64 research outputs found

    Formal Verification of Real-Time Function Blocks Using PVS

    Full text link
    A critical step towards certifying safety-critical systems is to check their conformance to hard real-time requirements. A promising way to achieve this is by building the systems from pre-verified components and verifying their correctness in a compositional manner. We previously reported a formal approach to verifying function blocks (FBs) using tabular expressions and the PVS proof assistant. By applying our approach to the IEC 61131-3 standard of Programmable Logic Controllers (PLCs), we constructed a repository of precise specification and reusable (proven) theorems of feasibility and correctness for FBs. However, we previously did not apply our approach to verify FBs against timing requirements, since IEC 61131-3 does not define composite FBs built from timers. In this paper, based on our experience in the nuclear domain, we conduct two realistic case studies, consisting of the software requirements and the proposed FB implementations for two subsystems of an industrial control system. The implementations are built from IEC 61131-3 FBs, including the on-delay timer. We find issues during the verification process and suggest solutions.Comment: In Proceedings ESSS 2015, arXiv:1506.0325

    Simulation and Formal Verification for Improving Safety of PLC Programs

    Get PDF
    The use of analysis techniques for improving quality of software for industrial controllers is widely used. Mainly Simulation and Formal Verification can be used as complementary techniques improving dependability of mechatronic systems behavior. In this paper there are used Simulation and Formal Verification for guaranteeing safe software for Programmable Logic Controllers, mainly related with using Function blocks of IEC 61131-3 standard. For studying, simulating and verifying behavior of those blocks are used timed automata, as modeling formalism, and UPPAAL, as tool for simulation and Formal Verification purposes

    Transformation of non-standard nuclear I&C logic drawings to formal verification models

    Get PDF

    Simulation and Control of a Cyber-Physical System under IEC 61499 Standard

    Get PDF
    IEC 61499 standard provides an architecture for control systems using function blocks (FB), languages, and semantics. These devices can be interconnected and communicate with each other. Each device contains several resources and algorithms with a communication FB at the end, which can be created, configured, and deleted without affecting other resources. Physical element can be represented by a FB that encapsulates the functionality (data/events, process, return data/events) in a single module that can be reused and combined. This work presents a simplified implementation of a modular control system using a low-cost device. In the prototyping of the application, we use 4diac to control, model and validate the implementation of the system on a programmable logic controller. It is proved that this approach can be used to model and simulate a cyber-physical system as a single element or in a networked combination. The control models provide a reusable FB design.We acknowledge the financial support of CIDEM, R&D unit funded by FCT – Portuguese Foundation for the Development of Science and Technology, Ministry of Science, Technology and Higher Education, under the Project UID/EMS/0615/2019, and it was supported by FCT, through INEGI and LAETA, under project UIDB/50022/2020.info:eu-repo/semantics/publishedVersio

    A new plant modelling approach for formal verification purposes

    Get PDF
    This paper presents a new approach in plant modeling for the formal verification of real time systems. A system composed by two tanks is used, where all its components are modeled by simple modules and all the interdependences of the system?s modular models are presented. As innovating parameters in the plant modeling, having as purpose its use on formal verification tasks, the plant is modeled using Dymola software and Modelica programming language. The results obtained in simulation are used to define the plant models that are used for the formal verification tasks, using the model-checker UPPAAL. The paper presents, in a more detailed way, the part of this work that is related to formal verification, being pointing out the used plant modeling approach.SCAPS Project supported by FCT, the Portuguese Foundation for Science and Technology, and FEDER, the European regional development fund, under contract POCI/EME/61425/2004 that deals with safety control of automated production syste

    Model-checking infinite-state nuclear safety I&C systems with nuXmv

    Get PDF

    Towards a new methodology for design, modelling, and verification of reconfigurable distributed control systems based on a new extension to the IEC 61499 standard

    Get PDF
    In order to meet user requirements and system environment changes, reconfigurable control systems must dynamically adapt their structure and behaviour without disrupting system operation. IEC 61499 standard provides limited support for the design and verification of such systems. In fact, handling different reconfiguration scenarios at runtime is difficult since function blocks in IEC 61499 cannot be changed at run-time. Hence, this thesis promotes an IEC 61499 extension called reconfigurable function block (RFB) that increases design readability and smoothly switches to the most appropriate behaviour when a reconfiguration event occurs. To ensure system feasibility after reconfiguration, in addition to the qualitative verification, quantitative verification based on probabilistic model checking is addressed in a new RFBA approach. The latter aims to transform the designed RFB model automatically into a generalised reconfigurable timed net condition/event system model (GRTNCES) using a newly developed environment called RFBTool. The GR-TNCES fits well with RFB and preserves its semantic. Using the probabilistic model checker PRISM, the generated GR-TNCES model is checked using defined properties specified in computation tree logic. As a result, an evaluation of system performance and an estimation of reconfiguration risks are obtained. The RFBA methodology is applied on a distributed power system case study.Dynamische Anforderungen und Umgebungen erfordern rekonfigurierbare Anlagen und Steuerungssysteme. Rekonfiguration ermöglicht es einem System, seine Struktur und sein Verhalten an interne oder externe Änderungen anzupassen. Die Norm IEC 61499 wurde entwickelt, um (verteilte) Steuerungssysteme auf Basis von Funktionsbausteinen zu entwickeln. Sie bietet jedoch wenig Unterstützung für Entwurf und Verifikation. Die Tatsache, dass eine Rekonfiguration das System-Ausführungsmodell verändert, erschwert die Entwicklung in IEC 61499 zusätzlich. Daher schlägt diese Dissertation rekonfigurierbare Funktionsbausteine (RFBs) als Erweiterung der Norm vor. Ein RFB verarbeitet über einen Master-Slave-Automaten Rekonfigurationsereignisse und löst das entsprechende Verhalten aus. Diese Hierarchie trennt das Rekonfigurationsmodell vom Steuerungsmodell und vereinfacht so den Entwurf. Die Funktionalität des Entwurfs muss verifiziert werden, damit die Ausführbarkeit des Systems nach einer Rekonfiguration gewährleistet ist. Hierzu wird das entworfene RFB-Modell automatisch in ein generalised reconfigurable timed net condition/event system übersetzt. Dieses wird mit dem Model-Checker PRISM auf qualitative und quantitative Eigenschaften überprüft. Somit wird eine Bewertung der Systemperformanz und eine Einschätzung der Rekonfigurationsrisiken erreicht. Die RFB-Methodik wurde in einem Softwarewerkzeug umgesetzt und in einer Fallstudie auf ein dezentrales Stromnetz angewendet

    Nonautonomous elementary net systems and their application to programmable logic control

    Get PDF
    • …
    corecore