29,828 research outputs found

    The Two-Phase Commitment Protocol in an Extended π-Calculus

    Get PDF
    AbstractWe examine extensions to the π-calculus for representing basic elements of distributed systems. In spite of its expressiveness for encoding various programming constructs, some of the phenomena inherent in distributed systems are hard to model in the π-calculus. We consider message loss, sites, timers, site failure and persistence as extensions to the calculus and examine their descriptive power, taking the Two Phase Commit Protocol (2PCP), a basic instance of an atomic commitment protocol, as a testbed. Our extensions enable us to represent the 2PCP under various failure assumptions, as well as to reason about the essential properties of the protocol

    Verifying Real-Time Systems using Explicit-time Description Methods

    Get PDF
    Timed model checking has been extensively researched in recent years. Many new formalisms with time extensions and tools based on them have been presented. On the other hand, Explicit-Time Description Methods aim to verify real-time systems with general untimed model checkers. Lamport presented an explicit-time description method using a clock-ticking process (Tick) to simulate the passage of time together with a group of global variables for time requirements. This paper proposes a new explicit-time description method with no reliance on global variables. Instead, it uses rendezvous synchronization steps between the Tick process and each system process to simulate time. This new method achieves better modularity and facilitates usage of more complex timing constraints. The two explicit-time description methods are implemented in DIVINE, a well-known distributed-memory model checker. Preliminary experiment results show that our new method, with better modularity, is comparable to Lamport's method with respect to time and memory efficiency

    Mutual Mobile Membranes with Timers

    Full text link
    A feature of current membrane systems is the fact that objects and membranes are persistent. However, this is not true in the real world. In fact, cells and intracellular proteins have a well-defined lifetime. Inspired from these biological facts, we define a model of systems of mobile membranes in which each membrane and each object has a timer representing their lifetime. We show that systems of mutual mobile membranes with and without timers have the same computational power. An encoding of timed safe mobile ambients into systems of mutual mobile membranes with timers offers a relationship between two formalisms used in describing biological systems

    An Extensible Timing Infrastructure for Adaptive Large-scale Applications

    Full text link
    Real-time access to accurate and reliable timing information is necessary to profile scientific applications, and crucial as simulations become increasingly complex, adaptive, and large-scale. The Cactus Framework provides flexible and extensible capabilities for timing information through a well designed infrastructure and timing API. Applications built with Cactus automatically gain access to built-in timers, such as gettimeofday and getrusage, system-specific hardware clocks, and high-level interfaces such as PAPI. We describe the Cactus timer interface, its motivation, and its implementation. We then demonstrate how this timing information can be used by an example scientific application to profile itself, and to dynamically adapt itself to a changing environment at run time

    Sensornet checkpointing: enabling repeatability in testbeds and realism in simulations

    Get PDF
    When developing sensor network applications, the shift from simulation to testbed causes application failures, resulting in additional time-consuming iterations between simulation and testbed. We propose transferring sensor network checkpoints between simulation and testbed to reduce the gap between simulation and testbed. Sensornet checkpointing combines the best of both simulation and testbeds: the nonintrusiveness and repeatability of simulation, and the realism of testbeds

    Running real time distributed simulations under Linux and CERTI

    Get PDF
    This paper presents some experiments and some results to enforce real time distributed simulations in accordance with the High Level Architecture (HLA). Simulations were run by using CERTI, an open source middleware, as the Run Time Infrastructure (RTI). Models were distributed over computers under various available versions of the 2.6 Linux kernel. Studies and experiments relied on a real case study. The chosen case study was the simulation of an "in formation" flight of observation satellites. This case study brings up some real applicative needs in real time distributed simulations and real configurations of simulators and models. Two simulations of "in formation" flight of satellites were studied. The study consisted in modeling the behaviour of the simulators and in running these models by using various kernel or middleware operating mechanisms and services. Time measurements were performed at each test giving some results on the ability of the simulation to meet its real time requirements

    PALS/PRISM Software Design Description (SDD): Ver. 0.51

    Get PDF
    This Software Design Description (SDD) provides detailed information on the architecture and coding for the PRISM C++ library (version 0.51). The PRISM C++ library supports consistent information sharing and in- teractions between distributed components of networked embedded systems, e.g. avionics. It is designed to reduce the complexity of the networked sys- tem by employing synchronous semantics provided by the architectural pat- tern called a Physically-Asynchronous Logically-Synchronous (PALS) system.unpublishednot peer reviewe
    • …
    corecore