
S. Andova et.al. (Eds.): Workshop on Quantitative Formal Methods:
Theory and Applications (QFM’09)
EPTCS 13, 2009, pp. 67–78, doi:10.4204/EPTCS.13.6

c© H. Wang & W. MacCaull
This work is licensed under the
Creative Commons Attribution License.

Verifying Real-Time Systems using Explicit-time Description
Methods

Hao Wang and Wendy MacCaull
Centre for Logic and Information

St. Francis Xavier University
Antigonish, Canada

{hwang, wmaccaul}@stfx.ca

Timed model checking has been extensively researched in recent years. Many new formalisms with
time extensions and tools based on them have been presented.On the other hand,Explicit-Time
Description Methodsaim to verify real-time systems with general untimed model checkers. Lamport
presented an explicit-time description method using a clock-ticking process (Tick) to simulate the
passage of time together with a group of global variables fortime requirements. This paper proposes a
new explicit-time description method with no reliance on global variables. Instead, it uses rendezvous
synchronization steps between theTick process and each system process to simulate time. This new
method achieves bettermodularityand facilitates usage of more complex timing constraints. The two
explicit-time description methods are implemented in DIV INE, a well-known distributed-memory
model checker. Preliminary experiment results show that our new method, with better modularity, is
comparable to Lamport’s method with respect to time and memory efficiency.

1 Introduction

Model checking is an automatic analysis method which explores all possible states of a modeled sys-
tem to verify whether the system satisfies a formally specified property. It was popularized in industrial
applications, e.g., for computer hardware and software, and has great potential for modeling and moni-
toring complex and distributed business processes.Timedmodel checking, the method to formally verify
real-time systems, is attracting increasing attention from both the model checking community and the
real-time community. However, general model checkers likeSPIN [14] can only represent and verify
thequalitativerelations between events, which constrains their use for real-time systems. Thequantified
time notions, including time instant and duration, must be taken into account for timed model checking.
For example in a safety critical application such as in an emergency department, after an emergency case
arrives at the hospital, general model checking of hospitalprotocol can only verify whether “the patient
receives a certain treatment”, but to save the patient’s life, it should be verified whether the protocol
ensures that “the patient receives a certain treatment within 1 hour”.

Many formalisms with time extensions have been presented asthe basis for timed model checkers.
A typical example istimed automata[5], which is an extension of finite-state automata with a setof
clock variables to keep track of time. Lamport [16] calls this approach asImplicit-Time Description
Methods. UPPAAL [8] is a well-known timed-automata-based model checker; it has been successfully
applied to various real-time controllers and communication protocols. Conventional temporal logics
like Linear Temporal Logic(LTL) or Computation Tree Logic(CTL) must be extended [6] to handle
the specification of properties of timed automata. The foundation for the decidability results in timed
automata is based on the notion ofregion equivalenceover clock assignment [9]. Models in a timed-
automata-based model checker can not represent which time instant a transition is executed at within

http://dx.doi.org/10.4204/EPTCS.13.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


68 Verifying Real-Time Systems using Explicit-time Description Methods

a time region; such model checkers can only deal with specification involving a time region or a pre-
specified time instant. However, many real-time systems, especially those with pre-emptive scheduling
features, need to record the time instant when the pre-emption happens for succeeding calculation. For
example, triage is widely practiced in medical procedures;the caregiverC may be administering some
required but non-critical treatment on patientA when another patientB presents with a critical situation,
such as a cardiac arrest.C then must move to the higher priority task of treatingB, but it is necessary to
store the elapsed time ofA’s treatment to determine how much time is still needed or thetreatment needs
to be restarted. Thestop-watchautomata [4], an extension of timed autamata, is proposed totackle this;
unfortunately as Krcál and Yi discussed in [15], since the reachability problem for this class of automata
is undecidable, there is no guarantee for termination in thegeneral case.

On the other hand, Lamport [16] advocated the Explicit-TimeDescription Methods which aim to
use ordinary model checkers to realize timed model checking. He presented an explicit-time description
method using a clock-ticking process (Tick) to simulate the passage of time and a pair of global variables
to store the time lower and upper bounds for each modeled system process. The main advantage of the
explicit-time approach is that it doesnot need specialized languages or tools for time description. The
method has been implemented with popular model checkers SPIN (sequential) [14] and SMV [17]. Re-
cently, Van den Berg et al. [10] successfully applied LEDM toverify the safety of railway interlockings
for one of Australia’s largest railway companies. The additional benefit of the explicit-time approach
is that as it explicitly records the passage of time so the current time instant can be accessed easily,
the pre-emptive scheduling problem discussed in the previous paragraph that causes difficulty using the
timed-automata-based model checkers can be modeled naturally with explicit-time description methods.

In this paper, we propose a new explicit-time description method calledSync-based Explicit-time
Description Method(SEDM), which does not rely on global variables; instead it uses rendezvous syn-
chronization steps between theTick process and each system process. After theTick process completes
synchronization steps with every system processes, the global clock increments by one time unit. While,
as Lamport commented [16], “The approach (LEDM) cannot be used in process-based languages and
formalisms with no explicit global state, such as CCS, CSP, Petri nets, streams and I/O automata”,
SEDM can do exactly that. As an added advantage, SEDM allows the timing constraints to be defined
either globally or locally so the whole system can be modeledin a way that enhances its modularity. We
choose DIV INE [7], a well-known distributed model checker, because it accommodates the up-to-date
multi-core architecture, i.e., clusters of multi-core CPU’s and it has been tested successfully in large-scale
clusters, even in a large-scale optical grid [19]. Experimental results show that SEDM is comparable to
LEDM with respect to time and memory efficiency so SEDM can be used in place of LEDM.

The remainder of the paper is organized as follows. After a brief introduction to DIV INE, Section
2 presents the LEDM with its DIV INE implementation. The new method SEDM with its DIV INE
implementation is presented in Section 3. Section 4 describes our experiments and the results. Section 5
concludes the paper.

2 Preliminaries

The syntax outlined in 2.1, being incomplete, is meant for the presentation of the time-explicit description
methods; the complete description can be found in [3].



H. Wang & W. MacCaull 69

2.1 The DIV INE Model Checker and its Modeling Language

DIV INE is an explicit-state LTL model checkers based on the automata-based procedure by Vardi and
Wolper [18]. The property to be specified is described by an LTL formula, both the system model and
the LTL formula are represented by automata, then the model checking problem is reduced to detecting
in the combined automaton graph whether there is anaccepting cycle, i.e., a cycle in which one of the
vertices is marked “accepting”. With the distributed algorithms to assign different portions of the state
space to be explored by different machines, DIV INE can: (1) verify much larger system models; (2)
finish the verification in significantly less time (in comparison with the well-known explicit-state LTL
model checker SPIN).

DVE is the modeling language of DIV INE. Like in Promela (the modeling language of SPIN), a
model described in DVE consists of processes, message channels and variables. Each process, identified
by a unique nameprocid, consists of a list of local variable declarations, processstates declarations,
initial state declaration and a list of transitions. A transition transfers the process state fromstateid1 to
stateid2, the transition may contain a guard (which decides whether the transition can be executed), a
synchronization (which communicates data with another process) and effects (which assigns new values
to local or global variables). So we have

Transition ::= stateid1 -> stateid2 { Guard Sync Effect }

TheGuard contains the keywordguard followed by a boolean expression and theEffect contains
the keywordeffect followed by a list of assignments. TheSync follows the denotation for communi-
cation in CSP, ‘!’ for the sender and ‘?’ for the receiver. Thesynchronization can be either asynchronous
or rendezvous. Thechanid is the channel for the synchronization; value(s) can be transferred in it. So
we have

Sync ::= sync chanid!SyncValue | chanid?SyncValue

The property to be specified can be written as an LTL formula and a correspondingproperty pro-
cesscan be automatically generated. Modeled system processes and the property process progress syn-
chronously, so the latter can observe the system’s behaviorstep by step and catch errors.

2.2 Lamport Explicit-time Description Method

The passage of time and timed quantified values can be expressed in untimed languages and properties
to be specified can be expressed in conventional temporal logics. In LEDM, current time is represented
with a global variablenow that is incremented by an addedTick process. As we mentioned earlier,
ordinary model checkers can only deal with integer variables, and the real-time system can be modeled
in discrete-time only using an explicit-time description.TheTick process incrementsnowby 1.

Placing lower-bound and upper-bound timing constraints ontransitions in processes is the common
way to model real-time systems. Figure 1 shows a simple example of only two transitions, transitionS:
stateidl -> stateidm is followed by the transitionA: stateidm -> stateidn. An upper-bound timing con-
straint on when a transitionA: stateidm -> stateidn must occur is expressed by a guard on the transition
in theTickprocess so as to prevent an increase in time from violating the constraint. A lower-bound con-
straint on when the transitionA may occur is expressed by a guard onA so it cannot be executed earlier
than it should be. Each system processPi has a pair of count-down timers as global variablesubtimeri



70 Verifying Real-Time Systems using Explicit-time Description Methods

Figure 1: States and timeline for processPi

and lbtimeri for the timing constraints on its transitions. A large enough integer constantINFINITY is
defined; those upper bound timers with the value ofINFINITY are not active and theTick process does
not decrement them. All upper bound timers are initialized to INFINITY and all lower bound timers are
initialized to zero. For transitionA, the timers will be set to the correct values by its precedingtransition
S. As now is incremented by 1, each non-INFINITY ubtimer and non-zerolbtimer is decremented by
1.

Initially, (ubtimeri , lbtimeri) are set to(INFINITY,0). The transitionS is executed at time in-
stant t0, and (ubtimeri , lbtimeri) are set to(τ2,τ1). After τ1 time units, i.e., at time instantt1 when
(ubtimeri , lbtimeri) is equal to(τ2− τ1,0), the transitionA is enabled. Both timers will be reset or set to
new time bounds after the execution ofA. If the transitionA is still not executed when the time reaches
t2 andubtimeri is equal to 0, the transition in theTick process is disabled, which means the clock has to
stop here. Only afterubtimeri is set by transitionA, theTickprocess can start again. In this way, the time
upper-bound constraint is realized.

TheTick process and the system processPi in DVE are described in Figure 2 and Figure 3.

process P Tick {
state tick;

init tick;

trans

tick -> tick { guard all ubtimers >0;

effect now = now + 1,

decrements all timers; } ;

}

Figure 2:Tick process in DVE for LEDM

We observe that the value ofnow is limited by the size of typeinteger and careless incrementing
can cause overflow error. This can be avoided by incrementingnowusing modular arithmetic, i.e., setting
now= (now+1) mod MAXIMAL (MAXIMAL is the maximal integer value supported by the model checker).
The value limit can also be increased by linking several integers, i.e., every time(int1+1) mod MAXIMAL

becomes zero again,int2 increments by 1, and so on. Note that the variablenow is only incremented in
theTick process and does not appear in any other process. So for general system models in which time



H. Wang & W. MacCaull 71

process P i {
state ..., state l, state m, state n;

init ...;

trans

... -> ... ;

state l -> state m { ...; effect set timers f or transitionA;},
state m -> state n { guard lbtimer[i]==0; effect ... ; },

... -> ... ;

}

Figure 3: System processPi in DVE for LEDM

lower and upper bounds suffice, the variablenowshould be removed.

3 The New Sync-based Explicit-Time Description Method

This section presents the new SEDM, followed by two examplesto illustrate its modularity advantage
and capability to model pre-emptive scheduling problems.

3.1 The Method

In the new SEDM, the passage of time is also simulated by an additional Tick process. In one time unit,
it completes synchronization steps with each system process. The current time is the count of previous
synchronization steps, so all the timing variables can be defined either locally or globally. In this way,
local timers can be added or removed without affecting the model globally and goodmodularitycan be
achieved. Note that thenowvariable can also be removed for a similar reason, but if any system process
contains any enabling condition that is dependent on a certain time instant, it is safe to define anow
variable locally.

For the same example in Figure 1,Pi has local timers(ubtimer, lbtimer). For the transitionA: stateidm
-> stateidn, each of the timers will be set to the correct values(τ2,τ1) by its preceding transition,S:
stateidl -> stateidm. The execution is similar to Lamport’s method except: (1) the timers are decre-
mented locally by 1 after each synchronization with theTick process; (2) if the transitionA is still not
executed when the time reachest2 andubtimeri is equal to 0, there is no synchronization step before
executing transitionA. Because theTick process has to synchronize with each process for each tick, it
must wait forPi ’s nextsync statement.

TheTickprocess, for two system processes, in DVE is described in Figure 4. The localubtimer and
lbtimer can be defined and used in a system process as in Figure 5.

Readers may argue against the usage of round-robin scheduling of all synchronization steps in one
tick: P 1 always ticks before P2. Actually, a time model to be verified is built to cover everypossible
execution of all system steps, which can be assured in SEDM byseparating transitions for system steps
and transitions for time synchronization in all system processes. Therefore, we do not need to cover
every possible sequence of all synchronization steps, one sequence is enough for the verification.

Readers may also be concerned about the size of the state space and time efficiency as SEDM adds
N synchronization steps for every time unit,N being the number of system processes. However, the
experimental results (see Section 4) show that as the model grows bigger, the time and memory efficiency



72 Verifying Real-Time Systems using Explicit-time Description Methods

process P Tick {
state tick1, tick2;

init tick1;

trans

tick1 -> tick2 { sync chan1!; },
tick2 -> tick1 { sync chan2!; };

}

Figure 4:Tick process in DVE for SEDM

process P i {
int ubtimer, lbtimer;

state state l, state m, state n, ...;

init ...;

trans

... -> ... ;

state l -> state m { ...; effect set timers f or transitionA; },
state m -> state m { guard ubtimer>0; sync chan1? ;

effect decrement timers by1 ; },
state m -> state n { guard lbtimer==0 && ...; ...; },
... -> ... ;

}

Figure 5: System processPi in DVE for SEDM

and size of state space are comparable to those of LEDM.

3.2 An Example with Complex Timers

As the time can be accessed locally with SEDM, complex timingconstraints, e.g., fixed time delay
(the special case whenubtimer==lbtimer), multiple independent (possibly overlapping) timers and
dependent timers, can be expressed more conveniently than with LEDM because with the latter method
new global variables must defined and theTick process must be updated.

Figure 6 describes five transitionsA,B,C,D,E in Pi (see the upper part of the figure) and their asso-
ciated timeline. TransitionA: stateidm -> stateidn has a fixed time delay,τ0; transitionB: stateidn ->

stateido has upper and lower bounds,(τ2,τ1); transitionC: stateidn -> stateidp has upper and lower
bounds,(τ4,τ3). After the execution of transitionA, there is a time period,(t3, t4), during which both
transitionB andC are enabled and chosen non-deterministically. TransitionD: stateido -> stateidq and
E: stateidp -> stateidq have the upper and lower bounds which are dependant on the execution time of
B orC. The processPi in DVE is described in Figure 7.

3.3 An Example of Pre-emptive Scheduling

Following the triage example described in Section 1, we consider a system of multiple parallel tasks with
different priorities, assuming that the right to an exclusive resource is deprivable, i.e., a higher priority
taskB may deprive the resource from the currently running taskA. In this case, the elapsed time ofA’s
execution must be stored for a future resumed execution.



H. Wang & W. MacCaull 73

Figure 6: States and timeline for complex timers using SEDM

process P i {
...;

trans

... -> ... ;

state l -> state m { ...; effect fixdelay=τ0; },
state m -> state m { guard fixdelay>0; sync chan1?;

effect fixdelay=fixdelay-1 ; },
state m -> state n { guard fixdelay==0 ; ...;

effect ubtimer1=τ3,lbtimer1=τ1,

ubtimer2=τ4,lbtimer2=τ2; },
state n -> state n { guard ubtimer2>0; sync chan1?;

effect decrement timers by1;},
state n -> state o { guard ubtimer1>0 && lbtimer1==0; ...;},
state n -> state p { guard ubtimer2>0 && lbtimer2==0; ...;},
... -> ... ;

}

Figure 7: System processPi in DVE with complex timers

Figure 8 shows a portion of a state transition diagram for task A, assumingA needs the exclusive
resourceR for 10 time units; whenR becomes available at time instantt0, A starts its execution by
entering the stateExec; at time instantt1, B deprivesA’s right to R, andA changes to the stateDeprived
and stores the elapsedt1 − t0 time units; whenR becomes available again,A resumes its execution to
stateExecfor the remaining 10− (t1− t0) units. Implementation of this example using any one of the
three explicit-time description methods is straightforward. Figure 9 shows the process for taskA in DVE
using SEDM (assumingA has the lowest priority).



74 Verifying Real-Time Systems using Explicit-time Description Methods

Figure 8: An Example of Pre-emptive Scheduling

byte isROccupied=0; //0 means available

process A {
default(Tag,tagA)

int timeToGo=10;

state s i, s Exec, s Deprived, ...;

init ...;

trans

... -> ... ;

s i -> s Exec { guard isROccupied==0;

effect isROccupied=Tag, ltimer=timeToGo;

s Exec -> s Exec { guard ltimer>0; sync chan1?;

effect ltimer=ltimer-1; },
s Exec -> s Deprived { guard isROccupied=Tag && ltimer>0;

effect timeToGO=ltimer; },
s Deprived -> s Deprived { guard isROccupied!=0; sync chan1?; }
s Deprived -> s Exec { guard isROccupied==0;

effect isROccupied=Tag, ltimer=timeToGo; },
s Exec -> s Next { guard ltimer==0;

effect isROccupied=0; },
... -> ... ;

}

Figure 9: Process in DVE for Pre-emptive Scheduling Exampleusing SEDM

4 Experiments in DIV INE

For the convenience of comparison, we experiment with the Fischer’s mutual exclusion algorithm, a
well-known benchmark for timed model checking, which is also used by Lamport in his experiments



H. Wang & W. MacCaull 75

[16]. The brief description of the algorithm is adapted from[16]. Our experiments model the algorithm
in DIV INE using LEDM and SEDM, and compare the time and memory efficiency and size of state
space.

Fischer’s algorithm is a shared-memory, multi-threaded algorithm. It uses a shared variablex whose
value is either a thread identifier (starting from 1) or zero;its initial value is zero. For the convenience of
specification of the safety property in our experiments, we use a counterc to count the number of threads
that are in the critical section. The program for threadt is described in Figure 10.

ncs: noncritical section;
a: wait until x = 0;
b: x := t;
c: if x 6= t then goto a;
cs: critical section;
d: x := 0; goto ncs;

Figure 10: Program of threadt in Fischer’s algorithm

The timing constraints are, first, that stepb must be executed at mostδ time units (as a upper bound)
after the preceding execution of stepa; and second, that stepc cannot be executed until at leastε time
units (as a lower bound) after the preceding execution of step b. For stepc, there is an additional upper
bound εupper to ensure fairness. For convenience, we use the same value for three constraints, i.e.,
δ = ε = εupper = T. The algorithm is tested for 6 threads. The safety property,“no more than one
process can be in the critical section”, is specified asG(c< 2) for the model.

LEDM SEDM
T States Time Memory States Time Memory
2 644987 1.8 4700.1 1838586 2.9 4865.3
4 3048515 3.3 4942.8 6923088 4.3 5641.9
6 11201179 7.2 6343.4 18460632 9.3 7402.0
8 32952899 18.6 9958.9 48177552 21.2 11905.0

10 82428155 49.2 18016.2 113914104 46.1 21894.8
12 182767747 115.0 34906.3 244265616 108.8 41454.5
14 369377435 290.9 65205.1 482259672 230.0 78936.2
16 693683459 617.5 122549.0 889586256 611.2 148010.0

Figure 11: Time (in seconds), number of states and memory usage (in MB) for Fischer’s algorithm using
two explicit-time methods in DIV INE with 16 CPUs

The version 0.8.1 of the DIV INE-Cluster is used. This version has the new feature of pre-compiling
the model in DVE into dynamically linked C functions; this feature speeds up the state space generation
significantly. According to the published experimental results of DIV INE [19], we choose the OWCTY
(One Way to Catch Them Young) algorithm for better time efficiency as our example property is known
to hold.

All experiments are executed on the Mahone cluster of ACEnet[1], the high performance computing
consortium for universities in Atlantic Canada. The cluster is a Parallel Sun x4100 AMD Opteron (dual-
core) cluster equipped with Myri-10G interconnection. Parallel jobs are assigned using the Open MPI
library.



76 Verifying Real-Time Systems using Explicit-time Description Methods

Figure 11 compares time and memory efficiency for the two explicit-time description methods in both
versions of DIV INE with 16 CPUs; it also shows how the size of state spaces increase asT increases.

While SEDM has the bigger number of states for all models, as the model becomes larger, the time
increases more slowly than with LEDM: time increases by a factor of 343 asT increases from 2 to
16 with LEDM; time increases by a factor of 204 asT increases from 2 to 16 with SEDM; It is also
interesting to find that starting fromT = 10, the time spent with SEDM islessthan the time with LEDM.

Because SEDM addsN synchronization steps (recall thatN is the number of system processes) for
each time units, the size of state space of the model generated by our method is bigger than that by
Lamport’s method. But as the model becomes bigger, the difference becomes insignificant. ForT = 2,
states(SEDM)
states(LEDM)=2.85, while forT = 16, the two numbers of state size become comparable.

The memory usages of both methods are comparable. Because OWCTY algorithm requires that the
whole state space fit into the (distributed) memory, enough memory resource must be allocated in order
for the verification to succeed.

Note that when increasing the number of CPUs an added portionof memory needs to be counted for
increasing inter-node communications.

5 Discussion and Conclusion

In this paper, we propose a new method, SEDM using rendezvoussynchronization steps, so the timing
constraints can be defined either globally or locally, compared to the heavy reliance on global variables in
LEDM. Consequently, SEDM makes it possible to model discrete time with some process-based untimed
languages without explicit global variables. With SEDM, real-time systems can be modeled with a high
degree of modularity and more complex timing constraints can be modeled more conveniently.

As Lamport mention in [16], the explicit-time description methods are not designed to beat special-
ized timed model checkers like UPPAAL: it is obvious that time-automata-based model checkers can
handle continuous time semantics while EDMs can only deal with discrete time semantics. However,
EDMs are intended to offer more options for the verification of real-time systems. First, explicit-time
description methods provide a solution for accessing and storing the current time instant for the pre-
emptive scheduling models. Second, while the size of state space in an explicit-time method grows
along with the number of time units, it is less sensitive to the number of concurrently running timers.
This suggests that the explicit-time method implemented inan un-timed model checker may verify more
complex system behaviors. Third, as Van den Berg et al. mention in [10], in some real-world scenarios
when significant resources already have been invested into the model for a general model checker such
as SPIN or SMV, it is much easier and therefore preferable to extend the existing model to represent
time notions rather than to re-model the entire system for a specialized timed model checker. Last but
not least, explicit-time description methods enable the usage of existing large-scale distributed model
checkers such as DIV INE so that we can verify much bigger real-time systems.

This research is part of an ambitious research and development project,Building Decision-support
through Dynamic Workflow Systems for Health Care[12]. Verification that the health care process design
meets its specifications and monitoring the process to checkspecifications for each instance (patient) are
essential. Real world health care workflow processes are highly dynamic and local changes are the norm.
In addition to work in verification, members of our research group [2] are currently investigating paral-
lel and distributed approaches to reasoning about structured knowledge bases (ontologies). Interfacing
these reasoners and distributed model checkers with workflow engines will permit runtime monitoring of
complex, highly variable and safety critical processes. Currently, we are using explicit-time description



H. Wang & W. MacCaull 77

methods to model and verify real-world health care processes.
As a continuous effort in practical timed model checking, wealso study the efficiency problem of

explicit-time descriptions and have made some progress based on optimizing the tick process [20], so
that EDMs can be applied to problems of larger scale. Dutertre and Sorea [13] and Clarke et al. [11]
recently presented two different abstraction techniques for timed automata and the abstraction outcome
can be verified using un-timed model checkers. We also intendto study the possibility of this kind of
technique in distributed model checkers.

Acknowledgment

This research is sponsored by NSERC, an Atlantic Computational Excellence Network (ACEnet) Post
Doctoral Research Fellowship and by the Atlantic Canada Opportunities Agency through an Atlantic
Innovation Fund project. The computational facilities areprovided by ACEnet. We also thank Jiri
Barnat, Keith Miller and the anonymous reviewers of QFM’09 for their helpful comments.

References

[1] Atlantic Computational Excellence network (ACEnet). http://www.ace-net.ca/. Last accessed on Nov. 2009.

[2] Centre for Logic and Information, St. Francis Xavier University. http://logic.stfx.ca/. Last accessed on Nov.
2009.

[3] D IV INE project. http://divine.fi.muni.cz/. Last accessed on Nov. 2009.

[4] Yasmina Abdeddaı̈m & Oded Maler (2002):Preemptive Job-Shop Scheduling Using Stopwatch Automata. In:
Joost-Pieter Katoen & Perdita Stevens, editors:TACAS, Lecture Notes in Computer Science2280. Springer,
pp. 113–126.

[5] Rajeev Alur & David L. Dill (1994):A Theory of Timed Automata. Theor. Comput. Sci.126(2), pp. 183–235.

[6] Rajeev Alur & Thomas A. Henzinger (1991):Logics and Models of Real Time: A Survey. In: J. W. de Bakker,
Cornelis Huizing, Willem P. de Roever & Grzegorz Rozenberg,editors:REX Workshop, Lecture Notes in
Computer Science600. Springer-Verlag, pp. 74–106.

[7] Jiri Barnat, Lubos Brim, IvanǎCerná, Pavel Moravec, Petr Ročkai & PavelŠimeček (2006):DiVinE – A
Tool for Distributed Verification (Tool Paper). In: Computer Aided Verification, Lecture Notes in Computer
Science4144. Springer-Verlag, pp. 278–281.

[8] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson & Wang Yi (1995): UPPAAL — a Tool
Suite for Automatic Verification of Real–Time Systems. In: Proc. of Workshop on Verification and Control of
Hybrid Systems III, number 1066 in Lecture Notes in Computer Science. Springer-Verlag, pp. 232–243.

[9] Johan Bengtsson & Wang Yi (2003):Timed Automata: Semantics, Algorithms and Tools. In: Jörg Desel,
Wolfgang Reisig & Grzegorz Rozenberg, editors:Lectures on Concurrency and Petri Nets, Lecture Notes in
Computer Science3098. Springer, pp. 87–124.

[10] Lionel van den Berg, Paul A. Strooper & Kirsten Winter (2007): Introducing Time in an Industrial Appli-
cation of Model-Checking. In: Stefan Leue & Pedro Merino, editors:FMICS, Lecture Notes in Computer
Science4916. Springer, pp. 56–67.

[11] Edmund M. Clarke, Flavio Lerda & Muralidhar Talupur (2007): An Abstraction Technique for Real-time
Verification. In: S. Ramesh & P. Sampath, editors:Next Generation Desigh and Verification Methodologies,
Lecture Notes in Computer Science. Springer-Verlag, pp. 1–17.

[12] Jeff Dallien, Wendy MacCaull & Allen Tien (2008):Initial Work in the Design and Development of Verifiable
Workflow Management Systems and Some Applications to HealthCare. In: 5th International Workshop on
Model-based Methodologies for Pervasive and Embedded Software. IEEE Computer Society, pp. 78–91.



78 Verifying Real-Time Systems using Explicit-time Description Methods

[13] Bruno Dutertre & Maria Sorea (2004):Modeling and Verification of a Fault-Tolerant Real-Time Startup
Protocol Using Calendar Automata. In: Yassine Lakhnech & Sergio Yovine, editors:FORMATS/FTRTFT,
Lecture Notes in Computer Science3253. Springer-Verlag, pp. 199–214.

[14] Gerard J. Holzmann (1991):Design and Validation of Computer Protocols. Prentice Hall.

[15] Pavel Krcál & Wang Yi (2004):Decidable and Undecidable Problems in Schedulability Analysis Using
Timed Automata. In: Kurt Jensen & Andreas Podelski, editors:TACAS, Lecture Notes in Computer Science
2988. Springer, pp. 236–250.

[16] Leslie Lamport (2005):Real-Time Model Checking is Really Simple. In: Dominique Borrione & Wolfgang J.
Paul, editors:CHARME, Lecture Notes in Computer Science3725. Springer-Verlag, pp. 162–175.

[17] Ken L. McMillan (1992): Symbolic model checking - an approach to the state explosionproblem. Ph.D.
thesis, Carnegie Mellon University.

[18] Moshe Y. Vardi & Pierre Wolper (1986):An Automata-Theoretic Approach to Automatic Program Verifica-
tion (Preliminary Report). In: LICS. IEEE Computer Society, pp. 332–344.

[19] Kees Verstoep, Henri E. Bal, Jiri Barnat & Lubos Brim (2009): Efficient large-scale model checking. In:
IPDPS. IEEE, pp. 1–12.

[20] Hao Wang & Wendy MacCaull (2009):An Efficient Explicit-time Description Method for Timed Model
Checking. In: Parallel and Distributed Methods in verifiCation, 8th International Workshop, PDMC 2009,
Held as Part of the Formal Methods Week 2009, Eindhoven, the Netherlands, November 2-6, 2009.


	Introduction
	Preliminaries
	The DiVinE Model Checker and its Modeling Language
	Lamport Explicit-time Description Method

	The New Sync-based Explicit-Time Description Method
	The Method
	An Example with Complex Timers
	An Example of Pre-emptive Scheduling

	Experiments in DiVinE
	Discussion and Conclusion

