
PALS/PRISM
Software Design Description (SDD): Ver. 0.51

Prepared by Cheolgi Kim, Abdullah Al-Nayeem, Heechul Yun,

Po-Liang Wu, and Lui Sha

of CS Dept., University of Illinois at Urbana-Champaign,

in Collaboration with

S. Bray, A. Carnifax, R. S. Hickey, K. D. Laviolette,

J. A. Lock, T. M. Parks and M. E. Ucal

of Lockheed Martin Co.

August 11, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4833878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

I Software Design Description 13

1 Overview 14
1.1 Introduction . 14

1.1.1 Purpose . 17
1.1.2 Scope . 17

1.2 System Overview . 17

2 PRISM Design and De�nition 20
2.1 System Overview . 20

2.1.1 Lockstep synchronization 20
2.1.2 Harmonic synchronization 22
2.1.3 Client-server synchronization 23
2.1.4 Intra-period synchronization 25
2.1.5 Environment input/output synchronizer 25

2.2 Hardware Architecture . 26
2.3 Support Software . 27
2.4 Implementation Details . 27
2.5 Software Scalability and Flexibility 27

3 System Architectural Design 29
3.1 System Components . 31

3.1.1 Prism_manager and Abstract_thread_factory 31
3.1.2 Prism_task . 31
3.1.3 TX_prism_port . 32
3.1.4 RX_prism_port . 32

3.2 Concept of Execution . 33
3.3 Interface Design . 34
3.4 Software Development Environment 34

3.4.1 Compilers . 34

3.4.2 Operating Systems . 34

4 PRISM Detailed Design 35
4.1 Class Diagram for PRISM core 35
4.2 Class Diagram for system dependent part 36

4.2.1 System-dependent communications 36
4.2.2 System-dependent thread interfaces 37

4.3 Activities between Prism_task class and its subclass objects . 39
4.4 Interactions between Prism_task and TX_prism_port 40
4.5 Class and Use Cases for Prism_task and RX_prism_port . . . 42
4.6 Pure PALS and Client-server semantics 44

II Reference Manual 47

5 Class Index 48
5.1 Class Hierarchy . 48

6 Class Index 50
6.1 Class List . 50

7 Class Documentation 52
7.1 prism::Abstract_condition_variable Class Reference 52

7.1.1 Detailed Description 53
7.1.2 Member Function Documentation 53

7.1.2.1 signal . 53
7.1.2.2 wait . 53

7.2 prism::Abstract_lock Class Reference 54
7.2.1 Detailed Description 54
7.2.2 Member Function Documentation 55

7.2.2.1 lock . 55
7.2.2.2 trylock . 55
7.2.2.3 unlock . 55

7.3 prism::Abstract_thread_engine Class Reference 55
7.3.1 Detailed Description 56
7.3.2 Member Function Documentation 57

7.3.2.1 start . 57
7.3.2.2 wait_for_completion 57

7.4 prism::Abstract_thread_factory Class Reference 58
7.4.1 Detailed Description 59
7.4.2 Member Function Documentation 59

7.4.2.1 create_condition_variable 59
7.4.2.2 create_lock 59
7.4.2.3 create_thread_engine 60
7.4.2.4 create_timer 60
7.4.2.5 get_current_time 60

7.5 prism::Abstract_timer Class Reference 61
7.5.1 Detailed Description 61
7.5.2 Member Function Documentation 62

7.5.2.1 restart_timer 62
7.5.2.2 stop_timer 62
7.5.2.3 wait . 62

7.6 prism::Lock_failed Class Reference 63
7.6.1 Detailed Description 63

7.7 prism::Port_bu�er Class Reference 63
7.7.1 Detailed Description 66
7.7.2 Constructor & Destructor Documentation 66

7.7.2.1 Port_bu�er 66
7.7.3 Member Function Documentation 67

7.7.3.1 append_double 67
7.7.3.2 append_�oat 67
7.7.3.3 get_max_size 67
7.7.3.4 get_remained_size 67
7.7.3.5 retrieve_double 68
7.7.3.6 retrieve_�oat 68
7.7.3.7 size . 68
7.7.3.8 tostr . 68

7.8 prism::Port_bu�er_over�ow Class Reference 69
7.8.1 Detailed Description 69

7.9 prism::Port_exception Class Reference 69
7.9.1 Detailed Description 70

7.10 prism::Port_no_data_received Class Reference 70
7.10.1 Detailed Description 70

7.11 prism::POSIX_condition_variable Class Reference 70
7.11.1 Detailed Description 72

7.12 prism::POSIX_lock Class Reference 72

7.12.1 Detailed Description 74
7.12.2 Constructor & Destructor Documentation 74

7.12.2.1 POSIX_lock 74
7.12.2.2 ∼POSIX_lock 74

7.12.3 Member Function Documentation 74
7.12.3.1 lock . 74
7.12.3.2 trylock . 74
7.12.3.3 unlock . 74

7.13 prism::POSIX_thread_engine Class Reference 75
7.13.1 Detailed Description 76
7.13.2 Member Function Documentation 77

7.13.2.1 start . 77
7.13.2.2 wait_for_completion 77

7.14 prism::POSIX_thread_factory Class Reference 77
7.14.1 Detailed Description 79
7.14.2 Member Function Documentation 79

7.14.2.1 create_condition_variable 79
7.14.2.2 create_lock 80
7.14.2.3 create_thread_engine 80
7.14.2.4 create_timer 80
7.14.2.5 get_current_time 81
7.14.2.6 get_factory 81

7.15 prism::POSIX_timer Class Reference 81
7.15.1 Detailed Description 83
7.15.2 Constructor & Destructor Documentation 83

7.15.2.1 POSIX_timer 83
7.15.3 Member Function Documentation 84

7.15.3.1 restart_timer 84
7.15.3.2 stop_timer 84
7.15.3.3 wait . 84

7.16 Print_bu�er Class Reference 84
7.16.1 Detailed Description 85

7.17 prism::Prism_manager Class Reference 85
7.17.1 Detailed Description 86
7.17.2 Member Function Documentation 86

7.17.2.1 get_current_time 86
7.17.2.2 get_prism_default_factory 86
7.17.2.3 initialize_prism 87

7.17.2.4 is_prism_initialized 87
7.18 prism::Prism_task Class Reference 87

7.18.1 Detailed Description 90
7.18.2 Constructor & Destructor Documentation 90

7.18.2.1 Prism_task 90
7.18.2.2 Prism_task 90
7.18.2.3 Prism_task 91

7.18.3 Member Function Documentation 91
7.18.3.1 each_pals_period 91
7.18.3.2 get_base_time 91
7.18.3.3 get_pals_period 91
7.18.3.4 get_pals_period_in_ns 92
7.18.3.5 get_timer_index 92
7.18.3.6 initialize . 92
7.18.3.7 run . 92
7.18.3.8 wait_for_timer 92

7.19 prism::Prism_time Class Reference 93
7.19.1 Detailed Description 94
7.19.2 Constructor & Destructor Documentation 94

7.19.2.1 Prism_time 94
7.19.3 Member Function Documentation 94

7.19.3.1 add_nanoseconds 94
7.19.3.2 add_time . 94
7.19.3.3 compare . 95
7.19.3.4 get_nanosecond 95
7.19.3.5 get_second 95
7.19.3.6 subtract_nanoseconds 95

7.20 Realtime_fprintf Class Reference 96
7.20.1 Detailed Description 97
7.20.2 Friends And Related Function Documentation 97

7.20.2.1 initialize_rt_fprintf 97
7.20.2.2 rt_fprintf . 98

7.21 prism::RX_port Class Reference 98
7.21.1 Detailed Description 99
7.21.2 Constructor & Destructor Documentation 99

7.21.2.1 RX_port . 99
7.21.3 Member Function Documentation 100

7.21.3.1 recv . 100

7.21.3.2 recv_port_bu�er 100
7.22 prism::RX_POSIX_multicast_port Class Reference 101

7.22.1 Detailed Description 102
7.22.2 Member Function Documentation 102

7.22.2.1 recv . 102
7.23 prism::RX_POSIX_unicast_port Class Reference 103

7.23.1 Detailed Description 105
7.23.2 Member Function Documentation 105

7.23.2.1 recv . 105
7.24 prism::RX_prism_port Class Reference 106

7.24.1 Detailed Description 107
7.24.2 Constructor & Destructor Documentation 107

7.24.2.1 RX_prism_port 107
7.24.2.2 RX_prism_port 108

7.24.3 Member Function Documentation 109
7.24.3.1 recv . 109
7.24.3.2 recv_port_bu�er 110

7.25 prism::Thread_stub Class Reference 110
7.25.1 Detailed Description 112
7.25.2 Constructor & Destructor Documentation 112

7.25.2.1 Thread_stub 112
7.25.3 Member Function Documentation 113

7.25.3.1 run . 113
7.25.3.2 wait_for_completion 113

7.26 prism::TX_port Class Reference 113
7.26.1 Detailed Description 114
7.26.2 Member Function Documentation 114

7.26.2.1 send . 114
7.26.2.2 send_port_bu�er 115

7.27 prism::TX_POSIX_multicast_port Class Reference 116
7.27.1 Detailed Description 117
7.27.2 Member Function Documentation 117

7.27.2.1 send . 117
7.28 prism::TX_POSIX_unicast_port Class Reference 118

7.28.1 Detailed Description 119
7.28.2 Member Function Documentation 119

7.28.2.1 send . 119
7.29 prism::TX_prism_port Class Reference 120

7.29.1 Detailed Description 121
7.29.2 Constructor & Destructor Documentation 121

7.29.2.1 TX_prism_port 121
7.29.3 Member Function Documentation 122

7.29.3.1 send . 122

List of Figures

1.1 A high-level system architecture of a networked embedded sys-
tem . 18

2.1 Lockstep synchronization in PALS (PRISM) 21
2.2 Ideal Harmonic synchronization demonstrated in PRISM . . . 22
2.3 Client-server synchronization in PALS/PRISM 23
2.4 Ideal intra-period synchronization demonstrated by PALS/PRISM 25
2.5 Environment input synchronizer in the PALS system (lockstep

synchronization) . 26
2.6 Environment output synchronizer in the PALS system (lock-

step synchronization) . 26

3.1 Internal architecture of a synchronization task 30

4.1 Class diagram of PRISM system 36
4.2 Class diagram for system dependent part for communications . 37
4.3 Class diagram for system dependent part for threads 38
4.4 Activities between Prism_task class and its subclasses 40
4.5 Sequence and activity diagrams of TX_prism_port and Port_buffer 41
4.6 Sequence diagram for RX_prism_port and Port_buffer . . . 42
4.7 Activity diagram of RX_prism_port for packet reception . . . 43
4.8 Sequence diagram between tasks in pure PALS semantics and

client-server PALS semantics 44

Version History

Version 0.51

• Bug �xes found by Coverity. There was uninitialized member variables
in Realtime_fprintf.

• Prism_task::prism_state, a deprecated member variable was removed
and neat Prism_task::run() member function follows.

• DBG_PRINTF can be used with any prism header.

• Some prologues of the �les were corrected.

• Some JSF code convention was corrected.

• LICENSE.txt �le includes the LMC license.

Version 0.50

• Bug �xes from CodeSonar. There had been a bug that accesses the
memory after releasing the packet bu�er when RX_prism_port::recv_

port_buffer() removes stale packets from the queue that have missed
its own timers for deliveries.

• Code stabilization in RX_prism_port::recv_port_buffer(). To pro-
hibit, memory over�ow caused by excessive packet queueing, the li-
brary limits the packet queueing time and the number of queued pack-
ets in RX_prism_port. The limits are speci�ed at the constructors

Prism_task::run()
RX_prism_port::recv_port_buffer()
RX_prism_port::recv_port_buffer()

of RX_prism_port. For more detail, read the API references for the
constructors.

• POSIX_RX_port must specify the size of receiving bu�er when receiving
packets using the recv_port_buffer member function. See the API
reference manual.

Version 0.49

• System dependent code of threads and timers are decoupled from the
Prism_task class. To use a thread system other than pthread, the
developers will implement a subclass of Abstract_thread_engine for
the new thread system.

• Some APIs have changes for better JSF compliance

� Namespace prism is employed for all the PRISM related code.
JSF coding standards regulates that all the nonlocal names should
be placed in some namespace. �using namespace prism;� is ad-
vised to be added at the header of all C++ �les.

� Changes: Prism_manager class is added for better object-orientation.

∗ prism_manager.h should be included when Prism_manager

class is used.

∗ initialize_prism() function is transferred to Prism_manager
class. At the call, (1) thread factory is speci�ed, and (2) the
use of rt_fprintf() is determined. If the users wants to
display the debug messages through rt_fprintf(), set it to
true. If the users do not want to display messages using the
API or have other display mechanisms, set it to false. As a
result, the new call is: Prism_manager::initialize_prism(
thread factory, use of rt_fprintf).

� Changes: posix_timer.h was extended to have thread-related
class declarations and renamed into posix_thread.h. Now, the
original posix_timer.h of version 0.48 is part of the posix_thread.h.

� Changes: posix or Posix used in any name is changed to POSIX

since JSF coding standard regulates that acronyms will be com-
posed of uppercase letters.

� Changes: Constants changed to lowercase for JSF coding stan-
dard.

� Changes: System time was formerly acquired by gettimeofday()

and timeval_to_timespec has been used for time type casting.
Since they are system dependent, it was replaced by Prism_manager::
get_current_time(), which uses the member function of the de-
fault thread factory for PRISM.

� Changes: To optimize bu�er copy overhead, recv_port_buffer(Port_
buffer*buf) was changed to Port_buffer* recv_port_buffer().
The caller of the function must release the memory of the returned
Port_buffer object.

� Prism_task::wait_completion() is renamed by Prism_task::

wait_for_completion(). To make it a better member function
name.

Version 0.48

• A thread can set multiple o�set timers to divide a PALS period into
multiple computation�communication phases with some time o�sets.
It provides implementation �exibility beyond client-server PALS.

• It decouples the RX_prism_port and TX_prism_port from UDP/IP.
By implementing subclasses of RX_port and TX_port without a con-
cern of PRISM, PRISM can use other underlying network layers for
communications.

Version 0.3

• UDP/IP multicast was added.

Version 0.2

• Computations and communications within a period can be blended in
a piece of code. The implementation overhead of PALS protocol is

Prism_manager::get_current_time()
Prism_manager::get_current_time()
recv_port_buffer(Port_buffer* buf)
recv_port_buffer(Port_buffer* buf)
Prism_task::wait_for_completion()
Prism_task::wait_for_completion()

delegated to the RX_prism_port and TX_prism_port classes. It also
�xes some memory leak problems in the �rst version.

Version 0.1

• Initial implementation. The initial implementation was based upon the
original PALS pattern. It needs explicit division between computations
and communications with time intervals to provide the PALS protocol.
The users have to compute the scheduling jitter, minimum response
time, and minimum network delay explicitly.

Part I

Software Design Description

Chapter 1

Overview

1.1 Introduction

This Software Design Description (SDD) provides detailed information on
the architecture and coding for the PRISM C++ library (version 0.49).
The PRISM C++ library supports consistent information sharing and in-
teractions between distributed components of networked embedded systems,
e.g. avionics. It is designed to reduce the complexity of the networked sys-
tem by employing synchronous semantics provided by the architectural pat-
tern called a Physically-Asynchronous Logically-Synchronous (PALS) system
[1, 3, 4, 5].

Networked embedded systems consist of a network of nodes which are driven
by distributed clocks with drifts and errors. While the clock errors of dif-
ferent nodes can be bounded, they cannot be completely eliminated. As a
result, when interactions between these nodes are directly driven by their
local clocks, the resulting interactions become asynchronous. In the aviation
community, this architecture is commonly known as Globally Asynchronous
Locally Synchronous (GALS) architecture, since the local synchronous com-
putations of distributed nodes execute asynchronously with respect to each
other.

Designing and verifying distributed synchronization protocols in this GALS
architecture is extremely di�cult when distributed components require con-
sistent views, consistent actions and synchronized state transitions in real-

time to guarantee safety of the system.

Under the GALS architecture, asynchronous interactions may lead to dis-
tributed race conditions. As a result, di�erent subsystems may operate incon-
sistently and impact the system safety adversely. To illustrate this problem,
let us consider a distributed synchronization protocol which implements the
leader election or the active-standby logic for a dual-redundant �ight guid-
ance system (FGS). In this system, two replicated �ight guidance systems
must have consistent views of which side is the leader or the active side. They
must also perform consistent actions, e.g. switching the active/standby mode
upon the pilot command. Suppose that the dual-redundant FGS is built on
a GALS architecture and the two clocks of the FGS have a bounded skew
of 1 ms with respect to a global clock. As a result, one subsystem can be
in state j but the other lags by 2 ms and remains in state j − 1. Hence a
pilot command for a mode change arrives in one system in state j while the
other may receive the command in state j−1 leading to potential divergence
between the replicated machines.

In the aviation community, these race conditions are major contributors of
the No Fault Found, the No. 1 complaint by airlines [2]. When a reported
problem cannot be duplicated during repair service, the box is sent back to
the customers to use and the cycle repeats. Tracking down these problems
or the source of race conditions is indeed like �nding a needle in a haystack.
Formal analysis tools, e.g. a model checker, may also fail to �nd any counter-
example within a limited time period, which may even span more than a
day. Miller et. al. [4] showed this non-triviality of the formal veri�cation
in case of the active-standby design of an avionics application in the GALS
architecture. It was found that model checking the asynchronous model took
over 35 hours even to discover a counter example, compared to validating a
correct synchronous model in less than 30 seconds.

The source of this veri�cation complexity is the state explosion problem in
a GALS architecture resulting from the exponential growth of the asyn-
chronous interactions. A model checker has to explore all possible state
interleaving among di�erent nodes under all possible clock skew combina-
tions tick by tick, creating a combinatorial explosion of the interaction state
space.

The complexities of debugging in the GALS system motivated us to solve
the GALS problem by a system architecture design approach, not by the de-

bugging during development and maintenance. Moreover, correcting a race
condition in an ad-hoc manner can easily lead to more unforeseen errors due
to the di�culty of comprehending all possible asynchronous interactions. In
our previous work, we proposed an architectural pattern, called a Physi-
cally Asynchronous Logically Synchronous (PALS) system, that systemati-
cally eliminates race conditions arising from the asynchronous interactions.
This pattern allows developers to design, verify and implement a logically
synchronous design of distributed computations.

In the PALS system design, designers at �rst design a synchronous solution
of the distributed computation assuming that the distributed clocks were
perfectly synchronized. Since the synchronous solution is conceptually easy
to grasp, designers are less likely to make errors and errors, if made, are
easier to be detected and corrected. The PALS pattern systematically reuses
this synchronous design and distributes on the physically asynchronous ar-
chitecture without any changes in the application logic, even though there is
no global clock in this architecture. The formal analysis of the correctness
and optimality of the PALS pattern can be found at [3, 5]. An Architec-
ture Analysis and Design Language (AADL) model description and pattern
validation of the PALS pattern can be found at [1].

We have implemented a library, called PRISM, to implement the PALS pat-
tern on top of a real-time communication system. Any global computations
requiring consistent views and consistent actions are executed using this li-
brary. It uses the PALS pattern to eliminate distributed clocks related race
conditions and allows us to design a distributed, redundant system as if all
nodes execute synchronously. Designers can code the application logic in a
similar way as a synchronous system. It simpli�es the development and veri-
�cation of distributed applications and ensures optimal system performance.

In addition to the basic PALS design described in [1] allowing single rate
of executions in distributed PALS tasks, the PRISM library allows multiple
execution rates in the tasks, and multiple o�set timers for a task during a
PALS period. Such extensions in PRISM provide more �exibility for imple-
mentation in practice.

1.1.1 Purpose

The purpose of this document is to help readers understand the motivation,
design principle of the PALS pattern and the use of the PRISM for applica-
tion development.

1.1.2 Scope

The PRISM library is applicable in hard real-time systems, such as avion-
ics, that guarantee bounded end-to-end delay including communication and
computation time. The networked system must also support periodic clock
synchronization to keep the clock skew bounded. Such clock synchronization
can be achieved either in hardware or software. It is also assumed that the
clocks are monotonically increasing, i.e. clocks cannot be reset to the past.
Furthermore, the maximum rate of clock changes during correction should be
explicitly stated so that application or system developers can take this infor-
mation into account. As long as these requirements are satis�ed, the PRISM
library can essentially reduce the design and veri�cation costs of a complex
asynchronous system so that it matches the cost of the simpler synchronous
system design.

1.2 System Overview

An example target system is depicted in Figure 1.1. The target networked
embedded system of PRISM consists of distributed components with sen-
sors and actuators connected by a real-time, fault-tolerant network. There
is no global clock in the system. We assume that the local clocks of the
distributed components are periodically synchronized so that the clock er-
rors are bounded. Designers can use any robust o�-the-shelf or customized
clock synchronization algorithm for this purpose. Clock synchronization is
not part of the PRISM library.

The PRISM framework consists of PRISM tasks, each of which has its own
period, called PALS period. If multiple distributed PRISM tasks have the
same PALS period, their executions are synchronized by PRISM library with
PALS pattern. If tasks have harmonic periods, their harmonic execution

Node 1
Application 1
- Local task 1,2,...
- Synchronization
 task (Prism_task)
 1,2,...

Application N

Clock
synchronizer

...
Node k

Application 1
- Local task 1,2,...
- Synchronization
 task (Prism_task)
 1,2,...

Application N

Clock
synchronizer

...

Real-time, fault-tolerant network

External Input
Interface
Env. input

synchronizer
(Prism_task)

External Output
Interface

Env. output
synchronizer
(Prism_task)

Actuator pActuator 1Sensor mSensor 1

...

Figure 1.1: A high-level system architecture of a networked embedded system

patterns are also preserved within the framework.

These synchronization tasks are executed using the PRISM library. PRISM
de�nes a base class for periodic threads (de�ned as Prism_task in the li-
brary). The developers are expected to extend this base class and de�ne the
application logic in the subclass. The message transfers between these tasks
are performed through PRISM network interfaces. The PRISM communica-
tion interface is de�ned by the instances of two classes, RX_prism_port and
TX_prism_port, which are used for receiving and transmitting datagram
packets. These objects guarantee logically synchronous message deliveries
to the destination synchronization tasks even though these tasks are not
perfectly synchronized.

The synchronization tasks of distributed nodes may interact in external en-
vironment components. For example, the pilots may interact with the �ight
control system through a �ight crew interface. The pilot commands to these
synchronization tasks must also arrive consistently to the distributed compo-
nents. The PALS pattern, as well as PRISM based implementation, requires
the system to implement an interface task, also known as environment input
synchronizer. The environment inputs, e.g. pilot commands, are sent to the
synchronization tasks through this environment input synchronizer. The en-
vironment input synchronizer is also derived from the PRISM de�ned base

period thread and is executed with same PALS period as other synchroniza-
tion tasks. The communication between the environment input synchronizer
and the synchronization tasks are done through the PRISM communication
interface.

Similarly, the outputs of the synchronization tasks at distributed nodes are
propagated to other environment tasks through another environment inter-
face task known as environment output synchronizer. The purpose of this
task is also to give a consistent view of the synchronization tasks to other
external systems.

Chapter 2

PRISM Design and Definition

2.1 System Overview

The goal of the PRISM library is to implement logically synchronous dis-
tributed design based on the PALS pattern. The PALS pattern as well as
the PRISM library supports four patterns of executions and communica-
tions of logically synchronous design: lockstep synchronization, harmonic
synchronization, client-server synchronization, and intra-period synchroniza-
tion. Moreover, for consistent and lockstep interaction with the environment
outside of the PALS architecture, we employ environment input and output
synchronizers.

2.1.1 Lockstep synchronization

In the lockstep synchronization pattern, the nodes of the synchronous model
execute in lockstep manner with the same period. At the beginning of each
synchronization round or period, the nodes read messages from their input,
process the messages and send to other nodes. Messages generated during
synchronization round i are consumed by their destination nodes in synchro-
nization round i+ 1. This design is described in Figure 2.1(a). All the com-
putations of the tasks (i.e. Synchronization Task1, Synchronization Task2 ,
Synchronization Task3) in the synchronous design are triggered at the same
time without intermediate interaction between tasks, called the computation

cycle. After computation is �nished, communications between tasks happen,
at the communication cycle. One computation cycle and one communication
cycle comprise one round of the synchronous design.

round round round
computation

cycle
commu-
nication

cycle

computation
cycle

commu-
nication

cycle

computation
cycle

commu-
nication

cycleSynchronized
task (Node 1)

Synchronized
task (Node 2)

Synchronized
task (Node 3)

(a) ideal synchronous distributed system

PALS round PALS round PALS round

Synchronized
task (Node 1)

Synchronized
task (Node 2)

Synchronized
task (Node 3)

(b) PALS system
computation

triggering interval

i (i + 1) (i + 2)

i (i + 1) (i + 2)

Figure 2.1: Lockstep synchronization in PALS (PRISM)

The PRISM library preserves the same execution and communication be-
havior of this synchronous design. The basic idea is to trigger distributed
computation periodically according to the PALS period and only in �xed
intervals of time, shadowed area in Figure 2.1(b). Each execution of a PALS
period is denoted as the PALS round.

The PALS period should be larger than the worst-case end-to-end delay, which
is equal to (2 × maximum clock skew + maximum task response time + max-
imum network delay). Maximum clock error is de�ned as the worst-case time
di�erence between a local clock and the ideal global clock at any time. The
PRISM library guarantees that messages are processed in the right PALS pe-
riod according to the synchronous design. Messages generated during PALS
round i are consumed by their destination tasks in PALS round i+ 1. Since
the clocks are not perfectly synchronized, a message may arrive early at the
destination. It may even arrive before the PALS round i of the destination.
However, processing at this round would violate the causality and the syn-

chronous semantics. Therefore, the PRISM library appropriately delivers
the message in the PALS round i+ 1 at the destination. Thus, the behavior
of the distributed system using PRISM library becomes equivalent to that
of a synchronous system despite the physical asynchrony in the underlying
architecture.

The example code for lockstep synchronization is given at lockstep_example
directory of the given source code tree with this document. The developers
are referred to the code to make lockstep synchronized distributed applica-
tions.

2.1.2 Harmonic synchronization

comp.
cyc.

3a Hz task1

3a Hz task2

a Hz task3

comm
cyc.

comp.
cyc. comm

cyc.

comp.
cyc. comm

cyc.

comp.
cyc. comm

cyc.

comp.
cyc. comm

cyc.

comp.
cyc. comm

cyc.

computation
cycle

computation
cycle

comm
cyc.

comm
cyc.

Figure 2.2: Ideal Harmonic synchronization demonstrated in PRISM

In some applications, the execution rates of the distributed tasks are harmo-
nious with each other. Lockstep synchronization can be extended to such ap-
plications, too. Fig. 2.2 shows a mixed PALS environment that has lockstep
synchronization (between task1 and task2) and harmonic synchronization
(between task2 and task3). task2 has three times higher rate than task3.
In such cases, three periods of task2 logically �t into one period of task3
in PALS/PRISM framework as shown in the �gure. In such case, PRISM
delivers all the packets issued at the three periods of task2 to task3 at the
next task3's PALS round as shown in Fig. 2.2. On the other hand, the pack-
ets issued by task3 are delivered to the periods starting at synchronization
boundary of the two tasks as shown in the �gure.

In theory, the three executions of task2 is treated as a single execution
block for task3 and every third communication cycle of task2 is treated as
the communication cycle synchronized with task3. Such mapping makes a

harmonic synchronization into a lockstep synchronization.

The example code for harmonic synchronization is given in the harmonic_example
directory of the given source code tree with this document. The developers
are referred to the code to make a harmonic synchronized distributed applica-
tion. Notice that the source code of harmonic_example and lockstep_example
are identical except for task period parameter. PRISM considers a lockstep
synchronization as a special case of harmonic synchronization, which the
execution of two tasks are one-to-one synchronized, in the implementation.

2.1.3 Client-server synchronization

In the third synchronization pattern, the nodes of the synchronous model
execute with the same period. However, the synchronization period is di-
vided into two phases: client phase and server phase. This pattern can be
applied in client-server style communication, e.g. sensor-controller-actuator
communication where the sensor/actuator is the client, the controller is the
server and the actuator receives the output of the controller.

round round
client
comp.
cycle

client
comm.
cycle

Client
task

Server
task

(a) ideal synchronous client-server distributed system

PALS round
PALS round

Client
task

(b) PALS client-server system

i (i + 1)

i (i + 1) (i + 2)

server
comp.
cycle

server
comm.
cycle

client
comp.
cycle

client
comm.
cycle

server
comp.
cycle

server
comm.
cycle

client
comp.
cycle

client
comm.
cycle

round (i + 2)

PALS round

Server
task

Figure 2.3: Client-server synchronization in PALS/PRISM

In the client phase, the client nodes (e.g. sensor, actuator) begin their compu-
tations at the beginning of the synchronization round, process their messages
and produce output messages to be sent to the server nodes. At the end of
the client phase, the server phase begins. In the server phase, the server

nodes (e.g. controller) process messages from the bu�er, perform their com-
putation and send output to the next phase, i.e. the client phase of the next
synchronization round. Messages generated during synchronization round i
of the client phase are consumed by their destination server tasks in syn-
chronization round i. However, messages generated during synchronization
round i of the server phase are consumed by their destination client tasks in
synchronization round i+1. The client and server phases comprise one round
of the synchronous design. This design is shown in Figure 2.3(a) where we
assume that the output of a server task is returned to the same client task.

A networked embedded system using the PRISM library preserves the same
execution and communication behavior of a synchronous design with client-
server communication. Users of the PRISM library can specify the server and
client task and the phase intervals to trigger these distributed computations
periodically according to the PALS period with delayed dispatch for the
server tasks as shown in Figure 2.3(b). The PALS period should be larger
than the worst-case end-to-end delay, which is equal to (4 × maximum clock
skew + maximum client task response time + maximum server task response
time + 2 × maximum network delay).

The PRISM library guarantees that messages from the client tasks are re-
ceived before the beginning of the server phase. Thus messages generated
during PALS round i of the client tasks are consumed by their destination
server tasks in PALS round i. PRISM also guarantees that server messages
are received before the next PALS round at the client tasks. So, messages
generated during PALS round i of the server tasks are consumed by their
destination client tasks in PALS round i+ 1.

Although this synchronization can be ideally achieved using the �rst syn-
chronization of lockstep design, this particular synchronization simpli�es the
application code since the application does not have to keep track of the
phases internally. Moreover, the period of synchronization may be reduced
if the worst-case response times of the phases are not same.

The example code for client-server synchronization is given at client-server-example
directory of the given source code tree with this document. The developers
are referred to the code to make a client-server distributed application.

client-server-example

2.1.4 Intra-period synchronization

By a request from users, we made a more general synchronization model than
the client-server synchronization, called intra-period synchronization. In the
intra-period synchronization, a PALS period can be sub divided into multiple
execution fragments by employing o�set timers. Within a PALS period,
developers can set multiple timers having di�erent o�sets from the beginning
of each period. A packet issued in a intra-period time fragment can explicitly
target an o�set time fragment of another task in the same PALS round
as shown in Fig. 2.4. Meanwhile, some packets can target the next PALS
round through lockstep synchronization. The client-server synchronization
is implemented as a kind of intra-period synchronization.

The developer is responsible for the feasibility of the intra-period synchro-
nization. PRISM just provides interfaces to realize such synchronizations.

task1

task2
computation

cycle
comm
cyc.

computation
cycle

comm
cyc.

frag.1 frag.2

frag.1 frag.2 3

frag.1 frag.2

frag.1 frag.2 3

local offset timer event

Figure 2.4: Ideal intra-period synchronization demonstrated by
PALS/PRISM

The example code for intra-period synchronization is given at complicated-example
directory of the given source code tree with this document. The developers
are referred to the code to make a intra-period distributed application.

2.1.5 Environment input/output synchronizer

The role of the environment input synchronizer is to propagate the external
inputs consistently to the synchronization tasks. The environment input
synchronizer is also implemented using the PRISM library and it is executed
at the same rate of PALS period and within a certain bounded error with
respect to the global time. Any input received in the PALS round i are

complicated-example

PALS round PALS round PALS round
Environment

Input
Synchronizer
Synchronized
task (Node 1)

Synchronized
task (Node 2)

i (i + 1) (i + 2)

ext. input ext. input ext. inputinput

Figure 2.5: Environment input synchronizer in the PALS system (lockstep
synchronization)

propagated to the synchronization tasks in the same round and delivered at
PALS round i+ 1 as shown in Figure 2.5.

Similarly an environment output synchronizer is used if the outputs of the
synchronization tasks are required to be delivered consistently to an external
interface. The messages from the PALS round i of the synchronization tasks
are propagated to the environment output synchronizer in the same round
and delivered at the next round (Figure 2.6).

PALS round PALS round PALS round

Environment
output

Synchronizer

Synchronized
task (Node 1)

Synchronized
task (Node 2)

i (i + 1) (i + 2)

ext. output ext. output ext. output

Figure 2.6: Environment output synchronizer in the PALS system (lockstep
synchronization)

2.2 Hardware Architecture

We have tested on x86 architecture. However, the library does not have any
platform speci�c implementation code. The message communications are
based on the standard network byte order endianness.

The communication architecture must be fault-tolerant and must guarantee
reliable message transfer with bounded network delay.

2.3 Support Software

PRISM currently runs on a Linux platform and is dependent upon real-time
libraries: pthread and rt library. These libraries are usually installed with a
Linux distribution.

Moreover, PRISM is designed to have a good portability. All the system
dependent part of the library is decoupled in /prism/sysdep directory. Cur-
rently, POSIX/UDP is the only supported system, but it can be extended to
support other systems by adding appropriate system dependent layer.

2.4 Implementation Details

PRISM is developed in C++. PRISM is implemented as an application
library to be used in user-space. In addition to the base classes for logical
synchronization, it also includes some support object-oriented libraries for
thread implements and network communications.

2.5 Software Scalability and Flexibility

The change in the network topology or distribution of applications may a�ect
the clock skew, network delay and computation time. These e�ects must be
taken into account when computing the PALS period in the PRISM library.
However, in these cases, the change in the application code is very minimal.
Software designers only have to modify the PALS period parameter for each
distributed computation using the PRISM.

A single instance of the PRISM library is used per application process in a
node. The PRISM library is �exible to support more than one distributed
computation in a process at each node. It also supports all four synchro-
nizations: lockstep synchronization, harmonic synchronization, client-server
synchronization, and intra-period synchronization of distributed computa-
tions.

The support libraries of PRISM give basic functionalities for marshalling and
unmarshalling of these data elements.

PRISM supports multiple timers for a single thread, intra-period synchro-
nization for support of legacy system better and since system dependent code
is independent from the core PRISM logic, the system can be easily extended
to support non-POSIX systems.

Chapter 3

System Architectural Design

The PRISM library provides the necessary execution and communication in-
terfaces for achieving logical synchronization of the global synchronization
tasks. Since the synchronization tasks at di�erent nodes and the environ-
ment input and output synchronizers are part of this logically synchronous
design, they execute periodically according to the PALS period. Although
these tasks cannot be perfectly synchronized because of the local clock skews,
the PRISM library guarantees that messages are correctly delivered at the
appropriate period depending on the desired synchronization requirement,
e.g. lockstep synchronization, harmonic synchronization, client-server syn-
chronization, and intra-period synchronization.

There are three core classes in PRISM library for PALS protocol realiza-
tion: Prism_task, TX_prism_port and RX_prism_port. The design of a
synchronization task inside an application using the PRISM library is given
in Figure 3.1. The UML design and internal structure of these classes are
discussed in Chapter 4. In this section, we describe the responsibilities of
these classes and their usage to aid in the design of logically synchronous
systems i.e. PALS systems.

If developers wants to use a system other than POSIX or UDP/IP, they
also have to be familiar with Prism_manager class and the classes de�ned in
abstract_port.[h,cpp]], and abstract_thread.[h,cpp].

Application logic
with each_pals_period()

Prism_task

invoked on every
each_pals_period()

intra-period offset
timers are acquired

by wait_for_timer() call

RX_prism_port TX_prism_port

receives
messages

transmits
messages

PRISM core library (libprism)

POSIX_thread_factory
as a subclass of

Abstract_thread_factory

POSIX_timer
as a subclass of
Abstract_timer

POSIX_thread_engine
as a subclass of

Abstract_thread_engine

generates

RX_POSIX_
multicast_port
as a subclass of

RX_port

RX_POSIX_
unicast_port

as a subclass of
RX_port

TX_POSIX_
multicast_port
as a subclass of

TX_port

TX_POSIX_
unicast_port

as a subclass of
TX_port

Prism_manager

manages

invokes timer schedules task

UDP/IP reception UDP/IP transmission

POSIX PRISM-support library
(libprismposix)

Figure 3.1: Internal architecture of a synchronization task

3.1 System Components

3.1.1 Prism manager and Abstract thread factory

The PRISM framework a singleton manager class to take care of system de-
pendent part of the system. The most important thing in PRISM is time
source. All the tasks in the framework must use the dedicated synchronized
time sources. Moreover, the thread/timer package for PRISM must use the
time source that Prism_manager provides. Abstract_thread_factory is
the interface class for factory classes generates thread engines, locks, con-
dition variables, timers and time sources. On initialization, the application
noti�es which factory the PRISM is going use, and the factory becomes basis
factory creating system-dependent objects for the application. A subclass of
the Abstract_thread_engine class implements system-dependent parts of
the threads. For example, POSIX_thread_engine is the subclass to support
pthread, and all our examples use the class to use pthread. By implement-
ing a subclass of Abstract_thread_factory, we can port PRISM to a new
system.

3.1.2 Prism task

The users need to extend the Prism_task class for the global synchronization
tasks and environment input/output synchronizers to de�ne the application
logic for synchronization. The Prism_task has a periodic real-time timer (de-
�ned as pals_timer in the library) with period equal to the PALS period. At
each timeout of this timer, it invokes the function each_pals_period(). The
application logic is de�ned in this function. In this function, the users extract
the messages of the current PALS round or period through a RX_prism_port
object for each input data. The application transmits data through an object
of TX_prism_port class of the PRISM library without any delay.

The execution priority of the Prism_task and the PALS period length are
provided by the user when instantiating the object. Moreover, the user also
provides the dispatch o�set for the server task when client-server based logical
synchronization is employed.

3.1.3 TX prism port

TX_prism_port objects are used to transmit messages from a Prism_task

object to a destination node. A TX_prism_port object is constructed based
on the destination IP address and destination UDP port. Users also have to
specify the intended type of synchronization i.e. lockstep synchronization,
client-server synchronization or general synchronization. A message sent by
the TX_prism_port is tagged with the expected deliver time of the desti-
nation node, which is calculated based on the current period trigging time
and computation fragment timers. RX_prism_port of the destination node
can then use this information to deliver the messages at the expected PALS
round and computation fragment.

The internals of each message are application dependent. The application
logic has to construct the message from the basic data elements. The PRISM
library provides functions to create this message conveniently from many data
elements of di�erent data sizes. Future versions of the PRISM library are
expected to have automatic message construction based on the user speci�-
cation.

3.1.4 RX prism port

RX_prism_port objects are used in the Prism_task to read UDP messages
from the network ports. The users use its port_buffer function to read
messages for the current PALS round. This object maintains an internal
bu�er to store any messages that have arrived early and need to be delivered
at the right PALS round. When instantiating an RX_prism_port object, the
user de�nes the UDP port and the associated Prism_task reference. The
RX_prism_port object uses the reference to the Prism_task to know the
current PALS round trigger time and the current computation fragment and
uses them to discard any stale messages, store an advanced message or deliver
the message of the current PALS round to the application logic.

The PRISM library allows packet transmission without any delay. However,
this requires some minor overhead for tagging the PALS round in each mes-
sage header. The internal logic of the RX_prism_port bu�ers avoids the
causality violation by bu�ering any early message arrival and delivering at
the appropriate period, e.g. the next PALS round when lockstep synchro-

nization is desired.

Any network layer inheriting TX_port and RX_port can be used as a underly-
ing network layer. As a default, our distribution has TX_POSIX_unicast_port
and TX_POSIX_multicast_port as sample transmitting network layers.
RX_POSIX_unicast_port and RX_POSIX_multicast_port are sample receiv-
ing network layers.

3.2 Concept of Execution

The synchronization tasks are executed according to the PALS period re-
quired to perform logically synchronous execution. First of all, each task is
periodically executed as if it had started its �rst execution at the time origin,
called EPOCH.1. Since all the tasks started at the same time, and the clocks
are synchronized, their beat of executions are also permanently synchronized
as long as their execution rates are the same or harmonic.

If tlocal denotes the local time, the period boundaries are de�ned by tlocal mod
PALS_period = 0. The time of the period starting boundary is called base
time of a period. If a task is in lockstep synchronization, harmonic syn-
chronization or the a client task of the client-server synchronization task,
the timer is triggered at every base time. A Prism_task can have multiple
timers triggered at a o�set shifted time from the base time. A server task
of the client-server synchronization de�ned a o�set shift timer, and does not
have a timer triggered at a base-time. A task in intra-period synchronization
can have multiple timers setup. The o�sets of the timers are speci�ed when
the PRISM task is constructed.

For performance and neat implementation, the PRISM framework bounds
the PALS period to be less than about 4 seconds (max_pals_period_in_ns
in prism_task.h), which is the largest duration in nanoseconds represented
by a 32-bit integer.

1EPOCH of unix system is January, 1, 1970 00:00

3.3 Interface Design

Please refer to Section 4.

3.4 Software Development Environment

3.4.1 Compilers

PRISM C++ version 0.2 uses g++ and gcc compiler. It has been developed
for version 4.4.5 of these compilers. GNU make tool (v 3.81) is also required.

3.4.2 Operating Systems

Ubuntu 9.10 has been used for development and testing.

Chapter 4

PRISM Detailed Design

To present the design, we �rst introduce the relationship between classes in
the class diagram, and introduce use-cases with use-case diagrams followed
by other diagrams to describe class interactions.

4.1 Class Diagram for PRISM core

The relationships between classes and the objects represented in Figure 3.1
can also be depicted by Figure 4.1 in UML class diagram. User-de�ned logic
is supposed to be declared as a subclass of Prism_task. It must rede�ne
each_pals_period() member function, and may rede�ne initialize() if
special phase of initialization is needed. If intra-period o�set timers are
de�ned for a task, wait_for_timer() member function will be called from
user-de�ned each_pals_period() member function.

Communications for a PRISM task must be performed through TX_prism_port
and RX_prism_port, which realizes the PALS communication protocol in a
system-independent manner. Each prism_port object is supposed to serve
a single speci�c PRISM task; it cannot serve multiple tasks. TX_prism_port
has to speci�es the destination in the constructor with the delivery pe-
riod (the same or the next period) in port_property parameter, and the
target o�set timer of the destination in target_timer_index parameter.
The constructor of RX_prism_port can limit the bu�ering capacity to pro-
hibit memory over�ow through the parameters, max_periods_for_queue

Abstract_thread_engine

+《constructor》(prio, pals_period, time_unit)
+《constructor》(prio, pals_period,
 trigger_time_array, trigger_time_array_size,
 time_unit)
+ initialize()
+ each_pals_period() : bool
+ wait_for_timer(index : int16_t)

Prism_task《abstract》

Thread_stub

1

1

+《constructor》(rx_port : RX_port, prism_task)
+《constructor》(rx_port : RX_port, prism_task,
 max_period_for_queue, max_packets_for_period)
+ recv_port_buffer() : Port_buffer*
+ recv(buf : void*, length : size_t) : int32_t

RX_prism_port

+《constructor》(tx_port : TX_port, prism_task,
 port_property, target_timer_index)
+ send_port_buffer(buf : Port_buffer*)
+ send(buf : void*, length : size_t) : int32_t

TX_prism_port

1 *
-prism_task

1 *
-prism_task

+ initialize()
+ each_pals_period() : bool

User defined task

serves

serves

Figure 4.1: Class diagram of PRISM system

and max_packets_for_period. The details of the parameters are given in
the API reference manual.

4.2 Class Diagram for system dependent part

The POSIX implementation of system dependent part of the system is in
prism/sysdep/posix directory. It basically implements the interfaces for
system-dependent part de�ned in abstract_thread.[h,cpp] and abstract_
port.[h,cpp] for threads and communications, respectively.

4.2.1 System-dependent communications

The class relationships for system-dependent communications are depicted
in Figure 4.2. The lower communication layer de�ning system-dependent
communications is refered by a private variable port in TX_prism_port and
RX_prism_port. The object representing the lower layer must be subclasses

abstract_port.[h,cpp]
abstract_port.[h,cpp]

+ recv_port_buffer() : Port_buffer*
+ recv(buf : void*, length : size_t) : int32_t

RX_port 《abstract》

POSIX_RX_portRX_prism_port

+ send_port_buffer(buf : Port_buffer*)
+ send(buf : void*, length : size_t) : int32_t

TX_port 《abstract》

POSIX_TX_portTX_prism_port

1

0..1
-port

1

0..1
-port

Figure 4.2: Class diagram for system dependent part for communications

of TX_port and RX_port. Each superclass has two member functions: send()
and send_port_buffer() for RX_port, and recv() and recv_port_buffer()
for RX_port. The semantics of send() and recv() are the same as the
ones in POSIX APIs with the same names: sending and receiving messages
in a byte array. The other member functions, send_port_buffer() and
recv_port_buffer() are for communications using Port_buffer objects.1

When developers de�ne a new system-dependent communication layer, they
can do their work by only rede�ning send() and recv() of the superclasses
to have the same semantics of POSIX APIs. Exception handling mechanism
for the functions are di�erent from POSIX APIs. For the di�erence, refer
posix_port.cpp.

4.2.2 System-dependent thread interfaces

Fig. 4.3 depicts how system-dependent part of the system is organized for
thread implementation. The system dependent part must de�ne timer, thread,
condition variable, lock, and reference time. When Prism_task wants to
make system-dependent objects (a timer or a thread), a thread factory cre-
ates an object. The thread factory is in a factory design pattern, which is
in a subclass of Abstract_thread_factory. When initializing, the system
registers the default factory to Prism_manager singleton object. As far as a
new factory is not speci�ed in Prism_task construction in the parameters,
all the system-dependent objects are created by the default factory.

1Port_buffer class is a specially designed class to make packet marshalling and un-

marshalling convenient.

start(thread:Thread_stub, prio)
wait_for_completion() : void*

Abstract_thread_engine

+ wait()
+ stop_timer()
+ restart_timer
 (starting_time, period)

Abstract_timer

POSIX_timer

+《constructor》(engine, prio)
+ start()
+ wait_for_completion() : void*
+ run() : void*

Thread_stub

1

1

+ lock()
+ unlock()
+ trylock()

Abstract_lock

POSIX_lock

POSIX_thread_engine

+ signal()
+ wait()

Abstract_condition_variable

POSIX_condition_variable

+ get_current_time()
+ create_timer(starting_time, period)
 : Abstract_timer*
+ create_thread_engine()
 : Abstract_thread_engine*
+ create_lock() : Abstract_lock*
+ create_condition_variable
 : Abstract_condition_variable*

Abstract_thread_factory

<<creates>>

POSIX_thread_factory

<<creates>>

<<creates>>

<<creates>>

<<creates>>

<<creates>>

<<creates>>

<<creates>>

+ initialize_prism
 (default_factory, use_of_rt_fprintf)
+ get_prism_default_factory()
+ get_current_time()

Prism_manager

1

1

Figure 4.3: Class diagram for system dependent part for threads

4.2.2.0.1 Reference time

The factory also provides the PALS/PRISM reference time. If developers
wants to use a PALS/PRISM reference time other than the system time,
de�ne a factory class realizing a user de�ned reference time by rede�ning
get_current_time() member function.

4.2.2.0.2 Timers

The semantics of wait() and stop_timer() are self-explanatory. The se-
mantics of restart_timer() is also self-explanatory, but all the queued
timers must be cleared in the function.

4.2.2.0.3 Thread engine

To decouple application-speci�c thread logic from system-dependent thread
mechanism, the library has two base classes: Thread_stub for application
logic, and Abstract_thread_engine for system-dependent mechanism. The
member functions, start() and wait_for_completion() of Abstract_thread_
engine must be rede�ned by its subclass, and their semantics are self-
explanatory.

Abstract_lock and Abstract_condition_variables are required to be de-
�ned accordingly for the thread engine, even though the current PRISM
version does not use them.2

4.3 Activities between Prism task class and its sub-
class objects

Prism_task is an abstract class that is not supposed to be instantiated by
itself. Only its subclasses can be instantiated. An activity diagram showing
the interaction between Prism_task and its subclass is given in Figure 4.4.
The inheriting task de�nes the initialization routine and the periodic routine
by implementing initialize() and each_pals_period() methods. The

2However, rt_fprintf functionality uses locks and condition variables.

Abstract_thread_engine
Abstract_thread_engine

Figure 4.4: Activities between Prism_task class and its subclasses

run() method, which is the thread main function, invokes the method at the
appropriate points of execution.

4.4 Interactions between Prism task and TX prism port

The inheriting task de�nes the initialization routine and the periodic routine
by implementing initialize() and each_pals_period() methods. The
run() method, which is the thread main function, invokes the method at the
appropriate points of execution.

TX_prism_port sends a packet to be delivered to another and attaches the
packet with the expected delivery time. RX_prism_port receives the packet
and forwards the packet to the task at the appropriate time. Thereby, the
complexity is in RX_prism_port rather than TX_prism_port.

Prism_buffer is a bu�er class for convenience to deliver primitive data types
e�ectively without concern about the bit endianness. It has a rich set to add
primitive data types into the packet bu�er. It contains the payload of a
packet delivered by RX_prism_port and TX_prism_port.

User defined task :
Prism_task

run() initialize()

TX_prism_port
(creates)

each_pals_period()

buf : Port_buffer
append_int8_t()

append_prism_time()

(deletes)

(creates)

send_port_buffer(buf)

TX_prism_port::
send() or send_port_buffer()

add base time of reception period
to header

add reception timer index
to header

append payload

send packet through
system-dependent layer

(a) sequence diagram (b) activity diagram

Figure 4.5: Sequence and activity diagrams of TX_prism_port and
Port_buffer

4.5 Class and Use Cases for Prism task and RX prism port

User defined task :
Prism_task

run() initialize()

RX_prism_port
(creates)

each_pals_period()

buf : Port_buffer

retrieve_int8_t()

retrieve_prism_time()

(deletes)

recv_port_buffer()

return buf

Figure 4.6: Sequence diagram for RX_prism_port and Port_buffer

The sequence diagram of a packet reception is given in Figure 4.6 which is
quite similar to that of packet transmission. However, recall that the internal
behavior of RX_prism_port is more complicated because the PALS protocol
is mostly taken care of by the receiving protocol stack. The activity dia-
gram brie�y describing the packet reception activity is given in Figure 4.7.
RX_prism_port periodically receives the packets and check the expected de-
livery time. If the current round is later than the expected delivery time,
the old packet is discarded. If the packet should be delivered in the current
round, RX_prism_port will check the header and process the payload. If the
packet is for the future round, it will be stored in the packet_container

and checked again in the future.

RX_prism_port::recv_port_buffer()

iterate each packet in
packet_container remove stale packet

packet is for past
there is a packet to iterate

receive a new packet
from network

process header

throw
Port_no_data_received

exception

packet is
for future

no packet

store packet in
packet_container

packet is
for futuretrash packet

packet received

packet is
for past

return payload

packet is
for now

packet is for now

Figure 4.7: Activity diagram of RX_prism_port for packet reception

4.6 Pure PALS and Client-server semantics

Recall that the current PRISM supports two kinds of message passing se-
mantics. The semantics can be chosen by using appropriate constructor pa-
rameters. The sequence diagram for both semantics are given in Figure 4.8.

Prism_task1 Prism_task2
each_pals_period()

Prism_TX_ports of both tasks
must be created with parameter,
NORMAL_PALS_BEHAVIOR

Client_task Server_task

each_pals_period()

Server_Task must be created with
appropriate invocation delay and

Prism_TX_port of Client_task must
be created with parameter

TO_SERVER_AT_SAME_ROUND

(a) sequence diagram for pure PALS (b) sequence diagram for client-server PALS

Figure 4.8: Sequence diagram between tasks in pure PALS semantics and
client-server PALS semantics

To employ normal PALS behavior, the subclasses of PRISM_task must have
zero (0) in the constructor. Moreover, PRISM_TX_port must be created with
normal_pals_behavior for port_type.

To employ client-server PALS behavior, the server side of PRISM_task must
have a positive trigger_time_array_arg to wait for the client requests in
the constructor. Moreover, PRISM_TX_port on the client side must be created
with to_server_at_same_round for port_type.

Acronyms and Abbreviations

SDD Software Design Description
PALS Physically-Asynchronous Logically-Synchronous
GALS Globally-Asynchronous Locally-Synchronous
AADL Architecture Analysis & Design Language
FGS Flight Guidance System
GNU GNU is Not Unix
PRISM PALS Replicated Interface for Synchronous Modularity

Bibliography

[1] Abdullah Al-Nayeem, Mu Sun, Xiaokang Qiu, Lui Sha, Steven P. Miller,
and Darren D. Cofer. A formal architecture pattern for real-time dis-
tributed systems. In Proc. of IEEE RTSS, 2009.

[2] Bill Burchell. Untangling No Fault Found. Aviation week � Overhaul &
Maintenance, February 2007.

[3] Jose Meseguer and Peter Olveczky. Formalization and correctness of the
pals pattern for asynchronous real-time systems. Technical report, UIUC,
2009.

[4] Steven P. Miller, Darren D. Cofer, Lui Sha, Jose Meseguer, and Abdul-
lah Al-Nayeem. Implementing logical synchrony in integrated modular
avionics. In Proc. of IEEE DASC, Oct. 2009.

[5] Lui Sha, Abdullah Al-Nayeem, Mu Sun, Jose Meseguer, and Peter
Olveczky. Pals: Physically asynchronous logically synchronous systems.
Technical report, UIUC, 2009.

Part II

Reference Manual

Chapter 5

Class Index

5.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

prism::Abstract_condition_variable 52

prism::POSIX_condition_variable 70

prism::Abstract_lock . 54

prism::POSIX_lock . 72

prism::Abstract_thread_engine . 55

prism::POSIX_thread_engine . 75

prism::Abstract_thread_factory 58

prism::POSIX_thread_factory 77

prism::Abstract_timer . 61

prism::POSIX_timer . 81

prism::Lock_failed . 63
prism::Port_bu�er . 63
prism::Port_bu�er_over�ow . 69
prism::Port_exception . 69
prism::Port_no_data_received . 70
Print_bu�er . 84
prism::Prism_manager . 85
prism::Prism_time . 93

prism::RX_port . 98

prism::RX_POSIX_multicast_port 101
prism::RX_POSIX_unicast_port 103
prism::RX_prism_port . 106

prism::Thread_stub . 110

prism::Prism_task . 87
Realtime_fprintf . 96

prism::TX_port . 113

prism::TX_POSIX_multicast_port 116
prism::TX_POSIX_unicast_port 118
prism::TX_prism_port . 120

Chapter 6

Class Index

6.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

prism::Abstract_condition_variable (Condition variable interface to
have system-dependent implementations as subclasses) . . 52

prism::Abstract_lock (Lock interface to have system-dependent lock
implementations as subclasses) 54

prism::Abstract_thread_engine (Interface class to de�ne system-
dependent thread implementation) 55

prism::Abstract_thread_factory (Interface for a factory class to gen-
erate system-dependent objects related to threads) 58

prism::Abstract_timer (Interface class to de�ne a timer class that
is system-dependent) . 61

prism::Lock_failed (Exception triggered by #Abstract_lock::trylock()
if it is already locked) . 63

prism::Port_bu�er (Bu�er class supporting appending and retriev-
ing of primitive data types) 63

prism::Port_bu�er_over�ow (Occurs when a new data is requested
to be appended over the bu�er size) 69

prism::Port_exception (General network exception) 69
prism::Port_no_data_received (Exception for the case there is no

packet received) . 70

prism::POSIX_condition_variable (De�nes POSIX condition vari-
able implementations) . 70

prism::POSIX_lock (De�nes posix lock implementation) 72
prism::POSIX_thread_engine (Class supporting a real-time thread

in POSIX) . 75
prism::POSIX_thread_factory (POSIX Thread factory theat cre-

ates thread engines, locks and condition variables) 77
prism::POSIX_timer (Class supporting absolute-time-based real-time

timers in POSIX) . 81
Print_bu�er (Bu�er to store the strings to print) 84
prism::Prism_manager (Singleton class managing PRISM frame-

work) . 85
prism::Prism_task (De�nes periodic prism task as a thread) 87
prism::Prism_time (Class contains time information in nanosecond

precision) . 93
Realtime_fprintf (Class implementing rt_fprintf mechanism) . . . 96
prism::RX_port (Abstract class to de�ne network port to receive

packets) . 98
prism::RX_POSIX_multicast_port (POSIX UDP multicast port

for packet receptions) . 101
prism::RX_POSIX_unicast_port (POSIX UDP unicast port for

packet receptions) . 103
prism::RX_prism_port (RX communication port in PRISM seman-

tics) . 106
prism::Thread_stub (Stub class to de�ne the behavior of a thread) 110
prism::TX_port (Abstract class to de�ne network port to send pack-

ets) . 113
prism::TX_POSIX_multicast_port (POSIX UDP multicast port

for packet transmissions) 116
prism::TX_POSIX_unicast_port (POSIX UDP unicast port for

packet transmissions) . 118
prism::TX_prism_port (TX communication port in PRISM seman-

tics) . 120

Chapter 7

Class Documentation

7.1 prism::Abstract condition variable Class Reference

Condition variable interface to have system-dependent implementations as
subclasses.

#include <abstract_thread.h>

Inheritance diagram for prism::Abstract_condition_variable:

prism::Abstract_condition_variable

prism::POSIX_condition_variable

Public Member Functions

• virtual void signal (void)=0

Sends a signal to a waiting thread.

• virtual void wait (void)=0

Waits for a signal. Returns when another thread sends the signal.

7.1.1 Detailed Description

Condition variable interface to have system-dependent implementations as
subclasses.

7.1.2 Member Function Documentation

7.1.2.1 virtual void prism::Abstract condition variable::signal (void) [pure

virtual]

Sends a signal to a waiting thread.

Must be de�ned in the system-dependent subclass.

Implemented in prism::POSIX_condition_variable.

7.1.2.2 virtual void prism::Abstract condition variable::wait (void) [pure

virtual]

Waits for a signal. Returns when another thread sends the signal.

Must be de�ned in the system-dependent subclass.

Implemented in prism::POSIX_condition_variable.

The documentation for this class was generated from the following �le:

• prism/include/abstract_thread.h

7.2 prism::Abstract lock Class Reference

Lock interface to have system-dependent lock implementations as subclasses.

#include <abstract_thread.h>

Inheritance diagram for prism::Abstract_lock:

prism::Abstract_lock

prism::POSIX_lock

Public Member Functions

• virtual void lock (void)=0

Aquires the lock.

• virtual void unlock (void)=0

Releases the lock.

• virtual void trylock (void)=0 throw (Lock_failed)

Tries the lock. If the lock is free, acquires it. Otherwise, throws Lock_-
failed exception.

7.2.1 Detailed Description

Lock interface to have system-dependent lock implementations as subclasses.

7.2.2 Member Function Documentation

7.2.2.1 virtual void prism::Abstract lock::lock (void) [pure virtual]

Aquires the lock.

Must be de�ned in the system-dependent subclass.

Implemented in prism::POSIX_lock.

7.2.2.2 virtual void prism::Abstract lock::trylock (void) throw (Lock_failed)
[pure virtual]

Tries the lock. If the lock is free, acquires it. Otherwise, throws Lock_failed
exception.

Must be de�ned in the system-dependent subclass.

Implemented in prism::POSIX_lock.

7.2.2.3 virtual void prism::Abstract lock::unlock (void) [pure virtual]

Releases the lock.

Must be de�ned in the system-dependent subclass.

Implemented in prism::POSIX_lock.

The documentation for this class was generated from the following �le:

• prism/include/abstract_thread.h

7.3 prism::Abstract thread engine Class Reference

Interface class to de�ne system-dependent thread implementation.

#include <abstract_thread.h>

Inheritance diagram for prism::Abstract_thread_engine:

prism::Abstract_thread_engine

prism::POSIX_thread_engine

Protected Member Functions

• virtual void start (Thread_stub ∗thread, int16_t priority)=0
Starts the thread de�ned by #thread object.

• virtual void ∗ wait_for_completion (Thread_stub ∗thread)=0
Returns when the thread completes.

Friends

• class Thread_stub

7.3.1 Detailed Description

Interface class to de�ne system-dependent thread implementation. Its sub-
class must de�ne how the thread is realized in the system

7.3.2 Member Function Documentation

7.3.2.1 virtual void prism::Abstract thread engine::start (Thread_stub ∗
thread, int16 t priority) [protected, pure virtual]

Starts the thread de�ned by #thread object.

Must be de�ned in the system-dependent subclass.

Parameters

thread Object that de�nes thread body
priority Priority of the thread

Implemented in prism::POSIX_thread_engine.

7.3.2.2 virtual void∗ prism::Abstract thread engine::wait for completion (
Thread_stub ∗ thread) [protected, pure virtual]

Returns when the thread completes.

Must be de�ned in the system-dependent subclass.

Parameters

thread Object that de�nes thread body, the same as the parameter used
in start() function

Returns

the pointer value returned by the thread.

Implemented in prism::POSIX_thread_engine.

The documentation for this class was generated from the following �le:

• prism/include/abstract_thread.h

7.4 prism::Abstract thread factory Class Reference

Interface for a factory class to generate system-dependent objects related to
threads.

#include <abstract_thread.h>

Inheritance diagram for prism::Abstract_thread_factory:

prism::Abstract_thread_factory

prism::POSIX_thread_factory

Public Member Functions

• virtual Prism_time get_current_time ()=0

Returns current time.

• virtual Abstract_timer ∗ create_timer (Prism_time &starting_time,
Prism_time &period)=0

Creates a timer.

• virtual Abstract_lock ∗ create_lock ()=0

Creates a lock.

• virtual Abstract_condition_variable ∗ create_condition_variable (Abstract_-
lock ∗lock)=0

Creates a condition variable.

• virtual Abstract_thread_engine ∗ create_thread_engine ()=0

Creates a thread engine.

7.4.1 Detailed Description

Interface for a factory class to generate system-dependent objects related to
threads.

7.4.2 Member Function Documentation

7.4.2.1 virtual Abstract_condition_variable∗ prism::Abstract thread -
factory::create condition variable (Abstract_lock ∗ lock) [pure

virtual]

Creates a condition variable.

Must be de�ned in the system-dependent subclass.

Parameters

lock condition variable is supposed to be coupled with a lock.

Implemented in prism::POSIX_thread_factory.

7.4.2.2 virtual Abstract_lock∗ prism::Abstract thread factory::create lock (
) [pure virtual]

Creates a lock.

Must be de�ned in the system-dependent subclass.

Implemented in prism::POSIX_thread_factory.

7.4.2.3 virtual Abstract_thread_engine∗ prism::Abstract -
thread factory::create thread engine () [pure

virtual]

Creates a thread engine.

Must be de�ned in the system-dependent subclass.

Implemented in prism::POSIX_thread_factory.

7.4.2.4 virtual Abstract_timer∗ prism::Abstract thread factory::create timer
(Prism_time & starting time, Prism_time & period) [pure

virtual]

Creates a timer.

Must be de�ned in the system-dependent subclass.

Implemented in prism::POSIX_thread_factory.

7.4.2.5 virtual Prism_time prism::Abstract thread factory::get current time (
) [pure virtual]

Returns current time.

Since di�erent system APIs can provide di�erent time, Prism needs to have
a uni�ed time source. The default thread factory for #Prism_manager gen-
erates the standard time.

Returns

current time

Implemented in prism::POSIX_thread_factory.

The documentation for this class was generated from the following �le:

• prism/include/abstract_thread.h

7.5 prism::Abstract timer Class Reference

Interface class to de�ne a timer class that is system-dependent.

#include <abstract_thread.h>

Inheritance diagram for prism::Abstract_timer:

prism::Abstract_timer

prism::POSIX_timer

Public Member Functions

• virtual void wait ()=0

Waits for the timer event.

• virtual void stop_timer ()=0

Stops the timer.

• virtual void restart_timer (Prism_time &starting_time, Prism_time
&period)=0

Resets the timer with the new parameters.

7.5.1 Detailed Description

Interface class to de�ne a timer class that is system-dependent.

7.5.2 Member Function Documentation

7.5.2.1 virtual void prism::Abstract timer::restart timer (Prism_time &
starting time, Prism_time & period) [pure virtual]

Resets the timer with the new parameters.

The old timer events must be cleaned up.

Parameters

starting_-
time

restarting time for the timer

period repeating period

Implemented in prism::POSIX_timer.

7.5.2.2 virtual void prism::Abstract timer::stop timer () [pure virtual]

Stops the timer.

The derived function must clear all the related timer events (signals).

Implemented in prism::POSIX_timer.

7.5.2.3 virtual void prism::Abstract timer::wait () [pure virtual]

Waits for the timer event.

If just one timer event has passed, it will immediately return. If more than
two timers have passed, it will immediately return. However, the number of
timer events processed by the return is unspeci�ed as POSIX timer.

Implemented in prism::POSIX_timer.

The documentation for this class was generated from the following �le:

• prism/include/abstract_thread.h

7.6 prism::Lock failed Class Reference

Exception triggered by #Abstract_lock::trylock() if it is already locked.

#include <abstract_thread.h>

7.6.1 Detailed Description

Exception triggered by #Abstract_lock::trylock() if it is already locked.

The documentation for this class was generated from the following �le:

• prism/include/abstract_thread.h

7.7 prism::Port buffer Class Reference

Bu�er class supporting appending and retrieving of primitive data types.

#include <port_buffer.h>

Public Member Functions

• Port_bu�er (size_t max)

Constructs a bu�er specifying the maximum size of bu�er in byte.

• virtual ∼Port_bu�er (void)
Destructs the bu�er.

• int32_t size ()

Returns the current bu�er size.

• int32_t get_max_size ()

Returns allocated bu�er size.

• int32_t get_remained_size ()

Returns remained number of bytes in bu�er.

• void �ush ()

Removes all the data in bu�er.

• virtual char ∗ tostr ()

Generates printable hexadecimal string from contents of bu�er.

• virtual void append_bool (bool)

• virtual void append_uint8 (uint8_t)

• virtual void append_uint16 (uint16_t)

• virtual void append_uint32 (uint32_t)

• virtual void append_uint64 (uint64_t)

• virtual void append_byte_arr (char ∗arr, int32_t arrlen)
Appends an array to the current bu�er.

• virtual void append_buf (Port_bu�er ∗buf)
Append a bu�er to the current bu�er.

• virtual void append_time (Prism_time time)

Append time information to the current bu�er.

• virtual void append_int8 (int8_t n)

• virtual void append_int16 (int16_t n)

• virtual void append_int32 (int32_t n)

• virtual void append_int64 (int64_t n)

• virtual void append_uint8_t (uint8_t n)

• virtual void append_uint16_t (uint16_t n)

• virtual void append_uint32_t (uint32_t n)

• virtual void append_uint64_t (uint64_t n)

• virtual void append_int8_t (int8_t n)

• virtual void append_int16_t (int16_t n)

• virtual void append_int32_t (int32_t n)

• virtual void append_int64_t (int64_t n)

• virtual void append_�oat (�oat n)

• virtual void append_double (double n)

• virtual bool retrieve_bool ()

• virtual uint8_t retrieve_uint8 ()

• virtual uint16_t retrieve_uint16 ()

• virtual uint32_t retrieve_uint32 ()

• virtual uint64_t retrieve_uint64 ()

• virtual int32_t retrieve_byte_arr (char ∗arr, int32_t max_len)

Returns number of bytes copied to the array.

• virtual Prism_time retrieve_time ()

• virtual char retrieve_int8 ()

• virtual int16_t retrieve_int16 ()

• virtual int32_t retrieve_int32 ()

• virtual int64_t retrieve_int64 ()

• virtual uint8_t retrieve_uint8_t ()

• virtual int16_t retrieve_uint16_t ()

• virtual int32_t retrieve_uint32_t ()

• virtual int64_t retrieve_uint64_t ()

• virtual char retrieve_int8_t ()

• virtual int16_t retrieve_int16_t ()

• virtual int32_t retrieve_int32_t ()

• virtual int64_t retrieve_int64_t ()

• virtual �oat retrieve_�oat ()

• virtual double retrieve_double ()

Static Public Attributes

• static const uint16_t sizeof_bool = 1

• static const uint16_t sizeof_int8_t = 1

• static const uint16_t sizeof_int16_t = 2

• static const uint16_t sizeof_int32_t = 4

• static const uint16_t sizeof_int64_t = 8

• static const uint16_t sizeof_uint8_t = 1

• static const uint16_t sizeof_uint16_t = 2

• static const uint16_t sizeof_uint32_t = 4

• static const uint16_t sizeof_uint64_t = 8

• static const uint16_t sizeof_�oat = 4

• static const uint16_t sizeof_double = 8

• static const uint16_t sizeof_prism_time = 12

Protected Attributes

• size_t ptr

• size_t len

• size_t max_buf_size

• char ∗ buf

Friends

• class RX_port

• class TX_port

7.7.1 Detailed Description

Bu�er class supporting appending and retrieving of primitive data types.

7.7.2 Constructor & Destructor Documentation

7.7.2.1 Port buffer::Port buffer (size t max)

Constructs a bu�er specifying the maximum size of bu�er in byte.

Parameters

max maximum size of bu�er

7.7.3 Member Function Documentation

7.7.3.1 virtual void prism::Port buffer::append double (double n) [inline,

virtual]

Warning

this assumes �oat is stored in IEEE 754 format and follow machine endi-
anness, either big endianness or small endianness. ref: http://wiki.debian.org/ArmEabiPort#ARM_-
floating_points

7.7.3.2 virtual void prism::Port buffer::append float (float n) [inline,

virtual]

Warning

this assumes �oat is stored in IEEE 754 format and follow machine endi-
anness, either big endianness or small endianness. ref: http://wiki.debian.org/ArmEabiPort#ARM_-
floating_points

7.7.3.3 int32 t Port buffer::get max size ()

Returns allocated bu�er size.

Returns

allocated bu�er size

7.7.3.4 int32 t Port buffer::get remained size ()

Returns remained number of bytes in bu�er.

Returns

remained number of bytes in bu�er

http://wiki.debian.org/ArmEabiPort#ARM_floating_points
http://wiki.debian.org/ArmEabiPort#ARM_floating_points
http://wiki.debian.org/ArmEabiPort#ARM_floating_points
http://wiki.debian.org/ArmEabiPort#ARM_floating_points

7.7.3.5 virtual double prism::Port buffer::retrieve double () [inline,

virtual]

Warning

this assumes �oat is stored in IEEE 754 format and follow machine endi-
anness, either big endianness or small endianness. ref: http://wiki.debian.org/ArmEabiPort#ARM_-
floating_points

7.7.3.6 virtual float prism::Port buffer::retrieve float () [inline, virtual]

Warning

this assumes �oat is stored in IEEE 754 format and follow machine endi-
anness, either big endianness or small endianness. ref: http://wiki.debian.org/ArmEabiPort#ARM_-
floating_points

7.7.3.7 int32 t Port buffer::size ()

Returns the current bu�er size.

Returns

the current bu�er size

7.7.3.8 char ∗ Port buffer::tostr () [virtual]

Generates printable hexadecimal string from contents of bu�er.

Returns

printable string in hexadecimal representation of bu�er

The documentation for this class was generated from the following �les:

• prism/include/port_bu�er.h

• prism/src/port_bu�er.cpp

http://wiki.debian.org/ArmEabiPort#ARM_floating_points
http://wiki.debian.org/ArmEabiPort#ARM_floating_points
http://wiki.debian.org/ArmEabiPort#ARM_floating_points
http://wiki.debian.org/ArmEabiPort#ARM_floating_points

7.8 prism::Port buffer overflow Class Reference

Occurs when a new data is requested to be appended over the bu�er size.

#include <port_buffer.h>

7.8.1 Detailed Description

Occurs when a new data is requested to be appended over the bu�er size.

The documentation for this class was generated from the following �le:

• prism/include/port_bu�er.h

7.9 prism::Port exception Class Reference

General network exception.

#include <abstract_port.h>

Public Member Functions

• Port_exception (int _errnum)

Constructs the exception.

Public Attributes

• int err

Error number specifying the type of exception.

7.9.1 Detailed Description

General network exception. The type of exception is speci�ed by error num-
ber.

The documentation for this class was generated from the following �le:

• prism/include/abstract_port.h

7.10 prism::Port no data received Class Reference

Exception for the case there is no packet received.

#include <abstract_port.h>

7.10.1 Detailed Description

Exception for the case there is no packet received.

The documentation for this class was generated from the following �le:

• prism/include/abstract_port.h

7.11 prism::POSIX condition variable Class Reference

De�nes POSIX condition variable implementations.

#include <posix_thread.h>

Inheritance diagram for prism::POSIX_condition_variable:

prism::POSIX_condition_variable

prism::Abstract_condition_variable

Collaboration diagram for prism::POSIX_condition_variable:

prism::POSIX_condition_variable

prism::Abstract_condition_variable prism::POSIX_lock

related_lock

prism::Abstract_lock

Public Member Functions

• POSIX_condition_variable (POSIX_lock ∗lock)
Creates a condition variable.

• ∼POSIX_condition_variable ()
Destroys the condition variable.

• virtual void wait (void)

Waits for the signal.

• virtual void signal (void)

Signals the condition variable.

7.11.1 Detailed Description

De�nes POSIX condition variable implementations.

The documentation for this class was generated from the following �les:

• prism/sysdep/include/posix/posix_thread.h

• prism/sysdep/posix/posix_thread.cpp

7.12 prism::POSIX lock Class Reference

De�nes posix lock implementation.

#include <posix_thread.h>

Inheritance diagram for prism::POSIX_lock:

prism::POSIX_lock

prism::Abstract_lock

Collaboration diagram for prism::POSIX_lock:

prism::POSIX_lock

prism::Abstract_lock

Public Member Functions

• POSIX_lock ()

• ∼POSIX_lock ()

• virtual void lock (void)

• virtual void unlock (void)

• virtual void trylock (void) throw (Lock_failed)

Friends

• class POSIX_condition_variable

7.12.1 Detailed Description

De�nes posix lock implementation.

7.12.2 Constructor & Destructor Documentation

7.12.2.1 POSIX lock::POSIX lock ()

Creates a lock

7.12.2.2 POSIX lock::∼POSIX lock ()

Destroys the lock

7.12.3 Member Function Documentation

7.12.3.1 void POSIX lock::lock (void) [virtual]

Aquires the lock.

Implements prism::Abstract_lock.

7.12.3.2 void POSIX lock::trylock (void) throw (Lock_failed) [virtual]

Tries the lock. If the lock is free, acquires it. Unless, throws #Lock_failed
exception.

Implements prism::Abstract_lock.

7.12.3.3 void POSIX lock::unlock (void) [virtual]

Releases the lock.

Implements prism::Abstract_lock.

The documentation for this class was generated from the following �les:

• prism/sysdep/include/posix/posix_thread.h

• prism/sysdep/posix/posix_thread.cpp

7.13 prism::POSIX thread engine Class Reference

Class supporting a real-time thread in POSIX.

#include <posix_thread.h>

Inheritance diagram for prism::POSIX_thread_engine:

prism::POSIX_thread_engine

prism::Abstract_thread_engine

Collaboration diagram for prism::POSIX_thread_engine:

prism::POSIX_thread_engine

prism::Abstract_thread_engine

prism::Thread_stub

engine

started_thread

Protected Member Functions

• virtual void start (Thread_stub ∗thread_core, int16_t priority)
• virtual void ∗ wait_for_completion (Thread_stub ∗thread_core)

7.13.1 Detailed Description

Class supporting a real-time thread in POSIX. The POSIX_thread_engine
delivers the POSIX thread to the PRISM framework by implementing #Abstract_-
thread_engine. The thread function is given as a parameter of the start()
method.

7.13.2 Member Function Documentation

7.13.2.1 void POSIX thread engine::start (Thread_stub ∗ thread core,
int16 t priority) [protected, virtual]

Starts the thread de�ned by thread_function() in C.

Parameters

thread_-
function

- function for thread execution.

priority - priority of the thread.

Implements prism::Abstract_thread_engine.

7.13.2.2 void ∗ POSIX thread engine::wait for completion (Thread_stub ∗
thread core) [protected, virtual]

Returns when the thread completes.

Returns

the pointer value returned by the thread.

Implements prism::Abstract_thread_engine.

The documentation for this class was generated from the following �les:

• prism/sysdep/include/posix/posix_thread.h

• prism/sysdep/posix/posix_thread.cpp

7.14 prism::POSIX thread factory Class Reference

POSIX Thread factory theat creates thread engines, locks and condition
variables.

#include <posix_thread.h>

Inheritance diagram for prism::POSIX_thread_factory:

prism::POSIX_thread_factory

prism::Abstract_thread_factory

Collaboration diagram for prism::POSIX_thread_factory:

prism::POSIX_thread_factory factory

prism::Abstract_thread_factory

Public Member Functions

• virtual Prism_time get_current_time ()

Returns current time in POSIX API.

• virtual Abstract_timer ∗ create_timer (Prism_time &starting_time,
Prism_time &period)

Creates a POSIX timer. Overriden from #Abstract_thread_factory::get_-
current_time().

• virtual Abstract_lock ∗ create_lock ()

Creates a POSIX thread lock. Overriden from #Abstract_thread_factory::create_-
lock().

• virtual Abstract_condition_variable ∗ create_condition_variable (Abstract_-
lock ∗lock)

Creates a POSIX thread condition variable.

• virtual Abstract_thread_engine ∗ create_thread_engine ()

Creates a POSIX thread engine.

Static Public Member Functions

• static POSIX_thread_factory ∗ get_factory ()

Returns the factory.

7.14.1 Detailed Description

POSIX Thread factory theat creates thread engines, locks and condition
variables.

7.14.2 Member Function Documentation

7.14.2.1 Abstract_condition_variable ∗ POSIX thread -
factory::create condition variable (Abstract_lock ∗ lock)
[virtual]

Creates a POSIX thread condition variable.

Returns

#POSIX_condition_variable object that it created.

Implements prism::Abstract_thread_factory.

7.14.2.2 Abstract_lock ∗ POSIX thread factory::create lock () [virtual]

Creates a POSIX thread lock. Overriden from #Abstract_thread_factory::create_-
lock().

Returns

#POSIX_lock object that it created.

Implements prism::Abstract_thread_factory.

7.14.2.3 Abstract_thread_engine ∗ POSIX thread factory::create thread -
engine () [virtual]

Creates a POSIX thread engine.

Returns

#POSIX_thread_engine object that it created.

Implements prism::Abstract_thread_factory.

7.14.2.4 Abstract_timer ∗ POSIX thread factory::create timer (
Prism_time & starting time, Prism_time & period) [virtual]

Creates a POSIX timer. Overriden from #Abstract_thread_factory::get_-
current_time().

Returns

#POSIX_timer object that it created.

Implements prism::Abstract_thread_factory.

7.14.2.5 Prism_time POSIX thread factory::get current time ()
[virtual]

Returns current time in POSIX API.

It returns the current time based on gettimeofday() POSIX API.

Returns

current time

Implements prism::Abstract_thread_factory.

7.14.2.6 POSIX_thread_factory ∗ POSIX thread factory::get factory ()
[static]

Returns the factory.

The factory class does not have a state and is a singleton. Therefore, one
object can be reused in di�erent places. The object returned by this member
function is the one reused. DO NOT try to delete the factory.

The documentation for this class was generated from the following �les:

• prism/sysdep/include/posix/posix_thread.h

• prism/sysdep/posix/posix_thread.cpp

• prism/sysdep/posix/posix_timer.cpp

7.15 prism::POSIX timer Class Reference

Class supporting absolute-time-based real-time timers in POSIX.

#include <posix_thread.h>

Inheritance diagram for prism::POSIX_timer:

prism::POSIX_timer

prism::Abstract_timer

Collaboration diagram for prism::POSIX_timer:

prism::POSIX_timer

prism::Abstract_timer

Public Member Functions

• POSIX_timer (Prism_time &starting_time, Prism_time &period)

Constructs a timer with the given starting time and period.

• virtual void wait ()

Waits for the timer event.

• virtual void stop_timer ()

Stops the timer.

• virtual void restart_timer (Prism_time &starting_time, Prism_time
&period)

Resets the timer with the new parameters.

7.15.1 Detailed Description

Class supporting absolute-time-based real-time timers in POSIX. The POSIX_-
timer class delivers the POSIX timer to PRISM framework by implementing
#Abstract_timer.

See also

Abstract_timer

7.15.2 Constructor & Destructor Documentation

7.15.2.1 POSIX timer::POSIX timer (Prism_time & starting time,
Prism_time & period)

Constructs a timer with the given starting time and period.

period of the timer

Parameters

starting_-
time

timer starting time

7.15.3 Member Function Documentation

7.15.3.1 void POSIX timer::restart timer (Prism_time & starting time,
Prism_time & period) [virtual]

Resets the timer with the new parameters.

The old timer signals are cleaned up.

Implements prism::Abstract_timer.

7.15.3.2 void POSIX timer::stop timer () [virtual]

Stops the timer.

The member function also clears all the related timer events (signals).

< the signal set to wait for the timer, POSIX inter

Implements prism::Abstract_timer.

7.15.3.3 void POSIX timer::wait (void) [virtual]

Waits for the timer event.

If just one timer event has passed, it will immediately return. If more than
two timers have passed, it will immediately return. However, the number of
timer events processed by the return is unspeci�ed as POSIX timer. PRISM
is designed to work even with this unspeci�ed behavior of a timer.

Implements prism::Abstract_timer.

The documentation for this class was generated from the following �les:

• prism/sysdep/include/posix/posix_thread.h

• prism/sysdep/posix/posix_timer.cpp

7.16 Print buffer Class Reference

Bu�er to store the strings to print.

Public Attributes

• FILE ∗ fd
• char buf [rt_fprintf_buf_size]

7.16.1 Detailed Description

Bu�er to store the strings to print.

The documentation for this class was generated from the following �le:

• prism/src/rt_fprintf.cpp

7.17 prism::Prism manager Class Reference

Singleton class managing PRISM framework.

#include <prism_manager.h>

Collaboration diagram for prism::Prism_manager:

prism::Prism_manager

prism::Abstract_thread_factory

prism_default_factory

Static Public Member Functions

• static void initialize_prism (Abstract_thread_factory ∗default_factory,
bool use_of_rt_fprintf)

Initializes PRISM with the parameters.

• static Abstract_thread_factory ∗ get_prism_default_factory ()

Returns the PRISM default factory for thread related operations.

• static bool is_prism_initialized ()

Returns true if PRISM is initialized.

• static Prism_time get_current_time ()

Returns the current reference time of PRISM framework, which is the
logical global time in PALS.

7.17.1 Detailed Description

Singleton class managing PRISM framework.

7.17.2 Member Function Documentation

7.17.2.1 Prism_time Prism manager::get current time () [static]

Returns the current reference time of PRISM framework, which is the logical
global time in PALS.

The system can have multiple time references This function returns the syn-
chronized current time in PRISM semantics

7.17.2.2 Abstract_thread_factory ∗ Prism manager::get prism default -
factory () [static]

Returns the PRISM default factory for thread related operations.

Returns

#Abstract_thread_factory object representing the PRISM default fac-
tory

7.17.2.3 void Prism manager::initialize prism (Abstract_thread_factory
∗ default factory, bool use of rt fprintf) [static]

Initializes PRISM with the parameters.

Parameters

default_-
factory

Default factory for thread related operations

use_of_-
rt_fprintf

Speci�es if #rt_fprintf() should be initialized

7.17.2.4 bool Prism manager::is prism initialized () [static]

Returns true if PRISM is initialized.

Returns

if PRISM is initialized

The documentation for this class was generated from the following �les:

• prism/include/prism_manager.h

• prism/src/prism_manager.cpp

7.18 prism::Prism task Class Reference

De�nes periodic prism task as a thread.

#include <prism_task.h>

Inheritance diagram for prism::Prism_task:

prism::Prism_task

prism::Thread_stub

Collaboration diagram for prism::Prism_task:

prism::Prism_task

prism::Thread_stubprism::Abstract_thread_engine
engine

prism::Abstract_timer timers

prism::Abstract_thread_factory

factory

prism::Prism_time

pals_period
base_time

Public Member Functions

• Prism_task (int priority_arg, uint32_t pals_period_arg, uint32_t
time_unit)

Constructs the basic PALS task having no timer o�set.

• Prism_task (int priority_arg, uint32_t pals_period_arg, const uint32_-
t trigger_time_array_arg[], size_t trigger_time_array_size_arg, uint32_-
t time_unit)

Constructs the PALS task having a time o�set or o�sets with the default
factory..

• Prism_task (int priority_arg, uint32_t pals_period_arg, const uint32_-
t trigger_time_array_arg[], size_t trigger_time_array_size_arg, uint32_-
t time_unit, Abstract_thread_factory ∗thread_factory)

Constructs the basic PALS task having a time o�set or o�sets with the
speci�ed factory.

• virtual ∼Prism_task ()

Releases resources for the task.

• Prism_time get_base_time ()

Gets the base time for PALS round.

• Prism_time get_pals_period ()

Gets the PALS period.

• uint32_t get_pals_period_in_ns ()

Gets the PALS period in nanosecond.

• uint16_t get_timer_index ()

The timer index that just expired.

• void ∗ run (void)

The main thread function.

Protected Member Functions

• virtual void initialize ()

Called once for initialization at the beginning of thread execution.

• virtual bool each_pals_period (void)

Main computation function called at every pals period.

• void wait_for_timer (int16_t index)

Waits for a prede�ned o�set timer de�ned in task construction.

7.18.1 Detailed Description

De�nes periodic prism task as a thread. It has a single period with multiple
o�set timers. Each o�set timer has its own index. Packet deliveries are
designated to each timer. timer is initiated as if its base time initially had
started at EPOCH.

7.18.2 Constructor & Destructor Documentation

7.18.2.1 Prism task::Prism task (int priority arg, uint32 t pals period arg,
uint32 t time unit)

Constructs the basic PALS task having no timer o�set.

Default thread factory set at #Prism_manager is used.

7.18.2.2 Prism task::Prism task (int priority arg, uint32 t pals period arg, const
uint32 t trigger time array arg[], size t trigger time array size arg,
uint32 t time unit)

Constructs the PALS task having a time o�set or o�sets with the default
factory..

Multiple timers can be triggered for a PALS period for local communications.
Default thread factory set at #Prism_manager is used.

7.18.2.3 Prism task::Prism task (int priority arg, uint32 t pals period arg, const
uint32 t trigger time array arg[], size t trigger time array size arg,
uint32 t time unit, Abstract_thread_factory ∗ thread factory)

Constructs the basic PALS task having a time o�set or o�sets with the
speci�ed factory.

Multiple timers can be triggered for a PALS period for local communications.
This constructor is used when the developer wants to use a thread factory
other than the default thread factory speci�ed in #Prism_manager::initialize
member function. If you are not sure about the e�ect of using multiple thread
factories in a single process, do not use this constructor.

7.18.3 Member Function Documentation

7.18.3.1 bool Prism task::each pals period (void) [protected, virtual]

Main computation function called at every pals period.

Returns

true if the task does not want to terminate its periodic execution, and
false if the task wants to terminate its work at this period.

7.18.3.2 Prism_time Prism task::get base time ()

Gets the base time for PALS round.

Returns

the base time

7.18.3.3 Prism_time Prism task::get pals period ()

Gets the PALS period.

Returns

the PALS period in #Prism_time

7.18.3.4 uint32 t Prism task::get pals period in ns ()

Gets the PALS period in nanosecond.

Returns

the pals period in nanoseconds

7.18.3.5 uint16 t Prism task::get timer index ()

The timer index that just expired.

Returns

the current timer's index.

7.18.3.6 void Prism task::initialize (void) [protected, virtual]

Called once for initialization at the beginning of thread execution.

Called from run() at the beginning and it is synchronized with the PALS
period.

7.18.3.7 void ∗ Prism task::run (void) [virtual]

The main thread function.

Overridden from Thread_stub.

Implements prism::Thread_stub.

7.18.3.8 void Prism task::wait for timer (int16 t index) [protected]

Waits for a prede�ned o�set timer de�ned in task construction.

Called within each_pals_period() to wait for the next timer.

The documentation for this class was generated from the following �les:

• prism/include/prism_task.h

• prism/src/prism_task.cpp

7.19 prism::Prism time Class Reference

Class contains time information in nanosecond precision.

#include <prism_time.h>

Public Member Functions

• Prism_time ()

Constructs a Prism_time object with origin time (time 0)

• Prism_time (const Prism_time &time)

Clones a Prism_time object for a speci�c time.

• Prism_time (uint64_t second_arg, uint32_t nanosecond_arg)

Constructs a Prism_time object for a speci�c time.

• void set_time (uint64_t second_arg, uint32_t nanosecond_arg)

Sets the time of the object to the speci�ed one.

• void add_nanoseconds (uint64_t nanoseconds_to_add)

Adds (unsigned) nanoseconds to the time.

• void add_time (Prism_time &time)

Adds time.

• void subtract_nanoseconds (uint64_t nanoseconds_to_subtract)

Subtracts (unsigned) nanoseconds from the time.

• int8_t compare (Prism_time &other_time)

Compares the time with another Prism_time object.

• uint64_t get_second ()

Returns the second.

• uint32_t get_nanosecond ()

Returns the nanosecond portion.

7.19.1 Detailed Description

Class contains time information in nanosecond precision. It can contain
absolute time as well as relative time.

7.19.2 Constructor & Destructor Documentation

7.19.2.1 Prism time::Prism time ()

Constructs a Prism_time object with origin time (time 0)

Origin of absolute time is EPOCH, which can be system dependent. In a
single system, EPOCH must be unique.

7.19.3 Member Function Documentation

7.19.3.1 void Prism time::add nanoseconds (uint64 t nanoseconds to add)

Adds (unsigned) nanoseconds to the time.

Parameters

nanoseconds_-
to_add

nanoseconds to add

7.19.3.2 void Prism time::add time (Prism_time & time)

Adds time.

Parameters

time time to add

7.19.3.3 int8 t Prism time::compare (Prism_time & other time)

Compares the time with another Prism_time object.

Parameters

other_time object to compare.

Return values

-1 when this is earlier than #other_time,
0 when this is later than #other_time,
1 when two objects have the same time

7.19.3.4 uint32 t prism::Prism time::get nanosecond () [inline]

Returns the nanosecond portion.

Returns

nanosecond portion

7.19.3.5 uint64 t prism::Prism time::get second () [inline]

Returns the second.

Returns

second

7.19.3.6 void Prism time::subtract nanoseconds (uint64 t
nanoseconds to subtract)

Subtracts (unsigned) nanoseconds from the time.

Parameters

nanoseconds_-
to_-

subtract

nanoseconds to subtract

The documentation for this class was generated from the following �les:

• prism/include/prism_time.h

• prism/src/prism_time.cpp

7.20 Realtime fprintf Class Reference

Class implementing rt_fprintf mechanism.

Inheritance diagram for Realtime_fprintf:

Realtime_fprintf

prism::Thread_stub

Collaboration diagram for Realtime_fprintf:

Realtime_fprintf

prism::Thread_stubprism::Abstract_thread_engine
engine

prism::Abstract_lock lock

Print_buffer

buffer

prism::Abstract_condition_variable

condition_variable

Friends

• void initialize_rt_fprintf (Abstract_thread_factory ∗factory, int16_t
priority)

Before use of # rt_fprintf this function must be called in advance.

• void rt_fprintf (FILE ∗fd, const char ∗fmt,...)
Prints in the same manner as fprintf. But, I/O is taken care of by a low
priority task.

7.20.1 Detailed Description

Class implementing rt_fprintf mechanism.

7.20.2 Friends And Related Function Documentation

7.20.2.1 void initialize rt fprintf (prism::Abstract_thread_factory ∗
factory, int16 t priority) [friend]

Before use of # rt_fprintf this function must be called in advance.

Initializes the low-priority thread to take care of I/O

Parameters

factory Factory creates thread related system objects
priority I/O thread priority

7.20.2.2 void rt fprintf (FILE ∗ fd, const char ∗ fmt, ...) [friend]

Prints in the same manner as fprintf. But, I/O is taken care of by a low
priority task.

Usage is the same as fprintf

The documentation for this class was generated from the following �le:

• prism/src/rt_fprintf.cpp

7.21 prism::RX port Class Reference

Abstract class to de�ne network port to receive packets.

#include <abstract_port.h>

Inheritance diagram for prism::RX_port:

prism::RX_port

prism::RX_POSIX_multicast_port prism::RX_POSIX_unicast_port prism::RX_prism_port

Public Member Functions

• RX_port (uint32_t port_bu�er_size_arg)

Constructs RX_port.

• virtual Port_bu�er ∗ recv_port_bu�er () throw (Port_exception, Port_-
no_data_received)

Receives a packet in a #Port_bu�er object.

• virtual int32_t recv (void ∗buf, size_t length)=0 throw (Port_exception,
Port_no_data_received)

System dependent implementation of recv goes into this method in the
subclass.

• int32_t get_port_bu�er_size ()

Returns bu�er size when using #Port_bu�er.

Protected Attributes

• uint32_t port_bu�er_size

7.21.1 Detailed Description

Abstract class to de�ne network port to receive packets. It provides two
packet reception interfaces: reception in raw bu�er in void ∗ type, and re-
ception in #Port_bu�er.

7.21.2 Constructor & Destructor Documentation

7.21.2.1 RX port::RX port (uint32 t port buffer size arg)

Constructs RX_port.

The subclass de�nes all the details but the size of #Port_bu�er must be
commonly speci�ed.

7.21.3 Member Function Documentation

7.21.3.1 virtual int32 t prism::RX port::recv (void ∗ buf, size t length)
throw (Port_exception, Port_no_data_received) [pure

virtual]

System dependent implementation of recv goes into this method in the sub-
class.

Parameters

buf the pointer of raw bu�er to store the packet
length the size of #buf

Returns

the number of bytes received

Exceptions

Port_exception if a network exception is occured.
Port_no_data_-

received
if there is no packet received.

Implemented in prism::RX_prism_port, prism::RX_POSIX_unicast_port,
and prism::RX_POSIX_multicast_port.

7.21.3.2 Port_bu�er ∗ RX port::recv port buffer () throw
(Port_exception, Port_no_data_received) [virtual]

Receives a packet in a #Port_bu�er object.

When the reception is successful, a new object is allocated in heap, and
returned. The ownership of the object is transfered to the caller. The caller
is responsible for deletion of the returned object.

If a derived class does not override this member function, it simply exploits
recv() member function for the operation.

Returns

#Port_bu�er object having the received packet

Exceptions

Port_exception if a network exception is occured.
Port_no_data_-

received
if there is no packet received.

Reimplemented in prism::RX_prism_port.

The documentation for this class was generated from the following �les:

• prism/include/abstract_port.h

• prism/src/abstract_port.cpp

7.22 prism::RX POSIX multicast port Class Reference

POSIX UDP multicast port for packet receptions.

#include <posix_port.h>

Inheritance diagram for prism::RX_POSIX_multicast_port:

prism::RX_POSIX_multicast_port

prism::RX_port

Collaboration diagram for prism::RX_POSIX_multicast_port:

prism::RX_POSIX_multicast_port

prism::RX_port

Public Member Functions

• RX_POSIX_multicast_port (const char ∗addr_str, uint16_t port,
uint32_t bu�er_size_arg)

Creates POSIX UDP multicast port for packet receptions.

• virtual int32_t recv (void ∗buf, size_t length) throw (Port_exception,
Port_no_data_received)

POSIX recv in C++.

7.22.1 Detailed Description

POSIX UDP multicast port for packet receptions.

7.22.2 Member Function Documentation

7.22.2.1 int32 t RX POSIX multicast port::recv (void ∗ buf, size t length) throw
(Port_exception, Port_no_data_received) [virtual]

POSIX recv in C++.

Parameters

buf the pointer of raw bu�er to store the packet
length the size of #buf

Returns

the number of bytes received

Exceptions

Port_exception if a network exception is occured.
Port_no_data_-

received
if there is no packet received.

Implements prism::RX_port.

The documentation for this class was generated from the following �les:

• prism/sysdep/include/posix/posix_port.h

• prism/sysdep/posix/posix_port.cpp

7.23 prism::RX POSIX unicast port Class Reference

POSIX UDP unicast port for packet receptions.

#include <posix_port.h>

Inheritance diagram for prism::RX_POSIX_unicast_port:

prism::RX_POSIX_unicast_port

prism::RX_port

Collaboration diagram for prism::RX_POSIX_unicast_port:

prism::RX_POSIX_unicast_port

prism::RX_port

Public Member Functions

• RX_POSIX_unicast_port (uint16_t port, uint32_t bu�er_size_arg)

Creates POSIX UDP unicast port for packet receptions.

• virtual int32_t recv (void ∗buf, size_t length) throw (Port_exception,
Port_no_data_received)

POSIX recv in C++.

7.23.1 Detailed Description

POSIX UDP unicast port for packet receptions.

7.23.2 Member Function Documentation

7.23.2.1 int32 t RX POSIX unicast port::recv (void ∗ buf, size t length) throw
(Port_exception, Port_no_data_received) [virtual]

POSIX recv in C++.

Parameters

buf the pointer of raw bu�er to store the packet
length the size of #buf

Returns

the number of bytes received

Exceptions

Port_exception if a network exception is occured.
Port_no_data_-

received
if there is no packet received.

Implements prism::RX_port.

The documentation for this class was generated from the following �les:

• prism/sysdep/include/posix/posix_port.h

• prism/sysdep/posix/posix_port.cpp

7.24 prism::RX prism port Class Reference

RX communication port in PRISM semantics.

#include <prism_port.h>

Inheritance diagram for prism::RX_prism_port:

prism::RX_prism_port

prism::RX_port

Collaboration diagram for prism::RX_prism_port:

prism::RX_prism_port

prism::RX_port

port

prism::Prism_task

prism_task

prism::Thread_stubprism::Abstract_thread_engine
engine

prism::Abstract_timer timers

prism::Abstract_thread_factory factory

prism::Prism_time

max_time_for_queue

pals_period
base_time

prism::RX_prism_port::RX_packet

expected_rx_base_time packet_container

prev
next

prism::Port_buffer
buf

Classes

• class RX_packet

Public Member Functions

• RX_prism_port (RX_port ∗rx_port_arg, Prism_task ∗prism_task_-
arg)

Constructs a RX_prism_port object.

• RX_prism_port (RX_port ∗rx_port_arg, Prism_task ∗prism_task_-
arg, uint16_t max_periods_for_queue, uint16_t max_packets_per_-
period)

Constructs a RX_prism_port object.

• virtual Port_bu�er ∗ recv_port_bu�er () throw (Port_exception, Port_-
no_data_received)

Receives a packet at the expected delivery time in a form of #Port_bu�er
object.

• virtual int32_t recv (void ∗buf, size_t length) throw (Port_exception,
Port_no_data_received)

Receives a packet at the expected delivery time in conventional recv POSIX
API manner.

7.24.1 Detailed Description

RX communication port in PRISM semantics. RX_prism_port can be used
as a general RX_port, which has interfaces to receive packets. However, it
must be always coupled with #TX_prism_port on the other side. RX_-
prism_port receives a packet, decodes the header and deliver the packet at
the time designated by the header.

7.24.2 Constructor & Destructor Documentation

7.24.2.1 RX prism port::RX prism port (RX_port ∗ rx port arg,
Prism_task ∗ prism task arg)

Constructs a RX_prism_port object.

Notice that RX_prism_port only de�nes PRISM semantics not system spe-
ci�c network interfaces. Lower network layer system-speci�c network inter-
faces are de�ned by #rx_port_arg. If the local times of the machines are
not well synchronized, A machine with slow time can have too large bu�er
to keep up other machines' time, and can result in bu�er over�ow. To detect
such situation explicitly, RX_prism_port tracks the base time of a received
packet not to be too future. Moreover, it tracks the number of packets in the
bu�er not to be too large. This constructor does not set such parameters and
employ default values: #default_max_packets_in_queue and #default_-
max_periods_for_queue.

Parameters

rx_port_-
arg

RX port to receive packets below PRISM layer. The object own-
ership is transferred to the RX_prism_port object; it is deleted
when RX_prism_port object is deleted. Thereby, #rx_port_arg
object must be created in heap.

prism_-
task_arg

#Prism_task using the port.

7.24.2.2 RX prism port::RX prism port (RX_port ∗ rx port arg,
Prism_task ∗ prism task arg, uint16 t max periods for queue,
uint16 t max packets per period)

Constructs a RX_prism_port object.

Notice that RX_prism_port only de�nes PRISM semantics not system spe-
ci�c network interfaces. Lower network layer de�ning system-speci�c network
interfaces are de�ned by #rx_port_arg. If the local times of the machines
are not well synchronized, A machine with slow time can have too large bu�er
to keep up other machines' time, and can result in bu�er over�ow. To detect
such situation explicitly, RX_prism_port tracks the base time of a received
packet not to be too future. Moreover, it tracks the number of packets in the
bu�er not to be too large. This constructor explicitly takes the parameters
related to these queueing issues.

Parameters

rx_port_-
arg

RX port to receive packets below PRISM layer. The object own-
ership is transferred to the RX_prism_port object; it is deleted
when RX_prism_port object is deleted. Thereby, #rx_port_arg
object must be created in heap.

prism_-
task_arg

#Prism_task using the port.

max_-
periods_-
for_queue

packets cannot be delivered earlier than this period length.

max_-
packets_-
per_period

max number of packets per period.

7.24.3 Member Function Documentation

7.24.3.1 int32 t RX prism port::recv (void ∗ buf, size t length) throw
(Port_exception, Port_no_data_received) [virtual]

Receives a packet at the expected delivery time in conventional recv POSIX
API manner.

Parameters

buf the pointer of raw bu�er to store the packet
length the size of #buf

Returns

the number of bytes received

Exceptions

Port_exception if a network exception is occured.
Port_no_data_-

received
if there is no packet received.

Implements prism::RX_port.

7.24.3.2 Port_bu�er ∗ RX prism port::recv port buffer () throw
(Port_exception, Port_no_data_received) [virtual]

Receives a packet at the expected delivery time in a form of #Port_bu�er
object.

The packet header is examined and decided to be moved to the container
for later use or given to the caller in the current period. Note that the
returned bu�er is in the heap, and ownership of the object is transferred
to the caller. The caller must delete the bu�er after use. The caller need
not know about the implementation detail of packet_container: If there is
a previously received packet in packet_container , this function pulls it from
the container and returns the pointer of the kept bu�er (the caller must free
the bu�er). Otherwise, this function receives a packet from the lower layer
into a freshly allocated bu�er (the caller must free the bu�er, too).

Returns

the pointer of the #Port_bu�er object having the received packet.

Exceptions

Port_exception if a network exception is occured.
Port_no_data_-

received
if there is no packet received.

Reimplemented from prism::RX_port.

The documentation for this class was generated from the following �les:

• prism/include/prism_port.h

• prism/src/prism_port.cpp

7.25 prism::Thread stub Class Reference

Stub class to de�ne the behavior of a thread.

#include <abstract_thread.h>

Inheritance diagram for prism::Thread_stub:

prism::Thread_stub

prism::Prism_task Realtime_fprintf

Collaboration diagram for prism::Thread_stub:

prism::Thread_stub

prism::Abstract_thread_engine

engine

Public Member Functions

• Thread_stub (Abstract_thread_engine ∗engine_arg, int16_t priority_-
arg)

Speci�es thread-execution parameters.

• void start (void)

Calls the engine to start thread de�ned at run() method.

• void ∗ wait_for_completion (void)

Waits for the thread completion.

• virtual void ∗ run (void)=0

Represents the thread behavior. Must be de�ned in the subclass.

7.25.1 Detailed Description

Stub class to de�ne the behavior of a thread. In PRISM, Prism_task is the
subclass of this class de�ning the PRISM thread behavior. System-dependent
thread implementation is de�ned by #Abstract_thread_engine. Hence, the
subclass of Thread_stub must not de�ne any system dependent part of the
thread.

7.25.2 Constructor & Destructor Documentation

7.25.2.1 Thread stub::Thread stub (Abstract_thread_engine ∗
engine arg, int16 t priority arg)

Speci�es thread-execution parameters.

Parameters

engine_arg thread engine de�ning system dependent thread behavior.
priority_-

arg
thread priority.

7.25.3 Member Function Documentation

7.25.3.1 virtual void∗ prism::Thread stub::run (void) [pure virtual]

Represents the thread behavior. Must be de�ned in the subclass.

Returns

a pointer value returned at the thread completion.

Implemented in prism::Prism_task.

7.25.3.2 void ∗ Thread stub::wait for completion (void)

Waits for the thread completion.

Engine assists the operation

Returns

a pointer value returned by the thread.

The documentation for this class was generated from the following �les:

• prism/include/abstract_thread.h

• prism/src/abstract_thread.cpp

7.26 prism::TX port Class Reference

Abstract class to de�ne network port to send packets.

#include <abstract_port.h>

Inheritance diagram for prism::TX_port:

prism::TX_port

prism::TX_POSIX_multicast_port prism::TX_POSIX_unicast_port prism::TX_prism_port

Public Member Functions

• virtual void send_port_bu�er (Port_bu�er ∗buf) throw (Port_exception)

Sends a Port_bu�er object as a packet.

• virtual int32_t send (void ∗buf, size_t length)=0 throw (Port_exception)

System dependent implementation of send goes into this method.

7.26.1 Detailed Description

Abstract class to de�ne network port to send packets. It provides two packet
transmission interfaces: sending a raw bu�er in void ∗ type, and sending
#Port_bu�er object.

7.26.2 Member Function Documentation

7.26.2.1 virtual int32 t prism::TX port::send (void ∗ buf, size t length) throw
(Port_exception) [pure virtual]

System dependent implementation of send goes into this method.

Parameters

buf the pointer of raw bu�er to store the packet
length the size of #buf

Returns

the number of bytes sent

Exceptions

Port_exception if a network exception is occured.

Implemented in prism::TX_prism_port, prism::TX_POSIX_unicast_port,
and prism::TX_POSIX_multicast_port.

7.26.2.2 void TX port::send port buffer (Port_bu�er ∗ buf) throw
(Port_exception) [virtual]

Sends a Port_bu�er object as a packet.

If a derived class does not override this member function, it simply exploits
send() member function for the operation.

Parameters

buf #Port_bu�er object to send

Exceptions

Port_exception if a network exception is occured.

The documentation for this class was generated from the following �les:

• prism/include/abstract_port.h

• prism/src/abstract_port.cpp

7.27 prism::TX POSIX multicast port Class Reference

POSIX UDP multicast port for packet transmissions.

#include <posix_port.h>

Inheritance diagram for prism::TX_POSIX_multicast_port:

prism::TX_POSIX_multicast_port

prism::TX_port

Collaboration diagram for prism::TX_POSIX_multicast_port:

prism::TX_POSIX_multicast_port

prism::TX_port

Public Member Functions

• TX_POSIX_multicast_port (const char ∗addr_str, uint16_t port,
int32_t ttl)

Creates POSIX UDP multicast port for packet transmissions.

• virtual int32_t send (void ∗buf, size_t length) throw (Port_exception)

POSIX send in C++.

7.27.1 Detailed Description

POSIX UDP multicast port for packet transmissions.

7.27.2 Member Function Documentation

7.27.2.1 int32 t TX POSIX multicast port::send (void ∗ buf, size t length) throw
(Port_exception) [virtual]

POSIX send in C++.

Parameters

buf the pointer of raw bu�er to store the packet
length the size of #buf

Returns

the number of bytes sent

Exceptions

Port_exception if a network exception is occured.

Implements prism::TX_port.

The documentation for this class was generated from the following �les:

• prism/sysdep/include/posix/posix_port.h

• prism/sysdep/posix/posix_port.cpp

7.28 prism::TX POSIX unicast port Class Reference

POSIX UDP unicast port for packet transmissions.

#include <posix_port.h>

Inheritance diagram for prism::TX_POSIX_unicast_port:

prism::TX_POSIX_unicast_port

prism::TX_port

Collaboration diagram for prism::TX_POSIX_unicast_port:

prism::TX_POSIX_unicast_port

prism::TX_port

Public Member Functions

• TX_POSIX_unicast_port (const char ∗addr_str, uint16_t port)
Creates POSIX UDP unicast port for packet transmissions.

• virtual int32_t send (void ∗buf, size_t length) throw (Port_exception)

POSIX send in C++.

7.28.1 Detailed Description

POSIX UDP unicast port for packet transmissions.

7.28.2 Member Function Documentation

7.28.2.1 int32 t TX POSIX unicast port::send (void ∗ buf, size t length) throw
(Port_exception) [virtual]

POSIX send in C++.

Parameters

buf the pointer of raw bu�er to store the packet
length the size of #buf

Returns

the number of bytes sent

Exceptions

Port_exception if a network exception is occured.

Implements prism::TX_port.

The documentation for this class was generated from the following �les:

• prism/sysdep/include/posix/posix_port.h

• prism/sysdep/posix/posix_port.cpp

7.29 prism::TX prism port Class Reference

TX communication port in PRISM semantics.

#include <prism_port.h>

Inheritance diagram for prism::TX_prism_port:

prism::TX_prism_port

prism::TX_port

Collaboration diagram for prism::TX_prism_port:

prism::TX_prism_port

prism::TX_port
port

prism::Prism_task

prism_task

prism::Thread_stubprism::Abstract_thread_engine
engine

prism::Abstract_timer timers

prism::Abstract_thread_factory

factory

prism::Prism_time

pals_period
base_time

Public Member Functions

• TX_prism_port (TX_port ∗tx_port_arg, Prism_task ∗prism_task_-
arg, Delivery_property port_property, uint16_t target_timer_index_-
arg)

Constructs a TX_prism_port object.

• virtual int32_t send (void ∗buf, size_t length) throw (Port_exception)

7.29.1 Detailed Description

TX communication port in PRISM semantics. TX_prism_port can be used
as a general #TX_port, which has interfaces to send packets. However,
it must be always coupled with #RX_prism_port on the other side. The
logical time behavior of a packet sent by TX_prism_port is deterministic.

7.29.2 Constructor & Destructor Documentation

7.29.2.1 TX prism port::TX prism port (TX_port ∗ tx port arg,
Prism_task ∗ prism task arg, Delivery property port property,
uint16 t target timer index arg)

Constructs a TX_prism_port object.

Notice that TX_prism_port only de�nes PRISM semantics not system spe-
ci�c network interfaces. Lower network layer de�ning system-speci�c network
interfaces are de�ned by #tx_port_arg.

Parameters

tx_port_-
arg

TX port to send packets below PRISM layer. The object ownership
is transferred to the TX_prism_port object; it is deleted when
TX_prism_port object is deleted. Thereby, #tx_port_arg object
must be created in heap.

prism_-
task_arg

#Prism_task using the port.

port_-
property

De�nes target PALS round.

target_-
timer_-

index_arg

De�nes the receiver timer index within the PALS round.

7.29.3 Member Function Documentation

7.29.3.1 int32 t TX prism port::send (void ∗ buf, size t length) throw
(Port_exception) [virtual]

It attaches header de�ning when it must be delivered to the receiver. #TX_-
port::send()

Implements prism::TX_port.

The documentation for this class was generated from the following �les:

• prism/include/prism_port.h

• prism/src/prism_port.cpp

	I Software Design Description
	Overview
	Introduction
	Purpose
	Scope

	System Overview

	PRISM Design and Definition
	System Overview
	Lockstep synchronization
	Harmonic synchronization
	Client-server synchronization
	Intra-period synchronization
	Environment input/output synchronizer

	Hardware Architecture
	Support Software
	Implementation Details
	Software Scalability and Flexibility

	System Architectural Design
	System Components
	Prism_manager and Abstract_thread_factory
	Prism_task
	TX_prism_port
	RX_prism_port

	Concept of Execution
	Interface Design
	Software Development Environment
	Compilers
	Operating Systems

	PRISM Detailed Design
	Class Diagram for PRISM core
	Class Diagram for system dependent part
	System-dependent communications
	System-dependent thread interfaces

	Activities between Prism_task class and its subclass objects
	Interactions between Prism_task and TX_prism_port
	Class and Use Cases for Prism_task and RX_prism_port
	Pure PALS and Client-server semantics

	II Reference Manual
	Class Index
	Class Hierarchy

	Class Index
	Class List

	Class Documentation
	prism::Abstract_condition_variable Class Reference
	Detailed Description
	Member Function Documentation
	signal
	wait

	prism::Abstract_lock Class Reference
	Detailed Description
	Member Function Documentation
	lock
	trylock
	unlock

	prism::Abstract_thread_engine Class Reference
	Detailed Description
	Member Function Documentation
	start
	wait_for_completion

	prism::Abstract_thread_factory Class Reference
	Detailed Description
	Member Function Documentation
	create_condition_variable
	create_lock
	create_thread_engine
	create_timer
	get_current_time

	prism::Abstract_timer Class Reference
	Detailed Description
	Member Function Documentation
	restart_timer
	stop_timer
	wait

	prism::Lock_failed Class Reference
	Detailed Description

	prism::Port_buffer Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Port_buffer

	Member Function Documentation
	append_double
	append_float
	get_max_size
	get_remained_size
	retrieve_double
	retrieve_float
	size
	tostr

	prism::Port_buffer_overflow Class Reference
	Detailed Description

	prism::Port_exception Class Reference
	Detailed Description

	prism::Port_no_data_received Class Reference
	Detailed Description

	prism::POSIX_condition_variable Class Reference
	Detailed Description

	prism::POSIX_lock Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	POSIX_lock
	POSIX_lock

	Member Function Documentation
	lock
	trylock
	unlock

	prism::POSIX_thread_engine Class Reference
	Detailed Description
	Member Function Documentation
	start
	wait_for_completion

	prism::POSIX_thread_factory Class Reference
	Detailed Description
	Member Function Documentation
	create_condition_variable
	create_lock
	create_thread_engine
	create_timer
	get_current_time
	get_factory

	prism::POSIX_timer Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	POSIX_timer

	Member Function Documentation
	restart_timer
	stop_timer
	wait

	Print_buffer Class Reference
	Detailed Description

	prism::Prism_manager Class Reference
	Detailed Description
	Member Function Documentation
	get_current_time
	get_prism_default_factory
	initialize_prism
	is_prism_initialized

	prism::Prism_task Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Prism_task
	Prism_task
	Prism_task

	Member Function Documentation
	each_pals_period
	get_base_time
	get_pals_period
	get_pals_period_in_ns
	get_timer_index
	initialize
	run
	wait_for_timer

	prism::Prism_time Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Prism_time

	Member Function Documentation
	add_nanoseconds
	add_time
	compare
	get_nanosecond
	get_second
	subtract_nanoseconds

	Realtime_fprintf Class Reference
	Detailed Description
	Friends And Related Function Documentation
	initialize_rt_fprintf
	rt_fprintf

	prism::RX_port Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	RX_port

	Member Function Documentation
	recv
	recv_port_buffer

	prism::RX_POSIX_multicast_port Class Reference
	Detailed Description
	Member Function Documentation
	recv

	prism::RX_POSIX_unicast_port Class Reference
	Detailed Description
	Member Function Documentation
	recv

	prism::RX_prism_port Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	RX_prism_port
	RX_prism_port

	Member Function Documentation
	recv
	recv_port_buffer

	prism::Thread_stub Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Thread_stub

	Member Function Documentation
	run
	wait_for_completion

	prism::TX_port Class Reference
	Detailed Description
	Member Function Documentation
	send
	send_port_buffer

	prism::TX_POSIX_multicast_port Class Reference
	Detailed Description
	Member Function Documentation
	send

	prism::TX_POSIX_unicast_port Class Reference
	Detailed Description
	Member Function Documentation
	send

	prism::TX_prism_port Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	TX_prism_port

	Member Function Documentation
	send

