

Thesis

Department of Computing

A Generic Framework
Facilitating Automated Quality

Assurance
across Programming Languages

of Disparate Paradigms

Darryl Owens

March 2016
St Helens Road

Ormskirk L39 4QP
United Kingdom

 +44 (0)1695 575171

 http://www.edgehill.ac.uk/

ii

© 2016 Darryl Owens
This technical report is based on a dissertation submitted in
March 2016 by the author for the degree of Doctor of
Philosophy to Edge Hill University.

iii

Dedication

This work is dedicated to Barbara and Glyn Owens, my parents, who have supported

me throughout this work and all of my education. Without these two people, none of my

work would have been possible; they passed on a drive for knowledge and deserve more

credit for my success than myself.

In memory of Philip (Tompi) Thompson

13/10/1929-22/01/2016

A Tompi Grandson Production

iv

Acknowledgments

Firstly, I would like to express my gratitude to Professor Mark Anderson, John

Collins, and Professor Michael Inggs; I could not have asked for better or more supportive

advisors. Additionally, I would like to thank David Gill of UCAR and Brian Farrimond of

SimCon for accepting and assisting me as part of the QACC team. I would like to especially

thank Professor Mark Anderson who, with his inspirational and motivational attitude, made

my project completion possible.

This thesis was funded by Edge Hill University, and I would like to thank the

organisation for the opportunity and support. As a member of Edge Hill University, I have

been surrounded by wonderful colleagues; the community has provided me with support and

guidance in both academic and personal development.

I would like to thank the supportive group that helped me survive the academic

process and tolerated my incessant complaining. By name, these are Olushola Alexander

Akinbi, Daniel Campbell, Daniel Kay, Peter Mattew, and finally my partner, Harriet

Hamilton, who deserves an award for tolerance and compassion.

Finally, I would like to thank my family and friends for their tireless support and

assistance not only over the time of my PhD but also throughout my education and my last

six years at Edge Hill University, with a special mention to my Uncle Stan Hutchinson, who

had the painful experience of proofreading this thesis.

v

A Generic Framework Facilitating Automated Quality Assurance

across Programming Languages of Disparate Paradigms

Darryl Owens

Abstract

 This research aims to outline a framework based on procedural and object-oriented

Paradigms that facilitates generic automated quality assurance. Along with the outline, a

skeleton framework has been developed to evaluate the research, and the final aim is to

expand the footprint of the framework; theoretical inclusion of other programming paradigms

has been discussed. This research developed a taxonomy of quality assurance techniques in

order to identify potential candidates for generic quality assurance and also to minimise

experimental requirements, as the taxonomy categories are generated based on

implementation requirements; this means that a category can be deemed feasible within the

scope of this framework if a single technique can be implemented. The novel aspects of this

research are the taxonomy, paradigm-specific framework, and finally the theorised paradigm-

generic framework. An experimental method has been used to provide evidence to support

the claims made by this research, which is accompanied by a study of literature providing a

foundation for all areas discussed. Although a paradigm-generic framework can be achieved,

the internal representation used in this research showed that application of the logical

paradigm would not be simple and has little benefit in the scope of automated quality

assurance. This being said, procedural, object-oriented, and functional paradigms have been

demonstrated as feasible with significant impact on programming language development and

automated quality assurance of software.

vi

Table of Contents

 Introduction ...18

1.1 Background and Motivation ..18

1.2 Previous Work ...20

1.3 Published Work ..20

1.4 Argument ...21

1.5 Scope ..21

1.6 Aims and Objectives ..22

1.7 Methodology and Methods ..23

1.7.1 Epistemology ..24

1.7.2 Requirements Gathering ...25

1.7.3 Taxonomy ...25

1.7.4 Design and Implementation ..25

1.7.5 Evaluation ...26

1.7.6 Exploratory Study ...26

1.8 Original Contribution ...26

1.9 Ethical Considerations ...28

1.10 Personal Motivation ...29

1.11 Thesis breakdown ..29

 Literature Review..30

2.1 Programming Paradigms and Languages...30

2.2 Programming Language Independence ..34

2.2.1 Abstract Syntax Tree...36

2.2.2 Generic Abstract Syntax Tree Meta-model (GASTM)39

vii

2.3 Software Quality Assurance ..40

2.4 Static and Dynamic Analysis ...42

2.4.1 Techniques and Taxonomies...43

2.5 The need for Automated Quality Assurance ..47

2.6 Current Development in Software Quality Assurance.........................48

 Language Independent Quality Assurance (LIQA) Outline50

3.1 Proposal..50

3.2 Design ..54

3.2.1 Methodology ...54

3.2.2 Development Tools ...55

3.2.3 Initial Requirements ..56

3.2.3.1 Form Design ...57

3.3 Implementation ..57

3.3.1 Evolutions / Version ...58

3.4 Tools ..59

3.4.1 Modifications to Generic Abstract Syntax Tree Meta-model (GASTM)

 60

3.4.2 Limitations ..62

3.4.3 Test Dynamic Analysis ...64

3.4.4 Test Static Analysis...65

3.4.5 Overall System Description ..65

3.4.5.1 Development Discussion ..67

3.4.5.2 Finalized IR Interface ...73

3.5 Modifications to Research ...74

viii

3.6 Summary ..74

 Taxonomy of Quality Assurance Techniques75

4.1 Overview of Quality assurance ..76

4.1.1 Detailed Static ...78

4.1.2 Detailed Dynamic ...79

4.2 High-Level Tool Analysis..80

4.2.1 Independent Tool High-Level Analysis80

4.2.1.1 winFPT ...80

4.2.1.2 Parasoft ...81

4.2.1.3 Malpas ..81

4.2.1.4 Polyspace ..82

4.2.1.5 Cantata++ ...82

4.2.1.6 JNuke ..82

4.2.1.7 TestingAnywhere ...83

4.2.1.8 Critical Comparison ...83

4.2.2 IDE High-Level Analysis ...85

4.2.2.1 NetBeans ..86

4.2.2.2 Eclipse ..86

4.2.2.3 Visual Studio ..87

4.2.2.4 Critical Comparison ...89

4.3 Deep Analysis ..90

4.3.1 NetBeans ...90

4.3.1.1 NetBeans Java Hints...90

4.3.1.2 NetBeans Debugger..91

ix

4.3.1.3 NetBeans Profiler ...92

4.3.1.4 NetBeans JavaDoc Analysis ..93

4.3.1.5 SQE (Software Quality Environment)93

4.3.1.6 FindBugs ..94

4.3.1.7 PMD Source Code Analyser ..94

4.3.1.8 Dependency Finder ..95

4.3.1.9 Checkstyle ..96

4.3.1.10 JUnit and xUnit Framework96

4.3.1.11 Techniques ...98

4.3.2 Visual Studio ...100

4.3.2.1 Debugger ..100

4.3.2.2 Error Correction ...105

4.3.2.3 Analyser ...105

4.3.2.4 Issues and Limitations ..109

4.3.2.5 Techniques ...110

4.3.3 Integrated Development Environment (IDE) Comparison112

4.3.4 WinFPT ...113

4.3.4.1 Internal Representation ..113

4.3.4.2 Features ..114

4.3.4.3 Techniques ...118

4.3.5 Polyspace ..120

4.3.5.1 Features ..120

4.3.5.2 Techniques ...124

4.3.1 Critical Comparison ..125

x

4.4 Techniques ...125

4.4.1 Diagram Key ...126

4.4.2 Static ...127

4.4.3 Dynamic ..130

4.5 Taxonomy of Techniques ..131

4.6 Additional Tools ..134

4.7 Category Summary ..135

4.8 Explicit taxonomy ..136

4.9 Summary ..141

 Framework ..142

5.1 Implementation of Techniques ..142

5.1.1 Static Analysis ..144

5.1.1.1 Code Manipulation ...145

5.1.1.2 Optimization ...148

5.1.1.3 Data Flow Analysis ..149

5.1.1.4 Static Metrics..153

5.1.1.5 Pattern Matching ..157

5.1.2 Dynamic Analysis ...157

5.1.2.1 Dynamic Metrics (Profiler) ..157

5.1.3 Development Discussions ...158

5.2 Discussion of Theoretical Techniques ...159

5.2.1 Static Analysis ..160

5.2.1.1 Visualisation ...160

5.2.1.2 Artefact Generation ..160

xi

5.2.2 Dynamic Analysis ...161

5.2.2.1 Unit Testing ..161

5.3 Testing..161

5.3.1 Testing Plan ..161

5.3.2 Testing Notes ..166

5.4 Analysis of Results ..167

5.5 Framework Conclusion ..174

5.6 Summary ..175

 Theoretical Discussion ..176

6.1 Paradigms ...176

6.1.1 Paradigm Discussion ...176

6.1.2 Paradigm Analysis ..177

6.1.2.1 Procedural...179

6.1.2.2 Object-Oriented Paradigm..181

6.1.2.3 Functional ...182

6.1.2.4 Logical ..189

6.1.2.5 Other Paradigms ...192

6.1.3 Generic Quality Assurance ...195

6.2 Complete Framework / Future Work ...197

6.2.1 Direct Expansion ...197

6.2.2 Grammar Prefix ..199

6.2.3 Query Addition ...200

6.2.4 Linking with IDE ..201

6.2.5 Dynamic Analysis ...202

xii

6.3 Summary ..204

 Conclusion ..205

7.1 Empirical Findings ...206

7.2 Theoretical Implication ..208

7.3 Recommendations for future research ...209

7.4 Limitations of the study ...210

7.5 Personal Reflection ..211

7.6 Conclusion of the conclusion ...212

 Bibliography ...214

 Glossary ..249

xiii

List of Tables

Table 2.1.1 - Language taxonomy ...33

Table 2.4.1 – Initial Taxonomy Outline...46

Table 3.2.1 - Initial requirements table ..56

Table 3.3.1 - Version list..59

xiv

List of Figures

Figure 1.8.1 - Minimal risk [8] ...28

Figure 2.2.1 - Java hello world Abstract Syntax Tree (AST)37

Figure 2.2.2 - C# hello world Abstract Syntax Tree (AST)...................................37

Figure 2.3.1 - Scope and content hierarchy [42] ..40

Figure 2.6.1– Software Quality Assurance (SQA) current visualisation49

Figure 3.1.1- System data flow ..51

Figure 3.1.2 - Static analysis data flow ..52

Figure 3.1.3 - Dynamic analysis data flow ..53

Figure 3.2.1 - Initial form design ...57

Figure 3.4.1– Generic Abstract Syntax Tree Meta-model (GASTM) SwitchStatement

definition ...61

Figure 3.4.2 – Language Independent Quality Assurance (LIQA) expected data flow

diagram ...66

Figure 3.4.3 – Language Independent Quality Assurance (LIQA) file structure ..68

Figure 3.4.4 – Language Independent Quality Assurance (LIQA) class diagram Graphical

User Interface (GUI) ...69

Figure 3.4.5 – Language Independent Quality Assurance (LIQA) class diagram Control

Flow Graph (CFG) ..70

Figure 3.4.6 – Language Independent Quality Assurance (LIQA) class diagram identifiers

...70

Figure 3.4.7 – Language Independent Quality Assurance (LIQA) class diagram Internal

Representation (IR) builders ...71

Figure 3.4.8 - Internal Representation (IR) generator form73

Figure 3.4.9 - Menu design ..73

Figure 4.1.1– Hierarchy key ..77

xv

Figure 4.1.2– Basic analysis hierarchy ..77

Figure 4.1.3– Static analysis hierarchy ..78

Figure 4.1.4 – Dynamic analysis hierarchy ...79

Figure 4.3.1 – NetBeans dependency finder ..95

Figure 4.3.2 – NetBeans dynamic analysis techniques ..98

Figure 4.3.3 – NetBeans static analysis techniques ...99

Figure 4.3.4 – C# debugger test program ..101

Figure 4.3.5 – C# debugger tracepoint message ..102

Figure 4.3.6 – C# debugger variable watcher ..103

Figure 4.3.7 – C# debugger assert classes ...103

Figure 4.3.8 – C# debugger intelitrace...104

Figure 4.3.9 – Visual Studio 2012 performance analyser106

Figure 4.3.10 – Maintainability index calculation [173]107

Figure 4.3.11 – Visual Studio 2012 code clone detection109

Figure 4.3.12 – Visual Studio 2012 dynamic analysis techniques111

Figure 4.3.13 – Visual Studio 2012 static analysis techniques111

Figure 4.3.14 – Warning identification in winFPT ..116

Figure 4.3.15 – Dynamic analysis techniques for winFPT118

Figure 4.3.16 – Static analysis techniques for winFPT119

Figure 4.3.17 – Polyspace bug finder & code prover ..120

Figure 4.3.18 – Polyspace static analysis techniques ..124

Figure 4.4.1 – Tool key ..126

Figure 4.4.2 – Static analysis 1 ..127

Figure 4.4.3 – Static analysis 2 ..128

xvi

Figure 4.4.4 – Static analysis 3 ..129

Figure 4.4.5 – Dynamic analysis..130

Figure 4.4.6 – Taxonomy of quality assurance techniques133

Figure 4.4.7 – Taxonomy of quality assurance techniques with rules138

Figure 5.1.1 –Quality assurance techniques being implemented143

Figure 5.1.2 – Variable rename example ...146

Figure 5.1.3 – Graphical User Interface (GUI) for variable rename147

Figure 5.1.4 – Switch to If example ...148

Figure 5.1.5 – For unroll example ...148

Figure 5.1.6 – CFGobjects class diagram ..150

Figure 5.1.7 – CFGobjects example [200] ...150

Figure 5.1.8 – Liveness analysis limitation example ...152

Figure 5.1.9 – Dead code limitation example ..152

Figure 5.1.10 – Dead code multiple instances ...153

Figure 5.1.11 – Cyclomatic complexity example ..154

Figure 5.1.12 – Halsteads complexity example [209] ...156

Figure 5.4.1 – Equation 1 ...167

Figure 5.4.2 - Equation 2 ...168

Figure 5.4.3 – Pie chart showing individual test results168

Figure 5.4.4 – Pie chart showing grouped test tests results169

Figure 5.4.5 – Bar graph showing categorised test results170

Figure 5.4.6 – Bar graph showing categorised pass results171

Figure 5.4.7 - Additional Profiling Test with original calculation172

Figure 5.4.8 Additional profiling test code ..173

xvii

Figure 6.1.1 – Paradigm Breakdown [215] ...178

Figure 6.2.1 – Language Independent Quality Assurance (LIQA) grammar prefix199

18

 Introduction

This thesis covers a wide canvas under the area of software engineering, including

programming languages and their respective paradigms, as well as automated Software Quality

Assurance (SQA). Therefore, it must be clear exactly what is discussed and intended by these

terms. In this research, automated SQA is any written and implemented programming technique

that is free from human intervention, and either informs or modifies a program’s source code

with the intent of improving its ‘quality’. There are many ways to improve the ‘quality’ of

software, and therefore this will be discussed at length in the literature review. The second point

of interest in this research is programming languages and paradigms. The meaning of

‘programming language’ is self-explanatory; however, the paradigms are a topic of discussion, as

many programming languages branch over multiple paradigms. A paradigm can be described as

a way of approaching a problem, or a way of thinking [1]. With this in mind, to classify a

programming language as within a paradigm, it must have features that enable the approach of a

problem following the paradigm’s ideals. Further discussion of paradigms will be included in the

literature review.

With the description of the areas above, the aim for the research can be better understood.

This research aims to create a framework that could be used to enable automated SQA

techniques to be applied to a program regardless of programming language or paradigm. This is a

major task and will therefore be split into several aims and further into objectives later in this

chapter. It is important to say that to test this framework, a ‘skeleton’ version will be built. This

will provide a point of discussion and allow quantitative analysis on real data.

1.1 BACKGROUND AND MOTIVATION

Automated SQA is a set of techniques that are applied to a program to improve its

‘quality’. Quality is generally defined by individual projects and their domains, and is a set of

categories that have been placed in priority order. These characteristics set out various standards

used by businesses and standards bodies; examples of categories include performance,

19

maintainability, and functionality. The applications of these techniques are implemented through

Integrated Development Environments (IDEs), plug-ins for IDEs, and standalone programs.

There are several motivating reasons for this research to be conducted. Understanding the

background is key in recognising the wide impact that this research could have on the culture of

software quality assurance.

Firstly, consider that built into most IDEs are automated quality assurance techniques that

are taken for granted by software developers. These IDEs, regardless of which programming

language they are specialised for, have similar ways of identifying issues with source code. It

also happens that the IDEs identify the same problems. However, there is no middle ground in

which these techniques are implemented. The techniques are just recreated for each IDE. This

means that wide adoption of new automated quality assurance techniques takes time and requires

many different people to agree and implement upon their product.

Secondly, we can consider programs that are written in multiple programming languages,

such as distributed systems of large complex software such as WRF, a weather forecasting

model. Systems such as these can require multiple tools to assure their quality and, in doing so,

may apply different techniques to each programming language.

The current focus of automated SQA is on specific techniques to be applied to different

domains, whereas this research is designed to change the fundamentals of the field targeting the

platform in which these techniques are developed and deployed.

A framework is an effective solution to these issues; for starters, a framework can be

incorporated into IDE systems as well as analysis tools which that simplify applications for new

languages as well as new techniques. The framework acts like a socket for both languages and

20

techniques to be plugged into. A major point for this project is multi-programming language

interoperability, which would allow the framework to be adaptable to any programming

language, encapsulating part of the original contribution to knowledge provided by this thesis.

1.2 PREVIOUS WORK

Existing project work at Edge Hill University (EHU) has considered the application of

automated SQA techniques in highly specialised fields. Work on the Quality Assurance in

Climate Codes (QACC) project, currently underway at EHU, aligns well with this research. Not

only does the QACC project give this research access to a large suite of scientific software, but

also access to winFPT, a substantial SQA tool. winFPT is recognised internationally as a

significant scientifically based SQA tool that uses an internal representation (IR) to analyse

FORTRAN code, which is in alignment with this research.

1.3 PUBLISHED WORK

As part of this work, a number of papers have been published (some in collaboration with

other researchers) in peer-reviewed academic conferences and workshops:

 J. Collins, B. Farrimond, M. Anderson, D. Owens and D. Bayliss, "Automated Quality

Assurance Analysis: WRF–A Case Study," Journal of Software, vol. 8, no. 9, pp. 2177-

2184, 2013.

 D. Owens and M. Anderson, "A Generic Framework for Automated Quality Assurance of

Software Models: Supporting Languages of Multiple Paradigms," Journal of Software,

vol. 8, no. 9, 13-14 April 2013.

 D. Owens and M. Anderson, "A generic framework for automated Quality Assurance of

software models-Application of an Abstract Syntax Tree," Science and Information

Conference (SAI), 2013, pp. 207 - 211, 2013.

 D. Owens and M. Anderson, "A Generic Framework for Automated Quality Assurance of

Software Models - Implementation of an Abstract Syntax Tree," International Journal of

Advanced Computer Science and Applications (IJACSA), vol. 5, no. 1, 2014.

21

1.4 ARGUMENT

There seems to be a fundamental flaw in the development of automated analysis of code

for quality assurance purposes. All programming languages developed in the procedural

paradigm use the same theoretical basis for automated quality assurance techniques, although

implementations are mostly language-dependent. If all these techniques are repeatedly

implemented in different programming languages, then why can a common ground not be made

to allow these techniques to be language-independent? With the use of an internal representation

into which all procedural source codes can be converted, the techniques could then be

independent of these languages, eliminating the need for reimplementation of each technique.

Automated analysis is used heavily in both academic and industrial settings, especially in cases

where the system under testing is safety critical, e.g. nuclear systems or real-time avionics /

simulation avionics. Because of the extent to which this research must spread, the process must

be open, using or establishing standards wherever possible. An open approach will allow for the

research to extend to its fullest possible application and promote the inclusion that must take

place to counteract the current method of automated quality assurance that has been implemented

into industry.

1.5 SCOPE

It is important for this research that an unambiguous scope is outlined in order to allow

this research to be assessed accurately and not allow tangents to become the focus. The major

theme of this thesis is that automated SQA techniques should be applicable to any programming

language. As SQA and programming languages are wide and disparate areas, it is important that

a baseline is created to build upon. The baseline for this research is the programming paradigms

that are widely used for development, these being object-oriented (OO) and

procedural/imperative. The purpose of assessing these two paradigms as a baseline and not one

paradigm is due to the constructs being closely related. Other paradigms being considered are

logical and functional in a theoretical capacity for applicability and extensibility. This baseline

must be tested; therefore, development of this framework is key. When considering this

development, a subset of programming language features that span over the selected paradigms

22

are the focus; therefore, the developed framework will be a skeleton version, converting a subset

of the Java language into an internal representation.

The focus of automated SQA techniques is also required, due to the number of reported

techniques. Therefore, a taxonomy of OO and procedural/imperative automated SQA techniques

will be developed. This taxonomy will allow a subset of each category to be selected for

implementation on the skeleton framework, allowing for generalisation of the testing results to a

wider range of SQA techniques. Finally, to suggest that this framework is truly generalised, a

theoretical discussion of the other major paradigms will take place, considering the compatibility

in regards to the framework.

1.6 AIMS AND OBJECTIVES

It is important that the aims and objectives of this research are clearly outlined. These

will provide the basis of all activities during the research. The aims along with the scope will

create an outline discussing precisely what this research will accomplish. Aims will be given the

code ‘Ax’, and each objective related to that aim will be given the code ‘AxOn’ where ‘x’ and

‘n’ are integer values. Each aim clearly states the goal of each distinct phase of the research that

could be described as exploration of the area and idea behind the research, development of proof

of concept, theoretical implications, and scope for development.

A1 – Outline a framework based on procedural and object-oriented paradigms.

A1O1 – Review current definitions for programming paradigms and outline the

progression of this research based on their individual attributes.

A1O2 – Review current uses and development of SQA.

A1O3 – Review current internal representation for source code.

A1O4 – Decide on how analysis will be applied to the internal representation.

A2 – Develop a skeleton framework.

23

A2O1 – Generate the taxonomy to reduce the required number of automated SQA

techniques required to test the framework feasibility.

A2O2 – Construct a working skeleton framework.

A2O3 – Assess the framework based on implemented automated SQA techniques,

against calculations and results generated by other automated SQA tools.

A3 – Expand the footprint of the framework by discussing the theoretical inclusion of

other programming paradigms.

A3O1 – Functional paradigm discussion.

A3O2 – Logical Paradigm discussion.

A3O3 – Noteworthy and additional Paradigm discussion.

1.7 METHODOLOGY AND METHODS

This work is based on the experimental method of research, which is used for testing

hypotheses derived from a conceptual framework [2] through controlled experiments. The

experimental method was chosen to secure the foundations of this research, providing empirical

evidence to support the claims made by the proposal for the framework. Although this method

could not provide evidence for all of the claims made in this study, specifically those depicting

expansion into further paradigms, the foundation requires proof so that any further claims have a

foundation of relevance to support them. Using a theoretically based method alone would not

allow for the generation of empirical evidence, because the initial framework did not exist, it

would have made the research more prone to criticism or dismissal. A further overview of the

individual methods to be used within the research is given in order below.

The initial stage of this research consists of an exploratory study, which is defined as

exploring a problem or situation [3]. This is the technique used to perform qualitative research

related to secondary data, such as literature. Qualitative research is recognised as being prone to

bias; this will be managed by all qualitative findings being approved by the supervisory team.

24

This study will facilitate Aim 1 and each of the Objectives. Aim Two, Objective One will require

a further explanatory study, defined as identifying relationships between two or more things [3],

facilitating the creation of taxonomies used to design the framework.

Aim Two, Objectives Two and Three require a built framework; therefore, the

methodology for developing this skeleton framework is evolutionary, which can be described as

an iterative method that has initial requirements. However, through the process, the critical areas

of the framework will develop, essentially repeating the development process in an iterative

manner until the framework is completed [4]. This developmental method is being used because

the methodology allows for the development of requirements during the building process. This

method requires that there be an initial foundation of knowledge to instigate the development,

meaning that as the research progresses, if any changes occur in the area or if new information

becomes relevant, then this build methodology can incorporate and adapt. After the

implementation of the framework, quantitative data is produced via tests, in order to evaluate the

framework and consequently the QA techniques used, which will be used to cover Aim 2

Objective 3.

Finally, a further exploratory analysis will be used to facilitate the completion of Aim 3

and each of its objectives.

1.7.1 Epistemology

This research will be based on the Positivist Epistemology [5] that seeks to generate

observable evidence for its claims, therefore requiring the production of a framework to generate

some results in order to support its validity. If this framework was not supported with evidence

in this research, its claims would not be scientifically accurate and therefore could easily be

refuted.

25

1.7.2 Requirements Gathering

The requirements gathering stage will be the qualitative analysis of secondary research,

such as literature (A1), and analysis of tools that automate software SQA. The research at this

stage will facilitate the creation of a taxonomy of SQA techniques (A2O1). These will then be

assessed, and generic techniques will be established to be incorporated in the framework

(A2O3).

1.7.3 Taxonomy

As described in Aim Two, Objective One, this research will propose a taxonomy to

substantially reduce the number of automated quality assurance techniques that need to be

implemented to justify proof of concept and evaluate the framework. ‘A taxonomy … is a way of

structuring your data, your information entities, and giving them … semantics’ [6]. This

taxonomy will classify quality assurance techniques in a novel format, an approach that will

classify techniques into the tree structure based on underlying requirements of that technique.

This will imply that all subclasses of a particular superclass will use the same representation or

methods to allow the technique’s implementation. It must be remembered that ‘Each information

entity is distinguished by a distinguishing property that makes it unique as a subclass of its parent

entity’ [6]; in this case, the subclass’s distinguishing property is what it uses its superclass’s

method or representation to achieve. Due to this taxonomy, only a select few techniques must be

implemented from each category in order to infer that all techniques held within that category are

feasible under the framework.

1.7.4 Design and Implementation

The design phase of this research will consist of working out a method of implementing

the key services provided by the framework; these key services are the language independence

via the taxonomy on languages and the secondary research. Another key service is the design-

enabling techniques of QA to be implemented within the framework (A2O2).

26

1.7.5 Evaluation

The evaluation technique that will be used to achieve Aim 2, Objective 3 has the results

generated from the techniques implemented in the skeleton framework compared with results of

other SQA tools, i.e. a metric should have the same value when used to analyse the same code, or

reports from data-flow analysis should be the same. This should provide the foundation for an

evaluation of the framework based on these comparative results. Where a direct comparison

cannot be drawn, a calculated result shall be used in its place.

1.7.6 Exploratory Study

The final section of this research, to achieve Aim 3, is to explore the programming

paradigms not included in the framework, e.g. Logical and Functional, and review their

compatibility with the proposed framework to achieve a theorized full programming language

generic framework.

1.8 ORIGINAL CONTRIBUTION

The current state of affairs with regard to Quality Assurance tools and techniques is that

there are many techniques for quality assuring various programming languages, some of which

obviously overlap and some which are specifically for designated programming languages or

programming paradigms [7]. These techniques are implemented in numerous ways, generating

reports, highlighting code, or editing source code directly.

Currently, there are techniques that fall under different categories or definitions, but there

is not a standard method of determining in what way a technique is implemented and whether

other techniques use this method. This leads to the first of the original contributions to

knowledge of this work:

27

Taxonomy of Quality Assurance techniques and tools

This taxonomy will be created through an in-depth analysis of tools currently designed to

implement some form of Quality Assurance and automated quality assurance, allowing these

techniques to be categorised according to implementation.

Returning to a statement made above, each technique can be applied to a programming

language or several programming languages, and this can be seen either by tools performing the

same technique on multiple languages or by different tools performing the same techniques.

However, a particular tool may analyse more than one language, but this is usually still limited,

e.g. C and C++ or .NET languages [7], which leads to the second original contribution to

knowledge:

Procedural language-independent framework for automated quality assurance

The framework will be designed to allow almost any programming language constructed

in procedural and object-oriented paradigms to be quality assured based on automated

techniques; this will have an internal representation that will have to accommodate many

disparate programming languages. The Quality Assurance techniques will be informed by the

taxonomy of quality assurance techniques created before the framework is completed. This

framework will also be tested through experimental techniques that will require a bare-bones

example of the framework to be implemented; this tool shall be named LIQA (Language-

Independent Quality Assurance).

Finally, the current tools that do analyse more than one language are limited to a single

paradigm; therefore, the final contribution will be [7]:

Theoretical discussion of a paradigm-generic framework

After LIQA has been tested and the framework proven suitable, further discussion of the

different language paradigms will be completed, which will allow these paradigms to be included

28

within the internal representation used by the framework. This will result in a paradigm-generic

quality assurance framework.

1.9 ETHICAL CONSIDERATIONS

As this research is based in the analysis of tools, techniques, and principles, and is far

from any area that would require contact with human subjects, there are no ethical implications

for this work. The research is classed as minimal risk, as decided after a meeting with the

supervisory team for this research. Minimal risk is defined as follows from the ethical guidelines

established by the Computing Department at Edge Hill University.

Figure 1.8.1 - Minimal risk [8]

This project has been deemed minimal risk, as no subjects are used. The analysis within

the research is of existing material that is publicly available e.g. QA tools. Any data that will be

collected will be done so in an experimental environment. This data is collected not using

subjects, only a comparison results from Quality assurance tools against the framework results.

Though this work has been deemed minimal risk, ethical approval from the Ethics Board

at Edge Hill University is still required and was achieved before this research proceeded.

2.3.2 Minimal risk research is defined as that involving the collection or study of

EXISTING data, documents or records that are publicly available.

29

1.10 PERSONAL MOTIVATION

This section has been included to give my personal opinion and motivation for the

research in an informal manner. With the assistance of John Collins of SimCon who has been in

the quality assurance industry since 1988 and developing WinFPT over the last 20 years, I feel

confident that this research is as up to date in this field as is possible, and also Collins’s

assistance has given me great insight into the development of an older programming language

and how issues have developed within that. Considering this, my motivation for this research

was heavily influenced by my enthusiasm for programming and working with those developers

whose expertise is in another field, be that business or scientific; I do not believe that software

quality should be sacrificed for those who do not develop software as their main profession.

1.11 THESIS BREAKDOWN

Chapter 2: contains the literature review, covering all areas and discussing key points.

Chapter 3: has an outline of the framework as well as the details of the implementation of the

internal representation for the skeleton framework.

Chapter 4: contains the development of the taxonomy of quality assurance techniques, assessing

literature as well as techniques extracted from software quality assurance tools.

Chapter 5: has the framework development of quality assurance techniques, with respect to

sampling as well as testing and evaluation.

Chapter 6: contains the theoretical discussion section of the research, deliberating on the

application of further paradigms to the framework and evaluating their respective constructs and

quality assurance techniques.

Chapter 7: concludes the research, discussing limitations of the study, success, future research,

and personal reflection on the PhD process as a whole.

30

 Literature Review

The purpose of this literature review is to evaluate software quality assurances as a

whole. The complexities of each component involved in this research will be analysed. The

review will identify accepted facts as well as potential gaps in knowledge. Important areas to

consider are programming language paradigms as well as automated software quality assurance

(SQA). Other areas include SQA assurance techniques and taxonomies related to those

techniques; also included are standards and how these are built into SQA.

2.1 PROGRAMMING PARADIGMS AND LANGUAGES

As they have common features, individual programming languages can be considered

under several programming paradigms; there are many programming paradigms, with four that

could be considered the ‘main’ paradigms [9]. The following section will consider only these

paradigms, although others will be discussed towards the end of this research. These four

programming paradigms are:

Object-oriented – The most recent paradigm uses ‘objects’, rather than the conventional

models. ‘Objects’ are instances of classes consisting of variables and methods as well as

interactions [9]; other features that define OO are inheritance of objects and polymorphism.

Procedural –The earliest well-known programming paradigm, where a program is

described in terms of statements, each of which is a sequence of instructions for the computer to

perform; also based upon the concept of the procedure call [10].

Functional – Emphasises the use of functions, treating the program as the evaluation of

mathematical functions, avoiding states and data capable of change [9].

31

Logical – Consists of a set of axioms and goal statements. The rules of inference are

applied to determine whether the axioms are sufficient to ensure the truth of the goal statement

[11].

Although these descriptions above are accurate, they do not depict the defining

characteristics that separate them from one another. A starting point for this discussion is to

determine what makes a programming language procedural/imperative. Imperative programming

relies on the ‘state’ of a program, where state is defined by a number of variables. These

variables can be changed at any point during the program, to store values relevant at that point in

time. Therefore, an imperative program is one that moves from one ‘state’ to another based on

what the program does [12]. This relates to object-oriented programming, as it is generally

accepted that this type of programming is a development from imperative and procedural

programming [13]. The difference is that although state is important, object-oriented programs

are data-driven where the variables are organised into objects and these objects are manipulated

[14]. A completely different approach is called declarative languages, which fall under two main

categories, the logical paradigm and the functional paradigm. The functional paradigm works

against the imperative fundamentals by being stateless, where there are no variables [15].

Instead, functions are declared based on mathematical equations where the same input will

always yield the same output [13]. These functions are then built upon each other to create a

program. The logical paradigm, on the other hand, is considered rule-based programming [13]

where a set of relationships between values (rules) are inputs and the program generates an

output based on previously defined goal statements. Although the logical and functional

paradigms do not utilise ‘states’ as they are immutable, they are very different logical

programming methods utilising predicates, whereas functional programs are built on top of

functions.

The title ‘main’ is given to these paradigms not only because they could be considered

the most popular, but also because they are considered to be the basis upon which other

paradigms are built. The key concepts of these paradigms are essentially built from other

programming paradigms [16], an example of which is the functional logic programming

32

paradigm that is based upon a combination of the key concepts outlined in the logical and

functional paradigms. One approach to make the framework more comprehensive, with regards

to programming paradigm, is to utilise multiple programming languages based in different

paradigms; this is applied where the concepts provided by each paradigm align with the specific

feature in a project [17]. Considering program popularity at this point, the object-oriented

paradigm has gained success in being considered a ‘main’ paradigm, as it has become very

widespread. To put this in perspective, the procedural programming paradigm was the basis for

one of the first programming languages (FORTRAN) and the object-oriented paradigm has been

adopted, via modification to the language, by this programming language in recent years. Again,

it needs to be emphasised that though these are the ‘main’ paradigms, there are many other

language paradigms targeted at specific areas, e.g. language-oriented programming [18].

A single programming language can have more than one paradigm, making it a more

general purpose programming language [19]. An example of this is Java, which can be used as

an object-oriented programming language but also as a procedural programming language, and

more recently, Java has started supporting functional paradigm concepts. In Table 2.1.1, the

languages listed may be more general purpose in nature, although they have been listed

alongside the paradigm they are most commonly used for.

33

 Object

oriented

Procedural Functional Logical

C

C++

C#

COBOL

F#

FORTRAN

Java

Prolog

Python

Haskell

Datalog

Table 2.1.1 - Language taxonomy

The present research must outline the specific scope of programming languages to be

examined, as setting out to implement all would be a gargantuan task. Instead, since the focus of

this research has scientific software as a foundation, the procedural paradigm will be the starting

point for the development. The second and most obvious paradigm that will be taken into

account when developing the framework is object-oriented, as this paradigm is becoming

increasingly popular in scientific software development as well as in software development

within business. That leaves the logical paradigm, represented by the programming languages

Prolog and Datalog, and the functional paradigm, represented by the programming languages

Haskell and F#.

34

It is important to remember that in this first stage of the research only the procedural and

object-oriented paradigms are being taken into account for the framework; at a later point, it will

be necessary to place the ideas of this research within both logical and functional programming

paradigms. However, in this instance, the most popular language paradigms must be taken into

account first (e.g. Java), as well as those that are less popular but nevertheless the basis for

scientific development (e.g. FORTRAN) [20].

Assessing a tool designed to automate quality assurance analysis and testing, based on

which programming languages it can analyse and, furthermore, what programming paradigm

these languages adhere to, is an interesting point of evaluation. From this perspective, a

significant link can be seen. Quality assurance tools could be aligned with particular

programming paradigms; for example, JNuke [21] and Cantata++ [22] seem to analyse object-

oriented languages, e.g. Java, .NET, C++, and C. The C language, in this instance, is being

viewed as an object-oriented language based on the evaluation of three other object-oriented

languages being analysed by Parasoft. Another link can be made between Malpas, Polyspace,

and FPT [23] [24] [25], as these tend to analyse procedural programming languages, e.g. Ada,

FORTRAN, C, etc. Cantata++ [22] is the exception to the rule, which can be used to evaluate

object-oriented and procedural language, which will be done in a theoretical discussion.

However, this is a unit tester and it does not analyse the code, but rather only allows the

automation of tests.

2.2 PROGRAMMING LANGUAGE INDEPENDENCE

Since the programming paradigms are so disparate, a look initially at procedural

paradigms with object orientation shall be taken. We will review how these programming

languages can be placed into a representation that is generic enough to include as many

programming languages as possible, however detailed enough for both analysis and conversion

back into the original programming language.

35

For software quality assurance to be promoted to a generic state, a distinct separation

between the source code and the application of the individual techniques must be made. This can

take the form of an internal representation that would essentially create the language-independent

gap that would be required for this framework to be successful. Several types of internal

representation have been used in the past with varying degrees of success, and these will be

reviewed within this section.

Language independence, in the form of an intermediate language, has been attempted,

with an example in software quality assurance such as Malpas [23]. However, there are examples

of this in other environments for other purposes such as in the .Net platform, where each

language supported (e.g. Visual Basic .NET, C#, etc.) is converted into the Microsoft

Intermediate Language before being compiled [26]. This method of language independence has

its inherent flaws, and an intermediate language can only be used in the sense that the

intermediate language itself must have a paradigm and it will therefore not be able to generalise

to all paradigms. Also, programming languages can have ambiguities and other possible flaws.

An intermediate language does not appear to be sufficiently abstract from source code to support

the level of generic characteristics that would assist this research.

Another way in which language independence could be implemented is by the use of an

internal representation in the form of tokens and symbol tables. This method has been used

within automated quality assurance tools but not for language independence; the tool that uses

this method is FPT [25]. The internal representation may not remove all programming language-

specific issues and therefore would not be suitable for programming language independence for

the purposes of this research.

36

2.2.1 Abstract Syntax Tree

A further form of language independence could be observed through abstract syntax trees

(AST) as a tree structure designed to represent code via the removal of syntax or ‘a formal

representation of the software syntactical structure’ [27]. A node type depicts different code

constructs such as expressions or condition statements. Similar constructs exist throughout each

paradigm of software development, so it could be said that within a single paradigm, in this case

procedural, ASTs from different programming languages could be the same if the semantics of

the program were the same. However, the production of an abstract syntax tree involves several

key influences. Depending on the programming language, the context-free grammar (which is

used to define the syntax of the language [28]) can cause differences between the generated

abstract syntax trees. It is also pertinent to mention that some languages are unable to use

grammars to define them, e.g. FORTRAN, which was written in a context-sensitive grammar

[29]. The tool used to generate the lexer and parser, which themselves create the abstract syntax

trees, can be seen as another issue. The same semantics in two programs written in a

programming language with similar syntax could generate completely different abstract syntax

trees. Abstract syntax trees, however, still have their use because, though they are a static

structure, these types of syntax trees can still represent code written in dynamic programming

languages [30], such as PHP [31]. The reason why these two factors can cause issues is that there

is no standard for abstract syntax trees and the amount of detail can vary dramatically.

Considering the abovementioned issues and a simple ‘Hello World’ program written in

Java and C#, whose syntaxes are almost identical, the expected representations may be

remarkably similar. However, if ANTLR [32] is used to generate the abstract syntax trees for

these programs using grammars listed in the ANTLR repository [33], Figures 2.2.1 and 2.2.2 are

generated. Though these figures are significantly different, they could be simplified into the

same design with the same amount of detail.

37

Figure 2.2.1 - Java hello world Abstract Syntax Tree (AST)

Figure 2.2.2 - C# hello world Abstract Syntax Tree (AST)

There are many uses for ASTs, especially in language-related tools such as interpreters,

syntax-directed editors, document editors, etc. [34]. However, the initial development of an

38

abstract syntax tree lies in compiler tools, as the representation of code was built from tokens

after lexical analysis of the source code [35].

There are several major techniques directly related to quality assurance that make ASTs

proven to yield enhanced results rather than using the source code itself, so long as care is taken

in the design of the abstract syntax tree [34]. Traversing a tree is much more efficient than

parsing lines of code. Some forms of program analysis such as metrics can easily be

implemented using counting of nodes rather than specific syntax-related tokens. Not having

comments and disregarding layout, metrics are more reliable for comparison than when collected

from source code [35].

As the above has established, abstract syntax trees have a use within automated quality

assurance, but their use within language translation is key. One form of programming language

translation is the production of an initial abstract syntax tree, then walking that tree and

outputting using the second programming language’s syntax [36] [37]. This seems relatively

simple and, in the case of Java being converted to a procedure blueprint, it is straightforward

[38]. Automatic program translation is another form of language translation and is similar to this,

though it differs during the parsing of the abstract syntax tree. The initial abstract syntax tree is

mapped to an abstract syntax tree that is defined by the outputting programming language, which

is then parsed and outputted in the preferred programming language [39]. Mono utilises a similar

system [40] but includes a mapping of library method calls to the secondary programming

language; these library calls are similar, e.g. System.out.println() and Console.Writeln().

39

2.2.2 Generic Abstract Syntax Tree Meta-model (GASTM)

Though ASTs, as outlined above, have been used to break language barriers, a single

representation has still not been achieved. Though the representation required for this research

has not been achieved by previous works, there is still the possibility of implementing an abstract

syntax tree with sufficiently generic nodes to cover procedural constructs. Looking further into

literature on abstract syntax trees has revealed research by the Object Management Group

(OMG), which provides the Abstract Syntax Tree Metamodel (ASTM). The Abstract Syntax

Tree Metamodel defines the principles for an extendable structure that could represent the

semantics of procedural programming languages via the removal of syntax. The ASTM was

designed by the Object Management Group for language-based tools [41]. A set of core objects

is defined in the Abstract Syntax Tree Metamodel documentation as the GASTM. The GASTM

core objects are defined as a set of programming language-independent constructs that are used

throughout procedural programming languages such as Ada, C, C#, Fortran, Java, etc. [35].

These programming languages align with the initial aim of this research, finding an intermediate

representation for procedural and object-oriented programming languages that analysis could be

performed upon.

40

2.3 SOFTWARE QUALITY ASSURANCE

Moving away from programming languages, another key area for discussion is software

quality assurance and its place as a significant area in software development [42]. Figure 2.3.1

shows that testing and quality assurance lie within the engineering branch of software, and

analysis could be seen to lie next to testing as an additional form of quality assurance.

Figure 2.3.1 - Scope and content hierarchy [42]

Not only is identifying where quality assurance lies in terms of software development a

theoretical issue but also a practical one, as there are varying opinions regarding when software

quality assurance and testing should take place. It was common practice, at one time, that testing

of software took place at the end of development, and it was considered an independent stage of

the software engineering life cycle [43]. As software development techniques and procedures

evolved, larger and more complex systems were created, and opinion changed about software

quality assurance’s position in the development life cycle. A common view concerning software

quality assurance at this point was that it should take place throughout development [44].

Another key issue about which there is little agreement is how to define software quality.

It could be said that software of a high quality can be based on the degree to which customer

expectations are met with regard to cost and areas of functionality, reliability, availability, and

supportability [45]. A different approach could be to define the characteristics of quality

software, as this would replace differing opinions with a direct definition of what constitutes

quality [46]. These characteristics could be identified by looking for common attributes that are

striven towards in quality software [42]. Though there are those who agree with this ideal [42]

Software Engineering

Quality Assurance

Testing

41

[46], the exact characteristics can be disputed. Some commonly agreed characteristics are

functionality, performance, reliability, availability, and supportability [45] [47]. Some of these

characteristics are contained within other lists that attempt to outline the quality of software,

although others include usability, efficiency, maintainability, and portability, whilst arguing that

performance, availability, and supportability are of lesser importance [42] [46]. These lists of

characteristics can be also found in the standard of software quality ISO-9126, although it is

argued that ISO – 9126 does not cover all software quality characteristics and that there are other

frameworks and standards that need to be taken into consideration [42]. ISO-9126 could be seen

as a base, whilst adding additional characteristics from other frameworks, depending on the

situation, would be a better solution [47]. An example of this in practice is IBM’s internal

framework CUPRIMDS (capability, usability, performance, reliability, installation, maintenance,

documentation, and service), which has similar and additional characteristics to ISO-9126 [42].

There are clearly reasons for such differing opinions, for example the domain in which the

software is being developed. This is even more true when companies’ and communities’

individual frameworks are reviewed, as each prioritise differing characteristics depending on the

domain [42] [47]. An example of such a community is BITS Financial Services, which has

written a software quality assurance framework for financial institutions focusing on software

security with significantly different characteristics such as IT risk controls embedded within core

business processes, techniques, practices, and tools that identify security vulnerabilities, integrate

software from third parties, and invest in the development of resilient software components [48].

Due to domain being a key factor in the choice and prioritisation of quality assurance

characteristics, it is important to choose the areas on which this research should focus. ISO-9126

defines three areas on which this research shall focus: functionality, reliability, and

maintainability; however, additional performance may subsequently be included. These are three

critical areas that are affected by software testing and analysis, and as ISOs are recognised

industry standards, it is important that this research reflects upon this. Only a subset of the

criteria outlined by the ISO has been chosen. This is because scope can become too large in an

area of this size[49] [42].

42

2.4 STATIC AND DYNAMIC ANALYSIS

The analysis of software is very important to software quality assurance because not only

is it utilised to help identify areas of concern in software, but it is also used to generate reports

for standards certification. There are two types of analysis, static and dynamic, both of which

have their benefits and are discussed in this section.

Static analysis is the examination of source codes without execution, using formal

methods and abstract implementation. The techniques that are defined under the static analysis

umbrella are usually automated via the use of a built-in or plugged-in tool within an integrated

development environment or software quality assurance tool [50]. Static analysis has a range of

potential problems that can be identified and, in some cases, corrected, including memory

corruption errors, buffer overruns, out-of-bound array accesses, or null pointer de-references

[51]. Early adoption of static analysis in the development life cycle is better than later adoption

or no use of static analysis. In some situations, where static analysis has not been applied, issues

that could have been identified early on have been missed, and these issues can be potentially be

substantial [52]. There are many examples of static analysis being applied [53] [54] [55] [56]

[23] [57] , and the integration of static analysis has been incorporated in every stage of software

development; automated tools have also been created to maximise the effectiveness of static

analysis [21] [24] [25] [58].

Dynamic analysis is the analysis of properties of a program during execution, and is

essentially derived from test plans and run in test cases, followed by an evaluation of the results

[59]. Dynamic analysis has been used to perform functional, logical, interface, and bottom-up

tests, to list a few [59]. As dynamic analysis is performed upon currently executing code and

does not rely on abstract execution, it has the advantage of precision [21] [60]. Though static

analysis is more popular, dynamic analysis has been performed in a variety of scenarios [57]

[61], and listed here are multiple cases where dynamic analysis and static analysis are

implemented together [21] [22] [25].

43

The advantages of static and dynamic analysis are clear: static analysis is an efficient

process detecting defects over the entire project with reasonable accuracy, whilst dynamic

analysis, due to its accuracy and lack of context, can be utilised more effectively to drill down to

identify exact issues. There are significant advantages in using each form of analysis, and using

either type of analysis would improve any system’s quality. However, to create a more

comprehensive tool, more than one type of analysis must be used [62] [61]. Taking previous

research into account, this project will apply both static and dynamic analysis in order to enable

the research to cover a larger number of issues within automated quality assurance.

2.4.1 Techniques and Taxonomies

What constitutes automated software quality assurance are the techniques built upon

certain methods; these techniques are designed to improve a program. The ‘improvement’ is

whatever the user thinks the software needs and can be aligned with one or more of the

characteristics described above. Although the techniques apply to a characteristic, they cannot be

used as a taxonomy, as some techniques overlap, causing a lack of specificity.

Though the characteristics are not a taxonomy, there are titles that developers and

assessors use to categorise results of techniques usually present in reports. Sonarqube provides

an example of this, presenting 7 axes of software quality. These are comments, coding rules,

potential bugs, complexity, unit tests, duplications, architecture and design [63]. The issue with

these categories is that they are designed for the developer to help diagnose or identify an area of

code that requires attention, or the type of issue that is present. The purpose of this taxonomy is

to categorise the techniques so that they use similar representations or processes to implement

those techniques. This allows general statements to be made about a single category, such as

whether a technique in a category is feasible to implement on this representation, in which case

all techniques in that category can also be implemented upon that representation. A simple

example of this is metrics, e.g. if the number of classes can be counted, the number of methods

could also be counted. Metrics are also a good example of what could be a conflict with the

44

Sonarqube categories, as metrics can provide information concerning complexity, and can also

design and identify architecture issues.

The ISO/IEC 25010 product quality model has several main categories, which are:

Functional suitability, Reliability, Performance efficiency, Operability, Security, Compatibility,

Maintainability, and Transferability [64]. These, again, do not match the criteria for the

taxonomy set out by this research, as items such as dataflow analysis provide information that is

pertinent to both maintainability and performance efficiency. These are just two examples of

quality assurance that define the categories based on the type of error or issue, so that users of

these reports and standards can then prioritise issues and correct accordingly. The purpose of this

taxonomy is to categorise each technique into an individual area based on its implementation and

implementation methods, which does not fit with the ISO/IEC 25010 categories. The ISO

ISO/IEC 25010 categories are more aligned with the purpose or outcome of a quality assurance

technique, which would not work with this research, as the focus is on how a technique is

implemented. Although all of the techniques included in this taxonomy could be mapped to the

ISO/IEC 25010 model, the results would not mirror those in the taxonomy produced by this

work.

A key part of generating a taxonomy is to have a set of criteria and aims to judge the

contents against the categories. The focus in this instance is the automated SQA techniques in

literature and implemented within tools such as IDEs and SQA-specific tools. To be included,

the techniques must be automated and in some way inform, measure, or contribute to improving

the quality based on one or more of the categories that form the various software quality

standards, e.g. performance, maintenance, functionality, etc. This base component will allow the

techniques to be entered into the taxonomy; however, the aim and categories of the taxonomy

itself need to then be expressed. The aim is from an implementation approach; this implies that

the categories will have representations or processes required for the technique to be

implemented. A single example of this could be the technique detection of ‘Dead Code’ [65],

which is a form of ‘static analysis’ (category one), meaning that it is implemented on non-

running code. Furthermore, this technique is part of ‘Data Flow Analysis’ (category two), which

45

is the use of a control flow graph as a representation. The effect of this taxonomy should mean

that any technique tested against the framework from a single category implies that the entire

category is feasible.

The taxonomy will have to be built upon, as new techniques appear to use new methods

for implementation. However, the initial review of literature (discussed in Chapter 2) produced

these categories and criteria upon which to judge the techniques.

46

Category Description

Static run against source code

Static: Data Flow Analysis requires control flow graph

Static: Metrics requires a counting mechanism

Static: Type Analysis requires type information

Static: Type Analysis: Pattern Matching matches present example code against source

code

Static: Type Analysis: Static Type Analysis compares variable type information

Dynamic run during execution of program

Dynamic: Metrics requires a counting mechanism

Dynamic: Testing is comparison against expected results

Dynamic: Testing: Objectives explained in appendices

Dynamic: Testing: Levels explained in appendices

Dynamic: Testing: Methods explained in appendices

Dynamic: Type Analysis requires type information

Table 2.4.1 – Initial Taxonomy Outline

These categories are loosely defined and will be refined; the goal for Chapter 5 is to end

with a set of categories with explicit rules making them completely independent of each other.

Something important to mention here is that testing could be considered non-automated;

however, there can be automated techniques that utilise the different objectives, methods, and

levels; therefore, these have been included in the taxonomy. One example of this is an automated

test case generator [66]. In summary, the criteria for the taxonomy must be developed as no

definitive list of implementation requirements exists without the assessment of each technique

47

being applied to the taxonomy; therefore, each technique will be compared with the existing set

of criteria, and if no suitable category exists, the taxonomy will be extended appropriately.

2.5 THE NEED FOR AUTOMATED QUALITY ASSURANCE

A need for software quality assurance has been identified; however, automation is also an

important area. Systems are being made larger and more complicated due to improvements and

availability of hardware, and therefore an increase in the quality is required in order to reduce

errors and improve software maintenance. Much interest and importance is understandably being

attached to the quality of software [67] [68].

Some organisations have encountered difficulties when attempting to integrate what

could be considered ‘popular’ quality assurance methods into their development processes [52].

Those heading the development of such systems have described testing as ‘requiring experts to

tackle this complicated yet creative task’ [68]. It can be seen that an increasing number of

organisations, since the millennium have either launched or are in the process of implementing

more rigorous quality assurance guidelines in order to improve the quality of not only the

software developed but the process of that development [69].

Most traditional quality assurance is manual testing, which is not only difficult but a

heavy workload to which a large amount of time has to be dedicated [43]. Automating this

process has become a priority, and the key areas that push this development are cost, time, and

the elimination of human errors [43]. If the individual tester could be removed from the testing

process, the output would be much more consistent and the end product would not be dependent

on a tester’s reviewing skills [43].

The adoption of automated tools is significant within larger businesses, but the cost of the

tools that automate quality assurance has been an issue for small to medium businesses [43].

Cost is a particularly important consideration for smaller businesses, as these businesses are

48

usually working on smaller projects. A trend can be identified with regards to the size of the

company and number of processes that are automated. This identifies that the value of

automation increases based on the number/size of projects to which these techniques can be

applied [43], which justifies the initial cost of tools providing the automation.

Testing is very difficult and requires not only a lot of skill to master and, due to the size

and complexity of current software systems, especially scientific software, tools have become

essential [70]. Research into testing automation is of significant interest [71] but is not

sufficiently developed, and there is a lack of studies and reports on testing automation [72] to

cover the issues raised within the scope of this research [7]. It could be argued that reviewing

how businesses are adopting automated quality assurance is not relevant as this research is aimed

at scientific software development, although the trends and costs in business directly affect not

only this research but the availability of tools being developed.

2.6 CURRENT DEVELOPMENT IN SOFTWARE QUALITY ASSURANCE

So far, the discussion of software quality assurance has established a foundation, the need

for and application of, as well as identifying generally accepted facts. An important part of

research is to cover the current landscape of the subject and identify the focus of current

research. If we visualise the area of SQA based on some of the criteria discussed previously and

also consider the methods used to implement the techniques, we could produce something like

Figure 2.6.1.

49

Figure 2.6.1– Software Quality Assurance (SQA) current visualisation

Each outer section is a criterion that holds its own set of techniques used to improve a

program. If we considered all of the criteria, the visualisation would be 3D and each criterion

would overlap with each other. What is important in this research is the centre of the model, as

this would hold the methods used to implement the techniques such as static and dynamic

analysis, control flow graphs, metrics, etc.

The general trend of current research is based in the techniques themselves and

furthermore focused on improving their defining criteria. An example of such focus is the

progression towards highly parallelisable programs (which would target the criterion

performance). One technique that is being developed splits algorithms of a program into triplets

that are completely independent of each other. This is achieved by using temporary variables,

and essentially creating many small equations over a single algorithm. This technique would

allow a program’s algorithms to be run over several processors in a concurrent fashion. Another

example of such progression is in both the criterion functionality and security where there is a

move into automated generation of tests; one such example of this is MISTA [73]. There is also a

move towards the automated generation of unit test-cases [74].

Performance Reliability

Maintainability Security

50

 Language Independent Quality Assurance (LIQA)

Outline

This chapter addresses the development of a tool representing a skeleton version of the

framework known as LIQA (Language Independent Quality Assurance). LIQA shall be required

to input source code and process it into an internal representation, which in theory all procedural

and object-oriented programming languages will be able to translate into. On the other side, the

representation must be sufficiently detailed to permit quality assurance techniques to be run

against it and finally converted back into source code of the specific language. In this instance,

Java will be the language that LIQA is built to process, a discussion of which is included within

the chapter.

3.1 PROPOSAL

This proposal fits the Generic Abstract Syntax Tree Metamodel into a framework that

processes source code into the internal representation, then utilises automated quality assurance

techniques and applies them to this (see Figure 3.1.1). Discussed in the previous chapter is the

possibility of using abstract syntax trees for static analysis, which is an analysis type within

automated quality assurance. However, though there has been work to use abstract syntax trees

for static analysis, on Java for example [75], there are difficulties that arise when attempting this.

These difficulties could be due to some abstract syntax trees being very complex, and the parsers

that are designed to convert source code into these structures have to be extremely sophisticated,

especially considering the various quirks of different programming languages [76]. The

advantage of using an abstract syntax tree, in this case the Generic Abstract Syntax Tree

Metamodel, would be the language independence of this, which, as discussed in the initial

argument, is a significant change and novel approach to automated quality assurance. The use of

the Generic Abstract Syntax Tree Metamodel will allow language independence but at a price.

As these are only the core components of procedural programming languages built into the

Generic Abstract Syntax Tree Metamodel, not all constructs of a programming language may be

adopted into the core components of this model. Though this will require the use of a subset of a

programming language in this research, the entirety of any programming language should be

51

applicable if the Abstract Syntax Tree Metamodel is followed when adding additional features to

the internal representation.

Figure 3.1.1- System data flow

Through further research, it can be seen that static analysis being performed upon an

abstract syntax tree structure is a common trait [77] [78], and therefore Figure 3.1.2, which is an

extension of Figure 3.1.1, requires no expansion. A similar issue, pointed out above, is still

relevant here; though many tools utilise the abstract syntax tree structure before static analysis, it

is unclear how much detail and what constructs are included within the abstract syntax tree for

each tool and, furthermore, each programming language. It is common to see abstract syntax

trees take on forms that a programmer of that specific programming language would expect them

to contain [79], e.g. a Java programmer would expect a node depicting a ‘for’ loop. The novel

implementation of automating static analysis in this case is the combination with dynamic

analysis using a standardised generic AST, the GASTM.

52

Figure 3.1.2 - Static analysis data flow

Though static analysis using representation of source code is standard, dynamic analysis

via a representation such as an abstract syntax tree has not been implemented, and therefore a

process to achieve this must be theorised. It could be said that automated dynamic analysis in its

base form is the monitoring of properties of a program at runtime [80]. However, non-automated

dynamic analysis techniques may be considerably more complex. Utilising the Generic Abstract

Syntax Tree Metamodel as the internal representation, a pre-written ‘Monitor’ class could be

injected into a program undergoing analysis. After parsing the abstract syntax tree for properties

that need to be monitored, lines of code referencing the static methods in the monitor class are

inserted, passing the data in question to the monitor class and outputting them in an interface or

recording them for use later. Figure 3.1.3 is the data flow representation of this method of

analysis and is an extension of Figure 3.1.1. An additional area included in the data flow

representation is the conversion of the Generic Abstract Syntax Tree Metamodel into a runnable

form. There are suggestions that a tool could convert an abstract syntax tree into runnable Java

byte code, such as ASM [81]. These tools introduce their own issues, and adding another layer of

53

complexity is not advisable; therefore, the GASTM should be converted back into the original

programming language.

Figure 3.1.3 - Dynamic analysis data flow

54

3.2 DESIGN

3.2.1 Methodology

There are many methodologies that are used to develop software, although not many

align well with software that is not planned out completely at the start of the implementation, or

align themselves well with the significant changes that could occur when a project is based

alongside research.

Use of a classical model like the incremental or waterfall models [82] would not lend

itself to research-based development, as all of the requirements of the program have to be

outlined and planned before the start of the project or must be introduced at the next planning

phase following the completion of the current phase [82]. Agile methodologies allow for change

during development to better align with the surrounding work [83], whether that be where a

client has changed their mind about certain functionality of the program or, as in this case, where

the research may take a different approach, as was planned due to the influence of research

development. This makes agile methodologies a more suitable fit for the development of LIQA.

The methodology that will be used to produce LIQA is evolutionary [84], which will

allow requirements to change as the research develops and also, unlike other agile

methodologies, will allow for significant additions of functionality [85]. As the taxonomy of

quality assurance techniques is developed and those chosen quality assurance techniques are

assigned to LIQA, more functionality must be adopted. The evolutionary model will also allow

for version control and prototyping [84] so that each quality assurance technique, and indeed the

IR phase, can be prototyped separately.

55

3.2.2 Development Tools

There are several choices that must be made before development can begin, some of

which include the operating system (OS), programming language, IDE, toolsets, and libraries.

The OS is an essential factor in this research for, as the focus of this research is branching

differences between languages and allowing for a generic system, the system itself must be

generic and should run on a variety of platforms. Those OSs used that are widely employed for

development are Windows [84], OSX [86], and the various distributions of Linux [87], and

therefore would be used for quality assurance of code [88]. These three OSs therefore must be

able to run the LIQA system. Some slight OS-dependent features should be permitted with

regard to handling files, but this should not affect the framework overall. This factor leads

directly into the choice of programming language due to certain languages only being able to

work on certain OSs, e.g. Objective-C is designed for OSX and must be ported to be run on

Windows [89]; or the .NET framework, which is a Microsoft development containing several

languages designed for use on a Windows PCs but can be ported to Linux and OSX via the

Mono framework [90]. Java is a programming language that bridges the gap between these

platforms [91], and therefore would be an ideal choice for the development of LIQA. As Java

runs in its own virtual machine, it is abstracted from its platform and can run on Windows, Mac,

and Linux [92]. An assumption is being made, in the case of dynamic analysis, that the user has a

platform that can run the project being analysed in LIQA at the time of analysis, therefore

allowing LIQA to utilise the platform to run the project when performing dynamic analysis.

Now that the programming language has been established as Java, the IDE for

development must be identified. In the case of LIQA, NetBeans [93] is being utilised. This may

seem like an odd choice since the Modisco library [94] (discussed later) that contains the Java

representation of GASTM is designed for Eclipse [107]. The reasoning here is due partially to

personal preference but also because, with the Modisco library, it is simple to break down and

retrieve the files required for GASTM development. However, some of the other toolsets

focusing on different areas of LIQA are designed specifically more for NetBeans and would be

more difficult to break down, e.g. Batik [95].

56

The toolsets and libraries are dependent on the language and OS decided upon above; the

specific tool sets and libraries used to develop LIQA are discussed later under the

Implementation phase.

3.2.3 Initial Requirements

There are few initial requirements, as this is a formal test of the IR proposed above. Only

a few features are required to implement the Java-to-GASTM conversion. Initially, only the IR

must be created; no analysis is to be planned at this point, as the taxonomy will infer which

analysis techniques are to be implemented for testing and evaluation of the framework.

ID REQUIRMENT CATEGORY

R1 Allow for input of source code Essential

R2 Convert source code into token stream Essential

R3 Parse Token stream into IR Essential

R4 Visually Represent the IR Desirable

Table 3.2.1 - Initial requirements table

57

Drop down

for language

selection

Area for

tokenised

code

Textual

representation

for internal

representation

Button to parse

tokenized code

to internal

representation

Button to

tokenise source

code

Textual input

for code

3.2.3.1 Form Design

Figure 3.2.1 - Initial form design

The initial form design shown in Figure 3.2.1 was a simple design intended to illustrate

the different stages of data flow required to form a GASTM IR from source code. Though only

Java, at this stage, is being parsed into IR, the inclusion of language selection is intended to

identify that it would be possible to include other languages within LIQA.

3.3 IMPLEMENTATION

LIQA’s initial design was a simple outline for its implementation of the IR. At this stage,

only the IR is of interest, as the analysis and metrics sections of LIQA will be developed for

testing the techniques that are deemed appropriate after the production of the taxonomy in the

later stages of this research. LIQA was developed in an evolutionary style, allowing the inclusion

of different functions as they were deemed appropriate. LIQA v1.7 has included all necessary

functions to assess the capability and completeness of the IR.

58

3.3.1 Evolutions / Version

As LIQA was being developed, certain factors arose that changed the course of the

development, enabling improvement to be made on the initial requirements; this was expected

and planned for, as the Evolutionary methodology encourages it.

59

VERSION COMPLETED TASKS

1.0  All initial requirements (essential) met [R1, R2, R3]

1.1  Removal of token stream display and integrated tokenising and

parsing to one button

 Added the function of browsing and selecting a file to auto-fill the

source code textbox

1.2  Introduced the menu as a starting point to allow for separation of the

program

 Introduced the save and load functions (added to main menu)

 Included buttons on menu as placeholders for future sections

1.3  Removal of textual representation of the IR

 Replaced with XML output and SVG using XsdVi and Batik tools

[96] [95]. This visualisation was preferred to textual output, as

issues within the parsing process could be spotted more easily and

corrected accordingly.

 All initial requirements (desirable) met [R4]

1.4  ‘About’ form added to track progress and list limitations of LIQA

1.5  Parser for Java fully completed (with limitations)

1.6  Sample software metric (logical lines of code) included as example

using tree walker

1.7  Variable monitor and method monitor, and sample dynamic analysis

techniques, developed and included in LIQA as proof of concept for

dynamic analysis on a generic IR theory

Table 3.3.1 - Version list

3.4 TOOLS

To simplify development, several steps were taken to incorporate tools into the

development of the Language Independent Quality Assurer, aka LIQA. These tools have

different purposes, some of which are not core to the functioning of LIQA; however, they serve

the purpose of making LIQA easier to test. The tools used are listed below:

60

 Modisco - GASTM Core Model [97]

 JavaCC - Produced tokeniser for Java (Grammar from library) [98]

 XsdVi - Used to generate a .svg file from .xsd [96]

 Batik - Toolkit to visualise .svg file in JFrame [95]

The GASTM core objects have already been implemented in the Modisco library, and

utilising this will reduce development time. To populate the internal representation, initially the

source code must be parsed into a token stream. The JavaCC tool provided a grammar for Java,

and making use of this, and JavaCC, itself generated a tokeniser. This had a small drawback,

where the tokeniser removed the comments in the source code.

Modisco and JavaCC were utilised to simplify and increase the implementation speed of

LIQA and therefore of the research. The additional two tools, XsdVI and Batik, were used in the

development to make LIQA more user-friendly and, furthermore, to create a simpler

environment to debug, consequently finding errors in the conversion of source code to internal

representation. The XsdVi library was used after the internal representation object had been

generated. The abstract syntax tree is then walked, outputted in a structured .xsd format, and

saved to a known location. The XsdVi library is then called to convert the .xsd into a .svg format,

essentially a graphical representation of the XML in the .xsd file. Following this, the Batik

library was implemented into the graphical user interface of LIQA to allow the .svg file to be

displayed and navigated with ease via its JSVGScrollpane and JSVGCanvas objects.

3.4.1 Modifications to Generic Abstract Syntax Tree Meta-model (GASTM)

The Generic Abstract Syntax Tree Metamodel core objects, defined by the Object

Management Group [99] and implemented by Modisco [97], have been implemented, although

several modifications had to be made. Due to Modisco implementing the classes but not, what

they call, a discoverer, which takes source code and converts it into the model, a slight

modification had to be made so that the object would be simpler to store for use later. To do this,

61

making several objects had to have java.io.Serializable implemented, and these were:

GASTMFactoryImpl, GASTMObjectImpl, GASTMPackageImpl, GASTMSemanticObjectImpl,

GASTMSourceObjectImpl, and GASTMSyntaxObjectImpl. The following changes were made

to better represent programming languages, which is the aim of this research; these might have

been missed, as the Generic Abstract Syntax Tree Metamodel is in only its first version. Classes

in languages such as Java, C#, and C++ have an access modifier, e.g. Public, Private, etc., and

the Generic Abstract Syntax Tree Metamodel did not represent this, so both the ClassType and

ClassTypeImpl objects had an additional property added that was of type AccessModifier.

Another modification made to the Generic Abstract Syntax Tree Metamodel is the property

IsStatic of type Boolean, added to the FunctionMemberAttribute and

FunctionMemberAttributeImpl. Again, this relates to programming languages such as Java, C#,

and C++ in which functions can have a static modifier.

The final modification is due to an error in the documentation of the core models. In

Figure 3.4.1 is provided the definitions for the Switch Statement and Case Objects.

Figure 3.4.1– Generic Abstract Syntax Tree Meta-model (GASTM) SwitchStatement definition

SwitchStatement -> switchExpression : Expression

cases : SwitchCase

;

SwitchCase -> < isEvaluateAllCases : Boolean >

body : Statement+

;

SwitchCase => CaseBlock ;

 => DefaultBlock ;

;

62

The text on the left of the ‘->’ denotes the name of the object, and on the right, its

variables. ‘=>’ depicts an object that extends the object on the left. The variable’s names are on

the left of the colon and its type is on the right; a ‘+’ after the type states it is a list of 1 or more.

Missing from this definition is a plus next to ‘cases:SwitchCase’ to define multiple cases within

a single switch; this has had a role on effect, as the GASTM model developed by Modisco

represents switches with a single SwitchCase; consequently, this had to be modified.

3.4.2 Limitations

It is expected that there will be limitations not only with the Generic Abstract Syntax

Tree Metamodel, as it is in its first iteration, but also with LIQA due to its rapid development and

significant size.

As LIQA is only a proof of concept and does not have to be a commercial product, the

scope of the related study has to be limited. As a result of this, LIQA cannot handle multiple files

of source code. This is only a limitation of LIQA and not the framework, as multiple files could

be handled so that an entire project/program could be inputted.

The Generic Abstract Syntax Tree Metamodel has a few limitations; as it is only a set of

core objects, it is not expected that it would cover all possibilities within the Java language. The

following operators do not have objects to represent them in the Generic Abstract Syntax Tree

Metamodel: <= , >= , += , -= , /=, and *=. However, in this case, if it were desired, these could

be represented with an object defined with specification acquired from the Abstract Syntax Tree

Metamodel. An alternative would be to preprocess the source code and modify the code where

these operators are used to simplify their representations using basic operators, e.g. ‘x += 1’ = ‘x

= x + 1’. In the case of LIQA, the lack of importance to include these operators meant that they

will be excluded from the implementation.

63

Another Generic Abstract Syntax Tree Metamodel issue that was identified during a

discussion with peers working in this field is the non-support for scripting languages. Though

scripting languages are not discussed in the ASTM documentation [99], it is clear through the

core models outlined that scripting languages may not have been an included form of

programming. This is clear because at the highest level, the ‘Project’ object has one or more

‘CompilationUnit’ objects. Through this definition, we can see that interpreted languages, such

as scripting languages, were not an included form of programming language within the Abstract

Syntax Tree Metamodel. At this juncture, it can be said either that scripting languages are out of

scope, or that a way of including scripted languages can be considered. In this case, considering

that the scope of this research does not include testing of a scripting language, a theorised

implementation would be appropriate to substantiate the claims of this representation.

Accordingly, it could be identified that the main issue of including a scripting language is that a

file could contain no class but could contain functions and statements; this is not supported by

the Generic Abstract Syntax Tree Metamodel, but could be with only a small modification. If the

name of the object ‘CompilationUnit’ is ignored (or an alternate Object made with the same

attributes, e.g. ‘InterpretedUnit’), the progression is to its contained list of fragments, which is a

list of type ‘DefintionObject’, which has the subclass ‘TypeDefintion’, which has the subclass

‘AggregateType’, which has the subclass ‘ClassType’, which is fine, but this would not allow

statements to be saved in a file without a class. The way to correct this is to have a ‘ScriptType’,

which is a subclass of ‘TypeDefintion’ of which this ‘SciptType’ has a body that consists of one

or more ‘Statements’. This handles the issue of not having a container but also allows functions

to be written through the ‘DeclarationOrDefinitionStatement’, making a seemingly perfect move

to include scripting language.

64

 The following limitations are due to time constraints and though they could be

implemented within LIQA, they are not necessary for testing the framework at this stage:

 Operators that are not implemented are ‘?’ and ‘!’

 List types are not implemented, e.g. ‘List<String>’

 Re-type casting has not been implemented, i.e. ‘String str = (String) x;’

 The assignment of arrays via block statement has not been implemented, e.g.

‘int[] x = {3,2,1};’

 Inline if statements have not been implemented, if statements must have a block

containment i.e. ‘if (condition) statement;’ is not supported and ‘if (condition)

{statement}’ is supported.

[100]

One final subject to discuss that could cause some challenges with regards to reporting

issues within the source code, is the inability of LIQA to report the line and token in which an

error has occurred. This is because the Generic Abstract Syntax Tree Metamodel within LIQA

has not had the location object implemented as a property in most of the objects under this

metamodel. This, with hindsight, would have been an ideal way of linking any issues back to the

source code; however, this is not the case for LIQA. It would be considered vital to add this

feature to a reworked version of the framework.

3.4.3 Test Dynamic Analysis

Implementation of the monitor theory discussed above, to allow dynamic analysis to be

used on the generic IR of LIQA, has yielded some interesting developments. The theory is

sound, as it is possible to monitor different properties of a program using generic ‘monitor’ class

calls and to send information through as parameters. However, this is limited by several factors.

Firstly, to run any program that has been parsed into the IR, it must be, in most cases, outputted

back into the original programming languages, the few exceptions being when a program is fully

independent of libraries (that is to say, no language-specific library calls are made). Because

65

language-dependent libraries are used in almost every program written, this limitation must be

overcome. A tree walker designed to output the IR in a target programming language could be

written. This may seem like a large task, but the most difficult part of including a programming

language in LIQA is writing the parser to convert the source code into the IR. Writing the

monitor class and tree-walker are significantly simpler tasks. A second issue is that the monitor

class is likely to require stack traces to achieve more complex dynamic analysis techniques. This

will limit the range of languages that can be included within LIQA, although the simpler

dynamic analysis techniques, such as simple profilers and variable monitors, can be achieved

without stack traces and with only the generic ‘monitor’ method calls.

3.4.4 Test Static Analysis

A static metric, Logical Lines Of Code (LLOC), was implemented as a proof of concept

to assess whether some forms of static analysis were possible, when applied to the IR. This was

fully successful, and it is predicted at this point that most forms of static analysis should be

applicable to the IR; those that are not will be identified in the taxonomy.

3.4.5 Overall System Description

Over the development of LIQA, several factors from the initial proposal had to change to

account for new information acquired as a result of the research. The ideas presented in the

proposal were sound, and only small modifications were required, such as including a library of

monitor classes rather than just a general monitor class represented in the IR to account for

language-dependent method classes. The other modification made was the inclusion of the

conversion of the IR into a Control Flow Graph (CFG), a representation required for data flow

analysis. Both changes have been made, and the modified DFD of the overall system is shown in

Figure 3.4.2.

66

Figure 3.4.2 – Language Independent Quality Assurance (LIQA) expected data flow diagram

67

3.4.5.1 Development Discussion

The development of LIQA was an extensive and exhausting research effort. The agile

nature of the evolutionary methodology had a significant impact in decreasing the development

time; however, a slightly more structured approach may have had its benefits. An example of this

could be seen in increasing the planning time for each iteration, resulting in not only a more

robust approach but also resulting in a more maintainable code base with better documentation.

Contrary to this was the development itself being used as a point of understanding the

complexities of the Java language, which had an impact on the ability to plan in the first place.

The major components, with the exception of the GASTM, have been broken down into

packages related to their purpose, including GUI, IR (with IR.Token), LIQA, etc. The GUI

package (standing for graphical user interface) contains all of the JForms used for LIQA, which

was developed from a single initial form into five separate forms to allow for simpler debugging.

However, an official build of the framework would also require more than a single form, as some

techniques, such as variable remaining, require user input and selection. The IR package

contained classes and a sub-package called Token, of which Token has a sub-package of Java.

The Java packages contain classes that implement the tokenisation of the Java programming

language gathered from JavaCC [98]. If other programming languages were implemented, these

would be contained in their own package here. The class in the Token package contains

constructs to direct tokenisation based on the source code and programming language selected.

The classes contained in the IR package are builders of two types: a single generic builder, to

direct flow, and programming language-specific builders to take tokens and form the internal

representation. The package LIQA is essentially LIQA-dependent code, i.e. the initialiser for the

program as well as a project information store. All of this can be seen in the file structure shown

below:

68

 GUI

o GUI_About.java

o GUI_Dynamic.java

o GUI_IR.java

o GUI_Menu.java

o GUI_Static.java

 IR

o Token

 Java (+)

 TokenGenerator.java

o IRBuilder.java

o IRBuilderJava.java

 LIQA

o LIQA.java

o Project.java

 QA

o DynamicAnalysis

 Processes.java

o Identifiers

 CFG

 CFGblock.java

 CFGdfi.java

 CFGedge.java

 CFGproperties.java

 Dynamic

 Tag.java

 My

 My.java

 MyClass.java

 MyMethod.java

 MyVariable.java

o StaticAnalysis

 Metrics

 MetricHalsteads.java

 MetricLLOC.java

 Patterns

 Netbeans

 PMSystemouterr.java

 PMfinalclassandmetho
ds.java

 PMfinalmethodinfinal
class.java

 PMmethodparameters.
java

 PMmethodprivatefinal.
java

 VisualStudio

 PMparamarray.java

 PMvarcase.java

 FortoUnroll.java

 SwitchtoIf.java

 TreeWalkers

o Modifiers

 CodeManipulation

 ControlConstructs

 ConvertLoop.java

 ConvertSwitch.java

 ReplaceCalls.java

 ReplaceLoop.java

 RplaceSwitch.java

 Dynamic

 DynamicMethodCallC
ounter.java

 VariableRename

 RenameCalls.java

 RenameClasses.java

 RenameMethodVariab
les.java

 RenameMethods.java

 Copy

 CopyNode.java

o Outputs

 IRtoCFG.java

 IRtoJAVA.java

 IRtoXSD.java

o Retrievers

 Declarations

 GetClassVaribales.java

 GetClasses.java

 GetLoop.java

 GetMethodVariables.java

 GetMethods.java

 GetSwitch.java

 GetHalsteadsOpperands.java

 GetHalsteadsOpperators.java

 GetVariableUse.java

 Org (+)

Figure 3.4.3 – Language Independent Quality Assurance (LIQA) file structure

It is important to point out that the classes containing quality assurance techniques are

very similar in design. The class will have one main method for input; this will accept several

parameters specific for that technique and the GASTM representation of the source code. The

technique will then be performed and produce its result. This allows each technique to be

separated and debugged individually and would also mean that if other techniques were included

they could be implemented simply using this approach without affecting other techniques or the

69

overall program. Similarly to this the converters are built with modularity in mind being store in

the Outputs package.

Several class diagrams describing the relationship for other parts of the program have

been included, as well. An overall class diagram would be impractical to include due to its size.

Again, due to the size of the program, classes have been represented without their fields or

methods.

Figure 3.4.4 – Language Independent Quality Assurance (LIQA) class diagram Graphical User

Interface (GUI)

To keep the state of the program managed, the LIQA class controls the GUIs so that

regardless of the number of instances of a particular GUI that are in use, they all affect the same

data.

70

Figure 3.4.5 – Language Independent Quality Assurance (LIQA) class diagram Control Flow Graph

(CFG)

The control flow graph (CFG) is a representation used by dataflow analysis techniques

and, simply put, each CFGblock holds statements until a decision has to be made, and then

CFGedges are used to branch to other blocks of statements, hence the complex relationship.

CFGdfi is used just to store block IDs for quality assurance techniques to use, and CFGproperties

is used to compute and store lists of GEN, KILL, IN, and OUT. This will be discussed in more

detail in the quality assurance techniques chapter.

Figure 3.4.6 – Language Independent Quality Assurance (LIQA) class diagram identifiers

The class diagram in Figure 3.4.6 shows a small OO-based approach to identify different

declarations used in various techniques. These were stored in the QA package, meaning they

were used on several techniques in a specific area; one example of the use is renaming.

71

IRBuilderJava and IRBUilder interact in an interesting way; IRBuilder gets given a token

list and programming language. This passes the token list to the Builder for that language, in this

case Java. IRBuilderJava then processes the tokens and pulls out constructs and relevant data;

this data is pushed back into IRBuilder, which creates the GASTM object using

GASTMFactoryImpl. The GASTMFactory Impl is just an object used to generate the GASTM

object, which then can be populated. The relationship looks something like this:

Figure 3.4.7 – Language Independent Quality Assurance (LIQA) class diagram Internal Representation

(IR) builders

One of the improvements of having a more structured iteration would allow for a better

written parser, as the current one required reworking several times when bugs were identified in

development. Outlining and planning of this section of code would have decreased development

time and increased the maintainability of the code. Considering that the parser in particular

required a lot of exploration of the Java programming language, a more structured approach than

the one used may have been difficult.

72

At this point, LIQA only contained the test techniques, and the quality assurance

techniques that will be implemented are still to be identified.

 Total Lines of Code: 72,382

 Total imports: 1,867

 Total methods: 3,126

 Total classes: 231

After the addition of the techniques that are discussed and implemented in later chapters,

these metrics changed dramatically:

 Total lines of code: 96,632

 Total imports: 3,066

 Total classes: 263

 Total methods: 4,158

These statistics are significant, as they provide an insight into the sheer size of the

project, especially with the decompiled Modisco library that had to be navigated and modified.

 Approximate Written Lines of Code: 33,160

 Approximate Written Classes: 48

It is noted that LIQA’s own code is small in comparison with the complete project;

however, is still is of significant scale. They are estimated conservatively, as some decompiled

and imported classes were modified but not counted; also, any class that included auto-generated

code such as the GUI JForms were exempt from the calculation.

 Average cyclomatic complexity: 3.57

 This shows how well the Modisco library is written, as the code for LIQA is

raising this figure, purely as the decision tree for the parse alone has to be of high cyclomatic

complexity.

73

3.4.5.2 Finalized IR Interface

Figure 3.4.8 - Internal Representation (IR) generator form

Figure 3.4.9 - Menu design

74

Figure 3.4.9 shows a finalised interface has been included. Although the design does not

play an important role in the project, it does demonstrate the separation of the different

components as well as additional functionality that had to be added to make LIQA easier to use.

This includes project management, e.g. saving and loading of projects. The major components

can also be seen in the menu, specifically the IR generator, Static analysis, and Dynamic

analysis.

3.5 MODIFICATIONS TO RESEARCH

Due to the development of the IR using the GASTM core model, a change can be made

to the scope of the research. Instead of implementing multiple procedural languages to test the

IR, the GASTM core model is stated to represent most procedural languages, e.g. C++, Java,

Ada, C#, VB, VB.Net, C, COBOL, FORTRAN, Jovial, VMSVAX BASIC, RDBMS, PL/1, JCL,

etc. [99]. Because of this, the research can progress to the next stage, which involves the

development of the taxonomy of quality assurance techniques.

3.6 SUMMARY

This chapter was designed to present an overview of the internal representation used in

the framework and further demonstrates the skeleton build of the framework LIQA that was used

to validate and evaluate the framework at the end of this research. Other aspects that this chapter

aimed to point out was the sheer size and complexity of just a simple implementation of the

framework and the modifications to the internal representations that were required to build

LIQA.

This chapter sits within the research as the description of one of the main components,

the internal representation, and not only its theoretical implementation but its practical use.

Following this chapter, the focus shifts onto the other end of the framework, the software quality

assurance techniques, and how these can be applied to this framework to demonstrate its broad

capability.

75

 Taxonomy of Quality Assurance Techniques

To evaluate which quality assurance techniques are available and to assess which could

be sufficiently generic to apply to this research and framework, several studies must be

completed at varying levels. These studies will result in a taxonomy that shall be used to evaluate

the framework. The resulting taxonomy will be categorised by a method of implementation;

therefore, categories of techniques can then be generalised as applicable if one or more can be

demonstrated as working within LIQA.

The automation of quality assurance on software has its obvious advantages, reducing

completion time for software development by reducing the number of errors and minimising

errors before the manual testing phase. There is a large variety of testing software and toolkits

available to implement automated software quality assurance, and some trends can be drawn

from simple analysis of these tools. Toolkits that target multiple programming languages do so

on a small scale, i.e. 2 – 5 programming languages of the same programming paradigm. Another

trend is that tools that do analyse a significant number of programming languages usually focus

on a single type of testing [7].

An investigation of automated software quality assurance tools reveals that there is

significant evidence that suggests critical fragments of a framework could be made to support

programming language-generic automated quality assurance. It was previously stated that

‘Functionality, reliability and maintainability, can be achieved if a deep level of testing and

analysis can be performed. For this to be successful the analysis tools must support a range of

levels, objectives and methods.’ [7]. This is correct, although manual testing, in terms of black

box and white box, which are defined to have levels, objectives, and methods, are not the focus

of the framework as these are manual techniques. It would be more accurate to say that a deep

level of analysis could be performed if a wide variety of base automated techniques, which in

turn further facilitate software quality assurance techniques, could be implemented.

76

It is widely known that automated quality assurance can be divided directly into static

and dynamic analysis [80]. Some tools specialise in one of these, although they can be combined,

which in turn would allow a more thorough form of quality assurance [61] [62]. Dynamic

analysis is analysis of properties of the software at runtime, which can be considered the more

accurate form of analysis [59]. Static analysis, on the other hand, is abstract, analysing source

codes before compilation [50]. This analysis identifies the potential of issues utilising functional,

logical, interface, and bottom-up tests with an extensive list of possible outcomes with examples

like: memory corruption errors, buffer overruns, out-of-bound array accesses, or null pointer de-

references [59]. Combining both forms of analysis would cover more automated quality

assurance techniques and therefore would be considered a more comprehensive tool [61] [62].

This chapter will outline the current state of automated quality assurance. It will initially

examine the breakdown of analysis and use secondary research to draw out common techniques

used. Following this will be the high-level analysis of automated quality assurance tools to verify

which should be taken forward to deep analysis extracting techniques for inclusion of those

techniques within the taxonomy.

4.1 OVERVIEW OF QUALITY ASSURANCE

This overview is an outline of the current state of affairs, based on secondary research,

decomposing quality assurance into sub-categories and defining the categories with common

examples. The initial breakdown in Figure 4.1.1 shows the two highest-level categories, Static

and Dynamic Analysis. Figure 4.1.2 is the key for the diagrams; any colours not shown in the

key represent the level of depth of the sub-categories and techniques, i.e. from highest level to

lowest blue, red, yellow, green, etc. A table has been included in the appendices that breaks

down the techniques found in literature, and the loose reasoning behind each category has been

included below. These categories are not strictly defined because further techniques and research

may change the landscape of the taxonomy and it needs to be adaptable.

77

Has Sub-Set

Figure 4.1.1– Hierarchy key

Figure 4.1.2– Basic analysis hierarchy

Analysis DynamicStatic

78

4.1.1 Detailed Static

Static

Liveness Detection / Live
Variable Analysis

Analysis

Type Analysis
Data Flow
Analysis

Metrics Other

Pattern
Matching

Static Type
Analysis

Available Expressions

Reaching Definitions

Definite Assignment Analysis

Constant Propagation

Dead Elimination

Custom Analysis

McCabes

Interface Complexity

Physical Lines of Code

Logical Lines of Code

Halstead s Software Science

Figure 4.1.3– Static analysis hierarchy

As mentioned previously, the descriptions and definitions for each individual technique

can be found in the appendices. The first draft of the static analysis categories (Figure 4.1.3) was

created based on the implementation requirements of the techniques sourced from literature.

Type analysis and those categories contained within require identifiable constructs and datatypes,

therefore providing almost direct access to the source code. On the other hand, dataflow analysis

requires a control flow graph to be generated, and the techniques are applied to this. Metrics are

counting mechanisms that require generically identifiable nodes on a basic level. Finally, another

section has been included to gather techniques that cannot by identified with any of the previous

categories and will be dealt with at a later point.

79

4.1.2 Detailed Dynamic

Figure 4.1.4 – Dynamic analysis hierarchy

Within the dynamic analyses categories lies Metrics and Type Analysis; these relate

directly to the static analysis categories as they require the same level of access to be

Analysis

Dynamic

TestingMetrics

Levels

Methods

Objectives

Other

Black Box / Functional

White Box / Structural

Unit/Component

Integration

System

Acceptance

Compatibility

Regression

Stress

Load

Alpha

Beta

Usability

Accessibility

International and
localization

Release

Function Call Counter

Inclusive Function time

Exclusive Function time

Avg/Max/Min Function
Time

Call Nesting Depth

Program Execution Time

Program Load Time

Export Object Coupling

Import Object Coupling

RLCOM

RW LCOM

Type
Analysis

GUI

80

implemented. The same reasoning has also led to the inclusion of the ‘other’ category. Testing

performed with methods, levels, and objectives has been included; however, the techniques

contained within are not directly automated. Nevertheless, there have been many attempts to

automate various combinations of them, and this is an extremely important stage of SQA

automation.

4.2 HIGH-LEVEL TOOL ANALYSIS

Before an in-depth analysis of relevant tools can be completed, an initial analysis of tool

documentation must be carried out to select which tools will be extended to in-depth analysis;

this is due to the wide variety of tools that implement some kind of quality assurance, either

directly like WinFTP [101] or indirectly like an IDE such as NetBeans [93] used to assist with

writing code.

The high-level analysis will consist of an overview using documentation or advertisement

provided for the tool from various sources.

4.2.1 Independent Tool High-Level Analysis

This initial investigation includes independent tools that are used by various developers,

quality assurance engineers, and companies. These tools were identified either in literature or

through online searching, and were selected based on their feature list alone.

4.2.1.1 winFPT

FPT is a tool designed to analyse FORTRAN code utilising dynamic and static analysis.

winFPT is the same tool with a graphical front end that is designed to be used with a Windows

operating system [101]. The list of techniques implemented within FPT is extensive and includes

measurement and assessment code metrics, report generation, error checking, formatting, pretty-

printing, structural engineering, run-time testing, optimisation, software migration, and security

81

[25]. This research will utilise WinFPT as a tool for further study as its role in the QACC

(discussed previously) project is key and aligns very well with the ideals behind this research.

The analysis of the weather forecasting model, WRF, is a case study as well-aligned with this

research as could be found. The application of a quality assurance tool upon a software model

designed by non-programming experts is an example of why these tools are necessary. Following

this, WRF utilises C code as well as FORTRAN, meaning that the results generated by winFPT

do not take into account any bugs or issues within the C-coded sections.

4.2.1.2 Parasoft

Parasoft has developed several tools: Jtest, dotTest, and C/C++test. These tools provide

automated quality assurance techniques to the programming languages Java, the .Net platform,

and C and C++, respectively [58]. These tools apply the same automated quality assurance

techniques to their respective languages; the tests these tools can perform are as follows: security

static analysis, data flow analysis, software metrics, unit testing, component testing, code

coverage analysis, and regression testing [102]. Unlike other commercial tools, Parasoft is

discussed widely in several academic papers for its static analysis techniques and has even been

rated as one of the best tools for static analysis upon the programming language C. The

utilisation of the same automated quality assurance techniques over multiple languages suggests

an inherent level of broadness within the techniques that have been implemented within the

Parasoft tool range. This aligns well with this research and therefore will be taken into

consideration for further analysis.

4.2.1.3 Malpas

Malpas provides automated quality assurance services for several programming

languages; these are Ada, C, and Pascal. To do this, it utilises an intermediate programming

language [103]. Several types of technique are implemented within Malpas that include control

flow, data use, information flow, and compliance. Static analysis is utilised to administer these

techniques [56]. Malpas has been used to quality assure safety critical systems as well as large

scientifically based systems [23], which are the focus of this research. As Malpas can provide

82

automated quality assurance for multiple programming languages via the use of an intermediate

language, this would suggest that this intermediate representation is applicable to a variety of

programming languages and therefore generic, aligning this tool with the research.

4.2.1.4 Polyspace

Polyspace, designed to quality assure Ada, C, and C++, utilises static analysis techniques

upon code designed for embedded systems, detecting issues based on coding standards such as

MISRA C. These standards require several forms of analysis including arithmetic overflow,

buffer overrun, and division by zero [24]. These techniques, though in this tool used for

embedded code, are applicable to a wider variety of domains. Polyspace uses the same

techniques upon multiple programming languages; therefore, this tool falls well within the scope

of this research for further analysis.

4.2.1.5 Cantata++

Utilising test cases, Cantata++ can perform unit testing, integration testing, and code

coverage analysis on C and C++ programming languages [22]. Due to the types of testing (unit

and integration) performed, it is unclear if Cantata++ provides enough automated forms of

program analysis to be useful within this research, as it seems essentially to be an automated unit

tester plugged into an integrated development environment.

4.2.1.6 JNuke

JNuke’s use of ‘generic analysis’, which essentially combines static and dynamic analysis

[49], allows a more thorough form of overall analysis including techniques such as run-time

verification, explicit-state model checking, and counter-example exploration on Java code [21].

As JNuke is targeted at a single programming language, it would be interesting to see if its

techniques can be extrapolated to other programming languages or programming paradigms. The

83

combination of static and dynamic analysis is an interesting area that aligns with this research.

For these reasons, JNuke will undergo further analysis.

4.2.1.7 TestingAnywhere

The following is a list of compatible software that TestingAnywhere supports: VB.NET,

Win32, ActiveX, Delphi, 32 bit apps, PHP, .NET, C#, VB6, JavaScript, Java, 64 bit apps,

Python, Silverlight, C++, AJAX, HTML, Perl, Oracle Forms, WPF, Macromedia Flash 1.0-8.0,

and Adobe Flash 9.0 and later [104]. This is essentially any development environment that runs

on Windows XP or later. Automated software testing, automated web testing, distributed load

testing, regression testing, functional testing, black box testing, acceptance testing, keyword-

driven testing, unit testing, data-driven testing, smoke testing, integration testing, compatibility

testing, performance testing, system testing, GUI testing, automated Flex testing, Java

application testing, Silverlight application testing, WPF testing, mainframe application testing,

and third-party .NET supported testing are all supported testing types by TestingAnywhere

utilising dynamic analysis to implement these [105]. TestingAnywhere’s programming language

independence is due solely to the SMART tool, which is a system recorder capturing properties

of Windows in focus as well as permitting macro-like functionality recording changes to

modified inputs. This tool is implemented in a similar way to macros in Microsoft Office in that

the tests are recorded via recording of Windows events that allows testing anywhere to repeat

tests and edit inputs, which is essentially an automated unit tester. Because this software, though

extensive, relies on Windows events, thus tying it to the Windows operating system, this tool is

not appropriate for this research, as most scientific software is developed in LINUX-based

environments and Windows has stopped supporting languages such as Fortran. Another major

disadvantage of this software is that it does not analyse code in any way and its techniques are all

based on outputs from other development environments.

4.2.1.8 Critical Comparison

FPT [25] and Malpas [23] are both key tools within this research as they both match the

scope very approximately. These tools are used within the scientific industry, and assess large

84

programs for quality. Malpas, however, only uses static analysis, which could imply that FPT

covers a wider variety of issues, as FPT uses both static and dynamic analysis. On the other

hand, Malpas is used for the analysis of safety-critical systems, which could indicate that Malpas

is linked with specific industry standards, whereas FPT is not identified to adhere to any

standard. A final point on these two tools, though FPT does not analyse more than one language,

both Malpas and FPT use a similar technique to create some language independence; FPT uses

an internal representation to analyse Fortran code and Malpas uses its Intermediate Language to

analyse Ada, C, and Pascal; this key area links in directly with part of this research, language

independence.

Polyspace [24] is similar to Malpas in that is a static analysis tool for scientific software.

Like Malpas, Polyspace adheres to standards although it is specifically for embedded systems,

which may reveal some techniques for specific programming language paradigms. Like

Polyspace, Parasoft [58] can be used for embedded systems, testing for adherence to standards,

although Parasoft is not limited to that specific domain, showing an overlap of some techniques

from embedded software to other areas. Unlike Malpas, which uses an intermediate language to

create some language independency, Polyspace embeds into specific IDEs. However, this does

not create programming language independence and therefore amounts to different programs for

each programming language. This indicates that the techniques can be ported and could therefore

be programming language-independent.

JNuke [21] and FPT are the only two tools that use both static and dynamic analysis. FPT

uses dynamic analysis to create a wider area in which the tool can check for quality. JNuke uses

its ‘general’ analysis (a combination of static and dynamic analysis) to make its tests more robust

and accurate. JNuke, like FPT, analyses one language but uses no language independency

whereas FPT uses an internal representation. JNuke is tied directly with Java as it has a very

novel approach, because some of the analysis that JNuke performs requires specific capabilities

that the normal JVM does not have (e.g. backtracking). The developers of JNuke have created

their own VM written entirely in C to grant them the capabilities to analyse Java code more

thoroughly.

85

TestingAnywhere [104] and Cantata++ [22] are very similar when overviewing, as both

focus on using GUI input to allow users to automate tests. TestingAnywhere has its unique

SMART tool that records Windows events, much like macros. The user can then edit these in

order to change the values of tests. Cantata++ provides similar GUI testing; however, white box

testing is also advertised, which does not seem to be based on linking a testing system to an IDE,

which is the approach taken by TestingAnywhere to provide some level of white box testing.

However, this form of testing could also be described as not white box but just several series of

small black box tests in series.

WinFPT and Polyspace are both tools that will be taken forward for deep analysis due to

their relevant features and access to these commercial tools being provided. JNuke and

TestingAnywhere will not be included. JNuke will not be covered because of its similarities to

already chosen tools. TestingAnywhere, though an interesting approach, has been deemed

inappropriate due to its inability to automate analysis. Malpas has useful ideas and is of historical

importance, whereas Parasoft and Cantata++ are both commercial products and difficult to

acquire for this work; therefore, these tools will be discussed but not included as part of the in-

depth analysis.

4.2.2 IDE High-Level Analysis

The IDEs use analysis indirectly initially to assist with writing code, but they also use

further analysis for debugging and quality assurance. If those features are not built-in, then

plugins are used, which will also be looked at within the high-level analysis.

86

4.2.2.1 NetBeans

NetBeans is an IDE developed for Java, providing support for several areas of Java, i.e.

JDK 7, Java EE 7, and JavaFX 2 [106]. NetBeans provides support for many programming

languages; however, it states superior support for C/C++ and PHP. Some other programming

languages supported by NetBeans are XML, Groovy, Ada, and Fortran. [106] The list of

languages is quite extensive, but the analysis of these languages is via toolsets specific to each

language. Without any additional plug-ins, NetBeans has two forms of quality assurance for

supported languages, static analysis in the form of NetBeans Hints (NetBeans Java Hints, for

Java) which has 217 forms of hint/inspection [107], and the debugging system built into

NetBeans serves as a form of dynamic analysis allowing variable watching and most forms of

testing.

Plugins provide further forms of analysis, and examples are FindBugs performing

additional static analysis [108], JUnit assisting in repetitive unit testing [109], Profiler project

allowing for the use of profiling tools to monitor CPU usage amongst other aspects of program

runtime [110], and many more. Due to the large library of languages and additional library of

third-party plugins, NetBeans is a prime candidate for further analysis.

4.2.2.2 Eclipse

Although developed initially for Java, Eclipse-based language IDEs have been developed

for popular languages including AspectJ with the AJDT (AspectJ Development Tools Project),

C/C++ with CDT (C/C++ Development Tools) aimed at developing for Linux, and COBOL with

the COBOL IDE [111]. As well as the fully integrated languages, third parties have used the

Eclipse platform to develop plug-ins for custom versions of Eclipse such as the ADT (Android

Development Tools) [112] and PDT (PHP Development Tools) [113].

Like most IDEs, Eclipse has its debugging tool as it main form of dynamic analysis,

which includes variable watching and break pointing. Eclipse uses a hint system for code

87

development, which it is its main form of static analysis, or Quick Fixes [114]. As well as the

code assisting annotations, Eclipse also has compiler errors and warnings to assist with the

improvement of code quality, which constitutes another form of static analysis.

There are also many plugins for Eclipse to allow for other forms of analysis and

improvement on quality of code, a few examples of which are TPTP (Test and Performance

Tools Platform) [115]; EclEmma, for code coverage tests [116]; FindBugs, further static code

analysis (byte code analysis) [108]; EclipseMetrics, for common metrics

[117]; JDepend4Eclipse, for circular dependencies [118]; PMD for static code analysis [119],

etc. Because of all of its possible additions from both a language perspective and plugin

perspective, Eclipse is another prime subject for further analysis. Eclipse and NetBeans are very

similar; accordingly, only one of these needs to be further analysed to extract the quality

assurance techniques used. The one to be taken forward will be NetBeans due to Eclipse being

less accessible, as the plug-ins are developed by companies and are not open source.

4.2.2.3 Visual Studio

Although Visual Studio, developed by Microsoft [120], has a selection of fully supported

languages, it differs in a significant way from other IDEs. Visual Studio’s main focus is the

support and development of the .NET platform, into which many languages can be integrated

[121]. For example, the fully supported languages that Microsoft itself has developed are Visual

C#, Visual Basic, Visual C++, etc. [122]. Along with these fully supported languages, Microsoft

partners and other companies have brought their languages to the .NET platform that can then

use Visual Studio as their IDE, examples including COBOL, APL, Pascal, etc. [123]. Due to the

languages being developed into the .NET platform, before being executed, the source code is

compiled into the Common Intermediate Language (CIL), which means that there are links with

language independence within the .NET platform [124]. Other than the .NET platform, the other

languages supported within the IDE are scripting languages such as Windows Script Host

(WSH), VBScript, and Jscript .NET. There are other languages, as well, such as Visual J++,

Transact-SQL, and Extensible Markup Language (XML) [124].

88

Like most IDEs, Visual Studio offers a variety of built-in and third-party forms of quality

assurance for code. There are a variety of forms and techniques used by Visual Studio that are

separated appropriately and described well within the Microsoft Developer Network [125]; these

include forms of static analysis such as the Code Analysis Window used for displaying static

analysis issues within the project [126], Code Clone Detection [127], managed code analysis

that uses rule sets to target specific coding issues [128], and the Visual Studio Application Life

Cycle Management that allows for the production of static metrics based on the solution/project

[129]. There are also built-in tools for dynamic analysis such as Intelitrace, which records code

execution [130]; Test Explorer designed to assist with the creation of unit tests [131]; and

Profiling Tools [132].

As well as the comprehensive built-in tools, there are in addition third-party plugins to

assist developers with quality assurance; examples are CodeRush, which statically analyses the

code for some additional forms of best practice [133]; Parasoft’s dotTEST, which provides

additional .Net static analysis, unit testing, and code review [134]; and finally NDepend, used for

analysing and visualising dependencies for complex .Net applications [135].

Visual Studio contains quality assurance techniques. This, with additional plugins

providing more quality assurance techniques and the fact that Visual Studio is used to develop on

the .NET platform that contains multiple programming languages, of which some are not based

in the same paradigms, makes Visual Studio a considerably generic quality assurance tool.

Though Visual Studio develops on the .NET platform, it is uncertain how generic the quality

assurance techniques are, due to inconsistencies between available analyses for different

programming languages, e.g. the profiler has differences between C# and F#. As programming

languages run within Visual Studio are converted to the Common Intermediate Language (CIL),

it will be interesting to see which of the techniques are performed by Visual Studio on the CIL or

using the source code, that could highlight which techniques can be extrapolated onto multiple

programming languages and further this framework.

89

4.2.2.4 Critical Comparison

As quality assurance becomes more integrated into the development life cycle rather than

just a stage at the end [136], IDEs such as those briefly reviewed above have become even more

important. IDEs have the advantage of including quality assurance techniques from a static and

dynamic perspective due to the access to the source code and usually the ability to compile and

run code quickly after small modifications. Additionally, in most cases, IDEs contain some form

of debugger.

Due to the nature of the IDEs, most types of quality assurance are applied via built-in

functionality or via third-party plugins that all of the IDEs above support. The main difference

between the IDEs is the platform itself. The NetBeans platform is based on a modular system

allowing plugin ability, incorporating all stages of development into one usable system [106],

which is very similar to the Eclipse platform. Both are designed as a Rich Client Platform (RCP)

using an editable but universal workbench to develop applications in many languages [137]. The

two platforms are extremely similar in many ways, with only a few insignificant differences

[106]. Visual Studio, however, has a very different platform as, rather than using pre-developed

compilers, the .NET platform uses its own or third-party compilers that allow the source code of

a supported language to be written into code that is adopted into its CLR [138]. This is an

interesting difference, as quality assurance techniques can be applied to CLR via the Microsoft

research development Phoenix project and, more significantly, the Shared Source Common

Languages Infrastructure (SSCLI) [139]. This would allow a partially programming language-

independent form of quality assurance although conversion from and to the CLR would have to

be simple and significant, with reviews of modifications made that the developer could

understand in the programming language in which they wrote the program. Alternatively, a more

effective solution would be to tie all modification and identification of code for review back to

the original programming language.

90

4.3 DEEP ANALYSIS

In this section, the in-depth analysis of the selected tools will be discussed, breaking

down the techniques that the tools use and describing how they are implemented. Some of the

tools discussed are commercial, and therefore it is difficult to assess their inner workings,

although we can infer using other tools and secondary research. The method used for the deep

analysis was based on the documentation provided; initially, a review of the features documented

gave a list of techniques and areas of the tools that required discussion. Further, from this a

general use approach, where use of the application and external documentation discussing the

use of the tool, e.g. tutorials, allowed anything that may have been missing from the feature lists

to be added to the areas that needed analysis. The breakdown occurred through access to source

code, if permitted; otherwise, literature was used to infer the implementation of the technique.

This literature was composed of documentation provided for the tool, scholarly literature, and

finally developer blogs where the author was a developer of the tool or part of the company that

provides the tool.

4.3.1 NetBeans

For the in-depth analysis of QA techniques found within NetBeans and its plugins, the

focus was set on Java-specific analysis. The focus on Java was due to NetBeans being initially

designed to support Java; therefore, it is likely that there will be more complete support for QA.

.

4.3.1.1 NetBeans Java Hints

Java Hints is a list of different ‘hints’ presented to the user when writing code using the

NetBeans IDE. They are displayed by underlining specific code related to the hint and then, once

hovered over, present some information about how the code could be modified or why it could

pose an issue with the running of the program. Java Hints, whilst containing a large volume of

built-in hints, as listed in the extended appendices, also allows users to write their own ‘Hints’

[140].

91

Java Hints works by pattern matching code against prewritten sample code with wild

cards, essentially looking for similar code with only slight differences, e.g. there may be an issue

with a declaration or assignment of a variable, and this can still be detected regardless of what

the variable name may be. These hints can be used to inform the user of potential compiler issues

all the way to best practices and specific project development requirements, e.g. company coding

policy. As well as informing the user of issues, the hints system also allows for auto correction,

e.g. if an instance of a class is referenced but the class does not exist in the context of the

program, the skeleton of the class can be auto-generated.

4.3.1.2 NetBeans Debugger

NetBeans actively allows users to visually debug a program using a system of

breakpoints. Using a breakpoint allows a user to stop a program during runtime in a ‘frozen’

state whilst details about the program can be viewed and in some cases modified [141]. To assist

users, there are several windows available to display relevant information for debugging:

 Watches

 Variables

 Call Stack

 Loaded Classes

 Threads

 Sessions

 Analyse stack trace

Like most debuggers, NetBeans allows users to step through, into, and over lines of code

after a breakpoint has been hit, thus enabling users to gain a better understanding of why a

program could be causing issues. Utilising the Variables window, the user can see exactly what

variable instances are available in the current scope, and certain variables can be selected and

displayed in the watches windows to cause less confusion in larger programs. As well as viewing

variables, they can also be modified in the watch window to cause and fix issues during testing.

92

The Stack window allows users to view function calls that currently lead to the compiler

error or breakpointed code, or Call Stack, a convenient way for a user to identify what code is

currently being executed and how the program came to this point.

The Loaded Classes debugger window allows users to view how many instances of

classes there are running in the current program at the current point of computation, and the

instance percentage can also be viewed showing users the percentage of instances that that class

currently takes up. This window could be used for memory performance increase by detecting

unused class instances so that these can be minimised.

The NetBeans debugger allows the user, utilising the ‘threads’ windows, to pause at a

breakpoint and essentially break down different threads whilst other threads are running. This

would allow the user to test for individual issues whilst ignoring other threads, or to test debug

multiple threads at the same time, as well as testing for race conditions and shared resources

[142].

The debugging window ‘analyse stack trace’ is an interesting feature, mainly included to

save time debugging. This feature allows any stack traces outputted, usually when there is a

compiler error during running or debugging, to be copied from the output panel into the analyser

window. The feature then breaks down the stack trace, turning the different locations into links

to the location to which the stack trace refers [143].

4.3.1.3 NetBeans Profiler

The NetBeans Profiler has several options available depending on the user’s objectives.

The three choices given when using the profiler are Monitor, CPU, and memory, which provide a

variety of different tables and graphs of running information. All of these run live, allowing users

93

to monitor larger programs as they run [110]. The monitor option allows users to view, live or

after the fact, virtual machine telemetry, which shows heap space usage over system time.

Threads windows display the thread state during the execution of the program, i.e. running,

sleeping, waiting, parked. Finally is the Lock Contention, which is a view to show if two threads

are accessing the same resource at the same time where one is locked until the other thread has

finished.

Another option the Profiler gives users is CPU, which has only one window displaying

individual methods, classes, or packages and their time running and total CPU time. Finally, the

Memory option for the profiler is similar to the CPU monitor showing methods, classes, or

packages broken down and their total impact on memory measured in bytes and instances of the

object.

4.3.1.4 NetBeans JavaDoc Analysis

Though this may not seem directly involved in the analysis of a program, documentation

plays a key role in the process of quality assurance and the maintainability of a program [144].

When using JavaDoc, NetBeans requires a certain level of comments describing the units of a

program, including methods and functions with information about returns and parameters, etc.

The analysis in NetBeans identifies all non-commented methods, functions, and classes and then

can auto-insert blank comments in taking users directly to the area for input [145].

4.3.1.5 SQE (Software Quality Environment)

SQE is a plugin for NetBeans that packages several different quality assurance tools into

a single easy-to-include plug-in [146]. SQE includes four different tools, FindBugs, Checkstyle,

PMD, and Dependency Finder, all providing different facilities for quality assurance, and each is

individually discussed below.

94

4.3.1.6 FindBugs

FindBugs analyses Java bytecode using BCEL (Apache Byte Code Engineering Library)

and uses the bug patterns concept [147]; the techniques used for this are pattern matching as well

as dataflow analysis [148].

Extensive bug detections are broken down into 9 categories [149]; similarly to most

source code-level static analyses, FindBugs informs the user about issues through underlines.

However, another form of result for the user is a report broken down by Project, Package, Class,

and then individual error. This report then links to the line of source code that is causing the

issue.

Because FindBugs runs on Java bytecode, it can produce different errors from those that

run on source code or internal representations generated from source code, making it an excellent

additional tool (justified by it being added into several IDEs via plug-ins [150]) to use when

quality assuring software. However, using the pattern matching concept means that some of the

methods used to find bugs could be adopted by LIQA. Determining the extent to which this is

possible would require a detailed analysis of each individual method and pattern used. On the

other hand, the dataflow analysis techniques should be easily adopted by LIQA due to dataflow

analysis using CFG, to which the GASTM can be converted.

4.3.1.7 PMD Source Code Analyser

Like FindBugs, PMD is a static analyser that syntactically checks source code whilst not

having a dataflow analysis component [148]. PMD looks for erroneous code as well as code that

may be deemed incorrect under standards or preferences in developer writing, i.e. Using

StringBuffer over += for string concentration [119].

95

Users can add rules to PMD using Java. PMD breaks down source code into an AST

form of internal representation, but because rules can also be written in XPath, it can be assumed

that this AST is stored in an XML format. This method of quality assurance essentially works by

pattern matching against previously established ‘rules’. Due to this format of internal

representation, it can be assumed that most, if not all, of the quality assurance methods that can

be performed by PMD could be transferred and performed by LIQA.

4.3.1.8 Dependency Finder

Though Dependency Finder itself claims to be a powerful tool that has many features

[151], these features are limited to a single one by the NetBeans plugin. The Dependency Finder

generates a graph of the selected project depicting dependencies between packages, with optional

areas to include in the graph, which are JDK and external packages.

A screenshot of the Dependency Finder in use can be seen in Figure 4.3.1:

Figure 4.3.1 – NetBeans dependency finder

96

The red arrows depict internal package dependence, black lines depict external

dependencies, and the faded gray lines depict JDK dependencies.

Depicting dependencies in this form allows developers to quickly assess where

dependencies lie and therefore better manage their code base. Though this is primarily a concern

for object-oriented languages, the technique used to extract the dependency information and

generate graphs could be implemented upon the GASTM structure, though this would be a large

project to undertake.

4.3.1.9 Checkstyle

Checkstyle features can be broken down into three types: duplicate code check, class

design problems, and bug patterns. Checkstyle is a highly configurable form of checking source

code for coding standards, allowing users to write their own checks as well as enabling and

disabling ‘standard’ checks [152].

Checkstyle utilises ANTLR [32] to form an AST from the Java source code of a project

and then parses that project using a ‘TreeWalker’ that allows the checks to be performed [153].

The checks are based on pattern matching, looking for a predetermined pattern of code that does

not adhere to the coding standards selected. Users can add to the standards by first learning how

to navigate the AST and then implementing a check by writing it in Java. This works in the same

way as LIQA, although Checkstyle is Java only and does not use a sufficiently generic AST to be

performed upon other languages. As Checkstyle already runs using an AST, it could be modified

to run upon the GASTM.

4.3.1.10 JUnit and xUnit Framework

JUnit is based on the better-known xUnit framework that allows unit tests to be

automated [154]. The framework is imported as a library and tests are written in classes that

97

extend ‘TestCase’, or using the newer annotations to set up, run, and break down the test.

Various types of test can be run, such as true/false tests, equality tests, null test, same

comparison, etc. These tests are written in the language of the application under testing in a

separate class, and each test is divided into its own method [155].

JUnit, as stated above, is based on xUnit. There are many other unit test

applications/plugins that have been developed from xUnit such as CppUnit, NUnit, SUnit, etc.

[156]. This shows that the unit testing framework is sufficiently generic to be ported between

programming languages; however, it has been ported and is not a single library that all

programming languages access. This is obviously due to the difference in programming

languages and incompatibility between them. Another reason for the dispersion of xUnit into

programming languages is due to development, allowing programmers who are used to a

particular programming language to write tests in that programming language. However, as

xUnit is a framework and could be considered as a single source, its inclusion within this

project’s own framework is plausible. However, how applicable it may be for implementation in

to a single tool, i.e. LIQA, is questionable, to say the least. Another issue that can be highlighted

is that xUnit is already a highly used and widespread framework. Usually, unit tests are done

throughout development, and therefore it may not be reasonable to include a unit tester in an

automated QA tool.

98

4.3.1.11 Techniques

The following tables describe the quality assurance techniques extracted from NetBeans,

broken down into the categories generated by the review of literature. The initial red box

contains the name of the tool; following this, the techniques are divided into dynamic and static

(see the relevant figure) analysis following which the categories, in blue circles, further dictate

the requirements of implementation until the techniques, in red squares, can be categorised.

Figure 4.3.2 – NetBeans dynamic analysis techniques

Netbeans Dynamic

Testing

Metrics

Black-Box

White-Box Debugger

JUnit

Heap Space Usage

Thread Information

CPU time

Memory Impact

Methods

99

Figure 4.3.3 – NetBeans static analysis techniques

Findbugs is an exception to the rule of taxonomy, coming under more than one heading;

this is due to Findbugs being a container for multiple techniques that individually come under

pattern matching or dataflow analysis, but not both.

Static

Metrics

Data Flow
Analysis

Pattern
Matching

Other

Java Hints
Netbeans

Checkstyle

FindBugs

Dependency Finder

PMD

Type
Analysis

100

4.3.2 Visual Studio

The in-depth analysis of Visual Studio will be performed on Visual Studio 2012

Ultimate. This is due to some of the features, such as IntelliTrace, only being available on the

most expensive version of this software. Furthermore, the programming language C# will be the

initial language discussed because its similarities to Java would assist in a direct comparison of

Netbeans. Furthermore, due to Visual Studio supporting a multitude of programming languages

such as F#, C++, VB, and more, some comparisons will be drawn.

4.3.2.1 Debugger

The debugger has a variety of specific smaller tools to enable debugging of different

types of applications, e.g. managed code, mixed code, DirectX graphics, GPU code, and many

more [157]. The focus of this part of the analysis will be on four sections of the debugger: the

variable watcher [158], breakpoint and tracepoint, the Assert Classes [159], and IntelliTrace

[160]. These are the core components that are most commonly used and are most likely to be

applicable to multiple programming languages.

To demonstrate the core components of the debugger, Visual studio 2012 Ultimate [161]

will be used and a sample console application will be run, as shown in Figure 4.3.4.

101

Figure 4.3.4 – C# debugger test program

Breakpoints are the most basic of all debugging features. They allow the user to set points

in the code where the application will stop running, which permits the user to view variables and

run the program line by line, jumping over certain lines, stepping into method calls, and

continuing to run the program [162].

A tracepoint is a slightly different feature in that it works like a breakpoint but, rather

than stopping the application from running, it executes an action and/or stops the application, as

well [162]. The simplest use of the tracepoint allows users to print a message when hit, replacing

the need to add console print lines and then remove them when the application is finished [163].

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace TestApp

{

 class Program

 {
 static void Main(string[] args)

 {
 //declaring veriables

 string vTest = "";

 char[] testArr = new char[] { 'T', 'e', 's', 't'};

 //set chars into string

 foreach(char c in testArr)

 {
 vTest += c;

 }
 //writeout string

 Console.WriteLine(vTest);

 //Assert to cause break

 Assert.AreEqual(vTest, "Test?");

 //stop program from ending display

 Console.ReadKey();

 }

 }
}

102

Figure 4.3.5 – C# debugger tracepoint message

Figure 4.3.5 shows the Visual Studio 2012 trace point menu, which has been modified

since Visual Studio 2010, by removing the ability to run a macro based on the activation of the

tracepoint. This may seem like the removal of a useful feature, but it makes more sense as, with

the inclusion of ‘smart’ messaging, this allows the user to print runtime information like stack

and variables without the need to retrieve this information in a macro [164].

The variable watching technique implements a separate window within the IDE once a

breakpoint has been activated. This then allows users to set a variable of interest, which will then

display the values they contain [158]. This is especially useful if a user is managing large or

complex data structures. Another feature of the watch windows is the inclusion of expressions

that are separate from the program running, as shown in Figure 4.3.6 with the expression ‘VTest

+ “ing”’.

103

Figure 4.3.6 – C# debugger variable watcher

Assert Classes are another form of breakpoint, but are lines of code that perform a check

of some kind and only cause a break if the check returns false. A few examples are simple

checks like comparisons or null checks. Figure 4.3.7 shows a break in the example code because

of an incorrect comparison [159].

Figure 4.3.7 – C# debugger assert classes

104

IntelliTrace is a feature only available on Visual Studio Ultimate and essentially allows

users to backtrack through code based on break points. The IntelliTrace feature saves the

program state at each breakpoint and allows the users to jump from point to point regardless of

where the program is stopped [160]. Figure 4.3.8 shows the IntelliTrace window that has

recorded the two states of the program at each breakpoint; links can also be seen to bits of

relevant information for testers, i.e. the call stack.

Figure 4.3.8 – C# debugger intelitrace

105

The debugging features in Visual Studio are the most used features for testing in the

package. The debugger works based on the Microsoft Windows Application Programming

Interface API [165], and it is important that debugging techniques are highlighted, as they are a

very common and powerful set of tools for quality assurance. As this project is aimed at

automated quality assurance, of which debugging, as a manual approach to testing, is not part, it

will not be further described.

4.3.2.2 Error Correction

Error correction in Visual Studio is performed whilst writing the code and informs the

user via underlines of the code. There are 3 types of underline: red, which denotes syntax errors;

blue, which are compiler errors; and green, which are compiler warnings. It should be noted,

however, that all syntax errors become compiler errors if the program is built [166]. This form of

quality assurance is part of Visual Studios IntelliSense [167]. The way in which Visual Studio

detects these errors is by constantly compiling the code in the background whilst it is being

written. This explains why the majority of errors are compiler errors: the red/blue underline

errors are errors that will prevent the program from compiling; this means that if a compiler error

is present, no green underlines in that class will be displayed. This is due to the way in which

compiler warnings are generated; it can be inferred that warnings can only be ‘discovered’ if the

program fully compiles and due to the types of warnings, i.e. unused or unassigned variables

[168]. It is expected that these are general compiler optimisations produced using dataflow

analysis techniques. A full breakdown of the compiler errors and warnings is given in the

extended appendices.

4.3.2.3 Analyser

Visual Studio provides several tools under its analysis header, or profiler, which

essentially covers areas that plug-ins did in older versions of Visual Studio. These tools include a

performance analyser, code analyser, code metrics, and code clone detection.

106

There are 4 types of performance analyser: CPU sampling, which monitors CPU-bound

applications with low overhead; instrumentation, which measures function call counts and

timing; .Net memory allocation, which tracks managed memory allocation (sampling); and

resource contention data, which detects threads waiting for other threads. Although the CPU-

bound applications analyser is recommended, the instrumentation analyser will probably be the

easiest to use because it shows data close to source code, i.e. number of calls to functions and

elapsed time with those functions, whereas the CPU-sampling analyser refers to the .dll calls,

which can cause confusion.

Figure 4.3.9 – Visual Studio 2012 performance analyser

Figure 4.3.9 shows the performance report (instrumentation) for the test application. As

can be seen, there is a variety of information; the graph shows CPU usage against wall clock

time, and the elapsed time is at the top. The ‘hot path’ is displayed, which is a highlight of the

most ‘expensive’ code path; however, a breakdown of all the function calls with elapsed times

and further function calls can be found through a link. Finally, a top five of the functions, with

the most elapsed time, is at the bottom, which could be extremely useful for identifying a major

load within the application.

107

The Visual Studio code analyser statically analyses code, identifying issues. As with

IntelliSense, the analyser cannot work if the code has a compiler error, although subsequently it

can be used as a more comprehensive form of static analysis [169]. A list of all the checks can be

found in the extended appendices. Not only does the analyser allow users to scan for previously

established code standards that could improve security, performance, or general practice, but it

also allows users to specify custom rules, drawing together rules that third parties have written

for different sets of standards. Moreover, users can also write their own rules that could be

naming conventions, standard load database connections strings, etc. However, this is not a

simple process and can be rather extensive depending on what and how many rules a user wishes

to include, especially since it is using a third-party API [170]. The exact manner in which rules

are applied to source code is unclear due to a lack of documentation, although, since all rule sets

can be applied to all programming languages except F# [171], it can be assumed that either the

rule checks are performed upon the Intermediate language or upon a token stream. The token

stream is suggested because the code analysis may not be run on F#, as it is a functional

programming language.

Visual Studio also allows users to run Code Metrics as a form of analysis. There are five

types of metric performed: Maintainability Index, Cyclomatic Complexity, Depth of Inheritance,

Class Coupling, and Lines of Code [172]. These are Microsoft ‘versions’ of the standard metrics,

but to calculate these metrics, several items need to identified and counted, e.g. the

Maintainability index requires other counting mechanisms. The calculation for the metric is:

Figure 4.3.10 – Maintainability index calculation [173]

In this equation, Halstead’s volume requires the number of distinct operators, the number

of distinct operands, the total number of operators, and the total number of operands. These base

Maintainability Index = MAX(0,(171 - 5.2 * log(Halstead Volume) - 0.23 *

(Cyclomatic Complexity) - 16.2 * log(Lines of Code))*100 / 171)

108

counts can be used to perform more varying metrics, which raises the question of why Visual

Studio does not possess a feature, similar to the rule set feature, that allows users to create and

add their own metrics.

 Unfortunately, there is no documentation outlining how the metrics are

performed. However, it could be possible to generate metrics for applications in two ways within

Visual Studio. The first, and more improbable, is that the source code is analysed directly and

keywords, paths, data structures, etc. are counted before calculations are made. The second and

more likely way in which Visual Studio performs metrics is upon the Intermediate Language,

similarly to NDepend [135], which is a tool for analysing .NET projects. The second way of

implementing metrics would explain why there is a limited number of metrics available and also

why users are not allowed to add to the list, as not all metrics can be run for every programming

language, e.g. NDepend performs many metrics, but some are only available on C# programs

[174].

Code clone detection is a more recent implementation into Visual Studio 2013.

Essentially, it inspects the source code for matching fragments with varying degrees of

similarity, with Type 1 being a code fragment identical to Type 4 in which two or more code

fragments perform the same computation but vary only in syntax and simple content, e.g. literals,

identifiers, etc. [175].

109

Figure 4.3.11 – Visual Studio 2012 code clone detection

As shown in Figure 4.3.11, a match has been identified as present. This system works by

pre-processing source code and will be fragmented. Following this, if the code is not identical, an

intermediate representation, which can be assumed as being abstract from syntax, would be used

to perform further analysis. Further algorithms can then be used to ascertain the type of match

and to filter unlikely fragments [175].

4.3.2.4 Issues and Limitations

Though Visual Studio’s tools are very extensive, covering many different areas of

analysis and quality assurance, there are some limitations. C#, VB, and C++ all have the option

to run the above tools and analysis, although F# projects under Visual Studio do not support

many of the above features. Like other languages, F# has IntelliSense, allowing compiler errors

and warnings, as well as syntax errors, to be displayed in the code pane during development.

Also, debugging is included in the F# projects. However, IntelliTrace is supported on an

experimental basis [176]. The code performance analysis only gives a limited amount of

information, e.g. only the graph for CPU usage over the wall clock. Another limitation for F# is

110

that the rule sets under code analysis will run but will not allow a user to configure its settings,

meaning that no rules are actually run on an F# project. Finally, there is no menu option for

metrics to be run or for code clone detection. These differences show that many of the techniques

applied by Visual Studio are on a source code level or that, because F# is a functional

programming language, they have been disabled due to either not being applicable, not being

useful, or their inability to be applied in the first place.

4.3.2.5 Techniques

 The following tables describe the quality assurance techniques extracted from Visual

Studio 2012, broken down into the categories generated by the review of literature. The initial

red box contains the name of the tool; following this, the techniques are divided into dynamic

and static (see the relevant figure) analysis, following which the categories, in blue circles,

further dictate the requirements of implementation until the techniques, in red squares, can be

categorised.

111

Figure 4.3.12 – Visual Studio 2012 dynamic analysis techniques

Figure 4.3.13 – Visual Studio 2012 static analysis techniques

Visual Studio 2012 Dynamic

Testing

Metrics

Other

Black-Box

White-Box

Intelitrace

Breakpoint

Tracepoint

CPU sampling

Instrumentation analysis

.Net Memory allocation

Resource contention data

Methods

Static

Metrics

Data Flow
Analysis

Pattern
Matching

Other

Intelisense

Code clone
matching

Code
Metrics

Maintainabili
ty Index

Cyclomatic
Complexity

Depth of
Inheritance

Class
Coupling

Lines of Code

Code
Analysis

Visual Studio 2012

Type
Analysis

112

4.3.3 Integrated Development Environment (IDE) Comparison

There are several articles that can be cited at this point regarding the differences in

quality assurance that the developers of the IDEs have taken. It is important to note the

background on which the IDEs are based. NetBeans is an open source application that is

developed by the public but is also backed by Oracle [177], whereas Visual Studio is a

commercial product that is owned by Microsoft; however, it can be expanded upon with plugins

[178]. It can be seen by reviewing the areas covered that NetBeans and Visual Studio cover

similar technique categories. Directly covered by both IDEs is the pattern matching with Code

Analysis in Visual Studio and Java Hint in NetBeans as well as dynamic analysis testing, which

is expected for most IDEs. However, this is where the similarities end, as NetBeans is highly

reliant on plugins. Most of the plugins are directly integrated, but are still third-party maintained;

on the other hand, Visual Studio has many more features built in as part of the IDE. This

difference could be a direct mirroring of the open source vs commercial product approach;

however, which is better is left to the individual to decide. For the purpose of this research, the

openness of NetBeans has allowed for an improved in-depth analysis; however, Visual Studio’s

documentation made up for the closed garden that is Visual Studio’s source code, which again is

probably a reflection of the fact that this is a commercial product.

Another difference that can be drawn from the analysis for NetBeans and Visual Studio is

the relation of quality assurance techniques between programming languages. The Visual Studios

approach seems to have the same approach for each programming language and in some cases

the exact same tools, e.g. performance analyser; however, as discussed in the further analysis, the

depth of the similarities is unknown, as there subtle yet important differences. NetBeans, on the

other hand, has no linking with each language unless the third-party plugins support multiple

programming languages themselves. This makes Visual Studio a more important tool to study

further for this research; unfortunately, with the limitation of no access to the source code, this

further study cannot happen.

113

As initially outlined in this section, the main difficulties and differences of the IDEs are

based in their backing; nevertheless, their differences permit an interesting and important study.

4.3.4 WinFPT

WinFPT is a quality assurance tool that has been used in various sectors to quality assure

Fortran code. As FPT was developed over a decade ago, there are some differences with the way

this quality assurance tool works when compared with some more modern tools. The internal

representation and how it could be related to LIQA will be discussed, and the techniques that

WinFPT uses will be categorised and included in the resulting taxonomy.

4.3.4.1 Internal Representation

WinFPT was developed when memory for programs was a finite and precious resource,

with the result that the internal representation was developed to make the most of small amounts

of memory. Second to memory, a major concern for WinFPT was speed, and the internal

representation had to be streamlined to make it as efficient as possible.

As WinFPT is also designed to apply quality assurance techniques only to Fortran, and

therefore could be specialised, the internal representation used is based on tables and the token

stream generated from the source code. The tables contain data definitions, statements, symbols,

linked lists, and files, and they replace tokens in the token stream with symbolic links to the

tables. This internal representation is significantly less memory-intensive than more common

modern internal representations such as ASTs. Another reason for this could be that ASTs

require tree traversal, which is not a quick process in comparison with WinFPT’s table and token

stream combination [179].

Due to this internal representation being close to source code, some of the techniques

may not be applicable to other programming languages, although converting the internal

114

representation to work with tables and the GASTM is possible and should be a simple process

either during or after conversion to the GASTM, allowing those techniques, depending upon the

tables, to be implemented within LIQA.

4.3.4.2 Features

The list of features for WinFPT is very extensive: please see the extended appendices for

the full list. The major headings for the quality assurance techniques that WinFPT implements

are listed below; these were provided by SimCon (the developers of WinFPT) [25].

 Metrics

 Error checking

 Formatting

 Structural engineering

 Run-time testing

 Optimisation

 Migration

 Security

Several areas will only be summarised and others omitted as out of scope; this is because

the focus of the research identifies with several of WinFPT’s categories, making them more

important to study. These would be the ones aligning themselves with the QA categories that this

research is focused on. As all of the metrics listed in the features are statically collected, these

will be categorised under ‘static’ and ‘metrics’ in the taxonomy. Although formatting is

something that LIQA could do, this would be on output following other forms of quality

assurance. This also is a static form of quality assurance and will be categorised under ‘Other’,

although, in hindsight, this should be a category in itself. Migration, which has ties with

formatting, is, however, a major issue in Fortran code. As Fortran has been in existence since the

1950s, there are many versions, and this can cause issues with compatibility but, because

migration is severely language-dependent, it is not going to be sufficiently generic to include

within the experiments at this stage of the research and will therefore also be omitted from the

taxonomy.

115

Run-time testing in this case is dynamic analysis, and WinFPT has two main features

under this title, coverage analysis and trace data flow. Coverage analysis allows users to view all

visited sections of code in a single run of the program, which is achieved by inserting code into

areas of the program that cause a break in program flow and having them call an included file for

recording. The same method is used for trace data flow, but this can capture variable states and

values as well as inputs and outputs to allow for unit testing with various different values without

having to reenact the full scenario. The capturing over variables also can be used for data

checking against predicted data or for various testing methods.

Optimisation is another area in which WinFPT provides some techniques to improve

Fortran programs. There are two provided: expanding routines in-line and unrolling DO loops.

Expanding routines in-line is a compiler optimisation that can be activated in some programming

languages, although this can be ignored by the compiler and sometimes is done automatically by

the compiler. Providing this service externally makes it consistent. The technique is the process

of replacing function calls with the full function, which can increase the speed of execution of a

program, although it will increase the size of the program [180]. Unrolling DO loops is the

second optimisation provided by WinFPT. Unrolling a DO loop takes a loop, checking the

statements contained in its body to assess feasibility and then, if feasible, expanding the loop

content into individual statements [181]. This technique increases performance but also increases

the size of the source code proportionate to the number of statements the loop contains. Both of

these optimisations fit into the taxonomy though not under a currently listed category, and

therefore a new category, which will be entitled ‘optimisation’, must be added to align with these

techniques.

116

Figure 4.3.14 – Warning identification in winFPT

A further area that WinFPT introduces is ‘Structural engineering’ which, until this point,

was not included in other quality assurance tools. The majority of this area is based on the direct

manipulation of source code and, because of this, another category was added to the taxonomy

under static analysis, thus accommodating these techniques. This category is ‘Code

Manipulation’. The three main techniques within this category that WinFPT provides are

declaration and names, COMMON Block, and control construct manipulation. Declaration and

names have various sub-categories, but the techniques essentially manipulate variables

throughout source code, adding declarations, modifying names, and data types, etc. COMMON

block modification allows an automated service to extract COMMON blocks into include files

and to move all static variables to COMMON, making code simpler to maintain. Control

Constructs modify construct based code such as labels and conditional statements to make them

more manageable and easier to read, e.g. replacing SELECT CASE with IF … THEN … ELSE

117

chains. Another technique classified under code manipulation, as well as under pattern matching,

is the automated correction of some errors. These errors include correcting formats, e.g. commas

and delimiters, as well as correcting inconsistent arguments that would result in the re-writing of

arguments, or including type conversions to correct these issues. The final feature that WinFPT

possesses under structural engineering is the ‘Interactive controller’ that allows users to monitor

variables during a simulated run. It could be seen to be similar to a debugger and variable

watcher combined with a unit tester and, for this reason, it will be classified under dynamic

white-box testing.

The final category used by WinFPT to classify its quality assurance techniques is ‘Error

Checking’, the techniques of which utilise either pattern matching or dataflow analysis. WinFPT

uses dataflow analysis to search for its dead code and dead variables. Both of these techniques

search for code that is essentially unused, be it an uncalled variable or method, or a section of

unreachable statements. Pattern matching is used for detecting errors in names, errors in

expressions, and mismatched data arguments. These techniques’ name encompasses a wide

variety of smaller and more specific techniques, e.g. mismatched arguments that detect wrong

data types, wrong data sizes, wrong array bounds, etc. All other expansions of the titles are in the

full feature list for WinFPT.

As a commercial product, WinFPT must have key areas to make itself stand out from

other products, especially free plug-ins. At this point, the key areas of WinFPT that are not

covered by other tools are the structural engineering techniques that allow the user to make

dramatic changes to large source code with minimum effort. Additionally, it utilises all other

techniques in one package, which requires no modification to the source code.

118

4.3.4.3 Techniques

The following tables describe the quality assurance techniques extracted from WinFPT

broken down into the categories generated by the review of literature. The initial red box

contains the name of the tool; following this, the techniques are split into dynamic and static (see

the relevant figure) analysis, following which the categories, in blue circles, further dictate the

requirements of implementation until the techniques, in red squares, can be categorised.

Figure 4.3.15 – Dynamic analysis techniques for winFPT

winFPT Dynamic

Testing

Metrics

Other

Black-Box

White-Box

Coverage Analysis

Trace Data
Flow

Interactive
Controller

Methods

119

Figure 4.3.16 – Static analysis techniques for winFPT

Automating correction of inconsistent arguments is an exception to the rule of taxonomy,

coming under more than one heading. This is because the technique has two stages: the initial

finding of the inconsistent arguments would come under the Pattern Matching category, and the

automated change of these arguments would come under the Code Manipulation category. This

technique could therefore be split into two parts.

Static

Metrics

Data Flow
Analysis

Pattern
Matching

Other

winFPT

Quality from Counting Errors

Quality of Comments

Quality of veriable names

Measuring the Workload of
Maintaining Fortran Codes

Formatting

Optimization

Unrolling DO Loops

Expanding functions In-
line

Code
Manipulation

Structural Engineering:
Declarations and names

Structural Engineering:
COMMON block

Structural Engineering:
Control Constructs

Automate
Correction of
Inconsistent

Arguments and
Formats

Dead Variables

Dead Code

Errors in Names

Errors in
Expressions

Mismatched
arguments

Type
Analysis

120

4.3.5 Polyspace

Polyspace, developed by MathWorks [58], is part of a wide suite of tools. Indeed,

Polyspace is split into two tools itself, ‘bug finder’ and ‘code prover’, as shown in Figure 4.3.17.

Though they look the same and provide some overlapping features, the intent of the tools is quite

different. Notwithstanding this, they will be discussed as the single entity of Polyspace for

simplicity and to avert repetition of features in the taxonomy [182] [183].

Figure 4.3.17 – Polyspace bug finder & code prover

4.3.5.1 Features

As this is a commercial product and its techniques and internals are not open for analysis,

general viewing, or breakdown, the techniques used have to be inferred based on techniques

currently used and observed as well as documentation. There are a few features that will not be

included in this project due to time constraints and also because the features usually are specific

to the toolsets within MathWorks, e.g. tracking issues back to the Simulink model (Simulink

being the model-based design software from MathWorks). Polyspace uses formal methods and

abstract interpretation to assess C and C++ source code for quality. The tool implements static

121

analysis to perform run-time error checks, quality metrics, automated code verification, artifact

generation, and several other techniques.

As with an IDE, Polyspace detects run-time errors in the form of highlighting source

code where issues arise. The system identifies four types of code: run-time error free, faulty

under operation, unreachable, and faulty under certain conditions. This technique for identifying

run-time errors is used in a wide variety of QA tools as well as IDEs, and the technique usually

used to achieve this is data-flow analysis. Polyspace also uses this technique to compute variable

values determining a range of possible values through abstract interpretation, which allows users

to view these ranges to ensure that no expected border limits are broken.

Polyspace includes software metric retrieval via simple static analysis, with these metrics

ranging from Cyclomatic complexity to Hersteller Initiative Software Metrics. See below for a

complete list:

 Cyclomatic complexity

 Comment density

 Call levels

 Number of paths

 Number of function parameters

 Hersteller Initiative Software (HIS) metrics

As well as metrics, pattern matching is used to define rules for coding standards. As well

as the standards listed below, Polyspace allows users to write their own rules based on specific

code violations:

 MISRA-C:2004,

 MISRA-C++:2008,

 MISRA-AC-AGC,

 JSF++,

122

 Custom naming coding rule violations

Finally, Polyspace has integration with the IEC Certification Kit and the DO

Qualification Kit for artefact generation, simplifying the certification processes for all the

certifications listed below:

 ISO 26262

‘ISO 26262 is intended to be applied to safety-related systems that include one or more

electrical and/or electronic (E/E) systems and that are installed in series production passenger

cars with a maximum gross vehicle mass up to 3 500 kg.’ [184]

 IEC 61508

‘The IEC 61508 series are the International Standards for electrical, electronic and

programmable electronic safety related systems. It supports the assessment of risks to minimise

these failures in all E/E/PE safety-related systems, irrespective of where and how they are used.’

[185]

 EN 50128

Is the European standard EN 50128 ‘Railway applications - Communication,

signaling and processing systems - Software for railway control and protection systems’

[186]

 IEC 62304

Is the international standard for medical device software - software life cycle process.

[187]

 DO-178C

‘Providing guidance for the production of software for airborne systems and equipment

that performs its intended function with a level of confidence in safety that complies with

airworthiness requirements.’ [188]

 DO-278A

123

‘DO-278 provides guidelines for the production of software for ground based avionics

systems and equipment that performs its intended function with a level of confidence in safety.’

[189]

Although this does not appear to be a great number of features compared with other

quality assurance tools, only features discussed above are within the scope of the present

investigation. As a commercial product, additional features link Polyspace with its containing

suite, with strong ties to software models, especially Simulink [190]. Other features include

automated checks linked in with the build procedure and exporting of reports in HTML, for large

software models. The analysis can be performed using distributed computing over a grid. These

features are impressive, useful, and therefore worthy of mention; however, they are beyond the

scope of this project.

124

4.3.5.2 Techniques

The following tables describe the quality assurance techniques extracted from winFPT

separated into the categories generated by the review of literature. The initial red box contains

the name of the tool; following this, the techniques all come under static analysis, as this tool

does not provide dynamic analysis, following which the categories, in blue circles, further dictate

the requirements of implementation until the techniques, in red squares, can be categorised.

Figure 4.3.18 – Polyspace static analysis techniques

Static

Metrics

Data Flow
Analysis

Pattern
Matching

Other

Polyspace

Artefact Generation

Optimization

Code
Manipulation

MISRA-AC-AGC

JSF++

Custom Rules

MISRA-C:2004

MISRA-C++:2008

Comment Density

Number of Function
Parameters

Call Levels

Number of Paths

Hersteller Initiative
Software metrics

Cyclomatic Complexity

Faulty Under Operation

Unreachable Code

Faulty Under Certain
Conditions

Variable Value Range

Run-Tiime Error free

Type Analysis

125

4.3.1 Critical Comparison

There are several major differences in the focuses and approaches each of the tools have

taken with regards to automated quality assurance. Polyspace focuses on static analysis; this is

because it is part of a suite of tools that, when used together, is more akin to the IDEs than

WinFPT. In other words, the suite is used for development from start to finish of a project,

whereas WinFPT extends into the realm of dynamic analysis; however, this is not to the extent

that the IDEs do (in regards to number of quality assurance techniques). The lack of dynamic

analysis of WinFPT could be due to the approach taken by the company that produced it, which

is that WinFPT can be customised and added to by SimCon (the holding company) [179],

allowing a more custom and less all-encompassing approach that the other tools have taken.

Direct code modification and optimisation have not been included in the IDEs or Polyspace,

whereas WinFPT does have a variety of features coving these areas. This is with the exception of

the IDEs’ approach to solving problems highlighted by other forms of analysis, which is useful

but should not be considered automated. Polyspace is the only tool here that boasts integration

with international standards kits, which may indicate the appropriate target audience of the tool.

This is interesting because WinFPT is designed to work with all Fortran applications including

those in aerospace and nuclear fields. However, it does not support the international standards

that Polyspace does; but again, SimCon could have custom builds for those industries. All things

considered, these tools, though very different, have overlapping features and techniques that

have identified areas that this research needs to review, including the taxonomy to help refine the

categories.

4.4 TECHNIQUES

This section is a summary of the analysis of tools with regards to the techniques and the

initial categories of implementation generated from the literature study. The differently coloured

boxes represent which tool the technique comes from. Some of the techniques serve the same

purpose; in that scenario, the techniques are shown one after the other. Figures 4.4.2 to 4.4.4

represent categories under static analysis, with Figure 4.4.5 being dynamic analysis. At this

point, the categories are not finalised and will require modification for several reasons.

126

Currently, there is no universally agreed definition for each category; also, several techniques or

technique groups span over 2 categories, which will not be permitted with the final taxonomy.

With few issues, the original categories stand as an effective representation of the

implementation requirements for many quality assurance techniques.

4.4.1 Diagram Key

Figure 4.4.1 – Tool key

winFPT Netbeans Polyspace Visual Studio

127

Other Formatting

Optimization

Unrolling DO Loops

Expanding functions In-
line

Dependency Finder

Artefact Generation

4.4.2 Static

Figure 4.4.2 – Static analysis 1

128

Data Flow
Analysis

Pattern
Matching

Code
Manipulation

Structural Engineering:
Declarations and names

Structural Engineering:
COMMON block

Structural Engineering:
Control Constructs

Automate Correction of
Inconsistent Arguments and

Formats

Dead Variables

Dead Code

Errors in Names

Errors in Expressions

Mismatched arguments

FindBugs

Java Hints

Checkstyle

PMD

Faulty Under Operation

Unreachable Code

Faulty Under Certain
Conditions

Variable Value Range

Run-Tiime Error free

Polyspace

Code clone matching

Code Analysis

Intelisense

Figure 4.4.3 – Static analysis 2

129

Figure 4.4.4 – Static analysis 3

Metrics

Quality from Counting Errors

Quality of Comments

Quality of veriable names

Measuring the Workload of
Maintaining Fortran Codes

Comment
Density

Number of Function
Parameters

Call Levels

Number of Paths

Hersteller Initiative Software
metrics

Cyclomatic Complexity

Maintainability Index

Cyclomatic
Complexity

Depth of Inheritance

Class Coupling

Lines of Code

130

4.4.3 Dynamic

Figure 4.4.5 – Dynamic analysis

Analysis Dynamic

Testing

Metrics

Other

Black-Box

White-Box

Coverage Analysis

Trace Data Flow

Interactive Controller

Heap Space Usage

CPU time

Memory Impact

Debugger

Unit Testing (Junit)

Thread Information

Intelitrace

Breakpoint

Tracepoint

CPU sampling

Instrumentation analysis

.Net Memory allocation

Resource contention data

Methods

131

4.5 TAXONOMY OF TECHNIQUES

With the completion of detailed analysis, the full taxonomy should be available; however,

several areas remain to be addressed first. One such area is the category ‘Other’ that was

included in both static and dynamic analysis types. This was intended to collate all of the

individual techniques that could not be categorised immediately such as formatting, artefact

generation, etc.

The more apparent change to this taxonomy is the inclusion of a different parent node in

the form of generation. This was created to include features that utilise other analysis techniques

but do not add any new information. It was included as it is an important part of automated

quality assurance but cannot be categorised under analysis.

The techniques that were categorised as ‘Other’ were artefact generation, formatting, and

dependency finder. Artifact generation, a technique implemented by Polyspace, is the creation of

artefacts for standards submission. After considering this, it was found to be a technique in itself.

Another overlooked technique that should have been included under the artefact generation

category is JavaDoc included in NetBeans, as this auto-generates API documentation for the

project. Formatting is a similar technique as it is included in WinFPT, but it should be a category

as several other tools, including Netbeans and Visual studio, allow the user to format the code to

the standard for the language being written. winFPT’s formatting technique allows for multiple

Fortran standards, as this is a more significant issue in the Fortran language. Finally, the

dependency finder technique included in NetBeans allows for the visualisation for the class

dependencies and library dependencies. There are several other tools that visualise data and

representations, but this is usually done without highlighting it is a technique, leading to the

decision for the inclusion of the visualisation category. These new categories are added to the

final taxonomy, as shown in Figure 4.4.6.

A final discussion point concerns two of the techniques included, ‘Findbugs’ and

‘automated correction of inconsistent arguments and formats’, which have been placed under

132

two categories. Findbugs was included under two categories because it is not a technique itself,

but rather within the tool using both types of technique. However, due to the number of

techniques, it was inappropriate to list all of them. With regards to automated correction of

inconsistent arguments and formats, this is a feature and includes two techniques, identification

and correction.

133

Figure 4.4.6 – Taxonomy of quality assurance techniques

Static

Metrics

Data Flow
Analysis

Type Analysis

FormattingAnalysis

Pattern
Matching

Static Type
analysis

Dynamic

Testing

Levels

Methods

ObjectivesType Analysis

Optimization

Code
Manipulation

Metrics

Black-Box

White-Box

Artefact
Generation

Visualisation

Generation

134

4.6 ADDITIONAL TOOLS

Several tools have been found in addition to those used to create the taxonomy. Some of

these tools are nevertheless relevant to this research, and this section will overview these tools

and the reasons why they are important to assess in order to identify links to the aims of this

research.

Sonarqube [63] boasts that ‘More than 20 programming languages are covered’ and that

their platform is designed to manage code quality [63]. The high number of programming

languages and the single front end may suggest a generic representation to which the techniques

are applied, which would be the same as in this research. However, analysis of the

documentation reveals that each language is a different plug-in [191], but on the other hand,

Sonarqube allows multiple programming language analysis in a single project [192], which

nevertheless suggests some common representation with a single implementation of techniques.

Contrary to this, however, Sonarqube is an open project and, on review of the project files, it can

be seen that each plug-in has techniques built in at that level [193], meaning that there is

insufficient generalisation in the representation used so that techniques can be written

independently of the programming language.

The DMS Software Reengineering toolkit was another tool identified as having

significant similarities to this research. At first glance, the outlined tool has a passing

resemblance to the framework and the aim is also very similar [194], having a tool that can be

used on an extensive number of programming languages using only a grammar and preferences

for what looks like generic analysis techniques [195]. The tool, however, has several specific

differences from the framework proposed by this research. The internal representation used by

DMS is based on hypergraphs as its internal representation instead of abstract syntax trees.

Similarly to WinFPT, DMS justifies not using abstract syntax trees due to the increase in

memory use and processing power required to generate and navigate an abstract syntax tree; this

outweighs the benefits. Another reason for using hypergraphs over abstract syntax trees is the

inclusion of graph programming languages [196]. The generic techniques that appear to be

135

implemented within this tool are questionable, due to the inclusion of different available

techniques for different programming languages of a similar nature, for example C#, Java, and

Visual Basic. Also, the link for the customisable analyser is different for each programming

language; some of the links just send users back to the product description, so the extent to which

the code analysis is the same for each programming language is also questionable [197].

Both of these tools demonstrate a lack of generic quality assurance. Another factor to

consider is the openness of this research. As a standard is being used for the internal

representation, anyone can implement a technique upon this or write a parser for a programming

language because the specification is available. The generic nature and openness of this research

are key ideals allowing development to take place externally from a centralised point.

4.7 CATEGORY SUMMARY

The reason this taxonomy has been created is to categorise the quality assurance

techniques via their implementation, allowing for a simple assessment to ascertain whether the

framework and further, LIQA, could implement these techniques in a generic form. This

taxonomy also adds to the novel content of this research. The taxonomy can be seen to be correct

as each category has a vital component that all techniques under it must contain. In order to be

implemented effectively, these commonalities are listed below:

Generation – Containing visualisation and artefact generation. These techniques of

quality assurance have been included in their own section and highlighted because they are

important to automated quality assurance, although they are essentially ways of viewing other

techniques’ results in a summary or format that is simpler to digest.

Code Manipulation - Needs to be able to modify or replace source code constructs.

These must be applied on an individual case, as this is for engineering purposes or for additional

functionality.

Optimisation – Needs to be able to modify or replace source code constructs. These can

be applied in an automated fashion as they are intended to increase program performance.

136

Metrics – Utilises counting of constructs within source code, e.g. operands, operators

container, etc.

Data Flow Analysis – Stems from the formulation of a control flow graph.

Static Type Analysis – Access to expressions and all variables used to evaluate if a

program is type safe.

Pattern Matching – Matches patterns from previous examples against source code, e.g.

final method in final class.

Formatting – Modifying whitespace but not source code.

Dynamic Metrics – Counting mechanisms contained within running code.

Dynamic Type Analysis – Ability to generate stores for used variables and to backtrack

to assess whether expressions are valid.

Dynamic Testing – The different sub-categories of testing were discussed in detail above

but essentially require manual interpretation.

Some of these techniques could be argued as being part of a different category or as being

placed in a specific sub-category. However, as this is the first iteration of the taxonomy and not

all techniques have been covered, it could be improved with further work. An important part of

this work, however, is to evaluate the taxonomy and have a provable structure. This will be

presented in the next section.

4.8 EXPLICIT TAXONOMY

As this taxonomy is novel, it needs to be valid and accepted. To achieve this outcome, it

has to be provable. In attempting this, the rules that guide the categorisation of the techniques

need to be explicit, which will also assist third parties who may wish to use the taxonomy in

order to categorise further techniques and expand on the taxonomy.

137

The rules were created by initially identifying implementation requirements. A simple

example is static or dynamic requiring a program to be running or not, which allowed the

separation of generation because it does not require access to the program in a static or dynamic

state as it uses extracted data (from other analysis techniques). This is the same with regards to

the further categories, splitting techniques based on the access requirement, e.g. access to source

code level or representations. This would all the techniques under that category to be feasible

based on whether that access would be available from the internal representation that this

framework provides. Finally, some categories required refinement based on the techniques not

being representative, e.g. testing split into levels, methods, and objectives because even if a level

could be achieved, this does not mean that a method could be accomplished.

Whilst creating these rules, several changes were made to the taxonomy in order to

correct some minor issues. These issues have not affected the techniques in the categories and

therefore the rest of the research based on this taxonomy also remains unaffected. However, to

allow the taxonomy to stand in its own right, these changes needed to be made.

One such change was the removal of ‘pattern matching’ and ‘static type analysis’ from

their supercategory, ‘Type Analysis’. These were separated and ‘static type analysis’ removed.

This took place because ‘pattern matching’ did not need the restrictive rules of type analysis; at

this point, ‘type analysis’ and ‘static type analysis’ were not disparate, and therefore ‘static type

analysis’ was not necessary. The second change was the addition of the category ‘adjust

constructs’ under ‘analysis’  ‘static’, and moving both ‘optimisation’ and ‘code manipulation’

so that they came under this category. This was done as there are particular similarities between

these two categories, but there is nevertheless a need to separate them due to the reasoning for

using techniques under the specific categories. The resulting taxonomy is shown in Figure 4.4.7.

138

Figure 4.4.7 – Taxonomy of quality assurance techniques with rules

Static

Metrics

Data Flow
Analysis

Type Analysis

FormattingAnalysis

Pattern
Matching

Dynamic

Testing

Levels

Methods

Objectives

Optimization

Code
Manipulation

Metrics

Black-Box

White-Box

Artefact
Generation

Visualisation

Generation

Adjust
constructs

Type Analysis

139

The rules set for this taxonomy are provided in a top-down order and are as follows:

 Analysis

o Is a quality assurance technique

 Generation

o Uses one or more quality assurance techniques

 Dynamic (Analysis)

o Is performed during runtime

 Static (Analysis)

o Is performed on source code

 Visualisation (Generation)

o Uses graphics to represent data

 Artefact Generation (Generation)

o Creates documents based on techniques

 Metrics (DynamicAnalysis)

o Collecting numeric data based on a program property

 Type Analysis (DynamicAnalysis)

o Recording and comparing type data in expressions

 Testing (DynamicAnalysis)

o Using test data to predict and evaluate output

 Formatting (StaticAnalysis)

o Adjusting whitespace, tabs, and newlines

 Type Analysis (StaticAnalysis)

o Evaluation type on expressions

 Data Flow Analysis (StaticAnalysis)

o Requires a control flow graph or equivalent

 Metrics (StaticAnalysis)

o Collecting numeric data based on a program property

140

 Pattern Matching (StaticAnalysis)

o Searching against a template

 Adjust Constructs (StaticAnalysis)

o Modifies constructs

 Code Manipulation (Adjust Constructs StaticAnalysis)

o Does not increase performance

 Optimisation (Adjust Constructs StaticAnalysis)

o Increases performance

 Levels (Testing DynamicAnalysis)

o A targeted section of the development

 Objectives (Testing DynamicAnalysis)

o A type of testing

 Methods (Testing DynamicAnalysis)

o A way of testing

 Black-Box (Methods Testing DynamicAnalysis)

o Able to see source code during testing

 White-Box (Methods Testing DynamicAnalysis)

o Based on inputs and outputs only

141

4.9 SUMMARY

This chapter’s purpose was to break down the area of automated software quality

assurance into individual techniques, with the aim of creating a taxonomy based on the methods

required for implementation. This will allow the framework to be evaluated over a larger scope,

by assuming that if one or more techniques from a category can be implemented, all of the

techniques in that category could be built on top of the framework. The next stage of this

research is to identify which techniques should be implemented into LIQA for evaluation and

then proceeding with the implementation. The taxonomy shall act as part of the original

contribution to knowledge.

142

 Framework

In this chapter, the technique development within LIQA upon the GASTM and the testing

and evaluation of LIQA will be discussed, as well as beginning with LIQA from the previous

development, via initial testing, to ensure smooth progression into technique development. The

chapter will continue with a discussion of the techniques and their varying levels success of

implementation within LIQA using this framework. This aims to fulfill A2O2 – Construct a

working skeleton framework, specified in the introductory chapter. Additionally, A2O3 – Assess

the framework based on implemented automated SQA techniques, against calculated values and

results generated by other automated SQA tools, will be addressed.

5.1 IMPLEMENTATION OF TECHNIQUES

This section describes the techniques that were implemented into LIQA as a proof of

concept for the overall framework. The techniques chosen are from the taxonomy of techniques

either from literature or the tools analyses. Only a few techniques from each category in the

taxonomy have been chosen, as those groups under the same category use the same or very

similar processes to facilitate their technique. For example, implementing all of the static metrics

category would require 41+ techniques, whereas a sample of 3 would be just as effective in

proving the feasibility of that category. These techniques are shown in Figure 5.1.1.

143

Figure 5.1.1 –Quality assurance techniques being implemented

Static

Metrics

Data Flow
Analysis

Analysis

Pattern
Matching

Dynamic

Optimization

Code
Manipulation

Metrics

Declaration and Names

Code Constructs

Cyclomatic Complexity

Logical Line Count

Liveness Analysis

Halsteads Complexity
Metrics

Unreachable Code

Call Counter

Inclusive Function
execution time

Exclusive Function
execution time

AVG/MIN/MAX Function
execution time

Visual Studio Managed
Code Warnings

Netbeans Standards

CA1025: Replace
repetitive arguments

with params array

CA1708 : Identifiers
should differ by more

than case

Assignment to method
parameter

Final Class

Final Method

Final Method in Final
Class

Unroll Do Loops

Final private method

System err/out

144

5.1.1 Static Analysis

This section will cover the static analysis techniques being implemented for

demonstration of readability for their respective categories. This will include the categories:

 Code manipulation

o Declaration and names

o Code constructs

Of the three code manipulation techniques found during the tools analysis, these two

were relevant with regards to Java, whereas the third technique was more language-specific;

therefore, these two have been selected as the sample:

 Optimisation

o Unrolling a loop

Of the two forms of optimisation in the taxonomy, the following one was chosen at

random:

 Dataflow analysis

o Liveness analysis

o Unreachable code/Dead code

During the development of the representation used for dataflow analysis (the control flow

graph), these were key indicators of it being functionally correct; therefore, the sample is based

on the critical path of the dataflow analysis implementation:

 Static Metrics

o Cyclomatic complexity

o Logical line count

o Halstead’s complexity metrics

These metrics have been chosen as they are a representative sample based on popularity

in literature and in the tools analysis:

145

 Pattern matching

o Final class

o Final method

o Final method in final class

o Final private method

All of the above represent a set of pattern matching techniques that have a similar goal

and therefore can be seen as a single technique:

o System.out/err

The above techniques are from NetBeans, whereas the techniques detailed below are

allocated from Visual Studio, giving a cross-section for the sample of pattern matching:

o Replacing repetitive arguments with a params array

o Identifiers must differ by more than case

5.1.1.1 Code Manipulation

Very few techniques directly modify code because it is difficult to understand the

semantics of a program. Usually, automated techniques inform by highlighting certain code or

indirectly inform through reports of various kinds. In this case, code manipulation has been

included to demonstrate that IR can be modified without conversion back to a programming

language and also to demonstrate the techniques implemented in this category.

146

Declaration and names

 Code manipulation for names is the automation of name changes. This permits changing

names for classes, methods, and variables throughout a single project. This requires the IR to be

walked so that Classes, methods, and variables can be identified and with their individual scope.

Following identification, user selection determining changes will occur, then committing those

changes to the declaration of the structure but also the references to that particular declaration.

An example of this is shown in Figure 5.1.2 where ‘i’ has been replaced with ‘count’.

Figure 5.1.2 – Variable rename example

To demonstrate a working example of this technique, LIQA will have the variable

rename implemented, but not the method or class rename. This is only due to class and method

name manipulation being very similar and would not demonstrate any other technique.

int i;

print(arr);

for (i = 0; i < arr.length - 1; i++)

{

 if (arr[i] > arr[i + 1])

 {

 tmp = arr[i];

 arr[i] = arr[i + 1];

 arr[i + 1] = tmp;

 int c;

 for (c = i; c > 0; c--)

 {

 if (arr[c] < arr[c - 1])

 {

 tmp = arr[c];

 arr[c] = arr[c - 1];

 arr[c - 1] = tmp;

 }

 else

 {

 break;

 }

 }

}

int count;

for (count = 0; count < arr.length - 1; count ++)

{

 if (arr[count] > arr[count + 1])

 {

 tmp = arr[count];

 arr[count] = arr[count + 1];

 arr[count + 1] = tmp;

 int c;

 for (c = count; c > 0; c--)

 {

 if (arr[c] < arr[c - 1])

 {

 tmp = arr[c];

 arr[c] = arr[c - 1];

 arr[c - 1] = tmp;

 }

 else

 {

 break;

 }

 }

}

147

To implement the variable rename, the QA.Identifers package was created and populated

with a recording system, pulling out class, method, and variable declarations from the IR during

a tree walk. The Classes under Treewalkers.Retrivers.Declarations were implemented to perform

the walk of the IR. Finally, the Classes under

Treewalkers.Modifiers.CodeManipulation.VariableRename were implemented to traverse the IR

and perform the rename.

An additional button under the IR generation GUI had to be implemented to rescan the

IR, after changes, to create the XML and graphics for testing.

Figure 5.1.3 – Graphical User Interface (GUI) for variable rename

Code constructs

Code constructs are a technique implemented allowing users to modify source code from

a construct to a preferred construct. This was also derived from WinFPT, and allows users to

convert switch statements to case statements. This ideally is used for adding secondary

conditions in extensive condition statements, making it simpler than re-writing the entire

statement. It is of note that, in NetBeans, a technique implemented allows if and if else

statements that only compare a single String to String literals can be changed into a switch by the

IDE using its auto-correction via hints [198]. This technique will not be implemented due to time

148

constraints, as the techniques are, on a basic level, interchangeable. An example of Switch to if is

given below.

Figure 5.1.4 – Switch to If example

5.1.1.2 Optimization

This implementation was derived from WinFPT, allowing users to convert a static loop

into a sequence of statements. This is used for optimisation to stop the CPU calculation for each

loop, although its use is very specific; an example of this is given in Figure 5.1.5.

Figure 5.1.5 – For unroll example

int i;

for (i = 0; i < 5; i++)

{print(i + “”)};

int i;

print(0 + “”);

print(1 + “”);

print(2 + “”);

print(3 + “”);

print(4 + “”);

int i;

int math;

math = read();

i = read();

switch (i)

{

 case 1 : math++;

 case 2 : math += 2;

}

write(math);

int i;

int math;

math = read();

i = read();

if (i == 1)

{

 math++;

}

else if(i == 2)

{

 math += 2;

}

write(math);

149

5.1.1.3 Data Flow Analysis

Data flow analysis is a more specific name for a supposedly wider fundamental set of

techniques, including abstract implementation using formal methods and lattice theory. The

reason this has been incorporated into the data flow analysis category is that these independent

techniques are rarely used outside of data flow analysis, with regards to automated quality

assurance. Data flow analysis utilises the control flow graph representation that has been

generated from the IR of the framework, as discussed below.

Control Flow Graph

The control flow graph was the basis to facilitate several techniques and therefore was

essential to demonstrate. There are two main types of control flow graph, with the difference

between the two being the basic nodes. Either there is one statement per basic node or a block of

statements with no deviation from the flow, i.e. no condition or iteration. The advantage of using

a single statement per block is that it is simple to implement, and from this, the second type of

CFG can be generated. The advantage of multiple statements per basic block is the reduction in

analysis time for larger programs, which suggests that a combination of the two would be the

most effective. However, in this case, only small programs are going to be used in testing, and

the fact that the simpler CFG can be converted to use lists of statements means that adding this

feature into LIQA would involve a significant addition of time without any significant advantage

being gained. Therefore, the simple version of the CFG will be generated from the IR in LIQA

[199].

Generating the CFG from the IR in a Java format required the creation of two objects,

CFGblock and CFGedge. CFGblock stores the predecessors and successor edges as well as the

block ID and statement it represents. The CFGedge stores the link between two blocks as

predecessor and successor as well as a label for conditions. An example of how these classes will

be used can be found in Figures 5.1.6 and 5.1.7.

150

Figure 5.1.6 – CFGobjects class diagram

Figure 5.1.7 – CFGobjects example [200]

CFGblock

id = 1

predecessors = null

successors = { }

CFGedge

lable = null

predecessor =

successor =

151

These blocks are recorded in two ways, through linked lists stored in each block but also

a list recoding all nodes. This list of all nodes is used when processing nodes regardless of

position.

After the generation of the CFG, several other properties must be computed. These

properties form lists of objects, and the lists are altered independently as individual

CFGproperties objects that store the GEN, KILL, IN, OUT, and USE values for all nodes in the

CFG. The descriptions of these can be found below.

 GEN

o All variables that are assigned or created in a block

 KILL

o All variables that are assigned in the same variable name as GEN; also

includes GEN

 IN

o Any variables that enter the block and possible assignment nodes

 OUT

o GEN + (IN - KILL)

 USE

o All variables used in a block

GEN, KILL, IN, and OUT are all represented by CFGdfi object as each value must

contain the variable name and ID of the node in the CFG.

Liveness Analysis

Liveness analysis is a practical implementation utilising the CFG and dataflow analysis

for general code improvement. It is a simple technique that computes whether a value assigned to

a variable is ever used, a very basic example of which is shown below.

152

Figure 5.1.8 – Liveness analysis limitation example

Though the first line declares ‘i’, it also assigns a value of 0 to it, which is then

immediately wiped via assigning the user input ‘read()’ on Line 2, meaning that the initial value

will never be used. This would be highlighted by liveness analysis. Liveness analysis utilises the

control flow graph and GEN, KILL, IN, OUT, and USE to accomplish the technique.

Unreachable Code / Dead Code

Unreachable code is self-explanatory: code that will never be run, regardless of the

program inputs. Examples are given in Figure 5.1.9.

Figure 5.1.9 – Dead code limitation example

Figure 5.2.8 also demonstrates what could be a limitation in the implementation of

feedback for unreachable code. As can be seen, in both NetBeans and Visual Studio there are

multiple lines of code after the return statement, while only a single line is highlighted as an

issue, which could be for one of two reasons. Firstly, it may be because the way in which they

both compute the unreachable code is through automated compiler run-through, that is to say the

code is simply compiled and generates an error when hitting that line, therefore only displaying

1 : int i = 0;

2 : i = read();

3 : switch(i)

4 : …

153

the first line. Alternatively, as discovered through development in LIQA, to display is a very

difficult and pointless task, displaying more than one error when the user should pick up on it

when a single line is highlighted. As any number of lines could be following the initial line of

unreachable code, it is common sense that once a line is picked up, the user will correct all of the

unreachable code. However, if this is not the case, each time the user corrects one line, the next

one is highlighted. As can be seen from Figure 5.1.10, this does not affect multiple instances of

unreachable code in a single application, and therefore the second of the two reasons is more

likely.

Figure 5.1.10 – Dead code multiple instances

Dead code analysis can take on more than the form of seeking code after a break or

return. However, unlike the aforementioned simple implementation, LIQA’s shall be a

demonstration of another technique utilising the CFG. Dead code analysis examines all nodes in

the graph and searches for those that have no predecessors as the algorithm used to compute the

graph’s successors and predecessors cannot link a return or break with the next line of code.

5.1.1.4 Static Metrics

Cyclomatic complexity

This metric is considered a standard measurement especially since it is a requirement of a

variety of quality assurance standards including ISO25010 [201]. Cyclomatic complexity can be

described as ‘M = E –N + 2P’ where:

 E is the number of edges

154

 N is the number of nodes (N is the block version of the CFG as described above)

 P is the number of exit nodes

[202]

 An example of Cyclomatic complexity can be seen below:

Figure 5.1.11 – Cyclomatic complexity example

The above has a cyclomatic complexity of 4.

M = E –N + 2P where:

 P = 1

 N = 4: node representing line 13 is not counted as it is a continuation from the previous 3

nodes

 E = 6

Though this is the formal formula, there is a simple method of calculating the cyclomatic

complexity in perspective, as described by VS [203]. The simpler method for the calculation is to

1 : int i = 0;

2 : i = read();

3 : switch(i)

4 : {

5 : case 1:

6 : i = i + 1;

7 : break;

8 : case 2:

9 : i = i + 2;

10: default :

11: i = 0;

12: }

13: System.out.println(i + "");

1 - 3

4 - 7 8 - 9 10-

12

13

155

count the number of binary decisions and add one. Binary decisions are ‘for’, ‘while’, and ‘if’

statements; however, this approach does not consider switch statements in which you can just

add the number of cases and default to the total conditions as a modifier, as any of the results

should still be correct.

Logical Line Count

Logical line count is a very simple metric, and close to source code count. Source code

count is a literal line count of all files regardless of content. Usually, source code line count also

informs the user of blank lines. As this IR is abstract from source code, logical line count is the

closest metric and overall more informative. Logical line count is a count of any lines that are

functional, taking each statement as a single line. In the case of the GASTM, the logical line

count can be implemented via a tree walk that counts statement nodes and containing nodes, i.e.

functions and classes.

Halstead’s Complexity Metrics

Halstead’s complexity metrics are a means of quantifying the complexity of a piece of

code, but, unlike McCabe’s cyclomatic complexity, which works based on binary decisions,

Halstead’s metrics are based on operators and operands alone [204]. Though the metrics

themselves are almost always the same equation, the operators and operands can differ from

source to source [205] [206] [207] [208]. For that reason, a list of tokens has been provided

below to outline the operators and operands being used within the implemented metric in LIQA.

 Operators

o Reserved words

o Type qualifiers

o Type

o Binary and unary operators

 Operands

o Identifiers

156

o Literals

An example of this being calculated can be seen in figure 5.1.12:

Figure 5.1.12 – Halsteads complexity example [209]

Several complexity metrics are used. N1 and n1 are operators and unique operators,

respectively. N2 and n2 are operands and unique operands, respectively. From these, the various

metrics are calculated:

Program Length : N = N1 + N2

Program Volume : V = N * log2(n1 + n2)

Program Level : L = (2/n1)*(n2/N2)

Program Difficulty : D = (n1/2) * (N2/n2)

Program Effort : E = D * V

Program Time : T = E/18 seconds

Program Content : I = (V / D)

void sort(int a, int n) {

int i,j,t;

if(n<2) return;

for(i=0 ; i<n-1; i++){

for(j=i+1; j<n ; j++){

if(a[i] >a[j]){

t=a[i];

a[i]=a[j];

a[j]=t;

}

}

}

}

 Total Unique

Opperators N1 = 50 n1 = 17

Opperands N2 = 30 n2 = 7

Opperators Opperands

157

5.1.1.5 Pattern Matching

Pattern matching makes up a large part of automated techniques, especially around the

area of standards and guidelines. Although they can vary quite extensively, essentially they

identify patterns within code that require modification to adhere to that specific standard. For

example, the .NET usability guide states that if a method has more than three parameters of the

same type, these should be passed as an array.

The chosen techniques to implement are derived from NetBeans Hints for Java and .NET

Managed Code Warnings for C#. Since these patterns pick up standard/guideline issues, the C#

patterns can be applied to the Java language. The NetBeans Hints being implemented are:

 Assignment to method parameter

 Final class

 Final method

 Final method in final class

 Final private method

 System out / err

All of the descriptions can be found in the extended appendices [107].

The .NET Managed Code Warnings being implemented are:

 CA1025: Replace repetitive arguments with params array

 CA1708: Identifiers should differ by more than one case

These descriptions can also be found in the extended appendices.

5.1.2 Dynamic Analysis

5.1.2.1 Dynamic Metrics (Profiler)

A lot of the profiler techniques used by the tools are very low level, which is impractical

to perform for a programming language-generic system. Some of the techniques can still be

implemented within LIQA and will be done to demonstrate how profiling would work within this

158

framework. These implemented techniques will be a function call counter, inclusive and

exclusive function execution time, as well as average, minimum, and maximum function

execution time. This data was retrieved as an example of a type of dynamic analysis and is the

basis for call graphs to be generated.

These dynamic metrics are retrieved from the sample program at runtime. This requires

using the dynamic section of the framework, which includes inserting nodes into the IR to

represent calls to an included class called MonitorDA. This class would have to be written for

each programming language when incorporated into the framework. MonitorDA is a small class

that has its own limitation in that it uses stack trace to acquire information about the running

program, which means that only programming languages that support stack tracing can be

dynamically analysed by the implemented skeleton framework.

An information retrieve call will be placed at the beginning and end of each method. This

will record whether it is the start or end of a method, the method name, and the current time. This

is all the information needed to deduce the previously mentioned dynamic metrics.

5.1.3 Development Discussions

This section has been included to enable discussion of the breakdown of the

implementation after its completion. First of all, some metrics have been provided to assess the

size and complexity of LIQA.

Total lines of code: 104,765

Total imports: 3,066

Total blank lines: 8,133

Total classes: 263

Total methods: 4,158

159

Average cyclomatic complexity: 3.72

It is important to consider that the Generic Abstract Syntax Tree Metamodel (GASTM)

core components were not included as a library but were decompiled and included directly into

the project because modification of specific classes was required and their dependencies had to

be included. With this in mind, the development of the skeleton framework for Language-

Independent Automated Quality Assurance (known as LIQA) was still extensive, although the

metrics provided need to be read with consideration for the modified libraries.

The major components, with the exception of the GASTM, have been broken down into

packages related to their purpose, including GUI, IR (with IR.Token), and LIQA. The GUI

package (standing for graphical user interface) contains all of the JForms used for LIQA, which

was developed from a single initial form into five separate forms to allow for simpler debugging.

However, an official build of the framework would also require more than a single form as some

techniques, such as variable remaining, require user input and selection. The IR package

contained classes and a sub-package called Token, of which Token has a sub-class of Java. The

Java packages contain classes that implement the tokenisation of the Java programming

language. If other programming languages were implemented, these would be contained in their

own package here. The class in the Token package contains constructs to direct tokenisation

based on source code and programming language selected. The classes contained in the IR

package are builders of two types: a single generic builder, to direct flow, and programming

language-specific builders to take tokens and form the internal representation. The final package

LIQA is essentially LIQA-dependent code, i.e. initialiser for the program as well as a project

information store.

5.2 DISCUSSION OF THEORETICAL TECHNIQUES

The number of software quality assurance techniques collated in the progression of this

research has been extensive. Although it would be impractical to implement all these techniques

within the scope of this research, it is pertinent that the categories within the taxonomy that do

not have techniques implemented within LIQA, be discussed.

160

5.2.1 Static Analysis

5.2.1.1 Visualisation

Visualisation is a large and important area within automated quality assurance. However,

it can be acquired though many means to represent the results of other techniques. For example,

the Dependency Finder in NetBeans visualises the links between classes including library calls,

which is important because it allows users to quickly interpret a large number of links between

complex code. Although the implementation of visualisation may be complex in its own nature,

it works based on other data that is retrieved either through access with the source/IR or by

means of other automated techniques. Concluding that visualisation, though important, is

essentially an add-on on top of different techniques and is not essential to demonstrate would,

however, be entirely possible to implement within this framework. Visualisation could be

implemented in many ways. Two ways would be to extract the data required through other

techniques and output them in a format that could be viewed by the user, e.g. SVG or HTML.

Another way would be to have the visualisation built directly into LIQA; in this way,

modification or animation could be used to improve the user’s experience.

5.2.1.2 Artefact Generation

Although artefact generation is most commonly referred to as reporting, due to its

implications, it could be considered an extremely important factor within software quality

assurance. Artefact generation can not only inform the user as to the ‘quality’ of the program, but

is most commonly used for submission for standard certification. The level of detail required for

each standard and each artefact within the certification submission is large and will usually

require many of the metrics and other techniques to be performed and then summarised.

Therefore, though important, much like visualisation (discussed above), it is an additional form

of representing data from other techniques and does not have a significant role in this research.

161

5.2.2 Dynamic Analysis

5.2.2.1 Unit Testing

A major form of dynamic analysis, unit testing, could be achieved within this framework

in a variety of ways. Three such ways could work within the framework, though these are very

extensive and therefore out of scope. One way of implementing unit testing could be to attach the

xUnit framework, which would require source code, and therefore the conversion from IR to

source would be required. Another form of unit testing that could be implemented could be

similar to WinFPT where a test session of the program is run and all inputs captured. Then a test

case is generated where the user can state the number of iterations and modify input values for

that test. The third form of unit testing would be to segment the ‘unit’ within the IR and create a

test environment for this singular piece of code. Depending on the nature of the test environment,

this could be written directly in the IR format and outputted to the selected programming

language or, if programming language-dependent features are required, each environment would

have to be written in its own programming language.

5.3 TESTING

The framework’s success will be assessed by means of the testing of LIQA. Although

this will take place in a classical manner, the testing will encompass the techniques alone and not

be evaluating all of the functionality of LIQA, which has been included for ease of use. Testing

only the techniques and not the implementation of the IR and GUI will mean that each test has a

direct relation to the framework’s functionality, which will yield clear results. These results can

then be used to infer if that techniques category, present in the taxonomy, is feasible within this

framework.

5.3.1 Testing Plan

Each test will be included in its own directory with any relevant or equivalent files. Each

test will be a single technique that will be identified within the test title, and will have a unique

ID to refer to it. Some techniques will require multiple tests depending on complexity and

162

borders, e.g. private methods within a class can either be identified or not, requiring two tests.

Each test will have a calculated result that will be arrived at by the tester, as well as a result from

a quality assurance tool that utilises that technique. This may require a test program to be written

in Java as well as an equivalent programming language for the secondary tool. The tool chosen

will be based on the technique and also the similarity of programming language. The equivalent

code will be code that embodies exactly the same semantics as the original application and that

would generate the same GASTM tree. Some tests will not have a secondary tool for

comparison; this is not due to the techniques not being used, but usually because the result is not

accessible, e.g. Visual Studio implements Halstead’s metrics to calculate the Microsoft

maintainability metric [173], but the values for Halstead’s metrics are not accessible. Additional

notes will be included to instruct on how the test is run via LIQA and also whether anything is

required to be taken into account when viewing the results. A list of techniques has been

included below for reference:

Code Manipulation

1 Declaration and Names

 Replacing a highly used variable with an inappropriate name to use a more

 appropriate identifier without modifying any other code.

2 Code Constructs

Automated modification of ‘switch’ to ‘if’.

Optimisation

3 Unroll Do Loop

 Optimise a section of code by replacing a loop with a set of equivalent

 statements.

Static Metrics

4 Cyclomatic Complexity 1

 McCabe’s cyclomatic complexity is used as a check for many standards and

163

is used to identify overly complex code that may be difficult to maintain.

Test 1 of 3.

5 Logical Line Count 1

 Line count is a fundamental metric used to calculate other metrics, usually

to establish an idea of the size of the program. Since LIQA is abstract

from source code, the logical line count metric, which measures statement

number, essentially predicts the lines of source code that would be

present on output from the IR. Test 1 of 3.

6 Halsteads Complexity Metrics 1

 Halstead’s complexity metrics are a number of metrics measuring various

aspects of a program: Length, Volume, Level, Difficulty, Effort, Time, and Intelligent

Content, which are used by testers for other metrics, in reports for standards application and to

ascertain problem areas of code. Test 1 of 3.

7 Cyclomatic Complexity 2

 See Scenario 4. Test 2 of 3.

8 Logical Line Count 2

 See Scenario 5. Test 2 of 3.

9 Halstead’s Complexity Metrics 2

 See Scenario 6. Test 2 of 3.

10 Cyclomatic Complexity 3

 See Scenario 4. Test 3 of 3.

11 Logical Line Count 3

 See Scenario 5. Test 3 of 3.

164

12 Halstead’s Complexity Metrics 3

 See Scenario 6. Test 1 of 3.

Data Flow Analysis

13 Liveness Analysis 1

Liveness analysis is very important as any liveness issues have the

potential to cause program crashes; accordingly, these must be identified.

14 Liveness Analysis 2

 See Scenario 13.

15 Unreachable Code 1

 Unreachable code can cause major issues if the code that is

unreachable is intended to be run; detecting code placed after break and

return is important. However, there are other forms of unreachable code not

covered by this technique, e.g. inaccessible if statements.

16 Unreachable Code 2

 See Scenario 15.

Pattern Matching

17 Replacing repetitive arguments with params array 1

 Having more than three of the same type of parameter is in violation of

the .NET managed code guidelines and therefore needs to be identified.

18 Replacing repetitive arguments with params array 2

 See Scenario 17.

19 Replacing repetitive arguments with params array 3

 See Scenario 17.

165

20 Identifiers should differ by more than just case 1

 Having variables’ names differ only by one case is in violation of the .NET

managed code guidelines and therefore needs to be identified.

21 Identifiers should differ by more than just case 2

 See Scenario 20.

22 Assignment to method parameter 1

 As Java only has parameters passed by value, not by reference assignment

to them, is a violation of NetBeans code guidelines and needs to be identified.

23 Assignment to method parameter 2

 See Scenario 22.

24 Final Class 1

 Having a final class declared is against the NetBeans standard. The ‘TestApp’

class has been declared as final.

25 Final Class 2

 Identical to Scenario 24 except that the final has been removed; no final class

should be identified.

26 Final Method 1

 Having a final method declared is against the NetBeans standard. The ‘fact’

method has been declared as final.

27 Final Method 2

 Identical to scenario 26 except that the final has been removed; no final

methods should be identified.

28 Final Method in Final Class 1

166

When a final class is declared, all methods within that class are final without declaration;

adding the final keyword is redundant and a violation of the NetBeans code standard.

29 Final Method in Final Class 2

Identical to Scenario 28 except that the final has been removed; no final methods should

be identified as class is not final.

30 Final Private Method 1

A method declared as private and final is redundant and therefore against NetBeans

quality code checks. The fact method in this scenario has been declared as such.

31 Final Private Method 2

Identical to Scenario 30, except that the final has been removed; no final methods should

be identified.

32 System err/out

Debugging lines left in code can reduce the speed of code execution, which can have a

significant impact depending on the situation of the output. Leaving debugging outputs is another

NetBeans check for code quality.

Dynamic Metrics

33 Dynamic Metrics

Dynamic metrics, or profiling, are used to identify problem areas in code, much like

static metrics. As dynamic metrics involves the collection of data whilst the program is being

executed, code has to be inserted into the program at specific points to retrieve the required data.

5.3.2 Testing Notes

Test ID 2: A value of 0.5 is assigned as a result of the output working correctly.

However, the syntax was not as expected.

Test ID 3: minor syntax issue

167

Test ID 6: counting issues, still possible

Test ID 9: incorrect counting

Test ID 12: null pointer exception

Test ID 33: issues with time calculations, unknown cause

5.4 ANALYSIS OF RESULTS

The analysis of the test results will be completed objectively by examining overall results

and then categorising the results into technique categories as defined by the taxonomy. Finally,

each test that did not completely pass will be examined and a discussion of each of these will be

included.

A percentage pass grade has been given via Equation 1 where ‘R’ represents the number

of results in the test and ‘C’ represents the correct results in the test. This equation is essentially a

reverse percentage.

Figure 5.4.1 – Equation 1

Although this will give a value of the pass rate for each individual test, further

consideration is required as some tests are performed multiple times for boundary testing and

retesting more complex code with the same techniques. The number of additional tests can

signify that categories may have a high pass percentage due to retests mirroring original tests;

therefore, Equation 2 must be used as a comparison. These are known as grouped tests. Equation

2 was formed using the initial reverse percentage, shown in Equation 1. This needed to be

1 −
(𝑅 − 𝐶)

𝑅

168

repeated for all sets using summation [210], and this then needed to be divided by the number of

tests in the group represented by X.

Figure 5.4.2 - Equation 2

‘R’ represents the number of results in the test and ‘C’ represents the correct results in the

test, while ‘X’ represents the number of repeated tests that will give a single percentage for each

technique that can be used for comparison against individual test results. Firstly, the overall

results can be placed in three categories, pass (100%), partial pass (50% - 99%), and fail (0% -

49%), as shown in the pie charts shown in Figure 5.4.3.

Figure 5.4.3 – Pie chart showing individual test results

No Categories
Individual Tests

Pass Partial Pass (>= 0.5) Fail

∑ 1 −
(𝑅𝑖 − 𝐶𝑖)

𝑅𝑖
𝑥
𝑖=1

𝑥

169

Considering the results individually (Figure 5.4.3), it can be seen that LIQA techniques

have a high pass rate at 27 out of 33. However, this result does not take into account multiple

tests targeted at the same techniques. Figure 5.4.4 groups the tests using Equation 2 from Figure

5.4.2. As can be seen, the results are skewed, highlighting a similar failure rate at 11.8% over the

previous 12.1% value. In addition, this graph shows the higher increased partial pass overtaking

the number of failures and reducing the full pass rate. Overall, these results show an 85%+ pass

and partial pass rate, which is exceptionally high and highlights the overall value of this

framework. Before the analysis can end, a more detailed examination of categories and

individual failures is required to uncover the flaws in this framework.

Figure 5.4.4 – Pie chart showing grouped test tests results

No Categories
Grouped Tests

Pass Partial Pass (>= 0.5) Fail

170

Figure 5.4.5 – Bar graph showing categorised test results

The Figure 5.4.5 shows the pass rate of all tests within their respective categories, as

defined in the taxonomy. The coloured bars display both grouped and individual tests that are

identified as the same. This is in contrast with the previous graphs and therefore proves that the

categorised test presents all differences independent of each other. The levels of this graph also

help to identify issues with regard to techniques; it can be seen that most issues are located in

dynamic analysis and that all other categories have a high pass rate, although, considering the

graph in Figure 5.4.6, a slight question arises as to the accuracy of identified issues. For example,

optimisation has a 90% pass rate although all of these passes are only partial. Code manipulation

is similar in this manner, having 50% pass and 50% partial pass.

0

10

20

30

40

50

60

70

80

90

100

Code
Manipulation

Optimization Static Metrics Data Flow
Analysis

Pattern
Matching

Dynamic
Metrics

Categories: Individual & Grouped Pass Mark
Percentage

171

Figure 5.4.6 – Bar graph showing categorised pass results

Issues that have arisen in the categories are identified in this bar graph; listed in order of

severity: Dynamic Analysis, Static Metrics, Optimisation, and Code manipulation. In order to

accurately assess the framework, each failed or partially passed test must be reviewed

individually to identify the extent to which the framework’s design, or its implementation or

technique, are issues.

Looking in detail at the partial passes, specifically Tests 2 and 3, they contain syntax

issues; however, they would otherwise be full passes. Regarding Test 2’s identified issue, the

result of the technique would work; however, the issue related to the ‘IF - ELSE IF’ printed in an

embedded format rather than in sequence is due to the GASTM representing ‘IF – ELSE IF’ as

embedded trees. However, this could be counteracted in the Java output to create the sequence

effect. Test 3 also had a minor syntax issue in which any code un-rolled from its loop was

contained in a block statement, which arose from a decision made when the technique was

implemented, as replacing the loop by a single block statement was easier to implement within

the IR, although this could be modified to allow for multi-statement replacement.

0 20 40 60 80 100

Code Manipulation

Optimization

Static Metrics

Data Flow Analysis

Pattern Matching

Dynamic Metrics

Categories: Graded Percentage

Pass Partial Pass Fail

172

Test 33 is the dynamic analysis technique and is identified as the category with the

largest number of fails. Four of 13 tests passed, which were the method counters, while the

failures were all related to measuring the execution time of methods. The idea for dynamic

analysis, inserting prewritten methods to identify different running metrics, is sound, but the

problem for the method timing issue seems to be in the prewritten code and does not reflect the

validity of the technique. What is meant by this is that though the figures were incorrect, it is

believed that the issue may have been related to the test or the MonitorDA timing calculations.

The issue may arise from the methods execution time being too small, and this may have caused

some issues. A re-test with delays written into the methods may be a better test for these

techniques, an example of which is shown in Figure 5.4.7:

Count

Exclusiv

e
Inclusive

Main 1 A A+B+2C+4D

M1 1 B B+C+2D

M2 2 C C+D

M3 4 D D

Figure 5.4.7 - Additional Profiling Test with original calculation

The code for which can be seen in figure 5.4.8:

173

Figure 5.4.8 Additional profiling test code

The final three tests that failed, Tests 6, 9, and 12, were all implementing the same

technique, Halstead’s Metrics. The test was evaluated on the four base numbers that are retrieved

from the source, which are then used in various formulas to assess different aspects of the

program, such as length and complexity, etc. Tests 6 and 9 had only a counting issue, which

essentially was due to either incorrect counting or some aspects of the program not included in

counting, e.g. any expression within array retrieval (arr[?]), which is an implementation issue

rather than an issue with the technique being used upon the IR. Test 12 was another

implementation issue as a null pointer exception was caused within the counting class,

identifying a problem with the LIQA implementation of Halstead’s Metric.

When developing the tests, a significant limitation was taken into account in that the

generation of the CFG would only work if, after each loop, at least one statement was included,

e.g. System.out.println. This was due to the discoverer for the CFG. Though this is a significant

limitation, it could be counteracted. In this case, the CFG discoverer was not modified due to the

significant amount of time it would take to re-write which, considering that the CFG generated

public static void main(String[] args)

 {

 m1();

 m2();

 m3();

 int i;

 for(i = 0; i <250000000; i++){}

 }

 public static void m1(){

 m2();

 m3();

 int i;

 for(i = 0; i <500000000; i++){}

 }

 public static void m2(){

 m3();

 int i;

 for(i = 0; i <1000000000; i++){}

 }

 public static void m3(){

 int i;

 for(i = 0; i <2000000000; i++){}

 }

174

properly with a non-significant statement placed after the loops, it was deemed acceptable for

this level of testing.

5.5 FRAMEWORK CONCLUSION

This section of the research brings to a close the development and testing of the

framework that has been implemented in the form of LIQA in order to determine its success in

terms of the implementation as well as the theoretical framework. This is the programming

paradigm-specific framework, in this case specific to the procedural paradigm, which is due to

the internal representation used (GASTM). The GASTM has its limitations with it being a subset

of programming languages. However, because it is a subset for most procedural programming

languages, the support for many programming languages outweighs this limitation, especially

since the additional part of a programming language can still be modelled using the ASTM,

making the interoperability between programming languages possible. Although it would have

been ideal to implement a parser for another programming language besides Java, there is

enough evidence in the ASTM documentation to support the assumption that this is possible.

The techniques themselves, as seen by the results analysis, can be implemented using the

GASTM as an IR for programming languages. Although there are some issues, these can be

identified as general implementation faults rather than theoretical implementation issues. This is

to say that the techniques can be implemented correctly in theory, but the actual implementation

in LIQA has faults.

A factor to consider, however, is the appropriateness of dynamic analysis within this

framework. Though a viable method of implementing some forms of dynamic analysis is

inserting code to track various aspects of a running program, there are other ways of applying

these techniques that could be considered better, e.g. tracking through a virtual machine. Though

inserting code is not the most appropriate solution, many details of a running program can still be

acquired in this way, for example coverage analysis to identify high-use areas of code, variable

175

monitoring for unit testing, etc. These aspects of a running program are valuable to testers and

can still be implemented upon the IR. As for additional dynamic analysis, this must be

implemented in another form. A solution to cover both the issue of not being able to implement

all types of dynamic analysis and to reduce overhead of inserting code, is the option to create a

virtual machine (VM) that is capable of compiling and running the IR, which would allow

monitoring to be carried out at the VM level. This would also allow for the implementation of a

debugger and variable watcher. Though a viable solution, introducing a VM creates its own issue

in that each compiler can create different outputs depending on the programming language and

the compiler version and creator. If a program is targeted at a specific programming language

and compiler, performing dynamic analysis upon the LIQA-based compiled code could have

discrepancies, whereas inserting code would not. Considering this path as an option, inserting

code for dynamic analysis is a more appropriate approach and, if further dynamic analysis needs

to be performed, this would have to be done externally from this framework.

As a result of this research, it can therefore be confidently concluded that a framework

for automated quality assurance upon generic procedural programming languages is possible.

5.6 SUMMARY

This chapter aimed at and succeeded in specifying the automated quality assurance

techniques, taken from the taxonomy, forward to implementation within LIQA the application

designed around the framework. This not only covers Aim 2, Objectives 2 and 3 but is also one

of the original contributions of this thesis. Following this chapter will be a theoretical

examination of the expansion of the ideas that build the foundation of the framework and overlap

of these principles to achieve a wider coverage in the space of programming languages and

paradigms.

176

 Theoretical Discussion

This chapter is not only a future work area. The chapter takes the work done on the

Procedural Language-Independent Automated Quality Assurance Framework and theorises

expansion as well as suggesting future expansions. Such expansions include paradigm, grammar

addition, direct expansion, etc.

6.1 PARADIGMS

6.1.1 Paradigm Discussion

Paradigms in programming are generally considered a ‘way of thinking’ or a way of

approaching a problem/programming task [211]. There are many programming paradigms and

combinations of programming paradigms, but only a few are considered the ‘main’ approaches

to software development. These approaches are imperative/procedural (which can be considered

the same, although, by definition, they are slightly different), Functional, Logical, and Object-

Oriented [9]. There are several other programming paradigms that could be considered important

but, from a construct assignment approach, these are the main ones upon which this research will

focus; other paradigms such as ‘Event driven’, which could be considered main paradigms,

utilise similar constructs. There is also no international standard definition for each programming

paradigm, nor is there a clear divide amongst community definitions of some of the

programming paradigms. Each of these programming paradigms needs to be considered when a

generic framework is discussed because each programming paradigm has different constructs to

represent and assist in the implementation of that approach. In a world where a programming

language was purely based on a single programming paradigm, programming languages based in

different paradigms would be disparate; however, this is not the case. Individual paradigms are

important in order to assess how generic this framework can be. In addition, there are

programming languages that breach different paradigms and so the constructs included in these

programming languages must be included in the framework to allow full assessment of those

programming languages. Each paradigm’s constructs must be absorbed into the internal

representation only if that paradigm meets a certain set of criteria.

177

The criterion for the feasibility for programming paradigm compatibility is that the

paradigm requires quality assurance in at least one of the same ways also required by a previous

paradigm, i.e. both paradigms must have some quality assurance techniques in common, or must

have programming languages that include constructs of both paradigms; e.g., Java can be used as

a procedural language or as an object-oriented language.

A final note before analysis is that a paradigm could be implemented in a programming

language that does not support the ‘pure’ constructs because a paradigm is a way of approaching

a problem. Programming languages that are designed around other paradigms can be adopted and

a program’s implementation could be considered of a paradigm that the programming language

does not completely support.

6.1.2 Paradigm Analysis

In this section, several programming paradigms will be broken down to allow the

theorised inclusion of their constructs within the internal representation of this framework. An

initial scope must be included due to the number of paradigms available, and a distinct difference

between each paradigm must be identified to assess its impact. Though paradigms are considered

as a way of approaching a problem, the implementation of these paradigms could be considered

based in one of two areas, imperative or declarative. The Imperative Paradigm, by definition,

follows its path based on computer architecture in which instruction sets are used to instruct the

moving of data from memory for computation to produce results. The initial programming

language for the Imperative Paradigm is assembly [212]. Higher-level imperative programming

languages permit the use of more than the simple constructs provided in assembly, but were still

dictated by the imperative paradigm. The Declarative Paradigm, in contrast to the imperative

paradigm, is not about writing how a program should achieve something, but rather what the

program will achieve [213]. This is sometimes referred to as declarative semantics [214] where a

statement’s meaning is determined independently of how it will be implemented. Figure 6.1.1 is

a categorisation of programming paradigms that clearly shows declarative and imperative being

distinct areas, but also identifies the other paradigms that will be examined in detail later. These

178

are, from left to right in the diagram, logical (pink), functional (yellow), and purple (procedural).

Another key paradigm, though contained within the purple section, is object-oriented and that, as

it is a popular paradigm, will also be analysed.

Figure 6.1.1 – Paradigm Breakdown [215]

While Van Roy discusses the different concepts used to build up a paradigm [215], this

research is interested in the constructs that are not included in a paradigm that has already been

179

theorised to be feasible within the internal representation of the framework. Essentially, the

constructs required for adding a programming paradigm need to be identified so that they can be

introduced to the internal representation. This breakdown of programming paradigms shows how

extensive paradigm development has been, displaying only a small number of key paradigms to

try to represent the entire domain.

6.1.2.1 Procedural

It is first essential to outline the procedural programming paradigm. However, within this

research, several paradigms are being assumed under this single title: Imperative, Structured, and

Procedural.

The Structured Paradigm arose from the further development of programming languages

when a level of abstraction developed between a high-level programming language and low-level

imperative programming languages. This allowed the adoption of more constructs such as blocks

and subroutines, which formed a more considered approach to programming where sequence,

sections, and iteration took the forefront and were considered the building blocks for all

programs built using the structured paradigm [216].

The Procedural Paradigm focuses on modularity. It could be considered that a common

practice today is the utilisation of object-oriented languages and constructs to develop programs

written in a procedural manner [217]. The procedural paradigm concepts lie in re-usability,

where modules are created to collate code into similar groups, e.g. a database handle module

may contain all the code required to access the database in a generic format. But the ideals

behind the procedural paradigm are verb-fixated, meaning that the idea behind procedural

programming is action-oriented, where a problem is broken down into functions and the purpose

of data is to help the function complete its task [218]. This is why procedural programming is

considered programming by side effect, where the return value of a function may not be as

180

important as the data manipulated by the function [219]. This definition is being phrased in a

way that will help differentiate the procedural paradigms from other paradigms.

Key constructs

The key constructs have been separated into three sections representing the development

of the paradigm through its ‘predecessor’ paradigms. These are very loose separations, and each

could be argued as being present in another, which is why these constructs are being bundled

together as a single paradigm.

 Variables

 Assignments

 Repetition

 Expressions

 Conditional branching

 Subroutines

 Block

 Return

 Break

 Procedures/methods

 Function

 Record/Class

 Modules

181

Initial Paradigm

The procedural paradigm was chosen as the initial paradigm for several reasons. One

such reason relates to the domain at which this research was aimed, which is scientific software.

Procedural programming languages are some of the oldest programming languages and though

they have their drawbacks, they are used in all industries, especially the scientific domain.

Another reason that the procedural paradigm was the initial focus for this framework was the

large number of known issues regarding this paradigm. Due to the inherent nature of this

paradigm, there are many user-generated issues, optimisation opportunities, and standards to take

into account, and therefore the procedural paradigm provided an extensive quality assurance

technique base to start with.

6.1.2.2 Object-Oriented Paradigm

The object-oriented paradigm is considered one of the most recent paradigms [220]. It is

a paradigm that lies within the imperative paradigm, but its ideals are based more in modelling

the real world via utilisation of instructions rather than instructions used to complete a task [221].

The way the object-oriented paradigm works can be considered a data-first approach. This is in

contrast with functional (a function-first) and procedural (instruction-first) approaches, where

data is represented as objects in which objects are modelled on real-world entities [222]; e.g. an

instance of a class ‘Car’, which stores properties, methods, and functions related to the

description and operation of a car, would be an object of type ‘Car’. Object-oriented thinking is

completely different from the procedural approach, but it does have the same base paradigm of

imperative. This is because the object-oriented paradigm is a concept paradigm where there have

been a few specialised constructs made to help the development of object-oriented programs

while, in reality, any semi-high-level procedural language can be implemented in an object-

oriented way. For this reason, this paradigm receives this special mention and is at this time

considered fully compatible with the framework to the same extent as the procedural paradigm.

182

6.1.2.3 Functional

The functional paradigm is an interesting area, particularly at present. There are several

reasons for this interest, and these will be mentioned after an initial discussion of the paradigm’s

ideals.

The basic principle behind functional programming is to emulate and incorporate

mathematics using data constructs originally implemented in imperative programming, e.g. lists.

Basic values are built up using functions in an expressive format in which the program is not a

list of instructions but an evaluation of expressions [223]. The major theme that runs through the

functional paradigm is that a function does not cause side effects, as it is based on mathematic

functions, i.e. a function’s purpose is its return value [224]. This theme is more prominent when

it is considered that all values in a functional programming language are immutable, that is to

say, they cannot be modified [225].

Skipping the history lesson, functional programming is an important paradigm as it

mingles more closely with popular paradigms such as object-oriented, of which the .NET

platform is an example [213]. The .NET platform uses the Common Language Runtime (CLR)

as a base for all of its supported programming languages, allowing for libraries to be built for

multiple programming languages. One of these is F#, which originally was functional but is

considered of multiple paradigms due to its adoption of objects. Even Java in version 8 has direct

links with the functional paradigm by including lambda expressions.

It is a significant step having declarative programming language constructs available in

predominantly imperative programming languages, and vice versa [226], and there are differing

opinions as to whether this is an effective method of developing programming languages [227]

[228]. Bearing in mind that these constructs have been implemented, whether it be to

accommodate new and different users or just to expand the programming languages, is

irrelevant, but it is nevertheless a considerable issue with regards to this framework. Until this

point, all constructs have been imperative; contradictory to this, the declarative statements do not

183

necessarily dictate computational instruction but describe what is required. As a result, this may

lead to difficulty including them into the internal representation.

Constructs

In order to assess which constructs are important for functional programming languages,

several programming languages that support the functional paradigm can be considered. The four

programming languages used as a basis for construct analysis are: Scheme, as it is a purely

functional language; F#, as a functional programming language that adopts other paradigm

constructs; Java and C#, to represent other programming paradigms that have, with varying

degrees of success, adopted the functional constructs to incorporate the functional approach.

There are four main items that must be included to allow programmers to use the

programming language in a basic functional manner. The term ‘items’ has been used because

three are constructs and one is basic functional support for manipulating data. The three

constructs are lambda functions, method references, and lists, with the support being included for

basic functional operations on lists. All of these are supported in Java, C#, F#, and Scheme in

different forms.

First to be considered is the basic data construct required for functional operation: lists.

There are the usual primitive types to be found in functional programming languages, but the

initial functional programming languages contain this data in their initial composite data type,

lists [229]. As Scheme is a functional programming language, lists are supported by default and

are a main construct [230]. This is similar in F# [231] but, contrasting this in Java and C#, there

are various forms of list where, for example, the List<T> [232] in Java is not as suitable as the

Iterable<T> [233] for functional programming. This is because some of the functionality that the

functional paradigm requires is not natively present in the List<T> collection, e.g. Scheme cdr,

cons, and car [234]. Though more popularly used constructs such as maps and dictionaries are

184

now used in both functional and procedural paradigms, it is important that the list construct is

supported due to its heavy links with the functional paradigm.

Functional operation must then be included within the internal representation. Obviously

in F# and Scheme, these are supported as in-built functions [235] [236] [237] [238], while in

Java and C#, they had to be included under the functional libraries. The three main functions that

are native to the functional paradigm are ‘map’, ‘reduce’, and ‘filter’, which are included in Java

under the stream construct as the methods ‘map’, ‘reduce’, and ‘filter’, respectively [239]. This

seems relatively simple considering that under C# the methods are found under the Enumerable

type with the following names: ‘select’, ‘aggregate’, and ‘where’ [240] [241]. Though not

important for the purposes of this research, it is an interesting point when considering a

programming language that may want to adopt a functional approach.

Lambda functions are essentially anonymous functions in programming languages like

Scheme and F#. As the functional paradigm emulates lambda calculus, and considering it is a

key component to what makes functional language so expressive, it would seem controversial

not to include this construct. Scheme represents this construct with the keyword ‘lambda’ [242].

F#, with similar syntax to Scheme, uses the keyword ‘fun’ as a replacement [243], while C# and

Java replace the keyword approach with a symbol identifier placed between the parameter

definition and expression itself, C#’s being ‘=>’ [244] and Java using ‘->’ [245].

Like lambda expressions, the identification of functions as first class is an important

factor in defining functional compatibility in a programming language. This can also be referred

to as method reference passing, but all it means is that a function can be passed in the same way

that a parameter is passed. Functions are treated like data, which is how this works in Scheme

[246] and, as such, has been adopted into F# in the same manner [247]. As this is not the case in

imperative-based programming languages, an adoption in a different manner occurred in which,

mainly due to strong typing, a type had to be generated so that these functions could be passed

and so that the receiving method or function does not throw errors. In Java, the type is based in

185

‘java.util.function’ [248] and has various sub-classes for particular function instances, e.g.

‘predicate’, which is a Boolean function of one argument [249]. C# uses a similar system where

the passed value is of type ‘Delegate’ or a sub-class of ‘Delegate’ [250]. As well as these types, a

way of identifying the function that was passed in had to be created, which was achieved in Java

by using the ‘::’ operator to separate the class, object, or instance and the method name [251].

This was not done in C# as the identifier was sufficient.

It is important to note that although these are not all the constructs used within functional

programming, they are key constructs that are needed to adopt a functional approach to tasks. As

with the imperative constructs, only these key ones will be theorised within the internal

representation and, if successful, this paradigm will be classed as supported. However, only

further evaluation of the paradigms’ constructs and individual programming language constructs

would make an implementation of this framework fully generic.

Quality Assurance

Functional constructs are appearing in popular programming languages that can be,

without these functional constructs, adopted into the framework. This is an important statement

because non-adoption of these constructs would severely limit the impact of the framework.

However, it would be key to point out here that this will not be an exhaustive study of quality

assurance within the scope of the functional paradigm. This is to establish the feasibility of

quality assurance within functional programming language as well as links with more generic

quality assurance techniques that span multiple programming paradigms.

When considering the quality assurance of functional programming languages, certain

key indicators can be identified, some of which are based in functional constructs in other

programming languages, while other indicators are found in functional-based language. It is

important to point out that quality assurance techniques could be considered useful for already

186

supported programming languages with functional constructs, while other techniques are new

and based entirely in functional constructs.

Two of the most interesting techniques that are being highlighted here are in the multi-

paradigm programming languages, Java and F#. In F#, there are performance analysis tools

including several other common dynamic analysis techniques such as breakpoints, etc., which

were shown in the Visual Studio analysis in a previous chapter. This is interesting for two

reasons: functional programming is not usually considered in a performance-critical

environment, and also these performance tools are almost the same as those used for C# analysis.

Java 8u25 and NetBeans 8.0.1 [252] have included several ‘hints’ to modify procedural code into

a functional format utilising functional constructs [253]. This is interesting as, although these tips

can be turned off, NetBeans, by default, is promoting the use of the functional features over

procedural code.

Something of note but not as interesting as cross-paradigm quality assurance techniques

is the implementation of specific functional quality assurance tools. Haskell [254] has several of

these including HLint, designed for increasing the readability of programs [255]. There are also

QuickCheck [256], which is essentially a unit tester, and style-scanner [257], which is a

formatting tool. There are also examples of quality assurance tools for Scala [258] that include

Wartremover [259], similar to HLint, and Scalastyle [260], similar to style-scanner.

Though these tools indicate that quality assurance exists in the world of functional

programming, they do not show two major points, i.e. what quality assurance techniques are

being implemented and how these relate to the other programming paradigms. Literature can

identify some key areas of functional program analysis, and therefore relationships can be

established between quality assurance techniques in different programming paradigms.

187

One technique that is predominant in the identification of issues within code and

assessing code with various constraints is metrics. The absence of metrics, be they similar to the

procedural metrics or different, would be considered a surprise; however, this is not the case.

There are several publications identifying different metrics that are used on functional

programming languages [261] [262]. One paper discusses a tool-set based on a previous

procedural tool-set stating that some of the metrics are applicable [262], demonstrating a direct

link to quality assurance techniques used in different programming paradigms. The second paper

discusses the possibility of metrics that would be useful for functional programming and ways in

which they could be implemented [261].

Another technique that lies in the functional paradigm and in other paradigms is clone

identification. Used to minimise code size and maximise code re-use, clone identification is a

common technique discussed in literature. This implementation of clone detection in a functional

paradigm uses an intermediate representation called a Function Control Tree [263], which may

relate to the internal representation of this research.

A final quality assurance technique that shows some similarity between the imperative

and functional programming paradigm quality assurance techniques, is refactoring. Refactoring

is essentially a way of making code more readable, succinct, and easier to maintain [264]. This

has been used in multiple paradigms and is an important form of quality assurance for the

functional paradigm due to its expressive nature [265].

Though limited, these three techniques demonstrate a link between the quality assurance

of functional programming languages and programming languages that are based in the

imperative paradigm [266]. That, and considering the inclusion of functional constructs within

imperative-based languages, further supports the need for including these constructs within the

internal representation of the framework.

188

Adoption of constructs

The adoption of the previously mentioned functional constructs will be accomplished

using the Abstract Syntax Tree Metamodel in the form of a description of the new classes and

their location with regards to inheritance. Their use will also be described within an instance of

an application in order to fully understand how these constructs are to be adopted.

Firstly, in Lists, there is an option to identify different types of list, as in .NET there are

several types and therefore identifying a functionally specific list is advised. ‘FuncListType’ will

be added as a subclass of ‘CollectionType’. ‘FuncListType’ will be a generic list for

programming languages that support functional lists.

Method references can be implemented without adding any new objects to the abstract

syntax tree meta-model. When defining parameters using the ‘FormalParameterDefinition’

object, this object has ‘Name’ and ‘Type’ properties, where ‘Type’ can be a ‘FunctionType’ and

‘Name’ could be the identifier. When passing the function, there is

‘TypeQualifiedIdentifierReference’, which has ‘IdentifierReferance’, which can be the function

name, and ‘TypeReference’, which can be an ‘UnnamedTypeReferance’, which has ‘Type’,

which can be ‘FunctionType’. Declaring first class functions could not be simpler, as the

‘FunctionDefinition’ has a property ‘FunctionMemberAttrubite’, which has a property

‘isThisConst’, a Boolean depicting a constant function that is synonymous to a first class

function.

When considering the way in which a functional program is built up, though classes exist,

they do not have to be used. The GASTM model does not support this directly, as the progress

from file to aggregate type is fairly intuitive, where an aggregate type can be one of the

following sub-classes: StructureType, UnionType, ClassType, or AnnotationType, none of

which describe a container-less list of functions and constants. A simple solution to this would be

189

to add a new subclass to AggreateType that should have a name like ‘Containerless’ or

‘FirstClass’.

The last construct to include is the lambda expression, which can be described in the

format of the abstract syntax tree as:

Expression => LambdaExpression

LambdaExpression ->

 Expression : Body

 Expression: ActualParams*

where LambdaExpression is a sub-class of Expression, contains an Expression type for its body,

and contains a list of parameters as well as an optional assignment reference, to allow for

imperative implementations of lambda that are strongly typed. Type information with regards to

the return could be stored; however, this information is usually inferred with functional language

and therefore has been left out, but could be stored as ‘Type : ReturnType ?’.

When considering the applicability of this paradigm within the scope of this research,

only the constructs and the quality assurance techniques have to be considered; however, it must

be stated how well these can be incorporated into the framework. Based on the observations

made above, specifically those made when looking into the adoption of functional constructs

within current object-oriented and procedural programming language, it has been seen that the

paradigm in its entirety (both constructs and quality assurance techniques) can be adopted by the

framework.

6.1.2.4 Logical

Like the functional paradigm, the logical paradigm is considered part of the overarching

declarative paradigm [215]. Two programming languages will be considered, as well as the

overall paradigm, when identifying constructs, feasibility, and whether the paradigm requires

190

inclusion within this research. The two programming languages being evaluated are Datalog

[267], which is considered a purely logical language, and Prolog, which is considered one of the

original logical programming languages. Prolog through its development has taken other

paradigms into account including imperative constructs, e.g. statements [268], and additionally,

modifications to the Prolog language have yielded object-oriented constructs [269].

Although the logical paradigm, at this point, appears to have the same ties to the

imperative paradigm as the functional paradigm, this is not the case. Though there have been

implementations of logical programming languages within imperative language, e.g. Prolog is

accessible within Java, C#, C++, etc. [270] [271], these are implementations of the programming

language via library and are made accessible via queries that are written in string literals in the

host language [270]. However, there are some bi-directional implementations of Prolog and other

programming languages such as Java [272] [273], though these are limited. This is different from

the functional paradigm, as imperative languages have implemented functional constructs

directly into the programming language, although there have been proposals to amalgamate

functional and logical programming languages [274].

The logical paradigm is considered to be, in both implementation and thought process,

drastically different from the other paradigms discussed [275]. The basis of this paradigm is to

create facts with relations, and then the aim is to query the data with a problem, where the user is

then provided with the answer. Because of this, the logical paradigm can be described as goal-

oriented due to the focus being on what needs to be achieved and not on describing how to

accomplish it [276].

The main constructs for this paradigm are facts, terms, and rules. In both Datalog and

Prolog, facts are tables populated with terms where these are variables that are stored as literal

constants. Rules are used to describe relationships amongst facts [277] [278]. Unlike functional

and imperative paradigms, these constructs are completely different and the way computation is

handled, where queries are performed after facts and relationships have been outlined, highlights

191

this difference. Prolog has been added to other programming languages via libraries, e.g. Java

[270], C#, C++, VB, Python, etc. [271], and in a bi-directional format, e.g. Java [272] [273].

Similarly, Prolog users have tried to incorporate other paradigms, e.g. with types in Visual

Prolog [279] and objects with logtalk [269], although these are very much unidirectional

extensions as imperative programming languages and do not incorporate logical constructs.

Quality Assurance

As with any programming paradigm, some quality assurance techniques have been

developed. At this point, based on the interaction with the other paradigms, a strong overlap

needs to be found if the paradigm is going to be considered for adoption into this framework.

Static analysis of logical programs, specifically Prolog, as this is considered the most

popular logical language, is present and widely used for a number of tasks. Type analysis is

performed to compute the correctness of a program as Prolog is not a strongly typed

programming language and inferred type can create compilation errors [280]. Another form of

static analysis used is optimisation, but this usually occurs on post-compiled code to increase

performance, which would be technically imperative code [281]. Other forms of static analysis,

such as mode analysis [282] and termination checking [283], are logical programming language-

specific.

Dynamic analysis contains one particular technique that is recognisable in other

paradigms, which is the profiler. However, the metrics recorded by the profiler are not organised

in a familiar manner, as execution time is still recorded as well as call counters. However, these

are based on predicates rather than on functions [284].

192

Adoption of constructs

The adoption of the logical paradigm, and therefore logical programming language, will

be considered out of scope for this project for several reasons.

 The constructs are too disparate, which would make them very difficult to include

in the Abstract Syntax Tree Metamodel.

 The purpose of logical programs is different, as the logical paradigm is used in

completely different domains that have little to no overlap with imperative or

functional paradigms.

 Inter-paradigm inclusion is one way. There is work that has been done to

incorporate inter-paradigm communication, but it is driven by the logical

paradigm towards other paradigms, with other paradigms adopting the logical

paradigm.

 Quality assurance techniques are desperate because the logical paradigm is so

dissimilar that quality can be defined in a completely different way, with its own

priorities.

6.1.2.5 Other Paradigms

In this section, several points will be considered and discussed concerning the ideals of

paradigms and specific paradigms that are interesting or require highlighting as they have an

impact on the framework in terms of usability, adoption, or exception. This includes multi-

paradigm programming languages and how they will be accommodated within the framework,

domain-specific, and other paradigms, as well as a few other specific paradigms and how they

affect not just the framework but the area of automated quality assurance in general.

First, it is important to discuss multi-paradigm programming languages as this covers

most programming languages available and in use today [285]. Java, which has been the

programming language used for testing the skeleton framework named LIQA (Language

Independent Quality Assurance), is considered multi-paradigm. Though it was initially intended

to represent the ideals of an object-oriented language [286], it can be used for procedural coding

193

as well as for adopting functional constructs, making it span 3 of the 4 base paradigms discussed

above. Programming languages like these are common and adopt enough constructs to enable

each paradigm to adapt to scenario and programmer preference [287]. The way in which these

multi-paradigm programming languages interact with the framework is essentially the same as

normal, so long as the constructs for that programming language have been implemented in an

abstract syntax tree meta-model format. For example, though Java has been used to test LIQA,

not all of the constructs present in Java have been adopted into the abstract syntax tree meta-

model. It is, however, feasible to do so, as these constructs lie in the three core paradigms that

this framework could theoretically support, i.e. object-oriented, imperative, and functional. This

does leave a small limitation, which is that if a programming language has constructs based in

the logical paradigm, only programs that do not contain these constructs could be adopted into

the framework. It is advisable that these languages not be included as supported programming

languages anyway, because they would not be supported completely.

Another area that requires discussion is domain-specific or ‘more focused’ paradigms,

that is to say the other paradigms, e.g. Symbolic [288], Event-Driven [211], Flow-Driven [289],

Aspect-Oriented [290], etc. These paradigms have a multitude of uses and areas that result in

them being considered the best form of programming, e.g. Symbolic programming was created

to represent ‘learning’ in artificial intelligence [288], and Event-Driven programming is where a

program’s flow is dictated by user interaction, which, in many ways, describes most office

software. Though these paradigms have been created for specific purposes, the programming

languages and programming constructs are derived from the core programming paradigms, i.e.

imperative, object-oriented, functional, and logical; for example, Symbolic programming can be

accomplished through LISP or Prolog, which lie in the functional and logical paradigms,

respectively. Aspect-Oriented programming is achieved through the use of object-oriented and

imperative programming languages [290]. These paradigms, therefore, do not need to be

considered for the internal representation of this framework, as the constructs are the same as the

core programming paradigms, and these are simply considered ways of approaching a problem

or task.

194

A final consideration for the framework is a few specific paradigms that require an

additional discussion to cover the field comprehensively, and these are esoteric programming

languages and constructive programming languages. The esoteric paradigm is considered either

an art or a joke [291], and is not intended for use in any manner where quality assurance would

be applicable. Esoteric programming languages are usually very small and difficult to read

(because they have been designed that way) and/or replace common keywords with something

else e.g. ‘ArnoldC’ is an esoteric programming language in which keywords are quotes from

different Arnold Schwarzenegger movies [292]. It is obvious at this point that the esoteric

paradigm will not be considered for adoption within this framework. The other paradigm being

discussed here is the constructive paradigm, which, like all paradigms, does not have an agreed

definition. In fact, two completely different definitions can be found [293] [294]. As the visual

definition for the constructive paradigm is another approach that utilises some of the core

paradigms, it is not of particular interest, although the Scalor language [295], which is based on

the other definition, is of interest. From the information given, the constructive paradigm, and

therefore Scalor [296], allow the user to develop their own syntax and essentially build their own

programming language [297] whilst including constructs from other paradigms [296]. This is

interesting because the platform boasts no need for quality assurance as it is based on pure maths

and logic. Although the platform may in fact require no quality assurance to ensure safe, reliable

code, maintainability and user-based quality is at question as logic and maths cannot prevent a

user from writing an entire program in an unmaintainable manner. The constructive paradigm,

because of its ‘user-dependent’ nature, allows easier and probably high-quality programming

based on safety and performance. Bringing this back to the framework in this research, it is clear

due to the closed platform that Scalor is, with internal quality assessed by the platform it would

be unnecessary to include this paradigm in the framework. The constructs used by this

constructive paradigm again mimic the core paradigms and therefore theoretically could be

included in the framework if logical constructs were discarded.

195

6.1.3 Generic Quality Assurance

This section has been included to discuss the broad idea of generic quality assurance and

how the paradigms and quality assurance techniques interact, assessing possible issues and

reasoning behind them being included or excluded, and how this may be affected by factors in

each field.

Each paradigm has its place as a way to approach a problem, and each paradigm has

evolved over time to cover many bases of development; this results in overlap and returns choice

back to the developers. It is because of this that this research is so interesting; the overlapping

areas provide a focal point to underpin the whole premise of interoperability between

programming languages and thus permit crossover in specialised fields such as automated quality

assurance. The breakdown of each paradigm, presented in chapter 5, shows that procedural and

object-oriented paradigms have similar constructs, making them easy to view them as a single

entity in this research. This is not a surprise based on the object-oriented paradigm being

essentially developed from the procedural paradigm. When we compare these two to another

paradigm, e.g. logical, which was developed in isolation and the constructs of which do not in

any way match with procedural or object-oriented paradigms, there starts to be difficulties in

identifying if, how, or why these paradigms should be combined. This is, as we have discussed

previously, why the logical paradigm was deemed inappropriate to include in this framework;

having no similar quality assurance techniques was the proverbial nail in the coffin for logical

programming in the scope of generic automated quality assurance. The final paradigm to

consider was functional, which interestingly has reasoning for both inclusion and exclusion when

it comes to this framework. Functional programming languages are very different in their

approach to solving problems, allowing the programmer to be more declarative and less explicit

when writing code. That, combined with the fundamental difference of state vs no state, means

that these paradigms look very different. If we consider quality assurance techniques at this point

we can see some, but not much, overlap in the techniques implemented for each paradigm. Very

basic techniques such as metrics in both dynamic and static senses are available for both

paradigms; other techniques include unit testers and formatting tools that branch the gap between

functional and procedural. However, each paradigm still holds its specialised quality assurance

196

techniques, such as refactoring for functional and various forms of code standard pattern

matching used in the procedural paradigm. As can be seen, there is both argument for and against

the functional paradigm being included with the framework.

A major consideration for any paradigm is the current state of play in the development

world, that being how programming languages are developing, which makes an interesting case

for both logical and functional paradigms in the light of this research. Programming languages

are being developed to cross over paradigms and share features to allow developers the most

control over how they use their selected language. Bother Java and .NET are good examples of

this, allowing functional constructs directly embedded into the language making procedural,

functional, and object-oriented paradigms all available as native code. This forces a reaction out

of this research to open the scope to include functional and even reconsider logical when

developments such as LINQ [298] show an adoption of the logical paradigm by the .NET

framework.

The final factor in this discussion should be the difficulty of achieving such an ambitious

goal as generic automated software quality assurance, and therefore the practicality of this aim.

There are many difficulties, especially when combining programming paradigms into a single

representation due to the constructs being so different in cases like logical and procedural. There

is a temptation to try to include everything that drives issues like level of abstraction and

possibility of returning to the original language. One solution is to do everything at the

instruction level; however, the number of quality assurance techniques starts to dwindle, as many

were designed for high-level languages. The other option is to abstract even further, but then the

possibility of returning to a high-level language is unlikely after any techniques have been

implemented. Therefore, practicality dictates that a balance must be found, explaining the

decisions made in the previous section, although it must be made clear that this is not the only

method and that success could be found using an alternative representation or even a different

approach to the problem as a whole.

197

6.2 COMPLETE FRAMEWORK / FUTURE WORK

As this research has outlined the feasibility of a programming language-independent

(partially paradigm-independent) automated quality assurance framework, it is important to

express how this could be taken from its current skeleton state in LIQA to a useful and practical

product. There are several key areas that require assessing and discussing with regards to

expansion and inclusion of the framework. These include direct expansion, optional additions,

integration with tools, and theorised utility expansion.

6.2.1 Direct Expansion

A few direct and obvious expansions for the skeleton implementation of this framework

(LIQA) are required before it would be a viable and usable product. This essentially

encompasses programming language and techniques.

Firstly, a single full programming language, most likely Java, should be represented with

all of its constructs. Keeping in mind that the constructs could relate to other programming

languages, e.g. lists, vectors, dictionaries, etc., these should be designed using the abstract syntax

tree meta-model specification and kept as generic as possible. Interaction with these objects can

be utilised with other programming languages to achieve generic quality assurance. Techniques,

therefore, do not have to be re-written, and the constructs do not have to be re-written for each

programming language. Extending beyond the core generic abstract syntax tree metamodel,

representation should be implemented with careful consideration and in practice should take

place in collaboration with experts from differing fields with experience in a wide variety of

programming languages. Following this, the obvious expansion is for other programming

languages to have parsers written allowing them to be integrated into an implementation of this

framework. Again, this should be done within the guidelines of the abstract syntax tree meta-

model, and all new constructs should go through an adding procedure, which should be a

collaboration between domain and programming language experts in order to ensure that the

constructs can be applied generically to other programming languages where possible.

198

Another area of direct expansion is automated quality assurance techniques. Although

there are many generic techniques, as shown in this research, it is anticipated that this internal

representation is to be widely used, because of its inclusion of open source and standard

specification, and therefore it would be an important addition to include non-generic automated

quality assurance techniques as well as generic ones. This would allow a more complete

framework, assessing programming languages for their specific issues as domain-specific

standards could be adopted. This framework, combined with standards across the board of

programming languages, could make this framework a standard itself allowing programming

language developers, IDE developers, and software developers to have a standard tool for

assessing quality and improving the quality of all programs. This, in turn, could then be used by

standard agencies to generate configuration files to assess software for that specific standard.

This is of course speculation and would require a large-scale adoption of the framework in

various industries including programming language development, quality assurance, standards

agencies, and software development.

In the same vein as the aforementioned addition of automated quality assurance

techniques, because computation and programming is a continuously developing field, used in

various industries in a variety of ways, it is important that new quality assurance techniques,

developed to assist in advancing forms of programming, be considered. As the rate of increase in

processing slows [299], a focus is being drawn to multi-processor computation [300]. This has

had a major impact on software development in several domains that deal with programs that can

be run concurrently (an application that can split its computation into parallel running processes

or threads). As this study’s initial focus is on programming for scientific development, there is

research that aims to create optimisations to software, allowing it to become parallel processor-

focused in a more extreme way than mainstream applications already are [301]. Optimisations

like these can be implemented in a framework such as this, as the optimisations discussed are

implemented within a beta version (at this time) of WinFPT that has been analysed and assessed

in this research, and by the developers of WinFPT, concluding that all techniques implemented

in WinFPT can be adopted into this framework, given that the pre-processor used in WinFPT is

199

used before parsing into the internal representation. This has been addressed because a standard-

based framework must be adaptable to growing concerns within its field.

6.2.2 Grammar Prefix

A grammar prefix to the framework would be a large undertaking but it may improve

programming language incorporation, allowing the framework to be added to in a quicker and

simpler manner than writing a parser for each individual programming language. The grammar

prefix would generate a parser for a programming language where a programming language

specification, or grammar, has been written that describes the programming language’s

constructs and syntax. This process is described in Figure 6.2.1:

Figure 6.2.1 – Language Independent Quality Assurance (LIQA) grammar prefix

This grammar should itself be a standard, aligning with the aim of the research, but also

with the ability to cover a multitude of programming languages, e.g. Backus–Naur Form (BNF)

is a standard for writing grammars [302], but Extended Backus–Naur Form (EBNF) has been

200

developed to cover more constructs and properly describe more complex programming

languages [303]. This ‘description’ of a programming language would be inputted and from this

information a parser would be generated to translate programs written in that programming

language into the abstract syntax tree meta-model.

There are several issues or limitations regarding this method of including programming

languages, one of which is that adding a grammar prefix itself would be no small feat and would

have to be extensively checked, as it would essentially be a compiler generating a compiler,

similar to YACC [304] or JavaCC [98]. Another issue with this is that these meta-programming

languages are known as context-free grammars that cannot represent context-sensitive

programming languages such as Fortran [305], although these programming languages usually

have a context-free specification and the context sensitivity is dealt with using special

conventions [303].

Though there are limitations, the amount by which this grammar prefix would improve

the framework’s adoption of new programming languages, means that there is still an argument

for making this an extremely important part of future work arising from this research.

6.2.3 Query Addition

The most common quality assurance technique, by pure volume, is pattern matching, as

different coding standards evaluate different aspects of the program that do not meet with their

specification. As pattern matching is a major part of quality assurance techniques, it seems like

writing classes for each individual pattern would take an extraordinary amount of time and

effort. It is therefore proposed that a query system could be made to minimise this task whereby

a pattern could be expressed with a combination of fixed nodes and wildcard nodes to allow the

addition of patterns more quickly, easily, and simply.

201

Two approaches could be taken to create a system for queries to be performed on the

internal representation used in this framework. First of all, a custom query system could be

developed, the advantages being that it can be optimised for the abstract syntax tree meta-model

and can be manipulated to adapt to user requirements, e.g. new query features for bespoke

pattern matching. This solution would have the most versatility when compared with the second

solution, which is to have an XML tree outputted and allow the queries to be written in a

language such as XQuery [306] or XQL [307]. This approach is simple to accomplish as the

abstract syntax tree meta-model can be outputted in an XML format simply, and the query

languages are well known, meaning that developers would not be required to learn a custom

query system. However, there may be unforeseen limitations in terms of requirements of pattern

matching quality assurance techniques.

The recommended approach for a query system would be outputting in XML and using

an XML query language as this would not only be the simplest to implement but also simpler for

adoption, which is an important factor when considering the framework being released for

general purpose use.

6.2.4 Linking with IDE

A further improvement for this framework would be to link the implementation with an

Integrated Development Environment (IDE). In an ideal world, when the framework has been

implemented, IDE developers would integrate the framework directly into the IDE, allowing a

seamless user experience that is consistent regardless of programming language or chosen

development environment. However, this will not be the case until the framework is recognised

and implemented on a large scale. For integration with IDEs in the short term, targeting popular

IDEs that support a range of programming languages would be ideal, such as NetBeans and

Eclipse. The framework should be implemented in a way that allows updates to be rolled out

without having to update the plug-ins individually, which could be accomplished by making the

implementation of the framework a command-based implementation with the plug-ins as just

graphical front ends integrated into the IDEs.

202

6.2.5 Dynamic Analysis

Other than dynamic metrics collected through a profiler-like system, dynamic analysis

has been more or less disregarded in this research for automated quality assurance. This is due to

the complications involved with implementing a structured and reliable form of dynamic analysis

that is sufficiently generic to be consistent across all programming languages.

The basis of dynamic analysis, after and including profiling and unit testing, is a virtual

machine capable of running the programs and allowing breakpointing and stepping through code.

With this tool, it could be said that all forms of dynamic analysis, for each particular

programming language, would be possible. Therefore, although it would be an interesting topic

for discussion with regards to implementing full dynamic analysis within the current framework,

it is important to consider that this was judged beyond the scope of this research due to the not

insignificant complexity and sheer size of the task.

There are three options with regards to dynamic analysis that this framework could adopt:

One is to use the virtual machines or compilers intended for each programming language,

e.g. the Java Virtual Machine for Java and the .Net Runtime for .Net language, etc., then to

utilise their own features to implement the desired dynamic analysis techniques. This has the

advantage of pre-existing virtual machines being available and also that they are guaranteed to

work with their respective programming language. However, there are several disadvantages.

Compilers pose their own problems, and different compilers and virtual machines have their own

quirks. For example, the order in which parameters are executed (if functional calls are used as

parameters in a function call) is different in the iFort compiler and the gFortran compiler.

Another disadvantage is that individual compilers and virtual machines implement different

features, allowing some of the more advanced dynamic analysis techniques to be available for

those programming languages that support it, making it essentially non-generic. A final

disadvantage, and effectively the ‘nail in the coffin’ for this route, is that the maintenance and

203

workload required to adopt these virtual machines and compilers would be tremendous, vastly

reducing any positive impact.

The second option would be to create a virtual machine that essentially compiled and ran

the internal representation. This has many advantages; for example, all of the techniques

implemented within this virtual machine would be available to all of the programming languages

supported by the framework at any time. Although there would be some issues related to library

calls, systems like mono use method mapping to combat this, but the extent to which

programming language libraries would be compatible is uncertain at the start. Two major

disadvantages make this approach questionable, one being that by creating this virtual machine

and compiler, more issues could be introduced, and the complexity of creating a compiler that

would support all these programming languages could create many conflicts. The second

disadvantage is that this would probably involve more work than the initial route, which itself is

on a huge scale, and therefore this path is effectively not feasible.

The final route, and this seems like an excuse, is not to include dynamic analysis.

Initially, it seems like a means of reducing the workload because the prospective work seems too

great, but several factors can be considered in favour of this route. The framework is intended to

be added to IDEs as a way of automatically checking for code quality via techniques provided

through various forms of research. Dynamic analysis automation is limited mainly to dynamic

metrics and automated testing, both of which have either been implemented within the IDEs

themselves or have frameworks dedicated to them. Therefore, adding dynamic analysis to this

framework would essentially be redundant. The final fact to consider if automated dynamic

analysis does develop and belong in the framework in a more impactful way, is that by being

present as a plug-in to the IDEs, a link to the IDEs’ virtual machine or compiler may prove a

better form of including automated dynamic analysis into this framework.

204

6.3 SUMMARY

This chapter was targeted at completing the theoretical implications of additional

paradigms being included under the scope of this research. These targets were laid out in Aim 3

and all of its objectives. This chapter showed that it would be feasible to include the functional

programming paradigm; however, this may not be worthwhile. This chapter also reasoned that

including the logical paradigm within the internal representation used in this framework is not

possible and has little point. As well as focusing on paradigms, the chapter outlines future work

that could be taken on to improve the inclusion of this research in the body of current automated

software quality assurance, outlining ideas to improve adoption in this space.

205

 Conclusion

The conclusion of this research has several purposes. Initially, the project’s ideals and

scope need to be outlined as well as any research questions generated and considered by this

study.

‘A generic framework to support programming languages of disparate paradigms can be

designed to facilitate automated software quality assurance’ was the initial hypothesis for this

research, in which ‘paradigms’ relates to programming paradigms and the programming

languages that represent these. Automated quality assurance within the context of this research is

any technique designed to increase the quality of a program,that can be performed without

intervention by the user. This includes code modification and identification of aspects of code,

e.g. values representing code or highlighting problems in code. Previous work examined

considered performing automated quality assurance techniques in a limited fashion with regards

to programming languages and programming paradigms, although the automated quality

assurance techniques implemented are similar across the board. Based on this statement and the

context, several research questions arose:

 Which quality assurance activities are appropriate?

 If the programming language paradigms change, does the internal representation

change?

 Do quality assurance activities change as the paradigm changes?

The structure of this chapter will therefore be as follows: Empirical Findings will discuss

the research’s conclusions with regard to the research questions; Theoretical Implication will

consider the original contribution to knowledge and how this research can influence the field it is

based in; Recommendation for Future Research will consider possible ways forward for this

framework; Limitations of the Study will cover limitations in the implementation and choices

made within this research project; and finally, Conclusion of the conclusion, which will contain

final statements and round off the research as a finished piece of work. The chapter will end with

206

a Personal Note that will contain comments about the experience as well non-research-focused

comments that seem relevant to this work.

7.1 EMPIRICAL FINDINGS

It is important to outline the findings of the research, not only to justify the project but

also to understand why the project was attempted in the way it has been. Firstly, the most

important findings to highlight are those that relate to the research questions and the initial

statement.

The research started with an outline of the areas of interest. These areas included

programming language, programming paradigm, program quality, and automated quality

assurance. The research then moved on to the basic proposal for the framework with, in the first

instance, a focus on the internal representation, as this was at the center of the framework. The

focus of the internal representation was, at first, on the imperative/procedural paradigm, as this

was considered the programming paradigm closest to the research. From there, quality assurance

techniques within the imperative/procedural, as well as certain object-oriented paradigms, were

analysed. This was done with the use of a literature study followed by an analysis of automated

quality assurance tools. This analysis, and techniques found in literature, formed the basis of a

taxonomy of quality assurance techniques, the motivation of which was the implementation of

the techniques. This allowed for broader statements to be made about individual categories and

their feasibility within the scope of the framework of the research. After the formation of the

taxonomies, a skeleton implementation of the framework was developed. This implementation

was used in experiments to assess the feasibility of the framework as it stood, i.e. a paradigm-

specific but quality assurance technique-generic framework. After the experiment and

framework had been deemed successful, the focus of the research shifted towards disparate

programming paradigms of which a formal analysis was performed in order to ascertain the

feasibility of their inclusion within the framework. A segment was included, following the

discussion of programming paradigm, that highlighted the range of this research and how it

207

could be extended in many forms as well, as an ideal aim for the overall fully implemented

framework.

From this flow of research, key questions arose to produce an evaluation of the

hypothesis ‘A generic framework to support programming languages of disparate paradigms can

be designed to facilitate automated software quality assurance’. These included:

Which quality assurance activities are appropriate?

This was initially answered with the taxonomy of quality assurance techniques, as the

analysis of literature and quality assurance tools showed that there are quality assurance

techniques that are programming language-generic and span across multiple programming

languages within a single paradigm. However, this question spawned the further query:

Do quality assurance activities change as the paradigm changes?

The analysis of programming paradigms did show that there were quality assurance

techniques developed specifically for that paradigm that it would not make sense to use outside

of that paradigm. However, an overlap between the imperative, object-oriented, and functional

paradigms was seen. So, the direct answer to this question is ‘sometimes’, which may not seem

helpful. However, considering multi-paradigm programming languages as well as single-

paradigm languages that are adopting constructs from other paradigms, this overlap is important

to consider when creating a quality assurance tool for those programming languages. The final

question posed by this research was:

If the programming language paradigms change, does the internal representation change?

This question has two answers, as having only one would be over-simplifying. If the

paradigms have remotely similar approaches or constructs, then the internal representation does

not have to change. This is the case for imperative, object-oriented, and procedural programming

paradigms; though these paradigms are disparate, they also have similar constructs and

approaches that allow them to relate better at an abstract level, which is where an internal

representation should lie. However, if an attempt is made to converge into one internal

representation, the logical programming paradigm, and any of the previously mentioned

208

paradigms, then the answer to the question would be in the affirmative. This is due to the

approach taken, as while the logical paradigm attempts to build relationships between data and

solve queries on the data, a logical program does not describe the process, whereas the other

programming paradigms describe, more or less, how to achieve a goal.

This leaves the outcome of this research when considering the hypothesis ‘A generic

framework to support programming languages of disparate paradigms can be designed to

facilitate automated software quality assurance’. The outcome has overall been positive,

although the hypothesis is not completely correct. As shown during testing and analysis, a

procedural and object-oriented based framework is feasible, and the paradigm discussion

highlighted that the functional paradigm and any paradigm built of a combination of these three

paradigms can be implemented into a single internal representation within the framework.

However, the addition of any logical paradigm component would be unrealistic and contradicts

the hypothesis.

7.2 THEORETICAL IMPLICATION

This section of the conclusion seeks to outline the original contribution to knowledge

made by this research as well as to illustrate where this project is situated with regard to the field

and current knowledge. The section will also outline the plausible impact or implications this

research might have as an influence on current practice.

As part of this research, a taxonomy of quality assurance techniques was created from the

novel viewpoint of implementation requirements and methods. Although this stands alone in its

own right, in the scope of this research, it served as a tool for simplifying the process of

validating the framework across automated quality assurance techniques. This taxonomy could

serve as a tool for further evaluation of the framework, to allow others to categorise additional

quality assurance techniques for other research, or to assess feasibility of implementation under

the framework discussed in this research.

209

As a stepping stone in this work, an imperative/procedural programming paradigm was

the initial starting point, enabling automated quality assurance techniques to be generalised

across a ‘single’ paradigm. This was deemed successful, resulting in a significant original

contribution to knowledge being put forward. Moreover, extending this led to the programing

paradigm-generic framework and, though there are limitations, this novel idea has been shown to

be feasible. The implications of this work have the potential to be tremendous, with the adoption

of an open source and standardised approach, as taken in this work. The framework could be

used to create a layer between programming languages and automated quality assurance so that

programming language developers and users have a full choice between programming languages

without having to consider quality as an issue. This, on the flip side, allows any new quality

assurance technique to be applied onto multiple programming languages, therefore extending to

multiple platforms simply. With regard to the main focus group of this research, the importance

of automated quality assurance within the scientific domain has already been clarified and, with

the adoption of this framework, the ability to roll out standards for quality would be simple and

would shift the focus from making the program generate the output required to the purpose of the

program, e.g. within a climate control model, such as WRF, all of the code could be analysed by

a single tool, regardless of programming language (C and Fortran in the case of WRF). This

would remove concerns concerning whether a program is functional because its implementation

is incorrect, as this tool could become ‘trusted’ and therefore the framework could itself become

a standard.

7.3 RECOMMENDATIONS FOR FUTURE RESEARCH

Several expansions for the framework and suggestions for future study in line with this

research have already been outlined in the previous chapter. This discussion was extensive due to

the many and varied directions that expansion of this research could take. It is therefore

important that a priority for future research should be to make this framework adapt and expand

in a manageable and controlled manner, ensuring the best use of time and input to this

framework.

210

It can be argued that each of the following areas are suitable candidates for future

research:

 Programming language addition

 Quality assurance techniques addition

 Grammar prefix

 Internal representation query system

 IDE linking

 Dynamic analysis system

However, logic dictates in this matter that though this framework has been deemed

feasible, a more through proof needs to be obtained before expansion can occur. Priority,

therefore, should be given to implementing a full programming language into the framework. If

the proof obtained is positive, then further research beyond this should enable the framework to

develop at a faster pace. Therefore, developing the querying system on the internal

representation, as well as the inclusion of the grammar prefix, should be considered next in line

for additional content of the framework.

7.4 LIMITATIONS OF THE STUDY

There are several limiting factors to this research that should be clearly identified and

explained. Firstly, the research assumes that the previous work done with the abstract syntax tree

meta-model is applicable to the range of programming languages described in its specification.

This assumption allowed, initially at least, the removal of cross programming language

compatibility, and reduced the scope significantly enough to make the research feasible within

the allocated time. This also highlights that the research has neither implemented nor run tests on

additional programming languages of a similar paradigm, nor has it implemented programming

languages stated to be compatible in later stages of this research, e.g. functional paradigm.

Though this is a crucial limitation, such procedures cannot be expected in this research, and

therefore such a large-scale implementation should be considered for future research. The final

limitation to note is the implementation and testing results. Some the results did not match

predictions, not because the theorised results were incorrect, but because the implementation of

211

specific techniques was done incorrectly. It might therefore be argued that this could have an

effect on the outcome of the framework.

Though these issues have been raised, future work in this area, as identified above, would

not only fill the gaps but would also strengthen the framework and enable development to

incorporate methods of expanding it beyond its identified limitations. It should be noted that

these limitations are not critical, as the assumptions made in this research are grounded in

previous research in which a large number of organisations took part, and though there were

issues with the implementation, the results are nevertheless positive and the errors can be

explained so as to conform to the predictions, without losing validity.

7.5 PERSONAL REFLECTION

Overall, I believe this research has been successful in both identifying a major area of

advancement for quality assurance of software as well as providing an adequate solution. It is,

however, evident to me that a substantial level of development is still required before any impact

could be made on the current state of industry and academia surrounding this research.

One insight I have had whilst active in this research project is that the balance between

planning and implementation is a very fine line when learning is happening throughout the

process. If this balance is not proper and more planning is performed, the output would be less

able to adapt to any new information that may present itself over the large amount of time that

the research is carried out. Alternatively, if less planning is done, the project has the risk of

becoming too large or even spinning out of control, making the outputs’ aim less impactful and

too broad without much penetration into a specific point.

To reflect on this experience, I would have to conclude that the framework theory is

sound; however, the tool LIQA itself could have been better planned, which would have

provided simpler expansion and addition in later periods of research, increasing productivity;

212

however, like I mentioned before, it is a fine balance and difficult to get right unless you have

been through the process before. I believe that I have had many valuable lessons throughout this

project and believe that the success of this thesis will prove a massive feat in my personal and

professional development.

Overall, I believe this experience has left me a better researcher. One factor showing this

was my ambition to change the way we look at programming language development. Although it

is good to have such passion and motivation, the expectation should be realistic; otherwise,

tangents and fuzzy scope will overcome even the best researcher. Learning more about the

research process and how to manage such a wide area and vast depth of knowledge whilst still

challenging and driving forward change has made me humble and has changed my view on good

research practice. Finally, one of the most significant lessons that I have learned and believe

those in my position learn is to identify your transition from student to educator when discussing

and explaining your own field and how this change affects the way in which you approach

people differently. It has been an enjoyable and sometimes terrible path to walk, but one worth

taking.

7.6 CONCLUSION OF THE CONCLUSION

To conclude this work, it is important to re-engage with the aims. ‘Outline a framework

based on Procedural and Object-Oriented Paradigms’, and ‘Develop a Skeleton Framework’

were both completed successfully and a framework was developed that could be used in the area

of automated software quality assurance. ‘Expand the footprint of the framework by discussing

the theoretical inclusion of other programming paradigms’, however, has identified that a

universal framework, encompassing all programming paradigms, as proven in this research, is

not plausible using this internal representation. It is important to understand that, of the four

main paradigms discussed in this research, only one is not compatible with the framework and

the importance of this paradigm, within the context of the research and its impact, is small.

Overall, this research should be considered a success, and it can be concluded that the argument

213

for this framework is sufficiently strong to attempt the task of generating this into a standard for

quality assurance across the paradigms of functional, procedural, and object-oriented paradigms.

214

 Bibliography

[

1]

University of Southhampton, "What is your paradigm?," University of Southhampton,

[Online]. Available: http://www.erm.ecs.soton.ac.uk/theme2/what_is_your_paradigm.html.

[Accessed 2015].

[

2]

M. Hammond and J. Wellington, Research Methods : Key Concepts, Oxon: Routledge,

2013.

[

3]

C. W. Dawson, "Research," in Projects in Computing and Information Systems: A Students

Guide, Second Edition ed., Harlow, Essex: Peasons Educations Limited, 2009, pp. 15-37.

[

4]

S. W. Ambler, "Evolutionary Software Development: How Data Activities Fit In," [Online].

Available: http://www.agiledata.org/essays/evolutionaryDevelopment.html. [Accessed 23

November 2012].

[

5]

T. Greening, Computer Science Education in the 21st Century, Springer Science & Business

Media, 2012.

[

6]

M. C. Daconta, L. J. Obrst and K. T. Smith, "Chapter 7: Understanding Taxonomies," in

The Semantic Web : A Guide to the Future of XML, Web Services, and Knowledge

Management, Indianapolis, Wiley, 2003, pp. 145-155.

[

7]

D. Owens and M. Anderson, "A Generic Framework for Automated Quality Assurance of

Software Models: Supporting Languages of Multiple Paradigms," Journal of Software, vol.

8, no. 9, 13-14 April 2013.

[

8]

EHU, "Edge Hill Schools of Business and Computing Ethics Policy for Undergraduate and

All Postgraduate Research," 2012.

[

9]

A. Laird, "The Four Major Programming Paradigms Topic Paper #17," Computer Science, 3

April 2009.

[S. S. Brilliant and T. R. Wiseman, "The first programming paradigm and language

215

10] dilemma," SIGCSE '96 Proceedings of the twenty-seventh SIGCSE technical symposium on

Computer science education, vol. 28, no. 1, pp. 338-342, March 1996.

[

11]

A. Aaby, "Functional Programming," 1996. [Online]. Available:

https://student.brighton.ac.uk/burks/pcinfo/progdocs/plbook/function.htm. [Accessed 22 11

2012].

[

12]

J. Liu, X. Jin and K. C. Tsui, Autonomy Oriented Computing: From Problem Solving to

Complex Systems Modeling, Springer Science & Business Media, 2006.

[

13]

W. Schreiner, "Functional and Logic Programming," in COMPUTER SCIENCE AND

ENGINEERING .

[

14]

D. Clark, Beginning C# Object-Oriented Programming, Apress, 2011.

[

15]

L. Day, "Programming Paradigms," Computerphile, 30 August 2013. [Online]. Available:

https://www.youtube.com/watch?v=sqV3pL5x8PI. [Accessed 21 09 2015].

[

16]

I. o. Microelectronics, "4.2 Evolution of Programming Paradigms," [Online]. Available:

http://www.iue.tuwien.ac.at/phd/heinzl/node32.html. [Accessed 11 12 2012].

[

17]

D. D. Spinellis, "Programming Paradigms as Object CLasses," 1993. [Online]. Available:

http://www.dmst.aueb.gr/dds/pubs/thesis/PhD/html/thesis.pdf. [Accessed 1 12 2012].

[

18]

S. Dmitriev, "Language Oriented Programming: The Next Programming Paradigm,"

[Online]. Available: http://www.onboard.jetbrains.com/articles/04/10/lop/. [Accessed 11 12

2012].

[

19]

P. V. Roy, "Programming Paradigms for Dummies: What Every Programmer Should

Know," [Online]. Available: http://www.info.ucl.ac.be/~pvr/VanRoyChapter.pdf. [Accessed

22 Novemeber 2012].

[

20]

DedaSys, "Programming Language Popularity," 13 April 2011. [Online]. Available:

langpop.com. [Accessed 22 November 2012].

216

[

21]

C. Artho, A. Biere, P. Eugster, M. Baur and B. Zweimüller, "JNuke: Efficient Dynamic

Analysis for Java," Proc. CAV ’04, 2004.

[

22]

Q. Systems, "Cantata - The Unit Testing Tool for C/C++," [Online]. Available:

http://www.qa-systems.com/cantata.html . [Accessed 09 11 2012].

[

23]

K. Harrison, "Static Code Analysis on the C-130J Hercules Safety-Critical Software," UK

Iternational Systems Safety Conferance, 1999.

[

24]

MathWorks, "Static Analysis with Polyspace Products," 1994. [Online]. Available:

http://www.mathworks.co.uk/products/polyspace/. [Accessed 09 11 2012].

[

25]

SimCon, "SimCon - Fortran Analysis, Engineering & Migration," 1995. [Online].

Available: http://www.simconglobal.com/. [Accessed 09 11 2012].

[

26]

MSDN, "Compiling to MSIL," [Online]. Available: http://msdn.microsoft.com/en-

us/library/c5tkafs1(v=vs.71).aspx. [Accessed 21 November 2012].

[

27]

P. Newcomb, "Abstract Syntax Tree Metamodel Standard ASTM Tutorial 1.0," October

2005. [Online]. Available:

http://www.omg.org/news/meetings/workshops/ADM_2005_Proceedings_FINAL/T-

3_Newcomb.pdf. [Accessed 5 2 2013].

[

28]

A. Tripp, "Manual Tree Walking Is Better Than Tree Grammars," 22 February 2006.

[Online]. Available: http://www.antlr2.org/article/1170602723163/treewalkers.html.

[Accessed 5 2 2013].

[

29]

J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L. Hettick, R. A. Nelson,

D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A. Hughes and R. Nutt, "The FORTRAN

Automatic Coding System," western joint computer conference: Techniques for reliability,

ACM, pp. 188-198, Fall 1957.

[

30]

T. Mikkonen and A. Taivalsaari, "Using JavaScript as a real programming language,"

Technical Report. Sun Microsystems, Inc., p. 17, 2007.

217

[

31]

J. Misek and F. Zavoral, "Mapping of Dynamic Language Constructs into Static Abstract

Syntax Trees," ICIS '10 Proceedings of the 2010 IEEE/ACIS 9th International Conference

on Computer and Information Science, pp. 625-630 , 2010.

[

32]

T. Parr, "ANTLR," [Online]. Available: http://www.antlr.org. [Accessed 4 2 2013].

[

33]

"Grammar List," [Online]. Available: http://www.antlr3.org/grammar/list.html. [Accessed 5

2 2013].

[

34]

M. Van Den Brand, P. Moreau and J. Vinju, "A generator of efficient strongly typed

abstract syntax trees in Java," EE Proceedings - Software Engineering 152, 2 (2005) 70--87,

pp. 70-87, 2005.

[

35]

G. Fischer, J. Lusiardi and J. Gudenberg, "Abstract Syntax Trees – and their Role in Model

Driven Software Development," Software Engineering Advances, 2007. ICSEA 2007.

International Conference on, p. 38, 25-31 August 2007.

[

36]

Y. Ichisugi, "Source code translating method, recording medium containing source code

translator program, and source code translator device". United States Patent 6516461, 4

February 2003.

[

37]

ASM, "Model Driven Modernization," 2012. [Online]. Available:

http://www.automatedsoftwaremodernization.com/component/content/article/3.html .

[Accessed 5 2 2013].

[

38]

P. Tu and J. Liu, "Research on technology of transforming Abstract Syntax Tree of JAVA

Language to Implementation Layer of Procedure Blueprint," Information Science and

Engineering (ICISE), 2010 2nd International Conference on, pp. 1-5, 4-6 December 2010.

[

39]

R. Akers, I. Baxter, M. Mehlich, B. Ellis and K. Luecke, "Re-engineering C++

Component Models Via Automatic Program Transformation," Reverse Engineering, 12th

Working Conference on, 7-11 November 2005.

[G. Pierce, Unity IOS game Development, Birmingham: PACKT Publishing, 2012.

218

40]

[

41]

OMG, "Catalog Of Omg Modernization Specifications," 19 July 2012. [Online]. Available:

http://www.omg.org/technology/documents/modernization_spec_catalog.htm . [Accessed 5

2 2013].

[

42]

J. Tian, Software Quality Engineering : Testing Quality Assurance and Quantifiable

Improvment, D. F. Shafer, Ed., Hoboken, New Jersey: IEEE Computer Society, 2005.

[

43]

R. Yin and X. M. Ding, "How to improve the quality of software testing," Systems and

Informatics (ICSAI), 2012 International Conference on, pp. 2533-2536, 19 May 2012.

[

44]

L. Rosenberg, "Software quality assurance engineering at NASA," Aerospace Conference

Proceedings, 2002. IEEE, vol. 5, pp. 5-2569 - 5-2575, 2002.

[

45]

D. P. Wesenberg and K. Vansaun , "A system approach for software quality assurance,"

Aerospace and Electronics Conference, 1991. NAECON 1991., Proceedings of the IEEE

1991 National, pp. 771-776, 20 - 24 May 1991.

[

46]

R. L. Krutz, R. D. Vines and G. Brunette, Cloud Security : A Comprehensive Guide to

Secure Cloud Computing, Hoboken, New Jersey: Wiley, 2010.

[

47]

F. Losavio, L. Chirinos, N. Lévy and A. Ramdane-Cherif, "Quality Characteristics for

Software Architecture," Journal of Object Technology, vol. 2, no. 2, pp. 133-150, March

2003.

[

48]

BITS, "Software Assurance Framework," January 2012. [Online]. Available:

http://www.bits.org/publications/security/BITSSoftwareAssurance0112.pdf. [Accessed 23

October 2012].

[

49]

G. U. Maheswari and V. V. R. Prasad, "Optimized Software Quality Assurance Model for

Testing Scientific Software," International Journal of Computer Applications, vol. 36, no. 7,

December 2011.

[A. Austin and L. Williams, "One Technique is Not Enough: A Comparison of Vulnerability

219

50] Discovery Techniques," Empirical Software Engineering and Measurement (ESEM), 2011

International Symposium on, pp. 97-106, 22-23 September 2011.

[

51]

D. Bell and P. G. Brat, "Automated Software Verification & Validation: An Emerging

Approach for Ground Operations," Aerospace Conference, 2008 IEEE, pp. 1 - 8, 1-8 March

2008.

[

52]

B. Chess and C. Wysopal, "Software Quality Assurance for the Masses," Security &

Privacy, IEEE, vol. 10, no. 3, pp. 14 - 15, May 2012.

[

53]

N. Truong, P. Roe and P. Bancroft, "Static Analysis of Students' Java Programs," ACE '04

Proceedings of the Sixth Australasian Conferance on Computing, vol. 30, pp. 317-325,

2004.

[

54]

G. Naumovich, G. Avrunin, L. Clarke and L. Osterweil, "Applying Static analysis to

software architectures," in Software Engineering - ESEC/FSE '97, M. Jazayeri and H.

Schauer, Eds., Springer Berlin / Heidelberg, 1997, pp. 77-93.

[

55]

T. Reps, T. Lev-Ami, M. Sagiv and R. Wilhelm, "Putting Static Analysis to Work for

Verification:A Case Study," ISSTA '00 Proceedings of the 2000 ACM SIGSOFT

international symposium on Software testing and analysis, pp. 26-38, 2000.

[

56]

N. Ward, "Code Verification with the aid of MALPAS," High Integrity Ada, IEE

Colloquium on, pp. 3/1-3/3, 8 1 1991.

[

57]

D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel and G. Vigna,

"Saner: Composing Static and Dynamic Analysis to Validate Sanitization in Web

Applications," Security and Privacy, 2008. SP 2008. IEEE Symposium on, pp. 387- 401 ,

2008.

[

58]

Parasoft, "C/C++test," 24 09 2012. [Online]. Available:

http://www.parasoft.com/jsp/products/cpptest.jsp?itamld=47. [Accessed 09 11 2012].

[

59]

R. Fairley, "Tutorial: Static Analysis and Dynamic Testing of Computer Software,"

Computer, vol. 11, no. 4, pp. 14-23, April 1978.

220

[

60]

A. Biere and C. Artho, "Combined Static and Dynamic Analysis," In Proc. Intl. Workshop

on Abstract Interpretation of Object-Oriented Languages (AIOOL '05), 2005.

[

61]

M. Salah, S. Mancoridis, G. Antoniol and M. Di Penta, "Scenario-driven dynamic analysis

for comprehending large software systems," Software Maintenance and Reengineering,

2006. CSMR 2006. Proceedings of the 10th European Conference on, pp. 80 - 90, 22-24

March 2006.

[

62]

W. E. Wong, "An Integrated Solution for Creating Dependable Software," Computer

Software and Applications Conference, pp. 269 - 270, 2000.

[

63]

SonarSource S.A, "Sonarqube," 31 July 2014. [Online]. Available:

http://www.sonarqube.org/.

[

64]

M. Glinz, "Software Product Qualityc," 2014. [Online]. Available: SonarSource S.A.

[

65]

G. Developers, "Running Dead Code Analysis," Google , 27 May 2015. [Online]. Available:

• https://developers.google.com/java-dev-tools/codepro/html/tasks/maintopic?hl=en .

[

66]

Infosys, "Infosys Functional Test Case Generator," Infosys, [Online]. Available: •

https://www.infosys.com/IT-services/independent-validation-testing-services/service-

offerings/Pages/functional-test-case-generator.aspx .

[

67]

P. Fowler and S. Rifkin , "Software Engineering Process Group Guide," CARNEGIE-

MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST, 1990.

[

68]

N. Iqbal and J. . M. R. Qureshi, "Improvement of Key Problems of Software Testing in

Quality Assurance," Science International-Lahore, vol. 21, no. 1, pp. 25-28, March 2009.

[

69]

M. Visconti and L. Guzman, "A Measurement-Based Approach for Implanting SQA and

SCM Practices," SCCC '00 Proceedings of the XX International Conference of the Chilean

Computer Science Society, p. 126, 2000.

[J. Whittaker, "What Is Software Testing? And Why Is It So Hard?," IEEE Software, vol. 17,

221

70] no. 1, pp. 70-79, January 2000.

[

71]

A. Bertolino, "Software Testing Research: Achievements, Challenges, Dreams," Future of

Software Engineering, 2007. FOSE '07, pp. 85 - 103 , 23-25 May 2007.

[

72]

K. Karhu, T. Repo, O. Taipale and K. Smolander, "Empirical Observations on Software

Testing Automation," Software Testing Verification and Validation, 2009. ICST '09.

International Conference on, pp. 201 - 209, 1-4 April 2009.

[

73]

X. Dianxiang, W. Xu, M. Kent, L. Thomas and L. Wang, "An Automated Test Generation

Technique for Software Quality Assurance," Reliability, IEEE Transactions on, vol. 64, no.

1, pp. 247-268, 2015.

[

74]

M. Dimjašević and D. Giannakopoulou, "Test-case generation for runtime analysis and vice

versa: verification of aircraft separation assurance," In Proceedings of the 2015

International Symposium on Software Testing and Analysis, pp. 282-292, 2015.

[

75]

L. Yu, J. Zhou, . Y. Yi, . P. Li and . Q. Wang, "Ontology Model-based Static Analysis on

Java Programs," Computer Software and Applications, 2008. COMPSAC '08. 32nd Annual

IEEE International, pp. 92-99, 28 July 2008.

[

76]

L. You, "A markup language for java bytecode," Systems and Informatics (ICSAI), 2012

International Conference on, pp. 2420 - 2424, 19-20 May 2012.

[

77]

A. Kolosov, "Using Static Analysis in Program Development," 31 January 2008. [Online].

Available: http://www.viva64.com/en/a/0017/. [Accessed 5 2 2013].

[

78]

CERT, "ROSE Overview," 2008. [Online]. Available:

https://www.securecoding.cert.org/confluence/download/attachments/3524/Rose+1+Overvi

ew+v3.pdf. [Accessed 5 2 2013].

[

79]

C. Christopher, "Evaluating Static Analysis Frameworks," Carnegie Mellon University

Analysis of Software Artifacts , 10 May 2006.

[T. Ball, "The Concept of Dynamic Analysis," ESEC/FSE-7 Proceedings of the 7th

222

80] European software engineering conference held jointly with the 7th ACM SIGSOFT

international symposium on Foundations of software engineering, pp. 216-234 , 6

November 1999.

[

81]

OW2, "ASM," 21 October 2012. [Online]. Available: http://asm.ow2.org . [Accessed 5 2

2013].

[

82]

I. Sommerville, Software Engineering, vol. 9, Boston, Massachusetts: Pearson Education,

2010.

[

83]

R. Jeffries and L. Lindstrom, "Extreme Programming and Agile Software Development

Methodologies," Information Systems Management, vol. 21, no. 3, pp. 41-52, 2004.

[

84]

S. W. Ambler, "Evolutionary Software Development," [Online]. Available:

http://www.agiledata.org/essays/evolutionaryDevelopment.html.

[

85]

E. L. May and B. A. Zimmer, "The Evolutionary Development Model for," The

Evolutionary Development Model for, vol. 47, pp. 39-41, 13 August 1996.

[

86]

Apple, "OSX," [Online]. Available: http://www.apple.com/uk/osx/.

[

87]

Linux users, "Linux in the UK," [Online]. Available: http://linux.co.uk/.

[

88]

w3schools, "OS Platform Statistics," 2013. [Online]. Available:

http://www.w3schools.com/browsers/browsers_os.asp.

[

89]

M. Gallagher, "Options for porting Objective-C/Cocoa apps to Windows," 15 April 2010.

[Online]. Available: http://www.cocoawithlove.com/2010/04/options-for-porting-objective-

ccocoa.html.

[

90]

Xamarin, "Mono," [Online]. Available: http://www.mono-project.com/.

223

[

91]

Oracle, "Java," [Online]. Available: http://www.java.com/.

[

92]

Oracle, "Jaca SE Development Kit 7 Downloads," 2013. [Online]. Available:

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html.

[

93]

Oracle, "Netbeans IDE," 2013. [Online]. Available: https://netbeans.org/.

[

94]

Modisco, "Modisco," [Online]. Available: http://www.eclipse.org/MoDisco/.

[

95]

Apache, "The Apache™ Batik Project," [Online]. Available:

http://xmlgraphics.apache.org/batik/.

[

96]

V. Slavětínský and J. Kosek, "XsdVi," 22 March 2013. [Online]. Available:

http://sourceforge.net/projects/xsdvi/.

[

97]

Modisco, "Modisco User Guide > Infastructure > GASTM > Overview," [Online].

Available:

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.gmt.modisco.infra.doc%2Fdo

c%2FMoDisco%2FComponents%2FGASTM%2FGASTM.html.

[

98]

JavaCC, "Java Compiler Compiler tm (JavaCC tm) - The Java Parser Generator," [Online].

Available: http://javacc.java.net/.

[

99]

OMG, "OMG Architecture-driven modernization: Abstract Syntax Tree metamodel

(ASTM)," January 2011. [Online]. Available: http://www.omg.org/spec/ASTM/1.0/PDF/.

[Accessed 5 2 2013].

[

100]

D. Owens and M. Anderson, "A Generic Framework for Automated Quality Assurance of

Software Models - Implimentation of an Abstract Syntax Tree," International Journal of

Advanced Computer Science and Applications (IJACSA), vol. 5, no. 1, 2014.

[B. Farrimond and J. Collins, "Dimensional Interferance Using Symbol Lives," International

224

101] Conferance: Software Engineering Theory and Practice, 2007.

[

102]

G. Chatzieleftheriou and P. Katsaros, "Test-Driving Static Analysis Tools in Search of C

Code Vulnerabilities," COMPSAW '11 Proceedings of the 2011 IEEE 35th Annual

Computer Software and Applications Conferance Workshops, pp. 96-103, 2011.

[

103]

B. Wichmann, A. Canning, D. Clutterbuck, L. Winsborrow, N. Ward and D. Marsh,

"Industrial perspective on static analysis," Software Engineering Journal, vol. 10, no. 2, pp.

69-75, 3 1995.

[

104]

A. Anywhere, "TestingAnywhere," [Online]. Available:

http://www.automationanywhere.com/Testing/. [Accessed 09 11 2012].

[

105]

S. Goldin, T. Luengwitayakorn and S. Supadarattanawong, "Test-driven development for

graphical UIs: A multi-platform toolset," TENCON 2010 - 2010 IEEE Region 10

Conferance, pp. 2429 - 2433, 21-24 11 2010.

[

106]

NetBeans, "What's the Difference between NetBeans Platform and Eclipse RCP?," [Online].

Available: https://netbeans.org/features/platform/compare.html.

[

107]

Netbeans, "Java Hints," 21 March 2014. [Online]. Available:

http://wiki.netbeans.org/Java_Hints.

[

108]

University of Maryland, "http://findbugs.sourceforge.net/," 07 July 2014 . [Online].

Available: http://findbugs.sourceforge.net/.

[

109]

P. Mohan, "JUnit Testing in Netbeans," 28 February 2013. [Online]. Available:

http://oopbook.com/junit-testing/junit-testing-in-NetBeans/.

[

110]

Oracle, "Profiler," [Online]. Available: https://profiler.netbeans.org/.

[

111]

The Eclipse Foundation, "Search : Programming Languages," [Online]. Available:

http://marketplace.eclipse.org/search/site?f[0]=im_taxonomy_vocabulary_1%3A1966#searc

h.

225

[

112]

Android, "Android Developer Tools," [Online]. Available:

http://developer.android.com/tools/help/adt.html.

[

113]

The Eclipse Foundation, "PHP Development Tools," 11 June 2014. [Online]. Available:

http://www.eclipse.org/pdt/.

[

114]

The Eclipse Foundation , "Quick Fix," [Online]. Available:

http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Freference%2Fp

references%2Fjava%2Feditor%2Fref-preferences-content-assist.htm.

[

115]

The Eclipse Foundation, "Eclipse Test & Performance Tools Platform Project," 25 February

2011. [Online]. Available: http://www.eclipse.org/tptp/.

[

116]

Mountainminds GmbH & Co, "Java Code Coverage for Eclipse," 27 September 2012.

[Online]. Available: http://www.eclemma.org/.

[

117]

C. Walton and L. Walton, "EclipseMetrics," [Online]. Available:

http://www.stateofflow.com/projects/16/eclipsemetrics.

[

118]

A. Loskutov, "JDepend plugin for Eclipse: JDepend4Eclipse," [Online]. Available:

http://andrei.gmxhome.de/jdepend4eclipse/.

[

119]

Sourceforge, "PMD," 31 August 2014. [Online]. Available: http://pmd.sourceforge.net/.

[

120]

Microsoft, "Visual Studio," [Online]. Available: http://msdn.microsoft.com/en-

us/vstudio/aa718325.aspx.

[

121]

Citizendium, "List of languages using the .NET Framework," 4 July 2014. [Online].

Available: http://en.citizendium.org/wiki/List_of_languages_using_the_.NET_Framework.

[

122]

Microsoft, "Visual Studio Languages," [Online]. Available: http://msdn.microsoft.com/en-

us/library/vstudio/ee822860(v=vs.100).aspx.

[T. Thai and H. Lam, "A.2 Third-Party Languages for .NET," in .NET Framework

226

123] Essentials, O'Reilly Media, Inc., 2003.

[

124]

MSDN, "Programming Languages," 2003. [Online]. Available:

http://www.msdn.microsoft.com/en-us/library/aa292164(v=vs.71).aspx.

[

125]

MSDN, "MSDN," 2013. [Online]. Available: http://msdn.microsoft.com/en-US/.

[

126]

MSDN, "Analyzing Application Quality by Using Code Analysis Tools," 2012. [Online].

Available: http://msdn.microsoft.com/en-us/library/dd264897.aspx.

[

127]

MSDN, "Finding Duplicate Code by using Code Clone Detection," 2012. [Online].

Available: http://msdn.microsoft.com/en-us/library/hh205279.aspx.

[

128]

MSDN, "Analyzing Managed Code Quality by Using Code Analysis," 2012. [Online].

Available: http://msdn.microsoft.com/en-us/library/dd264939.aspx.

[

129]

MSDN, "Measuring Complexity and Maintainability of Managed Code," 2012. [Online].

Available: http://msdn.microsoft.com/en-us/library/bb385910.aspx.

[

130]

MSDN, "Debugging with IntelliTrace," 2010. [Online]. Available:

http://msdn.microsoft.com/en-us/library/dd264915(v=vs.100).aspx.

[

131]

MSDN, "Running Unit Tests with Test Explorer," 2012. [Online]. Available:

http://msdn.microsoft.com/en-us/library/hh270865.aspx.

[

132]

MSDN, "Analyzing Application Performance by Using Profiling Tools," 2012. [Online].

Available: http://msdn.microsoft.com/en-us/library/z9z62c29.aspx)..

[

133]

DevExpress , "CodeRush for Visual Studio," [Online]. Available:

http://www.devexpress.com/Products/CodeRush/.

[

134]

Parasoft, "dotTEST," 19 June 2013. [Online]. Available:

http://www.parasoft.com/jsp/products/dottest.jsp.

[P. Smacchia, "NDepend," [Online]. Available: http://www.ndepend.com/.

227

135]

[

136]

N. Nagappan and T. Ball, "Static analysis tools as early indicators of pre-release defect

density," in In Proceedings of the 27th international conference on Software engineering

(ICSE '05), New York, 2005.

[

137]

The Eclipse Foundation, "Platform," [Online]. Available: http://wiki.eclipse.org/Platform.

[

138]

MSDN, "Overview of the .NET Framework," [Online]. Available:

http://msdn.microsoft.com/en-us/library/zw4w595w.aspx.

[

139]

Microsoft Research, "Phoenix Compiler and Shared Source Common Language

Infrastructure," [Online]. Available: http://research.microsoft.com/en-

us/collaboration/focus/cs/phoenix.aspx.

[

140]

Oracle, "NetBeans Java Hint Module Tutorial," [Online]. Available:

https://platform.NetBeans.org/tutorials/nbm-java-hint.html.

[

141]

Oracle, "Debugger and Profiler," [Online]. Available:

https://NetBeans.org/features/java/debugger.html.

[

142]

Oracle, "Debugging Multi-threaded Applications in NetBeans IDE," [Online]. Available:

https://NetBeans.org/kb/docs/java/debug-multithreaded.html.

[

143]

Oracle, "Debugging Multi-threaded Applications in NetBeans IDE," [Online]. Available:

http://wiki.NetBeans.org/AnalyzeStackTrace.

[

144]

J. Huber, " Proposed Method for Achieving Increased Software Maintainability Through

Documentation," The Midwest Instruction and Computing Symposium.

[

145]

Oracle, "Java SE (Standard Edition)," [Online]. Available:

https://netbeans.org/features/java/javase.html.

[D. Marx, "NetBeans 7 and Software Quality Environment," 27 August 2011. [Online].

Available: http://marxsoftware.blogspot.co.uk/2011/08/netbeans-7-and-software-

228

146] quality.html.

[

147]

University of Maryland, "FindBugs™ Fact Sheet," 07 July 2014. [Online]. Available:

http://findbugs.sourceforge.net/factSheet.html.

[

148]

C. B. Almazan, N. Rutar and J. S. Foster, "A Comparison of Bug Finding Tools for Java,"

Software Reliability Engineering, 2004. ISSRE 2004. 15th International Symposium on, pp.

245-256, 2-5 November 2004.

[

149]

University of Maryland, "FindBugs Bug Descriptions," 07 July 2014. [Online]. Available:

http://findbugs.sourceforge.net/bugDescriptions.html.

[

150]

University of Maryland, "FindBugs FAQ," University of Maryland, 06 03 2015. [Online].

Available: http://findbugs.sourceforge.net/FAQ.html. [Accessed 07 04 2015].

[

151]

J. Tessier, "Dependency Finder," 30 January 2014. [Online]. Available:

http://depfind.sourceforge.net/.

[

152]

Sourceforge, "Checkstyle 5.7," 03 February 2014. [Online]. Available:

http://checkstyle.sourceforge.net/.

[

153]

Sourceforge, "Writing Checks," 03 February 2014. [Online]. Available:

http://checkstyle.sourceforge.net/writingchecks.html.

[

154]

JUnit, "JUnit," 05 August 2014. [Online]. Available: http://junit.org/.

[

155]

A. Schmid , "Getting started," 01 September 2014. [Online]. Available:

https://github.com/junit-team/junit/wiki/Getting-started.

[

156]

M. Clark, "Frequently Asked Questions," 05 August 2014. [Online]. Available:

http://junit.org/faq.html#misc_3.

[

157]

MSDN, "Debugging in Visual Studio," [Online]. Available: http://msdn.microsoft.com/en-

us/library/sc65sadd.aspx.

229

[

158]

MSDN, "How to: Watch an Expression in the Debugger," [Online]. Available:

http://msdn.microsoft.com/en-GB/library/0taedcee.aspx.

[

159]

MSDN, "Using the Assert Classes," [Online]. Available: http://msdn.microsoft.com/en-

GB/library/ms182530.aspx.

[

160]

MSDN, "Debug Your App by Recording Code Execution with IntelliTrace," [Online].

Available: http://msdn.microsoft.com/en-gb/library/dd264915.aspx.

[

161]

Microsoft, "Microsoft Visual Studio Ultimate 2012," [Online]. Available:

http://www.microsoft.com/en-gb/download/details.aspx?id=30678.

[

162]

MSDN, "Breakpoints and Tracepoints," [Online]. Available: http://msdn.microsoft.com/en-

us/library/ktf38f66(v=vs.90).aspx.

[

163]

Z. Naboulsi, "Setting a Tracepoint in source code," 2 July 2010. [Online]. Available:

http://blogs.msdn.com/b/zainnab/archive/2010/02/07/setting-a-tracepoint-in-source-code-

vstipdebug0010.aspx.

[

164]

B. Sullivan, "Tracepoints," 10 10 2013. [Online]. Available:

http://blogs.msdn.com/b/visualstudioalm/archive/2013/10/10/tracepoints.aspx.

[

165]

R. Kath, "The Debugging Application Programming Interface," 5 November 1992. [Online].

Available: http://msdn.microsoft.com/en-us/library/ms809754.aspx.

[

166]

MSDN, "Editing Code (Visual C#)," July 2008. [Online]. Available:

http://msdn.microsoft.com/en-us/library/ms228282(v=vs.90).aspx.

[

167]

B. Johnson, "Getting Started," in Professional Visual Studio 2012, John Wiley & Sons,

2012, pp. 79-174.

[

168]

MSDN, "C# Compiler Errors," 2013. [Online]. Available: http://msdn.microsoft.com/en-

us/library/ms228296.aspx.

[MSDN, "Code Analysis for Managed Code Warnings," 2013. [Online]. Available:

230

169] http://msdn.microsoft.com/en-us/library/ee1hzekz.aspx.

[

170]

D. Kamstra, "How to write custom static code analysis rules and integrate them into Visual

Studio 2010," 26 March 2012. [Online]. Available:

http://blogs.msdn.com/b/codeanalysis/archive/2010/03/26/how-to-write-custom-static-code-

analysis-rules-and-integrate-them-into-visual-studio-2010.aspx.

[

171]

MSDN, "F# Development Environment Features," 2013. [Online]. Available:

http://msdn.microsoft.com/en-us/library/ee803793.aspx.

[

172]

MSDN, "Code Metrics Values," 2013. [Online]. Available: http://msdn.microsoft.com/en-

us/library/bb385914.aspx.

[

173]

Z. Naboulsi, "Code Metrics – Maintainability Index," 26 May 2011. [Online]. Available:

http://blogs.msdn.com/b/zainnab/archive/2011/05/26/code-metrics-maintainability-

index.aspx.

[

174]

Alexander, "Code analysis and metrics in .NET applications," 19 July 2007. [Online].

Available: http://appdevchronicles.blogspot.co.uk/2007/07/code-analysis-and-metrics-in-

net.html.

[

175]

V. Sarda, "Analyze Solution For Code Clones," 2 December 2012. [Online]. Available:

http://www.c-sharpcorner.com/UploadFile/d2ee01/analyze-solution-for-code-clones/.

[

176]

MSDN, "Debug Your App by Recording Code Execution with IntelliTrace," 2012. [Online].

Available: http://msdn.microsoft.com/en-us/library/dd264915(v=vs.110).aspx.

[

177]

NetBeans, "NetBeans is Open Source," NetBeans, [Online]. Available:

https://netbeans.org/about/os/. [Accessed 09 04 2015].

[

178]

MSDN, "Developing Visual Studio Extensions," Microsoft, 2013. [Online]. Available:

https://msdn.microsoft.com/en-us/library/dd885119.aspx. [Accessed 09 04 2015].

[

179]

J. Collins, Interviewee, WinFPT. [Interview]. 2012.

231

[

180]

Software Validation Ltd, "INLINE," [Online]. Available:

http://simconglobal.com/fpt_ref_inline.html.

[

181]

Software Validation Ltd, "UNWIND," [Online]. Available:

http://simconglobal.com/fpt_ref_unwind.html.

[

182]

The MathWorks, Inc., "Polyspace Code Prover," [Online]. Available:

http://www.mathworks.co.uk/products/polyspace-code-prover/.

[

183]

The MathWorks, Inc., "http://www.mathworks.co.uk/products/polyspace-bug-

finder/features.html," [Online]. Available:

http://www.mathworks.co.uk/products/polyspace-bug-finder/features.html.

[

184]

ISO, "ISO 26262-1:2011," ISO, 2011. [Online]. Available:

http://www.iso.org/iso/catalogue_detail?csnumber=43464. [Accessed 07 04 2015].

[

185]

IEC, "Functional safety - the IEC," 2015. [Online]. Available:

http://www.iec.ch/about/brochures/pdf/technology/functional_safety.pdf. [Accessed 07 04

2015].

[

186]

CENELEC, 50128 : Railway Applications: Software for Railway Control and Protection

Systems, European Committee for Electrotechnical Standardization, CENELEC, EN50,

1997.

[

187]

International Electrotechnical Commission, "Medical device software – Software life cycle

processes," International IEC Standard 62304 First Edition, 2006.

[

188]

C. M. Holloway, "Towards understanding the DO-178C/ED-12C assurance case.," 7th

International IET System Safety Conference, Incorporating the Cyber Security Conference,

vol. 15, no. 18, 2012.

[

189]

AdaCore, "What is DO-278?," AdaCore, [Online]. Available:

http://www.adacore.com/gnatpro-safety-critical/atm/do-278-overview/. [Accessed 07 04

2015].

232

[

190]

The MathWorks, Inc., "Simulink," [Online]. Available:

http://www.mathworks.co.uk/products/simulink/.

[

191]

E. Mandrikov, "Plugin Class Loader," 15 September 2013. [Online]. Available:

docs.codehaus.org/display/SONAR/Plugin+Class+Loader. [Accessed 2014 September 22].

[

192]

D. Racodon, "Multi-language Analysis," 17 April 2014. [Online]. Available:

http://docs.codehaus.org/display/SONAR/Release+4.2+Upgrade+Notes. [Accessed 22

September 2014].

[

193]

SonarCommunity, "sonar-csharp / csharp-checks / src / main / java / com / sonar / csharp /

checks," 10 April 2014. [Online]. Available: https://github.com/SonarCommunity/sonar-

csharp/tree/master/csharp-checks/src/main/java/com/sonar/csharp/checks. [Accessed 22

September 2014].

[

194]

I. D. Baxter, "The Design Maintenance System (DMS) A Tool for Automating Software

Quality Enhancement," Semantic Designs, Inc., 2001.

[

195]

Semantic Designs, Incorporated, "DMS® Software Reengineering Toolkit™," Semantic

Designs, Incorporated, [Online]. Available:

http://www.semdesigns.com/Products/DMS/DMSToolkit.html. [Accessed 22 September

2014].

[

196]

I. D. Baxter, C. Pidgeon and M. Mehlich, "DMS : Program Transformations for Practical

Scalable Software Evolution," in ICSE '04 Proceedings of the 26th International

Conference on Software Engineering, Washington, 2004.

[

197]

Semantic Designs, "Programming Language Tools," [Online]. Available:

http://www.semdesigns.com/Products/LanguageTools/. [Accessed 22 September 2014].

[

198]

G. Wielenga, "JDK 7 Support in NetBeans IDE 7.0," 11 October 2012. [Online]. Available:

http://netbeans.dzone.com/news/jdk-7-support-netbeans-ide-70.

[

199]

M. Jean, H. Gregg and R. A. Orso, "Representation and Analysis of Software," 30 May

2012. [Online]. Available: http://www.ics.uci.edu/~lopes/teaching/inf212W12/readings/rep-

233

analysis-soft.pdf.

[

200]

L. Copeland, "Chapter 10: Control Flow Testing," in A Practitioner's Guide to Software

Test Design, Artech House, 2004.

[

201]

P. Jansen, "The TIOBE Quality Indicator," 28 May 2014. [Online]. Available:

http://www.tiobe.com/content/paperinfo/TIOBEQualityIndicator.pdf.

[

202]

A. H. Watson and T. J. McCabe, "Structured Testing: A Testing Methodology Using the

Cyclomatic Complexity Metric," September 1996. [Online]. Available:

http://www.mccabe.com/pdf/mccabe-nist235r.pdf.

[

203]

VS, "Cyclomatic Complexity with Example," 12 December 2011. [Online]. Available:

http://testingwarrior.blogspot.co.uk/2011/12/cyclomatic-complexity-with-example.html.

[

204]

Testwell Oy / Verifysoft Technology GmbH, "Halstead Metrics," 05 June 2010. [Online].

Available: http://www.verifysoft.com/en_halstead_metrics.html.

[

205]

Waterloo Maple Inc., "SoftwareMetrics[HalsteadMetrics]," [Online]. Available:

http://www.maplesoft.com/support/help/Maple/view.aspx?path=SoftwareMetrics/Halstead

Metrics.

[

206]

Virtual Machinery, "The Halstead metrics," [Online]. Available:

http://www.virtualmachinery.com/sidebar2.htm.

[

207]

GrammaTech, "Halstead Metrics," [Online]. Available:

http://www.grammatech.com/codesonar/workflow-features/halstead.

[

208]

A. Abran, "Halstead’s Metrics: Analysis of Their Designs," 2010. [Online]. Available:

http://profs.etsmtl.ca/aabran/English/Accueil/ChapersBook/Abran%20-

%20Chapter%20007.pdf.

[

209]

A. Serebrenik, "2IS55 Software," Eindhoven University of Technology, 27 04 2011.

[Online]. Available: http://www.win.tue.nl/~aserebre/2IS55/2010-2011/10.pdf. [Accessed

09 04 2015].

234

[

210]

D. Kouba , "THE ALGEBRA OF SUMMATION NOTATION," University of California,

21 04 1991. [Online]. Available:

https://www.math.ucdavis.edu/~kouba/CalcTwoDIRECTORY/summationdirectory/Summat

ion.html. [Accessed 08 04 2015].

[

211]

Loyola Marymount University’s Computer Science, "Programming Paradigms," [Online].

Available: http://cs.lmu.edu/~ray/notes/paradigms/. [Accessed 22 November 2014].

[

212]

R. W. Sebesta, in Concepts of Programming Languages, Pearson, 2013, pp. 38-39.

[

213]

T. Petricek and J. Skeet, in Real-World Functional Programming: With Examples in F# and

C#, Manning Publications, 2010, p. 12.

[

214]

R. W. Sebesta, in Concepts of Programming Languages, Pearson, 2013, p. 754.

[

215]

P. Van Roy, "Programming paradigms for dummies: What every programmer should

know.," New computational paradigms for computer music, no. 104, 2009.

[

216]

O. J. Dahl, E. W. Dijkstra and C. A. R. Hoare, Structured programming., Academic Press

Ltd, 1972.

[

217]

J. Cain, "Lecture 1 | Programming Paradigms (Stanford)," 18 July 2008. [Online].

Available: https://www.youtube.com/watch?v=Ps8jOj7diA0. [Accessed 19 1 2015].

[

218]

H. M. Deitel, "Python: How to Program," in Python: How to Program, Prentice Hall, 2002,

p. 9 & 60.

[

219]

S. Kedar and S. Thakare, Principles of programming languages 4th Edition, India: Technical

Publications, 2009.

[

220]

T. Budd, "Understanding Object-Oriented Programming with Java," in Understanding

Object-Oriented Programming with Java, Pearson Education, 2002, p. 3.

235

[

221]

W. Savitch, "Absolute Java," in Absolute Java, Pearson Education, 2012, p. 3.

[

222]

T. Budd, "Understanding Object-Oriented Programming with Java," in Understanding

Object-Oriented Programming with Java, Pearson Education, 2002, p. 54.

[

223]

J. Skeet and T. Petricek, "Real-World Functional Programming: With Examples in F# and

C#," in Real-World Functional Programming: With Examples in F# and C#, Manning

Publications, 2010, p. 4.

[

224]

K. Nørmarks, "Overview of the four main programming paradigms," 2 July 2013. [Online].

Available: http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-

paradigm-overview-section.html. [Accessed 26 September 2014].

[

225]

P. Hudak and L. Smith, "Para-functional programming: a paradigm for programming

multiprocessor systems," Proceedings of the 13th ACM SIGACT-SIGPLAN symposium on

Principles of programming languages. ACM, pp. 243-254, 1986.

[

226]

MSDN, "Functional Programming vs. Imperative Programming," 2013. [Online]. Available:

http://msdn.microsoft.com/en-GB/library/bb669144.aspx. [Accessed 22 November 2014].

[

227]

E. R. Harold, "Why Functional Programming in Java is Dangerous," 20 January 2013.

[Online]. Available: http://cafe.elharo.com/programming/java-programming/why-

functional-programming-in-java-is-dangerous/. [Accessed 22 November 2014].

[

228]

Oliver, "Functional programming: A step backward," Java World, 5 Jult 2012.

[

229]

P. Seibel, "They Called It LISP for a Reason: List Processing," in Practical Common Lisp,

Apress, 2005.

[

230]

MIT, "Lists," January 2000. [Online]. Available:

https://groups.csail.mit.edu/mac/ftpdir/scheme-7.4/doc-html/scheme_8.html. [Accessed 22

November 2014].

236

[

231]

MSDN, "Lists (F#)," 2013. [Online]. Available: http://msdn.microsoft.com/en-

us/library/dd233224.aspx. [Accessed 22 Novemeber 2014].

[

232]

Oracle, "Interface List<E>," [Online]. Available:

https://docs.oracle.com/javase/7/docs/api/java/util/List.html. [Accessed 22 Novemeber

2014].

[

233]

Oracle, "Interface Iterator<E>," [Online]. Available:

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html. [Accessed 22 November

2014].

[

234]

LispWorks, "CAR, CDR," [Online]. Available: http://clhs.lisp.se/Body/f_car_c.htm.

[Accessed 22 Novemeber 2014].

[

235]

MSDN, "List.map<'T,'U> Function (F#)," 2013. [Online]. Available:

http://msdn.microsoft.com/en-us/library/ee370378.aspx. [Accessed 22 November 2014].

[

236]

GNU, "7.7 Mapping of Lists," [Online]. Available: https://www.gnu.org/software/mit-

scheme/documentation/mit-scheme-ref/Mapping-of-Lists.html. [Accessed 22 November

2014].

[

237]

GNU, "7.8 Reduction of Lists," [Online]. Available: https://www.gnu.org/software/mit-

scheme/documentation/mit-scheme-ref/Reduction-of-Lists.html. [Accessed 22 November

2014].

[

238]

GNU, "7.5 Filtering Lists," [Online]. Available: https://www.gnu.org/software/mit-

scheme/documentation/mit-scheme-ref/Filtering-Lists.html. [Accessed 22 November 2014].

[

239]

Oracle, "Interface Stream<T>," [Online]. Available:

https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html. [Accessed 22

November 2014].

[

240]

D. Obasanjo, "Functional Programming: using Map, Reduce adn Filter," [Online].

Available:

http://www.25hoursaday.com/weblog/2008/06/16/FunctionalProgrammingInC30HowMapR

237

educeFilterCanRockYourWorld.aspx. [Accessed 18 October 2014].

[

241]

MASN, "Enumerable Class," [Online]. Available: http://msdn.microsoft.com/en-

us/library/system.linq.enumerable.aspx. [Accessed 22 November 2014].

[

242]

B. Harvey and M. Wright, "Lambda," in Simply Scheme: Introducing Computer Science 2/e,

MIT Press, 1991.

[

243]

MSDN, "Lambda Expressions: The fun Keyword (F#)," 2013. [Online]. Available:

http://msdn.microsoft.com/en-us/library/dd233201.aspx. [Accessed 14 November 2014].

[

244]

MSDN, "Lambda Expressions (C# Programming Guide)," 2013. [Online]. Available:

http://msdn.microsoft.com/en-GB/library/bb397687.aspx. [Accessed 22 November 2014].

[

245]

Oracle, "Lambda Expressions," [Online]. Available:

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html. [Accessed 22

November 2014].

[

246]

J. Cain, "Scheme: Functions As Data," 19 May 2008. [Online]. Available:

http://see.stanford.edu/materials/icsppcs107/31-Functions-As-Data.pdf. [Accessed 22

November 2014].

[

247]

MSDN, "Functions as First-Class Values (F#)," 2013. [Online]. Available:

http://msdn.microsoft.com/en-us/library/dd233158.aspx. [Accessed 22 November 2014].

[

248]

Oracle, "Package java.util.function," [Online]. Available:

https://docs.oracle.com/javase/8/docs/api/java/util/function/package-summary.html.

[Accessed 22 November 2014].

[

249]

Oracle, "Interface Predicate<T>," [Online]. Available:

https://docs.oracle.com/javase/8/docs/api/java/util/function/Predicate.html. [Accessed 22

November 2014].

[

250]

MSDN, "Delegates (C# Programming Guide)," 2013. [Online]. Available:

http://msdn.microsoft.com/en-gb/library/ms173171.aspx. [Accessed 22 November 2014].

238

[

251]

Oracle, "Method References," [Online]. Available:

https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html. [Accessed 22

November 2014].

[

252]

Oracle, "JDK 8u25 with NetBeans 8.0.1," [Online]. Available:

http://www.oracle.com/technetwork/articles/javase/jdk-netbeans-jsp-142931.html.

[Accessed 22 November 2014].

[

253]

T. Zezula and A. Stashkova, "Overview of JDK 8 Support in NetBeans IDE," [Online].

Available: https://netbeans.org/kb/docs/java/javase-jdk8.html#lambda. [Accessed 22

November 2014].

[

254]

Haskell, "The Haskell Programming Language," 9 September 2013. [Online]. Available:

https://www.haskell.org/haskellwiki/Haskell. [Accessed 22 November 2014].

[

255]

Mitchell, Neil;, "HLint," [Online]. Available: http://community.haskell.org/~ndm/hlint/.

[Accessed 22 November 2014].

[

256]

Hackage, "The QuickCheck package," 18 December 2011. [Online]. Available:

http://hackage.haskell.org/package/QuickCheck-2.4.2. [Accessed 22 November 2014].

[

257]

Haskell Community Server, "Haskell style scanner," [Online]. Available:

http://projects.haskell.org/style-scanner/. [Accessed 22 November 2014].

[

258]

EFPL, "Object-Oriented Meets Functional," [Online]. Available: http://www.scala-

lang.org/. [Accessed 22 November 2014].

[

259]

B. McKenna, "Flexible Scala code linting tool," 15 October 2014. [Online]. Available:

https://github.com/typelevel/wartremover. [Accessed 22 November 2014].

[

260]

"Scalastyle - Scala style checker," [Online]. Available: http://www.scalastyle.org/.

[Accessed 22 November 2014].

[

261]

C. Ryder and S. Thompson, "Software Metrics: Measuring Haskell," UNSPECIFIED, 2005.

239

[

262]

M. Sherriff, L. Williams and M. Vouk, "Using In-Process Metrics to Predict Defect Density

in Haskell Programs," Fast Abstract, International Symposium on Software Reliability

Engineering, 2004.

[

263]

N. Rodrigues and J. Vilaça, "Identifying Clones in Functional Programs for Refactoring," in

ENTERprise Information Systems, Berlin Heidelberg, Springer , 2010.

[

264]

extremeprogramming, "Refactor Mercilessly," [Online]. Available:

http://www.extremeprogramming.org/rules/refactor.html. [Accessed 22 Sepetember 2014].

[

265]

H. Li, C. Reinke and S. Thompson, "Tool support for refactoring functional programs,"

Proceedings of the 2003 ACM SIGPLAN workshop on Haskell., pp. 27-38, 2003.

[

266]

C. Ryder, "Software Measurement for Functional Programming," University of Kent at

Canterbury, 2004.

[

267]

MIT, "Datalog User Manual," 2004. [Online]. Available:

http://www.ccs.neu.edu/home/ramsdell/tools/datalog/datalog.html. [Accessed 26 September

2014].

[

268]

R. Harper, "What, If Anything, Is A Declarative Language?," 18 July 2013. [Online].

Available: https://existentialtype.wordpress.com/tag/imperative-programming/. [Accessed

26 September 2014].

[

269]

P. Moura, "Logtalk," 19 November 2014. [Online]. Available: http://logtalk.org/. [Accessed

22 November 2014].

[

270]

GNU, "http://www.gprolog.org/," [Online]. Available: http://www.gprolog.org/. [Accessed

22 November 2014].

[

271]

LPA, "LPA Intelligence Server," 2014. [Online]. Available: http://www.lpa.co.uk/int.htm.

[Accessed 22 November 2014].

[

272]

Declarativa, "InterProlog 2.1.2: a Java front-end and enhancement for Prolog," [Online].

Available: http://www.declarativa.com/interprolog/. [Accessed 22 November 2014].

240

[

273]

JPL, "A Java Interface to Prolog," 18 March 2003. [Online]. Available: http://www.swi-

prolog.org/packages/jpl/java_api/. [Accessed 22 November 2014].

[

274]

M. Hanus and F. Zartmann, "Mode analysis of functional logic programs," Static Analysis,

pp. 26-42, 1994.

[

275]

aau, "Overview of the logic paradigm," 2 July 2013. [Online]. Available:

http://people.cs.aau.dk/~normark/prog3-03/html/notes/paradigms_themes-paradigm-

overview-section.html#paradigms_logic-paradigm-overview_title_1. [Accessed 22

November 2014].

[

276]

Charles Sturt University, "Software Design and Development," [Online]. Available:

http://hsc.csu.edu.au/sdd/options/para/3194/logic.htm. [Accessed 22 November 2014].

[

277]

The MITRE Corporation, "Datalog User Manual," 2004. [Online]. Available:

http://www.ccs.neu.edu/home/ramsdell/tools/datalog/datalog.html. [Accessed 22 November

2014].

[

278]

Trinity College, "Facts, Rules and Queries," [Online]. Available:

http://www.cs.trincoll.edu/~ram/cpsc352/notes/prolog/factsrules.html. [Accessed 22

November 2014].

[

279]

Visual Prolog, "Visual Prolog 7.5 Release," 23 July 2014. [Online]. Available:

http://www.visual-prolog.com/. [Accessed 22 November 2014].

[

280]

A. Aiken and T. Lakshman, Directional type checking of logic programs, Berlin Heidelberg:

Springer, 1994.

[

281]

P. De Boeck, and B. Le Charlier, "Static type analysis of Prolog procedures for ensuring

correctness," Programming Language Implementation and Logic Programming, pp. 222-

237, 1990.

[

282]

M. Hanus and F. Zartmann, "Mode analysis of functional logic programs," Static Analysis,

pp. 26-42, 1994.

241

[

283]

E. Rohwedder and F. Pfenning, "Mode and termination checking for higher-order logic

programs," Programming Languages and Systems—ESOP'96, pp. 296-310, 1996.

[

284]

SWI-Prolog, "SWI-Prolog IDE --- Execution Profiler," [Online]. Available: http://www.swi-

prolog.org/profile.html. [Accessed 22 November 2014].

[

285]

T. A. Budd, T. P. Justice and R. K. Pandey, "General-purpose multiparadigm programming

languages: an enabling technology for constructing complex systems," Engineering of

Complex Computer Systems, 1995. Held jointly with 5th CSESAW, 3rd IEEE RTAW and

20th IFAC/IFIP WRTP, Proceedings., First IEEE International Conference on, pp. 334-337,

1995.

[

286]

W. Al-Ahmad and E. Steegmans, "Java and the object-oriented paradigm: comparison and

evaluation," CW Reports, vol. 249, no. 12, 1997.

[

287]

P. Wegner, "Concepts and paradigms of object-oriented programming," ACM SIGPLAN

OOPS Messenger, vol. 1, no. 1, pp. 7-87, 1990.

[

288]

P. Smolensky, "Connectionist AI, symbolic AI, and the brain," Artificial Intelligence

Review, vol. 1, no. 2, pp. 95-109, 1987.

[

289]

R. Toal, "Programming Paradigms," [Online]. Available:

http://cs.lmu.edu/~ray/notes/paradigms/. [Accessed 26 September 2014].

[

290]

aosd steering committee, "aosd.net," [Online]. Available: http://aosd.net/. [Accessed 26

Spetember 2014].

[

291]

D. Temkin, "PROGRAMMING LANGUAGES," 11 November 2014. [Online]. Available:

http://esoteric.codes/. [Accessed 26 September 2014].

[

292]

L. Hartikka, "Arnold Schwarzenegger based programming language," 24 August 2014.

[Online]. Available: https://github.com/lhartikk/ArnoldC. [Accessed 26 September 2014].

[

293]

D. Pazel, "The Effigy Project–Moving Programming Concepts to a Visual Paradigm,"

Visual End User Workshop at VL2000, 2000.

242

[

294]

J. Glimming, T. Altenkirch and J. Patrik , "WHAT IS THE NEXT PROGRAMMING

PARADIGM?," in THE SECOND INTERNATIONAL SOFTWARE TECHNOLOGY

EXCHANGE WORKSHOP, SWEDEN, 2012.

[

295]

Functor AB, "THE LANGUAGE OF ALL LANGUAGES," 2013. [Online]. Available:

http://www.functor.se/products/scalor/scalor/. [Accessed 22 November 2014].

[

296]

Functor AB, "THE SCALOR™ PLATFORM FROM FUNCTOR," [Online]. Available:

http://www.functor.se/products/scalor/. [Accessed 22 November 2014].

[

297]

Functor AB, "CONSTRUCTIVE PROGRAMMING," [Online]. Available:

http://www.functor.se/products/scalor/constructive-by-example/. [Accessed 22 November

2014].

[

298]

MSDN, "LINQ (Language-Integrated Query)," MSDN, 2015. [Online]. Available:

https://msdn.microsoft.com/en-us/library/bb397926.aspx .

[

299]

C. Mims, "Why CPUs Aren't Getting Any Faster," MIT Technology Review, 12 October

2010.

[

300]

J. Hruska, "The death of CPU scaling: From one core to many — and why we’re still stuck,"

Extreme Tech, 1 February 2012.

[

301]

J. Wyngaard, M. Inggs, J. Collins and B. Farrimond, "Towards a many-core architecture for

HPC," In Field Programmable Logic and Applications (FPL), 2013 23rd International

Conference on, pp. 1-4, 2013.

[

302]

ISO, "ISO/IEC 14977 : 1996(E)," 1996. [Online]. Available:

http://www.cl.cam.ac.uk/~mgk25/iso-14977.pdf. [Accessed 17 October 2012].

[

303]

M. Might, "The language of languages," [Online]. Available:

http://matt.might.net/articles/grammars-bnf-ebnf/. [Accessed 22 November 2014].

[

304]

S. C. Johnson, "Yacc: Yet Another Compiler-Compiler," [Online]. Available:

http://dinosaur.compilertools.net/yacc/. [Accessed 28 November 2014].

243

[

305]

E. Berger, "The FORTRAN Automatic Coding System," 2011. [Online]. Available:

http://people.cs.umass.edu/~emery/classes/cmpsci691st/scribe/lecture2-fortran.pdf.

[Accessed 22 November 2014].

[

306]

w3schools, "XQuery Tutorial," [Online]. Available: http://www.w3schools.com/xquery/.

[Accessed 22 November 2014].

[

307]

M. Rouse, "XQL (XML Query Language)," [Online]. Available:

http://searchsoa.techtarget.com/definition/XQL. [Accessed 22 November 2014].

[

308]

J. Zemerick, "The following slides are based on the work presented in the MS CS thesis

“Profiling, Extracting, and Analyzing Dynamic Software Metrics” of Jeffrey Zemerick,"

2009. [Online]. Available: http://www.csee.wvu.edu/~katerina/Teaching/CS-736-Fall-

2010/CS-736-Program-Profiling.pdf.

[

309]

D. A. Watt and O. L. Madsen, "Extended Attribute Grammars," The Computer Journal, vol.

26, no. 2, pp. 142-153, 1983.

[

310]

TSWP, "Living Glossary," [Online]. Available:

http://www.testingstandards.co.uk/living_glossary.htm#Testing. [Accessed 11 12 2012].

[

311]

P. Smacchia, "Metrics Definitions," [Online]. Available: http://ndepend.com/Metrics.aspx.

[

312]

F. Pfenning and A. Platzer, "Lecture Notes on Liveness Analysis," [Online]. Available:

http://symbolaris.com/course/Compilers12/04-liveness.pdf.

[

313]

R. Patton, Software Testing, 2nd Edition ed., N. Rowe, S. Qiu, C. Clapp and G. Nedeff,

Eds., Indianapolis, lnd.: Sams Publishing, 2006.

[

314]

D. Owens and M. Anderson, "A generic framework for automated Quality Assurance of

software models-Application of an Abstract Syntax Tree," Science and Information

Conference (SAI), 2013, pp. 207 - 211, 2013.

[T. Murnane, K. Reed, D. Grant and T. Chen, "A Preliminary Survey on Software

244

315] Testing Practices in Australia," Software Engineering Conference, 2004. Proceedings. 2004

Australian, pp. 116-125, 13-16 April 2004.

[

316]

A. Moller and M. I. Schwartzbach, "Static Program Analysis," 8 February 2012. [Online].

Available: http://cs.au.dk/~mis/static.pdf.

[

317]

Microsoft, "Windows," [Online]. Available: http://windows.microsoft.com/en-

gb/windows/home.

[

318]

J.-B. Michel, Y. K. Shen, A. P. Aiden, A. Veres, M. K. Gray, W. Brockman, T. G. B. Team,

J. P. Pickett, D. Hoiberg, D. Clancy, P. Norvig, J. Orwant, S. Pinker, M. A. Nowak and E.

L. Aiden, "Quantitative Analysis of Culture Using Millions of Digitized Books," Google, 16

12 2010. [Online]. Available:

http://books.google.com/ngrams/graph?content=software+testing%2Csoftware+quality&yea

r_start=1900&year_end=2008&corpus=0&smoothing=6. [Accessed 11 10 2012].

[

319]

K. A. Mayo, S. A. Wake and M. S. Henry, "Static and Dynamic Software Quality Metric

Tools," 1990.

[

320]

L. Lou, "Software Testing Techniques: Technology Maturation and Research Strategy,"

Class Report, 2001.

[

321]

ISO, "Appendix C ISO 9126 Metrics," 1996. [Online]. Available:

http://www.rockynook.com/samples/97/ISO_9126_Metrics.pdf. [Accessed 23 November

2012].

[

322]

IBM, "IBM Rational AppScan: Application security and risk managment," November 2011.

[Online]. Available:

http://www.sebyde.nl/uploads/media/IBM_Rational_Appscan_family_Data_Sheet.pdf.

[Accessed 09 11 2012].

[

323]

R. Harrison, "Comparing programming paradigms: an evaluation of functional and object-

oriented programs," Software Engineering Journal, vol. 11, no. 4, pp. 247-254, 1996.

[M. Harman and R. M. Hierons, "An Overview of Program Slicing," [Online]. Available:

245

324] http://www0.cs.ucl.ac.uk/staff/mharman/sf.html.

[

325]

M. Hanus, "Distributed Programming in a Multi-Paradigm Declarative Language,"

Principles and Practice of Declarative Programming, vol. 1702, pp. 188-205, 29 September

1999.

[

326]

D. R. Hanson, "lcc.NET: Targeting the .NET Common Intermediate Language from

Standard C," Software: Practice and Experience, vol. 34, no. 3, p. 265–286, 05 January

2004.

[

327]

. L. Gupta, "Inversion of control (IoC) and dependency injection (DI) patterns in spring

framework and related interview questions," 19 March 2013. [Online]. Available:

http://howtodoinjava.com/2013/03/19/inversion-of-control-ioc-and-dependency-injection-

di-patterns-in-spring-framework-and-related-interview-questions/.

[

328]

L. M. Garshol, "BNF and EBNF: What are they and how do they work?," 3 March 2005.

[Online]. Available: http://www.garshol.priv.no/download/text/bnf.html. [Accessed 17

October 2012].

[

329]

R. W. Floyd, "The paradigms of programming," Communications of the ACM, vol. 22, no.

8, pp. 455-460, 1979.

[

330]

P. Ferrara, "Static Type Analysis of Pattern Matching by Abstract Interpretation," Formal

Techniques for Distributed Systems. , pp. 186-200, 2010.

[

331]

B. Edupuganty and B. Bryant, "Two-level Grammar as a Functional Programming

Language," The Computer Journal, vol. 32, no. 1, pp. 36-44, 1989.

[

332]

G. Deltombe and O. L. &. B. F. Goaer, "Bridging KDM and ASTM for Model-Driven

Software Modernization," SEKE, pp. 517-524, 2012.

[

333]

B. Cui, J. Li, T. Guo, J. X. Wang and D. Ma, "Code Comparison System based on Abstract

Syntax Tree," 2010 3rd IEEE International Conference on Broadband Network and

Multimedia Technology (IC-BNMT), 2010.

246

[

334]

J. Collins, B. Farrimond, M. Anderson, D. Owens and D. Bayliss, "Automated Quality

Assurance Analysis: WRF–A Case Study," Journal of Software, vol. 8, no. 9, pp. 2177-

2184, 2013.

[

335]

J. K. Chhabra and V. Gupta, "A survey of dynamic software metrics.," Journal of computer

science and technology, vol. 25, no. 5, pp. 1016-1029, 2010.

[

336]

J. R. Cary, S. G. Shasharina, J. C. Cummings, J. V. Reynders and P. J. Hinker, "Comparison

of C++ and Fortran90 for object-orientedscientificprogramming," Computer Physics

Communications, vol. 105, no. 1, pp. 20 - 36, September 1997.

[

337]

C. Britton and J. Doake, "Testing and Handing Over the System," in Software System

Development : A Gentle Introduction, 4th Edition ed., K. Reade, K. Mosman, A. Duijser and

J. Bishop, Eds., Maidenhead, Birkshire: MCGraw-Hill Education, 2006, pp. 175-180.

[

338]

E. Bolshakova, "ROGRAMMING PARADIGMS IN COMPUTER SCIENCE

EDUCATION," International Journal "Information Theories & Applications", vol. 12, pp.

285-290.

[

339]

J. E. Bentley, "Software testing fundamentals–concepts, roles, and terminology," in

Proceedings of SAS Conference, 2005.

[

340]

A. Ambler, M. Burnett and B. Zimmerman, "Browse Journals & Magazines > Computer

...> Volume:25 Issue:9 ￼ Operational versus definitional: a perspective on programming

paradigms," Computer, vol. 25, no. 9, pp. 28-43, September 1992.

[

341]

MSDN, "Using the Profiler Tool to analyze the performance of your code," 17 July 2013.

[Online]. Available: http://msdn.microsoft.com/en-us/library/ie/gg699341(v=vs.85).aspx.

[

342]

Canonical, [Online]. Available: http://www.ubuntu.com/.

[

343]

Boot Test, "The Execution Monitor user's guide," [Online]. Available:

http://www.boost.org/doc/libs/1_45_0/libs/test/doc/html/execution-monitor/user-guide.html.

247

[

344]

McCabe Software, "Software Metrics Glossary," [Online]. Available:

http://www.mccabe.com/iq_research_metrics.htm.

[

345]

MathWorks, "Polyspace Bug Finder - Key Features," [Online]. Available:

www.mathworks.co.uk/products/polyspace-bug-finder/features.html. [Accessed 19

September 2014].

[

346]

Aivosto Oy, "Lines of code metrics (LOC)," [Online]. Available:

http://www.aivosto.com/project/help/pm-loc.html.

[

347]

Bourns College of Engineering, "Lecture 3 Data Flow Analysis," 3 March 2009. [Online].

Available: http://www.cs.ucr.edu/~gupta/teaching/201-09/My3.pdf.

[

348]

Penn Engineering - Computer and Information Science, "Introduction to Data-flow

Analysis," [Online]. Available: http://www.cis.upenn.edu/~cis570/slides/lecture04.pdf.

[

349]

SimCon, "http://www.simconglobal.com/fpt_ref_index.html," [Online]. Available:

http://www.simconglobal.com/fpt_ref_index.html. [Accessed 19 September 2014].

[

350]

Free Software Foundation, Inc., "GCC, the GNU Compiler Collection," 14 August 2014.

[Online]. Available: https://gcc.gnu.org/.

[

351]

IBM, "Execution trace," [Online]. Available:

http://pic.dhe.ibm.com/infocenter/brdotnet/v7r1/index.jsp?topic=%2Fcom.ibm.websphere.il

og.brdotnet.doc%2FContent%2FBusiness_Rules%2FDocumentation%2F_pubskel%2FRule

s_for_DotNET%2Fps_RFDN_Global385.html.

[

352]

The Computer Language Company Inc., "Definition of:Java Virtual Machine," [Online].

Available: http://www.pcmag.com/encyclopedia/term/45578/java-virtual-machine.

[

353]

MSDN, "Definite Assignment," [Online]. Available: http://msdn.microsoft.com/en-

us/library/aa277915(v=vs.60).aspx.

[

354]

Sourceforge.net, "Current Rulesets," 11 August 2013. [Online]. Available:

http://pmd.sourceforge.net/pmd-5.0.5/rules/index.html. [Accessed 2014c September 19].

248

[

355]

Nullstone Corporation, "Constant Folding," [Online]. Available:

http://www.compileroptimizations.com/category/constant_folding.htm.

[

356]

Nullstone Corporation, "Compiler Optimizations," [Online]. Available:

http://www.compileroptimizations.com/category/dead_code_elimination.htm.

[

357]

Nullstone Corporation, "Compiler Optimizations," [Online]. Available:

http://www.compileroptimizations.com/category/constant_propagation.htm.

[

358]

Microsoft, "Common Language Runtime (CLR)," [Online].

[

359]

GrammaTech, "CODESONAR®," [Online]. Available:

http://www.grammatech.com/codesonar/metrics.

[

360]

Computer Science University of Meryland, "CMSC 631 — Program Analysis and

Understanding," 2003. [Online]. Available:

http://www.cs.umd.edu/class/fall2003/cmsc631/lectures/l02.pdf.

[

361]

Sourceforge, "Available Checks," 03 February 2014. [Online]. Available:

http://checkstyle.sourceforge.net/availablechecks.html. [Accessed 19 September 2014].

[

362]

Merriam-Webster, "Automation," [Online]. Available: http://www.merriam-

webster.com/dictionary/automation.

[

363]

Realsearch, "An Introduction to Object-Oriented Metrics," [Online]. Available:

http://agile.csc.ncsu.edu/SEMaterials/OOMetrics.htm.

249

 Glossary

AST - Abstract Syntax Tree

ASTM - Abstract Syntax Tree Meta-Model

BNF - Backus–Naur Form

CFG - Control Flow Graph

CIL - Common Intermediate Language

CLR - Common Language Runtime

EHU - Edge Hill University

EBNF - Extended Backus–Naur Form

GASTM - Generic Abstract Syntax Tree Meta-Model

GCC - GNU Compiler Collection

IDE - Integrated Development Environment

IR - Internal Representation

LIQA - Language Independent Quality Assurance

MSIL - Microsoft Intermediate Language

OMG - Object Management Group

OS - Operating System

QA - Quality Assurance

QACC - Quality Assurance in Climate Code

RCP - Rich Client Platform

REF - Research Excellence Framework

SDK - Software Development Kit

250

SSCLI - Shared Source Common Languages Infrastructure

ST - Software Testing

UCAR - University Corporation for Atmospheric Research

VM - Virtual Machine

WRF - Weather Research & Forecasting Model

WSH - Windows Script Host

XML - Extensible Markup Language

