceedings of the 27th IEEE International Conference on Software

Maintenance, Williamsburg, Virginia, USA, pp. 93–102. IEEE. (Chapter 5)

Butler, S.; Wermelinger, M.; Yu, Y. & Sharp, H. (2013) INVocD: Identifier Name Vo-

cabulary Dataset. In Proceedings of the 10th Working Conference on Mining Software

Repositories, San Francisco, California, USA, pp. 405–408. IEEE. (Chapter 3)

Butler, S.; Wermelinger, M. & Yu, Y. (2015a) A Survey of the Forms of Java Reference

Names. In Proceedings of the 23rd International Conference on Program Comprehen-

sion, Florence, Italy, pp. 196–206. IEEE. (Chapter 6)

Butler, S.; Wermelinger, M. & Yu, Y. (2015b) Investigating Naming Convention Adher-

ence in Java References. In Proceedings of the 31st International Conference on Software

Maintenance and Evolution, Bremen, Germany, pp. 41–50. IEEE. (Chapter 7)

The published papers are available at http://oro.open.ac.uk/view/person/sjb792.html

9

http://oro.open.ac.uk/view/person/sjb792.html

Chapter 2

Exploring the Relationship Between

Identifier Names and Code Quality

The impact of low quality identifier names on program comprehension is reasonably well

understood (Deißenböck and Pizka, 2006; Lawrie et al., 2007b, 2006), but little is known

about the extent to which the quality of identifier names might relate to the quality of source

code. A correlation between less readable source code and the occurrence of flaws in the

code identified by FindBugs (Ayewah et al., 2007) was identified using a readability metric

for source code developed by Buse and Weimer (2008). The readability metric, developed

using machine learning, was trained to agree with the judgement of 120 human subjects on

code readability. Length is the only property of individual names used as a classifier for the

metric, and it is likely that the human subjects would have applied a wider range of criteria

to judge names than their length when considering the readability of source code. Given poor

quality identifier names are a barrier to program comprehension, and may indicate a lack of

understanding of the problem, or the solution articulated in the source code, I hypothesise

that poor quality identifier names are indicative of lower quality source code.

The hypothesis is explored by seeking to answer the following research question:

RQ A What relationship exists between the occurrence of low quality

identifier names and lower quality source code?

To answer the research question I evaluate the quality of names and source code found in

the classes and methods of eight Java projects. The quality of names is determined using a

11

Chapter 2. Exploring the Relationship Between Identifier Names and Code Quality

validated set of naming conventions, and source code quality is evaluated using FindBugs, the

cyclomatic complexity metric (McCabe, 1976) and the maintainability index (Welker et al.,

1997). In addition, I evaluate the readability of methods using a readability metric (Buse

and Weimer, 2008) to verify the link between the readability of source code and FindBugs

warnings found by Buse and Weimer (2008). I also explore whether the findings may be

applied as a low-cost heuristic to identify potentially problematic regions of source code.

2.1 Related Work

Previous research on identifier naming and source code readability focuses largely on program

comprehension, particularly the contribution made by the semantic content of identifier names

(Deißenböck and Pizka, 2006; Lawrie et al., 2006; Rajlich and Wilde, 2002). Other related

research investigates source code readability (Buse and Weimer, 2008), and begins to explore

the relationship between identifier names and software quality (Boogerd and Moonen, 2009;

Marcus et al., 2008).

A longitudinal study of identifier names by Lawrie et al. (2007b) showed that identifier

name quality has improved, in terms of an increase in the proportion of dictionary words

used in names, during the preceding thirty years. The same study also found that identifiers

in proprietary source code typically contained more domain-specific abbreviations than open

source code. However, the study also found that identifiers change little following the initial

period of software development. This is confirmed by Antoniol et al. (2007) who also argue

that programmers may be more reluctant to change identifier names than source code, be-

cause of the lack of tool support for managing identifier names. Lawrie et al. (2006) describe

an empirical study which found identifier names composed of dictionary words were more

easily understood than those composed of abbreviations or single letters. An earlier study

by Takang et al. (1996) found experimental subjects expressed a preference for source code

with identifier names composed of dictionary words. The study, however, found no statisti-

cally significant difference in the performance of program comprehension tasks undertaken

using source code with identifier names composed of abbreviations and code with identifiers

composed of dictionary words.

Rajlich and Wilde emphasise the importance of identifiers as the primary source of con-

ceptual information for program comprehension (Rajlich and Wilde, 2002). Deißenböck and

12

2.1. Related Work

Pizka (2006) developed a formal model for the semantics of identifier names in which each

concept is represented by just one name throughout a program. The model excludes the

use of homonyms and synonyms, thus reducing the opportunities for confusion. The authors

found the model to be an effective tool for resolving difficulties with identifier names found

during program development and the resulting source code to be more maintainable.

A study of the morphological and grammatical features of identifier names in C, C++,

C# and Java by Liblit et al. (2006) found that identifiers are best understood within their

working context. Instance variables, for example, are coupled with method names in object-

oriented languages, and method names are often conceived with this relationship in mind.

Field and variable names have grammatical structures that reflect their independence. The

grammatical structure of method names is further differentiated by the need to reflect the

action the method performs and whether it has side effects, or takes one or more arguments.

Relf (2004) identified a set of cross-language identifier naming style guidelines from the

programming literature, and investigated their acceptance by programmers in an empirical

study. Relf implemented the naming style guidelines in a tool to help programmers create

good quality identifiers and to refactor existing identifiers (Relf, 2005). Refactoring is the

process of revising source code to improve its maintainability without changing its outward

behaviour (Fowler et al., 1999). A trigger for refactoring is a ‘code smell’ or ‘bad smell’, a

relatively simple feature of source code, such as a long method, that may indicate a deeper

problem with the implementation or design. Fowler’s original list of refactorings includes

the renaming of method where the name does not reflect the purpose of the method (Fowler

et al., 1999). Abebe et al. (2009) developed a system to recognise ‘lexicon bad smells’ –

grammatical and other flaws – in identifiers, thereby identifying a wider range of identifier

names for possible refactoring.

Two studies by Boogerd and Moonen (2008, 2009) applied the MISRA-C: 2004 coding

standard (MIRA Ltd, 2004) to measure the quality of source code before and after bug

fixes during the development of two closed source embedded C applications. They found

that while compliance with some of the rules increased as defects were fixed, bug fixes also

introduced violations of other rules. In other words, code with fewer defects, and hence of

higher quality, is deemed to be of lower quality by some of the coding rules. The authors

also found that though they could identify rules with a positive influence on software quality

13

Chapter 2. Exploring the Relationship Between Identifier Names and Code Quality

in each of the two studies, the rules did not have consistent effects, including the four rules

related to identifiers common to both studies.

A conceptual cohesion metric developed by Marcus et al. (2008) for classes, applies la-

tent semantic indexing (LSI) to the identifier names and comments in methods to establish

the level of conceptual cohesion between methods within classes. The metric outperformed

existing cohesion metrics as a predictor of defect rates for classes. The technique, however,

includes comments in the textual analysis and investigates the consistency of identifier name

use through lexical similarity only, without any reference to the quality of the identifier names.

In work classifying the lexicon used in Java method identifiers, Høst and Østvold advance

the idea that, because of the effort required to select a good identifier name, identifiers reflect

the cognitive processes of programmers and designers (Høst and Østvold, 2007). Conse-

quently, identifiers may then reflect the misunderstandings of the creator of the identifier and

misdirect the readers of source code. Further work by Høst and Østvold (2008, 2009) connects

the natural language content of method name identifiers with the method implementation,

and identify the existence of naming errors that they term ‘naming bugs’ where the method

name might conventionally be expected to describe a particular class of functionality, whereas

the method implements something else. In other words the method name is misleading to

the point that someone invoking the method would quite probably do so in error.

Buse and Weimer (2008) developed a readability metric for Java derived from measure-

ments of, among others, the number of parentheses and braces, line length, the number of

blank lines, and the number, frequency and length of identifiers. Using machine learning,

the readability metric was trained to agree with the judgement of human source code read-

ers. Buse and Weimer found a significant statistical relationship between the readability of

methods and the presence of defects found by FindBugs (2008) in open source code bases.

Although their work makes a link between readability and software quality, their notion of

readability, intriguingly, ignores the quality of identifier names.

The existing literature establishes the need for good identifier names to support program

comprehension. However, only tentative steps have been taken to investigate a relationship

to source code quality. The following investigation aims to provide a step in that direction.

14

2.2. Identifier Name Quality

2.2 Identifier Name Quality

There are two broad components of identifier name quality: typography and content. I

constrain the measurement of identifier quality to typography and the use of known natural

language elements, and do not undertake detailed assessments of semantic content and the

use of grammar. Rather than apply an arbitrary set of rules derived from a single set of

naming conventions, I used a set of empirically evaluated identifier naming guidelines.

Relf derived a set of twenty-one identifier naming style guidelines for Ada and Java from

the programming literature (Relf, 2004). Most of the guidelines, which were evaluated in an

empirical study of developers, do not deviate significantly from the Java identifier naming

conventions (Gosling et al., 2014; Sun Microsystems, 1999) and as they have been developed

in other widely used conventions (Vermeulen et al., 2000).

Relf’s identifier naming style guidelines combine typography and a simple approach to

natural language, but were not intended to be used as rules to evaluate the quality of identifier

names. Accordingly I found it necessary to update some guidelines to define more precisely

what was not permitted, and renamed some to reflect the proscriptive sense in which I applied

them. Whenever a guideline was modified the original intention of cross-language application

was retained insofar as possible.

I implemented a subset of Relf’s guidelines as tests. The remaining guidelines were not

adopted because either they do not reflect recent changes in Java programming practice,

or they are general guidelines of good practice from which it is difficult to derive practical

proscriptive rules. For example, Relf defines the Same Words guideline as prohibiting the

use of identifiers composed of the same words, but in a different order. Whilst superficially

attractive, a rule based on this guideline prohibits clear names for reciprocal operations (e.g.

htmlToXml and xmlToHtml) and pairs of words that create semantically distinct identifiers

(e.g. indexPage and pageIndex). Generally, the implementation of each guideline is ap-

parent from its name, and is described and illustrated in Table 2.1. However, the precise

implementation of some guidelines requires further explanation:

Capitalisation Anomaly For identifiers other than constants I test for capitalisation of

only the initial letter of acronyms as prescribed by Vermeulen et al. (2000), i.e. only the

initial letter of a component word is capitalised either at word boundaries, or the beginning

15

Chapter 2. Exploring the Relationship Between Identifier Names and Code Quality

Table 2.1: The Identifier Naming Style Guidelines Applied

Name Description Example of flawed identi-
fier(s)

Capitalisation
Anomaly

Identifiers should be appropriately cap-
italised.

HTMLEditorKit, pagecounter,
fooBAR

Consecutive Under-
scores

Consecutive underscores should not be
used in identifier names.

foo bar

Enumeration Identi-
fier Declaration Or-
der

Unless there are compelling and ob-
vious reasons otherwise, enumeration
constants should be declared in alpha-
betical order.

enum Card {ACE, EIGHT,

FIVE, FOUR, JACK, KING

...}

Excessive Words Identifier names should be composed of
no more than four words or abbrevia-
tions.

floatToRawIntBits()

External
Underscores

Identifiers should not have either lead-
ing or trailing underscores.

foo

Long
Identifier Name

Identifier names of more than twenty-
five characters should be avoided where
possible.

getPolicyQualifiersRejected

Naming Convention
Anomaly

Identifiers should not consist of non-
standard mixes of upper and lower case
characters.

FOO bar

Non-Dictionary
Words

Identifier names should be composed
of words found in the dictionary and
abbreviations and acronyms that are
more commonly used than the unab-
breviated form.

strlen

Number of Words Identifiers should be composed of be-
tween two and four words.

ArrayOutOfBoundsException,
name

Numeric
Identifier Name

Identifiers should not be composed en-
tirely of numeric words or numeric
words and numbers.

FORTY TWO

Short
Identifier Name

Identifiers should not consist of fewer
than eight characters, with the excep-
tion of b, c, d, e, g, i, in, inOut, j, k,
m, n, o, out, s, t, x, y, z

name

Type Encoding Type information should not be en-
coded in identifier names using Hun-
garian notation or similar

iCount

of the identifier, if appropriate, e.g. HtmlEditorKit rather than HTMLEditorKit. This is an

arbitrary choice and it is known that some development teams prefer the use of upper case

acronyms.

16

2.2. Identifier Name Quality

Non-Dictionary Words A dictionary word was defined as belonging to the English lan-

guage, because all the projects investigated are developed in English. I constructed a dic-

tionary consisting of some 117,000 words, including inflections and American and Canadian

English spelling variations, using word lists from the SCOWL package up to size 70, the

largest lists consisting of words commonly found in published dictionaries (Atkinson, 2004).

A further 90 common computing and Java terms, e.g. ‘arity’, ‘hostname’, ‘symlink’, and

‘throwable’ were added. A separate dictionary of abbreviations was constructed, using the

criterion that “the abbreviation is much more widely used than the long form, such as URL

or HTML” (Sun Microsystems, 1999).

A concern is that development teams may use project, or domain, specific abbreviations

and terms, which are not in my dictionary, yet are well understood by the programmers.

To address the issue additional dictionaries were created by the analytical software for each

application of unrecognised component words that were used in three, five and ten or more

unique identifiers. For example, an unrecognised word or abbreviation used in ten or more

unique identifiers may be inferred to be a commonly understood term. The frequencies of

three, five and ten are arbitrary, but may be seen as representative of the familiarity the

development team might have with a given term. Following the creation of the dictionaries,

each identifier was tested again for compliance to the Non-Dictionary Words guideline by

using a combination of the main dictionary, the abbreviation dictionary, and each of the

dictionaries of project-specific words and abbreviations.

Number of Words Relf’s Number of Words guideline was intended to encourage pro-

grammers to create identifiers between two and four words long. In applying the guideline

as a proscriptive rule both identifiers composed of one word and those composed of five or

more words are categorised together, which does not allow the contribution made by the

occurrence of either flaw to be determined. The issue is addressed, in part, by the creation

of an Excessive Words flaw, defined in Table 2.1, which determines identifiers of five or more

words to be flawed.

Short Identifier Name I updated Relf’s guideline to include more single letter and short

identifiers commonly used in Java (Sun Microsystems, 1999; Gosling et al., 2014; Vermeulen

et al., 2000) (see Table 2.1).

17

Chapter 2. Exploring the Relationship Between Identifier Names and Code Quality

2.3 Source Code Quality

This section describes the methods used to evaluate source code quality. The investigation

reported in this chapter is motivated by Buse and Weimer’s development of a readability

metric, which demonstrated correlation between reduced readability and the occurrence of

FindBugs warnings Buse and Weimer (2008). I use FindBugs to evaluate the code quality of

classes and methods, and two source code metrics to evaluate methods. Buse and Weimer’s

readability metric was also used to provide assessments of the readability of methods.

2.3.1 FindBugs

FindBugs is a static analysis tool for Java that analyses bytecode for bug patterns. The type

of defects identified by the bug patterns range from possible dereferences of null pointers,

which may halt program execution, to Java specific problems associated with an incomplete

understanding of the Java language (Ayewah et al., 2007). The latter class of defects include

code constructs likely to increase the maintenance effort and code constructs that may have

unintended side-effects. FindBugs was used extensively during two days in May 2009 at

Google, and software engineers found some 4,000 significant issues with their Java source

code as a result (FindBugs, 2008). While FindBugs reports false positives, as does any static

analysis tool, FindBugs’ perspective on source code quality is suitable for my needs.

2.3.2 Source Code Quality Metrics

My objective is to measure source code quality in a way that reflects the influence of the

programmer on source code and the possible impact on the reader. I used cyclomatic com-

plexity (McCabe, 1976) and the three metric maintainability index (Welker et al., 1997) to

measure the quality of Java methods.

Cyclomatic complexity provides a ready assessment of the complexity of a method in

terms of the number of possible execution paths. I acknowledge that cyclomatic complexity

is a somewhat controversial metric (Munson, 2003), but believe that it provides an indication

of source code complexity sufficient for my purposes.

The three metric maintainability index (MI) (Welker et al., 1997) is given by:

MI = 171− 5.2× ln(HV)− 0.23× V (G)− 16.2× ln(LOC)

18

2.4. Methodology

where LOC is the number of lines of code, V (G) is the cyclomatic complexity and HV is

the Halstead Volume (Halstead, 1977), a source code metric determined by the number of

operators and operands used, including identifiers. The Halstead Volume is the product of the

Halstead Vocabulary and the logarithm of the Halstead Length. The Halstead Vocabulary is

the number of unique operators and unique operands, and the Halstead Length is the sum of

the number of operators and operands. By incorporating the Halstead Vocabulary, the MI

is influenced by the complexity of a unit of source code in terms of the number of identifiers

required to implement a solution.

2.4 Methodology

My investigation is conducted with two different units of analysis: the Java class and the

Java method. At the class level, the investigation concerns the possibility of co-occurrence

of lower name quality and FindBugs warnings. At the method level, the same relationship is

examined, and possible relationships between reduced name quality and additional metrics

of source code quality, and readability are considered.

2.4.1 Data Collection

I selected eight established open source Java projects for investigation, including GUI ap-

plications, programmers’ tools, and libraries. The particular projects were chosen to reduce

the potential influence of domain and project-specific factors in the investigation. Table 2.2

shows the version and number of classes and methods analysed for each project.

Table 2.2: Source Code Analysed

Project Version Classes Methods

ANT 1.71 796 9146
Cactus 1.8.0 128 926
FreeMind 0.9.0 Beta 20 404 4883
Hibernate Core 3.3.1 1145 12309
JasperReports 3.1.2 1140 12349
jEdit 4.3 pre16 483 5835
JFreeChart 1.0.11 582 8230
Tomcat 6.0.18 1019 11394

I developed a tool to automate the extraction and analysis of identifiers from Java source

19

Chapter 2. Exploring the Relationship Between Identifier Names and Code Quality

code. Java files were parsed and identifiers analysed on the parse tree to establish adherence

to the typographical rules for their context, e.g. method names starting with a lower case

character. Identifiers were then extracted and added to a central store, with information

about their location, and divided into hard words — their component words and abbreviations

— using the conventional Java word boundaries of internal capitalisation and underscores

(i.e. conservative tokenisation). Identifiers were then analysed by the tool for conformance

to Relf’s guidelines in Table 2.1, my own Excessive Words guideline, and the Non-Dictionary

Words guideline where the dictionary is extended by a set of commonly used hard words.

Where subject applications were found to contain source code files generated by parser

generators, or to incorporate source code from third party libraries, those files were ignored to

try to ensure only source code written by the applications’ development teams was analysed.

The tool recorded the primitive Halstead metrics for each method by, adapting the stan-

dard developed for C by (Munson, 2003) and applying it to Java. McCabe’s cyclomatic

complexity (V(G)) (McCabe, 1976), was also recorded, and LOC for each method, to com-

pute the maintainability index.

Preliminary analysis showed that FindBugs warnings were reported for a minority of

classes. Similarly, many of the identifier flaws were found in a minority of classes. Given the

absence of a normal distribution of warnings and flawed identifiers, and that the readability

metric is a binary classifier, I decided to treat the presence of flawed names and FindBugs

warnings as binary classifiers. To create a binary classifier from the maintainability index

I used the threshold of 65, established by empirical study (Welker et al., 1997), to identify

methods as ‘more-maintainable’ and ‘less-maintainable’. I also applied the cyclomatic com-

plexity metric as a binary classifier. The popular programming literature often advocates

that programmers take steps to keep the cyclomatic complexity of individual methods low.

Some texts suggest refactoring should be considered when cyclomatic complexity is six or

more, and that the cyclomatic complexity of a method should not exceed ten (McConnell,

2004). It is outside the scope of the investigation to examine the merits of such practices

or the justification for the chosen thresholds. However, to create binary classifiers from the

cyclomatic complexity metric, I adopted thresholds of six and ten to represent methods of

moderate and higher complexity. This provides two binary classifiers distinguishing between

methods with low complexity and those with a cyclomatic complexity of six or more, and

20

2.4. Methodology

between methods with low to moderate complexity and those with a cyclomatic complexity

of ten or more.

The readability of source code was evaluated using a readability metric tool developed

by Buse and Weimer (2008). The readability metric follows a bimodal distribution and is

interpreted as binary classifier that identifies source code as ‘more-readable’ or ‘less-readable’.

The readability metric is used to evaluate the readability of methods to ensure that the

metric assessed source code as the human reader would see it. Java source code files contain

one or more top-level classes, each of which may contain member classes. Both types of class

may contain methods. I recorded as methods, only those contained either by top-level classes

or by member classes directly contained by top-level classes. Any local and anonymous classes

contained within a methods are recorded as part of the containing method and not separately.

For example, if a method contains an anonymous class, the total cyclomatic complexity for

the anonymous class is added to the cyclomatic complexity of the containing method.

The Java archive (JAR) files resulting from the compilation of the source code were

analysed with FindBugs. FindBugs employs a heuristic to determine the severity of the

defects it finds and, in its default mode, issues priority one and priority two warnings, with

priority one deemed the more serious. Counts of priority one and priority two warnings were

recorded for each class and method. The default settings for FindBugs were used with the

exception of a filter to exclude warnings of the use of unconventional capitalisation of the

first letter in class, method and field names, which would overlap with the findings of my

tool. I also filtered out the “Dead Local Store” warning, which may result from the actions

of the Java compiler.

The identifier naming and metrics data collected for each Java class and method was

stored in XML files and collated with the XML output of FindBugs and the readability

metric tool, using a tool I developed. Data extracted from the source code was matched

with classes recorded by FindBugs to ensure that only identifiers from classes compiled into

the JAR files were analysed. The collated data for each method was then written to R (R

Development Core Team, 2008) dataframes for statistical analysis.

21

Chapter 2. Exploring the Relationship Between Identifier Names and Code Quality

2.4.2 Statistical Analysis

The non-parametric chi-square test and Fisher’s Exact test (Crawley, 2005) are used to de-

termine whether any association existed between the presence of FindBugs warnings and

identifier flaws in classes and methods, and between flawed identifiers and readability, cyclo-

matic complexity and MI in methods.

In the case of classes, contingency tables were created for each type of identifier flaw and

FindBugs warning by determining the number of classes containing both the warning and

identifier flaw, the number of classes with the warning only, those with the flaw only, and

those without both the warning and the flaw. Table 2.3 shows the contingency table for

priority two warnings and Long Identifier Name flaws in Tomcat classes.

Table 2.3: Example Contingency Table

Tomcat FindBugs Priority Two Warnings

classes with classes without

Long Identifiers
classes with 122 127

classes without 165 605

Before applying either statistical test a contingency table of expected values is created.

The expected value for each cell is calculated by multiplying the row total by the column

total and dividing by the total number of classes, e.g. for Table 2.3 the expected value for

the top left cell is (122 + 165) ∗ (122 + 127)/(122 + 165 + 127 + 605) = 70.13

The chi-square test, with Yates’ continuity correction, was applied to each contingency

table, with the null hypothesis that the observed frequencies of warnings and flaws were

independent. The Yates’ continuity correction was used as it gives more conservative p-

values than the plain chi-square test. Where any of the expected contingencies were less than

five, I applied Fisher’s Exact Test with the null hypothesis that the odds ratio was equal to

one. The odds ratio shows the directionality of any relationship, with a value of one showing

no relationship. In the case of Cactus, for which FindBugs reported a total of 20 defects in

128 classes, Fisher’s Exact Test was often the only analytical method that could be applied.

For each test where the p-value was less than 0.05, the contingency table was compared

with the table of expected frequencies to establish the nature of the association. For Table 2.3

22

2.4. Methodology

p is less than 0.05 and the observed frequency of 122 for the top left cell is greater than the

expected value of 70.13. Thus, for Tomcat, there is a statistically significant association

between priority two warnings and the presence of Long Identifier Name flaws in classes.

In addition to the chi-square tests when analysing methods, I applied another technique

to analyse contingency tables that is used to evaluate diagnostic tests to determine whether

the observed phenomena have a practical application. The same contingency tables used

for the chi-square tests were analysed by treating FindBugs warnings, the maintainability

index, cyclomatic complexity and readability as reference classifiers. For example, for the

contingency table in Table 2.4 the occurrence of FindBugs priority two warnings in methods

is treated as the reference classifier, and the performance of the Non-Dictionary Words flaw

as a classifier is tested in comparison.

Table 2.4: Example Contingency Table

JFreeChart FindBugs Priority Two Warnings

methods with methods without

Non-Dictionary
Words

methods with 103 2925

methods without 37 5165

To evaluate the relative performance of the test classifier, two quantities are derived

from the contingency table: the sensitivity and the specificity, which represent agreement

between the two classifiers. The sensitivity is the proportion of the population classified as

positive by the reference classifier that are classified positively by the classifier being tested.

In the example in Table 2.4, the sensitivity is the proportion of methods for which FindBugs

warnings are issued, that also contain identifiers with the Non-Dictionary Words flaw; i.e.

sensitivity = 103÷(103+37) = 0.74. The specificity is the proportion of population classified

negatively by the reference classifier that are also classified negatively by the test classifier.

In Table 2.4, the specificity is the proportion of the methods without FindBugs priority

two warnings that have no identifiers with the Non-Dictionary Words flaw: specificity =

5165÷ (2925 + 5165) = 0.64. An advantage of this method is that sensitivity and specificity

are independent of the rate of incidence, or prevalence, of the phenomenon being investigated.

The characteristics of a given test can be illustrated using receiver operating characteristic

(ROC) curves, where the sensitivity of a test is plotted on the y-axis, against 1− specificity

23

Chapter 2. Exploring the Relationship Between Identifier Names and Code Quality

(the false positive rate) on the x-axis. The area under the curve (AUC) (see Figure 2.1)

indicates the efficacy of the test. A useless test, i.e. one that is equivalent to guessing, is

indicated by a diagonal line drawn from the origin to the top-right corner, representing the

equation sensitivity = 1 − specificity , which has an AUC of 0.5. For a test to be useful the

points plotted should lie above and to the left of the diagonal line. ROC curves are, thus, a

means of visualising the predictive power of the observed associations.

The example results in a point at (0.36, 0.74), above and to the left of the diagonal,

meaning that, in the case of JFreeChart, using the Non-Dictionary Word flaw as a binary

classifier is a better than chance method of predicting the presence or absence of FindBugs

priority two warnings. The predictive power of a result is related to its perpendicular distance

from the diagonal line, and is equal to the area under a line drawn from the origin to the point

representing the result and from the result to the point (1, 1). In the example, the predictive

power is 0.69, which means that the Non-Dictionary Word flaw has a 0.69 probability of

indicating whether or not a method contains a FindBugs Priority two warning in JFreeChart.

The majority of methods in JFreeChart are correctly classified by the test classifier and

are grouped in the top-left and bottom-right cells of Table 2.4. As will be seen in the next

section, especially for Cactus, it is possible for the members of a population to be grouped

in these cells, resulting in values of sensitivity and specificity that give a useful probability,

without the distribution in the contingency table giving a statistically significant result for

either the chi-square test or Fisher’s exact test.

2.4.3 Threats to Validity

Construct Validity The definition of the Short Identifier Name guideline is much more

restrictive than the Java naming conventions (Sun Microsystems, 1999; Gosling et al., 2014;

Vermeulen et al., 2000) and common practice. Consequently the number of identifiers cate-

gorised as flawed may be inflated, and accordingly the observed associations may need to be

treated with caution.

FindBugs, like other static analysis tools, reports false positives (Ayewah et al., 2007).

Without inspecting the source code for all warnings, the false positive rate cannot be estab-

lished. Another concern is that FindBugs may have been applied to the subject code bases.

In response to my enquiries, the developers of FreeMind, jEdit and JFreeChart have indicated

24

2.5. Results

that they do not use FindBugs systematically, if at all.

External Validity The apparently project-specific influences on the relationships between

flawed identifiers and FindBugs warnings in Table 2.6, suggest that, though general principles

may be derived from my findings, caution is necessary when applying them to other projects.

Some project-specific variation is apparent even in the more consistent findings shown in

Tables 2.7 and 2.8, again suggesting that care may be required when applying these findings.

2.5 Results

This section reports the result of the class and method analyses. The identifier flaws Con-

secutive Underscores and Enumeration Identifier Declaration Order (Table 2.1) are excluded

from the statistical analysis because the former was not found in any of the code bases, and

the latter only very rarely.

2.5.1 Class Analysis

Table 2.5 shows the statistically significant associations between identifier flaws and FindBugs

warnings in dark grey for p < 0.05 and black for p < 0.001, the absence of any significant

association (i.e. p > 0.05) in light grey, and blank areas show the absence of the identifier

flaw1. For each statistically significant relationship, the trend was checked and the observed

frequency of the occurrence of identifier flaws and FindBugs Warnings together in classes

was always greater than expected by chance, with one exception (marked with ‘–’), which I

discuss later.

Table 2.5 shows that associations between priority one warnings and identifier flaws are

less common than the more consistent associations for priority two warnings. The Capitalisa-

tion Anomaly, Dictionary Words, Excessive Words and Long Identifier Name flaws are each

associated with priority two warnings in at least seven of the eight code bases.

Statistically significant relationships between identifier flaws and defects for Cactus in

Table 2.5 are constrained to the Capitalisation Anomaly, Dictionary Words and Excessive

Words flaws. A possible explanation is that the Cactus development team use CheckStyle

(Burn, 2007) to ensure committed code conforms to the project’s detailed coding conventions

1Full details of the chi-square values can be found at http://www.facetus.org.uk/conferences/WCRE09/

25

http://www.facetus.org.uk/conferences/WCRE09/

Chapter 2. Exploring the Relationship Between Identifier Names and Code Quality

Table 2.5: Associations Between Naming Flaws and Priority One and Two Warnings at
Class Level

Priority One Warnings Priority Two Warnings

A
N

T

C
a
c
tu

s

F
re

e
M

in
d

H
ib

e
rn

a
te

J
a
sp

e
rR

e
p

o
rt

s

jE
d

it

J
F
re

e
C

h
a
rt

T
o
m

c
a
t

A
N

T

C
a
c
tu

s

F
re

e
M

in
d

H
ib

e
rn

a
te

J
a
sp

e
rR

e
p

o
rt

s

jE
d

it

J
F
re

e
C

h
a
rt

T
o
m

c
a
t

Capitalisation Anomaly
Excessive Words
External Underscores * * * * * * * *
Identifier Encoding * * * *
Long Identifier Name
Naming Convention Anomaly
Non-Dictionary Words
Number of Words
Numeric Identifier Name * * * * * – *
Short Identifier Name

p < 0.001 p < 0.05 p > 0.05 * No flaw

(Apache Software Foundation, 2008). Their development methodology reduces the number

of flawed identifiers; however, my tool analyses capitalisation more rigorously than Check-

Style, and performs checks for the length of identifiers and natural language content, which

CheckStyle does not.

The only statistically significant negative association found (marked ‘–’) is between Nu-

meric Identifier Name flaws and priority two defects for JasperReports. Examination of the

extracted identifiers found only the constants ZERO and ONE composed of numeric words alone,

and that the former is used in 50 classes without FindBugs warnings.

2.5.2 Method Analysis

In Tables 2.6, 2.7 and 2.8 statistically significant associations between the flawed identifiers

and each of the source code quality measures are represented in black where p < 0.001 and

dark grey where p < 0.05. Where the trend of association was negative, i.e. the presence of

the particular identifier flaw is associated with better quality source code, the cell is marked

with a white dash. White cells represent the lack of a statistically significant association (i.e.

p > 0.05), and asterisks indicate where the particular identifier flaw was not found. The

digits contained in selected cells show the probability with which the identifier flaw, when

applied as a binary classifier, correctly predicts the quality of methods. Only probabilities

26

2.5. Results

of 0.55, marginally better than guessing, or greater, have been included in the tables. The

probabilities not shown are largely close to 0.5, and only less than 0.5 for some of the negative

associations.

Table 2.6: Associations Between Naming Flaws and Methods Containing Priority One and
Two Warnings

Priority One Warnings Priority Two Warnings

A
N

T

C
a
c
tu

s

F
re

e
M

in
d

H
ib

e
rn

a
te

J
a
sp

e
rR

e
p

o
rt

s

jE
d

it

J
F
re

e
C

h
a
rt

T
o
m

c
a
t

A
N

T

C
a
c
tu

s

F
re

e
M

in
d

H
ib

e
rn

a
te

J
a
sp

e
rR

e
p

o
rt

s

jE
d

it

J
F
re

e
C

h
a
rt

T
o
m

c
a
t

Capitalisation Anomaly .71 .63 .59 .56 .62 .62 – – .57

Excessive Words .55 .55 .55 .58 –
External Underscores * * * * * * * *
Long Identifier .59 .59 .57 –
Naming Convention Anomaly
Number of Words .57 .61 .62 .62 .64 .56 .59 .55 .56 .59 – .55 .55

Numeric Identifier .55 * * * * * * * *
Short Identifier Name .59 .64 .63 .65 .66 .61 .59 .56 .58 .62 – .56 .57

Type Encoding * * * * * *
Non-Dictionary Words .72 .92 .71 .70 .66 .60 .81 .57 .60 .64 .62 – .63 .69 .59

Extended 3 .71 .94 .66 .81 .55 .64 .66 .59 .63 .59

Extended 5 .76 .94 .66 .80 .57 .88 .56 .64 .65 .64 – .63 .72 .59

Extended 10 .72 .92 .65 .75 .67 .87 .55 .63 .64 .64 – .61 .72 .61

Less-readable .82 .74 .72 – .65 .72 .60 .67 .67 .67 – .66 .68

p < 0.001 p < 0.05 p >= 0.05 * No flaw

Each table lists three further categories labelled ‘Extended 3’, ‘Extended 5’ and ‘Extended

10’. The results for the three ‘Extended’ flaws should be compared with those for the Non-

Dictionary Words flaw to determine the influence of project-specific words and abbreviations

on the relationship between the linguistic content of identifiers and FindBugs warnings. The

bottom line of Table 2.6 shows the relationships between methods classified as less-readable by

the readability metric and FindBugs warnings. Where associations were found associations,

the results largely confirm the connection between readability and FindBugs warnings found

by Buse and Weimer (2008). Indeed, my results show the connection between readability and

FindBugs warnings extends to projects such as ANT and FreeMind, which Buse and Weimer

did not investigate. However, this work differs in the statistical methods used, the versions

of projects investigated, and because it discriminates between priority one and two warnings,

which Buse and Weimer did not.

Table 2.6 shows the associations between identifier flaws and FindBugs priority one and

27

Chapter 2. Exploring the Relationship Between Identifier Names and Code Quality

priority two warnings in the methods of each project. The statistical associations are largely

confined to particular identifier flaws indicating the general cross-project trends. However,

there are also apparent project-specific relationships as illustrated by Cactus and jEdit for

both priority one warnings, and Cactus, Hibernate and JasperReports for priority two warn-

ings.

While Cactus and jEdit have just one statistically significant association with priority one

warnings between them, useful predictive qualities were found in the relationships for some

identifier flaws. The probabilities given in the left hand side of Table 2.6 emphasise the cross-

project nature of the relationships between the Extended, Non-Dictionary Words, Number

of Words and Short Identifier flaws. The relationships for the priority two warnings are less

clear. There are hints of similar, general, cross-project relationships; however, the project-

specific relationships are more apparent. Cactus, again, has few statistical associations, but

some relationships have probabilities greater than 0.55. Hibernate and JasperReports both

have negative statistical associations. Hibernate has a few relationships with probabilities

greater than 0.55, whereas JasperReports has none.

Figure 2.1: ROC Plot for the Non-Dictionary Words Flaw at the Method Level

The relationships for the Non-Dictionary Words flaw and priority two warnings are plotted

in Figure 2.1. While six points are above the diagonal line and illustrate the utility of the

Non-Dictionary Words flaw as a light-weight classifier, there are two points below the line.

The point for Hibernate, where no statistically significant association was found, is closer to

the line and the other is for JasperReports which has a negative association.

28

2.5. Results

Tables 2.7 and 2.8 show much more consistent relationships for identifier flaws with com-

plexity, maintainability and readability. There remain, however, hints of project-specific

relationships, which are most apparent for Cactus. The predictive probability associated

with each relationship illustrates the utility of the identifier flaws as light-weight classifiers

for source code quality. The relationships between the Non-Dictionary Words flaw and com-

plexity and readability are plotted in Figure 2.1.

Table 2.7: Associations Between Naming Flaws and Cyclomatic Complexity at the Method
Level

Cyclomatic Complexity >= 6 Cyclomatic Complexity >= 10

A
N

T

C
a
c
tu

s

F
re

e
M

in
d

H
ib

e
rn

a
te

J
a
sp

e
rR

e
p

o
rt

s

jE
d

it

J
F
re

e
C

h
a
rt

T
o
m

c
a
t

A
N

T

C
a
c
tu

s

F
re

e
M

in
d

H
ib

e
rn

a
te

J
a
sp

e
rR

e
p

o
rt

s

jE
d

it

J
F
re

e
C

h
a
rt

T
o
m

c
a
t

Capitalisation Anomaly .68 .68 .65 .65 .65 .61 .68 .73 .67 .72 .63 .64 .66 .61 .73 .75

Excessive Words .58 .62 .55 .58 .55 .55 .58 .65 .58 .60

External Underscores * * * * * * * *
Long Identifier .56 .56 .64 .62 .57 .55 .56 .57 .68 .66 .58 .57

Naming Convention Anomaly .55

Number of Words .56 .62 .57 .61 .65 .59 .60 .55 .61 .57 .60 .64 .58 .59

Numeric Identifier * * * * * * * *
Short Identifier Name .58 .65 .58 .64 .64 .55 .61 .61 .63 .65 .57 .62 .62 .55 .60 .62

Type Encoding * * * * * *
Non-Dictionary Words .70 .65 .68 .75 .69 .64 .78 .74 .67 .70 .67 .74 .70 .64 .78 .76

Extended 3 .69 .65 .63 .69 .65 .62 .69 .72 .69 .70 .61 .73 .68 .64 .75 .75

Extended 5 .71 .64 .65 .72 .69 .64 .80 .73 .70 .69 .65 .75 .73 .66 .82 .76

Extended 10 .71 .65 .66 .74 .70 .65 .80 .74 .70 .70 .66 .76 .74 .66 .81 .77

p < 0.001 p < 0.05 p >= 0.05 * No flaw

Since the investigations were completed, Posnett et al. (2011) have reviewed the work

of Buse and Weimer (2008) and developed an improved readability metric, which relies on

the Halstead Volume, LOC and software entropy. The model of readability developed by

Posnett et al. is used as a benchmark by Börstler et al. (2015) to evaluate a readability

metric created using an alternative approach derived from the Flesch Reading Ease Score

(Flesch, 1948). Börstler et al. report similarity between their source code readability metric

and that developed by Posnett et al.. Of interest is that Börstler et al. also report close

correlation with the Maintainability Index (Welker et al., 1997), which arises because of the

reliance of both metrics on the Halstead Volume and LOC metrics. Table 2.8 may be viewed,

with this relationship in mind, using the Maintainability Index as approximation of the more

recent readability metrics.

29

Chapter 2. Exploring the Relationship Between Identifier Names and Code Quality

Table 2.8: Associations Between Naming Flaws and Readability and the Maintainability
Index at the Method Level

Less-Readable Less-Maintainable

A
N

T

C
a
c
tu

s

F
re

e
M

in
d

H
ib

e
rn

a
te

J
a
sp

e
rR

e
p

o
rt

s

jE
d

it

J
F
re

e
C

h
a
rt

T
o
m

c
a
t

A
N

T

C
a
c
tu

s

F
re

e
M

in
d

H
ib

e
rn

a
te

J
a
sp

e
rR

e
p

o
rt

s

jE
d

it

J
F
re

e
C

h
a
rt

T
o
m

c
a
t

Capitalisation Anomaly .62 .55 .61 .60 .62 .62 .63 .66 .78 .78 .76 .67 .67 .64 .81 .77

Excessive Words .59 .58 .61 .57 .59 .58 .67 .68 .62 .57 .63 .55

External Underscores * * * * * * * .57 *
Long Identifier .56 .58 .60 .58 .56 .56 .57 .68 .67 .73 .71 .57 .61 .58

Naming Convention Anomaly .55 .57 .56 .55

Number of Words .56 .60 .55 .57 .61 .62 .62 .65 .56 .59 .60

Numeric Identifier * * * * * * * *
Short Identifier Name .57 .59 .65 .62 .65 .66 .56 .61 .63

Type Encoding * * * * * *
Non-Dictionary Words .65 .56 .61 .66 .65 .65 .62 .68 .76 .77 .79 .82 .72 .72 .80 .78

Extended 3 .62 .56 .58 .62 .60 .65 .81 .76 .69 .83 .72 .71 .84 .80

Extended 5 .64 .57 .60 .63 .63 .66 .82 .76 .75 .85 .78 .74 .85 .80

Extended 10 .65 .56 .58 .63 .65 .63 .68 .80 .77 .77 .85 .80 .74 .84 .80

p < 0.001 p < 0.05 p >= 0.05 * No flaw

2.6 Discussion

Table 2.5 shows that priority one warnings often occur independently of identifier flaws where

a class is analysed. This suggests programmers are capable of making significant errors irre-

spective of the degree of adherence to naming conventions. However, that strong associations

often exist at the class level between priority two warnings and particular identifier flaws

indicates connections between the use of low quality identifiers and less serious FindBugs

defects.

The statistically significant associations found for FindBugs priority one and two warnings

and identifier name flaws at the method level (Table 2.6) contain common features. There

appear to be general, cross-project associations for some identifier flaws, but the distribution

of associations appears to be largely project specific. Cactus is the most extreme example

with statistically significant associations found with the chi-square test and Fisher’s exact

test only between the extended dictionaries and priority two warnings. jEdit has only one

statistically significant association with priority one warnings, but more with priority two.

The negative associations in Table 2.6 (marked with white dashes) emphasise the project

specific nature of some relationships. That the negative associations are positive for the

more serious priority one warnings, suggests that the developers in both projects may face

30

2.6. Discussion

more complex issues with identifiers than can be explained without further investigation.

Fewer relationships between identifier flaws and priority one warnings, and more general

relationships with priority two warnings were found at the class level than at the method

level. At the method level a proportion of FindBugs warnings, which apply only to classes,

are eliminated from the investigation. The finer-grained analysis could be the sole explanatory

factor for the difference between the two sets of results for FindBugs warnings. However, it is

possible that FindBugs warnings applicable at the class level alone, may have been a source

of noise.

The negative associations for the Excessive Words and Long Identifier flaws for methods

in JasperReports (Table 2.6) may be connected through the widespread use of longer identi-

fier names, with which the development team have become familiar. The negative association

for the Non-Dictionary Word flaw is not found with the lower frequency extended dictionaries

and becomes a positive association with the ‘Extended 10’ flaw, indicating the importance

of widely used application-specific terms in JasperReports. The use of application-specific

terms is consistent with the commercialised nature of JasperReports and the finding of Lawrie

et al. (2007b) that domain-specific natural language and abbreviations are more common in

identifiers found in commercial source code than in open source. It is notable that the as-

sociation between identifiers constructed of non-dictionary words and priority two defects is

statistically significant at the class level in all but one of the subject code bases (JasperRe-

ports, Table 2.5) because empirical studies by Lawrie et al. (2006) have shown that the use

of dictionary words makes identifiers easier to read and understand.

The evaluation of the predictive quality of each relationship at the method level offers

further insights. Some relationships, despite the statistical independence of the two classifiers,

may be applied as heuristics. The Non-Dictionary Word flaw for Cactus, for example, could

be applied as reasonably reliable classifier of source code for FindBugs priority one warnings,

with a probability of >0.9. In general, the Non-Dictionary Words flaw is a fair to good

classifier for FindBugs warnings; however, it is not perfect. The Number of Words and Short

Identifiers flaws are much weaker classifiers, with probabilities largely between 0.55 and 0.60,

but are still better than guessing.

Tables 2.7 and 2.8 show largely consistent associations between the presence of identifier

flaws and lower quality source code. In both cases the Capitalisation Anomaly and Non-

31

Chapter 2. Exploring the Relationship Between Identifier Names and Code Quality

Dictionary Words flaws provide the stronger classifiers. For complexity and maintainability

the Excessive Words, Long Identifier Name, Number of Words, and Short Identifier Name

flaws also perform better than chance. However, only the Capitalisation Anomaly and Non-

Dictionary Words flaws have consistent relationships with readability.

Identifier length is the only characteristic of individual identifiers that is a component of

the readability metric. However, Buse and Weimer (2008) found that identifier length was

not a significant influence on the readability of source code. The findings, shown in the left

hand side of Table 2.8, suggest the human subjects, against whose judgements of source code

readability the metric was trained, were influenced by the conformance of identifier names to

familiar typographical conventions, and the use of dictionary words and well-known abbrevi-

ations. Further, the findings suggest that longer identifiers do have a negative influence on

readability, as evidenced by the statistical associations found for the Excessive Words and

Long Identifier flaws in Table 2.8.

The ROC plots for the Non-Dictionary Words flaw in Figure 2.1 illustrate that the flaw

may be applied to predict lower quality source code. Tables 2.7 and 2.8 record probabilities

generally greater than 0.6 and sometimes as high as 0.8, showing that the Non-Dictionary

Words flaw provides a usable, light-weight classifier for the complexity, maintainability and

readability of source code. The probabilities for other identifier flaws given in Tables 2.7

and 2.8 show similar predictive values for identifying less-readable, less maintainable and

more complex source code. However, the probabilities given in Table 2.6 show that identifier

flaws can be a useful, but not always reliable, predictor of FindBugs warnings because of

the variation in the strength of associations between projects. Section 2.5.1 reports that the

Cactus project requires the use of static style checking before code is committed to version

control, which influences identifier quality. Also, the commercialised nature of the Hibernate

and JasperReports projects may influence the composition of their identifiers (Lawrie et al.,

2007b). Boogerd and Moonen (2008, 2009) attributed many of the differences in their studies

to ‘domain factors’. As I deliberately chose not to include projects from identical domains,

the results cannot offer clear conclusions on this question.

The naming guidelines used in this investigation are simple assessments of name quality.

For example, the Non Dictionary words flaw does not consider whether the words used are

in a coherent order, something that is important to those reading source code, and for the

32

2.6. Discussion

automated extraction of information from names. Inspection of the names extracted from

source code showed where developers break the guidelines they can do so systematically,

which suggests that some developers have a notion of identifier name quality aspects of

which differ from that tested. Some field names, for example, have a single letter prefix

‘f’ that indicates the identifier’s role, something that Relf’s guidelines and common naming

conventions (Gosling et al., 2014; Vermeulen et al., 2000) do not consider. I also found

names that are not the simple noun and verb phrases advocated by the naming conventions,

for example popupMenuWillBecomeInvisible (JUnit). Liblit et al.’s identification of phrasal

structure in identifier names (Liblit et al., 2006) identify only the shorter, single phrase names

that, largely, agree with the recommendations of naming conventions. While longer names

with more complex structures appear to be uncommon, the developers have felt the need

to use them. Høst and Østvold (2008, 2009) investigated Java method names in detail and

found that while developers use the phrasal structures specified in naming conventions in

method names, they also use more complex phrasal structures. Høst and Østvold’s work, in

combination with my observations of names during the investigation reported in this chapter

lead me to form the hypothesis that developers use content types, including natural language

content, in Java class and reference identifier names in ways that are richer and more varied

than those specified in naming conventions, and described in the academic literature.

To investigate the hypothesis I seek to answer the principal research question:

“What types of content and phrasal structure do developers use in Java

class and reference names?”

During the investigation reported in this chapter two practical issues became apparent:

the overhead of processing source code to extract names for analysis, and limitations to the

name tokenisation technique used. Analysis was implemented as a batch process where names

were extracted from the source code for a project with some metadata and then analysed.

While the process was tolerable with eight projects of moderate size, it would not scale well

to analysis of more and larger projects. The conservative tokeniser I had implemented was

unable to split names without typographical word boundaries, such as arraycopy (JUnit),

and names containing digits. To undertake more detailed analysis of names requires a more

aggressive approach to tokenisation.

33

Chapter 2. Exploring the Relationship Between Identifier Names and Code Quality

2.7 Summary

The literature establishes the importance of identifier naming to program comprehension

(Rajlich and Wilde, 2002; Lawrie et al., 2006). However, there have been few investigations

of the relationship between identifier name quality and source code quality (Boogerd and

Moonen, 2008). The contribution of this investigation is to provide a deeper understanding

of this important but largely unexplored relationship.

In this chapter I investigated the relationship between a range of identifier naming flaws

found in Java classes and methods in 8 open source projects, and explored the possible re-

lationships with a range of source code quality measures to answer the research question,

“What relationship exists between the occurrence of low quality identifier names and lower

quality source code?” The initial investigation at class level showed a relationship between

identifier naming flaws and FindBugs warnings, which motivated a finer-grained investiga-

tion at the method level. The method level investigation incorporated a wider variety of

source code quality measures to gain a richer perspective and discriminate among potentially

confounding factors. The quality of identifier names was evaluated using accepted naming

conventions validated by empirical study (Relf, 2004), and the natural language content of

identifiers, including Java- and project-specific terms. Source code quality was evaluated at

the method level using four perspectives: the identification of potentially problematic code

with FindBugs, the three-metric maintainability index, a human-trained readability metric,

and cyclomatic complexity. The chi-square test and Fisher’s exact test were used to test

the independence of poor quality identifiers and more-complex, less-maintainable, and less-

readable source code. I found, generally, that poor quality identifiers are associated with

lower quality source code. To understand whether the observed associations might have a

practical application, I applied a technique used to evaluate diagnostic tests. I found that

some associations occurred with sufficient consistency that they could be applied in a prac-

tical setting to identify areas of source code as candidates for intelligent review. I also found

that some relationships not found to be statistically significant with the chi-square test and

Fisher’s exact test were potentially useful classifiers.

During the investigation, I found names with content types and phrasal structures that

are not specified in common naming conventions. Java method names have been extensively

analysed, but class and reference names have not. I formulated a hypothesis and research

34

2.7. Summary

question which concerns the use of a richer variety of content types and phrasal structures in

Java class and reference names than is suggested by naming conventions and the academic

literature.

The following two chapters describe solutions to the limitations of the name extraction and

tokenisation processes identified in the previous section. In Chapter 3 I describe the selection

of a corpus of projects and the development of a system to extract and store identifier names

to support my research, and Chapter 4 reports on the development of novel techniques to

tokenise identifier names to make their content available for analysis. I return to the principal

research question in Chapter 5 with an investigation of class names.

35

Chapter 3

Identifier Name Extraction and

Storage

The method adopted for the studies reported in the preceding chapter processed and analysed

the identifier names from each project as a batch. My intention in the research reported in

the remainder of this dissertation is to study names: both those found within a single project

and within a corpus of names of a given species (class, method, field, etc.) gathered from

multiple projects. In this chapter I describe the design and implementation of a methodology

to extract identifier names from a corpus of 60 FLOSS Java projects and store them so that

they are available to analytical tools, with metadata, without the overhead of parsing large

bodies of source code each time the analytical software is run.

This chapter outlines why existing source code metamodels do not provide a viable so-

lution, before describing a new metamodel that records source code structure and exposes

names for recovery. A database structure for recording the model is introduced and the tool

used to mine source code to populate the database is explained. Identifier name tokenisation

is an integral part of the process of creating the database and the development and evaluation

of improved name tokenisation techniques is described in detail in the following chapter.

The resulting database of names, known as INVocD (I dentifier N ame Vocabulary Data-

base), is the main data source for the research reported in Chapters 4, 5, 6 and 7 and is

publicly available1.

1http://oro.open.ac.uk/36992/

37

http://oro.open.ac.uk/36992/

Chapter 3. Identifier Name Extraction and Storage

3.1 The Corpus

A corpus of 60 FLOSS Java projects was selected. The projects in the corpus include later

versions of the 8 investigated in studies described in the previous chapter and a further fifty-

two selected as examples of projects from a range of domains including graphics libraries,

programming languages, project management applications, and servers, and where the output

of compilation might be a GUI application, a command line application, or a library or

framework intended to be part of another application. All 60 projects were developed in

English. English identifier names were chosen because it is the most widely used natural

language in software development. The full list of projects and their version is given in

Appendix B. The projects were selected to avoid potential bias that might arise from analysing

names in a single domain — either the application domain or the implementation domain.

The projects also range in scale and origin from large projects such as the Java development

kit (JDK) that are managed by large commercial organisations, through projects that are

part of the Apache Software Foundation (ASF), including the Derby database and Maven, to

smaller, independent and popular projects, such as the JUnit testing framework, and the Jin

chess client. Together, the projects in the corpus consist of some 16.5 MLOC (million lines

of code) of Java as measured by SLOCCount (Wheeler, 2008).

My research interest lies in analysing the names declared in the projects, and I need some

means of storing and accessing the names in the corpus, and, ideally, that method should

be efficient. The computational and temporal overhead of repeatedly parsing 60 projects

to extract names is inefficient and the use of an intermediary form from which names and

metadata can be easily extracted would better support the research. In the next section I

consider some existing source code models to understand whether they can provide a practical

solution to support my research.

3.2 Existing Metamodels of Source Code

Generic source code metamodels, e.g. the Dagstuhl middle model (DMM) (Lethbridge et al.,

2004) and FAMIX (Ducasse et al., 2011), are AST based and record source code as a graph.

Both models also include additional relationships between program entities that, for example,

record method invocation and inheritance. Names are recorded in both models as attributes

38

3.3. Model Design and Implementation

of AST nodes. The names are not first class members of the metamodel and can be accessed

only by traversing the AST nodes recorded in the model. Thus, for the researcher interested

in names, DMM and FAMIX models require additional processing to extract names, and,

accordingly, using such metamodels as a means of storing names would be less efficient than

extracting names and metadata by parsing source code. A possible alternative is provided by

srcML (Collard et al., 2011). srcML is an XML representation of source code that includes

AST information and may, like any XML document, be queried using XPath. Again, however,

there is the overhead of extracting names and metadata from srcML which is similar to an

AST. A further issue is that all three approaches are also intended to model individual source

code projects, and thus storage of multiple projects would require additional work.

Having found that available source code metamodels do not provide an efficient solution

to making the names from multiple projects available for analytical tools, I ask the following

research question:

RQ 1 How can a model for source code be created where identifier

names and named AST nodes are both first class citizens?

3.3 Model Design and Implementation

There are two aspects of the problem that need to be addressed: the development of the

model, and the implementation of a means of persistence. I first describe the model of source

code that records identifier name declarations, associated metadata, the names and their

tokens (I use the term token because not all components of names are words). I then outline

a database schema to store the model so the model can be recovered, and that the database

can be queried, for example, to provide all the local variable names in a project with their

metadata, or all the names in the 60 projects that start with the word ‘array’.

3.3.1 A Model for Source Code Vocabulary

To support my research, I developed a generic model of object-oriented source code and

identifier name vocabulary, the Source Vocabulary Model (SVM). SVM provides sufficient

structural metadata for source code entities to identify the origin of an identifier name, both

in terms of the program entity names, and the program entity’s location in the source code

39

Chapter 3. Identifier Name Extraction and Storage

file. The source code vocabulary, the identifier names and their tokens are preserved, and

are cross referenced with every usage. Identifier names and their tokens are therefore first

class citizens of the model and are made directly available to users of the model. Thus, the

structural model of source code can be accessed through its vocabulary, an important feature

for identifier name research. The structural metadata, for instance, supports the recovery of

all class names from the model, and other metadata, such as access modifiers, supports the

modelling of the scope of an identifier name.

The model of source code used in SVM (Figure 3.1) can be extracted from the AST

and is predicated on the idea that a program consists of a set of program entities that may

contain other program entities. In general, identifier names are declared as labels for program

entities, and the majority of program entities are named. By recording program entities,

their relationships and their associated identifier names, the model records the source code

structure and location and relative relationships of the items containing vocabulary found

in the program. Note that larger containers such as file, package/namespace and project

are omitted from Figure 3.1 to simplify the diagram. These larger containers, and their

relationships to program entities, are illustrated in the database model in Figure 3.2.

Figure 3.1: The SVM source code model

40

3.3. Model Design and Implementation

For a strongly typed programming language, such as Java, the core attributes of a program

entity are its identifier name, type and species. Rather than specify a class for each species of

program entity found in a programming language, an attribute is used to identify the species

of program entity. In the specification of the SVM source code model in Figure 3.1 the species

are Java specific and recorded in the enumeration ProgramEntitySpecies.

Most program entities also have one or more access modifiers that define their visibility to

other parts of the program, and other properties. These generic characteristics are modelled

as an attribute of the ProgramEntity class in Figure 3.1. The ProgramEntity class also

references any comments associated with the program entity, information about the file con-

taining the program entity and its location within the file, and a reference to the containing

program entity.

In addition to these common characteristics, some program entities have specific charac-

teristics. Classes and interfaces, for example, may be involved in inheritance, so, the super

classes and super types, if any, need to be recorded. The requisite fields are provided by the

InheritableProgramEntity subclass.

Many object-oriented programming languages allow constructors and methods to be over-

loaded by the declaration of multiple methods with the same identifier name, where each

declaration has a parameter list composed of a unique sequence of types. Accordingly, con-

structors and methods require the addition of a signature listing the types of their formal

arguments to identify them uniquely. Provision to distinguish between overloaded methods

is made in the InvokableProgramEntity class, a subclass of ProgramEntity.

Type names are recorded using the TypeName class which contains fields to record the

identifier name and the fully qualified name (FQN) (Gosling et al., 2014) of the type. The

FQN of a type is not always available in a given source code file, and may require additional

information to resolve, such as the Java classpath used at the time of compilation. Accord-

ingly, the FQN is a desirable attribute, but is not required. Parameterised type names, should

there be any, are recorded through a reference to other TypeName objects. The distinction

between parameterised types and type arguments in Java generics and C++ templates can be

inferred from the context of the containing type name object. For example, in the class defi-

nition ArrayList〈E〉 in the java.util package E is a parameterised type, and in the variable

declaration ArrayList〈String〉 words; String is a type argument;

41

Chapter 3. Identifier Name Extraction and Storage

I implemented SVM for the Java programming language in JIM (J ava I dentifier M iner),

a tool that mines identifier names from Java source code and stores them, and the associated

metadata, in an RDBMS. The remainder of this section describes the database schema and

its implementation.

3.3.2 Database Schema

The database schema has two principal elements. The first is the PROGRAM ENTITIES table

that is used to store entities found on the AST. The second is the small group of tables

that record the identifier name vocabulary. The two are linked, allowing the identifier name

vocabulary used in program entities to be recovered, and the program entities in which

particular words or groups of words are used to be identified, and their metadata recovered.

(A complete list of the database tables and their columns is given in Appendix C.)

Rows in the PROGRAM ENTITIES table represents each identifier name declaration in the

AST and any unnamed nodes, such as initialiser blocks and anonymous classes, that might

contain further identifier name declarations.

Figure 3.2: The INVocD database model

42

3.3. Model Design and Implementation

The PROGRAM ENTITIES table contains the columns CONTAINER UID and ENTITY UID, which

record the hierarchical relationships between program entities. The UIDs are generated dur-

ing parsing using an SHA1 digest of a unique string for each file created by concatenating the

project name and version, the package name and the file name. A serial number is then ap-

pended to the hash for each program entity encountered in the AST for that file. It is possible

to use database keys instead of UIDs to record relationships, but that requires each container

entity to be stored in the database before its children, which constrains the implementation

of the system writing to the database.

For each constructor and method, a unique method signature is recorded in the

METHOD SIGNATURES table. The signature is a string composed of the type names of the formal

arguments in declaration order. For example, the signature (String;int) is recorded for the

java.lang.String method indexOf(String str, int fromIndex). The signatures distin-

guish between multiple constructors, and methods of the same name, including overloaded

methods.

The species of the program entity and Java modifiers (private, static, etc.) are

recorded in separate tables. Species are stored in the SPECIES table and referenced from

the PROGRAM ENTITIES table. Modifiers are found in the MODIFIERS table and are cross-

referenced through the MODIFIERS XREF table, because there may be more than one modifier

for each program entity. For example, fields that are class constants might be declared with

the public, final and static modifiers.

The start and end line and column numbers of the program entity are recorded in the

PROGRAM ENTITIES table, and a foreign key references a unique file name recorded in the

FILES table. File path information is not recorded, but may be derived, in part, from the

package name (see Figure 3.3).

Packages and projects are also containers like program entities. However, they share little

common data with the programming language constructs recorded as program entities, e.g.

they do not have types or modifiers. Details of packages and projects are stored in separate

tables. Projects are recorded as a name and version pair, which allows the database to store

multiple versions of the same project. Packages are recorded as unique packages belonging

to a specific project in the PACKAGES table, and unique package names are recorded in the

PACKAGE NAMES table. This approach saves space when storing multiple versions of projects,

43

Chapter 3. Identifier Name Extraction and Storage

select pn.package_name , f.file_name , pe.start_line_number

from SVM.PROGRAM_ENTITIES pe

join SVM.PACKAGES pkg

on pkg.package_key=pe.package_key_fk

join SVM.PACKAGE_NAMES pn

on pn.package_name_key=pkg.package_name_key_fk

join SVM.FILES f

on f.file_name_key=pe.file_name_key_fk

join SVM.IDENTIFIER_NAMES id

on id.identifier_name_key=pe.identifier_name_key_fk

join SVM.SPECIES sp

on sp.species_name_key=pe.species_name_key_fk

join SVM.PROJECTS pr

on pr.project_key=pe.project_key_fk

where pr.project_name=‘xom’

and sp.species_name=‘method ’

and id.identifier_name=‘toString ’;

Figure 3.3: Example SQL query to identify the start locations of toString() method
declarations in XOM

where the package names remain largely unchanged between versions.

Unique identifier names are stored in the IDENTIFIER NAMES table, which is referenced by

both program entities and type names. The component tokens of identifier names are recorded

as unique tokens in the COMPONENT WORDS table and linked to identifier names through a cross

reference table (COMPONENT WORDS XREFS) that records the position of the token within the

identifier name where the token is found (indexing starts at 1). For example, keys for the

identifier name ANEWARRAY and the token array are stored in COMPONENT WORDS XREFS with

the position 3. (An example SQL query using these tables is given in Figure 3.4.)

select identifier_name from SVM.IDENTIFIER_NAMES id

join SVM.COMPONENT_WORDS_XREFS cwx

on id.identifier_name_key=cwx.identifier_name_key_fk

join SVM.COMPONENT_WORDS cw

on cw.component_word_key=cwx.component_word_key_fk

where cw.component_word=‘array ’ and cwx.position =1;

Figure 3.4: Example SQL query to recover unique identifier names beginning with the word
‘array’

Type names are stored in the TYPE NAMES table with a reference to the identifier name used

to specify the type. The fully qualified name of the type may be recorded in the TYPE NAME

44

3.3. Model Design and Implementation

column. The resolution of fully qualified type names is experimental and is discussed below.

Generic types are not recorded in this database. Any type with a generic type argument is

recorded as the underlying type and the type argument ignored, e.g. ArrayList〈String〉 is

recorded as ArrayList.

Type names involved in inheritance are cross referenced with program entities using

two tables: SUPER CLASS XREF, which corresponds to class based inheritance (Java extends

keyword), and SUPER TYPE XREF to type based inheritance (Java implements keyword, and

extends when applied to interfaces).

Limitations

There are three limitations to the information stored in INVocD. The first is that the database

schema was developed for the study of identifier names, not data flow or invocation, and hence

records only identifier declarations, not usage. The second is the recording of qualified type

names, which is experimental. The third is the processing of identifier names to extract

vocabulary.

Typical Java builds are automated with tools like ANT and Maven that are configured

with often complex build paths indicating where external Java classes and libraries are found,

and external symbols may be resolved. My intention was to create a single pass tool that

processed source code only. Hence, the resolution of external names is imprecise. External

symbols in Java may be indicated explicitly in the source code in import statements, or

implied in ‘starred’ imports where all the public entities of a package are made available to

the Java compiler to resolve. Alternatively, an external symbol may be found in the local

package, or the default java.lang package. The TYPE NAMES table records a reference to

the unique identifier name used to specify the type in the source code file. Where the fully

qualified type name is given in an import statement, it is recorded, otherwise heuristics are

used — such as knowledge of public names in the local package, and fully qualified types

already seen that may match starred imports — to try to identify the fully qualified type

name. Consequently, the fully qualified type name may not be present, and may not be

reliable even if it is present.

The extraction of component words from identifier names is not trivial and the accuracy

of the identifier name tokeniser is a limiting factor on the quality of the component word

45

Chapter 3. Identifier Name Extraction and Storage

vocabulary. INVocD was generated using my own tokeniser, INTT, which is described in the

following chapter. INTT relies on dictionaries and can oversplit unrecognised abbreviations

and words. Since INVocD includes the original identifier names, users can apply their own

tokenisers.

Alternative Database Implementations

Consideration was given to using a NoSQL solution to provide the persistence layer, and

particular attention was paid to the Neo4J graph database2 given the graph structure of

source code. Ultimately, an RDBMS was chosen in preference to a NoSQL solution because

of familiarity with the technology and the wider availability of tools and libraries to access

the databases. Neo4J has developed since the database was developed and now appears to

offer as viable a solution as an RDBMS and may, in some circumstances, provide a more

appropriate implementation of persistence.

3.3.3 Database Access

The database may be accessed using SQL queries either in a command line access tool, such as

Derby’s ij, or in a GUI tool. Both methods are useful for relatively simple queries. However,

for larger analytical tasks, automation provides a much better solution. The tool used to

compile the database, which is discussed in the following section, has a layered architecture

the lowest layer of which handles database persistence. The persistence layer, known as

JIMdb, was designed as a separate Java library so that it could be used by analytical tools

to extract names and metadata from the database. The advantages of creating a separate

database library are that analytical tools can be developed relatively quickly, and that the

database implementation can also be changed.

3.4 Identifier Name Extraction

The tool used to create the database, JIM, consists of 3 main components — a coordinating

layer, a parser layer and a persistence layer (JIMdb) — that in combination extract identifier

names, component words and metadata concerning the location of the identifier name from

2http://www.neo4j.org/

46

http://www.neo4j.org/

3.4. Identifier Name Extraction

source code and store it in an Apache Derby3 database. Prior to storage identifier names are

split into their component tokens using INTT, which is described in detail in the following

chapter.

The coordination layer undertakes a recursive exploration of a directory tree supplied as

a command line argument and parses every Java file found, with two exceptions: (1) files

named package-info.java are ignored because they contain only package level documenta-

tion comments, not source code; and (2) files determined by heuristics to contain test code

and generated code. However, JIM can be configured to parse generated and test code using

command line arguments.

The parser layer consists of two parsers that reflect the introduction of new language

constructs to the Java language in Java versions 1.5 and 1.7. The version of JIM used for

much of this work contains a parser for Java version 1.5 and one for version 1.4 and earlier.

Both parsers are based on the Sun Java 1.5 grammar supplied with the JavaCC parser

generator4. Amongst the language features introduced in Java 1.5 was the new reserved

word enum for enumerations. Consequently, source code that complies with older versions of

Java and where enum is used as an identifier name will cause a Java 1.5 compliant parser to

fail. Some modifications were made to the grammar to record identifier names in the resulting

AST, as well as metadata such as access modifiers. For example, a production was introduced

for identifier names that wrapped the identifier terminal making names easier to recover from

the AST (See Figure 3.5). A parser for source files that conform to the Java 1.4 or earlier

standard was created by removing keywords and productions related to features introduced

in Java 1.5 from a second copy of the grammar. Substantive changes made to the Java

programming language in Java 1.7 led to the the Java 1.5 parser being replaced with a parser

generated from the Java 1.7 grammar published by the developers of ANTLR45. Migration

to ANTLR4 to parse Java 1.7 was necessary because no Java 1.7 grammar is available for

JavaCC. (Further substantive changes to the Java language were introduced in Java 1.8. A

Java 1.8 grammar is available for ANTLR4 and a Java 1.8 parser can be added to JIM to

replace the Java 1.7 parser.)

Java initialiser blocks and anonymous classes are not named. Rather than store null

3http://db.apache.org/derby/
4http://javacc.java.net/
5Available from https://github.com/antlr/grammars-v4

47

http://db.apache.org/derby/
http://javacc.java.net/
https://github.com/antlr/grammars-v4

Chapter 3. Identifier Name Extraction and Storage

void Identifier ():

{ Token t; }

{

t=<IDENTIFIER >

{ jjtThis.setText(t.image); }

}

Figure 3.5: JavaCC identifier terminal wrapped in a production

name in the database, I chose to record anonymous program entities with the identifier name

‘#anonymous#’, which is not a legal Java identifier name. Similarly, program entities such as

static initialisers that have no type are given the type name ‘#no type#’. This approach was

initially adopted for debugging, but was found to be a useful convention that allows analytical

tools that extract data from the database to identify unnamed and untyped program entities

easily.

3.5 Summary

The SVM source code model devised in response to RQ 1, and its database implementation,

offer advantages for identifier name research over existing source code metamodels. The

chief advantage is that identifier names are first class citizens of the model and directly

accessible from the database. Unlike the metamodels examined, the database model records

multiple source code projects. By storing multiple projects in a single database, corpora

of names extracted from more than one project may be studied, as can the names found

in a single project. The database makes a practical contribution to the research reported

in this dissertation because the computational and temporal overhead of repeatedly parsing

multiple source code projects is removed. Consequently, the research effort can concentrate

on the development of analytical tools. The creation of a database to provide a corpus for

study using publicly available tools with documented methodologies, and where versions of

the database are also publicly available, supports the replication of empirical studies.

Information extracted from SVM models recorded in the INVocD database is the data

source for the study of Java class naming conventions in Chapter 5, and studies of Java

reference names in Chapters 6 and 7. JIM has also been used to create databases of names used

in an investigation of the relationship between identifier name vocabulary and the vocabulary

used in change requests (Dilshener and Wermelinger, 2011).

48

3.5. Summary

The description of the design and creation of the INVocD database has not discussed

identifier name tokenisation. The following chapter examines the problems encountered when

splitting identifier names into their component tokens, and describes the solutions to those

problems I developed and implemented in INTT to provide data for the analysis of class and

reference names reported in remainder of the dissertation.

49

Chapter 4

Identifier Name Tokenisation

The previous chapter describes the design and creation of a system to extract and store

identifier names, their tokens — i.e. the words, acronyms and abbreviations used to create

the name — and metadata. The tokenisation of identifier names is undertaken by software

engineering tools that process identifier names and is integral to the creation of the INVocD

database. Identifier name tokenisation is, however, a non-trivial process. In this chapter

I describe the practical problems encountered when trying to tokenise identifier names, in-

cluding specific typographical features that have ambiguous tokenisations, and the absence

of typographical features that mean, from a computational perspective, there is no obvious

tokenisation. Specifically, I address the following two research questions:

RQ 2 How can more effective mechanisms to tokenise names with am-

biguous or no word boundaries be developed?; and

RQ 3 How can effective mechanisms to tokenise names containing digits

be developed?

I propose and implement solutions to each problem. The solutions are evaluated using sets

of manually tokenised identifier names extracted from the corpus of 60 FLOSS Java projects

described in the preceding chapter. The performance of the solutions is also evaluated against

two existing methods.

The following section explains the difficulties encountered when tokenising identifier names,

and some pitfalls potential solutions should avoid.

51

Chapter 4. Identifier Name Tokenisation

4.1 The Identifier Name Tokenisation Problem

Programming languages typically have typographical conventions that are employed by soft-

ware developers to present source code so that it is readable. The typographical conventions

typically include rules on bracket placement, indentation and identifier naming. In C, for

example, function identifier names begin with a lower case character and consist of one or

more words separated by the underscore character. In Java, method identifier names begin

with a lower case character and consist of one or more words, and use internal capitalisation

to mark the beginning of each word after the first. Visual Basic and C# method names follow

a similar scheme to Java, but the first character is upper case. The typographical conventions

are just that, conventions. For most programming languages the compiler pays no attention

to typography, and so long as the identifier names used in source code are internally consis-

tent there is no consequence for the compiled code. Consequently, the use of typographical

conventions for identifier names is not compulsory, unless additional tools are used to police

code at check-in time, and developers are free to create identifier names as they please.

A further issue, is that the typographical conventions were created with the intention of

supporting source code readability. Conventions were not designed to support the extraction

of information from identifier names, and do not support it as well as they might. So, while

the typography of identifier names can help the extraction of information from identifier

names, it is also an impediment, that may be misleading at times.

4.1.1 The Composition of Identifier Names

Programming languages and naming conventions constrain the content and form of identifier

names. Programming languages impose hard constraints, most commonly that identifier

names must consist of a single string1, where the initial character is not a digit, and are

composed of a restricted set of characters. For the majority of programming languages,

the set of characters permitted in identifier names consists of upper and lower case letters,

digits, and some additional characters used as separators. An additional hard constraint

imposed by languages such as Perl and PHP is that identifier names begin with specific non-

alphanumeric characters used as sigils — signs or symbols — to identify the type represented

1Smalltalk method names are a rare exception where the identifier name is separated to accommodate the
arguments, e.g. multiply: x by: y

52

4.1. The Identifier Name Tokenisation Problem

by the identifier. For example, in Perl ‘$’ denotes a scalar and ‘@’ a vector.

Naming conventions provide soft constraints in the form of rules on the parts of speech to

be used in identifier names, how word boundaries should be constructed and often include the

vague injunction that identifier names should be ‘meaningful’ (McConnell, 2004; Vermeulen

et al., 2000). Naming conventions typically advise developers to create identifier names with

some typographical mechanism to identify boundaries between words. Java, for example,

employs two conventions (Sun Microsystems, 1999): constants are composed of words and

abbreviations in upper case characters and digits separated by underscores (e.g. FOO BAR),

and may be described by the regular expression U [DU]∗(S[DU]+)∗, where D represents a

digit, S a separator character and U an upper case letter; and all other identifier names rely

on internal capitalisation to separate component words (e.g. fooBar).

4.1.2 Tokenising Identifier Names

Naming conventions, though applied widely, are soft constraints and, consequently, are not

applied universally. Thus, tools that tokenise identifier names need to provide strategies for

splitting both conventionally and unconventionally constructed identifier names. Identifier

names contain features such as separator characters, changes in case, and digits that have an

impact on tokenisation. I discuss each feature before looking at the difficulties encountered

when attempting to tokenise identifier names without separator characters or changes in case

to indicate word boundaries.

Separator Characters

Separator characters — for example, the hyphen in Lisp and the full-stop in R2 — can be

used to separate the component words in identifier names. Accordingly, the identification of

conventional internal boundaries in identifier names is straightforward, and the vocabulary

used by the creator of the identifier name can be recovered accurately.

Internal Capitalisation

Internal capitalisation, often referred to as camel case, is an alternative convention for marking

word boundaries in identifier names. The start of the second and subsequent words in an iden-

2http://www.r-project.org/

53

http://www.r-project.org/

Chapter 4. Identifier Name Tokenisation

tifier name are marked with an upper case letter as in the identifier name StyledEditorKit

(found in the Java Library), where the boundary between the component words of an identi-

fier name occurs at the transition between a lower case and an upper case letter, i.e. internally

capitalised identifier names are of the form U?L+(UL+)∗, where L represents a lower case

letter, and the word boundary is characterised by the regular expression LU . The word

boundary is easily detected and identifier names constructed using internal capitalisation are

readily tokenised.

A second type of internal capitalisation boundary is found in practice. Some identifier

names contain a sequence consisting of two or more upper case letters followed by at least

one lower case letter, i.e. the sequence U+UL+. I refer to this type of boundary as the

UCLC boundary, where UCLC is an abbreviation of upper case to lower case. Most com-

monly, identifier names with a UCLC boundary contain capitalised acronyms, for example

the Java library class name HTMLEditorKit. In these cases the word boundary occurs after

the penultimate upper case letter of the sequence. However, identifier names have also been

found (Enslen et al., 2009) with the same characteristic sequence where the word boundary

is marked by the change of case from upper case to lower case, for example PBinitialize

(Apache Derby). Thus, identification of the UCLC boundary alone is insufficient to support

accurate tokenisation (Enslen et al., 2009).

Some identifier names mix the internal capitalisation and separator character conventions,

e.g. ATTRIBUTE fontSize (JasperReports). Despite being unconventional, such identifier

names pose no further problems for tokenisation than those already given.

Single Case

Some identifier names are composed exclusively of either upper case (U+) or lower case char-

acters (L+), or are composed of a single upper case letter followed by lower case letters

(UL+). Such identifier names are often formed from a single word. However, some, such

as maxprefwidth (Vuze) and ALTORENDSTATE (JDK), are composed of more than one word.

Lacking word boundary markers, multi-word single case identifier names cannot be tokenised

without the application of heuristics or the use of oracles. A variant of the single case pattern

is also found within individual tokens in identifier names like notAValueoutputstream (Java

library), where the developer has created a compound, or failed to mark word boundaries. Ac-

54

4.1. The Identifier Name Tokenisation Problem

cordingly some tokens require inspection and, possibly, further tokenisation. When tokenising

identifiers composed of a single case there are two dangers: ambiguity and oversplitting.

Ambiguity

Some single case identifier names have more than one possible tokenisation. For example,

ALTORENDSTATE is, probably, intended to be interpreted as {ALT, OR, END, STATE}. However,

it may also be tokenised as {ALTO, RENDS, TATE} by a greedy algorithm that recursively

searches for the longest dictionary word match from the beginning of the string, leaving the

proper noun ‘Tate’ as the remaining token. A function of tokenisation tools is therefore to

disambiguate multiple tokenisations.

Oversplitting

The term oversplitting describes the excessive division of tokens by identifier name to-

kenisation software (Enslen et al., 2009), e.g. tokenising the single case identifier name

outputfilename as {out, put, file, name}. The consequence of this form of oversplitting is

that search tools for concept location would not identify that ‘output’ was a component of

outputfilename without additional effort to reconstruct words from tokens.

Oversplitting is also practised by developers in two forms: one conventional, the other

unconventional. Oversplitting occurs in conventional practice in class identifier names that

are part of an inheritance hierarchy. Class identifier names can be composed of part or all of

the super class identifier name that may be consist of a number of tokens and an adjectival

phrase indicating the specialisation. For example, the class identifier name HTMLEditorKit

is composed of part of the type name of its super class StyledEditorKit and the adjectival

acronym HTML, yet would be tokenised as {HTML, Editor, Kit}. In this case the compound

of the super type is potentially lost, but can be recovered by program comprehension tools.

Developers also oversplit components of identifier names unconventionally by inserting ad-

ditional word boundaries, which increases the difficulty of recovering tokens that reflect the

developer’s intended meaning. Common instances include the oversplitting of tokens contain-

ing digits such as Http 1 1, the demarcation of some common prefixes as separate words as

in SubString, and the division of some compounds such as metadata and uppercase. In each

case, a recognisable semantic unit is subdivided into components and the composite meaning

55

Chapter 4. Identifier Name Tokenisation

is lost, and must be recovered by program comprehension tools (Ma et al., 2008).

Digits

Digits occur in identifier names as part of an acronym or as discrete tokens. Where a digit or

digits are embedded in the component word, as in the abbreviation J2SE, then the boundaries

between tokens are defined by the internal capitalisation boundaries between the acronym

and its neighbours. Abbreviations that have a bounding digit, e.g. POP3 and 3D, cannot

be separated from other tokens where boundaries are defined by case transitions between

alphabetical characters. Even if developers rigorously adopted the convention of only capi-

talising the initial character of acronyms advocated by Vermeulen et al. (2000), that would

only help detect the boundary following a trailing digit (e.g. Pop3Server), it would not allow

the assumption that a leading digit formed a boundary — that is it could not be assumed

that UL+DUL+ may be tokenised as UL+ and DUL+. In other words, because digits do

not appear in consistent positions in acronyms, there is no simple rule that can be applied

to tokenise identifier names containing acronyms that include digits. Similar complications

arise where digits form a discrete component of identifier names, including the use of digits

as suffixes (e.g. index3) and as homophone substitutions for prepositions (e.g. html2xml).

The following section reviews the literature on identifier name tokenisation and the ap-

proaches adopted by other researchers to solving the problems outlined above.

4.2 Related Work

Although the tokenisation of identifier names is a relatively common activity undertaken

by software engineering researchers (Abebe and Tonella, 2010; Antoniol et al., 2002, 2007;

Caprile and Tonella, 1999; Høst and Østvold, 2008; Kuhn et al., 2007; Ma et al., 2008; Marcus

et al., 2005; Nonnen et al., 2011; Nonnen and Imhoff, 2012; Singer and Kirkham, 2008), few

researchers evaluate and report their methodologies.

Feild et al. (2006) conducted an investigation of identifier name splitting. They used a

conservative tokeniser — one that tokenises on separator characters and the lower to upper

case transition — to tokenise names and focus their experimental effort on splitting single

case identifier names, which they describe as hard words, into component, or soft, words. For

example, the identifier name hashtable is constructed from the two soft words hash and

56

4.2. Related Work

table.

Feild et al. compared three approaches to tokenising single case identifier names: a random

algorithm, a greedy algorithm and a neural network. The greedy algorithm applied a recursive

algorithm to match substrings of identifier names to words found in the ispell3 dictionaries to

identify potential soft words. For hard words that are not composed of a single soft word, the

algorithm starts at the beginning and end of the string looking for the longest known word and

repeats the process recursively for the remainder of the string. For example outputfilename

is tokenised as {output, filename} from the beginning of the string and as {outputfile,

name} from the end of the string on the first pass. The process is then repeated and the

forward and backward components of the algorithm produce the same list of soft words, and

thus the single tokenisation {output, file, name}. Where lists of soft words are different,

the list containing the higher proportion of known soft words is selected.

Of the three approaches tried by Feild et al., the neural network was the most accurate,

but only under particular conditions, for example when the training set of tokenisations

was created by an individual. However, its performance varied considerably (between 71%

and 95% accuracy). The greedy algorithm performed most consistently in Feild et al.’s

experiments, tokenising identifier names with an accuracy of 75–81%. The greedy algorithm,

however, was prone to oversplitting names.

In a related study Lawrie et al. (2007b) turned to expanding abbreviations to support

identifier name tokenisation, and posed the question: how should an ambiguous identifier

name such as thenewestone be divided into component soft words? Depending on the

algorithm used there are a number of plausible tokenisations and no obvious way of selecting

the correct one, e.g. {the, newest, one}, {then, ewe, stone}, and {then, ewes, tone}.

Lawrie et al. suggested that the solution lies in a heuristic that relies on the likelihood of the

soft words being found in the vocabulary used in the program’s identifier names.

Enslen et al. expanded on these ideas in a tool named Samurai (Enslen et al., 2009).

Samurai applies a four step algorithm to the tokenisation of identifier names.

1. Identifier names are first tokenised using boundaries marked by separator characters or

the transitions between letters and digits.

2. The tokens from step 1 are investigated for the presence of changes from lower case to

3http://www.gnu.org/software/ispell/ispell.html

57

http://www.gnu.org/software/ispell/ispell.html

Chapter 4. Identifier Name Tokenisation

upper case (the primary internal capitalisation boundary) and split on those boundaries.

3. Tokens found to contain boundaries of the form U+UL+ – as in HTMLEditor – are

investigated using an oracle to determine whether the token can be divided using the

secondary internal capitalisation boundary, or whether the alternating case boundary

offers a better tokenisation.

4. Each token is investigated using a recursive algorithm with the support of an oracle to

determine whether it can be divided further.

The oracle used in steps 3 and 4 was constructed by recording the frequency of tokens

resulting from naive tokenisation based on steps 1 and 2 found in identifier names extracted

from 9,000 SourceForge projects. The oracle returns a score for a token based on its global

frequency among all the code analysed and its frequency in the program being analysed.

The algorithms in steps 3 and 4 are conservative. In step 3 the algorithm is biased to split

on the internal capitalisation boundary, and will only split on the alternate case boundary

where there is overwhelming evidence that the tokenisation is more frequent. The recursive

algorithm applied in step 4 will only divide a single case string where there is strong evidence

to do so, and also relies on lists of prefixes and suffixes to prevent oversplitting. For example,

the token listen could be tokenised as {list, en} for projects where ‘list’ occurs as a token

with much greater frequency than ‘listen’. Samurai avoids such oversplitting by ignoring

possible tokenisations where one of the candidate tokens, such as ‘en’, is found in the lists of

prefixes and suffixes.

Enslen et al. also reproduced the ‘greedy algorithm’ reported by Feild et al. and compared

the relative accuracies of the two techniques. The experiment used a ‘gold’ set of 8,000

identifier names that had been tokenised by hand. The Samurai algorithm performed better

than their implementation of the greedy algorithm, with an accuracy of 97%. The Samurai

algorithm has some limitations which I discuss in the next section.

The TIDIER algorithm (Madani et al., 2010; Guerrouj et al., 2012a) is derived from

speech recognition techniques. Rather than relying on conventional internal capitalisation

boundaries the approach tries to match substrings of an identifier name with entries in an

oracle, both as a straightforward match and through a process of abbreviation expansion anal-

ogous to that used by a spell-checking program. Thus idxcnt would be tokenised as {index,

58

4.2. Related Work

count}. Furthermore, because the algorithm ignores internal capitalisation it can consistently

tokenise component words such as MetaData and metadata. Madani et al. achieved accuracy

rates of between 93% and 96% in their evaluations, which was better than naive camel case

splitting in both projects investigated. Geurrouj et al. found TIDIER to improve signifi-

cantly on Samurai. The advantage appears to derive chiefly from abbreviation expansion,

which Samurai does not do. The disadvantage of TIDIER is that it is processor intensive and

does not provide a practical solution for tokenising names in desktop applications because

its runtime for processing a single name is measured in minutes. Guerrouj et al. (2012b) also

developed another approach, named TRIS, that uses domain vocabulary to support splitting

names and expanding any abbreviations found. Their evaluation of TRIS shows that it is an

improvement on TIDIER.

GenTest (Lawrie et al., 2010) uses expansion of abbreviations and acronyms to help iden-

tify potential tokenisations which are evaluated using a large, proprietary, n-gram database.

Normalize (Lawrie and Binkley, 2011) builds on GenTest by adding contextual vocabulary

to identify the most likely of the proposed expansions, which identifies the more likely name

tokenisation.

Identifier name tokenisation has been quite a competitive research area with many claims

made concerning accuracy and the benefits of the various approaches and implementations.

Hill et al. (2013) undertook an empirical study comparing the tokenisers described above,

and INTT the tokeniser that I developed and describe below. A drawback of the individual

studies described above is that each research group uses its own technique to evaluate the

accuracy of their tokenisation method, which makes comparison of the methods difficult. Hill

et al. created a reference set identifier name tokenisations (Binkley et al., 2013) which they

used to evaluate the performance of GenTest, INTT, Samurai and TIDIER. GenTest, INTT

and Samurai performed best.

LINSEN (Corazza et al., 2012) similarly seeks to identify potential tokenisations through

the probability of likely expansions of abbreviations. Where LINSEN differs is that contextual

information is gathered from comments in the file where the name is found, comments in the

project, a technical dictionary and an English dictionary. Each dictionary is given respectively

decreasing weight in terms of context. A graph of possible expansions and tokenisations is

created, and the most likely chosen. LINSEN was evaluated and compared with GenTest,

59

Chapter 4. Identifier Name Tokenisation

Normalize and TIDIER, and was found to produce consistently more accurate tokenisations.

4.3 An Improved Approach

Of the solutions that existed when this research was undertaken — Samurai and TIDIER —

each approach had been found to tokenise 96-97% of identifier names accurately. However,

there are limitations to each solution and issues with their implementation that make their

application in practical tools difficult. Of the approaches discussed, only Enslen et al. attempt

to process identifier names containing digits. However, digits are isolated as separate tokens at

an early stage of the Samurai algorithm so that meaningful acronyms such as 3d and http11

are tokenised as {3, d} and {http, 11} respectively. While the latter case is a reasonable

alternative to grouping the acronym and digits, splitting the former renders the acronym

meaningless. Samurai is also hampered by the amount of data collection required to create

its supporting oracle. TIDIER is processor intensive, and an impractical solution for desktop

applications. A further problem was that neither solution was publicly available, so could

not be used to support my research.

I implemented INTT to address the limitations in existing tools. In particular, I have

tried to ensure that the solution is relatively easy to implement and deploy, and is able to

tokenise all types of identifier name. INTT applies naive tokenisation to identifier names that

contain conventional separator character and internal capitalisation word boundaries. Tokens

containing the UCLC boundary or digits are processed using heuristics to determine a likely

tokenisation, and identifier names composed of letters of a single case are tokenised using an

evolution of the greedy algorithm, which is described in detail in Section 4.3.4.

The core tokenisation functionality of INTT is implemented in a JAR file so that it can

be readily incorporated into other tools. The simple API allows the caller to invoke the

tokeniser on a single string, and returns the tokens. Invoking applications can therefore

range in sophistication from basic command line utilities that process individual identifier

names to parser based tools that process source code. To support programming language

independence the set of separator characters can be configured using the API, but the caller

is responsible for removing any sigils from the identifier name. However, INTT has only been

tested on identifier names extracted from Java source code.

In summary, my tokenisation algorithm consists of the following steps, which are discussed

60

4.3. An Improved Approach

in detail below:

1. Identifier names are tokenised using separator characters and the internal capitalisation

boundaries.

2. Any token containing the UCLC boundary is tokenised with the support of an oracle.

3. Any identifier names with tokens containing digits are reviewed and tokenised using an

oracle and a set of heuristics.

4. Any identifier name composed of a single token is investigated to determine whether

it is a recognised word or a neologism constructed from the simple addition of known

prefixes and suffixes to a recognised word.

5. Any remaining single token identifier names are tokenised by recursive algorithms. Can-

didate tokenisations are investigated to reduce oversplitting, before being scored with

weight being given to tokens found in the project-specific vocabulary.

Steps 2, 4 and 5 form the answer to RQ 2, and step 3 provides the answer to RQ 3.

4.3.1 Oracles

To support the tokenisation of identifier names containing the UCLC boundary, digits and

single case identifier names, I constructed three oracles: a list of dictionary words, a list of

abbreviations and acronyms, and a list of acronyms containing digits. The list of dictio-

nary words consists of some 117,000 words, including inflections and American and Canadian

English spelling variations, from the SCOWL package word lists up to size 70, the largest

lists consisting of words commonly found in published dictionaries (Atkinson, 2004). I added

a further 120 common computing and Java terms, e.g. ‘arity’, ‘hostname’, ‘symlink’, and

‘throwable’. The analysis reported in Chapter 2 included analysis of which identifier names

did not correspond to dictionary words and found that several known computing terms were

not found in commonly available dictionaries. The list of computing terms was hence con-

structed iteratively over the analysed projects, using the criterion that any word added should

be a known, non-trivial computing term. Each oracle is implemented using a Java HashSet

so that lookups are performed in constant time.

61

Chapter 4. Identifier Name Tokenisation

The use of dictionaries imposes a limitation on the accuracy of the resulting tokenisation

because a natural language dictionary cannot be complete. I addressed this limitation by

adopting a method to incorporate the lexicon of the program being processed in an additional

oracle, which takes a step towards resolving the issue highlighted in Lawrie et al.’s question

of how to resolve ambiguous tokenisations for identifier names such as thenewestone (Lawrie

et al., 2007b). Tokens resulting from the tokenisation of conventionally constructed identifier

names are recorded in a temporary oracle to provide a local — i.e. domain- or project-specific

— vocabulary that is employed to support the tokenisation of single case identifier names.

For example, tokens extracted from identifier names such as pageIdx and lineCnt can be

used to support the tokenisation of an identifier name like idxcnt as {idx, cnt}.

INTT is also able to incorporate alternative lists of dictionary words in its oracle, and is,

thus, potentially language independent. INTT relies on Java’s string and character represen-

tations, which default to the UTF-16 unicode character encoding standard. So, INTT is able

to support dictionaries, and thus tokenise identifier names created using natural languages

where all the characters, including accented characters, can be represented using UTF-16

(subject to the constraints on identifier name character sets imposed by the programming

language). However, as INTT was designed with the English language and English morphology

in mind, adaptation to other languages may not be straightforward.

4.3.2 Tokenising Conventionally Constructed Identifier Names (RQ 2)

The first stage of INTT tokenises identifier names using boundaries marked by separator

characters and on the conventional lower case to upper case internal capitalisation boundaries.

Where the UCLC boundary is identified, INTT investigates the two possible tokenistations:

the conventional internal capitalisation where the boundary lies between the final two letters

of the upper case sequence, e.g. as found in HTMLEditorKit; and the boundary following

the sequence of upper case letters, as in PBinitialize. The preferred tokenisation is that

containing more words found in the oracle. Where this is not a discriminant, tokenisation at

the internal capitalisation boundary is preferred. Thus, part of the answer to RQ 2 is: where

an ambiguous boundary is identified candidate tokenisations are created and evaluated.

Following the initial tokenisation process, identifier names are screened to identify those

that require more detailed processing. Identifier names found to contain one or more tokens

62

4.3. An Improved Approach

with digits are tokenised using heuristics and an oracle. Identifier names composed of letters

of a single case are tokenised, if necessary, using a variant of the greedy algorithm (Lawrie

et al., 2007b). These processes are described in detail below.

4.3.3 Tokenising Identifier Names Containing Digits (RQ 3)

Section 4.1 outlines the issues concerning the tokenisation of identifier names containing dig-

its. I identified three uses of digits in identifier names: in acronyms (e.g. getX500Principal

(JDK)), as suffixes (e.g. typeList2 (JDK, Java libraries and Xerces)) and as homophone

substitutes for prepositions (e.g. ascii2binary (JDK and Java libraries)). In the latter two

cases the digit, or group of digits, forms a discrete token of the identifier, and if identified

correctly the identifier name may be tokenised with relative ease. Acronyms containing digits

are more problematic. I identified two basic forms of acronym: those with an embedded digit,

e.g. J2SE, and those with one or more bounding digits, e.g. 3D, POP3 and 2of7.

Acronyms with embedded digits are bounded by letters and can be tokenised correctly

by relying on internal capitalisation boundaries alone. For example, the method identifier

name createJ2SEPlatform (Netbeans) can be tokenised as as {create, J2SE, Platform}

without any need to investigate the digit. Acronyms with leading or trailing digits cannot

easily be tokenised, and neither can those bound by digits. I made a special case of acronyms

with two bounding digits. While they could be tokenised on the assumption that the digits

were discrete tokens, I decided that the very few instances of acronyms with two bounding

digits found in the subject source code were better seen as discrete tokens for the purposes

of program comprehension. Indeed all the instances found were noun phrases describing

mappings, 1to1, or bar code encoding schemes 2of7.

With the exception of the embedded digit form of acronym there is no general rule by

which to tokenise identifier names containing digits. Accordingly I created an oracle from a

list of common acronyms containing digits and developed a set of heuristics to support the

tokenisation of identifier names containing digits.

Identifier names are first tokenised using separator characters and the rules for internal

capitalisation. Where a token is found to contain one or more digits it is investigated to deter-

mine whether it contains an acronym found in the oracle. Where the acronym is recognised

the identifier name is tokenised so that the acronym is a token. For example, Pop3StoreGBean

63

Chapter 4. Identifier Name Tokenisation

can be tokenised using internal capitalisation as {Pop3Store, G, Bean}. The tokens are then

investigated for known digit-containing acronyms and tokenised on the assumption that Pop3

is a token, resulting in the tokenisation of the name as {Pop3, Store, G, Bean}.

Where known acronyms are not found, the digit-containing token is split to isolate the

digit, or digits, and an attempt made to determine whether the digit is a suffix of the left

hand textual fragment, a prefix of the right hand one, or a discrete token. I employ the

following heuristics:

1. If the identifier name consists of a single token with a trailing digit, then the digit is a

discrete token, e.g. radius2 (Netbeans) is tokenised as {radius, 2}.

2. If both the left and right hand tokens are both words or known acronyms the digit

is assumed to be a suffix of the left hand token, e.g. eclipse21Profile (Eclipse) is

tokenised as {eclipse21, Profile}.

3. If both the left and right hand tokens are unrecognised the digit is assumed to be a

suffix of the left hand token, e.g. c2tnb431r1 (Geronimo and JDK) is tokenised as {c2,

tnb431, r1}.

4. If the left hand token is a known word and the right hand token is unrecognised, then

the digit is assumed to be a prefix of the right hand token, e.g. is9x (Geronimo) is

tokenised as {is, 9x}.

5. If the digit is either a 2 or 4 and the left and right hand fragments are known words,

the digit is assumed to be a homophone substitution for a preposition, and thus a

discrete token, e.g. ascii2binary is tokenised as {ascii, 2, binary}. It is trivial for

the application that invokes the tokenisation tool to expand the digit into ‘to’ or ‘for’,

if deemed relevant for the application.

4.3.4 Tokenising Single Case Identifier Names (RQ 2)

Tokenisation of single case names is related to the problem posed by the UCLC boundary

which provides an implicit boundary that may be identified through comparison of two can-

didate tokenisations. With single case names there is no boundary implied by typography,

instead possible and potential boundaries must be identified. To tokenise single case identifier

64

4.3. An Improved Approach

names I adapted the greedy algorithm developed by Feild et al. (2006). I identified two areas

of the greedy algorithm that required improvement. Firstly, because the algorithm is greedy,

it may fail to identify more accurate tokenisations in particular circumstances. For example,

the algorithm finds the longest known word from beginning and end of the string, so Feild et

al.’s example of thenewestone would be tokenised as {then, ewes, tone} by the forward

pass, and as {then, ewe, stone} by the backward pass. Secondly, the algorithm assumes

that the string to be processed begins or ends with a recognised soft word and therefore

cannot locate soft words in a string that both begins and ends with unrecognised words or

tokens.

My adaptation of the greedy algorithm is implemented in two forms: greedy and greedier.

The names refer to the computational resources that may be consumed rather than any char-

acteristic of the approach. The greedy algorithm assumes that the string being investigated

either begins or ends with a known soft word and the greedier algorithm is only invoked when

the greedy algorithm cannot tokenise the string.

Prior to the application of the greedy algorithm, strings are screened to ensure that

they are not recognised words or simple neologisms. The check for simple neologisms uses

lists of prefixes and suffixes4 to check that strings are not composed of a combination of, for

example, a known prefix followed by a known word. This allows identifier names consisting of

Java neologisms such as throwable (Java Libraries, JDK and many more) to be recognised as

words, despite them not being recorded in the dictionary used. The greedy algorithm iterates

over the characters of the identifier name string forwards (see Algorithm 1) and backwards.

On each iteration, the substring from the end of the string to the current character is tested

using the dictionary words and acronyms oracles to establish whether the substring is a known

word or acronym. When a match is found the soft word is stored in a list of candidates and

the search invoked recursively on the remainder of the string. Where no word can be identified

the remainder of the string is added to the list of candidates.

When the greedy algorithm is unable to tokenise the string, the greedier algorithm is

invoked. The greedier algorithm attempts to tokenise a string by creating a prefix of increasing

length from the initial characters and invokes the greedy algorithm on the remainder of the

string to identify known words (see Algorithm 2). For example, for the string cdoutputef, c is

4The lists of prefixes and suffixes are based on those used in Samurai which are available from https:

//hiper.cis.udel.edu/Samurai/

65

https://hiper.cis.udel.edu/Samurai/
https://hiper.cis.udel.edu/Samurai/

Chapter 4. Identifier Name Tokenisation

Algorithm 1 INTT greedy algorithm: forward tokenisation pass

1: procedure greedyTokeniseForwards(s)
2: candidates . a list of lists
3: for i← 0, length(s) do
4: if s[0, i] is found in dictionary then
5: rightCandidates← greedyTokeniseForwards(s[i + 1, length(s)])
6: for all lists of tokens in rightCandidates do
7: add s[0, i] to beginning of list
8: add list to candidates
9: end for

10: end if
11: end for
12: if candidates is empty then
13: create new list with s as member
14: add list to candidates
15: end if
16: return candidates
17: end procedure

added to a list of candidates and the greedy algorithm invoked on doutputef, then the prefix

cd is tried and the greedy algorithm invoked on outputef resulting in the tokenisation {cd,

output, ef}. This process is repeated, processing the string both forwards and backwards

until the prefix and suffix are one character less than half the length of the string being

tokenised, which allows the forward and backward passes to find small words sandwiched

between long prefixes and suffixes, while avoiding redundant processing. For example in the

string yyytozzz both the forwards and backwards passes will recognise to, and in the string

yyyytozz the backwards pass will recognise to.

Algorithm 2 INTT greedier algorithm: backwards tokenisation pass

1: procedure greedierTokeniseBackwards(s)
2: candidates . a list of lists
3: for i← length(s), length(s)/2 do
4: leftCandidates← greedyTokeniseBackwards(s[0, i− 1])
5: for all lists of tokens in leftCandidates do
6: add s[i, length(s)] to beginning of list
7: add list to candidates
8: end for
9: end for

10: return candidates
11: end procedure

Each list of candidate component words is scored according to the percentage of the

66

4.3. An Improved Approach

component words found in the dictionaries of words and abbreviations, and the program

vocabulary — i.e. component words found in identifier names in the program that were

split using conventional internal capitalisation boundaries and separator characters. The

percentage of known words is recorded as an integer and a weight of one added for each word

found in the program vocabulary. For example, suppose splitting thenewestone resulted in

two candidate sets {the, newest, one} and {then, ewe, stone}. All the words in both sets

are found in the dictionaries used and thus each set of candidates score 100. However, the

words newest and one are found in the list of identifier names used in the program, so two

is added to the score of the first set, and that is selected as the preferred tokenisation.

The algorithm, because of its intensive search for candidate component words, is prone to

evaluating an oversplit tokenisation as a better option than a more plausible tokenisation. To

reduce oversplitting, each candidate tokenisation is examined prior to scoring to determine

whether adjacent soft words can be concatenated to form dictionary words. Where this is

the case the oversplit set of tokens is replaced by the concatenated version. For example

outputfile would be tokenised as {output, file} and {out, put, file}. Following the

check for oversplitting, the first two tokens of the latter tokenisation would be concatenated

making the two tokenisations identical, allowing one to be discarded.

A key advantage offered by the greedy and greedier algorithms are that a single case

identifier name can be tokenised without the requirement that it begins or ends with a

known word. For example, Feild et al.’s greedy algorithm cannot tokenise identifier names

like lboundsb unless ‘b’ or ‘l’ are separate entries in the oracle. Samurai can only tokenise

lboundsb if ‘l’ or ‘lbounds’ are found as separate tokens in the oracle. My algorithm can

tokenise lboundsb using a dictionary where ‘bounds’ is an entry.

Part of the answer to RQ 2, given above, is that: “where an ambiguous boundary is

identified candidate tokenisations are created and evaluated.” Where single case tokenisations

differ is that there is no readily identifiable ambiguous boundary. Two approaches are then

used to search for possible token boundaries to complete the answer to RQ 2. First, the

beginning and end of the string are treated as boundaries and the string searched to identify

known words and potential boundaries, and create candidate tokens. Second, if a plausible

tokenisation is not identified, the process is repeated by moving the point from which a

search begins one character at a time from the beginning and end of the string. In both cases

67

Chapter 4. Identifier Name Tokenisation

candidate tokenisations are created and evaluated.

In the following section I evaluate the accuracy of my identifier name tokenisation algo-

rithm and compare its performance with Samurai and Feild et al.’s greedy algorithm.

4.4 Experiments and Results

I adopted a similar approach to that used by Feild et al. (2006) and Enslen et al. (2009) to

evaluate my approach and compare its performance with existing tools. However, instead of

using a single test set of identifier names, I created seven test sets consisting of 4,000 identifier

names each, extracted at random from the INVocD database described in Chapter 3. One

test set consists of identifier names selected at random from the database. Five test sets

consist of random selections of particular species of identifier name. The seventh set consists

of identifier names composed of a single case only (see Table 4.1).

I manually tokenised each test set of 4,000 identifier names to provide reference sets of

tokenisations. The resulting text files consist of lines composed of the identifier name followed

by a tab character and the tokenised form of the identifier name, normalised in lower case,

with each token separated by a dash, e.g. HTMLEditorKit 〈tab〉 html-editor-kit. Bias may

have been introduced to the experiment by the reference tokenisations having not been created

independently and I discuss the implications below in Section 4.4.4 Threats to Validity.

The identifier names in the test sets were classified using four largely mutually exclu-

sive categories that reflect particular features of identifier name composition related to the

difficulty of accurate tokenisation. The categories are:

• Conventional identifier names are composed of groups of letters divided by internal

capitalisation (lower case to upper case boundary) or separator characters.

• Digits identifier names contain one or more digits.

• Single case identifier names are composed only of letters of the same case, or begin

with a single upper case letter with the remaining characters all lower case.

• UCLC identifier names contain two or more contiguous upper case characters followed

by a lower case character.

68

4.4. Experiments and Results

Table 4.1: Distribution of identifier name categories in datasets

C
o
n
v
e
n
ti

o
n

a
l

D
ig

it
s

S
in

g
le

C
a
se

U
C

L
C

Dataset Description

A Random identifier names 2414 467 1011 106
B Class names 3133 185 113 569
C Method names 3459 116 184 151
D Field names 2717 401 818 64
E Formal arguments 2754 250 961 34
F Local variable names 2596 349 1021 34
G Single case 0 0 4000 0

Identifiers names are categorised by first testing for the presence of one or more digits,

then testing for the UCLC boundary. Consequently the digits category may contain some

identifier names that also have the UCLC boundary. In the seven test sets there are a total

of 1768 identifier names containing digits, of which 62 also contain a UCLC boundary. The

classification system is intended to allow the exclusion of identifier names containing digits

from evaluations of those tools that do not attempt realistic tokenisation of such identifier

names, and to allow evaluation of my approach to tokenising identifier names containing

digits. The distribution of the four categories of identifier names in each of the datasets is

given in Table 4.1.

The 60 projects in the database were surveyed to understand the proportions of each

typographical feature in each project, and whether particular features were more likely to

occur in a given species of name. Figure 4.1 shows the distribution of each category as a

proportion of the total number of unique identifier names in each application, where the

whiskers extend at most to 1.5 times the interquartile range from the box. Identifier names

containing only conventional boundaries are by far the most common form of identifier name

found in all the projects surveyed. A significant proportion of single case identifier names

are found in most projects, and around 10% of identifier names contain digits or the UCLC

boundary. Table 4.2 gives a breakdown of the proportion of unique identifier names in each

category across all 60 projects for each species of identifier. Test sets B to F reflect the most

common species, with the exception of constructor names which are lexically identical to class

69

Chapter 4. Identifier Name Tokenisation

Conventional Digits Single case UCLC

0
.0

0
.2

0
.4

0
.6

0
.8

P
ro

p
o

rt
io

n
 o

f
id

e
n

ti
fi
e

r
n

a
m

e
s
 p

e
r

p
ro

je
c
t

Figure 4.1: Distribution of the percentage of unique identifier names found in each category
for sixty Java projects

identifier names, but differ in distribution because not all classes have an explicitly declared

constructor, while others have more than one.

Table 4.2 shows that identifier names containing digits and those containing UCLC bound-

aries constitute nearly 9% of all the identifier names surveyed. Class, constructor and inter-

face identifier names, the most important names for high level global program comprehension,

have a relatively high incidence of identifier names containing the UCLC boundary: 13% for

class and constructor identifier names and 32% for interface identifier names. In other words,

approximately 20% of class names and 40% of interface names require more sophisticated

heuristics to determine how to tokenise them.

I evaluated the performance of INTT by assessing the accuracy with which the test sets

of identifier names were tokenised, and by comparing INTT with an implementation of the

Samurai algorithm, both in terms of accuracy and the relative strengths and weaknesses of

the two approaches.

70

4.4. Experiments and Results

Table 4.2: Percentage distribution of identifier name categories by species

C
o
n
v
e
n
ti

o
n

a
l

D
ig

it
s

S
in

g
le

c
a
se

U
C

L
C

O
v
e
ra

ll
%

Species

Annotation 70.4 0.2 25.6 3.8 0.1
Annotation member 49.8 0.5 49.5 0.2 <0.1
Class 79.8 4.1 2.9 13.2 9.8
Constructor 79.8 3.5 3.1 13.5 7.2
Enum 73.4 0.5 19.4 6.7 0.1
Enum constant 55.9 10.2 33.6 0.2 0.8
Field 86.1 6.0 6.2 1.7 27.1
Formal argument 81.8 3.0 14.2 0.1 8.1
Interface 59.3 2.6 6.4 31.7 1.5
Label name 59.1 15.7 25.0 0.1 0.1
Local variable 82.4 3.8 12.6 1.2 16.9
Method 91.6 2.9 1.6 3.9 28.4

Total 84.9 4.1 6.4 4.6

4.4.1 INTT

I used INTT to tokenise the identifier names in each of the seven datasets. The accuracy

of the tokenisations was automatically checked against the reference tokenisations for each

dataset using a small Java program. A percentage accuracy score calculated for INTT’s

overall performance and for each species of identifier name. A percentage accuracy was also

calculated for each of the four structural categories found in each set of identifier names, see

Table 4.3. (The results for dataset G are reported in Section 4.3.4.)

INTT was found to have an overall accuracy of 96-97%, which improves marginally when

identifier names containing digits are excluded. Identifier names containing digits are to-

kenised with an accuracy in excess of 85% for three of the six data sets A–F. However,

accuracy drops to 64% for method identifier names containing digits. Inspection of the to-

kenisations for class and method names show that there are two contributing factors: firstly,

the assumption that a recognised acronym containing digits always takes precedence over the

heuristics when determining a tokenisation led to incorrect tokenisations in some instances

and, secondly, some oversplitting of textual tokens occurs. An example of the former is the

method name replaceXpp3DOM (NetBeans) which was tokenised as {replace, Xpp, 3D, OM}

71

Chapter 4. Identifier Name Tokenisation

Table 4.3: Percentage accuracies for INTT

C
o
n
v
e
n
ti

o
n

a
l

D
ig

it
s

S
in

g
le

c
a
se

U
C

L
C

O
v
e
ra

ll

W
it

h
o
u

t
d

ig
it

s

Dataset

A Random identifier names 97.3 95.9 97.4 85.8 96.9 97.0
B Class names 98.3 85.4 92.4 92.1 96.5 97.1
C Method names 97.1 63.8 96.8 92.7 96.0 96.9
D Field names 97.5 88.7 96.4 87.5 96.3 97.1
E Formal arguments 98.8 94.4 93.4 79.4 97.0 97.2
F Local variable names 98.2 94.3 92.0 85.3 96.2 96.3

on the basis that 3D is a known acronym containing digits. Applying the heuristics alone,

however, would have found the correct tokenisation of {replace, Xpp3, DOM}.

The overall percentage accuracy for each dataset is comparable with the accuracies re-

ported for the Samurai tool (Enslen et al., 2009) (97%) and by Madani et al. (2010) (93-96%).

The breakdowns for each structural type of identifier name show that INTT performs less con-

sistently for identifier names containing digits and for those containing the UCLC boundary.

4.4.2 Comparison With Samurai

To make a comparison with the work of Enslen et al. I developed an implementation of the

Samurai tool based on the published pseudocode and textual descriptions of the algorithm

(Enslen et al., 2009). The implementation processed the seven test sets of identifier names

and the resulting tokenisations were scored for accuracy against the reference tokenisations.

The results are shown in Table 4.4 with the exception of the single case dataset G, which

is reported below in Section 4.4.3. The overall accuracy figure given for my implementation

of the Samurai algorithm in Table 4.4 excludes identifier names with digits, and should be

compared with the figures in the rightmost column of Table 4.3. Samurai’s treatment of

digits as discrete tokens leads to an accuracy of 80% or more for all but class and method

identifier names, where accuracy falls to 45% and 55% respectively.

My implementation of the Samurai algorithm performs less well than the original (Enslen

et al., 2009). On inspecting the tokenisations I found more oversplitting than anticipated.

72

4.4. Experiments and Results

Table 4.4: Percentage accuracies for Samurai

C
o
n
v
e
n
ti

o
n

a
l

D
ig

it
s

S
in

g
le

c
a
se

U
C

L
C

W
it

h
o
u

t
d

ig
it

s

Dataset

A Random identifier names 93.3 92.9 69.1 82.1 86.3
B Class names 94.0 44.9 86.3 81.5 91.7
C Method names 92.8 55.2 88.8 83.4 92.3
D Field names 91.3 78.8 78.2 73.4 87.7
E Formal arguments 94.8 88.4 75.0 64.7 89.4
F Local variable names 92.7 86.2 67.7 70.6 85.4

There are a number of factors that could contribute to the observed difference in performance,

which are discussed in Section 4.4.4 Threats to Validity.

4.4.3 Single Case Identifier Names

Both INTT and Samurai contain algorithms for tokenising single case identifier names that are

intended to improve on Feild et al.’s greedy algorithm. To compare the two tools I extracted

a data set of 4,000 random single case identifier names from the INVocD database. All the

identifier names consist of a minimum of eight characters: 2,497 are composed of more than

one word or abbreviation, the remainder are either single words found in the dictionary or

have no obvious tokenisation.

I implemented the greedy algorithm developed by Feild et al. following their published

description (Feild et al., 2006), to provide a baseline of performance from which the improve-

ment in performance represented by INTT and Samurai could be evaluated. The supporting

dictionary for the Feild et al.’s greedy algorithm was constructed from the English word

lists provided with ispell v3.1.20, the same version used by Feild et al.. Their stop-list and

list of abbreviations were replaced with the same list of abbreviations used in INTT and the

additional list of terms that are included in INTT’s dictionary.

Enslen et al. found that Samurai and greedy both had their strengths. Samurai is a

conservative algorithm that tokenises identifier names only when the tokenisation is a very

much better option than not tokenising. As a result, the greedy algorithm correctly tokenised

73

Chapter 4. Identifier Name Tokenisation

identifier names that Samurai left intact. However, as expected, the greedy algorithm was

more prone to oversplitting than the more conservative Samurai (Enslen et al., 2009).

The 4,000 single case identifier names were tokenised with 78.4% accuracy by my imple-

mentation of Feild et al.’s ‘greedy’ algorithm, with 70.4% accuracy by my implementation of

Samurai, and with 81.6% accuracy by INTT.

4.4.4 Threats to Validity

The threats to validity are concerned with construct validity and external validity. Inter-

nal validity is not considered because I make no claims of causality. Similarly, statistical

conclusion validity is not considered, because I have not used any statistical tests.

Construct Validity

There are two key concerns regarding construct validity: the possibility of bias being in-

troduced through manual tokenisation of identifier names used to create sets of reference

tokenisations; and the observed difference in performance between my implementation of

Samurai and the accuracy reported for the original implementation (Enslen et al., 2009).

That I split the identifier names for the reference tokenisations may have introduced

a bias towards tokenisations that favour INTT. I guarded against this during the manual

tokenisation process as much as possible, and conducted a review of the reference sets to look

for any possible bias and revised any such tokenisations found. Of the related works (Feild

et al., 2006; Enslen et al., 2009; Madani et al., 2010) only Enslen et al. used an independently

created set of reference tokenisations.

I have identified three factors that may explain the reduced accuracy achieved by my

implementation of Samurai in comparison to the reported accuracy of the original. When

implementing the Samurai algorithm, I took all reasonable steps, including extensive unit

testing, to ensure the implementation conformed to the published pseudo code and text

descriptions (Enslen et al., 2009). However, it is possible that I may have inadvertently

introduced errors. There is the possibility that computational steps may have inadvertently

been omitted from the published pseudo code description. The third possibility is that

the scoring formula used in Samurai to identify preferable tokenisations, which was derived

empirically, may not hold for oracles composed of fewer tokens with lower frequencies. The

74

4.5. Discussion

oracle used in my implementation of Samurai was constructed using identifier names found in

60 Java projects, much fewer than the 9,000 projects Enslen et al. used as the basis for their

dictionary. My version of the Samurai oracle contains 61,580 tokens, with a total frequency

of 3 million. In comparison the original Samurai oracle was created using 630,000 tokens with

a total frequency of 938 million.

External Validity

External validity is concerned with generalisations that may be drawn from the results. My

experiments were conducted using identifier names extracted from Java source code only. Al-

though I cannot claim any accuracy values for other programming languages, I expect results

to be similar for programming languages with similar naming conventions, because the to-

kenisation approach is independent of the programming language. The experiments were also

conducted on identifier names constructed using the English language. While the techniques

and the tool I developed can be applied readily to identifier names in other natural languages,

some of the heuristics, in particular the treatment of ‘2’ and ‘4’ as homophone substitutions

for prepositions, may need to be revised for natural languages other than English.

A further concern for external validity is that I followed the experimental design of Enslen

et al. (2009). The algorithms implemented in INTT are intended to address the challenges

posed to accurate tokenisation by specific typographical features. With the exception of single

case identifier names, identifier names for the test sets were selected at random from each

species rather than by typographical feature. A better evaluation of the algorithms might have

been achieved by extracting sets of 4,000 identifier names containing specific typographical

features such as digits or the UCLC boundary. However, it should be noted that randomly

selected sets of names were also used in the later evaluation of multiple tokenisers by Hill

et al. (2013).

4.5 Discussion

A motivation for adopting the approach described above was a concern over the computing

resources, both in terms of time and space, that were being devoted to solving the problem of

identifier name tokenisation. The approach taken by Guerrouj et al. processes each identifier

name in detail and is thus relatively computationally intensive, while the Samurai algorithm

75

Chapter 4. Identifier Name Tokenisation

relies on harvesting identifier names from a large body of existing source code — a total of

9,000 projects — to create the supporting oracle. Like Samurai, INTT processes identifier

names selectively and reserves more detailed processing for those identifier names assumed to

be more problematic. However, accuracy levels similar to the published figures for Samurai

are achieved — both as part of my evaluation and the independent evaluation conducted

by Hill et al. (2013) — using a smaller oracle constructed, largely, from readily available

components such as the SCOWL word lists.

4.5.1 Identifier Names Containing Digits

I have demonstrated an approach to tokenising identifier names containing digits that achieves

an accuracy of 64% at worst and most commonly 85%–95%. The only tool available for com-

parison was my implementation of the Samurai algorithm, which takes a simple and unam-

biguous approach to tokenising identifier names containing digits and achieves, an accuracy

that is consistently between 10% and 3% less than that achieved by INTT, with the exception

of class identifier names where Samurai’s treatment of digits as discrete tokens results in an

accuracy of 45%, some 40% less than INTT.

While I am largely satisfied with having achieved such high rates of accuracy, there is

room for improvement. Inspection of INTT’s output showed that some inaccurate tokeni-

sations could be attributed to incorrect tokenisation of textual portions of the identifier

name. However, they also showed that some of my heuristics for identifying how to tokenise

around digits require refinement. One possibility is the introduction of a specific heuristic

for tokens of the form ‘v5’, signifying a version number, so that they are tokenised con-

sistently. I found that though most were tokenised accurately, some identifier names, for

example SPARCV9FlushwInstruction (JDK), were not. The difficulty appears not to be the

digit alone, but that the digit in combination with the letter is key to accurate tokenisa-

tion. Other incorrect tokenisations occurred where identifier names such as replaceXpp3DOM

contain a known acronym. The solution in such cases appears to be to choose between the

tokenisation resulting from using recognised acronyms, and that arising from the application

of the heuristics alone.

Another solution that may be used with certain types of digit-containing acronym is

to employ pattern matching. For example developers will, very occasionally, refer to ISO

76

4.5. Discussion

and RFC standards in names and these could easily be matched with regular expressions.

Alternatively, additional heuristics could be added to the list in Section 4.3.3 to recognise

established acronym forms.

4.5.2 Limitations

No current approach tokenises all identifier names accurately. Indeed, accurate tokenisation

of all identifier names may only be possible with some projects where a given set of identifier

naming conventions are strictly followed. However, there are a number of barriers to tokeni-

sation that are difficult to overcome, and outside the control of those processing source code

to extract information. An underlying assumption of the approaches taken to identifier name

tokenisation is that identifier names contain semantic information in the form of words, abbre-

viations and acronyms and that these can be identified and recovered. Developers, however,

do not always follow identifier naming conventions and building software that can process

all the forms of identifier names that developers can dream up is most likely impossible and

would require a great deal of additional effort for a minimal increase in accuracy. For ex-

ample, is0x8000000000000000L (Xerces) is an extremely unusual form of identifier name —

the form is seen only three times5 in the 60 projects surveyed — which would require addi-

tional functionality to parse the hexadecimal number in order to tokenise the identifier name

accurately. However, the approach suggested above to use a form of pattern matching to

identify certain types of digit-containing acronym might be extended to include hexadecimal

numbers. The disadvantage is that such a technique introduces additional computational

overhead for what are very rare cases.

Another limitation arises from the use of neologisms and misspelt words. Neologisms

found in the single case test set include ‘devoidify’, ‘detokenated’, ‘grandcestor’, ‘indentator’,

‘pathinate’ and ‘precisify’. With the exception of ‘grandcestor’ these are all formed by the

unconventional use of prefixes and suffixes with recognised words or morphological stems.

Some, e.g. ‘pathinate’, are vulnerable to oversplitting by Feild et al.’s greedy algorithm and

algorithms based on it. Others may cause problems when concatenated with other words

in single case identifier names where a plausible tokenisation is found to span the intended

boundary between words.

5NetBeans’ unit tests include the method names test0x01 and test0x16.

77

Chapter 4. Identifier Name Tokenisation

Samurai and INTT both guard against oversplitting neologisms by using lists of prefixes

and suffixes. INTT identifies single case identifier names found to be formed by a recognised

word in combination with either or both a known prefix or suffix and does not attempt to

tokenise them. Samurai tries to tokenise all single case identifier names, but rejects possible

tokenisations where one of the resulting tokens would be a known prefix or suffix. All of

the neologisms listed are recognised as single words by both approaches. However, INTT

does not recognise ‘precisify’ as a neologism resulting from concatenation and would try to

tokenise it. The use of stemming may refine the recognition of neologisms, but would also add

computational overhead. The recognition of word blends such as ‘grandcestor’ is non-trivial

(Cook and Stevenson, 2010).

Tools that use natural language dictionaries as oracles will try to tokenise a misspelt word,

whether it is found in isolation or concatenated with another word, as a single case identifier

name. The majority of observed misspellings appear to be simple and result from insertion of

an additional letter, omission of a letter or transposition of two letters. Precisely the sort of

problem that can be readily identified by a spell checker. For example, possition (NetBeans)

is oversplit by both INTT and the greedy algorithm as {pos, sit, ion} and {poss, it, ion},

respectively. My implementation of Samurai also oversplits possition probably because of a

combination of the relative rarity of the spelling mistake, and the more common occurrence

of the token poss (AspectJ, Eclipse, Netbeans, and Xalan). A step towards preventing some

oversplitting of misspelt words could be achieved through the use of algorithms applied in

spell-checking software, such as the Levenshtein distance (Levenshtein, 1966), or using a

spellchecker. Since this work was completed, I have adapted spellchecking software for use

with identifier names (See Chapter 6) and am examining ways of incorporating it into INTT.

Inspection of the tokenisations of the test sets for each tool show that Feild et al.’s

greedy algorithm is prone to oversplitting neologisms particularly where a suffix such as

‘able’ that is also a word has been added to a dictionary word, e.g. zoomable (JFreeChart).

Feild et al.’s greedy also cannot consistently tokenise identifier names that start and end

with abbreviations not found in its dictionary, e.g. tstampff (BORG Calendar), and cannot

differentiate between ambiguous tokenisations. Indeed, Feild et al. provide no description of

how to differentiate between tokenisations that return identical scores (Feild et al., 2006). In

my implementation of the greedy algorithm, the tokenisation resulting from the backward

78

4.6. Summary

pass is selected in such situations, because English language inflections, particularly the single

‘s’, can be included by the forward pass of the algorithm. For example, debugstackmap (JDK)

is tokenised incorrectly as {debugs, tack, map} by the forward pass and correctly as {debug,

stack, map} by the backward pass. The backward pass is also prone to incorrect tokenisations,

though from inspection of the test set this is much less common. For example, the reverse

pass tokenises commonkeys (JDK) as {com, monkeys}, using ispell word lists where ‘com’ is

listed as a word.

4.5.3 Future Work

Tools such as INTT and Samurai work on the assumption that developers generally follow

identifier naming conventions and that additional computational effort is required for excep-

tions that can be identified. As noted in the description of the problem (Section 4.1) the

assumption is an approximation. There are many cases where the typographical conventions

on word division are broken, or are used in ways that divide the elements of semantic units

so as to render them meaningless. In other words, a key issue for tokenisation tools is that

word divisions, be they separator characters or internal capitalisation, can be misleading and

are thus not always reliable. Consequently, meaningful tokens may need to be reconstructed

in client tools by concatenating adjacent tokens. An alternative would be for the tokeniser to

reconstruct tokens, which may be relatively straightforward for some of the observed names

such as subMenu. However, more complex instances, may require other approaches, such as

heuristics that rely on the expected grammatical form of the name. In the longer term, more

computationally intensive processes, exemplified by Normalize (Lawrie and Binkley, 2011)

and LINSEN (Corazza et al., 2012), can be refined to provide more accurate tokenisers.

4.6 Summary

Identifier names are the main vehicle for semantic information during program comprehen-

sion. The majority of identifier names consist of two or more words, abbreviations or acronyms

concatenated and therefore need to be tokenised to recover their semantic constituents, which

can then be used for tool-supported program comprehension tasks, including concept location

and requirements traceability. Tool-supported program comprehension is important for the

maintenance of large software projects where cross-cutting concerns mean that concepts are

79

Chapter 4. Identifier Name Tokenisation

often diffused through the source code.

While typographical conventions should make the tokenisation of identifier names a

straightforward task, they are not always clear, particularly with regard to digits, and devel-

opers do not always follow conventions rigorously, either using potentially ambiguous word

division markers or none at all. Thus accurate identifier name tokenisation is a challenging

task.

In particular, the tokenisation of identifier names of a single case is non-trivial and there

are known limitations to existing methods, while identifier names containing digits have

been largely ignored by published methods of identifier name tokenisation. However, these

two forms of identifier name occur with a frequency of 9% in my survey of identifier names

extracted from 16.5 MSLOC of Java source code, demonstrating the need to improve methods

of tokenisation.

In this chapter I addressed two research questions concerning how to improve the tokeni-

sation of names with ambiguous or no word boundaries (RQ 2), and how to tokenise names

containing digits (RQ 3). By answering the questions I make two contributions. First, I

demonstrate an improvement on current methods for tokenising single case identifier names,

on the one hand in terms of improved accuracy and scope by tokenising forms of identifier

name that current tools cannot, and on the other hand in terms of resource usage by achieving

similar or better accuracy using an oracle with less than 20% of the entries used by Samurai.

Furthermore, the oracle used can be constructed easily from available components, whereas

the Samurai algorithm relies on identifier names harvested from 9,000 Java projects. Sec-

ond, I have introduced an original method for tokenising identifier names containing digits

that can achieve accuracies in excess of 90% and is a consistent improvement over a naive

tokenisation scheme.

I also make two technical contributions. Firstly, INTT, written in Java, is available for

download6 as a JAR file with an API that allows the identifier name tokenisation functionality

described in this chapter to be integrated into other tools. Secondly, the data used to test

INTT is made available as plain text files. The data consists of the seven test datasets of

28,000 identifier names together with the manually obtained reference tokenisations, and

1.4 million records of over 800,000 unique identifier names in 60 open source Java projects,

6http://oro.open.ac.uk/28352/

80

http://oro.open.ac.uk/28352/

4.6. Summary

including information on the identifier species. By making these computational and data

resources available, I hope to contribute to the further development of identifier name based

techniques (not just tokenisation) that help improve software maintenance tasks.

Having developed a means of extracting and storing identifier names for analysis, and

devised and implemented improved techniques for the tokenisation of names, I now have

the fundamental tools needed to support the analysis of names. In the following chapter I

describe analysis of the structure of Java class names.

81

Chapter 5

The Analysis of Class Identifier

Names

The preceding two chapters have focused on the development and implementation of a system

to extract identifier names from source code and to store the names with their tokens, and

on the tokenisation of names. In the remaining chapters of the dissertation the focus returns

to the principal research question: What types of content and phrasal structure do developers

use in Java class and reference names? The class and reference names, and their tokens

identified by INTT, extracted from 60 Java projects and stored in the INVocD database are

the data source for the analysis reported in this and the subsequent two chapters. This

chapter reports on an investigation of the class names in the corpus. The following two

chapters report investigations of reference names: Chapter 6 describes a survey of reference

names, and Chapter 7 investigates the adherence of reference names to naming conventions.

Class identifier names represent the core entities and concepts encoded in object-oriented

source code, and are vital to program comprehension (Rajlich and Wilde, 2002; Deißenböck

and Pizka, 2006). Naming conventions advise that developers choose ‘meaningful’ identifier

names and that class identifier names should be nouns (Vermeulen et al., 2000; Gosling et al.,

2014) or descriptive nouns (Gosling et al., 2014). More advanced practitioner texts advocate

a considered approach to identifier naming (Beck, 2008), and a variety of conventions of

language use have arisen as a result of praxis (Liblit et al., 2006).

Analysis of C function identifier names by Caprile and Tonella (1999) led to support for

automated name refactoring (Caprile and Tonella, 2000). Similar analysis of Java method

83

Chapter 5. The Analysis of Class Identifier Names

identifier names found a link between identifier names and method implementation (Høst and

Østvold, 2008), which was successfully leveraged to identify candidates for name refactoring

and to suggest possible refactorings (Høst and Østvold, 2009).

Despite the importance of class identifier names for program comprehension, there is no

detailed understanding of their structure. In this chapter I present a survey of the class

identifier names found in 16.5 MSLOC of open source Java projects and recorded in INVocD

(See Chapter 3). In particular I seek to answer the following two research questions that

address different aspects of the principal research question:

RQ 4 What phrasal structures do developers use in class names?

RQ 5 How do developers incorporate super class and interface names in class

names?

I adopt two approaches to the analysis of class names. The first, used to answer both

RQ 4 and RQ 5, analyses the identifier names to recover patterns of parts of speech used in

their construction and identify common phrasal structures with the intention of determining

the extent of the use of the naming convention that a class name is a noun or noun phrase and

what alternatives are used in practice. The second approach, focusing on RQ 5, catalogues

the repetition of the component words of super class and interface (super type) names in class

identifier names. Such reuse is evident in the Java library, for example, where the java.util

classes HashSet and TreeSet retain the name of the Set interface implemented by their

common super class AbstractSet. However, little is known of the extent to which these

types of pattern are replicated in production source code and under what circumstances.

5.1 Related Work

Knowledge of the structure of identifier names has practical applications in source code

comprehension and software development and maintenance. Analysis of C function names by

Caprile and Tonella (1999) has been applied to automate the refactoring of names (Caprile

and Tonella, 2000). Høst and Østvold undertook detailed analysis of Java method names

using a specially developed PoS tagger (Høst and Østvold, 2008) and found relationships

between method names and method implementation (Høst and Østvold, 2009) in terms of the

84

5.1. Related Work

micro-patterns, particular characteristics and operations, found in the compiled bytecode. For

example, a mutator (setter) method might have no return type, a single argument, and assign

that argument to a class field. This knowledge was then applied to develop the automated

detection of method naming errors and recommendation of candidate refactorings (Høst and

Østvold, 2009). As well as identifying conventional parts of speech, Høst and Østvold’s PoS

tagger treats type names as a separate part of speech.

Singer and Kirkham (2008) identified a link between Java class names and the micro-

patterns (Gil and Maman, 2005) found in the implementation of a class using the approx-

imation that Java class names are of the form JJ∗NN+, where JJ represents an adjective

and NN a noun1. However, the link was based on the assumption that the rightmost noun

is an indicator of the class’s implementation and is the basis of the relationship with the

micropatterns found in the class implementation, and no detailed analysis of the structure

and content of class identifier names was undertaken.

The structure of Java class identifier names was investigated as part of a study of the

cognitive aspects of identifier names as a form of communication (Liblit et al., 2006). The

investigation found developers used a variety of morphological and grammatical artifices

when constructing identifier names, many of which are not proposed by naming conventions.

However, the investigation was conducted using source code from multiple programming

languages, not Java alone, and was not a comprehensive survey of naming practice. The

work of Liblit et al. influenced the pragmatic grammar for extracting knowledge from identifier

names found in the Software Word Usage Model (SWUM) developed by Hill (2010), and the

system of template sentences developed by Abebe and Tonella (2010).

SWUM supports feature location and program comprehension by constructing multi-

layered models, including light ontologies, that combine the structural information in source

code and semantic information extracted through natural language analysis of identifier

names. As part of SWUM, Hill (2010) developed a pragmatic grammar that describes a

wide range of phrasal content expected to be found in identifier names to support the ex-

traction of information. The grammar is based in naming conventions, and Liblit et al.’s and

Hill’s own observations.

Identifier naming conventions were used by Abebe et al. (2009) to identify smells in source

1The Penn Treebank PoS tag set is used to annotate parts of speech ftp://ftp.cis.upenn.edu/pub/

treebank/doc/tagguide.ps.gz a summary of which is given in Appendix E

85

ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz
ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz

Chapter 5. The Analysis of Class Identifier Names

code. The smells are predicated on deviations from suggested identifier naming conventions

that arise from programming conventions, and, to a lesser extent, deviation from established

conventions arising from identifier naming praxis. A single rule concerns the grammatical

structure of class identifier names, and states that class identifier names should contain at

least one noun and not contain any verbs. However, this work is based on naming conventions

that are guidelines of good practice, rather than a detailed knowledge of naming conventions

found in practice. Abebe and Tonella (2010) used an approximation of the phrasal structure

of identifier names to develop a system where an off the shelf PoS tagger and parser, Minipar,

was used to tag the name as part of a ‘template’ sentence. At the simplest, the class name is

tokenised and the phrase ‘is a thing’ added to create a simple sentence. Abebe and Tonella

used four templates for class names: two for names beginning with nouns, and two for those

beginning with verbs. A key idea for this investigation is that class identifier names found

in practice begin with verbs, something that is not specified in naming conventions or in the

work of Liblit et al. (2006). Abebe and Tonella’s work concerns the development of a system

for parsing identifier names and they do not comment on the proportion of class names they

are able to parse with this technique.

Other techniques have been applied to extract ontologies from source code. Raţiu (2009)

and Falleri et al. (2010) have reverse engineered ontologies from source code using identifier

names a source of information. Raţiu constructed ontologies to investigate the logical struc-

ture of domain knowledge encoded in source code. Falleri et al. created WordNet (Fellbaum,

1998) style semantic nets from identifier names. To determine the meaning of an identifier

name, Falleri et al. used the TreeTagger PoS tagger2 and applied a version of dependency

analysis, a technique for analysing sentences, to Java identifier names to identify the dominant

component words and, thereby, the meaning.

Deißenböck and Pizka (2006) proposed a scheme of concise and consistent naming where a

single identifier name represents a single concept throughout the program, and that identifier

names are composed so as to represent discrete concepts unambiguously. They found that ap-

plication of their naming approach improved the maintainability of an in-house project. In a

follow up experiment, Lawrie et al. (2007a) surveyed the identifier names found in 48 MSLOC

of C, C++, Fortran and Java source code to determine the extent of violations of concise

2http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

86

http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/

5.2. Methodology

and consistent naming. The syntactic methodology employed by Lawrie et al. identifies po-

tential violations of concise and consistent naming which include some conventional patterns

of naming found in Java inheritance trees.

Since the completion of this work, Gupta et al. (2013) have created an identifier name

specific PoS tagger. The tagger uses Hill’s grammar as an approximation of identifier names

found in practice. All possible PoS tags for the tokens of an identifier name are identified

using WordNet (Fellbaum, 1998), and a likely tagging for the name accepted on the basis of

word frequency lists and the grammar. The focus of Gupta et al.’s work is on the development

of the PoS tagger and evaluation of its performance, and does not provide an insight into the

detailed structure of class names.

Previous research has investigated identifier naming in Java and detailed investigations

have been constrained to method identifier names. Approximations of class name structure

have been used to support the extraction of semantic information from names. However,

despite the practical applications for a comprehensive understanding of the structure of iden-

tifier names, there has been no detailed investigation of Java class identifier names.

5.2 Methodology

The corpus of class names used in the study consists of the 120,000 unique class identifier

names recorded in INVocD. Two separate analytical techniques were applied to each identifier

name: PoS tagging to help identify any common grammatical patterns, and an investigation

of the origins of class identifier name components, if any, found within the names of the im-

mediate super class and implemented interfaces. I also undertook a case study of FreeMind3,

a Java mind-mapping application that is part of the corpus, to investigate whether uncon-

ventionally structured class identifier names indicate that either there is a problem with the

class name — so that it can be refactored to a more conventionally structured name — or

that there is a problem with the class itself. And, in the latter case, whether any possible

refactorings could be identified that might result in two or more conventionally named classes.

3FreeMind v0.9.0RC9 http://freemind.sourceforge.net/

87

http://freemind.sourceforge.net/

Chapter 5. The Analysis of Class Identifier Names

5.2.1 Analysis of Grammatical Composition

Previous investigations of C function names and Java method names (Caprile and Tonella,

1999; Høst and Østvold, 2008; Falleri et al., 2010) used PoS tagging to identify grammatical

patterns in names. Some teams have created their own PoS tagger developed for identifier

names (Høst and Østvold, 2008; Gupta et al., 2013), while others have used an off-the-shelf

PoS tagger (Falleri et al., 2010; Abebe and Tonella, 2010; Hill, 2010; Binkley et al., 2011). I

followed the latter route by using the Stanford Log-linear PoS tagger4.

My initial experiments were undertaken with the default tagger provided with the Stan-

ford PoS tagger. Using the tagger, which is trained on a corpus of articles taken from The

Wall Street Journal, I observed, through manual inspection, error rates of 15–30% for whole

identifier names, depending on the project analysed. The chief sources of error appeared

to be the difference between the structure of Java class names and the conventional English

sentences that form the tagger’s training corpus, and the presence of abbreviations and a tech-

nical vocabulary. The consequence of this was that the tagger was trying to tag unknown

words in an unrecognised context. As a result common English words were tagged as foreign

words. I also observed issues related to the resolution of ambiguous PoS. For example the

class name ContentHandler consisting of two nouns was consistently tagged as an adjective

followed by a noun, and the word ‘set’ was often tagged as a verb when used as a noun.

I experimented with ‘templates’ similar to those used by Abebe and Tonella (2010) by

creating more sentence-like structures from class names by including the Java keywords from

the class declaration and appending the name of the super class and implemented interface.

For example, for the class CustomPropertiesTagHandler, found in GanttProject, which has

no explicit super class and implements two interfaces, I constructed the phrase “class custom

properties tag handler implements tag handler and parsing listener”. There was no significant

improvement in PoS tagging accuracy.

I decided to train a PoS tagger model using the Stanford PoS tagger. A training corpus

of 9,000 class names was extracted at random from 13 of the 60 projects analysed, including

the Java library. I split and tagged each name manually and any class names that could

not be unambiguously tagged were discarded. A tagger model was trained using the tagged

class names. A separate test corpus of 2,000 class identifier names was created by manually

4http://nlp.stanford.edu/software/tagger.shtml

88

http://nlp.stanford.edu/software/tagger.shtml

5.2. Methodology

tagging class names extracted randomly from a further 8 of the projects analysed. An accu-

racy of 95% was achieved when tagging individual words and abbreviations against the test

corpus. However, unrecognised words and abbreviations were only tagged with 83% accuracy,

resulting in an accuracy rate for whole identifier names of 87% being reported by the tagger

in test mode.

Whilst not perfect, the accuracy is an improvement on the default tagger model, and

manual inspection appeared to show less variability. Høst and Østvold (2008) state the

accuracy of their PoS tagger is better than 97% as the result of manual inspection, but are

unclear whether this figure is for individual words or for whole method identifier names.

Falleri et al. (2010) claim a PoS tagging accuracy of 96% for TreeTagger’s default tagger

for identifier names, but, again, are unclear whether this relates to individual tags, or whole

identifier names.

5.2.2 Analysis of Inheritance

The common grammatical structures found in class identifier names do not identify how

developers encode information in class names. Class names in some inheritance hierarchies in

the Java library repeat part of the super class name. For example the class HTMLEditorKit,

found in the javax.swing.text.html package, is a subclass of StyledEditorKit. Similarly

the collections classes in the java.util package often follow a pattern of naming where a

base interface name is retained through intermediate classes to the various implementations.

Taking the List classes as an example, the List interface extends the Collection interface,

and is implemented in a class by AbstractList. The common list classes — e.g. ArrayList

and LinkedList — then extend AbstractList, i.e. specialised implementations extend the

abstract class and replace Abstract with an adjective or adjectival phrase describing the

implementation.

I analyse the incorporation of component words in a class identifier name from the im-

mediate super class and any implemented interfaces. Class names were partitioned into six

groups according to whether the class explicitly extends a super class — Java classes that

do not explicitly declare a super class extend the root class Object — and the number of

interfaces implemented. The notation I developed consists of the letters E for extends and

I for implements with each letter being followed by a subscript indicating the number of

89

Chapter 5. The Analysis of Class Identifier Names

super classes extended or interfaces implemented: the values of the subscript being 0, 1 and

n where the last means two or more and can only be a subscript to I. For example a class

that extends a super class and implements no interfaces is classified as E1I0.

I investigate lexical inheritance, that is I investigate whether component words from the

super class or implemented interface names are found in the class identifier name. Accordingly

no distinction is drawn between identically named super classes from different packages and

the analysis ignores any package name that might have been specified by the developers in

the extends and implements clauses of class declarations. Similarly generic type names are

ignored where they are specified.

5.2.3 Case Study

FreeMind is a mind-mapping application written in Java with an 11 year development history.

The application consists of a GUI that allows the user to edit, format and annotate a treelike-

graph structure of text nodes. The mind maps are stored in an XML format, and can be

exported to a range of external formats including HTML and OpenOffice Writer, and as

images, flash animations and Java applets. I selected FreeMind as the subject for the case

study because of its maturity, its relatively modest size (some 650 classes and 41 KSLOC). I

have also used FreeMind for more than 5 years and am familiar with its functionality.

Using the results of the grammatical and the inheritance analyses, I identified those classes

with identifier names that do not conform to the commonly occurring grammatical patterns

found in FreeMind class names. The subset of classes was then inspected to determine whether

the class might be named according to one of the more commonly occurring grammatical

patterns, or, if the class appeared to be appropriately named, whether the unusual name

might be indicative of a potential refactoring of the class into two or more classes with more

conventional names.

5.3 Results

To present the results, individual Treebank adjective, noun and verb PoS tags are combined so

that JJ, NN and VB include all forms of adjective, noun, and verb respectively. By collapsing

the Penn Treebank categories a simplified tagset was created, similar to that used by Høst

and Østvold (2009).

90

5.3. Results

5.3.1 Grammatical Structure (RQ 4)

Table 5.1 shows the absolute and relative frequencies for the most common grammatical

patterns found in 120,000 class identifier names extracted from 60 open source Java projects

and recorded in INVocD. The four grammatical forms given in the table comprise 90% of the

identifier names analysed. The remaining 10% of class identifier names are formed using a

variety of patterns, some with only a single instance. Of note is that Singer and Kirkham’s

approximation of Java class identifier names, JJ∗NN+ (Singer and Kirkham, 2008), which

reflects the common convention that class names should be nouns (Gosling et al., 2014;

Vermeulen et al., 2000; The Eclipse Foundation, 2007), can be realised by merging the two

most common categories and includes 85% of the class identifier names analysed. The third

most common form, NN+JJ+NN+, is also a noun phrase, e.g. HttpThrowableReporter

(GWT) and CaseInsensitiveMap (Tapestry), making 88% of the class names analysed nouns

or noun phrases.

Table 5.1: Common Part of Speech Patterns and Frequencies for all projects

Pattern Absolute Frequency Relative Frequency

NN+ 88489 0.73
JJ+NN+ 14833 0.12
NN+JJ+NN+ 3579 0.03
VBNN+ 2918 0.02

Around 2% of class names begin with a verb. Inspection of the classes reveals that many

represent actions in GUIs,

The answer to RQ 4 is that some 88% of class names are, as expected, and as observed

by others (Singer and Kirkham, 2008; Liblit et al., 2006), nouns or noun phrases, and a

further 2% have a structure that appears to be a verb phrase. The remaining 10% have

structures that range from the simple, e.g. NotEmpty (a mixin class in Tapestry) RBJJ, to the

more complex, e.g. MultipleArtifactsNotFoundException (Maven) JJNNSRBVBNNN.

The latter example has a sentence, rather than a phrase, structure even though a Java

developer may well consider it to represent a single concept, and, to all intents and purposes,

to be a surrogate noun.

91

Chapter 5. The Analysis of Class Identifier Names

5.3.2 The Influence of Inheritance (RQ 5)

Table 5.2 shows the distribution of classes according to type of inheritance in classes found in

all 60 projects. In total 80% of classes are related to another class by inheritance. Some 58%

of classes extend a super class, with the majority, 45% in the E1I0 category, not implementing

an interface. Overall, 35% of classes implement one or more interfaces, and, reflecting the

situation with class-based inheritance, the majority of classes implementing an interface do

not also extend a class. Indeed only 13% of classes, overall, take advantage of both dimensions

of inheritance available in Java.

Table 5.2: Distribution of inheritance categories for all projects

Category Absolute Frequency Relative Frequency

E0I0 25056 0.21
E0I1 22000 0.18
E0In 4280 0.04
E1I0 54232 0.45
E1I1 11668 0.10
E1In 3350 0.03

Figure 5.1 shows the variation in the proportions of classes in the inheritance categories for

the 60 projects investigated, where the whiskers extend at most to 1.5 times the interquartile

range from the box. There is considerable variation between projects indicating different

teams’ preference for the use of particular types of inheritance. For example, E-Gantt and

JavaCC have no classes that implement more than one interface, while, at the other end of

the scale, 48% of JFreeChart classes do. By far the most marked variation is in the proportion

of classes that extend a single super class (E1I0) ranging from 70% of classes for ArgoUML

to 15% for Tapestry, where 77% of classes are found in the E0I0 and E0I1 categories.

Table 5.3: Relative frequency of most common grammar patterns by inheritance category

NN+ JJ+NN+ NN+JJ+NN+ VB+NN+

E0I0 0.85 0.08 0.01 0.01
E0I1 0.73 0.15 0.02 0.02
E0In 0.75 0.15 0.03 0.01
E1I0 0.68 0.12 0.04 0.03
E1I1 0.70 0.15 0.04 0.02
E1In 0.75 0.14 0.04 0.02

92

5.3. Results

E0I0 E0I1 E0In E1I0 E1I1 E1In

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

P
ro

p
o
rt

io
n
 o

f
in

h
e
ri
ta

n
c
e
 c

a
te

g
o
ri
e
s
 p

e
r

p
ro

je
c
t

Figure 5.1: Distribution of inheritance categories in 60 Java projects

The distribution of the 4 dominant grammatical patterns in the 6 inheritance categories

is shown in Table 5.3. Of note are the similar frequencies of the grammatical forms for the 5

categories where inheritance is involved, and that the E0I0 category has a noticeably greater

proportion of identifier names composed exclusively of nouns.

Table 5.4 shows the frequency with which elements of super class and interface names are

repeated in class identifier names for the different inheritance categories (the E0I0 category

is omitted from the table). The columns headed all contain the frequency for each category

with which the super class or interface name is repeated in its entirety and uninterrupted.

The columns headed fragment give the frequency with which one or more fragments of the

super class or interface name are repeated. The both column shows the frequency with which

elements from both sources are repeated in the class identifier name. For each inheritance

category approximately 80% of class identifier names incorporate elements from either the

super class or implemented interface identifier names. The repetition of fragments of super

class identifier names is more common than the repetition of the entire super class name.

Repetition of interface identifier names and fragments occurs with a similar frequency, apart

from the E1In category where fragments of interface names are repeated more often than

the entire interface name. Where both dimensions of inheritance are used — the E1I1 and

E1In categories — the super class name is the more common source of class identifier name

components. Indeed some 40% of identifier names in the E1I1 category and 43% in the E1In

category repeat component words from only the super class name, compared to 18% and

93

Chapter 5. The Analysis of Class Identifier Names

22%, respectively, that repeat component words from interface identifier names alone. I also

found that 8% of class identifier names in the E0In category and 1% in the E1In category

incorporate elements from two or more implemented interface identifier names.

Table 5.4: Relative frequency distribution of name inheritance within inheritance categories
for all projects

Super Class Name Interface Name
Category All Fragment All Fragment Both

E0I1 - - 0.39 0.37 -
E0In - - 0.38 0.40 -
E1I0 0.23 0.58 - - -
E1I1 0.14 0.53 0.24 0.21 0.27
E1In 0.11 0.50 0.15 0.25 0.18

The most common grammatical forms of class identifier names with component words

inherited from a super class or interface are given in Table 5.5 for each category. Table 5.5

introduces a notation for tagging super class and interface names, as well as their fragments.

The tags are SC to represent a super class name and SCF for a fragment of the super class

name. Similarly, II and IIF are used for interface names and fragments of interface names

respectively.

For each category, the most common patterns incorporate the inherited name elements as

a suffix. This is the pattern found in the earlier example from the java.swing.text.html

package where HTMLEditorKit is a subclass of StyledEditorKit. In other words the part of

the super class name that defines what the class is is retained and a word or words are added

as a prefix to create the specialised version of the super class. Similarly where part of an

interface name is retained as a suffix, the interface name defines the type of thing the class is.

For example, the class GlobPatternMapper found in ANT implements the FileNameMapper

interface.

The patterns where a fragment of the super class or interface name is used as a prefix for

the class name are less common. An example is the InstructionHandle class in MultiJava,

which extends the super class AbstractInstructionAccessor. In this case the focus of

the class’s activity, an instruction, is the discriminating term that is perpetuated through

inheritance.

94

5.3. Results

Table 5.5: Common grammatical forms of class name component inheritance

Category Grammatical Form Relative Frequency

E0I1 NN+II 0.19
NN+IIF+ 0.17
II NN+ 0.09
IIF+NN+ 0.05

E0In NN+II+ 0.17
NN+IIF+ 0.15
II+NN+ 0.09
IIF+ 0.07
IIF+NN+ 0.06

E1I0 NN+SCF+ 0.30
NN+SC 0.13
SCF+NN+SCF+ 0.05
SCF+NN+ 0.05
JJ+NN+SCF+ 0.03
JJ+SC 0.03

E1I1 NN+SCF+ 0.15
II SCF+ 0.11
NN+SC 0.06
SCF+IIF+ 0.04
IIF+ 0.04
SCF+II 0.03
NN+IIF+ 0.03

E1In NN+SCF+ 0.20
NN+SC 0.05
IIF+ 0.05
NN+IIF+ 0.04
IIF+NN+ 0.04
SCF+NN+ 0.03

The SCF+NN+SCF+ pattern found in the E1I0 and E1I1 categories, arises in class iden-

tifier names like BuddyPluginPasswordException found in Vuze which has the super class

BuddyPluginException, where one or more nouns are inserted into the superclass name to

indicate the specialisation.

Where both dimensions of inheritance are used, the E1I1 and E1In categories, the most

common name inheritance components are NN+SCF+, II SCF+ and NN+SC. The E1I1 cat-

egory contains identifier names composed exclusively of words repeated from both the su-

per class and implemented interface identifier names. An example of the II SCF+ pattern

is the JabRef class FieldTextArea which is a sub class of JTextArea and implements the

FieldEditor interface.

The repetition of entire interface names as suffixes, the NN+II pattern, is absent from

95

Chapter 5. The Analysis of Class Identifier Names

the E1In category despite being the most common pattern in both the E0I1 and E0In cate-

gories. An example of the class name pattern is the HeapRowLocation class in Derby which

implements the interface RowLocation. Many of the instances of the IINN+ pattern are ex-

amples of class identifier names ending in Impl, an abbreviation for implementation, such as

GroovyFeatureImpl found in NetBeans. Also relatively common are class identifier names

composed exclusively of fragments of an interface name, i.e. the pattern IIF+. This can

result from the convention followed by some developers and projects of using the letter I

as a prefix to indicate an interface identifier name, e.g. IDialogSettings found in Eclipse,

where the implementing class is named DialogSettings (The Eclipse Foundation, 2007).

Other examples of the IIF+ pattern include the class JNDIResource, found in JBoss, that im-

plements the interface JNDIResourceMBean, and the Java library class RMISocketFactory,

which implements the interfaces RMIClientSocketFactory and RMIServerSocketFactory.

RQ 5 asked how developers incorporate super class and interface names in class names.

The answer is complex. The majority of class names that extend another class or implement

an interface incorporate some element of one or more of the name of the super class or super

type. In general, the preference is that the class adds one or more nouns as a prefix to the

name or name component repeated from the super class or super type. Where the class both

extends another class and implements an interface, elements of the super class name tend to

be more commonly incorporated in the class name, than the interface name. However, there

appear to be no obvious rules for the observed patterns that can be derived from studying a

single generation of inheritance.

The investigation of class name structure undertaken to answer RQ 4 found that 12% of

class names are not nouns or noun phrases. 2% of class names were found to be verb phrases

and the remaining 10% consist of variety of simple and complex phrasal structures that, like

verb phrases, are not specified in naming conventions. In answering RQ 5 dominant patterns

of reuse of the name or fragments of the names of immediate super classes or super types were

identified. A range of less commonly used patterns of name reuse were also found. So far I

have not tried to understand why developers might use the less common phrase structures

and patterns of name reuse in class names, and whether there is any significance to the less

common and ‘unconventional’ patterns of naming. I explore this question in a case study of

the class names found in FreeMind.

96

5.3. Results

5.3.3 FreeMind

FreeMind was selected as the subject for the case study for two reasons. Firstly, FreeMind is

a mature Java GUI application of modest size (652 classes and 41 KSLOC) that implements a

wide range of functions including editing and export to a variety of document formats. And,

secondly, because I am a long-term user of FreeMind and am familiar with its functionality.

The frequency of the most common grammatical patterns in the 652 class identifier names

found in FreeMind can be seen in Table 5.6. The four most common patterns are the same

as those found with the greatest frequency for all projects (Table 5.1), and were found with

similar frequencies apart from the VBNN+ pattern where the frequency for FreeMind was

almost double that for all the projects analysed. In total the four most common grammatical

patterns describe 91% of the class identifier names in FreeMind.

Table 5.6: Common part of speech patterns and frequencies for FreeMind

Pattern Absolute Frequency Relative Frequency

NN+ 459 0.70
JJ+NN+ 81 0.12
VBNN+ 39 0.06
NN+JJ+NN+ 20 0.03

The distribution of class identifier names in the inheritance categories for FreeMind given

in Table 5.7 show a greater proportion of classes in FreeMind either extend a super class or

implement one or more interfaces than is observed across all the projects analysed (see Table

5.2). Indeed, 66% of classes in FreeMind extend a super class, as opposed to 58% average

across the corpus.

Table 5.7: Distribution of inheritance categories for FreeMind

Category Absolute Frequency Relative Frequency

E0I0 82 0.13
E0I1 128 0.20
E0In 14 0.02
E1I0 318 0.49
E1I1 78 0.12
E1In 32 0.05

97

Chapter 5. The Analysis of Class Identifier Names

Table 5.8 shows the distribution of common grammatical forms of class identifier names

that include words derived from the super class or implemented interfaces for each of the

inheritance categories in FreeMind. While many patterns are common to the same categories

in Table 5.8 and Table 5.5, there are key differences that indicate the existence of project-

specific naming conventions in FreeMind. For example, the two most frequently occurring

patterns in the E0I1 and E0In categories overall, NN+II+ and NN+IIF+, are much more

common in FreeMind. Furthermore, the pattern NN+IIF+, where a fragment of the interface

name is repeated in the class identifier name, is the more frequent of the two in FreeMind

and accounts for 29% of the class identifier names in the E0In category.

Table 5.8: Common grammatical forms of class name component inheritance for FreeMind

Category Grammatical Form Relative Frequency

E0I1 NN+IIF+ 0.27
NN+II 0.20
IIF+NN+ 0.05
JJ+NN+IIF+ 0.05
IINN+ 0.04

E0In NN+IIF+ 0.29
NN+II 0.21
IIF+ 0.07

E1I0 NN+SCF+ 0.35
NN+SCF+NN+ 0.07
NN+SC 0.06
SCF+NN+ 0.05
JJ+NN+SCF+ 0.04
VBNN+SCF+ 0.04
JJ SCF+ 0.04

E1I1 NN+SCF+ 0.38
IIF+SCF+ 0.09
IISCF+ 0.08
VBNN+SCF+ 0.05
SCF+NN+ 0.05

E1In NN+SCF+ 0.28
SCF+NN+ 0.09

The NN+SCF+NN+ pattern observed with a frequency of 7% in the E1I0 inheritance cat-

egory in FreeMind occurs with much lower frequency across the projects analysed. Inspection

of the instances of the NN+SCF+NN+ pattern reveals a local naming convention, an example

98

5.3. Results

of which is the class MindMapCloudModel that extends the class CloudAdapter. The pattern

occurs mainly in a small cluster of packages where it is used for classes that form fundamen-

tal components of FreeMind’s mind maps. In this particular case, the CloudAdapter class

is the sole implementer of the MindMapCloud interface, which suggests CloudAdapter could,

perhaps, be renamed MindMapCloudAdapter to illustrate the lineage more clearly.

Another feature of FreeMind is the relative prominence of class names with grammatical

patterns beginning with a verb in the E1I0 and E1I1 categories. Identifier names of the

VBNN+SCF+ pattern are mainly of the form VBNN+, when the origin of component words

is ignored, and, as already noted, FreeMind has a relatively high frequency of identifier names

of this general pattern (See Table 5.6). As discussed below, many of the classes responsible

for handling user initiated actions in the GUI start with a verb. The VBNN+SCF+ pattern

is also prominent in the E1I1 category, where it is notable that the NN+SCF+ pattern occurs

with a much higher frequency in FreeMind (38%) than amongst all the projects analysed

(15%). The IIF+ pattern found in the E1I1 and E1In categories for all the projects surveyed

are not found in the same categories for FreeMind. Where components from implemented

interface identifier names are incorporated into class names in the E1I1 and E1In categories

in FreeMind so are fragments of the super class identifier name.

In addition to the four most common grammatical patterns given in Table 5.6, further

patterns were identified accounting for a total of 53 class names (see Table 5.9), or a rel-

ative frequency of 0.08. The most common grammatical pattern amongst this group was

VBNN+INNN+, where IN represents a preposition. Each of the 53 unconventionally named

classes was inspected to understand whether the name used was appropriate and a clear re-

flection of the role the class plays in the application. If the name did not meet those criteria, I

explored possible name refactorings that adhered to the established naming conventions found

in the project and were permitted within the same namespace. I also considered whether the

class might be refactored into classes that could be named conventionally.

The majority of the 53 classes inspected represented actions taken by the user in the

GUI, or coordinating events such as automatically saving all open files. On the whole these

class identifier names clearly described the role of each class and were not prone to name

refactoring.

Some class names were identified that could be refactored to more conventional identifier

99

Chapter 5. The Analysis of Class Identifier Names

Table 5.9: Classes inspected in FreeMind

Refactor
Package Class name Name Class Comment

accessories.plugins ExportToImage No No Describes action initiated in UI
ExportToOoWriter No No Describes action initiated in UI
ExportWithXSLT No No Describes action initiated in UI
FitToPage No No Describes action initiated in UI
JumpToMapAction No No Describes action initiated in UI
MyFreemindPropertyListener Yes No Rename AutomaticLayoutPropertyListener

SaveAll No No Describes action initiated in UI
UnfoldAll No No Describes action initiated in UI

accessories.plugins.dialogs ArrayListTransferable Yes No Rename TransferableArrayList

accessories.plugins.time ReplaceAllInfo No No Local naming convention
ReplaceSelectedInfo No No Local naming convention

accessories.plugins.util.xslt FileChooseListener Yes No Rename FileChooserListener

freemind.common ThreeCheckBoxProperty Yes No Rename TristateButton

freemind.controller AboutAction No No Describes action initiated in UI
DisposeOnClose No No Wraps Swing GUI action
HideAllAttributesAction No No Describes action initiated in UI
MoveToRootAction No No Describes action initiated in UI
ShowAllAttributesAction No No Describes action initiated in UI
ShowSelectionAsRectangle No No Describes action initiated in UI
ZoomInAction No No Describes action initiated in UI
ZoomOutAction No No Describes action initiated in UI

freemind.controller.filter CreateNotSatisfiedConditionAction No No Local naming convention
freemind.controller.filter.condition AttributeCompareCondition No No Local naming convention

AttributeExistsCondition No No Local naming convention
AttributeNotExistsCondition No No Local naming convention
ConditionNotSatisfiedDecorator No No Local naming convention
IgnoreCaseNodeContainsCondition No No Local naming convention
NodeCompareCondition No No Local naming convention
NodeContainsCondition No No Local naming convention
NoFilteringCondition No No Local naming convention

freemind.extensions AllDestinationNodesGetter No No Describes action initiated in UI
freemind.main StdOutErrLevel No Yes Remove member class
freemind.modes NodeDownAction No No Describes action initiated in UI

SaveAsAction No No Describes action initiated in UI
freemind.nodes.common CommonToggleFoldedAction No No Describes action initiated in UI
freemind.modes.mindmapmode DoAutomaticSave No No Time-based backup task

ExportBranchToHTMLAction No No Describes action initiated in UI
ExportToHTMLAction No No Describes action initiated in UI
SetImageByFileChooserAction No No Describes action initiated in UI
SetLinkByFileChooserAction No No Describes action initiated in UI

freemind.modes.mindmapmode.actions AddLocalLinkAction No No Describes action initiated in UI
ChangeArrowsInArrowLinkAction No No Describes action initiated in UI
NodeUpAction No No Describes action initiated in UI
RemoveAllIconsAction No No Describes action initiated in UI
SelectAllAction No No Describes action initiated in UI
SetLinkByTextFieldAction No No Describes action initiated in UI
UsePlainTextAction No No Describes action initiated in UI

freemind.modes.mindmapmode.attributeactors MyRenderer Yes No Rename AttributeTreeCellRenderer

ToggleAllAction No No Describes action initiated in UI
freemind.modes.mindmapmode.dialogs EdgeWidthBackTransformer Yes No Rename StringToEdgeWidthTransformer

freemind.modes.viewmodes CommonToggleChildrenFoldedAction No No Describes action initiated in UI
freemind.view.mindmapview Selected Yes No Rename SelectedNodes

freemind.view.mindmapview.attributeview MyFocusListener Yes No Rename AttributeTableFocusListener

names. Three were member classes with identifier names prefixed with My, which gives the

reader little information about the origins of the class, or the detail of the functionality they

might expect to encounter. For example the class MyRenderer, a member class of the class

ImportAttributesDialog in the package freemind.modes.mindmapmode.attributeactors,

is responsible for rendering the cells of a tree used for display in the dialogue. Other member

classes of the same class have clear identifier names reflecting the detail of their purpose, e.g.

AttributeTreeNodeInfo. To make the class name consistent with the other member classes,

and to improve clarity, the name might be refactored to AttributeTreeCellRenderer, which

100

5.3. Results

adheres to the common NN+ pattern.

The class ArrayListTransferable is designed to protect an array list from modification

while it is transferred between two objects. The adjective has been placed after the noun

phrase it is intended to modify, and the name could be refactored to TransferableArrayList,

which is both clearer and conforms to the common JJ+NN+ pattern.

The class ThreeCheckBoxProperty is a GUI component that implements a button used

in dialogues where the user has a number of settings available. The button cycles through

three states when clicked, which are represented by a plus sign, a minus sign and an empty

box and have the meanings change property, remove property and ignore, respectively. The

GUI component does not look like a check box or behave like one, so that aspect of the

name appears to be incorrect. It is used in properties dialogues, but property in isolation

does not adequately represent its usage context. The common name for this type of widget

is a tri-state checkbox, so the most appropriate name refactorings are TristateCheckBox

or TristateButton, both of which conform to the JJ+NN+ pattern, and do not contain

extraneous detail about the type of dialogue in which the component is used.

I also found one instance of a spelling mistake: a class named FileChooseListener,

which should have been FileChooserListener to be consistent with the name of the Swing

JFileChooser instance it creates. The spelling mistake was identified as the result of the PoS

tagger recording Choose as a verb, thus giving the identifier name the pattern NN+VBNN+,

which is relatively uncommon. The remaining four instances of this pattern in FreeMind

are a part of a local naming convention in the freemind.controller.filter.condition

package. Most classes extend NodeCondition or one of its subclasses and follow a con-

sistent naming scheme based on their position in the hierarchy. A feature of the naming

scheme is the insertion of a verb between the two component words of the super class. The

classes support a filtering mechanism that selects particular nodes for display, e.g. the class

NodeContainsCondition is used to test whether a node contains a particular condition or

attribute. I don’t consider the class identifier names to be a problem for program comprehen-

sion because the unconventional naming is used consistently, and the classes, on inspection,

appear to function as described. However, the awkward nature of the naming pattern may be

a design smell (a poor solution to a common design problem that compromises source code

quality and maintainability (Moha et al., 2010; Suryanarayana et al., 2014)) and that using

101

Chapter 5. The Analysis of Class Identifier Names

a more conventional design, e.g. the visitor pattern (Gamma et al., 1995), should result in

more conventional class identifier names.

The class StdOutErrLevel is a candidate for refactoring. StdOutErrLevel is a member

class of freemind.main.StdFormatter used in logging and was identified because the in-

tended abbreviations of ‘output’ as ‘out’ and ‘error’ as ‘err’ are also words. On initial reading

of the name, it appears to be an abbreviation of standard output error level, or stdout error

level. On inspection, the StdFormatter class is responsible for formatting log records for

FreeMind, and StdOutErrLevel is used to assign the logging threshold for the stdout and

stderr streams. The developers combine the task of setting the logging thresholds for two

streams into the same object, before specifying each output stream in the call to the construc-

tor (see Figure 5.2). There are two solutions: either the class name is refactored to remove the

reference to both standard streams, or the class, which wraps the java.util.logging.Level

class without adding any functionality, is removed and replaced by direct calls to the Level

library class. The latter is the preferable solution as it results in a less cluttered class that is

easier to read.

/**

* Level for STDOUT activity.

*/

final static Level STDOUT =

new StdOutErrLevel("STDOUT", Level.WARNING.intValue ()+53);

/**

* Level for STDERR activity

*/

final static Level STDERR =

new StdOutErrLevel("STDERR", Level.SEVERE.intValue ()+53);

Figure 5.2: Partial listing from freemind.main.StdFormatter

EdgeWidthBackTransformer is one of a group of member classes of StylePatternFrame

in the package freemind.modes.mindmapmode.dialogs that transform strings to widths and

back again. The class performs the inverse function of the class EdgeWidthTransformer

and invokes the method transformStringToWidth. A clearer and more consistent class

name might be StringToEdgeWidthTransformer. However, the identifier name remains

102

5.3. Results

unconventional.

5.3.4 Threats to Validity

As with any empirical study there are threats to validity. In this case threats to validity

concern construct and external validity. Internal validity is not considered because I make

no claims of causality. Also, I have not used any statistical inference, so do not consider

statistical conclusion validity.

Construct Validity The key threat to construct validity is the accuracy of the PoS tag-

ger used in the experiment. The Stanford PoS tagger’s test mode for the tagger model I

trained reports an accuracy of 95% for individual words and 85% for whole identifier names.

The sources of error include words that commonly have more than one part of speech, ab-

breviations and unknown words. However, despite the error rate I successfully identified

unconventionally constructed identifier names that were candidates for refactoring as well as

a possible design smell. An associated threat is that I hand tagged the training and testing

corpora, which is a possible source of bias.

The consequence of collapsing the Penn Treebank PoS tags is that 50 proper nouns and

15,049 plural nouns are included in the NN tag, and a total of 1,393 verb forms are included

in the VB tag. These account for 13% of class identifier names containing nouns and 24%

of those containing verbs. Only 0.2% of adjectives are tagged as JJR and JJS. While this

approach hides some detail, it allows the observation of general forms of class identifier names.

External Validity The corpus of class names consists of the class names recorded in

INVocD (Chapter 3). The 60 projects in INVocD are drawn from a variety of domains to reduce

the influence of domain specific identifier names or naming styles. There is considerable

variation in the proportions of class and identifier based inheritance used in the projects.

Accordingly, while the observations of the patterns of the reuse of component words from

the names of super classes and implemented interfaces are reliable for the corpus analysed,

caution should be exercised when extrapolating the proportions of these patterns to other

projects.

103

Chapter 5. The Analysis of Class Identifier Names

5.4 Discussion

I employed two methods of analysing of class identifier name structure. The first relies solely

on the parts-of-speech used in the class names, and the second considered the origins of the

component words in the names of the super class and implemented interfaces. I found that

more than 90% of class identifier names can be described using four simple grammatical

patterns. Despite the advice given in naming conventions (Gosling et al., 2014; Vermeulen

et al., 2000) that class identifier names should be nouns or noun phrases, I found that a

proportion — around 2% — incorporate verbs and describe actions, rather than entities.

Inspection of a sample of the class identifier names containing verbs found that many were

related to actions initiated by the user in GUI environments.

Naming conventions offer no advice on whether, or how to incorporate information from

super class or interface names in class identifier names. Praxis, in the Java library, for

example, is for some class and interface hierarchies to retain part of the class identifier name

through the inheritance hierarchy. My analysis of the origins of component words in class

identifier names found that 70–80% of classes that extend a superclass or implement an

interface include one or more words repeated from the super class or implemented interface

name (See Tables 5.4, 5.5 & 5.8).

In general, class identifier names repeat fragments of the super class or interface name,

rather than the entire name, and it is words found in the super class names that are repeated

with the higher frequency. Manual inspection showed that fragments are mostly derived

from the latter, or right hand, part of the super class or interface name. Though a common

pattern found in exception classes involves the insertion of words in the super class name.

I was unable to identify any obvious mechanisms from single generation inheritance that

explain how a decision is made to repeat either part or all of the super class or interface

name. However, I anticipate that it will be possible to derive heuristics from inheritance

trees where name fragments are repeated over more than one generation.

The repetition of components of super class and implemented interface identifier names in

some class identifier names appears to violate the conciseness rule of Deißenböck and Pizka’s

system of concise and consistent naming (Deißenböck and Pizka, 2006). A concise name

is one that unambiguously represents a given concept within a program. For example, the

identifier names position and absolutePosition would break the conciseness rule because

104

5.4. Discussion

the concept of ‘position’ contains the concept ‘absolute position’.

Lawrie et al. (2007a) used a syntactic methodology to investigate violations of concise and

consistent naming. They defined Type I and Type II syntactic violations, both of which imply

that the conciseness rule has been broken, and may indicate a failure of the consistency rule. A

Type I violation occurs when an identifier name is repeated entirely within another identifier

name; and a Type II violation occurs when an identifier name is similarly contained by two

or more others. Type I violations occur in a single generation of inheritance where a class

identifier name includes the whole of the name of either the super class or an implemented

interface.

In FreeMind, for example, 89 (14%) of the class identifier names surveyed are Type I

violations. Some class names appear to be genuine violations of the conciseness rule, but

most are part of the process of creating program concepts through inheritance. The same is

true of the Type II violations I identified. In the latter case the false positives are typified

by classes that implement a common interface or base class, e.g. SortedComboBoxModel and

ClonedComboBoxModel both implement the Swing interface ComboBoxModel, and describe

the concept hierarchy clearly. Lawrie et al. (2007a) suggested that parts-of-speech may help

discriminate between identifier names that represent new concepts and those that are genuine

violations. The adjectives in the example fulfil that role, but further study is required to

confirm the viability of the method.

Importantly, around 20–30% of class identifier names in each inheritance category were

found not to incorporate any words derived from the identifier names of the extended super

class or implemented interfaces. Further investigation is needed to identify the occasions on

which names are incorporated and those when they are not. One approach is to derive rules

of name inheritance from existing behaviour within a code base, which may have a practical

application by alerting a developer to an unusual repetition of a component word in a class

identifier name, or the omission of a component that is commonly repeated. For example,

the Java library interface names Cloneable and Serializable are rarely incorporated in

the identifier names of implementing classes, because they describe functionality to be in-

corporated into a class rather than a type definition. While such a solution is attractive, it

does not explain when and why super class and interface name components are repeated. A

more detailed approach, analysing identifier names in terms of their grammatical structure,

105

Chapter 5. The Analysis of Class Identifier Names

their semantics, and their role or position in the inheritance hierarchy, may result in methods

that predict the circumstances under which component words are repeated and which words

should be repeated.

The common class identifier naming patterns are familiar mechanisms developers use to

communicate ideas. Høst and Østvold demonstrated that the link between Java method

identifier names is sufficiently strong that poor quality or misleading names can be identified

and candidate refactorings suggested (Høst and Østvold, 2009). By identifying candidates

for renaming, such as ThreeCheckBoxProperty, and a possible design smell, I show that

practical results may be achieved through the recognition of unconventionally constructed

Java class names. However, while identifier names may reflect the implementation of a class,

conventionally structured class identifier names are not a guarantee of flawless design.

Knowledge of the common conventional grammatical patterns of class identifier naming

can be incorporated in IDE-based tools to support the creation of class identifier names that

are more readily understood by developers, and that conform to project standards determined

by software project managers. Such a tool could alert the developer to an unconventionally

structured name and, eventually, recommend possible improvements, including the incorpo-

ration of words used in the super class and interfaces, if any. Developers new to a project

would have a ready made style guide to support the creation of class identifier names that

are familiar to existing colleagues. The same knowledge can be leveraged to provide quality

assurance for software project managers that is an improvement on the functionality of cur-

rent tools. For example, CheckStyle5 provides only very basic checks of the typographical

structure of identifier name, e.g. whether a class name begins with an upper case letter.

For software maintainers new to a project, a tool that extracts the project’s class nam-

ing conventions provides an overview of how the project’s developers encode information in

identifier names, particularly the extent to which names reflect inheritance help them un-

derstand the code base. Such information supports program comprehension by identifying

which component words are repeated in inheritance trees and can be used to identify related

classes and help target lexical searches.

5http://checkstyle.sourceforge.net/

106

http://checkstyle.sourceforge.net/

5.5. Summary

5.4.1 Future Work

In this chapter, I have examined how whole and part class and interface names are incorpo-

rated into class names for a single generation of inheritance. While the study of inheritance

within a single generation demonstrates a great deal about the way in which developers in-

corporate elements of names in the names of subclasses, it raises questions about the reasons

developers reuse elements of names, and possible relationships to the patterns of inheritance

used. Further investigation of the reuse of name components in inheritance trees could lead

to deeper understanding of why particular name elements are reused, and under what circum-

stances. To support that initiative, detailed investigation of inheritance trees is also needed

to understand the range of use of inheritance by developers in terms of depth (generations)

and structure and complexity, and the relationship between the use of inheritance and pat-

terns of class naming. Furthermore, any investigation would need to be sensitive to changes

to the Java language, especially the introduction of methods to interface definitions in Java

v8, which allows the use of mixin classes in Java for the first time.

Suggestions of avenues of research that may improve the PoS tagging methodology are

discussed in the following chapter (Section 6.4.1).

5.5 Summary

Through the analysis of class identifier names extracted from the 60 Java open source projects

in INVocD and a case study of FreeMind, I have taken a step towards a deeper understanding

of Java class identifier naming conventions used in practice. In this chapter I make three

contributions to the understanding of class names:

1. I identify the common grammatical structures of Java class identifier names found in

praxis, and their distributions.

2. I identify the patterns by which component words from the super class or implemented

interfaces are repeated in class identifier names, and record their distributions.

3. I show, for the example of FreeMind, how the detailed knowledge of project-specific

uncommon class identifier naming patterns can be put to practical use to help detect

poor class names and design smells and thereby improve program comprehension and

107

Chapter 5. The Analysis of Class Identifier Names

design.

The study makes a fourth, technical, contribution by demonstrating that it is possible to

train a model for an existing PoS tagger, designed to process sentences, that can be used to

tag identifier names.

My analysis can be applied in practical software engineering tools to support identifier

naming by making developers aware of the naming conventions used in the project they

are working on. A tool could offer guidance that supports the creation of more commonly

recognisable names, such as indicating when an unconventional form is being used, or making

recommendations of possible identifier names during development. The same knowledge can

also be applied by software project managers to configure the developers’ tools with project-

specific standards, and in tools for identifier name quality assurance that are a considerable

improvement on current tools that check the typographical form of names.

In the following chapter I investigate the structure of Java reference names and extend

the analytical techniques employed in the investigation of class names. Reference names

constitute the majority of name declarations in source code and contain a much greater

variety of content types than class names. As well as applying the PoS tagging method

developed for class names to those reference names that contain natural language content, I

use a parser to identify the phrasal structures found in reference names.

108

Chapter 6

Phrasal Analysis of Reference

Identifier Names

Following the investigation of class names described in the previous chapter, attention in

this chapter turns to reference (field, parameter and variable) names, the second large group

of names identified for investigation in the principal research question. Reference names

constitute 52% of the unique names, and 69% of all declarations found in the 60 projects

recorded in INVocD and are a potentially rich source of information for the tools that support

program comprehension, including code search and feature location. The investigation of

reference names applies the technique of training a PoS tagger model on identifier names,

developed to analyse class names, to the analysis of reference names.

Identifier naming conventions (Gosling et al., 2014; Vermeulen et al., 2000) provide de-

velopers with guidelines for composing names. The guidelines can be complex, particularly

for reference names, providing developers with a wide choice of the form of name they create,

including: phrase-like names containing words, abbreviations and acronyms; isolated abbre-

viations; acronyms derived from type names; and specialised, single-letter abbreviations for

generic or short-lived identifiers with well-understood roles. Conventions, however, are not

hard-and-fast rules and developers can create identifier names as they please. Consequently

the readers of source code, including program comprehension tools that rely on the content

of names, have only an outline of the forms names might take, and the possibility of being

surprised is great.

Liblit et al. (2006) identified, through observation, patterns of naming they referred to

109

Chapter 6. Phrasal Analysis of Reference Identifier Names

as metaphors where they considered names to be phrasal utterances. Their metaphors are

often used as a starting point by those analysing names for program comprehension (Hill,

2010; Abebe and Tonella, 2010; Gupta et al., 2013). However, the extent to which Liblit et

al.’s metaphors are used by developers has not been established for all species of identifier.

Investigations of Java method names (Høst and Østvold, 2008) and class names (Chapter 5)

show that the metaphors are used extensively and illustrate that developers also create names

with unanticipated phrasal structures, both simple and complex (Section 5.4). Developers

might be expected to be similarly inventive with reference names.

In this chapter I seek to establish the forms of reference names created by developers and

the extent to which the various forms are used. As mentioned earlier, naming conventions

suggest a variety of name content types, e.g. dictionary words, acronyms, and abbreviations.

My first research question is:

RQ 6 What content types do developers use to create reference names,

and to what extent is each content type used?

As part of RQ 6, I want to know the extent to which recognised abbreviations are used, that

might be readily comprehended by humans, but not by tools without abbreviation expansion.

The literature argues that the use of natural language phrases and metaphors can improve

program comprehension. I wish to know:

RQ 7 What phrasal structures do developers use in reference names,

and how are they related to Liblit et al.’s metaphors?

6.1 Related Work

There are two principal themes of related research. The most closely related strand of re-

search concerns the investigation and cataloguing of identifier name structure. The second

strand concerns the ‘pragmatic’ grammars used in approaches developed to extract semantic

information from identifier names. The latter strand was discussed in the preceding chapter

(Section 5.1), and is only reviewed briefly in this section.

Influencing all but the earliest work on the natural language structure of names is Lib-

lit et al.’s wide ranging treatise on identifier naming, which observed that names are ‘pseudo-

grammatical utterances’ or phrase fragments (Liblit et al., 2006). On the basis of program-

110

6.1. Related Work

ming experience and observation, but without systematic quantification of their use in prac-

tice, Liblit et al. described metaphors for identifier names that reflect the role of the name.

One metaphor is data are things, so that identifiers of data objects are named with nouns

or noun phrases, and methods that behave as mathematical functions — typically a method

that has no argument and returns a non-boolean value or object reference — are named with

noun phrases that reflect the returned value (Liblit et al., 2006), e.g. the method size() in

Java collection classes.

The first grammar of identifier name structure was discovered by Caprile and Tonella

(1999), who analysed C function names. The grammar described the majority of function

names. The grammar was subsequently applied to refactor function names to make them

more meaningful (Caprile and Tonella, 2000). A similar analysis of Java method names was

undertaken by Høst and Østvold (2008) using a specially developed PoS tagger that also

considered type names to be a separate part of speech, i.e. the PoS tagger also did some

semantic processing prior to tagging. Høst and Østvold found a complex grammar with many

‘degenerate’ forms. They also found a relationship between the structure of a method name

and the functionality of the method, sufficient to automate the detection of names that did

not accurately describe the implemented methods (Høst and Østvold, 2009).

A survey of field names by Binkley et al. (2011) employed the default Stanford tagger

model trained on the Wall Street Journal corpus to analyse C++ and Java field names

containing only words, abbreviations and acronyms found in the SCOWL lists up to size 50.

The survey used four templates to provide additional context for the PoS tagger, e.g. the

tokens were followed by ‘is a thing’ to nudge the tagger towards treating the name as a noun.

Three other templates were used that treated the name as a sentence, a list item, and a

verb. The main aim of the survey lay in evaluating the efficacy of the method rather than

undertaking an exhaustive survey of field name structure. However, it was found that 88%

of names were PoS tagged correctly using the four templates.

A survey of class, method and field names in C++ and Java by Gupta et al. (2013) employs

the technique of using WordNet (Fellbaum, 1998) to identify candidate PoS tags that were

then used to determine the phrasal structure of names, instead of employing conventional

PoS tagging techniques. A simplified set of PoS tags, closely following those devised by

Hill (2010), are deemed sufficient for identifiers rather than the Penn Treebank. Gupta et

111

Chapter 6. Phrasal Analysis of Reference Identifier Names

al. found that non-boolean field names are typically noun phrases, while boolean fields are

generally verb phrases that ask a question. However, their study concerned the evaluation of

their PoS tagger and does not quantify their finding on field name structure.

Lawrie et al. (2007b) undertook a statistical investigation of the differences in identifier

name quality between 78 proprietary and open source projects written in different program-

ming languages, and projects developed at different times over a 30 year period. Their

measures of name quality include the relative proportions of dictionary words, abbreviations,

and single-letter abbreviations in names, and the length of names as the number of tokens.

The work reported in the remainder of this chapter differs in its intent, and the scope and

nature of the analysis. I document the variation in composition of reference names only,

rather than all names, and use finer-grained definitions of tokens with a focus on the level

of processing the token might require. I give a per-species analysis of name composition to

inform the suitable strategies to be adopted by the developers of program comprehension

tools.

The literature describes a range of approaches to the extraction of semantic information

from names. All rely on PoS tagging to help identify the structure of names. In some cases

assumptions are made about the structure of names to simplify processing. The most com-

prehensive approach developed so far is adopted in the software word usage model (SWUM)

developed by Hill (2010). SWUM uses a general grammar for all species of name to support

semantic parsing. The grammar relies on a smaller set of PoS tags than the Penn Treebank

and includes productions for noun, preposition and verb phrases. Hill does not quantify name

structure, nor the coverage of the grammar for the various species of name.

Abebe and Tonella (2010) developed the system of using templates (a technique adopted

by Binkley et al. (2011)) to try to create a statement or sentence that provides additional

context to support a PoS tagger. The approach uses Minipar to parse the resulting name

and template combination, which is rejected if Minipar cannot identify an element in the

sentence. The approach uses a limited number of templates — e.g. 5 for field names — that

can only be used to identify a few types of single phrase names. The technique is intended to

support concept identification, and was subsequently used to extract ontologies from source

code (Abebe and Tonella, 2011).

112

6.2. Methodology

6.2 Methodology

The strong typing of Java offers two features that simplify the identification of the role

of a reference name. Firstly, in Java all boolean identifiers are declared using the boolean

primitive or the Boolean object type, unlike C for example, where numeric values may be used

as booleans. This distinguishes all boolean identifiers allowing investigation of Liblit et al.’s

observation that they differ in structure to non-boolean names (Liblit et al., 2006). Secondly,

analysing the types of reference names in Java is feasible because, with the exception of

the reflection API, there are no function pointers in Java, and there is a clear distinction

between actions and entities. All source code investigated pre-dates the introduction of

method references in Java 8.

6.2.1 The Dataset

The corpus investigated is the bag, i.e. a set with duplicate elements, of all reference name

declarations in INVocD: 626,262 field, 1,556,931 formal argument, and 1,319,071 local variable

declarations. Declarations are examined to distinguish instances of the same name declared

with different species or types.

Each declaration indicates the need for a name, and the developer is free to choose any

name they desire. If the developer reuses a particular name, it indicates preference for

certain identifier forms, phrasal structures or metaphors. The reuse of names in the corpus

is substantial. The 3,502,264 declarations consist of only 272,228 unique field names, 81,201

unique formal argument names and 169,428 unique local variable names. Reuse rates in the

corpus are thus 2.3, 19.2 and 7.8 times for field, formal argument and local variable names

respectively.

To capture such preferences, the corpus is a bag instead of a set, i.e. all declarations

are considered, even of the same name with the same type and species. In this way, for a

program that declares 100 integer local variables, one named xpto and the rest i, 99% of

the declarations are expected name forms (namely int i), whereas considering only unique

names or unique declarations would lead to a distorted figure of 50%, when in fact the

developers made 100 choices, only one of which deviated from established guidelines.

For names to be considered phrases they should, in general, consist of sufficient ‘words’

to form a phrase and not so many as to form multiple phrases. Lawrie et al. (2007b) found

113

Chapter 6. Phrasal Analysis of Reference Identifier Names

that Java names have 3.4 tokens on average. These are mean values for all the unique names

found in the code they investigated: there was no breakdown by name species and no measure

of central tendency. INVocD provides each name’s tokens, as identified by INTT (Chapter 4).

Table 6.1 shows the distribution of the length of the unique reference names in INVocD as

the number of tokens. Field name length is similar to Lawrie et al.’s mean, while formal

argument and local variable names tend to be shorter. The longest name, consisting of 39

tokens, is one of a number of long names given to some strings in Eclipse used as keys in

resource bundles. The name is a field of type java.lang.String:

ThreadReferenceImpl

Unable to pop the requested stack frame from the call stack

Reasons include

The requested frame was the last frame on the call stack

The requested frame was the last frame above a native frame

12

The name consists of a variety of components including a class name, a number and sentences.

Custom typographical conventions are applied with the use of single underscores to separate

words and double underscores to separate most of the major components. Names like this

example are composed of multiple phrases and are discussed in Section 6.4.

Table 6.1: Distribution of length (in tokens) of unique reference names

Field Formal Argument Local Variable

Minimum 1 1 1
1st Quartile 2 2 2
Median 3 2 2
Mean 3.1 2.3 2.4
3rd Quartile 4 3 2
Maximum 39 10 12

As mentioned earlier, boolean names are examined separately. The proportion of unique

reference names declared using the Java types boolean or Boolean in the subject projects

is shown in Table 6.2. There is considerable variation between the projects. I found that

between 1.1% and 15.5% of unique field names are declared as booleans in the projects

investigated, and over 20% of unique formal arguments in ANT, OpenProj and Vuze.

114

6.2. Methodology

Table 6.2: Distribution of proportions of unique boolean reference names

Field Formal Argument Local Variable

Minimum .011 .024 .017
1st Quartile .067 .079 .046
Median .083 .113 .063
Mean .086 .112 .063
3rd Quartile .102 .136 .079
Maximum .155 .218 .118

Java does not allow the use of punctuation in names, such as the use of apostrophes to

identify possessive forms and contractions of negated modal verbs, like “can’t”. Consequently,

where possessive forms and negated modal verbs are used in names, e.g. ER CANT CREATE URL

(Xalan), an apostrophe-less form is used. Whilst negated modal verbs are not extensively

used, they are easily recognised and expanded, allowing them to be tagged correctly (Sec-

tion 6.2.3) to reduce noise. I therefore expanded all non-apostrophised negated modal verbs

to their two-word form, prior to any further processing. For example, ‘shouldnt’ is expanded

to ‘should not’ and ‘wont’ to ‘will not’. Although ‘cant’ (meaning hypocritical and sanctimo-

nious talk, among other things) and ‘wont’ (meaning accustomed) are English words, I still

interpret them as negated modal verbs, as it is the most likely use in identifier names. No

attempt was made to identify or expand possessive forms of nouns, a task which is left for

future work because potential solutions rely on knowledge of the likely phrasal structure of a

name to detect possible possessive nouns.

6.2.2 Partitioning Names

Research questions RQ 6 and RQ 7 concern the content and phrasal structure of names. To

answer RQ 7 it is necessary to identify those names that contain tokens that are not susceptible

to phrasal analysis. Naming conventions, such as those in JLS (‘Java Language Specification’

(Gosling et al., 2014)) and EJS (‘The Elements of Java Style’ (Vermeulen et al., 2000)), direct

developers to use a mixture of well understood single letter names, acronyms derived from

the type name, other acronyms1, abbreviations, words, and multi-token names that combine

the previous three categories. Tokens containing digits may be known acronyms, such as

‘MP3’, otherwise they are categorised as unrecognised. Accordingly, I partition reference

1The definition of acronym includes initialisms such as HTML.

115

Chapter 6. Phrasal Analysis of Reference Identifier Names

name declarations into the following bags for each species:

• C contains ciphers, i.e. well-known or conventional single letter abbreviations (Table

6.3);

• T contains acronyms derived from type names;

• P contains names consisting only of ‘processed’ content types: dictionary words, known

technical terms and acronyms, and an optional redundant prefix (discussed in Sec-

tion 6.2.3);

• U contains names with at least one token that is an ‘unprocessed’ content type, i.e. an

abbreviation or an unrecognised token.

Table 6.3: Ciphers and their corresponding types

Cipher(s) Type(s) Source

b byte, Byte JLS
c char, Character JLS, EJS
d,e char, Character EJS
d double, Double JLS
e Exception JLS
f float, Float JLS
g Graphics EJS
i,j,k int, Integer JLS
l long, Long JLS, EJS
o Object JLS, EJS
s String JLS, EJS
v a value of some type JLS
x,y,z any numeric type EJS

Names are partitioned in the following order:

1. If a name consists of a single token, the partitioning process starts with step 2, otherwise

the process begins with step 4.

2. A name is first tested to determine whether it is a cipher from Table 6.3, and whether it

is of the correct type. Table 6.3 shows that I have widened the JLS and EJS definitions

of permitted types to include the Java v5 classes that wrap primitive types such as

Integer, so that the declarations for (int i; ...) and for (Integer i; ...)

are both considered ciphers.

116

6.2. Methodology

3. If a name is not a cipher it is checked to determine if it is a type acronym as suggested

in the JLS, i.e. an initialism derived from the declared type name, e.g. FileWriter

fw. Applying these tests places declarations of Iterator i in T .

4. Names not meeting the requirements for C and T are partitioned into P and U : those

that consist of recognised prefixes, words, acronyms and technical terms are assigned

to P , the rest to U .

To support the creation of the P and U partitions I adapted an open source spellchecking

library to use multiple dictionaries and to report in which dictionary a textual term was

found, and whether those not found might be spelling errors2. The dictionaries are created

using publicly available word lists. The SCOWL word lists (Atkinson, 2004) (up to size

80), that are used to create the dictionaries for GNU Aspell3, were partitioned into separate

dictionaries of words, abbreviations and acronyms. Additional dictionaries of abbreviations

and acronyms were created from the lists used in the AMAP project4 (Hill et al., 2008), and

technical terms, abbreviations and acronyms that were collected during the creation of INTT

(Chapter 4).

Some projects use redundant prefixes: a single letter at the beginning of a reference

identifier name that either indicates its role or type, e.g. some field names are prefixed with

f for ‘field’ or m for ‘member’. Single letters are also occasionally used to represent primitive

types in a manner similar to Hungarian Notation (Heller and Simonyi, 1991), including the

letters b, c, d, f, i, l and o, standing for boolean/byte, char, double, float, int, long and

object respectively. The proportion of field names with redundant prefixes varies according

to the naming style adopted by project developers. In many projects these prefixes are not

used, but in a few projects the use of prefixes is conventional, particularly to indicate the

role of the name, e.g. the use of f to prefix mutable fields in JUnit. Redundant prefixes are

ignored when partitioning name declarations, so, for example, pPropertyName (FreeMind) is

a member of P and fBefores (JUnit) is a member of U .

Table 6.4 shows the distribution of declarations in each partition in the projects analysed.

Most declarations are in P , e.g. at least 47.8% of each project’s field name declarations use

2The MDSC spellchecking library is available from https://github.com/sjbutler/mdsc/ and contains the
word lists used to partition names.

3http://aspell.net/
4http://msuweb.montclair.edu/~hillem/AMAP.tar.gz

117

https://github.com/sjbutler/mdsc/
http://aspell.net/
http://msuweb.montclair.edu/~hillem/AMAP.tar.gz

Chapter 6. Phrasal Analysis of Reference Identifier Names

only English words, recognised acronyms, known prefixes and technical terms.

Table 6.4: Distribution of proportions of declarations in each partition

Field Formal Argument Local Variable

C Minimum .000 .001 .012
1st Quartile .000 .043 .056

Median .001 .066 .075
Mean .002 .065 .087

3rd Quartile .002 .086 .110
Maximum .015 .193 .240

T Minimum .000 .002 .006
1st Quartile .001 .016 .036

Median .004 .033 .054
Mean .007 .037 .060

3rd Quartile .009 .050 .079
Maximum .043 .129 .209

P Minimum .478 .267 .418
1st Quartile .748 .715 .642

Median .812 .781 .693
Mean .807 .767 .692

3rd Quartile .862 .083 .766
Maximum .961 .965 .876

U Minimum .039 .027 .045
1st Quartile .129 .081 .121

Median .172 .112 .155
Mean .185 .130 .161

3rd Quartile .238 .150 .183
Maximum .522 .711 .539

A consequence of the method used to create partitions is that all names containing spelling

mistakes and readily understood neologisms — such as fBefores — not in the word lists will

also be assigned to U . Therefore, U has names that may contain English words, but require

further processing, such as abbreviation expansion, spellchecking and neologism checking.

Such names would be a source of noise in the phrasal analysis.

I do not expand abbreviations. Abbreviations may have more than one plausible expan-

sion and determining the correct one can require assumptions of the phrasal structure of

names that pre-empts any investigation of that structure.

118

6.2. Methodology

6.2.3 PoS Tagging

In the investigation of class names reported in the preceding chapter (Chapter 5) I analysed

the composition of Java class names in terms of the parts of speech (PoS) of their component

words using a model for the Stanford Log-linear PoS tagger (Toutanova et al., 2003) I had

trained on a corpus of Java class names. I used the model trained on class names with v3.4.1

of the Stanford tagger to PoS tag a set of Java field names. Manual inspection of the tagged

field names showed an error rate around 28%, some 15% greater than observed when tagging

class names. I decided to train a new model on field names to see if that performed better.

I extracted 30,000 unique field names at random from the database and manually tagged

a training set of 29,894 field names. 106 names were discarded because they could not be

PoS tagged. Typically the discarded names consisted of one or two abbreviations that were

either ambiguous or unrecognised, or incomprehensible combinations of words and abbrevi-

ations or neologisms. Examples include TRGDFTRT (Derby), icSigPs2CRD2Tag (JDK), and

WEAVEMESSAGE ANNOTATES (AspectJ). A model for the Stanford PoS tagger was created us-

ing the training set. A further 5,000 field names were manually tagged to provide a test

set. In addition a smaller test set of 1,000 boolean field names was created to measure the

performance of the tagger model on boolean names.

Redundant prefixes were removed from names in the training and test sets because they

have no parallel in natural language and thus cannot be reasonably tagged by the Stanford

PoS tagger.

The test mode of the Stanford PoS tagger was used to evaluate the performance of the

model when tagging the test set. The trained model tagged 85.4% of the field names in the

test set correctly (94.5% of individual tokens) and 83.0% of the test set of boolean field names

(93.2% of individual tokens).

Formal argument names appear similar in structure to field names. Indeed, in some

naming styles, formal arguments for constructors and mutator methods have identical names

to fields (Vermeulen et al., 2000). Rather than undertake the potentially unnecessary work

of creating a PoS tagger model for formal arguments, I manually tagged a test set of 5,000

formal argument names extracted at random from the database. The field name PoS tagger

tags 91.7% of formal argument names in the test set correctly and 96.0% of individual tokens.

As with field names, any redundant prefixes were removed from formal arguments used

119

Chapter 6. Phrasal Analysis of Reference Identifier Names

in the test set. The prefixes p and m are used in combination to distinguish between param-

eters and members with the same name, e.g. the constructor of StandardPropertyHandler

(FreeMind) has the formal argument pPropertyName used to set the field mPropertyName.

Local variable names also appear to have a similar structure to field and formal argument

names. The process was repeated to create a test set of 4,984 local variable names. According

to the Stanford PoS tagger test mode, 90.3% of local variable names and 95.4% of individual

tokens in the test set were tagged correctly.

After the tests, the PoS tagger model trained with field names was used to tag all names

in the P bags of field, formal argument and local variable name declarations. Where a

redundant prefix was found, it was removed and the remainder of the tokenised name tagged

by the PoS tagger. The prefix was then added back to the beginning of the tagged string

with the tag RD for ReDundant.

6.2.4 Phrasal Analysis

I used the Stanford Parser v3.4.1 (Klein and Manning, 2002) to identify the phrasal structure

of names in the P partition to answer RQ 7. The Stanford Parser analyses a PoS tagged

string and outputs a phrase structure tree. For example, the name showToolBar (BlueJ) is

PoS tagged as show/VB tool/NN bar/NN, which the Stanford parser renders into the phrase

tree (S (VP (VB show) (NP (NN tool) (NN bar)))) or:

S

VP

VB

show

NP

NN

tool

NN

bar

where S represents an imperative statement, NP a noun phrase and VP a verb phrase5. Few

5A list of Penn Treebank PoS and phrase tags can be found in Appendix E

120

6.2. Methodology

of the trees returned by the parser contain clausal elements such as S and SINV (representing

a subject-auxiliary inversion like “Is the list empty?”), so these are ignored and the top-level

phrasal elements treated as summarising the phrasal structure of the name. The example,

showToolBar, is therefore summarised as a verb phrase.

Names with more complex structures are similarly summarised using the top-level phrases.

For example, entryKeyNotInMyMap (Polyglot) has the phrase structure tree:

FRAG

NP

NN

entry

NN

key

PP

RB

not

IN

in

NP

PRP$

my

NN

map

and is summarised as NP PP, where IN is a preposition, PRP$ a possessive personal pronoun,

PP a prepositional phrase, and RB an adverb.

6.2.5 Use of Known Abbreviations

Abbreviations of single words are formed by the truncation of words (e.g. impl for ‘imple-

mentation’), and the elision of letters (e.g. ctxt for ‘context’). Multi-word abbreviations

are created by applying one or both processes to two or more words (e.g. regex for ‘regular

expression’) (Hill et al., 2008).

RQ 6 asks about the content types that developers use in identifier names. So far I have

identified ciphers, type acronyms, redundant prefixes, words, acronyms and abbreviations.

The partition U contains abbreviations that are known, such as the examples given above,

and many that aren’t recognised like TRGDFTRT found in Derby. As part of the answer to

RQ 6 I distinguish between tokens that can be recognised as abbreviations, even though their

accurate expansion might not be trivial. A known or recognised abbreviation is one that is

found in the abbreviation dictionaries in MDSC, which are formed from the lists of abbreviations

121

Chapter 6. Phrasal Analysis of Reference Identifier Names

(a) extracted from SCOWL, (b) with known expansions from the AMAP project, and (c)

compiled from my observations of names2.

6.2.6 Threats to Validity

In addition to the PoS tagger model accuracy described above, there are threats to construct

and external validity.

Phrase structure grammars allow the recognition of the aggregation of types of words into

grammatically coherent groups, but there is no guarantee that the groups are meaningful.

Whilst ‘The cat sat on the mat’, for example, is semantically correct, exchanging the nouns

creates an absurdity that is also grammatically correct. Accordingly, there is a threat to

construct validity from an underlying assumption that the developers of the subject projects

have created meaningful rather than absurd names. However, the experimental technique

cannot distinguish between the two.

A minor threat to construct validity arises from my choices of acronym, cipher and word

lists used to partition declarations into the C and P categories. Those lists may not coincide

with the vocabulary used by the developers of all the projects surveyed — particularly the

domain-specific terms and acronyms used. Consequently, some names may have been assigned

to the U partition, resulting in a reduction of the size of P . A further concern is that

EJS specifies the use of the ciphers x, y and z for coordinates. As there is no direct type

correspondence, for this survey the definition was widened to include any numeric type.

Another threat results from the order of tests which reflect the working definition of an

abbreviation, i.e. any token that is not a cipher, type acronym or English word. Accordingly,

abbreviations such as ID that are also English words (‘id’ is a psychoanalytical term) are

recognised as words rather than abbreviations, and the name will be put in a potentially

different partition from the developer’s intended meaning of the token.

Threats to external validity arise because the experiment is constrained in two dimen-

sions. First, I analysed only projects developed in Java, prior to v8, to take advantage of its

strong typing; and, secondly, I analysed projects where names were constructed using English

words. Accordingly I cannot be sure that the findings may be applied to less strongly typed

programming languages, or that developers who create names using languages other than

English use a similar phrasal structure.

122

6.3. Results

6.3 Results

6.3.1 Name Content Types (RQ 6)

The components of a name are its tokens. Each project’s tokens were partitioned into 6

sets (not bags), for each name species. For example, the local variable names in Tomcat are

composed of 12 ciphers (C), 121 type acronyms (T), 8 redundant prefixes (R), 1206 English

words and known acronyms (W), 104 recognised abbreviations (A) and 163 unknown tokens

(U).

Note that whilst sets W, A and U are by definition mutually disjoint, the others are not,

e.g. some tokens may occur both as cipher and type acronym, or as prefix and unrecognised

token (if not in the first position of a name). I define a project’s vocabulary, for a particular

name species, to be the bag of tokens obtained from the multiset union of the 6 sets for that

species, e.g. Tomcat’s local variable vocabulary consists of 1614 tokens.

Sets C and T correspond to removing the duplicate names in C and T , because each

cipher and type acronym consists of a single token. The names in P consist only of tokens

from R and W, whilst the names in U have at least one token in A or U, besides, possibly,

others from R and W.

Besides the unique tokens within each set, I also consider all occurrences of tokens in

declarations. For Tomcat, the 12 unique ciphers are declared 1417 times, while the 163 unique

unknown tokens occur in 743 declarations. Table 6.5 shows, for each species, the distribution

of each type of token as a proportion of a project’s vocabulary and, in parentheses, as a

proportion of all occurrences.

Table 6.5 shows that at least 61% of a project’s reference name vocabulary are words,

their use being more common in field names. Acronyms and ciphers are most common as

formal argument and local variable names. Recognised abbreviations form at most 10% of a

project’s vocabulary, and the mean and quartile figures are similar for unrecognised tokens

(U), but there are some projects where more than 20% of the vocabulary is unrecognised.

Outliers are also found in other types of token. The use of redundant prefixes (R) in JUnit,

for instance, is an order of magnitude greater than any other project studied, accounting for

31.5% of all tokens in field names. Similarly, the use of words and acronyms as tokens in

formal arguments in Groovy is remarkably low at 20.2% of occurrences, some 36% lower than

123

Chapter 6. Phrasal Analysis of Reference Identifier Names

Table 6.5: Distribution of proportions of unique tokens within vocabulary and, parenthe-
sised, within all occurrences

Field Formal Argument Local Variable

C Minimum .000(.000) .003(.001) .002(.008)
1st Quartile .000(.000) .009(.034) .007(.038)

Median .002(.000) .013(.047) .009(.050)
Mean .002(.001) .015(.049) .011(.061)

3rd Quartile .003(.001) .019(.064) .012(.076)
Maximum .009(.008) .049(.159) .034(.203)

T Minimum .000(.000) .013(.002) .014(.004)
1st Quartile .003(.000) .033(.012) .049(.024)

Median .008(.002) .052(.023) .063(.037)
Mean .010(.003) .053(.028) .066(.042)

3rd Quartile .014(.004) .067(.039) .084(.051)
Maximum .039(.027) .113(.104) .123(.157)

R Minimum .000(.000) .000(.000) .001(.000)
1st Quartile .003(.002) .005(.003) .005(.007)

Median .005(.007) .007(.005) .006(.010)
Mean .005(.021) .007(.010) .007(.012)

3rd Quartile .006(.023) .009(.009) .008(.015)
Maximum .016(.315) .021(.081) .016(.053)

W Minimum .674(.633) .653(.202) .610(.542)
1st Quartile .828(.861) .763(.768) .730(.723)

Median .864(.891) .812(.816) .773(.775)
Mean .860(.880) .806(.801) .766(.767)

3rd Quartile .906(.921) .850(.860) .813(.841)
Maximum .963(.981) .924(.975) .876(.911)

A Minimum .008(.013) .024(.010) .032(.017)
1st Quartile .033(.040) .045(.041) .052(.057)

Median .043(.053) .059(.063) .063(.077)
Mean .044(.055) .057(.076) .063(.081)

3rd Quartile .054(.068) .066(.094) .074(.096)
Maximum .078(.121) .098(.411) .100(.393)

U Minimum .012(.003) .013(.002) .028(.008)
1st Quartile .038(.017) .040(.017) .059(.025)

Median .061(.037) .053(.026) .082(.032)
Mean .080(.040) .062(.036) .088(.037)

3rd Quartile .096(.050) .072(.038) .101(.044)
Maximum .281(.162) .227(.370) .243(.090)

in any other project.

124

6.3. Results

6.3.2 Phrasal Structures (RQ 7)

There is no reason to tag and parse the names in C and T , and those in U require further

processing before they can correctly tagged and parsed. Thus RQ 7 concerns only the 2.6

million declarations in P , with names composed of words, acronyms and redundant prefixes.

Applying the Stanford Parser to PoS tagged field names in P identifies the most common

phrasal structures shown in Figure 6.1 where the whiskers extend at most to 1.5 times the

interquartile range from the box. Unsurprisingly, given that field names largely represent

the attributes of entities and that the JLS and EJS encourage developers to use nouns and

noun phrases to name them, the overwhelming majority of field names in P are noun phrases

(NP). Redundant prefixes are used in field names in some projects, and these are seen in

Figure 6.1 as a redundant phrase followed by a noun phrase (RDP NP). The lowest outlier for

NP and the highest for RDP NP is JUnit, where redundant prefixes are used extensively. The

fifth category, a noun phrase followed by a verb phrase (NP VP), contains names that might

be a sentence, e.g. FIELD IS VOLATILE (JDK). An alternative NP VP structure is found in

multi-part or multiple phrase names such as ConfigurationView replaceWith (Eclipse). I

discuss multi-part names further in Section 6.4. Importantly, Figure 6.1 shows that though

noun phrases are the dominant phrasal structure for field names, other phrasal forms also

need to be considered by automated analytical techniques.

NP VP RDP NP ADJP NP VP

0
.0

0
.2

0
.4

0
.6

0
.8

P
ro

p
o
rt

io
n
 o

f
 P

fi
e
ld

 n
a
m

e
 d

e
c
la

ra
ti
o
n
s
 p

e
r

p
ro

je
c
t

Figure 6.1: Proportions of most common field name phrasal structures in P

125

Chapter 6. Phrasal Analysis of Reference Identifier Names

Table 6.6 shows the mean proportions of the 5 most common phrasal structures for each

species. In this and following tables, proportions are given in parentheses when they are

not amongst the five most common. The NP VP pattern seen in field names occurs much

less often in formal argument and local variable names. Prepositional phrases (PP) are more

common in local variable names, e.g. beforeMethods (Stripes), and adverbial phrases such as

forward (OpenProj declaration boolean forward) are found in formal arguments. Summing

the figures for field names for NP, VP, RDP NP, ADJP and NP VP shows these phrasal forms

are used in 91% of the names in P . The proportion rises to 96% for formal arguments.

Table 6.6: Mean proportion of 5 most common phrasal structures in P

N
P

V
P

R
D

P
N

P

A
D

J
P

N
P

V
P

P
P

A
D

V
P

Field .804 .051 .039 .023 .019 (.006) (.005)
Formal Argument .908 .021 .011 .022 (.000) (.006) .008
Local Variable .884 .023 .012 .023 (.004) .015 (.011)

Non-boolean reference names are predominately noun phrases (Figure 6.2 and Table 6.7).

The outliers found in JUnit in Figure 6.1 are also found in Figure 6.2.

NP RDP NP VP ADJP NP VP

0
.0

0
.2

0
.4

0
.6

0
.8

P
ro

p
o
rt

io
n
 o

f
 P

n
o
n
−

b
o
o
le

a
n
 f
ie

ld
 n

a
m

e
 d

e
c
la

ra
ti
o
n
s
 p

e
r

p
ro

je
c
t

Figure 6.2: Proportions of most common non-boolean field name phrasal structures in P

The distribution of phrases in boolean field names is shown in Figure 6.3. Liblit et al.’s

126

6.3. Results

Table 6.7: Mean proportion of 5 most common phrasal structures for non-boolean declara-
tions in P

N
P

R
D

P
N

P

V
P

N
P

V
P

A
D

J
P

P
P

A
D

V
P

Field .839 .040 .037 .017 .019 (.005) (.006)
Formal Argument .935 .011 .008 (.000) .018 (.005) .007
Local Variable .902 .012 .016 (.002) .021 .015 (.010)

observation that developers use noun phrases for booleans where the verb ‘to be’ has been

elided may be confirmed by the noun phrase being the largest category. Names beginning

with a verb have been divided by the Stanford Parser into two categories, those that are verb

phrases (VP) and those that are composed of the 3rd person present form of a verb followed

by a noun phrase (VBZ NP), which mixes a PoS tag with a phrasal level tag. The apparently

multi-phrase form VP NP arises in boolean names (Table 6.8), particularly in local variables,

because the Stanford Parser appears to have difficulty parsing some combinations of verbs

and nouns. Names like isShowLines (JasperReports) are difficult to parse into any form of

phrasal structure, because they are not English phrases. These issues are discussed further

in Section 6.4.

NP VP ADJP VBZ NP JJ

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

P
ro

p
o
rt

io
n
 o

f
 P

b
o
o
le

a
n
 f
ie

ld
 n

a
m

e
 d

e
c
la

ra
ti
o
n
s
 p

e
r

p
ro

je
c
t

Figure 6.3: Proportions of most common boolean field name phrasal structures in P

In Table 6.8 some formal argument names are categorised as consisting of adjectives,

127

Chapter 6. Phrasal Analysis of Reference Identifier Names

rather than forming adjectival phrases. The Stanford Parser sometimes categorises names

consisting of a single adjective as an adjectival phrase (ADJP) and on other occasions as

a sentence fragment containing a single adjective (JJ). Testing shows this behaviour to be

consistent, and I have left the results as reported by the parser. Summing the figures in the

ADJP and JJ columns gives the extent of the use of adjectival phrases in boolean names.

Table 6.8: Mean proportion of most common phrasal structures of boolean names in P

N
P

V
P

A
D

J
P

V
B

Z
N

P

V
P

N
P

J
J

Field .394 .212 .078 .062 (.039) .044
Formal Argument .408 .267 .099 .057 (.025) .052
Local Variable .431 .201 .075 .072 .049 (.047)

Tables 6.7 and 6.8 answer RQ 7 by showing that, for names composed only of prefixes,

words and acronyms (P), developers tend to use the phrasal structures identified by Liblit et

al., including the use of nouns or noun phrases as names for booleans, where plausible use of

the verb ‘to be’ has been elided. Table 6.8 shows use of adjectival phrases (ADJP) and bare

adjectives (JJ) where, similarly, plausible use of ‘to be’ has been elided, e.g. empty (XOM).

The metaphors proposed by Liblit et al. (2006) for names were intended to be an approx-

imation to their phrasal structure, rather than a comprehensive list. Two of the metaphors

are relevant to Java reference names: data are things (which corresponds to the use of noun

phrases) and true/false data are factual assertions (corresponding to the indicative mood,

e.g. contains, isEmpty). My results show that some 85% or more of non-boolean field names

in P , and similar proportions of formal argument and local variable names, are constructed

from noun phrases. The finding shows widespread use of Liblit et al.’s metaphors and that

developers also use other forms of phrasal structure in names.

For boolean names in P the picture is more complex. Liblit et al. (2006) observed that

some boolean names are factual statements with the verb ‘to be’ elided. The latter case

includes isolated nouns, or noun phrases and adjectives, e.g. a local variable named empty

(XOM), which might easily, and more clearly, be named isEmpty. The results for boolean

names (Table 6.8) show a large proportion of noun phrases and isolated adjectives. Manual

128

6.4. Discussion

inspection of a sample of isolated adjectives and adjectival phrases confirms Liblit et al.’s

observation. Many noun phrases could reasonably be preceded by ‘is’. Indeed prepositional

phrases could also, often, be preceded by ‘is’.

From these findings a production for single phrase reference names can be identified:

RDP?(NP|VP|ADJP|PP|ADVP). The use of redundant prefixes RDP is optional for all single

phrases because while they are not always represented in the 5 most common patterns in Ta-

bles 6.6, 6.7 and 6.8, reference names such as fIsDefaultProposal (Eclipse) and bInRefresh

(Vuze) are found in practice. The production differs in two regards from the phrase structure

grammar used in SWUM (Hill, 2010): firstly, the production only attempts to describe sin-

gle phrases, and secondly, as a result of this investigation, includes adjectival and adverbial

phrases.

6.4 Discussion

In this section I discuss the results and how they provide opportunities for improving tech-

niques used to analyse names.

6.4.1 Problems for PoS Tagging

There are a number of issues I encountered that are important considerations for the extension

of this work or its application in program comprehension tools, and I outline some potential

solutions.

The investigations described in this and the preceding chapter were undertaken using the

Stanford PoS Tagger using models that I had trained on identifier names. The Stanford PoS

Tagger was developed to process sentences, which are generally longer than identifier names

and, thus, contain more information to support the tagging process. Consequently, some

forms of word use in names may lead to incorrect PoS tagging.

Homographs (words with same spelling but different meaning) can mislead the PoS tagger,

e.g. some noun phrases are actually verb phrases where the leading verb has been mis-tagged

as a noun or an adjective. Sometimes this is an error on the part of the tagger, on other

occasions information in the name is insufficient to differentiate the use of a word such as

‘duplicate’ as an adjective, noun or a verb in names like duplicate peer checker (Vuze).

Contextual information from the declaration may support a particular tagging.

129

Chapter 6. Phrasal Analysis of Reference Identifier Names

Developers do not always use English words in expected ways, though they are used in

ways that may be straightforward for humans to understand. An example is AboutDialog

(OpenProj) where ‘about’, a preposition, is used as a noun and the name is intended to be a

noun phrase. A similar, common unconventional use of words is the specialised use of verbs

and verb phrases as nouns in the names of GUI elements that represent user activity, e.g.

SaveAllAction (Eclipse, NetBeans). In prose, it is possible to use devices such as an article

before the phrase, hyphenation, and possibly quotation marks to indicate the unusual nature

of the word usage. However, the latter two can’t be used in Java names, and the use of

articles in names is likely to be seen as superfluous by developers.

A heuristic may be used to identify the conditions under which a verb might be used

as a noun (a grammatical neologism). However, any heuristic would also need to be able

to recognise the use of verbs in reference names. For example, the exit behaviour of the

Java Swing top-level window classes is controlled by a group of integer constants, including

CLOSE ON EXIT, where the conventional use of the verb is entirely clear and understandable.

Similarly, a style of identifier naming using verb phrases for parenthetic pairs of characters

or elements may be found in some text processing code. For example, the Eclipse plugin

development environment contains code for writing HTML where string constants such as

OPEN H4 and CLOSE H4 are defined. A further consideration is that non-standard use of a

word may occur at a very low frequency and, thus, there is limited evidence to support any

decision to treat the word differently.

An alternative approach might be to reclassify verb PoS tags as nouns in the names of

specific GUI classes, such as Action. More detailed study would be required to identify

relevant classes for which such re-tagging would be appropriate. However, a hard coded

solution may be less desirable than a reliable heuristic.

For the investigation of reference names reported in this chapter I used the Stanford

Parser to analyse the structure of PoS tagged names. The Stanford Parser is a probabilistic

parser trained on a corpus of sentences extracted from newspaper articles. While the parser

performed well with names, the more technical vocabulary and expressions used in names

may result in parse trees that appear to be incorrect. The authors of the parser, however,

acknowledge the parser has some limitations when processing sentences6.

6http://nlp.stanford.edu/software/parser-faq.shtml#i

130

http://nlp.stanford.edu/software/parser-faq.shtml#i

6.4. Discussion

Some names that might seem easy for humans to identify as phrases are more difficult for

software designed to process sentences to interpret. For example the name isTopLevelChange

was erroneously identified by the parser as two separate phrases. The issue in this instance

is that the parser doesn’t see ‘top level change’ as a noun phrase unless the preceding verb

is removed. Through experimentation, I found that inserting the determiner ‘a’ between the

verb and the noun phrase leads the parser to identify the noun phrase as expected.

Another group consists of names composed of English words in non-phrasal combinations,

including the nonsensical, such as ignoreActivate (Eclipse), isShowLines (JasperReports)

and manual lazy haves (Vuze). Names in this group are candidates for refactoring. While

it might be straightforward, for example, to refactor ignoreActivate to ignoreActivation,

the refactoring is difficult to justify without prior source code inspection.

The final group of problematic names to consider in W have more than one phrase.

Examples include error reporting values and string constants like ER CANT CREATE URL where

‘ER’ is used as a prefix, and name that references internationalised strings and are also

used as keys in resource bundles. As keys the names have to contain sufficient information

on their purpose to be useful to the reader of the resource bundle. One such name in

Eclipse has the name CompilersPropertyPage useprojectsettings label and some can

be extremely long — 39 tokens in one case (Section 6.2.1). In this case typography is used

to group the tokens of each constituent part and to separate the three parts of the name,

a technique Høst and Østvold (2008) describe as delimiter precedence. Concatenating the

component parts does not form a single sentence. The concern with this group of names is

that mechanisms to parse them using conventional natural language tools may need to make

judgements about dividing them into phrases on the basis of typography — which is not

used consistently by development teams. In this case, the name represents a string used in

the GUI class CompilersPropertyPage that is a ‘label’ widget on the displayed page, and

relates to an instruction to use project settings for which the text is available in translation.

An alternative solution might be for development teams to use some mechanism to specify

their naming conventions so that they might also be used by analytical tools to identify the

component parts of the name. This possibility is discussed in more detail in the following

chapter (Section 7.6).

A further concern for automated tools is that what appear to be similar phrases, to the

131

Chapter 6. Phrasal Analysis of Reference Identifier Names

casual reader, are categorised differently by the Stanford Parser. In Figure 6.3 and Table 6.8

results for boolean declarations of the form ‘is . . . ’ are reported in two categories VP and

VBZ NP. In practice isEmpty (Groovy) is categorised as a verb phrase and isZip (BCEL)

tagged as is/VBZ zip/NN and parsed as the phrase tree (SINV (VBZ is) (NP (NN zip))), where

SINV is a subject-auxiliary inversion. The difference arises because the isolated adjective in

isEmpty is recorded as an adjectival phrase leading to the parse tree (FRAG (VP (VBZ is)

(ADJP (JJ empty)))), from which the top-level verb phrase (VP) is extracted to categorise the

name. If a noun is added, as in the phrase ‘is empty room’, ‘empty room’ is recognised as a

noun phrase and the whole phrase is recognised as a subject-auxiliary inversion. A solution

is for analytical tools to be aware of the similarity of meaning between the two categories of

phrase.

6.4.2 Boolean Names

The limited information available in identifier names makes the task of correctly differenti-

ating between the usage of homographs challenging for the tagger and appears to contribute

to the inaccuracies observed when tagging boolean names. The first issue concerns homo-

graphs found at the start of a name that can be both a noun and an imperative form of a

verb, e.g. request or update. Consider a name such as requestValue: is it a declarative or

imperative statement? With only limited information available, the tagger tags ‘request’ as a

noun rather than a verb. This behaviour is quite reasonable, and appears to be a limitation

of the PoS tagger in the context of names. The second issue concerns homographs that are

the past participle of a verb and an adjective, for example in a phrase such as ‘is enabled’.

Santorini (1990) provides a series of tests to be applied to whole sentences to distinguish

between adjectives and past participles. I have applied Santorini’s rules insofar as possible

to names in the training and test sets, but the limited information available in names makes

it difficult to differentiate between the senses of homographs in automated analysis.

A necessary constraint on this analysis was to rely only on the information contained

in the name for phrasal analysis, in order to observe the extent to which developers use

Liblit et al.’s metaphors. Developers of any practical software engineering tool are also able

to leverage the declaration context as a source of information to support phrasal analysis.

For example, a word such as request, in the absence of corroborating evidence such as a

132

6.4. Discussion

subsequent determiner, might be tagged as a noun when it is part of a non-boolean name

and otherwise tagged as a noun or as a verb, with the phrasal structures resulting from the

alternatives used to support a preferred PoS tagging.

6.4.3 Abbreviations and Neologisms

The name partitions C and T , containing ciphers and type name acronyms, are used for

generic identifiers and contain no phrasal information. There is little to be gained from

expanding ciphers and type name acronyms into words. JLS specifies the use of ciphers and

type acronyms for formal argument and local variable names. However, I found declarations

of field names in both partitions in some projects. In most cases, fields with generic names

are found in classes with coordinates such as int x and int y, and in inner classes that

implement actions such as string processing for the containing class. The use of type acronyms

as field names is limited to a few projects. For example, type acronyms used in JBoss appear

to have become part of the project vocabulary for some commonly used classes.

Abbreviations used in identifier names vary from the readily expandable buf to mnemon-

ics such as CSTMBCS (Derby). Abbreviaton expansion techniques have been proposed that use

regular expressions to look for possible expansions (Hill et al., 2008), apply speech recogni-

tion algorithms (Guerrouj et al., 2012a), and use methods developed for machine translation

(Lawrie and Binkley, 2011). A key problem to be solved by approaches to abbreviation ex-

pansion is that a given abbreviation may have multiple expansions, and, in some cases, the

abbreviation may also be a word, e.g. ‘auto’, ‘in’ and ‘out’ are commonly used in identifier

names. Among the names in INVocD ‘auto’ is used as a contraction of ‘automated’, ‘au-

tomatic’ and ‘automatically’ (indeed ‘automagic’ or one of its forms might also have been

meant). Abbreviation expansion might be applied either prior to phrasal analysis or as an

iterative solution to identify possible corrections to unanticipated phrasal structures. For

example, the boolean name isAutoActivated (Eclipse) could be expanded to is/VBZ auto-

mated/JJ activated/VBN, is/VBZ automatic/JJ activated/VBN and is/VBZ automatically/RB

activated/VBN, allowing the latter to be selected as the candidate expansion.

A lack of abbreviation expansion may result in unintended interpretation of grammatical

structure where an abbreviation is also a word. For example, common truncated abbreviations

such as inFile (NetBeans) and outFile (ANT) are PoS tagged as IN NN and thus seen as

133

Chapter 6. Phrasal Analysis of Reference Identifier Names

prepositional phrases by the Stanford Parser, instead of the expanded noun phrases ‘input

file’ and ‘output file’. The context of the declaration including the type name could help

differentiate between the intended meaning and contribute to abbreviation expansion.

Neologisms and spelling mistakes are also included in the U bag. Spelling mistakes can be

identified and, potentially, corrected using spellchecking software such as MDSC. Recognising

neologisms is more challenging. Techniques exist to identify neologisms derived from existing

words — INTT, for example, contains a very simple method for identifying derived neologisms

(Section 4.3.4), and techniques have been developed for identifying word blends (Cook and

Stevenson, 2010) — but completely new words and ‘grammatical neologisms’, such as the

introduction of text as a verb, are less easy to detect (Janssen, 2012).

6.4.4 Future Work

The discussion identifies further work to be undertaken in order to improve the analysis

of names and, thereby, software engineering tools that rely on identifier names to support

program comprehension, software maintenance and other tasks. In summary, the directions

for future work are:

• The improvement of PoS tagging algorithms to develop solutions that can distinguish

homographs with different PoS (verb and noun, past participle and adjective, etc.), and

identify the use of plurals and possessive nouns where apostrophes have been elided.

• The development of algorithms to recognise and parse names consisting of multiple

phrases.

• The application of existing neologism recognition techniques to identifier names.

• The development of heuristics to identify non-phrasal combinations of words.

6.5 Summary

Reference name declarations constitute around 69% of all declarations in source code and

are therefore a rich source of information for developers and tools that perform or support

software maintenance tasks, including program comprehension and code search. The analysis

of reference names in the corpus reported in this chapter contributes:

134

6.5. Summary

• the first survey of reference names, including the distribution of their content types

(types of tokens) and forms (phrasal structures);

• the empirical confirmation of extensive adherence to forms suggested in the literature,

including the use of Liblit et al.’s metaphors;

• the identification of other reference name forms;

The analysis consists of a quantitative study of the content types and most frequent forms

of 3.5 million declarations of 522,857 unique field, formal argument and local variable names,

in the INVocD corpus, complemented by an in-depth qualitative observation of individual

names, gained from manually tagging almost 46,000 names.

I found that the majority of names use the content types suggested in naming conventions

(ciphers, type acronyms, dictionary words, etc.) and consist of phrases, especially phrases

that largely follow the grammar identified by Hill and the metaphors observed by Liblit et

al., often used by program comprehension tools.

However, I also found a non-negligible number of names containing tokens (e.g. 18% of

field names on average) that require further processing (abbreviation expansion or spell and

neologism checking), which is a barrier to tool-supported program comprehension. However,

there can be considerable variation in the proportions of the categories between projects with,

in extreme cases, more than 70% of the formal arguments in some projects requiring further

processing.

Moreover, I found that developers use a richer range of phrases than documented in

previous work, including long names composed of multiple phrases, adjectival and adverbial

phrases, and non-phrasal names consisting of dictionary words. Accordingly tools need to

implement a wide range of techniques so that they are capable of processing the variety of

tokens found in names.

The findings described in this chapter provide insights into the ways reference names are

constructed in practice, and the issues they raise for program comprehension, whether by

humans or by software tools that rely on standard techniques. The close inspection of how

names are tagged and parsed has led to the identification of several possible avenues of further

research and development in the natural language processing of reference names.

In the following chapter I investigate the adherence of reference names in the corpus

135

Chapter 6. Phrasal Analysis of Reference Identifier Names

to three sets of naming conventions to understand the extent to which developers adhere to

naming conventions, including the use of typography, and to gain insight into the conventions

used in practice.

136

Chapter 7

Adherence to Reference Naming

Conventions

A significant question arising from the analysis of reference names reported in the preced-

ing chapter concerns whether developers use the wide variety of reference name content and

phrasal structures according to naming conventions. The empirical analysis provides a partial

answer because I found unanticipated forms of names — ones that do not conform to conven-

tions — including the extremely long, multi-part names used as keys in resource bundles, and

the use of type acronyms as field names. In this chapter I investigate the adherence of the

name declarations in the INVocD corpus to three sets of naming conventions to understand

whether developers follow the naming conventions published by Gosling et al. (2014) and

Vermeulen et al. (2000), and the extent to which the phrasal metaphors observed by Liblit

et al. (2006) are used in expected ways. The PoS tagging and phrasal analysis techniques

developed in the preceding two chapters support the investigation, and MDSC (Chapter 6) is

used to support the discrimination of name content.

Identifier naming conventions, such as EJS and JLS, are intended to support the read-

ability of source code and also provide some cues, such as typography, suggestions for phrasal

structure and the use of words and abbreviations that facilitate the extraction of meaningful

information by the reader. Where developers follow conventions there is less work required

for program comprehension tools to split names and extract semantic content from source

code (Hill, 2010; Abebe and Tonella, 2010). Besides naming conventions, tools that extract

semantic content also rely on observations of naming practice, including those made by Liblit

137

Chapter 7. Adherence to Reference Naming Conventions

et al. (2006), to support their approach to phrasal analysis.

I investigate the adherence to naming conventions for Java references for two important

reasons. Firstly, as previously stated, reference names constitute more than half of the unique

names and around 70% of the declarations in the corpus, making them a potentially large

source of information for program comprehension and software maintenance tools. Secondly,

unlike classes (Chapter 5) and methods (Høst and Østvold, 2008) where naming conventions

are largely clear and consistent, reference naming conventions often provide conflicting advice

(e.g. JLS recommends the use of abbreviations for formal arguments, while EJS advises the

use of words), and provide a bewildering choice of content types and forms, including ciphers,

type name acronyms, abbreviations and phrases. Consequently, software development and

research tools that use the textual and natural language features of identifiers are processing

an information source of unpredictable quality.

To be able to check adherence to such diverse naming guidelines I developed a convention

checker, because available tools such as CheckStyle (Burn, 2007), Google CodePro AnalytiX1

and PMD (InfoEther, 2008), can neither specify nor evaluate phrasal structures, and rely on

limited mechanisms to evaluate typography. To simplify the checking of different sets of nam-

ing conventions, I also defined a domain-specific language to specify naming conventions in a

simple and declarative way. The language and the checker, called Nominal, were informed by

the study of Java reference names reported in the preceding chapter that observed the forms

reference names take in practice without a priori judgement about which forms are ‘right’. In

this chapter, I explicitly judge names as conventional or unconventional, depending on their

adherence or not to a naming guideline, and I test the use of typographical conventions.

To evaluate the effectiveness and efficiency of the proposed approach, I defined three

different sets of comprehensive naming conventions with Nominal and checked the adherence

of 3.5 million reference name declarations in the corpus against each guideline. The naming

conventions are taken from EJS, JLS and studies of Java identifiers in the academic literature

(Hill, 2010; Abebe and Tonella, 2010; Liblit et al., 2006) and also my work reported in the

preceding chapter.

In developing and applying Nominal to check adherence to reference name conventions, I

seek to answer the following research questions:

1https://developers.google.com/java-dev-tools/codepro/doc

138

https://developers.google.com/java-dev-tools/codepro/doc

7.1. Related Work

RQ 8 To what extent do projects adhere to particular naming conven-

tions or style?; and

RQ 9 Do some naming conventions tend to be broken more frequently

than others?

7.1 Related Work

There is limited literature on the holistic evaluation of the application of naming conventions

in source code projects. Boogerd and Moonen (2008, 2009) undertook extensive studies of

the adherence of source code to the MISRA-C (MIRA Ltd, 2004) coding standards, which

include four rules on naming, but not a comprehensive set of naming conventions. Much

of the remaining research evaluates the impact of specific aspects of naming conventions,

sometimes in combination with other properties of source code, on program comprehension.

The identifier naming conventions proposed by Relf (2004), that formed the basis of

the conventions applied in Chapter 2, were evaluated with software developers. Relf found

that acceptance of specific conventions was related to the developers’ experience, suggesting

that understanding of the value of conventions increases with experience. The conventions

were subsequently applied in a tool to support the creation of names during maintenance

and development exercises. The subjects — 69 undergraduate computing students and 10

professional developers — using the tool tended to respond to advice from the tool and

created more higher quality names (according to Relf’s conventions) than the control group

(Relf, 2005).

Two groups have studied the relationship between program comprehension and the use of

abbreviations and words in identifier names. Takang et al. (1996) investigated the influence

of comments and identifier names containing abbreviations and words on the comprehension

of Modula-2 code by undergraduate programmers. Their results showed that a combination

of comments and identifier names containing words rather than abbreviations improved pro-

gram comprehension. However, they also found no statistically significant difference between

comprehension of names consisting of abbreviations, and those composed of words.

Lawrie et al. (2006) revisited this problem area undertaking a similar experiment on the

impact of identifier naming on program comprehension. Underlying their approach to their

139

Chapter 7. Adherence to Reference Naming Conventions

experiment was the understanding that comments are not always present in source code, and

that developers have to rely on identifier names alone. Experimental subjects were asked to

describe the functionality implemented in one of three variants of methods where identifier

names were either single letters, abbreviations or composed of words. The study found that

subjects were most confident understanding identifiers containing full words. However, there

was, often, only a slight improvement over understanding abbreviated identifiers. Single letter

identifiers were the least well understood.

A survey of naming practices in three code bases by Liblit et al. (2006) identified phrasal

metaphors used by developers to create names with particular roles. The code surveyed was

written in C, C++, C# and Java and consisted of Gnumeric, the Java v1.3 class library, and

Microsoft Windows Server 2003. I investigated the use of the metaphors in reference name

declarations in Chapter 6 finding that they are widely used.

CheckStyle (Burn, 2007) and PMD (InfoEther, 2008) are widely used open source tools

that check adherence to coding conventions and include some functionality to evaluate adher-

ence to naming conventions. Both are user configurable, with PMD offering a finer-grained

specification of names than CheckStyle. However, both rely on limited property checks —

number of characters in a name, for instance — and regular expressions that often do little

more than check the capitalisation of the first character of the name, and specify prefixes

and suffixes. Other static analysis tools such as FindBugs (FindBugs, 2008) also offer some

limited checks of name quality, but are not easy to configure.

The application of statistical natural language processing techniques by Allamanis et al.

(2014) in naturalize, a coding and naming convention recommendation tool, was motivated,

in part, by around 25% of code reviews suggesting changes to naming. Allamanis et al.

observe that naming conventions, such as JLS and EJS, are prescriptive and project or

team conventions tend to evolve by consensus during a project’s lifetime and are often not

codified. naturalize, however, learns a project’s coding and naming styles and recommends

refactorings that replicate the conventions used. Consequently it cannot check for adherence

to particular conventions and is thus at a disadvantage in the early stages of a project, or

where conventions are imposed on a project.

140

7.2. Methodology

7.2 Methodology

I investigate the adherence of the bag of reference name declarations in the INVocD corpus

to naming conventions, i.e. the corpus of names investigated in the preceding chapter (Sec-

tion 6.2.1). This analysis differs in that the detail of the declaration is considered, including

any modifiers in the declaration and the type of the identifier. Each declaration indicates the

need for developers to choose a name — the content types used in its construction and the

phrasal structure, if appropriate — and the typography to use. Reusing particular names

reflects the preference for certain identifier forms, typographical styles, phrasal structures or

metaphors.

7.2.1 Naming Conventions

I selected three sets of naming conventions to test names against. The first two are EJS and

JLS. The third I created to test for the conventional use of Liblit et al.’s metaphors, and the

findings of others (Hill, 2010; Abebe and Tonella, 2010; Binkley et al., 2011) and the findings

on content-types and phrasal structure reported in the preceding chapter.

JLS defines both typography — the use of upper and lower case letters and separator

characters such as underscores — and content for Java identifier names. The JLS naming

conventions remain largely unchanged since initial publication in 1996 and are familiar to most

Java developers. JLS defines a simple typography scheme for reference names. Constant field

names — those declared with both the final and static modifiers — are in upper case with

the underscore used to separate tokens, e.g. LEAF IMAGE (Google Web Toolkit). All other

field names, and formal argument and local variable names begin with a lower case letter,

and the first letter of each subsequent word is capitalised (sometimes known as camel case),

e.g. oldValue (JabRef).

EJS began life as an internal Java style guide at Rogue Wave Software, and reflects

the practice of the company’s Java developers. EJS consists of a group of general naming

conventions (Rules 9–14) that provide general advice on identifier names — that they should

be meaningful, for example — and conventions that provide advice on the typography and

content of each species of name (Rules 25–31 cover field, formal argument and local variable

names). The typography is, with the exception of acronyms, identical to that defined in JLS.

While JLS permits a wide range of content in names, EJS expresses a preference for the use

141

Chapter 7. Adherence to Reference Naming Conventions

of dictionary words in names, with a few exceptions.

A survey of naming practices by Liblit et al. (2006) identified a number of metaphors,

phrasal forms that reflect the role of an identifier name. For example, “true/false data are

factual assertions”. Liblit et al.’s observations both increase the variety of phrasal forms

expected beyond those specified by EJS and JLS, and require the division of species into

boolean and non-boolean subspecies. Liblit et al.’s metaphors have been used as a starting

point for the extraction of information from names (Hill, 2010; Abebe and Tonella, 2010) and

the preceding chapter confirms the metaphors are widely used. Furthermore, recent research

(Liblit et al., 2006; Hill, 2010; Abebe and Tonella, 2010; Binkley et al., 2011), as well as my

own work (Chapters 5 & 6), shows that developers use a range of phrasal structures wider

than specified in EJS and JLS.

I therefore defined a third set of naming conventions that amalgamates the EJS conven-

tions, because of their emphasis on the use of dictionary words, with the observations of

phrasal structures found in practice made by Liblit et al. (2006), Hill (2010), Abebe and

Tonella (2010), Binkley et al. (2011), and myself (Chapters 5 & 6). I refer to this set of

conventions as AJC, for aggregated Java conventions. By evaluating adherence to AJC I

hope to understand the extent to which the observed diversity of phrasal structure is used in

accordance with perceived conventions.

7.2.2 Nominal

To support the evaluation of adherence to naming conventions I developed Nominal, a freely

available Java library that allows the declarative specification of naming conventions2. Each

set of conventions — EJS, JLS and AJC — is defined in a separate configuration file.

Nominal consists of two components: an evaluation engine that determines the adherence

of a name to naming conventions, and a configuration language that allows the declaration

of rules read by the evaluation engine. The configuration language draws on the cascading

style sheet (CSS) syntax.

EJS and JLS specify the identifier species or subspecies (e.g. constant field) to which a

convention applies. The Nominal configuration language follows this pattern, defining a range

of species and subspecies for which rules may be declared. For each species or subspecies a

2https://github.com/sjbutler/nominal

142

https://github.com/sjbutler/nominal

7.2. Methodology

set of rules may be given that specify the typography, content and other characteristics of a

declaration. For example, Figure 7.1 shows the definition of rules for the local-variable species

and local-variable-boolean subspecies for the AJC conventions. The labels outside the blocks

are hierarchical with the species name at the left and subspecies names following. The labels

form trees with a single species at the top of each tree. In the case of ‘field’ for example, the

immediate children are ‘field-constant’ and ‘field-variable’. To accommodate rules based on

Liblit et al.’s and my observations, and the EJS conventions, both are further divided into

‘action’, ‘boolean’, ‘collection’, ‘other’, and ‘string’.

local-variable {

first-char: lower;

body: mixed;

content: cipher, NP;

}

local-variable-boolean {

content: cipher,NP,VP,AdjP,AdvP,PP;

}

Figure 7.1: Nominal rule definitions for AJC showing rule inheritance and overriding

To avoid repetition or verbose rules, Nominal follows a simple model of rule inheritance.

The rule for ‘local-variable-boolean’ inherits the typographic rules from ‘local-variable’. The

content field overrides the definition in the parent species and allows the use of noun phrases

and verb phrases3, observed by Liblit et al. (2006), and of adjectival, adverbial and preposi-

tional phrases, that I observed (Chapter 6). Ciphers are the only non-phrasal form of names

permitted.

Nominal also defines some default rules for each species/subspecies hierarchy including

the use of separator characters (none), the use of plurals (unspecified) and redundant prefixes

(none). Typically, these rules are used in only a few subspecies.

The input to Nominal is a name with metadata about the declaration context (including

its type, species and any modifiers used in the declaration) and tokenised versions of the

name, as well as part of speech (PoS) tags, and its phrasal structure. In this case the input

to Nominal is provided by INVocD and the PoS tagger for reference names and the technique

3Nominal uses Penn Treebank notation for phrases: see Appendix E

143

Chapter 7. Adherence to Reference Naming Conventions

for identifying a name’s phrasal structure described in the preceding chapter.

The evaluation engine contains objects that evaluate each rule specified in the configu-

ration file. There is, for example, an object that evaluates the typographical rule for the

initial character of a name, and another that evaluates the use of separator characters. The

results for each rule are recorded in an information object that annotates the name decla-

ration passed to the evaluation engine. When all the rules have been evaluated, the name

declaration object is returned to the caller. The approach allows rules, and aspects of rules,

to be evaluated individually using simple approaches, without the potential risks arising from

the implementation of a complex rule in a single statement or regular expression.

7.2.3 Threats to Validity

There are at least three threats to construct validity. First, while the conventions used are

sufficiently generic and well-known that they are likely to have been followed, there may also

have been project specific naming conventions in place that have not been captured and thus

cannot be tested.

Second, whilst the accuracy of the PoS tagger, trained on 30,000 unique field names from

the INVocD corpus, is high, it is not perfect.

Third, as stated in the previous chapter (Section 6.2.6), phrase structure grammars are

context free and recognise the aggregation of tagged words into grammatically coherent

groups, without any guarantee the groups of words is in a meaningful order.

Threats to external validity arise, as discussed in the previous chapter (Section 6.2.6)

because the analysis is constrained to Java source code and names constructed in English.

Consequently, it is unclear whether the findings can be generalised to other programming

languages or names in other natural languages.

7.3 Checking Naming Conventions

In this section I explore which naming conventions can be reliably and accurately checked.

The intention of the authors of the EJS and JLS was to provide conventions as guidance

to developers. Consequently, convention definitions sometimes lack the precision required

to make them easy to test. For example, JLS suggests the use of mnemonic terms in local

variable and formal argument names similar to those used as “parameters to widely used

144

7.3. Checking Naming Conventions

classes.” (Gosling et al., 2014) The few examples given reflect the use of names taken from

Java library classes, but they are not the only widely used classes, particularly in teams using

specific library APIs, making the distinction between well-known classes and others arbitrary,

and, thus, difficult to test. Reliable checking of conventions requires a convention to be defined

with a clear statement of which declarations it applies to and readily identifiable boundaries

between declarations that conform to the convention and those that do not. Categorising

a declaration is straightforward where a convention is applied to a species. However, where

the convention is defined for a subspecies, additional distinguishing information is required

to categorise a declaration, e.g. identifying a loop control variable declaration can require

more information than is contained in the declaration itself.

7.3.1 Name Content Conventions

EJS and JLS specify a range of content for identifier name tokens. There are differences in the

token content specified by the two conventions. EJS advocates the use of dictionary words

(Rules 9 and 12), for example, while JLS expresses a preference for the use of abbreviations

for formal argument and local variable names. Between them, EJS and JLS define five types

of identifier name token content:

1. Cipher: JLS specifies a largely familiar set of single letter names (Table 7.1) to be used

“. . . for temporary and looping variables, or where a variable holds an undistinguished

value of a type.”

2. Type Acronym: specified in JLS for short-lived formal argument and local variable

names, type acronyms are single token names that are acronyms of the declared type,

e.g. StringBuilder sb.

3. Acronym: either a pronounceable acronym such as AWOL, or an initialism like XML.

4. Word: a word found in a dictionary.

5. Abbreviation: a string of letters and, possibly, digits, that does not match any of the

preceding four categories.

Tokens are tested and annotated with one or more objects indicating which of the five

categories they belong to. The tests follow the pattern outlined in the previous chapter. The

145

Chapter 7. Adherence to Reference Naming Conventions

first test determines whether the name consists of a single token and if that token is a cipher.

A recognised cipher is further tested to determine if it is of the correct type. A name that

is not a correctly used cipher, if a single token, is then tested to determine if it is a type

acronym. For example, applying the JLS conventions, a declaration of Iterator i would

fail the test for a correctly used cipher (using the list of JLS ciphers in Table 7.1) and would

be classified as a type acronym. Single tokens failing the first two tests and each of the tokens

found in longer names, are tested using MDSC to determine whether they are words, acronyms

or abbreviation, or redundant prefixes in the case of the first token. Where a token is not

recognised, it is categorised as an unrecognised abbreviation.

Table 7.1: JLS ciphers and their corresponding types

Cipher(s) Type(s)

b byte

c char

e Exception

d double

f float

i,j,k int

l long

o Object

s String

v a value of some type

EJS (Rule 28) states that developers should compile their own list of acceptable ciphers

and ‘shorthands’ and offers a list of suggestions, a few of which (c, e, o and s) are also

specified by JLS. EJS also states that using the list given in JLS is acceptable. I amalgamate

the JLS list of ciphers with the EJS suggestions to enable us to identify commonly used ciphers

when testing the EJS conventions, rather than mark all but a few ciphers as incorrect. EJS

also suggests the use of the ciphers x, y and z for coordinates. As there is no direct type

correspondence I widen the definition of a coordinate to include any numeric type.

Identifier name content is specified in Nominal rules by a line starting with the key-

word content followed by one or more content types, including cipher, type-acronym,

abbreviation, and phrasal structure expressed using the Penn Treebank phrase name ab-

breviations AdjP, AdvP, NP, PP and VP. For example the content of a local variable in JLS

is specified as content: cipher,type-acronym,abbreviation,NP. The first three content

146

7.3. Checking Naming Conventions

types are relevant to single token names only, with abbreviation indicating that standalone

abbreviations such as buf, specified in JLS, are accepted. The phrase name abbreviations

can be used alone to specify single phrases, or combined to specify more complex phrasal

structures. For example, NP VP specifies a noun phrase followed by a verb phrase.

AJC follows the same typography scheme as EJS and divides declarations into finer-

grained subspecies than EJS and JLS. Rather than, for example, treating all local variable

declarations identically, names declared boolean can have a phrasal structure that includes

the use of verb and adjectival phrases (Figure 7.1). AJC also includes subspecies specifying

phrasal structures for string constant declarations and references to GUI actions, where I

have observed the use of alternative phrasal structures (Chapters 5 & 6).

7.3.2 Typographical Conventions

Typographical conventions are clearly defined in JLS and EJS except for two grey areas: the

use of single underscores in constant field names in JLS, which was resolved by implication

from the examples, and the use of upper case acronyms in JLS, which is left unchecked. EJS is

unequivocal in stating that only the first letter of an acronym is capitalised when appropriate

(Rule 13). In contrast, JLS makes no comment on the matter, but quotes examples of camel

case names with upper case acronyms, e.g. the method name toGMTString(), which would

be toGmtString() according to EJS.

The rules applied for all three conventions are that names declared as constant fields are

upper case with a single underscore character between each token. Other names are composed

of mixed case or camel case, that is the first letter is lower case, the initial letter (if there is

one) of each subsequent token is capitalised and the remainder are lower case for EJS (for

JLS recognised acronyms may also be upper case). Prior to evaluating the typography, each

token is categorised as a word, acronym or abbreviation using MDSC, allowing the application

of different typographical rules for acronyms for EJS and JLS. Testing the typographical

conventions for constants and variables is undertaken by checking the appropriate use of

underscores, the capitalisation of the first character of the name, and the capitalisation of

the remaining tokens.

The typography of individual tokens is tested rather than the entire name for two reasons.

First, to evaluate context based typographical rules for acronyms. Second, the typographical

147

Chapter 7. Adherence to Reference Naming Conventions

boundaries marked by the developer do not always match the boundaries between tokens,

and token boundaries are sometimes omitted, for example MAXOPEN DEFAULT (AspectJ) con-

sists of the tokens {MAX,OPEN,DEFAULT}, so should be MAX OPEN DEFAULT to comply with the

typography rule for constants. This approach offers significant advantages over the regular

expressions used by CheckStyle and PMD. Chiefly, checks at the token level determine that

tokens have the correct typography, rather than the name having the appearance of being

typographically correct, which is what a regular expression can test. Nominal also allows the

specification of different typographical rules for acronyms from those applied to words.

7.3.3 Reference Naming Conventions Tested

Field Names

JLS conventions for field names are expressed in two Nominal rules field-constant and field-

variable. The typography is as described previously. JLS specifies the content of constant

fields as one or more words, abbreviations or acronyms, and of an “appropriate” part of

speech. Given the specification of more than one token I have assumed that any appropriate

phrase is permitted.

The EJS field name conventions are expressed in four subspecies rules: field-constant,

field-constant-collection-reference, field-variable and field-variable-collection-reference. The

collection conventions are explained further below. The typography rules are identical to

JLS, with the exception of acronyms in variable names noted above. The content, however,

is restricted to noun phrases for constants and variables reflecting EJS’s preference for the

use of dictionary words (Rule 9) and the specification of nouns/noun phrases (Rule 26).

AJC adds further subspecies to field-constant and field-variable. field-constant-string

contains the specification of a ‘complex’ phrase type in the content rule to include the very

long string constants observed in the preceding chapter. A further subspecies with the suffix

-action is used to isolate references to instances of classes representing GUI actions that are

sometimes named with what appear to be verb phrases, e.g. SaveAction (FreeMind). GUI

actions are defined as declarations of implementations of the Swing Action interface and

subclasses of java.util.EventObject, the superclass of AWT and Swing events.

148

7.3. Checking Naming Conventions

Formal Argument and Local Variable Names

The typographical rules for formal argument and local variable names are identical for JLS,

EJS and AJC, with the exception of acronyms. Again EJS does not allow the use of type

acronyms or abbreviations, and limits content to ciphers and noun phrases. AJC, as with

variable field declarations, defines subspecies for boolean names and references to GUI actions,

and permits the use of a wider range of phrases, though limited to particular subspecies.

Collections

EJS (Rule 27) specifies that the names of collection references should be pluralised. EJS gives

the examples of array declarations — including Customer[] customers — which are trivial

to identify, and the use of collections classes. I constrain EJS’s definition of collection class

to those classes in the java.util package that implement the Collection interface. Note

that the Map classes are not considered collections by this definition. I also apply the rule to

collections declared with generic types, which were not part of the Java language when EJS

was written. For example, the declaration List<Customer> customers.

The idea of pluralising collection names appears reasonable. However, the EJS rule is

very narrowly defined permitting only the use of plurals in generic names where the name

is the plural of the type. However, I have seen wider use of plurals, such as List lines

(ANTLR and many others), and in arrays of primitive types, e.g. String[] lines (Rapla).

To this end I check both the occurrence of EJS pluralisation, and pluralisation of the names

of collections and arrays in order to understand the extent to which developers use plurals

in declarations. The EJS rule for pluralisation defines the names it applies to in a way that

makes it difficult for the current version of Nominal to express the rule. Accordingly the test

for EJS pluralisation is hardwired in the library. The more generic rule used to evaluate more

widespread use of plurals in reference collections is specified in AJC as follows:

local-variable-collection-reference {

content: cipher,NP;

plural: true;

}

Although it is implied that non-collection names should not be plurals, EJS does not make

149

Chapter 7. Adherence to Reference Naming Conventions

an explicit statement to that effect. Accordingly, I treat the pluralisation of names of non-

collection references as unspecified for the EJS conventions. However, in the AJC conventions

the rules for all non-collection references are specified as singular to help understand whether

declarations that might be expected to be singular are being pluralised.

7.3.4 Other Conventions

In addition to testing for the reference name conventions defined in EJS and JLS, each decla-

ration is tested by default for other known conventions such as the use of leading underscores

and redundant prefixes. While contrary to the conventions specified by EJS and JLS, it is

helpful to understand if non-conformance with EJS and JLS results from developers following

other conventions.

Some developers use redundant prefixes in reference names, either indicating the role of

the name or the type (Section 6.2.2). Neither EJS, JLS nor AJC specify the use of redundant

prefixes, so any prefix use will be seen as unconventional by Nominal. Every multi-token

name is tested to determine if the first token is a role-based prefix (e.g. f for field, m for

member and p for parameter), or a prefix representing a Java primitive type (e.g. b). The

use of a redundant prefix is recorded, and I also record whether it accurately reflects the

expected role or type.

7.3.5 Conventions not Fully Tested

Some rules specified in EJS and JLS cannot be fully tested. EJS Rule 9 specifies the use of

‘meaningful names’ and is tested partially by ensuring names are constructed of dictionary

words, but does not test whether the name is ‘meaningful’. Rule 10 suggests the use of

‘familiar names’, which the examples imply means business domain terms. Rule 10 might be

policed in practice with a dictionary of project-approved domain terms, but in a survey of

multiple projects in diverse domains the task is not practical. Rule 11 alerts developers to

potential design issues by asking them to ‘question excessively long names’. Rule 11 is not

evaluated because objective criteria are difficult to identify. Rule 14 specifies that names in

the same scope should not differ by case alone, and was tested to the extent that at least one

of the names would have unconventional typography. Rules 29 and 30 concern the use of the

this keyword to distinguish field names, and that arguments to constructors and mutator

150

7.4. Adherence to Specific Conventions (RQ 8)

methods should have the same name as the fields they are assigned to. Neither rule was tested

as they apply to the context the name is used in, rather than its structure and content.

JLS lists a number of standard abbreviations for generic formal argument and local vari-

able names, such as buf for a buffer. However, only a few illustrations are given as guidance.

I test for the use of abbreviations on the assumption that the lists of abbreviations used,

taken from identifier names and in dictionaries, reflect the intent of JLS.

To summarise, the majority of conventions specified in JLS can be evaluated accurately

as they are stated. The exception is the vague definition of ‘mnemonic’ terms. EJS is less

sharply defined and I needed to make assumptions to define a clear boundary to some rules.

Three EJS rules (25, 26, and 31 concerning typography of references, and phrasal content)

are implemented as stated. Seven further rules required interpretation or are partially imple-

mented. Four rules were ignored because they require project specific information or relate

to the way in which the name is used.

7.4 Adherence to Specific Conventions (RQ 8)

RQ 8 concerns the extent to which projects adhere to each set of naming conventions. I

first examine adherence to typographical conventions, before investigating adherence to the

conventions on the use of content types. I also evaluate the conventional use of phrasal

structures.

7.4.1 Typography

The typographical conventions used in all three sets of naming conventions checked differ only

on the typography of acronyms. Across the 60 projects, developers follow conventional ty-

pography much of the time (Table 7.2 gives figures for JLS where the typography of acronyms

is ignored). Acronyms are found, on average, in 10% of field declarations, 7% of formal ar-

guments and 9% of local variables. Adherence to the EJS scheme of mixed case acronyms

is found at high levels in most projects, but a minority of projects use upper case acronyms

extensively.

There is some variation in typographical conformance between projects that may indi-

cate the use of project specific conventions or a sub-optimal application of typographical

conventions. The lowest conformance with typographical conventions occurs amongst field

151

Chapter 7. Adherence to Reference Naming Conventions

declarations. Inspection of collected declarations suggests that a contributing factor may be

developers not following the conventions on when to use constant notation, and, perhaps, the

declaration of a field having been changed from constant to variable, or vice versa, without

the typography being revised. In Beanshell, for example, there are field declarations such as

final static int normal and private static Object NOVALUE.

Table 7.2: Distribution of the percentage of declarations adhering to typography conventions

Field Formal Argument Local Variable

Minimum .43 .80 .78
1st Quartile .74 .95 .92
Median .82 .97 .96
Mean .80 .96 .94
3rd Quartile .88 .99 .97
Maximum .97 1.0 1.0

Another possibility is that the definition of a constant used by some developers is more

nuanced than that given in JLS or EJS. The Google Java Style guide4 argues that only those

reference declarations that hold a single immutable value should have the typography of a

constant. For example, while a declaration of an instance of a collection class using the

modifiers static and final is constant in the sense that the reference to the collection does

not change, the values or references stored in the collection can change, so the name should not

have the typography of a constant. In contrast, an instance of java.lang.String declared

static and final is immutable and therefore constant, and should have the appropriate

typography.

A source of noise in some projects is the java.io.Serializable interface where each

implementing class declares and assigns a value to the field private final static long

serialVersionUID. The typography is not that of a constant and is imposed by the Java

library. Indeed, my analysis shows that the Java Library is just above the mean level of

adherence to the typographical and content conventions in JLS.

Eclipse appears to have its own field naming conventions, which differ from those tested

against. Some constant fields are named using conventional upper case typography (e.g.

VISIBILITY PREF). Field declarations that reference strings containing UI messages are not

4https://google.github.io/styleguide/javaguide.html#s5-naming

152

https://google.github.io/styleguide/javaguide.html#s5-naming

7.4. Adherence to Specific Conventions (RQ 8)

declared as constants, and have a structure in which the first element is the name of the class

the message originates from followed by either the message, or an explanation and a message

(e.g. LaunchView Error 1). In addition, many variable field declarations have redundant

prefixes (e.g. String fPrefillExp).

The lowest proportion of compliant field declarations is found in MPXJ where variable

field declarations have the prefix m . Jetty, the next lowest at 52%, prefixes some field name

declarations — both constant and variable — with one or more underscores, e.g. dynamic.

The least compliant typography for formal argument declarations is found in Vuze where a

leading underscore is used for some declarations to distinguish them from field declarations

when used to pass values or references to fields in mutator methods, and use of the C style

underscore separator in some formal argument declarations, e.g. new value. Vuze also has the

least compliant typography of local variable declarations (78%). As with formal arguments,

underscores are often used both as separators and prefixes.

7.4.2 Name Content

Of the conventions tested, JLS specifies the widest range of content types, while EJS is more

restrictive. AJC permits a wider range of phrasal content, but only for particular subspecies.

Table 7.3 shows the distribution of the proportion of declarations in the projects investigated

that conform to the content conventions for each set of conventions tested. In several cases,

differences between EJS and AJC are only apparent at 4 or 5 significant figures.

The differences between the parenthesised and unparenthesised figures illustrate the wide

differences in the use of redundant prefixes in the projects studied. I discuss this further

in Section 7.5. The specified content types for formal arguments and local variables in JLS

include type acronyms, which are excluded by EJS and AJC. Table 7.4 shows the distribution

of type acronyms in declarations in the 60 projects surveyed. All maximum values occur in

the same project, Polyglot, where 5% of fields, 13% of formal arguments and 21% of local

variables are type acronyms.

7.4.3 Conventional Usage of Phrases

Table 7.5 shows the distribution of the use of conventional phrases in name declarations with

phrasal content (i.e. not ciphers and type acronyms) in the corpus. The declarations surveyed

153

Chapter 7. Adherence to Reference Naming Conventions

Table 7.3: Distribution of declarations adhering to content rules of each convention. Paren-
thesised figures include declarations with redundant prefixes

Field Formal Argument Local Variable

JLS Minimum .27(.77) .84(.90) .87(.90)
1st Quartile .83(.87) .93(.94) .92(.93)
Median .87(.89) .94(.95) .92(.94)
Mean .85(.89) .94(.95) .92(.94)
3rd Quartile .90(.91) .95(.96) .93(.95)
Maximum .94(.96) .99(.99) .97(.97)

EJS Minimum .27(.75) .79(.80) .70(.72)
1st Quartile .82(.86) .88(.89) .84(.86)
Median .86(.87) .90(.91) .87(.88)
Mean .83(.87) .90(.91) .86(.88)
3rd Quartile .89(.90) .93(.93) .88(.90)
Maximum .93(.96) .97(.97) .96(.96)

AJC Minimum .27(.76) .75(.75) .70(.72)
1st Quartile .86(.89) .85(.85) .84(.86)
Median .90(.91) .87(.88) .87(.88)
Mean .87(.91) .87(.88) .86(.88)
3rd Quartile .92(.93) .90(.90) .88(.90)
Maximum .97(.97) .97(.99) .96(.96)

Table 7.4: Distribution of the usage of type acronyms in name declarations

Field Formal Parameter Local Variable

Minimum .00 .00 .01
1st Quartile .00 .02 .04
Median .01 .03 .06
Mean .01 .04 .06
3rd Quartile .01 .06 .08
Maximum .05 .13 .21

include the use of redundant prefixes, which are removed from the name before the remainder

is PoS tagged.

There are only minor differences between the distribution of the proportions of conven-

tional phrase use in declarations for each of the three conventions. The phrasal rules for

AJC are applied at a finer granularity of subspecies and allow a wider range of phrasal struc-

tures than EJS and JLS. Sensitivity to a wider range of phrases makes a difference for some

projects, but, generally, the improvement is marginal. This suggests that while developers do

use a richer selection of phrases than advocated in EJS and JLS, they do so with a relatively

small proportion of declarations.

154

7.5. Commonly Broken Conventions (RQ 9)

Table 7.5: Distribution of the proportions of declarations with expected phrasal structures

Field Formal Parameter Local Variable

JLS Minimum .77 .75 .61
1st Quartile .87 .85 .77
Median .89 .88 .80
Mean .89 .88 .79
3rd Quartile .91 .90 .83
Maximum .96 .97 .91

EJS Minimum .76 .72 .60
1st Quartile .86 .84 .77
Median .87 .88 .80
Mean .87 .87 .79
3rd Quartile .90 .90 .83
Maximum .96 .97 .91

AJC Minimum .76 .75 .61
1st Quartile .89 .85 .77
Median .91 .88 .80
Mean .91 .88 .79
3rd Quartile .93 .90 .83
Maximum .97 .97 .91

Plurals following the narrow EJS convention are extremely rare in the corpus. Develop-

ers pluralise collection and array references, but not consistently. They also pluralise some

references to numeric values and non-collections objects.

In summary, there is no simple answer to RQ 8. There is considerable variation in the

extent to which the projects surveyed follow typographical conventions. In particular, de-

velopers in some projects appear to have difficulty adhering to the conventions for field

declarations. Developers tend to follow the JLS conventions on the content of name decla-

rations rather than EJS, with many projects using type acronyms. The phrasal content of

names follows conventions closely in most projects, though local variable declarations are less

compliant than field and formal argument declarations.

7.5 Commonly Broken Conventions (RQ 9)

RQ 9 asks whether some naming conventions tend to be broken or ignored more often than

others. Inspection of code where conventions are broken identified patterns of alternative

typography and use of content types that, in many cases, appear to be systematic and are

probably project conventions.

155

Chapter 7. Adherence to Reference Naming Conventions

7.5.1 Typography

The use of leading underscores in declarations is found in just under half of the projects

investigated. The greatest use of leading underscores is found in field name declarations in

Jetty where two underscores are used as a prefix for the names of variable fields declared

with the static modifier and a single underscore for the names of other variable fields. The

conventions are specified in the Jetty coding standard5.

Some other projects analysed contain names with a mixture of typographical styles.

BCEL, for example, contains a mixture of naming conventions in some classes — lower case

words separated by underscores and camel case — without a particular scheme prevailing.

Without input from the developers it is impossible to understand whether this, apparently

inconsistent, mixture of styles is intentional.

7.5.2 Ciphers and Type Acronyms

The intention of both EJS and JLS is that ciphers are used in formal argument and local

variable names. I found ciphers are occasionally used in field names, particularly the declara-

tions of field names of inner classes that provide a generic function, such as string processing,

for the outer class, and in classes containing coordinates, such as those in graphics applica-

tions or libraries. Rather than being a commonly broken convention, it is a convention that

appears to be broken when considered justifiable.

Type acronyms are used extensively in some projects. The distributions shown in Ta-

ble 7.4 show that developers choose to use type acronyms as formal argument and local

variable names as suggested by JLS. However, I also found uses of type acronyms in field

declarations, as noted in the preceding chapter. Only 6 projects use type acronyms in 2%

or more of their field declarations, including ASM and Polyglot where more than 4% of field

declarations are type acronyms.

I identified two further unconventional uses of type acronyms. The first is where the

acronym refers to a super type, for example the declaration ServletInputStream is (Spring).

The second is where a type acronym is used as part of a name, for example

StringBuffer filenameSB (Polyglot).

5https://wiki.eclipse.org/Jetty/Contributor/Coding_Standards

156

https://wiki.eclipse.org/Jetty/Contributor/Coding_Standards

7.6. Discussion

7.5.3 Redundant Prefixes

As previously stated, redundant prefixes were found in declarations in some of the projects

surveyed. Table 7.6 shows that usage is limited, but that redundant prefixes do play a big

role in some projects.

Table 7.6: Distribution of the usage of redundant prefixes

Field Formal Argument Local Variable

Minimum .00 .00 .00
1st Quartile .00 .00 .01
Median .01 .01 .01
Mean .05 .01 .01
3rd Quartile .03 .01 .02
Maximum .73 .09 .06

The version of JUnit investigated uses redundant prefixes to the greatest extent. 73%

of JUnit field declarations — almost all the variable fields declared — are prefixed with f.

(The naming scheme has been revised in a later version and all redundant prefixes have

been removed.) Some 38% of field names declared in Xerces-J are also prefixed with f. The

convention is applied to most non-constant field declarations, but inconsistently6. FreeMind

also uses redundant prefixes in field name declarations (13%) and formal arguments (9.2%),

but rarely in local variables (0.8%).

To summarise, I found that a few projects seem to apply inconsistent typography, while

there is evidence that others have adopted conventions in addition to those defined in JLS

and EJS, including the use of redundant prefixes and alternative typography. I speculate

that, in these cases, the JLS and EJS conventions do not always meet developers’ needs. I

also found that some developers use type acronyms and ciphers in what appear quite sensible

ways, but other than intended by JLS.

7.6 Discussion

In this section I discuss some issues arising from the results and identify opportunities to

extend the research, and possible areas of development for Nominal.

6A Google search for xerces-j coding conventions reveals that the matter is discussed by Xerces-J contrib-
utors

157

Chapter 7. Adherence to Reference Naming Conventions

7.6.1 Naming Conventions

Evaluation of adherence to reference naming shows that developers tend to follow well-known

conventions, and, at times, will also develop and use their own conventions. An interpretation

of this finding is that existing naming conventions are sufficient for most projects. However,

knowing that developers create or adopt additional conventions, does not explain their moti-

vation for doing so. The varied ways in which some projects apply additional typographical

markers and redundant prefixes to field names suggests that fields may be too versatile for

specific roles to be inferred from usage, and that developers may find clarifying informa-

tion supports program comprehension. The use of exceptionally long multi-part names to

reference translated strings in resource bundles appears to support this conjecture.

Specifying a set of conventions using the language in Nominal is trivial, where conventions

are published. However, where developers have not published their conventions, as is the case

with many of the projects in the corpus, the conventions would need to be recovered from the

source code. The language in Nominal might be used to express the mined naming conven-

tions and Nominal used to determine how closely a project adheres to its own conventions.

Furthermore, the recovery of naming conventions from source code may provide insights into

the structure of more complex names and support the extraction of semantic information in

software engineering tools.

The motivation for developers to choose to use alternative conventions, i.e. the use of ty-

pography, content types and phrasal structures, needs to be understood. The conjecture that

there may be issues with programming language design, or deficiencies in conventions appears

plausible. However, an investigation of developers’ concerns and their motivation for adopt-

ing additional conventions could inform the development of both programming languages and

naming conventions.

7.6.2 Nominal

The language in Nominal was designed to specify project-wide naming conventions, and was

limited to the kind of conventions specified in EJS and JLS. The conventions used in practice

can be more complex. Consequently, Nominal needs to be further developed to express and

check more complex naming conventions. One possibility is to support the specification

conventions at package granularity so that names of API classes, methods and public fields,

158

7.7. Summary

for example, might be specified differently to names in packages that are not exposed in the

API, e.g. to include some sort of branding like JRBarPlot (JasperReports). Further avenues

to explore include more detailed specification of content types to allow for mixed content types

and prefixes and suffixes, for example in the declaration StringBuffer filenameSB the name

might be specified so that local variables of the StringBuffer type are a noun phrase with a

SB suffix, or more generically as NP type-acronym where a possible form of name is a noun

phrase followed by a type acronym. Similarly, implementing the specification and testing of

type acronyms derived from super classes and super types appears to be justified.

Nominal also has the potential to form the basis of a system to revise names so that

they conform to the specified conventions. The way in which conventions are evaluated

using simple rules mean that implementing typographical changes would be a straightforward

transformation to correct each broken rule. Semantic changes are more difficult to implement

and, as pointed out by Allamanis et al. (2014), would require human intervention before being

accepted.

7.6.3 Future Work

In summary, the directions for future work are:

• An empirical study to investigate developers’ motivation for using additional naming

conventions.

• The development of a tool to mine the naming conventions used in a body of source

code and express it as a set of rules.

• Further development of Nominal to specify and check more complex naming conven-

tions, such as long multi-part names and those where content types are mixed, and to

allow finer-grained specification of names.

7.7 Summary

Declarations that follow naming conventions are more readable and require less processing by

tools, thereby helping support program comprehension, developer onboarding and software

maintenance. For Java, references constitute around 70% of the name declarations in source

159

Chapter 7. Adherence to Reference Naming Conventions

code, and have the most diverse and complex typographical and content conventions, but

existing tools mostly check a rather small subset of simple typographical conventions.

The research described in this chapter makes the following contributions:

• a comprehensive survey of the adherence to three sets of naming conventions of reference

name declarations in the INVocD corpus;

• insight into the use of alternative typographical and content type conventions by some

developers;

• Nominal, a configuration language to specify naming conventions and a Java library to

evaluate their application;

• Nominal definitions for two widely known conventions, EJS and JLS.

Nominal is open source and its pre-packaged convention definitions aim to help others

adopt, adapt or extend Nominal for their own tools and projects.

In the evaluation of 3.5 million reference name declarations I found that the median is over

85% of declarations adhering to conventions, but there is considerable variation in the ex-

tent to which developers follow the conventions evaluated, 43–97% for field name typography

being the extreme. On inspection, I found occasional projects with inconsistent typography,

but many where developers applied a wider range of typographical styles, particularly to

differentiate the roles of field declarations, than specified by either JLS or EJS. Nominal can

be used to specify project specific naming conventions providing opportunities for develop-

ment teams to codify existing naming conventions for both content and typography and add

automated convention checking.

160

Chapter 8

Conclusions and Future Work

The research presented in this dissertation has analysed the content and structure of Java

class and reference identifier names with the intention of improving the understanding of

both aspects of names for the construction of better software engineering tools to support

both the work of empirical software engineers and software developers.

8.1 Revisiting the Aims and Objectives

The aim of the research reported in this dissertation has been to increase understanding of the

content type and phrasal structure of class and reference identifier names through improving

techniques for the analysis of names.

A pilot study reported in Chapter 2 identified statistical relationships between names

contravening validated naming conventions and measures of source code quality. During the

study I discovered two issues. Firstly, I identified limitations to the published techniques for

tokenising names. In particular there were limitations to techniques for tokenising names

with unconventional typographical boundaries and without typographical boundaries that

meant tokenisations could be inaccurate, and digits were treated as separate tokens, so, for

example, the acronym MP3 would be split into the tokens mp and 3 thereby losing its meaning.

Secondly, I found that some names in the projects studied had content and phrasal structures

other than those described in the academic and practitioner literature. The two issues are

related because without good techniques for tokenising names it is difficult to identify content

types and phrasal structures. Furthermore, limitations to tokenisation and the understanding

161

Chapter 8. Conclusions and Future Work

of the contents of names have implications for the capabilities of software engineering and

research tools that process names.

Arising from the difficulties encountered and observations made during the investigation

reported in Chapter 2 I developed the hypothesis that developers use content types, includ-

ing natural language content, in Java class and reference identifier names in ways that are

richer and more varied than those specified in naming conventions, and described in the aca-

demic literature. To investigate the hypothesis I have sought to answer the principal research

question:

“What types of content and phrasal structure do developers use in Java

class and reference names?”

Before addressing the principal research question, I developed a toolset to support the

research. Chapter 3 describes the development of a new source code model to answer RQ 1.

RQ 1 How can a model for source code be created where identifier names and

named AST nodes are both first class citizens? Existing source code models treated

identifier names as second class citizens which made extracting names from the model a

similar process to extracting names from code. I developed a model of source code vocab-

ulary, implemented in a database, that makes identifier names and their constituent tokens

available to the user with metadata, and eliminates the overhead of repeated processing of

projects to extract identifier names. INVocD, the resulting database, contains identifier names

extracted from 60 FLOSS Java projects and provides the corpus studied in the remainder of

the dissertation.

Chapter 4 focuses on the identification and implementation of improvements to the then

published techniques for identifier name tokenisation to answer RQ 2 and RQ 3.

RQ 2 How can more effective mechanisms to tokenise names with ambiguous or

no word boundaries be developed? The published method of tokenising ambiguous word

boundaries relied on data extracted from a large number of software projects; the data was

not published. I developed an approach where names with ambiguous word boundaries are

split using both possible word boundaries and the resulting tokenisations tested to determine

which contains more recognised words, abbreviations and acronyms. This approach informed

the development of improved algorithms to tokenise names that lack word boundaries. Names

are searched recursively for dictionary words and plausible tokenisations identified. A scoring

162

8.1. Revisiting the Aims and Objectives

system is then applied to select the ‘best’ tokenisation.

RQ 3 How can effective mechanisms to tokenise names containing digits be

developed? Previously, digits were considered to be separate tokens in names, which can

result in the loss of semantic information. I developed a two stage approach that tokenises

a name containing one or more digits to determine if a name contains a recognised digit-

containing abbreviation or acronym. Where the use of digits is unrecognised a set of heuristics

I devised are used to tokenise the name.

To answer the principal research question, I addressed six specific research questions in

Chapters 5–7.

RQ 4 What phrasal structures do developers use in class names? Analysis

presented in Chapter 5 confirms the approximation used by other researchers that class

names are predominantly nouns or nouns phrases. I also identified use of what appear to be

verb phrases to name classes that represent events, particularly actions taken by the user in

GUIs. I also identified some of the phrasal structures used by developers in the remaining 10%

of class names that reflect classes that represent more complex concepts, some exceptions,

and classes that represent aspects of functionality rather than an entity. A case study of

FreeMind found some less common forms of names that follow what appear to be local

naming conventions, other names which might be refactored to more common phrasal forms,

and a very small number of names that may indicate the need to refactor the class.

RQ 5 How do developers incorporate super class and interface names in class

names? Developers tend to incorporate fragments of the name of an immediate super class

or super type in to a class name, most often as the rightmost part of the name, so that the

more adjectival part of the name reflects the specialisation of the super class or type. The

analysis reported in Chapter 5 finds that other patterns are also used. Classes that both

extend a super class and implement one or more interfaces are sometimes named using only

fragments of the super class and super type names. A small minority of names place part or

all of the super class or super type name at the beginning of the class name.

RQ 6 What content types do developers use to create reference names, and

to what extent is each content type used? Classification of content types reported

in Chapter 6 showed that a minimum of 61% of unique tokens in the projects investigated

are dictionary words, and as much as 96% of tokens in some projects in the corpus. The

163

Chapter 8. Conclusions and Future Work

variation is reflected in tokens in declarations, particularly formal arguments, where as much

as 80% of tokens in some projects are not recognised words or acronyms. The use of ciphers

and type acronyms is relatively low. Recognised abbreviations are found in at most 10% of

names. Unrecognised tokens, those that require additional processing such as abbreviation

expansion, are found in less than 20% of name declarations on average, but can occur in

50–71% in extreme cases.

The consequence is that tools extracting knowledge from reference names need to be

flexible so that they can recognise and process a wide variety of content types, and able to

adapt to the variation in the use of content types.

RQ 7 What phrasal structures do developers use in reference names, and how

are they related to Liblit et al.’s metaphors? Investigation of reference names with

phrasal content, i.e. those consisting of words and acronyms, found a predominance of noun

phrases in non-boolean names. Small proportions of other phrasal forms were also identified.

Similarly to class names, verb phrases are mostly used to reflect GUI actions and events.

Liblit et al. observe that boolean names should be factual assertions such as ‘contains’ and

‘is empty’, they also state that many boolean names are noun phrases to which the verb ‘to

be’ could be added, and this is reflected in my results. Again, though, I found additional

phrasal forms such as the use of adverbial phrases, which had not been observed previously.

As well as single phrase forms, I found names that were composed of two or more phrases.

The very longest examples in the corpus are names used for translated strings in resource

bundles for internationalised applications. Shorter examples, typically those with two parts,

are often references to error messages.

My findings confirm Liblit et al.’s observations, but come with the caveat that the

metaphors described by Liblit et al. are used in most, but not all names. Again, the impli-

cation for tools processing names is the need for a flexible approach that can accommodate

the less common forms of name.

RQ 8 To what extent do projects adhere to particular naming conventions

or style? The investigation of adherence of reference names to naming conventions found

developers generally apply typographical rules diligently, though, on average, apply the ty-

pographical rules for field names less than those for formal arguments and local variables.

Additionally, developers on a few projects use well-known typographical conventions much

164

8.2. Summary of Contributions

less, especially in the case of field names. The use of content types, similarly, generally ac-

cords with convention, though there are some projects that comply less. A similar picture

emerges for phrasal structure, though the least compliant species are local variables.

RQ 9 Do some naming conventions tend to be broken more frequently than

others? A few projects in the corpus projects follow particular typographical schemes that,

mainly, distinguish variable field names, or between static and non-static variable field names.

Some projects follow the typographical convention used in C of using underscores as sepa-

rators for lower case names, and one project contains a mixture of typographical styles.

Redundant prefixes are used extensively in very few projects, where they are found mainly

in field and formal argument names. However, they are found in names, including local vari-

ables, in most of the projects in the corpus. With a few exceptions where conventions appear

to be applied in a haphazard manner, the use of alternative conventions for typography and

redundant prefixes, appears to be mostly deliberate. The use of a wider range of phrasal

structures — i.e. those not specified in EJS and JLS — is confined to a small proportion of

names which seem to be used either to emphasise a specific problem solution, or in a project

specific manner, such as the very long names used for internationalised strings.

8.2 Summary of Contributions

The research reported in this dissertation makes contributions in the following areas:

• Relationships between name quality and source code quality The pilot study

reported in Chapter 2 identified for the first time a correlation between a measure of

identifier name quality and measures of source code quality.

• Identifier Name Tokenisation Chapter 4 describes a novel technique for the to-

kenisation of names containing digits, and improved methods for tokenising single case

strings.

• Content Types and Phrasal Structure The analysis of class and reference names

described in Chapters 5 and 6 provides evidence that confirms the common approxi-

mations of phrasal structures used in identifier names, and identifies the use of content

types and phrasal structures not recorded in the literature. A further contribution is

165

Chapter 8. Conclusions and Future Work

made by the novel technique of training models for identifier names and using them

with an existing PoS tagger.

• Naming Conventions Analysis of adherence to naming conventions reported in Chap-

ter 7 identifies the extent to which well-known naming conventions are used in practice.

In some projects with reduced adherence to the conventions tested, additional conven-

tions appear to have been adopted to distinguish field names either from other species,

or to differentiate particular roles of field names.

• Tools and Data A further contribution is made by the publication of the tools devel-

oped to support this research and the corpus in the form of the INVocD database. Full

details are in Appendix D.

8.3 Future Work

Some future work has already been outlined in Sections 4.5.3, 5.4.1, 6.4.4 and 7.6.3. In this

section, I summarise the suggestions already made for future work and identify additional

topics.

8.3.1 Name Token Content Types

A recurrent theme of this research has been the discovery of novel content types in identifier

names, some entirely unanticipated. Naming conventions specify a number of content types

to use in names, and these were identified in Chapters 5 to 7. JLS also identify content

types they think should not be used in identifier names, but are found in practice, including

top-level domain (TLD) names such as com and org, and ISO3166 country codes, which may

also form part of TLD names. I also found, for example, hexadecimal numbers in names, ISO

and RFC standards designations, and Java bytecode mnemonics. A detailed and extensive

survey of a large number of projects — at least an order of magnitude greater than the size

of the INVocD corpus — analysing and categorising the content types used in names would

provide a considerably more comprehensive understanding of the raw materials developers

use to construct names, and support the further development of analytical techniques for

names.

166

8.3. Future Work

8.3.2 Identifier Name Tokenisation

The tokenisation of identifier names is non-trivial. My work described in Chapter 4 has built

on the work of others, improving on methods to tokenise single case strings, and developing

novel methods to tokenise strings containing digits. The techniques rely on a combination of

typography and heuristics to identify word boundaries and are effective, but have limitations

when processing identifier names constructed with abbreviations — particularly idiosyncratic

contractions — neologisms and digits. It is likely that no identifier name tokenisation system

can be 100% accurate when faced with real world names. However, it is clear from Hill et

al.’s evaluation of the available tokenisers (Hill et al., 2013) there remains much room for

improvement.

The majority of identifier names are relatively straightforward to split accurately. The

minority, however, require additional attention. Sometimes this is a matter of recognising

the presence of ambiguous boundaries and applying a number of heuristics to determine the

optimal split. In other cases much more intensive techniques are required. The analytical

work described in this dissertation, and in the work of others, provides information that can

be applied to support the creation of heuristics and new techniques. Some have suggested

standardising identifier names in an attempt to constrain the problem space. However, not

only is this likely to prove impractical to apply across the software industry, any solution

would be unlikely to be applied retrospectively, thus leaving existing and legacy source code

without up to date analytical tools.

There are two directions of research that could help improve the accuracy of name tokeni-

sation. The first direction is to improve understanding of how developers construct identifier

names, as suggested above, so that content types used can be more readily distinguished and

their boundaries identified where they do not match the typography. The second direction

of research is to investigate the application of hybrid approaches to tokenisation, such as

using knowledge of the anticipated phrasal structure of the names to identify a preferred

tokenisation.

Future studies of the development of novel tokenisation techniques should also create

reference sets of identifier names and tokenisations that reflect the challenges to tokenisation

to support comparative evaluation of tokenisers. A weakness of the research in this area,

including my own, is that the test sets of identifier names and their tokenisations tend to

167

Chapter 8. Conclusions and Future Work

reflect the distribution of problematic names in the population of identifier names, rather than

consisting of names with the problems that the tokenisers are trying to solve. Consequently,

any test set should consist of a population of at least 1,000 identifier names with each of the

typographical or other characteristic that makes tokenisation a challenge. Furthermore, the

reference set should be published so that others can evaluate their approach against it to

demonstrate any advantages or deficiencies.

8.3.3 Inheritance Trees

In Chapter 5 I investigated two aspects of class naming: the patterns of PoS in names, and

the way in which components of super class and super type names were incorporated in class

names. The study of inheritance within a single generation demonstrated the characteristics

of the way developers incorporate elements of names in the names of subclasses, and raised

questions about the reasons developers reuse elements of names, and the patterns of inheri-

tance used. Further investigation of the reuse of name components in inheritance trees could

lead to deeper understanding of why particular name elements are reused, and under what

circumstances. Any investigation would need to be sensitive to changes to the Java language,

especially the introduction of methods to interface definitions in Java v8, which allows the

use of mixin classes in Java for the first time.

8.3.4 Neologisms

The use of neologisms in identifier names has been identified by Hill (2010), Gupta et al.

(2013), and myself (Chapter 4), and we have all tried to make provision in analytical tools

for the detection of a particular type of neologism. Neologisms fall into a number of groups,

only some of which can be identified programatically. Completely new words, for instance,

cannot be identified easily, particularly in an environment such as identifier names where novel

abbreviations and acronyms are also found. Hill, Gupta et al. and I adopted an approach to

identifying neologisms derived from existing or donor words by adding one or more affixes, for

example ‘throwable’, which is found in the Java library. The technique is relatively simple to

implement, and not particularly expensive computationally. However, derived neologisms can

also be created by stemming a word before adding a suffix, e.g. ‘precisify’ (used as a method

name in BlueJ). Techniques for identifying this type of neologism have been developed and

168

8.3. Future Work

could be adapted to work with identifier name processing software.

Word blends such as grandcestor (NetBeans) are another type of neologism found in

identifier names. Work in the natural language community on the detection of word blends

by Cook and Stevenson (2010) suggests that the identification of blends is computationally

expensive, and only moderately accurate. Cook and Stevenson’s work, however, focuses on

the identification of the source of word blends, and it is possible that their method could be

adapted to indicate that a string is a plausible neologism, rather than trying to identify the

blended words.

8.3.5 PoS Tagging

In Chapters 5 and 6 I report on the novel technique of training PoS tagger models for identifier

names. This is just one of a number of approaches to PoS tagging names. Some approaches

have used PoS taggers designed to process sentences on names, which are considerably shorter

and contain less information than sentences. Using conventional PoS taggers, researchers

have generally reported tagging accuracy for names of around 85%. Two research groups

have created their own PoS taggers designed specifically to tag identifier names and achieved

accuracies between 87% and 97%. In both cases, the tagger undertakes some semantic parsing

to identify type names, so that they can be treated as a separate PoS. For research to

continue in this area and for the development of practical tools to process identifier names,

further exploration of PoS tagging methods is required, and the development of identifier

name specific PoS taggers is necessary given the mixture of phrasal and non-phrasal content

found in names. An interesting corollary is that any PoS tagger should also be capable of

distinguishing nonsensical combinations of words from phrasal combinations.

8.3.6 Naming Convention Specification and Testing

A finding of the evaluation of adherence to naming conventions in the projects in the corpus

was that developers, in some projects, adopt or devise additional conventions for field names.

Some conventions are adopted to distinguish field names, for example the addition of leading

underscores to the name, while others appear to have developed to express specific roles

for field names such as keys for translated strings in resource bundles and error messages.

Two questions arise that address developers’ motivation for adopting additional conventions.

169

Chapter 8. Conclusions and Future Work

Firstly, have programming language designers created a versatile species in the field name

that leaves developers with a need to indicate specific roles? And, secondly, do developers find

that using additional naming conventions for field names supports program comprehension?

Chapter 7 introduces Nominal, which includes a language for specifying naming conven-

tions. The approach demonstrates advantages for specifying and testing naming conventions

over existing tools, and the techniques could be incorporated into those tools to improve

them. Furthermore, Nominal might be used to express and test naming conventions mined

from source code, where the conventions used are not published. However, the expressiveness

of the language could be improved to specify a wider range of content types and to allow

the specification of more complex identifier name structures mixing, for example, phrasal

elements and non-phrasal content types and, thus, better supporting testing of less common

conventions.

Nominal also provides the opportunity to revisit the pilot study (Chapter 2) with a far

more detailed means of evaluating name quality.

8.4 Personal Reflection

Conducting doctoral research is necessarily a challenging exercise and with hindsight I recog-

nise where I might have benefited from different approaches to research.

I was a part-time external research student living far enough from the University that

being on campus regularly to engage with academic life within the Department was difficult.

While there was the advantage of fewer distractions, the corollary was reduced opportunities

for academic stimulation and extended contact with fellow students. The remote researcher

should pay close attention to the opportunities that are available both on campus and locally.

My enthusiasm for the topic helped maintain progress. However, the open-ended nature

of research process means enthusiasm can sometimes become an obstacle. I found it all

too easy to become absorbed in aspects of the topic — particularly analytical problems —

that I found very interesting and, consequently, be distracted from the goal of the research

project. As I was wisely told early on in my research, knowing when you’ve done enough is

an important skill; acquiring that skill is another matter entirely.

Empirical software engineering research, such as that described in this dissertation, tries to

understand the working practices of developers. The core of my research was the investigation

170

8.5. Conclusion

of evidence of naming practices left by developers in source code. In this case the research was

conducted by developing and using investigative tools, and has the secondary benefit that the

techniques developed might be used to support the work of developers. Working directly with

developers proved to be challenging and something that I was only able to do in relatively

small ways. Developer documentation and mailing lists for the projects investigated were

useful sources of information about specific naming practices, and sometimes offered insight

into unconventional names. Informal conversations with developers were always informative,

particularly about the day to day problems professional developers face with names, which

provided insights into some of my findings. In hindsight, I would have done much more to form

relationships with developers and encourage other empirical software engineering researchers

who are not working directly with developers to find ways to establish relationships with

developers.

Finally, there is the skill that I would dearly loved to have had and that would have made

the research process considerably easier: the foresight to understand what notes about my

work my future self would need.

8.5 Conclusion

Returning to my hypothesis that developers use content types, including natural language

content, in Java class and reference identifier names in ways that are richer and more varied

than those specified in naming conventions and the academic literature: the research de-

scribed in this dissertation has, through the development of improved analytical techniques

and detailed analysis, addressed the hypothesis showing it to be correct. The research has

also identified some of the additional content types and phrasal structures used in class and

reference identifier names found in practice, and suggests avenues of research to be pursued

to create a more comprehensive understanding of content types. Implementations of the

techniques developed to support the analysis are available and are a starting point for the de-

velopment of improved tools for both researchers working with identifier names and practical

software engineering tools to support the work of developers.

171

Bibliography

S. Abebe and P. Tonella (2010) Natural language parsing of program element names for

concept extraction. In 18th Int’l Conf. on Program Comprehension, Minho, Portugal, pp.

156–159. IEEE.

S. L. Abebe; S. Haiduc; P. Tonella; and A. Marcus (2009) Lexicon bad smells in software. In

Proc. Working Conf. on Reverse Engineering, Lille, France, pp. 95–99. IEEE.

S. L. Abebe and P. Tonella (2011) Towards the extraction of domain concepts from the

identifiers. In Proc. of the 18th Working Conf. on Reverse Engineering, Limerick, Ireland,

pp. 77–86. IEEE Computer Society.

M. Allamanis; E. T. Barr; C. Bird; and C. Sutton (2014) Learning natural coding conven-

tions. In Proc. of the 22nd ACM SIGSOFT Int’l Symposium on Foundations of Software

Engineering, Hong Kong, China, FSE 2014, pp. 281–293. ACM, New York, NY, USA. URL

http://doi.acm.org/10.1145/2635868.2635883.

G. Antoniol; G. Canfora; G. Casazza; A. De Lucia; and E. Merlo (2002) Recovering traceabil-

ity links between code and documentation. IEEE Transactions on Software Engineering,

28(10):970–983.

G. Antoniol; Y.-G. Gueheneuc; E. Merlo; and P. Tonella (2007) Mining the lexicon used by

programmers during sofware [sic] evolution. In Proc. of Int’l Conf. on Software Mainte-

nance, Paris, France, pp. 14–23. IEEE.

Apache Software Foundation (2008) Jakarta Cactus - coding conventions. http://jakarta.

apache.org/cactus/participating/coding_conventions.html.

K. Atkinson (2004) SCOWL readme. http://wordlist.sourceforge.net/scowl-readme.

173

http://doi.acm.org/10.1145/2635868.2635883
http://jakarta.apache.org/cactus/participating/coding_conventions.html
http://jakarta.apache.org/cactus/participating/coding_conventions.html
http://wordlist.sourceforge.net/scowl-readme

Bibliography

N. Ayewah; W. Pugh; J. D. Morgenthaler; J. Penix; and Y. Zhou (2007) Evaluating static

analysis defect warnings on production software. In Proc. ACM SIGPLAN-SIGSOFT

Workshop on Program Analysis for Software Tools and Engineering, San Diego, California,

pp. 1–8. ACM.

K. Beck (2008) Implementation Patterns. Addison–Wesley.

D. Binkley; M. Hearn; and D. Lawrie (2011) Improving identifier informativeness using part

of speech information. In Proc. of the Working Conf. on Mining Software Repositories,

Honolulu, Hawaii, pp. 203–206. ACM.

D. Binkley; D. Lawrie; L. Pollock; E. Hill; and K. Vijay-Shanker (2013) A dataset for evaluat-

ing identifier splitters. In 10th IEEE Working Conference on Mining Software Repositories,

San Francisco, California, USA, pp. 401–404. IEEE.

C. Boogerd and L. Moonen (2008) Assessing the value of coding standards: An emprical

study. In Proc. Int’l Conf. on Software Maintenance, Beijing, China, pp. 277–286. IEEE.

C. Boogerd and L. Moonen (2009) Evaluating the relation between coding standard violations

and faults within and across software versions. In Proc. of the Int’l Working Conf. on

Mining Software Repositories, Vancouver, Canada, pp. 41–50. IEEE.

J. Börstler; M. E. Caspersen; and M. Nordström (2015) Beauty and the beast: on the

readability of object-oriented example programs. Software Quality Journal. Early access.

O. Burn (2007) Checkstyle. http://checkstyle.sourceforge.net/.

R. P. Buse and W. R. Weimer (2008) A metric for software readability. In Proc. Int’l Symp.

on Software Testing and Analysis, Seattle, Washington, USA, pp. 121–130. ACM.

S. Butler; M. Wermelinger; and Y. Yu (2015a) Investigating naming convention adherence in

Java references. In Proc. of the 31st Int’l Conf. on Software Maintenance and Evolution,

Bremen, Germany, pp. 41–50. IEEE.

S. Butler; M. Wermelinger; and Y. Yu (2015b) A survey of the forms of Java reference names.

In Proc. of the 23rd Int’l Conf. on Program Comprehension, Florence, Italy, pp. 196–206.

IEEE.

174

http://checkstyle.sourceforge.net/

Bibliography

S. Butler; M. Wermelinger; Y. Yu; and H. Sharp (2009) Relating identifier naming flaws and

code quality: an empirical study. In Proc. of the Working Conf. on Reverse Engineering,

Lille, France, pp. 31–35. IEEE Computer Society.

S. Butler; M. Wermelinger; Y. Yu; and H. Sharp (2010) Exploring the influence of identifier

names on code quality: an empirical study. In Proc. of the 14th European Conf. on Software

Maintenance and Reengineering, Madrid, Spain, pp. 159–168. IEEE Computer Society.

S. Butler; M. Wermelinger; Y. Yu; and H. Sharp (2011a) Improving the tokenisation of

identifier names. In M. Mezini (ed.), 25th European Conf. on Object-Oriented Programming,

Lancaster, UK, volume 6813 of Lecture Notes in Computer Science, pp. 130–154. Springer

Berlin/Heidelberg.

S. Butler; M. Wermelinger; Y. Yu; and H. Sharp (2011b) Mining Java class naming con-

ventions. In Proc. of the 27th IEEE Int’l Conf. on Software Maintenance, Williamsburg,

Virginia, USA, pp. 93–102. IEEE.

S. Butler; M. Wermelinger; Y. Yu; and H. Sharp (2013) INVocD: Identifier name vocabu-

lary dataset. In Proc. of the 10th Working Conf. on Mining Software Repositories, San

Francisco, California, USA, pp. 405–408. IEEE.

B. Caprile and P. Tonella (1999) Nomen est omen: analyzing the language of function iden-

tifiers. In Proc. Sixth Working Conf. on Reverse Engineering, Atlanta, Georgia, USA, pp.

112–122. IEEE.

B. Caprile and P. Tonella (2000) Restructuring program identifier names. In Proc. Int’l Conf.

on Software Maintenance, San Jose, California, USA, pp. 97–107. IEEE.

M. L. Collard; M. J. Decker; and J. I. Maletic (2011) Lightweight transformation and fact

extraction with the srcML toolkit. In 11th IEEE Working Conf. on Source Code Analysis

and Manipulation, Williamsburg, Virginia, USA, pp. 173–184. IEEE Computer Society.

P. Cook and S. Stevenson (2010) Automatically identifying the source words of lexical blends

in English. Computational Linguistics, 36(1):129–149.

A. Corazza; S. D. Martino; and V. Maggio (2012) LINSEN: an efficient approach to split

175

Bibliography

identifiers and expand abbreviations. In 28th Int’l Conf. on Software Maintenance, Riva

del Garda, Italy, pp. 233–242. IEEE.

M. J. Crawley (2005) Statistics: an introduction using R. John Wiley.

F. Deißenböck and M. Pizka (2006) Concise and consistent naming. Software Quality Journal,

14(3):261–282.

T. Dilshener and M. Wermelinger (2011) Relating developers’ concepts and artefact vocab-

ulary in a financial software module. In Proc. of the 27th IEEE Int’l Conf. on Software

Maintenance, Williamsburg, Virginia, USA, pp. 412–417. IEEE.

S. Ducasse; N. Anquetil; U. Bhatti; A. C. Hora; J. Laval; and T. Girba (2011) MSE

and FAMIX 3.0: an interexchange format and source code model family. Tech-

nical report, INRIA. URL http://hal.archives-ouvertes.fr/index.php?halsid=

bvn39r6d5ucvb6e95asroiipj6&view_this_doc=hal-00646884&version=1.

E. Enslen; E. Hill; L. Pollock; and K. Vijay-Shanker (2009) Mining source code to automati-

cally split identifiers for software analysis. In 6th IEEE International Working Conference

on Mining Software Repositories, Vancouver, Canada, pp. 71–80. IEEE.

J.-R. Falleri; M. Huchard; M. Lafourcade; C. Nebut; V. Prince; and M. Dao (2010) Automatic

extraction of a WordNet-like identifier network from software. In 18th Int’l Conf. on

Program Comprehension, Minho, Portugal, pp. 4–13. IEEE.

H. Feild; D. Lawrie; and D. Binkley (2006) An empirical comparison of techniques for extract-

ing concept abbreviations from identifiers. In Proc. of IASTED Int’l Conf. on Software

Engineering and Applications, Dallas, Texas, USA. IASTED.

C. Fellbaum (ed.) (1998) WordNet: an electronic lexical database. Bradford Books.

FindBugs (2008) Find Bugs in Java programs. http://findbugs.sourceforge.net/.

R. Flesch (1948) A new readability yardstick. Journal of Applied Psychology, 32(3):p221–233.

M. Fowler; K. Beck; J. Brant; W. Opdyke; and D. Roberts (1999) Refactoring: improving

the design of existing code. Addison-Wesley.

176

http://hal.archives-ouvertes.fr/index.php?halsid=bvn39r6d5ucvb6e95asroiipj6&view_this_doc=hal-00646884&version=1
http://hal.archives-ouvertes.fr/index.php?halsid=bvn39r6d5ucvb6e95asroiipj6&view_this_doc=hal-00646884&version=1
http://findbugs.sourceforge.net/

Bibliography

E. Gamma; R. Helm; R. Johnson; and J. Vlissides (1995) Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley.

J. Y. Gil and I. Maman (2005) Micro patterns in Java code. In Proc. ACM SIGPLAN con-

ference on Object oriented programming, systems, languages, and applications, San Diego,

California, USA, pp. 97–116. ACM.

J. Gosling; B. Joy; G. Steele; G. Bracha; and A. Buckley (2014) The Java Language Specifi-

cation (Java SE 8 edition). Oracle, Java SE 8 edition.

L. Guerrouj; M. Di Penta; G. Antoniol; and Y.-G. Guéhéneuc (2012a) TIDIER: an identifier

splitting approach using speech recognition techniques. Journal of Software Maintenance

and Evolution: Research and Practice, 25(6):575–599.

L. Guerrouj; P. Galinier; Y.-G. Gueheneuc; G. Antoniol; and M. Di Penta (2012b) TRIS:

A fast and accurate identifiers splitting and expansion algorithm. In Proc. of the 19th

Working Conference on Reverse Engineering, Kingston, Ontario, Canada, pp. 103 –112.

IEEE.

S. Gupta; S. Malik; L. Pollock; and K. Vijay-Shanker (2013) Part-of-speech tagging of pro-

gram identifiers for improved text-based software engineering tool. In Proc. of the 21st

Int’l Conf. on Program Comprehension, San Francisco, California, USA, pp. 3–12. IEEE.

M. H. Halstead (1977) Elements of Software Science. Elsevier.

M. Heller and C. Simonyi (1991) The Hungarian revolution. BYTE, 16(8):131–138.

E. Hill (2010) Integrating Natural Language and Program Structure Information to Improve

Software Search and Exploration. Ph.D. thesis, The University of Delaware.

E. Hill; D. Binkley; D. Lawrie; L. Pollock; and K. Vijay-Shanker (2013) An empirical study

of identifier splitting techniques. Empirical Software Engineering, 19(6):1754–1780.

E. Hill; Z. P. Fry; H. Boyd; G. Sridhara; Y. Novikova; L. Pollock; and K. Vijay-Shanker

(2008) AMAP: Automatically mining abbreviation expansions in programs to enhance

software maintenance tools. In Proc. of the 5th Int’l Working Conf. on Mining Software

Repositories., Antwerp, Belgium, pp. 79–88. ACM.

177

Bibliography

E. W. Høst and B. M. Østvold (2007) The programmer’s lexicon, volume 1: the verbs. In

Proc. Int’l Working Conf. on Source Code Analysis and Manipulation, Paris, France, pp.

193–202. IEEE.

E. W. Høst and B. M. Østvold (2008) The Java programmer’s phrase book. In Proc. of

the 1st Int’l Conf. on Software Language Engineering, Toulouse, France, volume 5452 of

LNCS, pp. 322–341. Springer.

E. W. Høst and B. M. Østvold (2009) Debugging method names. In Proc. of the 23rd European

Conf. on Object-Oriented Programming, Genova, Italy, pp. 294–317. Springer-Verlag.

InfoEther (2008) PMD. http://pmd.sourceforge.net/.

M. Janssen (2012) Neotag: a pos tagger for grammatical neologism detection. In Proc. of the

Eighth Int’l Conf. on Language Resources and Evaluation (LREC’12), Istanbul, Turkey,

pp. 2118–2124. European Language Resources Association (ELRA).

D. Klein and C. D. Manning (2002) Fast exact inference with a factored model for natural

language parsing. In Advances in Neural Information Processing Systems 15, Vancouver,

British Columbia, Canada, pp. 3–10.

A. Kuhn; S. Ducasse; and T. Gı́rba (2007) Semantic clustering: Identifying topics in source

code. Information and Software Technology, 49(3):230–243.

D. Lawrie and D. Binkley (2011) Expanding identifiers to normalize source code vocabulary.

In Proc. of the 27th Int’l Conf. on Software Maintenance, Williamsburg, Virginia, USA,

pp. 113–122. IEEE.

D. Lawrie; D. Binkley; and C. Morrell (2010) Normalizing source code vocabulary. In Proc.

of the International Working Conference on Reverse Engineering, Beverly, Massachusetts,

USA, pp. 3–12. IEEE Computer Society.

D. Lawrie; H. Feild; and D. Binkley (2007a) An empirical study of rules for well-formed iden-

tifiers. Journal of Software Maintenance and Evolution: Research and Practice, 19(4):205–

229.

D. Lawrie; H. Feild; and D. Binkley (2007b) Quantifying identifier quality: an analysis of

trends. Empirical Software Engineering, 12(4):359–388.

178

http://pmd.sourceforge.net/

Bibliography

D. Lawrie; C. Morrell; H. Feild; and D. Binkley (2006) What’s in a name? A study of

identifiers. In 14th IEEE Int’l Conf. on Program Comprehension, Athens, Greece, pp.

3–12. IEEE.

T. Lethbridge; S. Tichelaar; and E. Plödereder (2004) The Dagstuhl middle metamodel: A

schema for reverse engineering. Electronic Notes in Theoretical Computer Science, 94(0):7–

18.

V. I. Levenshtein (1966) Binary codes capable of correcting deletions, insertions, and reversals.

Cybernetics and Control Theory, 10(8):707–710.

B. Liblit; A. Begel; and E. Sweetser (2006) Cognitive perspectives on the role of naming in

computer programs. In Proc. 18th Annual Psychology of Programming Workshop, Brighton,

UK. Psychology of Programming Interest Group.

H. Ma; R. Amor; and E. Tempero (2008) Indexing the Java API using source code. In 19th

Australian Software Engineering Conference, Perth, Australia, pp. 451–460.

N. Madani; L. Guerrouj; M. D. Penta; Y.-G. Guéhéneuc; and G. Antoniol (2010) Recognizing

words from source code identifiers using speech recognition techniques. In Proc. of the Conf.

on Software Maintenance and Reengineering, Madrid, Spain, pp. 69–78. IEEE.

A. Marcus and D. Poshyvanyk (2005) The conceptual cohesion of classes. In Proc, of Int’l

Conf. on Software Maintenance, Budapest, Hungary, pp. 133–142. IEEE CS.

A. Marcus; D. Poshyvanyk; and R. Ferenc (2008) Using the conceptual cohesion of classes for

fault prediction in object-oriented systems. IEEE Transactions on Software Engineering,

34(2):287–300.

A. Marcus; V. Rajlich; J. Buchta; M. Petrenko; and A. Sergeyev (2005) Static techniques

for concept location in object-oriented code. In Proc. 13th Int’l Workshop on Program

Comprehension, St Louis, Missouri, USA, pp. 33–42. IEEE.

T. J. McCabe (1976) A complexity measure. Transactions on Software Engineering, SE-

2(4):308–320.

S. McConnell (2004) Code Complete: A practical handbook of software construction. Microsoft

Press, 2nd edition.

179

Bibliography

MIRA Ltd (2004) MISRA-C:2004 Guidelines for the use of the C language in critical systems.

URL www.misra.org.uk.

N. Moha; Y.-G. Guéhéneuc; L. Duchien; and A.-F. Le Meur (2010) Decor: A method for

the specification and detection of code and design smells. IEEE Transactions on Software

Engineering, 36(1):20–36.

J. C. Munson (2003) Software Engineering Measurement. Auerbach.

J. Nonnen and P. Imhoff (2012) Identifying knowledge divergence by vocabulary monitor-

ing in software projects. In Proc. of the European Conf. on Software Maintenance and

Reengineering, Szeged, Hungary, pp. 441–446. IEEE Computer Society.

J. Nonnen; D. Speicher; and P. Imhoff (2011) Locating the meaning of terms in source

code research on “term introduction”. In Proc. of the 18th Working Conf. on Reverse

Engineering, Limerick, Ireland, pp. 99–108. IEEE Computer Society.

D. Posnett; A. Hindle; and P. Devanbu (2011) A simpler model of software readability. In

Proceedings of the 8th Working Conference on Mining Software Repositories, Honolulu,

Hawaii, pp. 73–82. ACM.

R Development Core Team (2008) R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing. URL http://www.R-project.org. ISBN 3-

900051-07-0.

D. Raţiu (2009) Intentional Meaning of Programs. Ph.D. thesis, Technische Universität

München.

V. Rajlich and N. Wilde (2002) The role of concepts in program comprehension. In Proc.

10th Int’l Workshop on Program Comprehension, Paris, France, pp. 271–278. IEEE.

P. A. Relf (2004) Achieving software quality through identifier names. In Proc. of Qualcon

2004, South Australia.

P. A. Relf (2005) Tool assisted identifier naming for improved software readability: an empir-

ical study. In Int’l Symp. on Empirical Software Engineering, Noosa Heads, Queensland,

Australia, pp. 53–62. IEEE.

180

www.misra.org.uk
http://www.R-project.org

Bibliography

B. Santorini (1990) Part-of-speech tagging guidelines for the Penn Treebank Project. Tech-

nical Report MS-CIS-90-47, Department of Computer and Information Science, University

of Pennsylvania. URL http://repository.upenn.edu/cis_reports/570/.

J. Singer and C. Kirkham (2008) Exploiting the correspondence between micro patterns and

class names. In Int’l Working Conf. on Source Code Analysis and Manipulation, Beijng,

China, pp. 67–76. IEEE.

Sun Microsystems (1999) Code conventions for the Java programming language. http://

java.sun.com/docs/codeconv.

G. Suryanarayana; G. Samarthyam; and T. Sharma (2014) Refactoring for Software Design

Smells: Managing Technical Debt. Morgan Kaufmann.

A. A. Takang; P. A. Grubb; and R. D. Macredie (1996) The effects of comments and iden-

tifier names on program comprehensibility: an experimental investigation. J. Prog. Lang.,

4(3):143–167.

A. Taylor; M. Marcus; and B. Santorini (2003) The Penn Treebank: An overview. In

A. Abeillé (ed.), Treebanks: The state of the art in syntactically annotated corpora, chap-

ter 1, pp. 5–22. Kluwer.

The Eclipse Foundation (2007) Development conventions and guidelines. http://wiki.

eclipse.org/Development_Conventions_and_Guidelines13).

K. Toutanova; D. Klein; C. Manning; and Y. Singer (2003) Feature-rich part-of-speech tagging

with a cyclic dependency network. In Proceedings of HLT-NAACL, Edmonton, Canada,

pp. 252–259.

A. Vermeulen; S. W. Ambler; G. Bumgardner; E. Metz; T. Misfeldt; J. Shur; and P. Thomp-

son (2000) The Elements of Java Style. Cambridge University Press.

K. D. Welker; P. W. Oman; and G. G. Atkinson (1997) Development and application of an

automated source code maintainability index. Journal of Software Maintenance, 9(3):127–

159.

D. A. Wheeler (2008) SLOCCount. http://www.dwheeler.com/sloccount/.

181

http://repository.upenn.edu/cis_reports/570/
http://java.sun.com/docs/codeconv
http://java.sun.com/docs/codeconv
http://wiki.eclipse.org/Development_Conventions_and_Guidelines
http://wiki.eclipse.org/Development_Conventions_and_Guidelines
http://www.dwheeler.com/sloccount/

Appendices

183

Appendix A

Glossary

Aggressive Tokeniser An aggressive tokeniser seeks to split identifier names into the tokens

the developer included in names and uses techniques to identify elided and implied

typographical boundaries, boundaries in single case names (such as ALTORENDSTATE)

and to identify tokens containing digits.

Cipher Ciphers are names composed of single letter abbreviations, commonly of a specific

type such as int i, that are used to represent generic entities.

Code Smell A code smell is a feature of source code that indicates an underlying design

weakness. Code smells both motivate refactoring and identify the steps required to

refactor the source code.

Conservative Tokeniser A conservative tokeniser is one that splits names into tokens using

the unambiguous typographical boundaries of the lower case to upper case transition

and separator characters, e.g. classnamePrefix is tokenised to classname, prefix.

Content Type The lexical content of individual tokens in a name, e.g. whether tokens are

abbreviations, specialised abbreviations familiar to software practitioners, acronyms or

words.

Design Smell A design smell is a poor or unconventional solution to a common design

problem that compromises source code quality and maintainability.

EJS “The Elements of Java Style” Vermeulen et al. (2000). A handbook of Java program-

ming conventions, including naming conventions, drawn from the practice of developers

185

Appendix A. Glossary

at Rogue Wave Software.

Hard Word A term coined by Feild et al. (2006). The tokens of a name that are marked by

the typographical word boundaries of the lower to upper case transition and separator

characters, e.g. the name HTMLEditorKit consists of the hard words HTMLEditor and

Kit. Hard words result from the use of a conservative tokeniser and may consist of one

or more soft words.

JLS “The Java Language Specification” Gosling et al. (2014). The specification of the Java

programming language that includes naming conventions.

Multi-Part Name A name consisting of two or more constituent parts where at least one

is non-phrasal, e.g. ER CANT CREATE URL where ‘ER’ is most likely an abbreviation of

‘error’ used as a prefix to identify error messages.

Multiple Phrase Name A name that consists of two or more, sometimes disjoint, natural

language phrases, e.g. ThreadReferenceImpl

Unable to pop the requested stack frame from the call stack

Reasons include

The requested frame was the last frame on the call stack

The requested frame was the last frame above a native frame

12

Neologism A neologism is a new word or phrase. Neologisms may be entirely novel, a

novel use of an existing word, such as the use of text as a verb when mobile phones

were introduced, or derived from existing words. Common mechanisms used to derive

neologisms include the application of an affix not usually used with the donor word,

e.g. precisify, and word blending, e.g. brunch.

Non-Phrasal Name Non-phrasal names are composed of words, but in an order or combi-

nation that is apparently nonsensical e.g. isShowLines and manual lazy haves

Oversplit Oversplitting is used to describe two distinct phenomena. (1) Software used to

split identifier names may split the name into more words than optimal. (2) Developers

may insert typographical boundaries between components of words that are then ac-

186

cepted by naive splitting techniques as separate words. For example, some developers

introduce a typographical boundary following the prefix ‘sub’ as in subMenu.

Redundant Prefix A form of Hungarian Notation sometimes used in Java names where a

single letter is used to indicate either the role of an identifier name, or its type. For

example a field name might be prefixed with ‘f’ or a boolean variable with ‘b’.

Refactoring Refactoring is the process of revising source code to improve its quality and

maintainability while preserving external behaviour.

Separator Character A non-alphabetical character used to separate tokens in a name, e.g.

the underscore in ER CANT CREATE URL.

Sigil A sigil is a symbol used as a prefix to a name in some programming languages to

differentiate between names and bare words, or between the role of an identifier name.

For example, in Perl the identifier declarations $a, @b and %c are respectively a scalar,

an array and a hash.

Species A species is a category of identifier name within a programming language. In Java

the species include class, interface, constructor, method, field, formal argument and

local variable.

Soft Word A term coined by Feild et al. (2006). The tokens of a name that are single

dictionary words, abbreviations or acronyms that may or may not be divided from

another soft word by a typographical boundary, e.g. HTMLEditorKit consists of the

soft words HTML, Editor and Kit. Where a name follows typographical conventions,

hard words and soft words are identical. Where typographical conventions are not

followed, soft words are identified by an aggressive tokeniser.

Type Acronym A type acronym is a variable name that is an acronym of its declared type,

e.g. StringBuilder sb.

Upper case to lower case (UCLC) boundary An implied token boundary that occurs

in a name where there is a transition from two or more upper case characters to lower

case. The boundary is ambiguous, e.g. HTMLEditorKit and PBinitialize, and a

problem that aggressive tokenisers need to solve.

187

Appendix B

Corpus

Table B.1 lists the 60 projects in the INVocD corpus. For each project the version and size in

thousands of source lines of code (KSLOC)1 are given, and some characteristics of the project.

The corpus contains some 16.5 MSLOC of code, 5 million identifier name declarations, 800,000

unique identifier names, and 25,000 unique tokens.

Table B.1: Corpus of 60 FLOSS Java Projects

Project Version KSLOC D
e
sk

to
p

A
p

p
li
c
a
ti

o
n

P
ro

je
c
t

M
a
n

a
g
e
m

e
n
t

L
a
n

g
u

a
g
e

T
o
o
l

P
ro

g
ra

m
m

e
r

T
o
o
l

P
ro

g
ra

m
m

in
g

L
a
n

g
u

a
g
e

ID
E

S
D

K
L

ib
ra

ry

S
e
rv

e
r

AirTODO 1.27 final 13 * *
ANT 1.7.1 117 *
ANTLR 3.2 43 * *
ArgoUML 0.30.2 203 *
ASM 3.3 23 * *
AspectJ 1.6.9 382 *
Azureus (Vuze) 4.5.02 491 *
BCEL 5.2 24 * *
Beanshell 2.0b4 26 *
BlueJ 3.0.2 76 * *
BORG Calendar 1.7.3 25 * *
Cactus 1.8.1 22 *
Cobertura 1.9.4.1 51 *

1Generated using David A. Wheeler’s ‘SLOCCount’ (Wheeler, 2008)

189

Appendix B. Corpus

Project Version KSLOC D
e
sk

to
p

A
p

p
li
c
a
ti

o
n

P
ro

je
c
t

M
a
n

a
g
e
m

e
n
t

L
a
n

g
u

a
g
e

T
o
o
l

P
ro

g
ra

m
m

e
r

T
o
o
l

P
ro

g
ra

m
m

in
g

L
a
n

g
u

a
g
e

ID
E

S
D

K
L

ib
ra

ry

S
e
rv

e
r

Derby 10.6.1.0 619 * *
Eclipse 3.6.0 2,296 * * *
E-Gantt 0.5.3a 11 * *
FindBugs 1.3.9 109 * *
FreeMind 0.9.0RC9 52 *
GanttProject 2.0.10 51 * *
Geronimo 3.0-M1 190 *
Google Web Toolkit 2.0.4 391 *
Greenfoot 1.5.6 108 *
Groovy 1.7.4 120 *
Hibernate 3.5.5-final 328 *
JabRef 2.6 98 *
JasperReports 3.7.4 194 *
Java 6 library 6u20-b02 890 *
JavaCC 5.0 17 *
JBoss 6.0.0 M4 281 *
JDK 6u21 fcs 2,327 *
jEdit 4.3.2 110 * *
Jetty 7.2.0 16 *
JFreeChart 1.0.13 95 *
Jin 2.1.4.1 34 *
JRuby 1.5.2 169 *
JUnit 4 4.8.2 6 *
Jython 2.5.2 beta 1 (svn r7109) 210 *
Kawa 1.10 114 *
Log4J 1.2.16 25 *
Lucene 3.0.2 132 *
Maven 2.2.1 38 *
Memoranda 1.0-rc3.1 22 * *
MindRaider 7.6 41 *
MPXJ 4.0.0 73 * *
MultiJava 1.3.2 89 *
NetBeans 6.9.1 4,217 * *
OpenProj 1.4 79 * *
Polyglot 1.3.5 47 *
Rapla 1.3.2 59 * *
Rhino 1.7R2 62 *
Spring 3.0.3 318 *
Stripes 1.5.3 18 *
Struts 2.2.1 144 *

190

Project Version KSLOC D
e
sk

to
p

A
p

p
li
c
a
ti

o
n

P
ro

je
c
t

M
a
n

a
g
e
m

e
n
t

L
a
n

g
u

a
g
e

T
o
o
l

P
ro

g
ra

m
m

e
r

T
o
o
l

P
ro

g
ra

m
m

in
g

L
a
n

g
u

a
g
e

ID
E

S
D

K
L

ib
ra

ry

S
e
rv

e
r

Tapestry 5.1.0.5 97 *
Tomcat 6.0.29 165 *
Velocity 1.6.4 37 * *
Wicket 1.4.10 141 *
Xalan-Java 2.7.1 176 * *
Xerces-j 2.10.0 126 * *
XOM 1.2.6 48 * *

191

Appendix C

Database Schema

This appendix details the database schema used in the INVocD database. All database tables

belong to the schema SVM, and all table names must be prefixed with SVM.

C.1 Program Entities

The database schema centres on the program entities table, which follows the AST using the

container uid and entity uid columns to identify the current and containing program entities.

The ‘fk’ suffix to a column name identifies foreign keys. The ’is anonymous’ column identifies

program entities without an identifier name. In those cases the identifier name key points to

the identifier ‘#anonymous#’.

193

Appendix C. Database Schema

PROGRAM ENTITIES

program entity key

project key fk

package key fk

identifier name key fk

container uid VARCHAR(255)

entity uid VARCHAR(255)

species name key fk

type name key fk

method signature key fk

is anonymous BOOLEAN

file name key fk INT

is array BOOLEAN

is loop control var BOOLEAN

start line number INT

start column INT

end line number INT

end column INT

C.2 Names and Tokens

Unique identifier names are stored with a count of their component words or tokens, and are

referenced by both program entities and type names.

IDENTIFIER NAMES

identifier name VARCHAR(255)

identifier name key

components INT

Unique component words are recorded and linked to identifier names through a cross ref-

erence table that records the position within the identifier name where the component word

is found.

COMPONENT WORDS

component word VARCHAR(255)

component word key

194

C.3. Type Names, Super Classes and Super Types

COMPONENT WORDS XREF

component word key fk

identifier name key fk

position INT

C.3 Type Names, Super Classes and Super Types

Unique type names are stored with a reference to the identifier name used to specify the type.

The fully qualified name of the type is recorded if it can be resolved.

TYPE NAMES

type name VARCHAR(255)

type name key

identifier name key fk

Type names involved in inheritance are cross referenced with program entities using two

tables one of which corresponds to class based inheritance and the other to type based inher-

itance.

SUPER CLASS XREF

sub class entity key fk

super class name key fk

SUPER TYPE XREF

sub type entity key fk

super type name key fk

C.4 Method Signatures

Unique method signatures are recorded for constructor and method program entities.

195

Appendix C. Database Schema

METHOD SIGNATURES

method signature key

method signature VARCHAR(2048)

C.5 Species and Modifiers

A read only set of species is used to classify program entities. The values of the species name

column are: annotation member, annotation, class, constructor, enum constant, enum, field,

formal argument, initialiser, interface, label name, local, local class, member class, method,

and nested interface.

SPECIES

species name key

species name VARCHAR(20)

A read only set of modifiers is provided and multiple modifiers linked to program enti-

ties through a cross reference table. The members are: abstract, final, native, private,

protected, public, static, strictfp, synchronized, transient and volatile.

MODIFIERS

modifier VARCHAR(20)

modifier key

MODIFIERS XREF

modifier key fk

program entity key fk

C.6 Projects, Packages and Files

Unique package names are stored in a table, and cross referenced with projects. This is done

to save space when storing multiple projects, which are distinguished by a project name and

196

C.6. Projects, Packages and Files

version pair

PACKAGE NAMES

package name key

package name VARCHAR(255)

PACKAGES

package name key fk

package key

project key fk

PROJECTS

project key

project name VARCHAR(255)

project version VARCHAR(255)

Unique file names are recorded for the program entities where they are found.

FILES

file name VARCHAR(255)

file name key

Any individual file is identified by the combination of project name and version, package

name and file name.

197

Appendix D

Software and Data Created During

the Research

This appendix provides details of the software and data created during the course of the

research reported in this dissertation that is available for download. Details of the licence

for each binary package, and INVocD are provided with the respective downloads. All the

open source versions of software are licensed using version 2.0 of the Apache Licence, with

the exception of MDSC, which uses the GPL v3 licence with ‘classpath exception’.

D.1 Software

D.1.1 INTT

The version of INTT (v0.2.0) described in Chapter 4 is available in binary form from http:

//oro.open.ac.uk/28352/ Included in the zip file with INTT are the 7 sets of 4,000 manually

tokenised names used to test INTT and 1.4 million records of the unique identifier names

extracted from the corpus.

INTT is still being developed and recent versions are open source software. The repository

is at https://github.com/sjbutler/intt

D.1.2 JIM

JIM is a tool for mining identifier names and metadata from Java source code. JIM is described

in Chapter 3 and was used to create the INVocD corpus.

199

http://oro.open.ac.uk/28352/
http://oro.open.ac.uk/28352/
https://github.com/sjbutler/intt

Appendix D. Software and Data Created During the Research

Three versions of JIM are available in binary form:

• v0.4.2 with parsers for Java v6 and below. Compiled for Java v6.

• v0.5.9 with parsers for Java v7 and below. Compiled for Java v7.

• v0.5.9 with parsers for Java v7 and below. Compiled for Java v8.

Compressed archives containing the JAR files can be downloaded from http://www.

facetus.org.uk/research/jim

JIM is still being developed, and recent versions are open source software. The repository

can be found at https://github.com/sjbutler/jim

D.1.3 JIMdb

JIMdb is a component of JIM that mediates access to the database, and has an API for

extracting names and metadata. JIMdb is made available as a separate library to provide

access for analytic tools to databases created by JIM. The repository is at https://github.

com/sjbutler/jimdb

D.1.4 MDSC

MDSC is a spell checking library designed to use multiple dictionaries. MDSC is described in

Chapter 6. MDSC is open source software and the repository is at https://github.com/

sjbutler/mdsc

D.1.5 Nominal

Nominal, the library for specifying and evaluating adherence to naming conventions described

in Chapter 7, is open source software. The repository is at https://github.com/sjbutler/

nominal

D.2 Data

D.2.1 INVocD

INVocD is available from http://oro.open.ac.uk/36992/ as a download that includes Apache

Derby and SQLlite versions of the database, and a SQL dump of the database, with DDL

200

http://www.facetus.org.uk/research/jim
http://www.facetus.org.uk/research/jim
https://github.com/sjbutler/jim
https://github.com/sjbutler/jimdb
https://github.com/sjbutler/jimdb
https://github.com/sjbutler/mdsc
https://github.com/sjbutler/mdsc
https://github.com/sjbutler/nominal
https://github.com/sjbutler/nominal
http://oro.open.ac.uk/36992/

D.2. Data

files, that can be imported into other SQL database systems.

201

Appendix E

Penn Treebank Tags

The following lists of Penn Treebank tags are adapted from those given in Santorini (1990)

and Taylor et al. (2003).

E.1 Part of Speech Tags

CC - Coordinating conjunction

CD - Cardinal number

DT - Determiner

EX - Existential ‘there’

FW - Foreign word

IN - Preposition or subordinating conjunction

JJ - Adjective

JJR - Adjective, comparative

JJS - Adjective, superlative

LS - List item marker

MD - Modal

NN - Noun, singular or mass

203

Appendix E. Penn Treebank Tags

NNS - Noun, plural

NNP - Proper noun, singular

NNPS - Proper noun, plural

PDT - Predeterminer

POS - Possessive ending

PRP - Personal pronoun

PRP$ - Possessive pronoun

RB - Adverb

RBR - Adverb, comparative

RBS - Adverb, superlative

RP - Particle

SYM - Symbol

TO - to

UH - Interjection

VB - Verb, base form

VBD - Verb, past tense

VBG - Verb, gerund or present participle

VBN - Verb, past participle

VBP - Verb, non-3rd person singular present

VBZ - Verb, 3rd person singular present

WDT - Wh-determiner

WP - Wh-pronoun

WP$ - Possessive wh-pronoun

WRB - Wh-adverb

204

E.2. Phrase/Chunk Tags

E.2 Phrase/Chunk Tags

ADJP - Adjective Phrase.

ADVP - Adverb Phrase.

CONJP - Conjunction Phrase.

FRAG - Fragment.

INTJ - Interjection. Corresponds approximately to the part-of-speech tag UH.

NP - Noun Phrase.

PP - Prepositional Phrase.

VP - Verb Phrase.

WHADJP - Wh-adjective Phrase. Adjectival phrase containing a wh-adverb, as in how hot.

WHAVP - Wh-adverb Phrase. Introduces a clause with an NP gap. May be null (containing

the 0 complementizer) or lexical, containing a wh-adverb such as how or why.

WHNP - Wh-noun Phrase. Introduces a clause with an NP gap. May be null (containing the

0 complementizer) or lexical, containing some wh-word, e.g. who, which book, whose

daughter, none of which, or how many leopards.

WHPP - Wh-prepositional Phrase. Prepositional phrase containing a wh-noun phrase (such

as of which or by whose authority) that either introduces a PP gap or is contained by

a WHNP.

205

	Contents
	List of Figures
	List of Tables
	Introduction
	Approach
	Dissertation Overview
	Publications

	Exploring the Relationship Between Identifier Names and Code Quality
	Related Work
	Identifier Name Quality
	Source Code Quality
	FindBugs
	Source Code Quality Metrics

	Methodology
	Data Collection
	Statistical Analysis
	Threats to Validity

	Results
	Class Analysis
	Method Analysis

	Discussion
	Summary

	Identifier Name Extraction and Storage
	The Corpus
	Existing Metamodels of Source Code
	Model Design and Implementation
	A Model for Source Code Vocabulary
	Database Schema
	Database Access

	Identifier Name Extraction
	Summary

	Identifier Name Tokenisation
	The Identifier Name Tokenisation Problem
	The Composition of Identifier Names
	Tokenising Identifier Names

	Related Work
	An Improved Approach
	Oracles
	Tokenising Conventionally Constructed Identifier Names (RQ2)
	Tokenising Identifier Names Containing Digits (RQ3)
	Tokenising Single Case Identifier Names (RQ2)

	Experiments and Results
	INTT
	Comparison With Samurai
	Single Case Identifier Names
	Threats to Validity

	Discussion
	Identifier Names Containing Digits
	Limitations
	Future Work

	Summary

	The Analysis of Class Identifier Names
	Related Work
	Methodology
	Analysis of Grammatical Composition
	Analysis of Inheritance
	Case Study

	Results
	Grammatical Structure (RQ4)
	The Influence of Inheritance (RQ5)
	FreeMind
	Threats to Validity

	Discussion
	Future Work

	Summary

	Phrasal Analysis of Reference Identifier Names
	Related Work
	Methodology
	The Dataset
	Partitioning Names
	PoS Tagging
	Phrasal Analysis
	Use of Known Abbreviations
	Threats to Validity

	Results
	Name Content Types (RQ6)
	Phrasal Structures (RQ7)

	Discussion
	Problems for PoS Tagging
	Boolean Names
	Abbreviations and Neologisms
	Future Work

	Summary

	Adherence to Reference Naming Conventions
	Related Work
	Methodology
	Naming Conventions
	Nominal
	Threats to Validity

	Checking Naming Conventions
	Name Content Conventions
	Typographical Conventions
	Reference Naming Conventions Tested
	Other Conventions
	Conventions not Fully Tested

	Adherence to Specific Conventions (RQ8)
	Typography
	Name Content
	Conventional Usage of Phrases

	Commonly Broken Conventions (RQ9)
	Typography
	Ciphers and Type Acronyms
	Redundant Prefixes

	Discussion
	Naming Conventions
	Nominal
	Future Work

	Summary

	Conclusions and Future Work
	Revisiting the Aims and Objectives
	Summary of Contributions
	Future Work
	Name Token Content Types
	Identifier Name Tokenisation
	Inheritance Trees
	Neologisms
	PoS Tagging
	Naming Convention Specification and Testing

	Personal Reflection
	Conclusion

	Bibliography
	Appendices
	Appendix Glossary
	Appendix Corpus
	Appendix Database Schema
	Program Entities
	Names and Tokens
	Type Names, Super Classes and Super Types
	Method Signatures
	Species and Modifiers
	Projects, Packages and Files

	Appendix Software and Data Created During the Research
	Software
	INTT
	JIM
	JIMdb
	MDSC
	Nominal

	Data
	INVocD

	Appendix Penn Treebank Tags
	Part of Speech Tags
	Phrase/Chunk Tags

