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ABSTRACT

In order to meet user requirements and system environment changes, reconfigurable

control systems must dynamically adapt their structure and behavior without disrupting

system operation. IEC 61499 standard provides limited support for the design and veri-

fication of such systems. In fact, handling different reconfiguration scenarios at runtime

is difficult since IEC 61499 function blocks cannot be changed at run-time. Hence, this

thesis promotes an IEC 61499 extension called reconfigurable function block (RFB) that

increases design readability and smoothly switches to the most appropriate behaviour

when a reconfiguration event occurs. In order to ensure system feasibility after recon-

figuration, in addition to the qualitative verification, quantitative verification based on

probabilistic model checking is addressed in a new RFBA approach. The latter aims to

transform the designed RFB model automatically into a generalised reconfigurable timed

net condition/event system model (GRTNCES) using a newly developed environment

called RFBTool. The GR-TNCES fits well with RFB and preserves its semantic. Using

a probabilistic model checker PRISM, the generated GR-TNCES model is checked us-

ing defined properties specified in computation tree logic. As a result, an evaluation of

system performance and an estimation of reconfiguration risks are obtained. The RFBA

methodology is applied on a distributed power system case study.

Keywords: Reconfigurable control system, Reconfiguration, IEC 61499 standard,

Reconfigurable Function Blocks, GR-TNCES, Probabilistic Model checking, qualitative

and quantitative verification, PRISM.
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KURZFASSUNG

Dynamische Anforderungen und Umgebungen erfordern rekonfigurierbare Anlagen

und Steuerungssysteme. Rekonfiguration ermöglicht es einem System, seine Struktur und

sein Verhalten an interne oder externe Änderungen anzupassen. Die Norm IEC 61499

wurde entwickelt, um (verteilte) Steuerungssysteme auf Basis von Funktionsbaustei-

nen zu entwickeln. Sie bietet jedoch wenig Unterstützung für Entwurf und Verifikati-

on. Die Tatsache, dass eine Rekonfiguration das System-Ausführungsmodell verändert,

erschwert die Entwicklung in IEC 61499 zusätzlich. Daher schlägt diese Dissertation

rekonfigurierbare Funktionsbausteine (RFBs) als Erweiterung der Norm vor. Ein RFB

verarbeitet über einen Master-Slave-Automaten Rekonfigurationsereignisse und löst das

entsprechende Verhalten aus. Diese Hierarchie trennt das Rekonfigurationsmodell vom

Steuerungsmodell und vereinfacht so den Entwurf. Die Funktionalität des Entwurfs muss

verifiziert werden, damit die Ausführbarkeit des Systems nach einer Rekonfiguration

gewährleistet ist. Hierzu wird das entworfene RFB-Modell automatisch in ein genera-

lised reconfigurable timed net condition/event system übersetzt. Dieses wird mit dem

Model-Checker PRISM auf qualitative und quantitative Eigenschaften überprüft. Somit

wird eine Bewertung der Systemperformanz und eine Einschätzung der Rekonfigurati-

onsrisiken erreicht. Die RFB-Methodik wurde in einem Softwarewerkzeug umgesetzt

und in einer Fallstudie auf ein dezentrales Stromnetz angewendet.

Schlüsselworte: Rekonfigurierbare Steuerungssysteme, Rekonfiguration, IEC 61499

Norm, RFB, Probabilistic Model checker, qualitative und quantitative Analyse, PRISM.
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Résumé

Résumé La personnalisation des produits et l’évolution continue du marché ont conduit

au développement de systèmes de contrôle reconfigurables distribués (RDCSs). La re-

configuration permet au système d’adapter sa structure et son comportement suite à des

changements internes ou externes. La norme IEC 61499 a été développée pour concevoir

des applications de contrôle logiciel basées sur des blocs fonctionnels. Toutefois, la IEC

61499 fournit une assistance limitée pour la conception et la vérification des RDCSs.

En particulier, le fait qu’un scénario de reconfiguration modifie le modèle d’exécution du

système rend la gestion de plusieurs scénarios de reconfiguration assez lourde à ce niveau.

Un bloc fonctionnel a également une définition statique qui ne peut pas être modifiée au

moment de l’exécution. Par conséquent, cette thèse promeut une extension IEC 61499

appelée bloc fonctionnel reconfigurable (RFB) pour simplifier la conception RDCS et

améliorer la reconfiguration dans la norme. Un RFB traite les événements de reconfi-

guration et déclenche le comportement approprié facilement en utilisant une machine

d’état maı̂tre-esclave intelligente. Cette hiérarchie sépare le modèle de reconfiguration du

modèle de contrôle et augmente ainsi la lisibilité de la conception. La vérification qua-

litative et quantitative des RDCSs conformément à la norme IEC 61499 est considérée

également comme une tâche difficile, car la faisabilité du système n’est pas toujours ga-

rantie après la reconfiguration. Une approche RFBA pour la conception, la modélisation

et la vérification des RDCSs est proposée. Elle vise à transformer automatiquement le

modèle RFB conçu en un modèle généralisé de réseau reconfigurable temporisé de condi-

tion/événement (GR-TNCES) en utilisant un nouvel environnement appelé RFBTool. La

classe de réseau de Petri utilisée est une extension reconfigurable qui s’adapte bien à

RFB et en préserve la sémantique. Le modèle GR-TNCES généré est vérifié en utilisant

des propriétés définies qui sont spécifiées en une logique temporelle arborescente. Un

vérificateur de modèle probabiliste PRISM (model checker) est également utilisé pour

vérifier les propriétés qualitatives et quantitatives. Par conséquent, une évaluation des

performances du système et une estimation des risques de reconfiguration sont fournies.

La méthodologie est appliquée à une étude de cas sur un système à alimentation répartie.

Mots clés: Systèmes de contrôle reconfigurables distribués, Reconfiguration, norme IEC

61499, Bloc fonctionnel reconfigurable, modélisation, GR-TNCES, Model checker prob-

abiliste, vérification qualitative et quantitative, PRISM.
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Chapter 1

General Introduction

This introductory chapter aims at presenting the control systems and their historical evo-

lution. It also focuses on the appearance of IEC 61499 standard. The latter is highlighted

to develop and implement software components for distributed, embedded, and control

systems. We have addressed the challenges of this standard and proposed an RFBA ap-

proach based on IEC 61499 extension to mitigate design complexity. Then, we have

worked on ameliorating the reconfiguration feature in the standard and verifying the de-

signed model automatically. Finally, we have presented our publication list and thesis

outline.

1.1 General Context

Reconfiguration has recently gained a wide attention. It has been applied in control sys-

tems to customise rapidly variable industrial needs and follow market fluctuation. The

control systems, such as robots, aircraft systems, and smart grids, result from techno-

logical advances and deep research in mechatronics, electric/electronic engineering, and

computer science (software and communication protocols) fields. Such accurate systems

require advanced software control and new technologies to supervise complex processes

and devices. They are influenced by several manufacturing paradigms. It is therefore rea-

sonable to present the historical evolution of control systems in the automation industry.

Since 1850, several manufacturing paradigms have been developed to match each pe-

riod’s special needs, as shown in Fig. 1.1 [Mourtzis and Doukas, 2012]. Craft production

is the first paradigm where a very limited product’s quantity is produced using general-

purpose machine tools. After that, the mass production paradigm appears to increase

product availability and decrease product cost. It offers a large scale manufacturing using

several assembly lines. Most manufacturing systems are based on a centralised controller

box built using hardwired relays for control logic. In order to extend a system, separate

relay circuits have been required. Starting from 1980, the customer’s preferences and

needs have become the focus of industrial providers. The high demands of product va-

riety have motivated the development of the mass customisation paradigm. Hardwired
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relays are replaced by software codes implemented in general-purpose computing de-

vices such as micro-controllers, or special-purpose devices such as programmable logic

controllers (PLCs) [Vyatkin, 2016]. Reconfigurable Manufacturing Systems (RMS) are

emerging to offer easy product changes and produce a large product variety. Since the

start of the last decade (2010), the mass personalisation paradigm has been hugely ap-

plied. Manufacturers and providers intend to respond to maximum individual needs and

consumer desires [Hu, 2013]. Accordingly, the distributed control systems (DCSs), i.e.

distributed hardware and software modules interconnected via a network, are increas-

ingly used in mass customisation and personalisation paradigms. Their modular and

flexible architecture as well as the communication layer allow exchanging data and state

information between processors and devices. Since 2014, more and more customisa-

tion has been needed. This has led to integrating computing, networking and physical

processes together and hence the emergence of Cyber-Physical Systems (CPS) [Terzime-

hic et al., 2017, Batchkova et al., 2020]. CPSs are networked embedded systems that

have a virtual representation of their physical entity, combining computation, control and

communication [Zoitl and Strasser, 2017]. It includes adaptive and predictive distributed

nodes [Dai et al., 2015] and aims to increase flexibility and reconfiguration in distributed

control systems. Notably, flexibility allows continuous changes in product design and

business strategy [Brennan et al., 2008], while reconfiguration involves every change in

the software or hardware system intending to adjust the system behaviour according to

environment changes and user requirements. Advanced and standardised software con-

trol is required to endow the physical system with not only more flexibility and autonomy

but also intelligence and reconfiguration.

1850

Craft Production

• General Purpose
machine Tools

• Very limited 
quantity

• Very expensive

1913

Mass Production

• High quantity

• Low cost

• Limited variety

• Assembly lines

1980

Mass
Custumization

• Flexible 
Manufacturing 
Systems

• Medium variety
and high 
quantity

2000

Mass
Personalisation

• Unlimited
variety according
to consumer
preference

• Unlimited
quantity

2014

More 
Personalisation

• Industry 4 
revolution

• Cyber Physical
Systems, 
Internet of
things, 3D 

Figure 1.1 Evolution of Manufacturing Paradigms [Mourtzis and Doukas, 2012].

Control software occupies an essential position in the product life cycle and an in-

creasing cost portion (around 50%) in the automation systems development [Kan, 2012,

Vyatkin, 2013]. It provides autonomy and intelligence to devices. The reusability of
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software components, applications and sub-systems is a crucial need since it reduces the

development time and engineering effort. In the literature, two fundamental standards

have been developed to implement such software: IEC 61131-3 and IEC 61499. IEC

61131-3 is the standard for programmable logic controllers PLCs. It defines a basic soft-

ware structure based on low-level languages such as ladder diagram and instruction list.

The reuse of developed control software components is not easily applicable due to some

details in vendor specifications. Moreover, IEC 61131-3 standard depends mostly on

the platform and is designed basically for centralised control systems [Dai and Vyatkin,

2012]. A centralised control system faces several challenges such as its no suitability for

wide systems and its strong dependency. A breakdown in any part of the system implies

a central controller’s failure [Dai and Vyatkin, 2009]. Therefore, IEC 61131 does not

address the new requirements of complex industrial systems like portability and distribu-

tion. An abstraction in the design model is crucial for reusing existing software elements

and communicating remote services, devices, and controllers from different vendors to-

gether. A high-level oriented programming language is demanded for the development of

complex industrial applications. IEC 61499 standard emerged to overcome the shortcom-

ings of the previous standard IEC 61131-3 [Dai and Vyatkin, 2009] and to extend it. The

first edition was published in 2005 and the second edition in 2011, aiming at designing

and developing industrial process measurement and control systems (IPMCSs). These

systems are defined as a set of interconnected devices that can communicate together via

a communication network in order to control a process.

The IEC 61499 standard is an application of the Holonic theory [Leitão et al., 2012],

[Kruger and Basson, 2013], [TC 65/SC 65B, 2012a] where a holon is an autonomous and

cooperative building block that is able to transfer, convert and validate some information

or physical object. A holon can take a decision and communicate with higher control

levels since it has a functional component represented by a software entity, and a commu-

nication/cooperation component [Leitão et al., 2012]. The international electrotechnical

commission defined the IEC 61499 standard as an approach based on software compo-

nents that can be instantiated through a defined interface in a distributed system. The

component is called function block FB that can model a mechatronic component or a

service to ensure reusability during the design and development process. The standard

incorporates particular features such as encapsulation of algorithms and data in FB units,

component-based design, event-driven execution, and distribution. As a result, specific

implementations available from different providers of field devices, controller hardware,

human-machine interfaces, communication networks, can be integrated into component-

based heterogeneous systems.

IEC 61499 is based on event Model-Driven Development (MDD) [Thramboulidis

and Frey, 2011], [Vyatkin, 2003]. This paradigm defines the function block as an event-
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triggered software unit where an event is an abstraction of an instantaneous happening

that does not have any duration. The FB is enabled when an input event occurs. MDD

substitutes the traditional cyclic computation framework applied in IEC 61131 based sys-

tems where a scan refers to a time-triggered control [Vyatkin, 2003]. The most important

features provided by the IEC 61499 standard compared to the previous standard IEC

61131-3 [Thramboulidis and Frey, 2011] are interoperability between different devices,

software portability, and configurability [Pang et al., 2014a, Hopsu et al., 2019] where:

(i) Interoperability is the fact that functional units from distinct vendors in a system

can operate together to perform the required functionality [Jhunjhunwala et al.,

2020, Dai et al., 2015],

(ii) Portability is the fact that a software or library element can be accepted and cor-

rectly interpreted by other software tools. Portability is supported in IEC 61499 by

Extensible Markup Language (XML) [Arenas et al., 2002],

(iii) and configurability is the fact that a system, such as PLCs and software compo-

nents, can be configured by tools of other vendors. IEC 61499 supports configura-

bility by selecting functional units and assigning locations and parameters to them

[Christensen et al., 2012b].

IEC 61499 suits perfectly the mass personalisation and future requirements. It meets

the challenges of modern industrial enterprise [Lyu and Brennan, 2020] and it is applied

in cyber-physical systems [Yan and Vyatkin, 2011, Yoong et al., 2013, Malik et al., 2017,

Batchkova et al., 2020] and service-oriented architecture [Dai et al., 2015, Demin et al.,

2015, Homay et al., 2019]. It provides an important degree of flexibility needed to ex-

tend and change existing systems. Such flexibility aim at producing competitive and

innovative products in a short time. Interestingly, IEC 61499 has succeeded in promoting

software control in many academic and industrial applications. Some examples of indus-

trial control systems implemented based on IEC 61499 standard are Eco-Friendly heat-

ing control systems [Pang et al., 2014b], conveyor belt control system, smart distributed

power system automation [Mousavi and Vyatkin, 2015, Zhabelova et al., 2015], baggage

handling system [Sinha et al., 2015, Black and Vyatkin, 2010], intelligent manufactur-

ing Systems [Jakovljevic et al., 2017], aerospace control systems [Insaurralde, 2016],

robotic medical systems [Sorouri et al., 2013, Guellouz et al., 2016b]. However, with

increasing customised demand and personalisation in industry, traditional control sys-

tems do not efficiently satisfy the newly imposed requirements such as variable demand,

minimum energy waste, minimum time execution, minimum cost, maximum energy effi-

ciency, real-time execution, etc. Reconfigurability becomes a crucial need to switch from

a system configuration to another or change immediately the system strategy according
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to the new requirements. It guarantees a qualitative change in the structure, functional-

ity and algorithm of the control systems. However, reconfiguration increases the design

complexity of distributed systems due to the need for handling different reconfiguration

scenarios.

1.2 Thesis Challenges

Reconfigurable distributed control systems (RDCSs) can be designed in IEC 61499 as a

set of control applications, i.e. software applications that are distributed and configured

on multiple devices and resources interconnected via a network. It is responsible for

controlling system processes and system changes. A control application in IEC 61499

is a network of function blocks that can be distributed in several devices from hetero-

geneous providers. The main component in an application is the basic function block.

Its control logic is defined through a finite state machine called execution control chart

(ECC). It simplifies the representation of application logic and reduces the complexity

of algorithms [Christensen et al., 2012b]. Despite its proven usefulness in many appli-

cations, the execution control chart remains complex and not flexible when designing

reconfigurable distributed systems. The encapsulated ECC has a static structure. It uses

predefined sets of inputs and outputs which cannot be changed or configured without

reprogramming them [Angelov et al., 2005]. RDCSs must handle all system changes

and reconfiguration scenarios. A reconfiguration scenario is any operation that changes

the execution model of an existing system depending on the environment, architecture or

user requirements changes. The handling of reconfiguration scenarios inside the function

block is quite cumbersome on this level since the reconfiguration and control models are

combined in just one ECC. For example, error handling, initialisation and reconfiguration

are overlapped. There is no separation between control level and high levels within the

ECC. This engenders a large number of states and transitions, even a low readability and

maintainability. Moreover, it is difficult to extend an ECC or maintain it by the developer

due to the high dependency between the states. A hierarchical state machine HCECC is

proposed in [Sinha et al., 2015] to model concurrent behaviours. It is a multilevel hi-

erarchical state machine which aims to include concurrent and hierarchical behaviours

into basic function blocks. These blocks based on HCECC allows to decrease the sys-

tem complexity problem, but the authors do not address the reconfiguration problem. In

reconfigurable distributed control systems, the execution semantic depends on environ-

mental changes and user requirements. Therefore, a separation between reconfiguration

and control logic is required inside the FB. Two hierarchy levels are needed to define

reconfiguration scenarios: one level for the reconfiguration and the other for executing

the corresponding scenario in a dynamic schedule. Moreover, the function block based

on HCECC does not switch directly between the reconfiguration scenarios and does not

5



decide which suitable scenario corresponds to a particular input event.

Various reconfiguration approaches have been developed in the last years to reduce

cost and development time by automatically adapting the system evolution [Duhem et al.,

2012]. Most studies related to reconfiguration in IEC 61499 standard have focused on

executing reconfiguration to handle disturbance or errors. However, a minority focuses

on self-adapted reconfiguration that is required when a system requirement changes. The

authors in [Zoitl et al., 2006, Brennan et al., 2008] propose an online reconfiguration

approach. Their goal was to reconfigure an existing IEC 61499 system by executing

commands, i.e. adding, removing or changing an existing function block instance in the

control application to execute changes when the system is running. Despite the benefits

of the developed approach, it is not possible to add a new function block type that does

not exist before deployment in any existing IEC 61499 development software tools. Ad-

ditionally, the reconfiguration commands are executed manually by the user to manage

FB instances, connections and types, i.e. configure an IEC 614999 system. The user

must master the system configuration and then face all the possible reconfiguration risks.

Despite the benefits of IEC 61499, reconfigurable distributed control systems (RDCSs)

are still facing design complexity challenges. The increasing number of function blocks,

events and data interconnection is progressively increasing the size of application and

complexity. To address the complexity problem, the authors in [Zhabelova and Vyatkin,

2015] developed a set of metrics for evaluating the quality of IEC 61499 automation

software. However, the metric cannot be easily applied since the developer can use IEC

61131-3 languages, object-oriented programming and/or state machines to implement its

application.

On the other hand, there is a gap between IEC 61499 standard and verification engi-

neering. RDCSs verification is a fundamental step to detect deadlocks, and check both

real-time constraints and concurrent tasks. The dynamic behaviour of such reconfig-

urable systems makes verification a challenging and complicated task. Importantly, in

the existing IEC 61499 compliant tools, simulation is supported, but verification of the

control logic is not proved. Several authors model an IEC 61499 system with Petri nets

(for example Signal Net System SNS [Vyatkin, 2000], NCES [Vyatkin and Hanisch,

2000a]) to verify it with model checker such as Signal/Event systems analyser (SESA)

[Vyatkin and Hanisch, 2000b]. A study in [Mironovich et al., 2017] proposes an auto-

matic generation of function block applications using evolutionary computation verified

with UPPAAL. Most of them guarantee the system verification. However, the task is

still more difficult for large scale reconfigurable systems because each reconfiguration

scenario is designed as a new controller module. This strongly overbids the final system

verification and necessitates a long verification time [Zhang, 2015]. A reconfigurable

model switching from one configuration to another and minimizing the verification time
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is required. Additionally, since most reconfigurable distributed control systems are under

time, memory and energy constraints, it is necessary to supervise resources and energy

before executing reconfiguration in IEC 61499 systems at run-time. Hence, an adequate

formalism that controls these three constraints is highly recommended.

Functional safety is another challenge in the design of IEC 61499 because the stan-

dard does not grant any verification process. The system safety, availability and stability

can be disturbed by unpredictable events such as faults, environment changes, and archi-

tecture changes. The authors in [Bhatti et al., 2017] have combined the qualitative and

quantitative analyses in one approach using IEC 61508 standard. Their endeavour was

to manage functional safety in software with IEC 61499 standard so that to measure and

manage risks. The study shows an exponential analysis time due to the combinatorial

state space explosion despite the failure risk estimation. Modular verification of each

module is required to reduce the state space explosion problem. Additionally, the detec-

tion of the worst cases before deployment is not considered. It is a significant virtue that

companies can estimate and avoid unpredictable risks.

Many methodologies have been developed to reduce the software cost, time, and re-

sources during the product life-cycle, including the design, development, testing, deploy-

ment, and maintenance process. An agile development methodology is exhibited in the

study of [Flora and Chande, 2014]. It is an iterative incremental development approach

that allows providing and testing an incremental delivery, i.e. part of the product, in a

short time and with a minimal cost. The adaptation to changing business requirements

in the agile process is faster than traditional software development approaches that deal

with the whole project life cycle [Theocharis et al., 2015]. However, the agile approach

is not suitable for large scale projects. In fact, it is more useful for management and

planning than for developing reconfigurable distributed control system. In other words,

such a methodology is not suitable for reconfigurable embedded systems. This increases

the need for an approach for RDCSs design, modelling and verification.

Finally, most tools that comply with the IEC 61499 standard only offer simulation

techniques. There is no integral environment that supports the design, development,

formal modelling, and verification phases. However, companies and engineers have a

crucial need for a unique tool that integrates all the processes and automates them since

each process takes much time to be finalized.

To overview, this thesis treats several challenges faced by the standard. These chal-

lenges are summarised as follows:

(i) The function block has a static definition that cannot be changed at run-time. This

makes a considerable number of function blocks are required to implement all re-

configuration scenarios needed during the execution process. For each change, the

existing control software has to be adjusted. Therefore, if basic function blocks
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are used to model a reconfigurable control system, the number of events, data,

states, and transitions increases the system complexity progressively and permits

low readability and maintainability.

(ii) Verification of distributed reconfigurable control systems following IEC 61499 is

a challenging task. The reconfiguration process changes the system behaviour and

execution model. Consequently, the system feasibility cannot be guaranteed after

executing a reconfiguration process. Formal verification is required, but most IEC

61499 compliant development tools offer simulation techniques that prove neither

system correctness nor deadlock.

(iii) Most reconfiguration events are unpredictable. A probabilistic reconfigurable for-

mal model is needed. To the best of our knowledge, there is no approach checking

the probabilistic reconfiguration events and estimating risks. A combination of

qualitative and quantitative analyses of IEC 61499 systems is thus necessary to

provide an insight about system performance and an estimation of reconfiguration

risks.

(iv) No integrated development environment supports the design, development, formal

modelling, and verification of reconfigurable distributed control systems following

IEC 61499. This increases the need of companies and engineers for a unique tool

that integrates and automates all the processes.

1.3 Contributions

The thesis brings into light a new approach for the design, development and verification

of reconfigurable control systems called RFBA, as illustrated in Fig.1.2. Reconfiguration

is a required dynamic solution that ensures the system flexibility at run-time, as it allows

to adapt the system behaviour to the related environment under different constraints de-

scribed in the user requirements. IEC 61499 is the best standard in the industry due to

its design and implementation of distributed control systems. It provides a rich library

allowing the reuse of function blocks in different applications and reducing the develop-

ment time.

However, the guarantee of the IEC 61499 system feasibility when stochastic recon-

figuration events occur seems to be a hard task in reconfigurable systems. To address the

IEC 61499 challenges and limitations, we propose to extend the basic function block to

support reconfiguration. Reconfigurable function block RFB is a new design pattern that

separates the reconfiguration from the control model in the component. While a control

model defines the hardware and software behaviours, a reconfiguration model manages

unpredictable changes in the related environment to supervise the system behaviour. The
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aim of this separation is to add more flexibility, readability and simple maintainability.

RFB also intends to enhance the reconfiguration and simplify the design process. It in-

troduces a new “reconfiguration event” having a higher priority than the other events in

order to adapt the system under such constraints. Such event is dependent on the external

environment such as the weather, temperature, earthquake, storm, or user requirements

and internal or external failures. It is characterised by its probability of occurrence. The

increasing complexity of reconfigurable distributed control applications and low read-

ability and static behaviour of ECC have all motivated the investigation of a dynamic

master-slave state machine called MSECC. The latter represents the RFB control logic.

MSECC describes each reconfiguration scenario in a slave state machine. While the

slave defines the behaviour of a particular configuration, the master processes the input

events of reconfiguration, and triggers the suitable slave smoothly. Each slave ECC is

supervised by the master ECC. It can be activated or deactivated according to the coming

events. It results in a dynamic execution order in the function blocks network.

The new RFBA approach intends to simplify and improve the life cycle of RDCSs.

It also aims at capturing the system specification and determining the reconfiguration

scenarios. After that, the RFBs, the reconfiguration events and the reconfiguration data

in each RFB will be defined. Hence, a control application is designed using RFBs that are

interconnected with other FBs. As a result, the IEC 61499 extended model is generated

in XML format.
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Figure 1.2 RFBA Approach for RDCS design, modelling and verification.

After the design phase, we verify the generated RFB model. In order to guarantee sys-

tem correctness, formal verification is proposed. We consider the reconfiguration events
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in the verification step as probabilistic events since they depend mainly on the occur-

rence of unpredictable events. With the probability aspect of the reconfiguration event,

we can estimate performance and risks. A modular verification is proposed to reduce the

total verification time and mitigate the state space explosion problem. It is important to

note that in formal verification, Petri nets are an effective method for formal modelling.

Modularity, temporal conditions of event occurrence, reconfiguration as well as the abil-

ity to associate a probability to reconfiguration events are special features supported by

the Generalised Reconfigurable Timed Net Condition/Event systems (GR-TNCS) [Khlifi

et al., 2015]. This formalism fits well with reconfigurable distributed control systems

and preserves the MSECC execution semantic. Moreover, GR-TNCES allows to model

and supervise the energy and resources consumption at run-time. Therefore, an RFB can

switch from one reconfiguration scenario to another only after checking its feasibility,

memory and energy availability. For verification purposes, an automatic transformation

from an RFB based model to a GR-TNCES model is developed, and a set of transforma-

tion rules is defined.

After the automatic formal modelling, the system designer characterises the unpre-

dictable events by probabilities of occurrence in GR-TNCES model. The main objective

of this modelling is to check the system performance through a model checking. The

latter is the most widely used technique for verification. Compared with simulation, it

grants an exhaustive search through the design state space [Clarke et al., 2009]. In this

work, a unified verification is presented. We attempt to analyse risks in reconfigurable

IEC 61499 systems not only qualitatively but also quantitatively using a PRISM model

checker. PRISM [Kwiatkowska et al., 2002, 2006] is an effective probabilistic and sym-

bolic model checker based on the construction of a precise mathematical system model.

It permits the verification and analysis of properties that are expressed formally with

temporal logic. While a computation tree logic (CTL) is used for specifying qualitative

properties, probabilistic computation tree logic (PCTL) is used for specifying probabilis-

tic quantitative properties. If the verification is successful and the risk estimation is ac-

ceptable, then the code will be deployed in a real system under real-time constraints.

If the verification fails, the designer should rectify the original model. To support the

RFBA approach, a complete toolchain RFBTool is developed, i.e. called also ”ZiZo v3”

in [Guellouz et al., 2019]. RFBTool supports an end-to-end process from the specifica-

tion to the code deployment. It offers a drag and drop interface to design the new system

model based on RFBs and translate it automatically to a GR-TNCES model. It provides

an RFB library that supports reconfigurable events and master-slave execution control

chart. RFBTool is integrated with ZIZO software second version [Khlifi et al., 2016] to

automatically convert a GR-TNCES model, i.e. a “.zz” file, into a Markov chain compat-

ible with PRISM which is advantageous for engineers since they can estimate the limit
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of reconfiguration in IEC 61499 model when unpredictable events occur. The model is

implemented in C++ language.

The originality of this thesis, compared with existing researches, resides in several

aspects, including:

1. Extending IEC 61499 by proposing a reconfigurable function block separating the

control model from the reconfiguration model based on master-slave execution

control chart. This reconfigurable function block permits an easy switching from a

reconfiguration scenario to another and a self-decision of the best reconfiguration

scenario,

2. Automatic formal modelling of RFB model with GR-TNCES model that models

time, reconfiguration, memory and energy constraints,

3. Adding a probabilistic aspect in the generated GR-TNCES formal model to esti-

mate risks after reconfiguration,

4. Qualitative and quantitative analyses using model checker PRISM to give an in-

sight into system performance,

5. The development of a complete environment for design, modelling and verification

of reconfigurable distributed control systems following the new extension to IEC

61499.
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1.6 Outline

Apart from this introductory chapter, this thesis comprises four other chapters structured

as follows:

– The second chapter introduces useful preliminaries needed. It defines briefly the

concepts used to achieve this research work such as IEC 61499 concept, reconfig-

uration, Petri net extensions and model checking. It presents and also analyses the

related works of the studied topic.

– The third chapter formalizes both the proposed reconfigurable function block frame-

work and its different interactions with other standard function blocks. It highlights

the execution semantic of an RFB model and the system dynamic. Furthermore, a

formal case study is exposed in order to showcase the originality of the framework.

– The fourth chapter underlines the proposed RFBA methodology for RDCSs. In

this chapter, an automatic transformation of an RFB model to a GR-TNCES model

is implemented through a well-defined set of transformation rules. At the end of

Chapter four, we expose the developed RFBtool environment and its functionalities

to support the RFBA approach.

– The fifth chapter presents a case study on a distributed power system to illustrate

the RFBA approach with RFBTool and PRISM Model Checker. Therefore, a per-

formance evaluation and a comparative study are carried out.

– Finally, a general conclusion summarises the thesis challenges, highlights its con-

tributions, and opens new perspectives.
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Chapter 2

State of the Art

2.1 Introduction

This chapter gives an overview of the IEC 61499 standard for the design and development

of reconfigurable distributed control systems. The chapter analyses the researches related

to IEC 61499 and reconfiguration as well as presents definitions of the major concepts

tackled such as such as formal modelling and model checking technique.

2.2 IEC 61499 Standard

2.2.1 Concepts

International Electrotechnical Commission (IEC) has come with IEC 61499 standard for

the design and development of distributed control systems. The latter are characterised

by their modularity, flexibility, extensibility, and reconfigurability. The IEC 61499 stan-

dard is developed to overcome the incompatibility between different PLC brands and

centralised control of the IEC 61131 standard [Dai and Vyatkin, 2009]. The new stan-

dard introduces a component architecture based on function blocks concept [Dai and

Vyatkin, 2012]. IEC 61499 architecture represents a component solution for distributed

industrial automation systems targeting the portability, reusability, interoperability, and

reconfiguration of distributed applications. In addition to the programming languages of

IEC 61131 (Ladder Diagram, Function Block Diagram, Sequential Function Chart, In-

struction List and Structured Text), IEC 61499 provides the option of implementing large

cooperating applications on one or more controllers in the network using object-oriented

programming (C++, Java). The latter is known for its efficiency and reliability thanks to

its abstraction and encapsulation concept.

An IEC 61499 controller not only performs control tasks but also communicates with

external intelligent modules via industrial buses and network protocols. It executes both

real-time-critical tasks and non-real-time-critical tasks.

IEC community has provided a function block library used to create IEC 61499 com-

13



pliant control applications using Function Block Development Kit FBDK [HOLOBLOC,

2020], the commercial environment ISaGRAF [Vyatkin and Chouinard, 2008], 4DIAC

[Eclipse, 2020], and nxtSTUDIO [nxtControl GmbH, 2021] development tool. The de-

veloper can define a new function block type in the library and then freely instantiate it in

the application. Instantiation makes the development and maintenance process easier for

engineers and reduces effectively the time needed for building a control application. Fur-

thermore, the use of IEC 61499 components does not require a background in automation

[Zoitl and Strasser, 2017].

IEC 61499 is based on Function Block (FB) concept that is the core of the standard.

A function block is a unit of execution that encapsulates data and algorithms as well as

processes signal events. It represents an independent, self-contained entity which can

be instantiated to be reused in the application. It hides the internal implementation but

shares the interface with other FBs in an application [Wozniak et al., 2018]. It is also an

event-triggered component. The function block becomes active when an event occurs.

The standard defines three types of function blocks:

– Basic Function Block (BFB),

– Service Interface Function Block (SIFB),

– and finally, Composite Function Block (CFB) that is a network of interconnected

BFB or SIFB or other CFB instances.

2.2.2 Basic Function Block BFB

Each basic function block contains an interface and a body. The interface represents

events and data flow, while the body describes the entire behaviour of the FB using a

Moore-type state machine called execution control chart ECC, as illustrated in Fig. 2.1.

A Basic Function Block f is formalised as a tuple of interface I , a set of internal

variables V , a set of algorithms identifiers Alg and a state execution control chart ECC,

as defined in [Dubinin and Vyatkin, 2006, Wozniak et al., 2018], where

I = (EI , EO, V I , V O, IW , OW ), with

(i) EI (respectively, EO) is a set of event inputs (respectively, outputs);

(ii) V I (respectively, V O) is a set of data inputs (respectively, outputs);

(iii) IW ⊆ EI × V I associates input events with input data variables (respectively,

OW ⊆ EO × V O associates output events with output data variables). IW (re-

spectively, OW ) is a set of WITH-associations for inputs (respectively, outputs).
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Figure 2.1 Basic Function Block (a) interface and (b) its ECC.

The set of internal local variables V is declared inside a function block algorithm.

The encapsulated algorithms Alg can initialise or update internal variables V and output

data V O of the function block. Fig. 2.1 depicts an FB example that has input events

{init, Req} ∈ EI , output events {inito, oe1} ∈ EO, input data {d1, d2} ∈ V I , output

data {od1, od2} ∈ V O, and algorithms {initAlg, check} ∈ Alg.

The Execution Control Chart ECC is a Moore machine determined by a tuple:

ECC = (State, s0, T ransition, Condition,Action, Priority), where

– State is a set of states,

– s0 is the initial ECC state that is not assigned to any action,

– Transition ⊆ State × State is a set of transitions. A transition is enabled when

the condition associated with it is fulfilled,

– Condition is a Boolean formula associated with a transition, defined using vari-

ables and/or input event. If the condition is “1” on the transition arc, then the

transition is always activated. According to the standard, no more than one event

input can be contained in a condition.

– Action = Alg∪EO. An action can have zero or more algorithms, and one or zero

output event. Each EC state can have zero or more actions.

– Priority: Transition→ {1, 2, · · ·} is an enumeration function that prioritises EC

transitions where 1 is the highest priority and vice-versa.

When an event occurs, a sequence of steps is executed as follows: a data variable is

available, and an input event arrives at BFB from another block. The data inputs vari-

ables associated with the incoming event are sampled. The execution control chart ECC
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is notified. When the transition condition (event and data) is fulfilled, the corresponding

transition is fired. Accordingly, the next corresponding state is enabled. The correspond-

ing algorithm encapsulated in EC action will be executed. After executing the algorithm,

output data will be updated, and output events will be sent to another function block in

the application. If a data variable is not associated with any event, it always keeps its ini-

tial value. For each input/output data, a buffer is used locally within the function block to

store the changes [Wozniak et al., 2018]. Furthermore, global variables are not allowed in

IEC 61499 to simplify the access to distributed variables and the reallocation of function

blocks to other devices in a distributed system. The execution control chart ECC is the

main part in a function block. However, it is a static defined state machine in such a way

that it cannot be modified at run-time.

A simple pick and place station is illustrated to show function blocks functionali-

ties. The system in Fig. 2.2 includes a belt conveyor moving the workpieces “A” for

assembly, and the complete workpieces “AB” out the conveyor, a manipulator inserting

a workpiece “B” from a gripper into a workpiece “A”. The conveyor stops when the

separator detects the arrival of workpiece “A” for assembling. After that, the conveyor

transports the complete pieces to packaging.

M  A

B

Gripper

conveyor

Manipulator

Figure 2.2 Pick and Place System.

To further illustrate this system, a sensor detecting the workpiece arrival at the belt

conveyor, and another one near the separator detecting the workpiece arrival for assembly

are considered. A motor starts and stops the conveyor. The belt conveyor controller is

modelled by a basic function block as shown in Fig. 2.3 using 4DIAC IDE.
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Figure 2.3 Belt Conveyor Function Block Interface.

The logic part of the FB is represented in the ECC as depicted in Fig. 2.4. The con-

veyor function block switches to the stopEmptyConveyor state when the partsInNumber

is null and sends an emptyConveyor output event to stop the conveyor. Upon the arrival of

the input event WPatConveyor, the associated input variable partsInNumber is updated,

if it is greater than zero, then the FB switches to moveToAssembly state and triggers

moveWP2Assembly output event to notify the separator function block that a workpiece

“A” is coming. If the separator detects the workpiece arrival, it sends a WPatSeparator

event to the conveyor controller. When this event arrives, the ECC switches to stopCon-

veyorForAssembly state and sends an output event readyforAssembly to the manipulator

FB. After assembling part “A” with “B”, the manipulator sends an AssemblyDone event

to the conveyor. Upon the arrival of this event, the ECC switches to ReleaseWP state

to decrement partsInNumber by running a decrementPartNumber algorithm and release

the complete workpiece by sending a ReleaseWP event to the separator FB. If any work-

pieces are left on the conveyor belt, ECC returns to moveToAssembly state and repeats

the same steps. Otherwise, it returns to the initial state.

Figure 2.4 Conveyor Execution Control Chart.
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2.2.3 Service Interface Function Block SIFB

Service interface function block is developed to create an interface between the function

block (BFB, CFB) and external services as depicted in Fig. 2.5. It allows a function

block to communicate with another device via a network. Furthermore, SIFB has access

to hardware data, such as real-time clock [Sadeghi, 2010]. SIFB has a service sequence

Initiator

QI
PARAMS

INIT

INIT+

INITO+

REQ+

StartService

WriteOutputs

INIT-

EndService

CNF+

INITO-
STATUS

ReadInputs

REQ
INITO
CNF

QO
STATUS

SD_1 RD_1

Application Resource

Time

PARAMS

STATUS

SD_1

RD_1
STATUS

Application initiated transactions

Figure 2.5 SIFB interface example and its sequence diagram.

diagram that hides the entire code of the function block. The sequence diagram illustrated

in Fig. 2.5 shows the timing and sequential relationships between input and output events

of SIFBs. It describes the dynamic part of a function block and the execution order. A

service transaction occurs only when the previous transaction is valid.

SIFBs are also driven by events occurrence. A SIFB executes special algorithms that

interact with the underlying hardware system (sensors, actuators, etc.). The algorithms

are differently implemented for each service and hardware. The vendors generally pro-

vide such function blocks. In Fig. 2.5, the input data QI is an event input qualifier linked

to init and req input events. It indicates the event arrival. The service parameters are

saved in the PARAMS input data. QO indicates the success of request or service if it

is equal to true and the failure of request/service otherwise. The STATUS output data

returns a message related to the QO event if the service fails.
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2.2.3.1 Standard Event Function Blocks

All operations with primitive events are presented as SIFBs event function blocks found

in the function block library. The designer can easily instantiate them in his application.

The most important event function blocks are as follows. E START FB is a cold start

event function block which initiates the first function block in an FB network when the

system is initially started. E SPLIT FB generates simultaneous output events after

the reception of a single input event to activate the parallel execution of several FBs.

E MERGE FB allows merging several events in one event. E SWITCH FB permits

the switching between output event when an incoming event occurs. It generates two

different event paths depending on a Boolean input data. E Cycle event function block

generates a stream of events at fixed time intervals. For more details, read Chapter 6

Event function blocks in [A. Zoitl, 2014] book.

2.2.3.2 Communication Service Interface Function Block CSIFB

Several communication protocols (UDP, TCP, IP, MQTT, etc.) have been developed in

IEC 61499 standard to communicate the distributed application with devices (sensors, ac-

tuators, PLCs, micro-controllers, etc.). Communication service interface function blocks

(CSIFBs) are special SIFB that exchange data with devices in a unidirectional (respec-

tively, bidirectional) way via PUBLISH/SUBSCRIBE (respectively, CLIENT/SERVER)

function block types [A. Zoitl, 2014, HOLOBLOC, 2019b]. The PUBLISH/SUBSCRIBE

FBs are used to establish UDP/IP communications, while the CLIENT/SERVER function

blocks are used to exchange data with external resources such as databases, and it is used

in an application to establish TCP/IP communication. The CLIENT FB waits for a re-

sponse from the SERVER FB, in contrast to the PUBLISH function block.

2.2.3.3 Management Function Block

The management function block is a particular service interface function block ensuring

reconfigurability. The IEC 61499 standard facilitates function blocks management using

reconfiguration commands (creating or deleting FBs, adding or removing connections,

starting or stopping elements, etc.) on the device and resource control layer. As shown in

Fig. 2.6, the device manager provides several services. It allows function block instances

to be created, started, deleted, killed, or stopped. The device manager also provides

information about function block status such as in READY , INV ALIDSTATE or

OV ERFLOW state [Brennan et al., 2008].
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Figure 2.6 The state chart of a managed function block [TC 65/SC 65B, 2012a].

However, the commands are executed by the user at his own risk. Therefore, system

inconsistencies can appear after a command execution and disturb the system. The user

must be familiar with the system and must have excellent engineering skills. To the best

of our knowledge, no verification tool has yet been developed to check the reconfigu-

ration feasibility before and after reconfiguration execution. Additionally, the available

debugging tools do not show the logical errors inside an application. As a result, a formal

verification method is demanded.

Generally, SIFBs read events and send them to BFBs and CFBs. However, SIFBs do

not classify events with priorities in such a way that errors and reconfiguration events are

treated as standard events.

2.2.4 Composite Function Block CFB

A composite function block (CFB) is a network of function block instances linked by

data and event connections as depicted in Fig. 2.7. CFB provides a hierarchical func-

tionality. It is a container of multiple function blocks having a joint interface. The events

occurrence defines the execution order of the encapsulated function blocks inside the

composite FB. The CFB inputs, i.e. events and data inputs, are transferred to the internal

FBs. Output events and data of internal FBs are transferred to the CFB outputs.
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Figure 2.7 Composite Function Block.

The composite function block CFB has a hierarchical-structure and can describes

multi-functionalities [Kim et al., 2018]. However, a mixture of basic and service interface

function block increases the design complexity. A separation of the control level from

the reconfiguration level is proposed.

2.2.5 IEC 61499 Models

According to the IEC 61499 standard, a system model is a set of applications distributed

in several devices. The latter are connected by a communication network as illustrated

in Fig. 2.8 where communication delays are considered. An application is a collection

of interconnected function blocks which is developed independently of devices. FBs can

be distributed over resources of one or several devices. During distribution, SIFBs are

required to communicate the application with distributed devices in the network. A sub-

application is a network of function blocks like CFB but its content can be distributed

across different devices space. A sub-application is different from a composite function

block in two points. The first point is that a sub-application can be executed on multiple

resources. The second point is that it does not have any WITH qualifier between events

and data.

In general, a device is a hardware unit capable of interacting with automation equip-

ment and processes information [Vyatkin, 2016]. It can be a PLC, an on-chip controller,

an intelligent sensor/actuator, a hub, a gateway, etc. However, a device in IEC 6149 is

defined as an abstract model of such computing unit. A device model is a container of

resources. It represents the information processing properties of hardware such as IP ad-

dress and ports, etc. A device is also defined as an element of a system configuration in

IEC 61499. It has a process interface and a communication interface in order, as shown

in Fig. 2.8. The process interface allows a mapping function between the physical pro-

cess and the resources. Any information coming from the physical process is presented

to the resource as data/events. At the same time, the communication interface provides

mappings between resources and information transferred via communication networks.
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CSIFB and SIFBs function blocks are used to implement such communication interface.

Network Interface

Process Interface

Resource 1

Network Interface

Process Interface

Resource 1 Resource 2
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Application 1 Application 2

Device2
Resource2

Controlled Process /Machines

Device 1 Device 2 Device 3

Application 2

Application 1

Device1
Resource1

Device2
Resource2

Device3
Resource1

Network

Figure 2.8 IEC 61499 System and Device Model.

A Resource model, as shown in Fig. 2.9, is considered as a kind of an execution

container for FB networks. It is responsible for managing and controlling the behaviour

of FBs, such as scheduling and executing function blocks algorithms. It also stores data,

algorithms, execution control, and events. Furthermore, it maps communications and

process input/output functions to service interface function blocks SIFBs. Each resource

in IEC 61499 is independent of other resources within a device. It can control its oper-

ation without affecting other resources such as resource creation, configuration, param-

eterisation, start-up, deletion, etc. The scheduling function in a resource is a required

function to schedule algorithms for execution and determine the sequence order in which

such algorithms will be executed.
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Figure 2.9 IEC 61499 Resource Model.

In the engineering cycle, in order to develop a distributed system, the developer

should start with the top-level functionalities independent from the hardware structure

beginning by modelling the control applications, regardless of whether the application

will be executed by one device or distributed to multiple devices [Strasser et al., 2014].

Then, each function block can be mapped to the corresponding device/s.

A device management model is introduced in the IEC 61499 standard supporting

reconfigurability at run-time [Strasser and Froschauer, 2012]. It consists of a distribution

model, communication interfaces between devices, a set of commands, and suggested

protocols [Dai et al., 2015]. The management function blocks belong to a configuration

interface of a device. They invoke eight configuration commands (create, delete, read,

write, start, stop, kill and query) [Strasser et al., 2014]. The function block manager

controls the life cycle of FB instances. In [Vyatkin, 2016], IEC 61499 proposes three

device classes to manage and configure the system:

(i) Class 0 gives the possibility to create and change connections between FB instances

in an existing application, i.e. re-connecting the function block instances,

(ii) Class 1 permits to add new FB instances from the FB library and connect them to

other FBs in the application. It also allows deleting FB instances and connections.

(iii) Class 2 allows to reprogram an existing application by adding new FB types to the

library, instantiate them and connect them to the FB network.

In order to change a system configuration, a device may be configured by adding

or deleting resources. Removing a device does not affect the application. Resources

can also be configured using the reconfiguration commands. However, the commands

are executed by users and not self-adapted. The logic behaviour of an existing appli-

cation cannot be automatically reconfigured without user intervention. Moreover, only
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some commands are implemented in the existing run-time environments such as creat-

ing/deleting FB instances during execution [Dai et al., 2015].

2.2.6 Software Tools and Run-time Environment

Several software tools and run-time environment have been developed in the last two

decades [Prenzel et al., 2019]. They aim at providing an implementation for IEC 61499

architecture in accordance with the four parts of IEC 61499. The first part of IEC 61499

standard (IEC 61499-1) [TC 65/SC 65B, 2012b] defines function blocks architecture

and provides guidelines for using function blocks in IPMCSs. The second part [TC

65/SC 65B, 2012c] of the standard defines software tools and IDE requirements. The

third part (IEC 61499-3) presents tutorial information. Indeed, it is an obsolete part

due to the changes done in the second version. The fourth part [TC 65/SC 65B, 2013]

defines requirements for compliance profiles. The distributed devices and software tools

must ensure the IEC 61499 requirements described in part 2 and 4 such as portability,

interoperability and configurability.

The most important tools are FBDK, ISAGRAF, Fuber, 4DIAC and nxtStudio. Each

software tool proposes an execution model. A cyclic execution semantic Cyclic-Buffered

Execution Model (CBEM) is implemented in ISAGRAF and “ICARU FB” tools [Chris-

tensen et al., 2012a, Vyatkin and Chouinard, 2008, Pinto et al., 2016]. CBEM semantic

supports the cyclic computation framework implemented in IEC 61131-3. ICARU FB

does not allow multitasking implementation in the application. A Buffered sequential ex-

ecution model (BSEM) is implemented in Fuber tool [Christensen et al., 2012a, Cengic

and Akesson, 2008].

Archimedes and FBDK implement a non-preemptive multithreaded (NPMTR) exe-

cution semantic. In FBDK, multitasking is allowed, but threads are non-preemptible.

In other researches, a preemptive multithreaded (PMTR) execution model is devel-

oped. It is used in FBBeam, 4diac/FORTE, nxtControl/nxtIECRT, and RTFM-RT soft-

ware tools. Multitasking is possible, and threads execution is preemptible. Nevertheless,

all these tools do not implement the whole configuration commands defined in [Zoitl

et al., 2006]. For these reasons, there is an increasingly crucial need to prioritise re-

configuration events compared to standard events and to execute the best reconfiguration

scenario automatically without disturbing the execution process. Moreover, the exist-

ing IDEs and RTEs do not offer verification support. Only simulation technique is pro-

vided. In [Vyatkin and Hanisch, 2003], a verification environment for distributed appli-

cation (VEDA) is developed. It focuses mainly on modelling and verifying the function

block execution control using net/condition event systems. However, this tool models

the plant manually, and it is not integrated with the compliant tools. Furthermore, sys-

tem analysis and performance evaluation are not possible with the existing tools. For the
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above-mentioned reasons, an environment supporting design, modelling and verification

of RDCSs is recommended.

2.2.7 Hierarchical and Concurrent Execution Control Chart HCECC

A hierarchical and concurrent execution control chart (HCECC) has been proposed in

[Sinha et al., 2015]. It is a syntactic extension to the IEC 61499 standard that directly

expresses statecharts-like hierarchy and concurrency within basic function blocks. It is a

multilevel hierarchical state machine. Its hierarchy enhances function blocks readability

and decreases the system complexity. Thus, a parallel and refined HCECC are proposed

in this research to support hierarchy and parallelism within basic blocks, as illustrated in

Fig. 2.10.

In reconfigurable distributed control systems, the execution strategy depends on envi-

ronmental changes and user requirements. Therefore, the HCECC notation proves to be

effective since it can separate the reconfiguration model from the behaviour model. How-

ever, HCECC is not applied for reconfiguration purposes. Indeed, it can enable several

sub-state machines in parallel that is not suitable for reconfiguration scenarios. More-

over, the function blocks defining reconfiguration scenarios require just two hierarchical

levels: one for the reconfiguration and the other for executing only the corresponding

scenario in a dynamic schedule.
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Figure 2.10 HCECC examples.

2.3 Reconfiguration Evolution

Due to the unpredictable customer demand and international market, industrial and man-

ufacturing systems must be reconfigured. Reconfiguration incorporates customising old

products, changing the automation process, producing more or fewer products. Accord-

ingly, many researchers work on this point and define reconfiguration as the ability to

change an existing system configuration to a new one. Generally, reconfiguration is ev-

ery change in software or hardware configuration (system parameters, adding devices,
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resources) [Sinha et al., 2014]. In [Zoitl, 2009], the reconfiguration process transforms

an existing control system into another. In [Vyatkin, 2016], reconfiguration is any change

in the hardware or substitution of a vendor that affects the software. Two reconfiguration

scenarios are treated in [Vyatkin, 2016]: the first is to change hardware configuration,

and the second is to substitute a mechatronic component with its functional equivalent.

2.3.1 Reconfiguration Types

In literature, there are three types of reconfiguration. First, static reconfiguration is ev-

ery change/configuration made before using the system components accordingly before

system cold starts. Second, online reconfiguration is every change made at start-up time,

mainly through reading configuration files. Finally, dynamic reconfiguration is every

change applied automatically at run-time and requires hard time requirements, not like

static and online reconfiguration. The satisfaction of time constraints is a crucial require-

ment of correctness [Strasser et al., 2014]. Hence, the imposed time constraints in the

software application must be maintained while parts of the software are modified. Dy-

namic reconfiguration can also change the system without shutting it down and rebooting

it [Zoitl, 2009]. A reconfiguration scenario in such dynamic reconfiguration is defined

as any operation that changes the system execution model according to changes in its

environment, system architecture, or user requirements. The main benefit of dynamic re-

configuration is that quick maintenance or upgrade can be enabled without stopping the

whole system. Due to its benefits, dynamic reconfiguration has attracted much attention

to increasing the lifetime and utility of systems in several fields due to its benefits. How-

ever, it has severe challenges such as preserving the system stability after reconfiguration.

In this context, this dissertation focuses on the dynamic reconfiguration and verifies its

feasibility while respecting real-time restrictions and maintaining system stability.

2.3.2 Reconfigurable Control Systems

A distributed control system is characterised by its control logic deployed in several in-

terconnected devices and resources. The main goal of such a system is to control system

processes and plants. Each change in the system status at the time of execution is primar-

ily triggered by an event such as sensor detection, actuator change, message reception,

etc. A reconfigurable distributed control system (RDCS) is a distributed control system

where hardware and/or software components can adapt its structure and behaviour ac-

cording to internal and external changes [Zoitl et al., 2006]. RDCS meets well the new

flexibility and personalisation compromises.

A practical example of RDCS is a reconfigurable manufacturing system (RMS) pro-

posed by [Koren et al., 1999, 2018, Vyatkin and Lastra, 2003] providing fast changes in

structure and control system. This system allows the adjustment of production capacity
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and system functionalities [Koren et al., 1998]. The main characteristics of RMS [Koren

et al., 2018] are its scalability, convertibility, diagnosability, modularity and integrability.

2.3.3 IEC 61499 Reconfiguration Related Works

Several researchers have shifted attention to developing reconfigurable control systems

following the IEC 61499 standard to resolve industrial changes, such as integrating new

products without changing the current system.

A reconfigurable concurrent function block model and its implementation in real-time

JAVA is proposed in 2002 in [Brennan et al., 2002b] for dynamic reconfiguration exper-

imentation. The proposed model presents hierarchical reconfiguration management that

specifies two concurrent control paths: (i) control of the process, and (ii) configuration

control. This implementation is addressed to a particular project.

[Brennan et al., 2002a] focused only on reconfiguration in case of faults. They pro-

posed an agent-based reconfiguration method to reconfigure the systems dynamically

when faults occur at run-time. They had recourse to coordinator, mobile, and cohort

agents modelled with IEC 614999 function Blocks for reconfiguration. [Angelov et al.,

2005] propose design models of a reusable and reconfigurable state machine that can be

configured using a state transition table. The latter consists of multiple-output binary

decision diagrams that define the next state mappings of various states and the associated

control actions. However, the proposed reconfigurable state machine considers a pre-

defined state transition table. It develops a static reconfiguration applied offline before

the system start-up, which does not fulfil the new industrial requirements. In [Zurawski,

2004], the authors propose to use the international standard IEC 61499 to achieve recon-

figurability of automation systems by defining basic function blocks independent from a

particular execution platform. Moreover, control applications are defined independently

from a particular hardware architecture. They intended to apply IEC 61499 by defining

a type for each level (system configuration type, device type, resource type, applica-

tion and sub-application type, and function blocks type) and then instantiate and map

them. Moreover, they highlight the use of adapter interfaces to minimise interblock con-

nections. In fact, an adapter connection combines the bidirectional interaction of two

function blocks encapsulating several events and data connections in both directions to

decouple the interaction between function blocks [A. Zoitl, 2014]. [Zoitl, 2009] elabo-

rate a management model that is based on a reconfiguration manager component and a

user-programmable application. The limitation of this approach appears in the fact that

the manager component is not a programmed entity deployed in every control device.

[Lepuschitz et al., 2011] propose to reconfigure software components by changing

program sequences or component parameters in the application. They propose to add,

delete, relocate, and replace instances of software components. The approach is based
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on ontological knowledge bases [Lepuschitz et al., 2011]. Notably, an ontology is com-

posed of an interpreted language and explicit assumptions to provide a formal represen-

tation of a real system [Ameri et al., 2012]. It provides a shared vocabulary needed for

knowledge management and information exchange among distributed agents. The au-

thors foreground an ontological representation of low-level agents to permit high-level

control and initiate a reconfiguration process for low-level control. Nevertheless, this ap-

proach, based on dynamic software reconfiguration, has not been applied by any run-time

execution environment.

[Strasser et al., 2014] highlight the need for an appropriate engineering approach and

execution environment supporting dynamic reconfiguration in IEC 61499. They propose

management commands to create and initialise function blocks at the run-time level as

well as to transmit data and state from one resource to another. This IEC 61499 approach

also allows deleting and updating a function block instance in a real-time system and

changing its encapsulated algorithms to fix a bug or optimise it [Brennan et al., 2008,

Zoitl and Strasser, 2017]. However, the authors assume that the function block type defi-

nitions must exist in the target execution environment. This imposes a serious restriction

to the reconfiguration of systems at run-time.

Another methodology executing dynamic reconfiguration in discrete systems is pro-

posed in [Pinto et al., 2017]. It swirls around the application of the supervisory control

theory. The latter allows changing the system control logic at run-time while maintain-

ing global and local consistency of the application. To the best of our knowledge, the

ability to switch from one configuration, i.e. reconfiguration scenario, to another inside a

function block has not yet been studied.

The authors in [Sünder et al., 2013] propose an Evolution Control Application named

ECA. This application models the new changes occurring during the system life cycle. It

is loaded if a change occurs and removed once the change is over. Once the application

is loaded, it runs with the existing application. However, the ECA requires changes in

the function block network.

[Sinha et al., 2014] proposed a framework to automatically reconfigure evolving IEC

61499 systems for deployment onto an available set of resources. Any change in the

system architecture and high-level configuration requirements are formally specified as

Satisfiability Modulo Theory (SMT) constraints to generate a valid subsystem reconfig-

uration. Nevertheless, the framework requires user-provided configurations.

A Virtual Function Block (VFB) mechanism is developed in Cloud-based Manufac-

turing Systems [Wang and Xu, 2013], i.e. service-oriented systems. The authors suggest

to package existing and future manufacturing resources in a VFB to manipulate and in-

tegrate them via event states and data flows. Several studies focus on service-oriented

architecture (SOA) for dynamically reconfiguring IEC 61499 systems. [Koumoutsos and
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Thramboulidis, 2009] propose a knowledge-based framework based on ontologies, SOA,

and semantic Web languages. The proposed SOA framework is integrated within soft-

ware agents aiming to achieve negotiation between support systems. It seems that the

framework is limited only to the design level, and no run-time environment is imple-

mented. [Dai et al., 2015] proposes an SOA-based run-time architecture to apply the

SOA concept implementing the IEC 61499 standard at the device level.

[Strasser et al., 2011] propose a complete Zero downtime reconfiguration approach

based on the user intervention to reconfigure control applications based on IEC 61499

standard dynamically. The authors present an enhanced IEC 61499 device management

that shows the dynamic change of a function block algorithm without perturbing the

whole system. Even so, the user intervention is required to reconfigure the control sys-

tem.

[Alsafi and Vyatkin, 2010] put forward automatic reconfigurations applied by intel-

ligent agents that adapt to changes in the requirement and environment. The research

has focused on studying control systems reconfiguration when hardware faults occur at

run-time. [Khalgui et al., 2010] define a multi-agent architecture for distributed reconfig-

urable systems following the IEC 61499 standard. They come up with not only a recon-

figuration agent to handle automatic local reconfigurations under well-defined conditions

but also a coordination agent to manage distributed reconfigurations between devices.

However, the reconfiguration using agents makes the design more complex.

Several approaches are applied mainly in the last decade to customise the industrial

automation such as smart grids and cyber-physical systems. These approaches increase

engineering efficiency, but the issue is that reconfiguration increases development time

and design complexity due to the need for handling different reconfiguration scenarios,

i.e. behaviours. In this thesis, we focus on optimising dynamic software reconfiguration.

In most reconfiguration studies, the authors focus on the system architecture changes,

such as adding new devices/resources or removing devices/resources instances from the

system, which are translated to system configuration. To the best of our knowledge,

none of the related works propose to reconfigure the function block itself by defining a

reconfigurable dynamic state machine executing reconfiguration scenarios according to

an intelligent decision. Moreover, rare approaches separate the reconfiguration model

from the control model inside a function block despite the fact that such separation is

beneficial for enhancing readability, speeding up the switching from one reconfiguration

scenario to another, simplifying the design and reducing reconfiguration time.

2.4 Petri Nets for Formal Modelling

Modelling and verification of reconfigurable manufacturing systems have attracted the

attention of many researchers. [Dubinin et al., 2006] model IEC 61499 function block
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systems with the language of logic programming Prolog to verify liveness, reachability

and safety properties. Stanica and Guéguen [Stanica and Guéguen, 2004] have mod-

elled function block network with timed automata. Moreover, several researchers have

shared the ideas of modelling and analysing distributed control systems with Petri nets to

achieve formal verification. Indeed, Petri nets are used for formal modelling, analysis and

verification of distributed systems, introduced in the early sixties by Carl Adam [Petri,

1962]. It is developed to verify mutual exclusion, deadlocks and time constraints. IEC

61499 FBs are based on event-driven activation mechanism that preserves the causality

of distributed control systems [Drozdov et al., 2016]. Several event-conditions Petri net

formalisms are introduced in this section. Most of them are used to model IEC 61499

designs except two reconfigurable Petri nets model R-TNCES and GR-TNCES. Their

concepts are event-driven and very close to the IEC 61499 execution control chart.

2.4.1 Net Condition/Event System NCES

Net Condition/Event System (NCES) is a modular Petri nets extension with extra con-

dition and event signals, making them different from other Petri nets. NCES models

reactive systems. It was introduced by Rausch and Hanisch [Rausch and Hanisch, 1995]

and further developed in [Hanisch and Lüder, 1999]. Each NCES module has a particular

dynamic behaviour and is connected via special condition/event signals to other modules

to constitute a system model. Condition signal is a constant signal coming from a place

and going to a transition, whereas event signal is defined as the description of a trigger

signal, coming from a transition and going to another transition as illustrated in Fig. 2.11.

The token is removed from the place when the condition is fulfilled, and the next tran-

sition(s) is fired. If a transition fires, then it removes the token away from the last place

and places it in the next place.

Flow arc

Transition 

A NCES Module

Condition output

Event input

Token
Place

Event outputCondition input

Module boundary 

Figure 2.11 Graphical Notation of an NCES Module.

NCES is formally represented as a tuple:

NCES = (P , T , F , CN , EN , Cin, Ein, Cout, Eout, Bc, Be, Cs, Dt, m0)
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where:

• P (respectively, T ) is a non-empty finite set of places (respectively, transitions),

• F : (P × T ) ∪ (T × P ) is a set of flow arcs,

• CN ⊆ P × T is a set of condition arcs,

• EN ⊆ T × T is a set of event arcs,

• Cin is a set of condition inputs,

• Cout (respectively, Eout) is a set of condition (respectively, event) outputs,

• Bc (respectively, Be) is a set of condition (respectively, event) input arcs in an

NCES module, Bc ⊆ (Cin × T ) (respectively, Be ⊆ (Ein × T )),

• Cs (respectively, Dt) is a set of condition (respectively, event) output arcs, Cs ⊆
(P × Eout) (respectively, Dt ⊆ (T × Eout)),

• m0: P → {0, 1} is the initial marking.

In NCES, a transition is enabled when all pre-places of the condition signals are

marked by one token, i.e. condition concession, and the pre-places of the transition are

marked by one token, i.e. token concession. Every transition having no incoming event

arcs, it is called a spontaneous transition. Otherwise, it is a forced transition. The forced

transition is enabled by token, condition and event signals.

NCES formalism has been used in [Vyatkin and Hanisch, 2000a, Missal et al., 2007,

Ivanova-Vasileva et al., 2008, Stanica and Guéguen, 2004] to model function blocks for

verification reason due to its structure and execution which is very close to the one of the

function block. A condition signal in FB corresponds to a condition related to a place

in NCES, and a FB event signal corresponds to an event transition in NCES. NCESs are

used in [Zhang et al., 2018a] to control dynamic reconfigurable discrete event systems.

The same example of Section 2.2.2 is modelled with NCES, as illustrated in Fig.

2.12. An assembly module is activated when the input event “pieceReadyForAssembly”

is active. After assembling piece “A” with “B”, an output condition is sent to the conveyor

module.
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N=0

WP coming

moveWPToAssembly

WP at separator

pieceReadyForAssembly

N>0

Conveyor Module

Waiting WP

Figure 2.12 NCES Module for a Conveyor Controller.

2.4.2 Timed Net Condition/Event System TNCES

TNCES formalism is an extension to Net Condition/Event System NCES with extra time

constraints attached to input arcs of transitions. TNCESs have been widely applied in

distributed control systems due to their suitable structure to such systems [Zhang et al.,

2018b].

A TNCES is a 2-tuple Γ = (NΓ, z0) where NΓ = (P , T , F , CN , EN , em, DC) is its

net structure with P , T , F , CN and EN having the same meaning as in NCES.

1. z0 = (m0, d0) is the initial state of Γ where m0: P → {0, 1} is a mapping function

which is called the initial token state of Γ, and d0 : P → N is the initial clock

position of Γ. Every pre-arc of a transition has an accepted time interval between

[l,h] where l, hN and by default they are equal to 0 that is the minimum value.

2. em: T → {∨,∧} is a mapping function which attaches a (signal-processing) mode

to every transition where “∨” is OR mode and “∧” is AND mode.

3. DC is a mapping that assigns an integral time interval to each output flow arc (flow

arcs from places to transitions). DC: F (P × T ) → {[l, h]} is a super-set of time

constraints on output arcs where l, h ∈ N.

The clock measures the time of the token states. Each place has a clock that runs

when the place is marked by a token. When a transition fires, the clock is reset, and the
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token is removed from the place [Hanisch et al., 1997]. The token can be removed from a

place p by a transition t only when the clock at the place p is between the earliest and the

latest firing time. In TNCES, a set of transitions can fire simultaneously, i.e. concurrently.

TNCES is used in several studies to model PLCs following IEC 61131 and IEC 61499

standard. [Thieme and Hanisch, 2002] proposed a method that automatically translates

a TNCES model into control code based on IEC 61131 Function Blocks. TNCES can

model uncontrolled plant behaviours. [Vyatkin and Hanisch, 1999] have modelled IEC

61499 function blocks with TNCES model to verify discrete control applications using

SESA model checker and temporal logic properties. An approach in [Ivanova-Vasileva

et al., 2008] aims to generate a formal model for basic and composite function blocks

at the application level. However, TNCES model is not a reconfigurable Petri net model

since it does not fit the changes in the states and transitions in a reconfigurable distributed

control system.

2.4.3 Reconfigurable Timed Net Condition/Event System R-TNCES

R-TNCES is a formalism for modelling and verifying dynamic reconfigurable discrete

event systems developed in 2013 [Zhang et al., 2013]. It is a reconfigurable extension to

timed net condition/event systems (TNCESs). R-TNCES separates the behaviour from

the control module. The behaviour module B is a set of imbricated TNCESs which cor-

respond to the model of a configuration of the underlying reconfigurable system. The

control module R corresponds to the reconfiguration control mechanism of a reconfig-

urable system. R is a set of reconfiguration functions that deal with structural changes of

configurations and state coherence during reconfigurations [Zhang et al., 2013].

A reconfiguration function allows switching between TNCESs through enabling or

disabling control components, changing condition or event signals, modifying the com-

munications among them, and dealing with state feasibility before and after reconfigu-

ration process. This transformation is in reason to reply to environment changes, new

user requirements, new manufacturing strategy or error handling [Zhang et al., 2013].

In R-TNCES, the concurrence of standard events and reconfiguration events problem is

treated, and the dynamic system behaviour can be described, analysed, and controlled

during reconfiguration to guarantee system correctness [Zhang et al., 2013].

An R-TNCES is formalised as a control module R and a behaviour module B. The

behaviour module B is a set of superposed Timed Net Condition/Event Systems (B =∑
TNCES). The control module is a set of reconfiguration functions (R =

∑
ri) which

control the switching between TNCESs inside the behaviour module B. A reconfigura-

tion function is defined as ri = (pcond, S, x) where:

• pcond is its pre-condition. The pre-condition pcond is a boolean variable that can

be a specific external instruction or a specific system state. If pcond is true, then
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the corresponding reconfiguration function ri is executable.

• S is its structure modification instruction S: TN(∗r) → TN(r∗) that transforms

TN before reconfiguration TN(∗r) to a TN after reconfiguration TN(r∗),

• and x: laststate(∗r) → laststate(r∗) is the state correlation function that maps

the last state before applying the reconfiguration function ri to an initial state after

applying ri.

In order to implement the reconfiguration inside R-TNCES, the author [Zhang, 2015]

defined a state machine called a structurechanger and a set of actuators responsible for

synchronising the structurechanger with the behaviour module of the R-TNCES. In the

structurechanger, each place corresponds to a specific TNCES of an R-TNCES, and each

transition corresponds to a reconfiguration function. If a place gets a token, then the cor-

responding TNCES is selected. If the linked transition is fired, i.e. the reconfiguration

function is applied, then the token is removed from the previous place and inserted in

the next places. The authors propose an actuator for each place in the Structure changer

to reactivate the changed TNCES, as shown in Fig. 2.13. Each actuator is composed

of a single place marked by only one token and a single transition. When a place in

structurechanger receives a token, the corresponding actuator (TNCES) will be enabled,

and its transition will constantly send event signals to the corresponding control compo-

nents in the TNCES. Only the control components in the active TNCES are executable,

all the remaining control components still disabled.

R-TNCES is gaining a growing interest in the last five years since it proposes op-

timised modelling of reconfigurable discrete event systems [Zhang et al., 2015b]. It is

applied perfectly in a flexible medical robotic platform [Salem et al., 2015] and on recon-

figurable assembly systems [Zhang et al., 2018b]. It also models reconfigurable systems

under memory and energy constraints [Khlifi et al., 2015]. A resource sharing solution

in R-TNCES is discussed in [Salem et al., 2014]. Moreover, a new R-TNCES rebuilding

method for Reconfigurable Systems has been proposed by [Ramdani et al., 2019] to repair

the R-TNCES model when a property is unsatisfied during model checking. Furthermore,

a new temporal logic called RCTL has been developed to improve formal verification of

Reconfigurable Discrete-Event Systems based on R-TCNES [Ramdani et al., 2020].

2.4.4 Generalised Reconfigurable Timed Net Condition/Event systems GR-TNCES

A GR-TNCES is an R-TNCES extension for modelling reconfigurable discrete systems

under energy and resources constraints. It is a set of |G| superposed R-TNCES gi where

gi = (B,R) with B being the behaviour module and R being the control module that is a

set of reconfiguration functions. The behaviour module B is a union of multiple TNCES

defined as follows:
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Structure Changer

Actuator1 Actuator2
Actuator3

Control Component CC1 Control Component CC2 Control Component CC3

Figure 2.13 An R-TNCES Example Model.

B = (P , T , F , W , CN , EN , DC, V , Z0)

where P , T , F , CN , EN , and DC have the same meaning as in TNCES and

(i) W : (P × T ) ∪ (T × P ) → {0, 1} maps a weight to a flow arc: W (x, y) > 0 if

(x, y) ∈ F , and W (x, y) = 0; otherwise, if x, y ∈ P ∪ T ,

(ii) V : T → {∨,∧} maps an event-processing mode (AND or OR) to each transition,

(iii) Z0 = (T0, D0) where T0: P → {0, 1} is the initial marking and D0: P → {0} is

the initial clock position.
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The control model R is a set of reconfiguration functions rk where

rk = (cond, P0, E0,M0, Q, L) (2.1)

with:

– cond→ {true, false} is the precondition of rk,

– P0: F → [0..1] is the TNCES probability,

– E0: P → [0..max] is the number of tokens controlling the energy requirements,

– M0: P → [0..max] is the number of tokens controlling the memory requirements,

– Q: TN(∗r) → TN(r∗) is the structure modification instruction for a reconfig-

uration scenario, it transforms TN before reconfiguration TN(∗r) to a TN after

reconfiguration TN(r∗),

– and L: ls → is is the state processing function. ls denotes the last state before ap-

plying the reconfiguration function rk and is denotes the initial state after applying

rk.

The union of multiple TNCESs ∪N is a set of all feasible net structures that can be

performed by an R-TNCES where ∪N = (P × T × F ×W × CN × EN ×DC × V ).

Each No ∈ ∪N , o ∈ [1 · · · |N |] is a behaviour in the system.

A state machine called structure changer manages the dynamic reconfigurations of

the system. It describes the control module R. Each place spi in the structure changer

corresponds to an R-TNCES module, while each transition corresponds to a reconfigura-

tion function. A reconfiguration is achieved according to the highest R-TNCES branch’s

probability and the system resources at the desired instant.

The structure changer SC = (P, T, F,Q,M,E) is a particular state machine whereM

is the memory resources, and E is the energy resources of each R-TNCES. Q ∈ [0, 1] is

the probability for each R-TNCES branch where the sum ofQi = 1. It designs the chance

to fire such reconfiguration scenario that is depicted as a branch. The control module R

has a memory reserve Mem and an energy reserve Eng. The executed reconfiguration

scenario should not violate/exceed the global memory and energy, i.e. E <= Eng and

M <= Mem.

Each state in TNCES consumes one token from the energy reserve Eng and one to-

ken from the memory reserve Mem. Before executing any probabilistic reconfiguration

scenario, the availability of reserved energy and memory has to be checked. If the mem-

ory reserve is enough, i.e. M < Mem, then M is subtracted from the global memory

Mem. After executing the reconfiguration process, the memory tokens are added back
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to the model’s memory reserve. In parallel, the energy reserve will be removed from the

battery and will be recharged periodically.

A GR-TNCES example is illustrated as follows in Fig. 2.14. R-TNCES1 needs 15

tokens and 12 energy units. The needed resource should respect the global resourcesEng

and Mem. In GR-TNCES, the most probabilistic reconfiguration will be executed if the

required resources are provided. Otherwise, the next probabilistic scenario satisfying the

time, memory and energy constraints will be carried out. In this case, RTNCES4 will

be achieved.

RTNCES1

M=15
E=12

RTNCES2

M=12
E=9

RTNCES3

M=20
E=19

Rec: E<Eng? M<Mem?

RTNCES4

M=9
E=8

P1=0.2

P2=0.1
P3=0.3

P4=0.4

Eng=41
Mem=46

Rec: Reconfiguration function

Pi:probability

Global Energy reserve

Global Memory reserve

Figure 2.14 A GR-TNCES Example Model.

2.5 Verification of Reconfigurable Systems

Because of the increasing number of components and modules in the reconfigurable dis-

tributed systems, logic correctness cannot be guaranteed. IEC 61499 standard does not

show the way an application is verified. Simulation is one of the most used techniques for

evaluating software application. It is supported by several IEC 61499 development tools

such as Function Block Development Kit FBDK, 4DIAC, NxtSTUDIO and ISaGRAF

[Christensen et al., 2012a]. Matlab is well known for its efficiency in simulation, which

can be integrated with the cited IEC 61499 tools [Liu, 2018]. This technique injects

thousands or millions of inputs to the system model and analyses only the outputs. Nev-

ertheless, simultaneous tasks execution, parallel control logic, events behaviour, temporal

logic, and deadlocks cannot be proved with simulation. The latter is also not adequate for

testing critical industrial applications and does not guarantee safety property. To address

this problem, reachability analysis has been developed by [Starke and Roch, 2002] to

analyse the dynamic behaviour of a system model. They have introduced a model check-

ing technique that checks whether the system model satisfies a formal requirement. The

reachability graph generates all possible behaviours of the system. Compared to simula-

tion, theorem proving and equivalence checking techniques, model checking is the best
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technique. The latter stems its importance from the fact that it enables the unsupervised

automatic system verification and identifies system failure via counterexamples [Patil

et al., 2015].

In order to use model checking, formal modelling of the target system in specific

formalism is required, such as Petri net formalism as discussed in the previous section.

The generated models can be automatically verified against formal properties specified

in Computational or Linear Tree Logic (LTL or CTL). A model checking algorithm,

encapsulated in the model checker tool, searches all the reachable states automatically in

the model and generates counterexamples if the system cannot satisfy the property.

2.5.1 Verification of IEC 61499 Architecture

Most studies on IEC 61499 verification use qualitative analysis and formal modelling.

Some studies have recourse to model checking in order to automatically verify prop-

erties of finite-state systems. Indeed, model checking uses computation tree logic for

specifying such properties. This technique is known for its ability to handle complex

problems. [Zhang et al., 2015a] used model checking to automatically verify properties

of an R-TNCES model. They checked through the model checker SESA some properties

related to reconfiguration such as the system correctness after concurrent reconfiguration

requests and the valid behaviour of subsystems after applying a reconfiguration scenario.

They used Computation Tree Logic CTL detailed in the next section. SESA is a model

checker that proves properties of desired or prohibited behaviour in the reachability graph

of the system model. SESA has been used with NCES Petri nets [Vyatkin and Hanisch,

2000a] to verify IEC 61499 systems.

Qualitative verification is an excellent technique to validate system correctness and

several properties of reconfigurable distributed control systems. In recent research, prob-

abilistic verification has taken an important place in the verification process since it al-

lows to drive the system to satisfy the wanted quality of service requirements. In [Forejt

et al., 2012], an incremental probabilistic technique has been proposed for the run-time

analysis of adaptive software systems. Probability is characteristic of reconfiguration

events. To the best of our knowledge, only the work of [Bhatti et al., 2017] introduces

unified analysis checking qualitative and quantitative properties using IEC 61499 stan-

dard. They convert the IEC 61499 model to a specific PRISM model, and then they in-

ject some faults to the model to check safety properties using the PRISM model checker

[Kwiatkowska et al., 2002]. However, the last approach exacerbates the state explosion

problem for large scale reconfigurable systems because it translates IEC 61499 model

directly into a PRISM model. The total time of system verification grows exponentially

with the total number of possible states in the system. Consequently, a modular verifi-

cation is required in complex systems to minimise the state explosion risk. Moreover, a
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unified qualitative and quantitative analysis is needed to take advantage of its benefits by

verifying the feasibility of reconfiguration, estimating reconfiguration risks and maintain-

ing system stability. PRISM is the best tool which combines qualitative and quantitative

verification using computation tree logic.

2.5.2 Temporal logic

Temporal logics [Starke and Roch, 2002] describe and specify properties that the system

behaviour must fulfil. Computation Tree Logic CTL and Probabilistic Computation Tree

Logic PCTL are well known temporal logics used for the specification of model checking.

This section has as objective to give a brief presentation of the most important temporal

logic: CTL, PCTL, and Timed Computation Tree Logic TCTL.

2.5.2.1 Computation Tree Logic CTL

The Computation Tree Logic CTL is defined by Clarke and Emerson in [Clarke et al.,

1986]. In CTL, all formulae specify qualitative behaviours of the system starting from an

assigned state in which the formula is evaluated by taking paths into account. A path is

a sequence of states. The semantics of formulae are defined according to a reachability

graph where states and paths are used for the evaluation. A reachability graphM consists

of all global states that the system can reach from a given initial state. It is formally de-

fined as a tuple M [Z,E] where Z is a finite set of states and E is a finite set of transitions

between states, i.e. a set of edges (z, z0) where z, z0 ∈ Z and z0 is reachable from z. The

designer can verify the system using such computation tree logic formulae:

1. z0 |= AF (p) which expresses that we will always reach p from z0, and

2. z0 |= EF (p) which expresses that it is possible to reach p from z0.

They enable to express that a given state property must hold for all paths starting from

the state. Thereby, witnesses for existence-quantified sub-formulae and counterexamples

for all-quantified sub-formulae can be determined and displayed. CTL allows the use of

atomic propositions to express the properties of some states.

2.5.2.2 Timed Computational Tree Logic TCTL

Timed Computational Tree Logic TCTL is an extension to CTL with extra clock variables

and constraints, allowing to analyse and evaluate clocks in the system. The semantics of

temporal formulae is defined following a reachability graph, and it is defined as follows:

ϕ ::= a|g|ϕ1 ∧ ϕ2|¬ϕ|E(ϕ1U
Jϕ2)|A(ϕ1U

Jϕ2) (2.2)

where:
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• a is an atomic action;

• g is a clock constraint;

• E means ”for some path”;

• A means ”for all paths”;

• J is an interval whose bounds are ∈ N

The reachability graph consists of all global states that the system can reach, starting

from a given initial state. The basic structure can be seen as a directed graph. States and

paths of the reachability graph are used in the evaluation of functional and temporal prop-

erties. Qualitative analysis using CTL and TCTL properties allows the analysis of system

behaviours, but it does not give an insight into system performance and an estimation of

reconfiguration risk. Quantitative analysis is thus required.

2.5.2.3 Probabilistic Computation Tree Logic PCTL

PCTL [Kwiatkowska et al., 2002] is a probabilistic specification formalism which is an

extension to the temporal logic CTL. It was introduced by Hansson and Johnson [Hans-

son and Jonsson, 1994] to analyse discrete-time probabilistic systems such as Markov

Decision Processes MDPs [Puterman, 2014] and discrete-time Markov chains DTMCs.

A PCTL property is of the form “the probability that event “A” occurs is at least p

under any scheduling of processes”. The P operator allows computing the actual proba-

bility that a model behaviour is observed or the probability of an event occurrence. The

operator F means “eventually”, U means “until” and U≤k means “bounded until a period

k”. PCTL excludes the next “X” operator. An example of PCTL property P =?[Fphi]

means ”what is the probability of reaching a state where phi is true from the initial state

of the model?”.

2.5.3 PRISM Model Checker

PRISM offers a probabilistic model checking for run-time verification of adaptive sys-

tems and analyses systems that exhibit random or probabilistic behaviour [Kwiatkowska

et al., 2002]. A PRISM model is a set of modules M = {M0, ...,Mn}, where a module

Mi consists of local variables Vi and commands Ci, i.e. Mi = (Vi, Ci). The variables

Vi describe the possible states in the module. The values of these variables at any given

time constitute the states of the module. The space of reachable states is calculated using

the range of each variable and its initial value. Each module can read variables of other

modules but only write to its own. The local state of all modules determines the global

state of the whole model. The behaviour of each module is described by commands Ci

that define the way the state changes over time. A PRISM command is formalised as
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( [a]g → λ0: u0 + · · ·+ λn : un) where

[a] is an action-label, g is a guard condition, ui is an update statement, and λi is a proba-

bility value (0 ≤ λi ≤ 1) such that (
∑n

i=0 λi = 1) and n is the number of statements. The

command is enabled when the boolean expression g is equal to true.

A discrete-time Markov chain DTMC [Arora and Rao, 2016] is defined as a tuple

D=(S, sinit, P, L) where

(i) S is a non-empty set of states,

(ii) sinit ∈ S is the initial state,

(iii) P : S×S → [0, 1] is the transition probability matrix where
∑

s′∈S P (s, s′) = 1 for

all s ∈ S,

(iv) L: S → 2AP is a function labelling states with atomic propositions taken from a

set AP .

The file extension used for DTMC model is “.pm”. A DTMC example of two mutual

processes is written in PRISM as depicted in Fig. 2.15. The system example [of Oxford,

2020] comprises two processes x and y that operate under the mutual exclusion. Each

process can be in one of its three states: {0, 1, 2}. From state 0, a process will move to

state one with a probability equal to 0.2 and remains in the same state with a probability

equal to 0.8. It tries to move from state one to the critical section state two. The process

can only occur if the other process is not in its critical section. Finally, from state two, a

process will remain in state two or move back to state 0 with equal probability.

2.6 Discussion and Originalities

IEC 61499 standard faces challenges in the design and verification of reconfigurable

distributed control systems. The existing control applications are implemented using a

huge number of function blocks and/or a complex execution control chart composed of

several states and transitions that increase complexity. For every new requirement or

environment change, the design model should be adjusted and adapted. The fact that

the existing approaches do not adjust the system automatically accentuates the need for a

dynamic reconfiguration in IEC 61499 standard. The latter then needs to be extended and

automatically applied. The basic function block types do not handle the reconfiguration

scenarios easily. The control logic encapsulated in the execution control chart of the

basic function block is static. Moreover, to avoid cumbersomeness in ECC, a separation

of reconfiguration scenario from the control logic is necessary. Additionally, there is a

need for a smart hierarchical execution control chart that can ensure more modularity
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Figure 2.15 Prism DTMC model.

in the control logic, increase readability, and provide an automatic switching from one

reconfiguration scenario to another.

Formal modelling using Petri net is an interesting approach in formal verification.

IEC 61499 systems have been modelled with NCES and TNCES which are not perfectly

suitable for reconfigurable distributed control systems. Reconfigurable timed net condi-

tion event system R-TNCES has recently emerged to model and verify such systems. It

can be seen as the best formalism that fits well with reconfigurable control systems fol-

lowing the IEC 61499 architecture. Indeed, R-TNCES permits the activation of places/-

transitions and the switch from one TNCES to another to execute reconfiguration. Most

reconfiguration events are probabilistic since they are related to unpredictable events.

A probabilistic R-TNCES extension called GR-TNCES has been developed to model

RDCS under memory and energy constraints executing the most probabilistic scenarios.

Most RDCS run under limited memory and energy resources. Therefore, translating an

IEC 61499 model into a GR-TNCES model grants a modular verification, an estimation

of reconfiguration risks, and reduction of the total number of possible states in the system.

Most IEC 61499 software environments integrate simulation and do not deal with

model checking that provides an exhaustive analysis. In the formal verification of IEC

61499 control systems, none associate probabilities to reconfiguration scenarios. Such

probabilities are useful for evaluating reconfiguration risks and estimating system perfor-

mance. In the same context, it is crucial to draw on the fact that PRISM model checker
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proves its usefulness in allowing qualitative and quantitative analysis using CTL, TCTL

and PCTL properties. PRISM also ensures the verification of system safety and reconfig-

uration feasibility. It gives an insight into system performance. Another worth mention-

ing idea is that PRISM is nearly not used in other researches to verify systems following

IEC 61499 architecture except the research of [Bhatti et al., 2017] which exacerbates the

state explosion problem.

2.7 Conclusion

In this chapter, we have defined the main terminologies of the scope. Several related

works about IEC 61499 standard, reconfiguration and formal modelling and verification

have been discussed. As a result, the related works are not able to deal with reconfigura-

tion in reconfigurable distributed control systems. This is mainly related to the fact that

IEC 61499 lacks dynamic reconfiguration inside the execution of the function block con-

trol chart. For this reason, an extension of reconfiguration feature in IEC 61499 standard

is proposed. Additionally, the existing IEC 61499 tool does not integrate the verification

of the control logic. Hence, a simplified approach for design, modelling and verification

of RDCSs is elaborated to verify reconfiguration and estimate risks.
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Chapter 3

New Extension to IEC 61499 based on
Reconfigurable Function Block

3.1 Introduction

In this chapter, a new framework called reconfigurable function block (RFB) is intro-

duced to support reconfiguration in IEC 61499. We have formalised the RFB and its

interconnection with other function blocks inside an industrial application. The execu-

tion semantic of RFB is presented, and a formal case study is applied to show RFB

functionalities. Notably, parts of this chapter are presented in the ACS/IEEE Interna-

tional Conference on Computer Systems and Applications (AICCSA) [Guellouz et al.,

2016b], and in IEEE Transactions on Automation Science and Engineering (TASE) jour-

nal [Guellouz et al., 2019].

3.2 Motivation

By analysing existing approaches on reconfigurable distributed control systems in the

last chapter, a separation between reconfiguration and control logic inside a function

block model becomes mandatory. The aim of such separation is to optimise the design

and increase readability and maintainability. Another emphasis is put on reducing de-

sign complexity and the number of function blocks which minimises the execution and

reconfiguration time.

The creation or deletion of FB instances, proposed by [Strasser et al., 2014], facilitates

a system reconfiguration. However, these operations are carried out commands executed

by a user. That is why we aim at extending the reconfiguration feature in IEC 61499

standard by defining a new reconfigurable function block model called Reconfigurable

Function Block (RFB). The latter takes into consideration all possible reconfiguration

scenarios related to the changes in the controlled process and switch easily from one

reconfiguration scenario to another without user intervention. A self-decision algorithm
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called “DcisionAlg” is thus proposed to give the component the possibility to make the

best decision without user intervention and select the adequate scenario. Accordingly, we

suggest to change the implementation of the execution control chart model and introduce

new reconfiguration events and data types in the RFB interface. The proposed solution

must offer a dynamic reconfiguration as well as probabilistic annotation for events. The

probabilistic aspect is needed to add a degree of uncertainty to events in the verification

phase. Thus, it will be possible to evaluate the probability of some unwanted states or

scenarios like deadlocks and estimate reconfiguration risks.

Hierarchical state machines fit with the continuous changes in the system since they

permit modularity and easy switch from a sub-state machine to another while minimising

the overlapping between states. Hence, we propose a master-slave execution control chart

to encapsulate each reconfiguration scenario in a sub-state machine slave in RFB. All

salves are controlled and supervised by a state machine master. The encapsulation of

many reconfiguration scenarios sharing the same events and data, and enabling only one

scenario in a reconfigurable function block minimises the number of function blocks and

performs efficient reconfiguration management. In addition, a reconfiguration matrix is

proposed to endow RFB with a cognitive knowledge base in which rules are stored to

select the right reconfiguration scenario to be executed.

An RFB requires a special execution semantic at the resource level. The reconfigura-

tion event must be more prioritised than standard events. The arrival of a reconfiguration

event can stop the execution of an old reconfiguration scenario and trigger another. The

switching from one scenario to another must be safe. For this reason, the master must

wait for the current slave until it returns to its idle state to perform the reconfiguration

process.

In this chapter, a network of reconfigurable function blocks is formalised where the

interconnection between standard and reconfigurable function blocks is ensured thanks

to events and data flow. RFB formalism is the main component which is used to design

reconfigurable control systems in the RFBA approach. In order to reconfigure an existing

RFB unit, the addition of a new scenario and the deletion or modification of an existing

reconfiguration scenario inside an RFB are supported. This facilitates the task for the

developer, increases system flexibility, and reduces the development time.

3.3 Reconfigurable Function Block RFB

A reconfigurable function block (RFB) is a new event-triggered software component in-

troduced to control and execute reconfiguration tasks. It separates the reconfiguration

model from the control model inside the state execution control chart to avoid cumber-

someness. An RFB is denoted by Ri, as illustrated in Fig. 3.1. It includes an interface

that controls events and data flow in which extra reconfiguration events and data are de-
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fined. Moreover, RFB defines the logical part as a Master-Slave Execution Control Chart

(MSECC). It also has a set of algorithms Algo used in the MSECC to update data.

Internal variables

Input event of 
reconfiguration

Input events

Input Data of 
reconfiguration

Input Data

Output event of 
reconfiguration

Output event

Output Data of 
reconfiguration

Output data
Algorithms

MSECC

RFB Name

Figure 3.1 A Reconfigurable Function Block Interface.

The RFB interface and master-slave ECC are formalised as follows.

3.3.1 RFB Interface Formalisation

The interface is a set of events and data flow, denoted as:

Ri = (Ei, Di, Wi, IVi) where

• Ei is a set of arrived and issued events that trigger the RFB Ri. It includes standard

and reconfiguration events: Ei = (IEi, OEi, ieri, oeri) where IEi (OEi, respec-

tively) is a set of standard input (output, respectively) events in Ri. The arrival

of an input event can fire a transition in MSECC. The input event of reconfigu-

ration ieri (the output event of reconfiguration oeri, respectively) is an event that

launches modification in the execution model of the RFB Ri (the next RFB Rm,

respectively). A reconfiguration is a dynamic change in the RFB triggered when an

event of reconfiguration occurs. It can be a change in the algorithm execution or-

der, a switch from one behaviour to another by activating/deactivating slaves in the

MSECC, or an activation/deactivation of next FBs in the network. An event of re-

configuration can be generated when an error occurs, production mode is changed,

a product type is added, memory or energy are insufficient, etc.

Every event is characterised by its priority pr and its probability of occurrence

p ∈ [0, 1]. The priority pr: ie→ {H,L} is a function that prioritises events where

H is the highest priority and L is the lowest. The probability p is just for modelling

purpose and does not affect the deterministic control logic.
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• Di is a set of data that present the RFB information received from/transferred to

other FBs in the network (for example current value, delay, execution period, etc.).

The set of data Di is structured as follows Di = (IDi, ODi, idri, odri) where IDi

(respectively ODi) is a set of input (respectively output) data in Ri used by the

algorithms of the slave Eij
s and idri (respectively odri) is the input (respectively

output) data of reconfiguration of the RFB Ri that is equal to the index of a slave

Eij
s in the RFB Ri (respectively Emq

s in the next RFB Rm) when the corresponding

reconfiguration scenario is triggered where idri = ij (respectively odri = mq).

• Wi is a set of WITH-associations of Ri that relate an event with data. We formalise

the set of WITH associations Wi of Ri by Wi = (IWi, OWi, IWRi, OWRi) where

[(i)] IWi ⊆ IEi × IDi (respectively OWi ⊆ OEi × ODi) is a set of WITH-

associations for inputs (respectively outputs) of Ri,

[(ii)] IWRi = (ieri, idri) (respectively OWRi = (oeri, odri)) is the WITH-

association between input (respectively output) event and data of reconfiguration.

The input (respectively output) event of reconfiguration is associated with the input

(respectively output) data of reconfiguration idri (respectively odri). The reconfig-

uration data corresponds to the index of the adequate slaveEij
s that will be activated

in Ri (respectively Rm).

• IVi represents a set of internal variables in the RFB Ri used by the algorithms of

an ECC slave in Ei
s.

3.3.2 ECC Master-Slave Architecture

State machines play an important role in industrial software design. The execution con-

trol chart architecture of an RFB differs from that of a basic function block, and the

hierarchical and concurrent execution control chart HCECC syntax [Sinha et al., 2015].

The choice of a master-slave state machine is based on two reasons. Firstly, modular

architecture increases readability and maintainability. Secondly, every control behaviour

should be separated from the other one.

MSECC contains an ECC master denoted by Ei
m to supervise several elementary

ECC slaves Es as depicted in Fig. 3.2. The ECC master defines the reconfiguration

model. It controls the slaves activation/deactivation Eij
s ∈ Ei

s, j ∈ [1 · · · |Ei
s|]. Notably, it

is always sensitive to any change in the system such as user requirements, fault tolerance

or environment changes. According to the coming events and data, and the stored rules

in a reconfiguration matrix, the master Ei
m smartly decides which is the most suitable

reconfiguration scenario, i.e. behaviour, to be activated and executed. At the end of every

reconfiguration, the master notifies the interconnected function blocks about the result of

reconfiguration using the output event and data of reconfiguration.
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Figure 3.2 Master-Slave Hierarchy.

MSECC also has a set of ECC slaves, denoted by Ei
s. It defines the control model

of an RFB Ri. Each slave Eij
s encapsulates a unique behaviour and executes a particular

sequence of algorithms. An example of a slave can be a particular state machine for error

handling or managing a production mode (low, medium or high).

• The structure of the master Ei
m is formalised as follows:

Ei
m = (Si

m, S0, Trim, Cdim, Acim) where

Si
m is a set of states encapsulating a slave. Each state is associated with an

action Acim;

• S0 ∈ Si
m is the initial state. It is associated with an action A0 ∈ Acim which is

an operation that activates a slaveEij
s . The action is defined asA0 = (DecisionAlgi, oeri)

where the decision algorithm selects the adequate reconfiguration scenario to be ex-

ecuted and generates an output event of reconfiguration oeri at the end of the active

slave;

Trim ⊆ Si
m × Si

m is a set of arcs that represent the transitions. Each transition

in the master is fired by a condition;

Cdim is a guard condition defined by events and data enabling a slave;

Acim is a set of actions. Each action contains the name of the slave to be

executed Eij
s and the generated output events in the slave.

• Ei
s is a set of ECC slaves Eij

s supervised by Ei
m of the RFB Ri where
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Eij
s = (Ss, Trs, Cs, Acs, Algs), j ∈ [1 · · · |Ei

s|].

Ss represents a set of states;

Trs ⊆ Ss × Ss is a set of arcs that represent the transitions from a state to another;

Cs is a set of guard conditions defined over input, internal and output variables of

Ri;

Acs is a set of actions sequences. Each action is related to an algorithm that can

change only internal variables and output data of the RFB Ri;

and Algs is a set of algorithms related to the slave Eij
s .

After formalising the RFB structure, the next session traces the manner with which

a reconfigurable function block reacts to treat the events and selects the most adequate

reconfiguration scenario to be executed.

3.3.3 RFB Functionality

A reconfigurable function block [Guellouz et al., 2019] is a model that includes an au-

tonomous master-slave based execution control chart. This hierarchy aims to avoid cum-

bersomeness by separating the reconfiguration model from the control model. The ECC

master Ei
m is always in listening to the coming events. It is activated once an input event

arrives. If a reconfiguration event occurs, the “DecisionAlg” (Algorithm 1) reads the

associated reconfiguration data and checks the corresponding rule in the reconfiguration

matrix (Table 3.2). The latter is a knowledge base including all the possible cases that

can happen in RFB. It is defined by combining all events and data ranges included in this

component, and then assigning the suitable scenario for each case. The reconfiguration

matrix is defined mainly by the designer in cooperation with an expert in the domain.

If the associated input data of reconfiguration is not empty (is issued from a previous

RFB), then the master reads the reconfiguration matrix (Table 3.2). The master selects

the adequate slave having an index equal to idri to execute. If the index of the current

slave is different from the index of the selected slave, then a reconfiguration is required.

Accordingly, the master waits for the current slave to return to its initial state to execute

the adequate reconfiguration scenario. Before activating the corresponding slave Eij
s , the

index of the current slave is saved.

If a standard event occurs and idri is zero, then the decision algorithm checks the

rules in the reconfiguration matrix related to the coming events and data. The decision

algorithm updates the input data of reconfiguration idri got from the reconfiguration

matrix. After that, the corresponding slave will be executed.

The slave Eij
s attempts to (i) select and schedule the algorithms sequence to execute,

(ii) update the internal and output data, and (iii) send output events at the end of execution.
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When the slave Eij
s finishes its execution, it notifies the master about its status. It

sends an event indicating the execution termination of all the encapsulated algorithms.

Finally, the master updates the output data of reconfiguration depending on the matrix

and generates an output event of reconfiguration that ensures the communication with

the next RFBs. The output data of reconfiguration includes the index of the next slave to

be executed in the next RFB.

Algorithm 1: DecisionAlg to Execute the Best Scenario according to the Inputs.
1 Input: Es, IE, ID, idri, ieri

Output: oeri, odri
2 listen events;
3 Read current data;
4 Read the corresponding line in the reconfiguration matrix;
5 currentSt←GET current slave state;
6 currentSlaveId←GET current slave id;
7 save currentSlaveId ;
8 if ieri & (associated idri 6= 0) & idri 6= currentSlaveId then
9 while isInitialState(currentSt) do

10 execute Ei,idri
s ;

11 id = odr from the reconfiguration matrix;
12 odri← id;
13 end
14 end
15 else
16 if idri = 0 then
17 idri← index from the matrix;
18 Execute Ei,idri

s ;
19 else
20 if error then
21 HMI message← “Reconfiguration is not possible”;
22 end
23 end
24 end
25 if Ei,idri

s finishes then
26 Ei,idri

s send a notification to the master;
27 if Master receive error from slave then
28 Rollback to currentSlaveId;
29 end
30 else Master send oeri, odri ← id;
31 end

Let assume two RFBs connected via events and data of reconfiguration as shown in

Fig 3.3. The reconfiguration matrix of RFB R2 is shown in Table 3.2.
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Figure 3.3 RFBs Network (R1 and R2).

Table 3.1 Reconfiguration matrix of the RFB R1.

Inputs Outputs

Rules ier1 idr1 oer1 odr1

1 1 11 1 21

2 1 12 1 22

3 1 13 1 22

Table 3.2 Reconfiguration matrix of the RFB R2.

Events Data Reconfiguration

Rules ie1 ie2 ier2 id1 id2 idr2 odr2

1 0 0 1 0 0 21 31

2 0 0 1 0 1 22 32

3 0 1 0 1 0 0 31

4 0 1 0 1 1 0 31

5 1 1 0 1 1 0 32

6 0 1 1 0 1 22 32

Three cases in the reconfiguration matrix can happen:

1. Case of an input event of reconfiguration coming from other RFB (ier2 =1): if ier2

occurs with idr2 = 12 in the local matrix R2 coming from the RFB R1, then the

master of RFB R2 executes the suitable slave E12
s , and then generates an output

data of reconfiguration odr2 equal to 22.

52



2. Case of no input event of reconfiguration (ier2 = 0): RFB analyses the current data

and compares them with the previous ones. If it is equal to (or in the same range

as) the current data, no reconfiguration is required. If there is a big difference, it

goes to the local data stored in the reconfiguration matrix (line 3, 4, 5) and selects

the best scenario index predefined by experts, as illustrated in Table 3.2.

3. Case of two concurrent events: like in line 7 in the reconfiguration matrix, an input

event of reconfiguration ier2 is coming simultaneously with an input ie1. The input

event of reconfiguration is always more prioritised than standard events. Therefore,

slave 22 will be executed like in the case 1. If there is no rule for standard events

in the matrix, then they are always executed with low priority.

An RFB activates the best control behaviour thanks to the dynamic switching from

one reconfiguration scenario to another. Once the execution of the suitable slave Ei,idr
s

finishes, the master is notified and a reconfiguration output event oeri associated with the

output data of reconfiguration odri is issued. It propagates the events and data to other

function blocks in the system to notify them about the changes. Accordingly, reconfigur-

ing the rules in the reconfiguration matrix is easier than reconfiguring the state machine

directly.

3.3.4 Execution Semantic and Event Consumption Policy

Several execution models are proposed in IEC 61499 Run-time Environment (RTE) since

the standard does not specify any execution semantic. A buffered sequential execution

model (BESM), non preempted multi-threaded resource (NPTMR), preempted multi-

threaded resource (PTMR), and cyclic buffered sequential model (CBEM) [Kim et al.,

2018, Prenzel et al., 2019] are suggested as discussed in Section 2.2.6 Chapter 2. The fact

that the existing semantics do not classify and prioritise reconfiguration events motivates

us to propose a preempted multitasking execution semantic. The latter assigns the highest

priority to the reconfiguration event and performs the preemption of a slave execution

only when the slave is in the idle state.

A multi-thread model of invocation is implied in the RFB framework: a thread for

executing the master and another thread for executing the corresponding slave. Only the

master with one slave can be concurrently executed. Executing multiple slaves at the

same time is prohibited. Furthermore, the switching from one slave to another requires

that the new thread waits until the end of the current thread execution.

Regarding the event scheduling policy in the resource model, all external and internal

events are stored in a global FIFO event buffer with the calculated order and priority. The

events are consumed by the respective FBs and RFBs in a sequential manner according to

their priorities. Two levels of priority are introduced in the buffer: (i) a high-priority level
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for the reconfiguration events, and (ii) a low-priority level for the remaining events. The

sequence of emitted events is preserved in the invocation order of target FBs or RFBs

with giving high-priority to reconfiguration events. Indeed, the events prioritisation is

ensured by a scheduling function SF executed in the resource model. The scheduling

function assigns priorities to the coming events according to their event types, and after

that sorts the events according to their arrival time and priorities, i.e. assign them orders

after sorting. If a reconfiguration event occurs in parallel with a standard input event,

the scheduling function SF gives the reconfiguration events a low order in the queue

and then calls the master to execute the decision algorithm. The scheduling function

also executes the algorithms in the defined ECC slaves. It ensures that each phase of the

reconfigurable function block execution occurs in the correct order. A reconfiguration

event can be consumed from the queue only when the ECC master reads it, and the

corresponding event action is executed. Once the action is accomplished, then the event

will be removed from the buffer.

3.4 Reconfigurable System

A reconfigurable distributed control system Sys is a network of |Sys| function blocks

deployed in several devices. The included function blocks are interconnected together

with their events and data as shown in Fig. 3.4, i.e., Sys = {F1, · · ·, F|Sys|, LinkE,

LinkD, LinkEr, LinkDr} where |Sys| is the cardinality of Sys. A function block Fi

can be a basic, composite or service interface function block (BFB, CFB, SIFB) or a

reconfigurable function block RFB where i ∈ [1 · · · |Sys|].
RFB is linked with standard FBs by events in LinkE ⊆ OEi × IEj and data in

LinkD ⊆ ODi × IDj , whereas RFB is linked with another RFB by reconfiguration

events in LinkEr = (oeri, ierj ) and reconfiguration data in LinkDr = (odri, idrj ).

RFB has a particular relation with SIFB since it is a specific function block that

can access hardware and external changes. RFB can directly read events an data from

basic, composite and service interface function blocks and generates output events of

reconfiguration. At the end of each reconfiguration scenario that is encapsulated in a

slave Eij
s , each reconfiguration output data contains the index of the executed slave to

determine the next slave Emk
s in the next RFB Rm where k ∈ [1 · · · |Em

s |]. When its

value is updated, the associated reconfiguration output event occurs to trigger the suitable

RFBs.

It is plausible at this stage to detail the dynamic part of the system using RFB which

is featured by

Dynamic(Sys) = (Bsys, Rsys)

where Bsys is a set of |Bsys| system behaviours and Rsys is a set of reconfiguration func-
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tions. A behaviour Bu = {si, sj, · · ·, sw}, u ∈ [1, |Bsys|], i, j, w ∈ [1, |sSys|], is a set

of organised states, encapsulated in RFB slaves or FBs, to be executed for adapting the

system to the environment change. A behaviour can be depicted as a path in the system,

as shown in Fig. 3.4.

A reconfiguration function rf ∈ Rsys deals with the automatic transformations of the

execution model from a set of states to another set in response to the changes caused

by faults, or user requirements via enabling/disabling control components. It permits to

guarantee the system correctness after reconfiguration. It is characterised by rf = (Cdf ,

Sf , Uf ), f ∈ [1 · · · |Rsys|], where

(i) Cdf is the condition for the reconfiguration which is an input event of reconfigura-

tion associated with data inputs;

(ii) Sf : Ba → Bb the structure defining the reconfiguration from the behaviour Ba to

another behaviour Bb, (a, b ∈ [1 · · · |Bsys|]);

(ii) Uf is the initial state of B0 before reconfiguration.

The system Sys changes its behaviour to another one when an input event of reconfigura-

tion occurs to an RFB in the system and the condition of the chosen slave Eij
s is fulfilled,

where i ∈ [1 · · · |Sys|] and j ∈ [1 · · · |Ei
s|]. Moreover, the reconfiguration is executed

only when the scheduling function checks the available memory and energy in a device.

These resources should not be violated during the reconfiguration process.

We assume that the execution time for a path Tp is the result of adding the sum of

RFBs’ execution time TRFB with the sum of the execution time for each function block

in the path:

Tp=
∑
TRFBj

+
∑
TFBi

where

TRFB is the time of RFB execution. TRFB = TDAlg +TID +TIE+ TexecutedSlave+TOD+TOE

with:

� TDAlg time of decision algorithm;

� TID time of reading associated input data;

� TIE time of input event arrival;

� TexecutedSlave time of slave execution which is TexecutedSlave =
∑
TAlg + Tt where

Tt the time of transitions;

� TOD time of updating associated output data;

� TOE time of generating output events;

In Fig. 3.4, the time of path TPath1 = TRFB1 + TFB1 + TFB3 ' Tslave3 +TFB1+ TFB3
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Figure 3.4 Reconfigurable Function Block Network showing the possible paths that can
be generated after reconfiguration.

3.5 Formal Case Study RFB model

A simplified surgical robotised system BROS [Ben Salem et al., 2016] is illustrated to

show RFB functionalities. A pinning robot PBROS fixes one or two pins in the bone to

correct a supracondylar fracture. The number of pins depends on the fracture displace-

ment that defines the fracture type. However, if the fracture type is equal to IIB or IIC,

then PBROS needs a single pin to fix the fracture. Otherwise, if the fracture type is equal

to IIA or III, then the PBROS requires double pins to fix the fracture.
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Figure 3.5 PBROS application model based on RFBs.

The control application is modelled by a network of RFBs and BFB as shown in

Fig. 3.4. The standard events and data are marked in blue, while the reconfiguration

events and data are marked in red. The recognition system in BROS determines first of

all the fracture type by imagery and sends it to Recognition RFB via the network. The

Recognition RFB has a standard input event ie1 that reads the fracture type FT from

an imagery controller, and then calculates the coordinates of pinning PinPos (X, Y, Z),

the angle to determine the pin orientation PinOrientation, and the pin depth depth.

It sends PinOrientation and PinPos to RobotizedArm RFB to move the robotised

pinning arm to the pinning position and rotating it to be in the right orientation. In

Recognition RFB, the decision algorithm executes the best scenario according to the

fracture type. It reads the reconfiguration matrix and emits an output event of reconfigu-

ration oer1 associated with odr1 data of reconfiguration to the RFB PBROS according

to the fracture type FT . The output data of reconfiguration odr1, can be equal to 1, 2

or 3, is the corresponding slave indexes as shown in the reconfiguration matrix in Table

3.3. The pinning arm PBROS reads the value of idr2 and determines which scenario

to execute after receiving ready4Pinning from the RobotizedArm. The PBROS has

three ECC slaves controlled by an ECC master: (i) slave1 for single pinning, (ii) slave2
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for double pinning and (iii) slave3 for manual pinning. The third slave is performed when

an error occurs, such as the defected recognition system case or when a fracture type or

coordinates cannot be provided. Slave1 is encapsulating the single pinning algorithms

that require the depth of the pin to pierce. In fact, it pierces one pin if the fracture type

is equal to IIB or IIC. If the fracture type is IIA or III , then the ECC master will

execute the double pinning scenario (slave2).

In the case of double pinning, PBROS should be executed twice with different coor-

dinates PinPos and PinOrientaion. After first pinning, a basic function block checker

checks the pinning. If it is successful, it sends pinningOk to PBROS.

Start 

DoublePin Es2 checkPinning

SinglePin Es1 checkPinning

ManualPinning Es3 eo1

Error (manual mode)

ier2&Idr2=1

start

s1 init

s3 single pinning checkPinning

start

s3 EnterFracture eo1

start

s1 firstPinning checkPinning

s3 SecondPinning checkPinning

Es3
Slave for manual pinning
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Slave for single pinning

Es2
Slave for double pinning
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ready4Pinning
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1

1
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PinningOk &ready4Pinning
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getDepth & 
depth!=0

ECC slave

state
event 

outputs

transition 
with 
condition

Figure 3.6 The internal architecture of PBROS RFB.

Table 3.3 Reconfiguration Matrix of Recognition RFB.

Events Data Reconfiguration

Rules ier1 ie1 error mode FT oer1 odr1

1 0 1 0 Auto IIA 1 2

2 0 1 0 Auto IIB 1 1

3 0 1 0 Auto IIC 1 1

4 1 1 0 Auto III 1 2

5 0 1 1 Manual - 1 3

The application model can be deployed in several devices interconnected via a net-

work. RecognitionRFB can be deployed in a control processing unit CPU, andRobotizedArm

and PBROS in the PBROS arm. Publisher/Subscriber SIFBs are required to send and
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receive data via a communication network such as the fracture type and the pinning posi-

tion. The subscriber FB will receive the information published by the publisher. In this

example, the publisher in the CPU sends the PinPos to the subscriber in PBROS that

is supposed to read this information and send it to the RFB RobotizedArm.

Using RFB components, we do not need two PBROS FB instances in the model and

four subscribers/publishers block to read the pinning coordinates. As a result, the model

based RFBs reduces the number of function Blocks and system complexity.

3.6 Dynamic RFB reconfiguration

After code compiling and system deployment, several changes can be required and must

be done online, i.e. without shutting down machines. Such changes incorporate adding

new system mode or functionality, deleting a product from the process, or changing pro-

duction level.

To meet this need, we propose to reconfigure MSECC that can be remotely and auto-

matically configurable. A reconfiguration scenario can be added to (updated, activated,

deactivated or deleted from, respectively.) the MSECC using a remote configuration op-

tion. An event of addition (deletion, respectively) is executed to add a new (delete an

existing, respectively) scenario. The system designer can go to the remote configuration

module, design the scenario, assign it to an RFB, verify its feasibility in the applica-

tion, and then deploy it online in the controller device. Three event types are defined as

depicted in Fig. 3.7:

1. An event called “AddSc” allows to add a new reconfiguration scenario, i.e. ECC

slave, in an existing RFB;

2. An event called “deleteSc” to delete a not useful reconfiguration scenario (ECC

slave) from RFB;

3. And an event “UpdateSc” to change an existing scenario (algorithm, variable lim-

its, etc.).

start executionAlg

Mode2Mode1

Mode 3

Mode4

Delete slave

Add new slave

+
-

AddSc

DeleteSc

UpdateSc

Figure 3.7 Reconfiguration scenarios Management.
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The dynamic reconfiguration can be easily done thanks to the reconfiguration matrix

that is a table in a local database including rules. The rules can be optimised automati-

cally.

3.6.1 Adding a New Reconfiguration Scenario

Adding a new scenario to an RFB in the application is not time-critical. In order to add a

new reconfiguration scenario, a tuple is defined addSc = {slaveid, events, eventssource,

data, datasource, condition2Master}. If RFB receives an “AddSc” event request:

1. The ECC master waits for the RFB to be in the initial state,

2. Then, if it is in the initial state, all coming events must be stored in the buffer

and wait for the end of reconfiguration. The master adds events and data to RFB

interface,

3. Connect events and data to their sources (add if it is a necessary event function

block like ESPLIT , Emerge between RFB and FB source),

4. Define the ECC slave slaveid,

5. Add the new index to the reconfiguration matrix,

6. Add a new line to the reconfiguration matrix in the current RFB containing events

and a slave index,

7. Connect slave to ECC master and define fulfilled condition condition2Master,

8. Change the related RFBs: add new lines to reconfiguration matrix if necessary,

new slaves, etc.

9. Relaunch RFB.

3.6.2 Removing an Existing Reconfiguration Scenario

Removing an unwanted scenario will speed up the execution time on run-time environ-

ment. However, it is time-critical. If the master receives “DeleteSc” event request, delSc

= {RFBid, slaveid}, the ECC master must:

• Disconnect ECC slave slaveid from the master of RFBid,

• Remove extra events and data which are no more needed in the system,

• Delete slave index from the reconfiguration matrix. The fact of removing the dir

and dor indexes disables all related slaves automatically in other RFBs.
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3.6.3 Modifying an Existing Reconfiguration Scenario

To change an existing scenario slaveid in RFBid, the designer can modify events, data,

conditions, and algorithms. He can even add or remove states to a slave. An event

“UpdateSc” is sent to stop the RFB in the idle state, store events in the buffer and

change the selected slave. UpdateSc(RFBid, slaveid) that calls the required function

AddState(slaveid), DeleteState(stateid, slaveid), addAction(stateid, slaveid), UpdateAl-

gorithm(Algid, slaveid).

3.6.3.1 Example of reconfiguring an RFB

In the case of discovering new fracture type in BROS system that requires three pins,

the developer just needs to configure the reconfiguration matrix of Recognition and

PBROS by adding a new row containing the new fracture type, idr = 4 for a new

slave 4.

3.7 Comparison of RFB with BFB

Let assume that the main conveyor can distribute the workpieces to conveyor A or con-

veyor B as depicted in Fig. 3.8. If the coming workpiece is “A”, then it should be moved

to the conveyor A. Otherwise, if the coming workpiece is “B”, then it should be moved

to the conveyor B.

M

Conveyor

 A

conveyorA

           c

conveyorB

B

Figure 3.8 Conveyor Model using RFBs.

RFBMode includes two modes: “Move2ConveyorA” and “Move2ConveyorB”. It

switches fastly from a mode to another. Using basic FBs, we need three function blocks.

A function block for mode selection, another function block to move to the conveyor A,

and the third one to move to the conveyor B.
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Figure 3.9 Comparison Between RFB and BFB Networks.

In comparison with the network of basic function blocks, the number of states, transi-

tions, events and data in the RFB model is lower than the number in function blocks net-

work. Moreover, the RFB execution time is also lower than the function blocks network’s

time, as shown in Fig. 3.10. It is equal to the sum of decision time TDAlg and the time of

the executed slave. While, the time of the function blocks network TBFBN is equal to the

sum of TModeSelection, the maximum time to execute function block Move2ConveyorA

or Move2ConveyorA, and the time of communication between function blocks. The

time of scheduling is nearly the same for both the RFB and BFB blocks.

TRFBMode ' TDAlg + Max(Tslave1 +Tslave2)

TBFBN = TModeSelection+ Max(TMove2ConveyorA+TMove2ConveyorB) + Tcommunication

Using RFB, we can avoid the time of switching between RFBs and the time of decision.

Components states Transitions Events Data
BFBs
network

3 23 18 5 5

RFB model 1 20 15 2 2

Table 3.4 Comparison between the RFB model and the BFBs network model.

Adding a new reconfiguration scenario (adding a new mode, a product, or new con-

veyor) to the conveyor model is more manageable than adding new function block type

and connecting them to the FB network. We just need a new slave, connect it with ECC

master and finally add a reconfiguration matrix row.

For example, the designer need to add a new product type “C” that should be moved

to the conveyor A. In this case, thanks to the remote configuration of the reconfiguration

matrix, an “addSc” request is sent to add a new line in the reconfiguration matrix of
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Figure 3.10 Execution Scheduling Comparison.

RFBMode. Thus, a new rule indicating that workpiece “C” corresponds to slave 1 is

added.

3.8 Discussion and Originalities

As we can see in the related works, none of the mentioned researchers have proposed a

way for modelling reconfiguration scenarios within the function block unit. In this work,

a reconfiguration scenario is assumed to be any run-time automatic operation that mod-

ifies the behaviour of the system. The activation of a scenario depends on new types of

events and data named event/data of reconfiguration as well as a set of rules stored in

the reconfiguration matrix. It allows to describe reconfiguration scenarios in slaves, and

switch fast from one slave to another thanks to a Master-slave execution control chart and

a decision algorithm. The reconfigurable function block has multiple advantages com-

pared to a composite function block and basic function block. CFB is a static component

that encapsulates many FBs, while BFB has also a static execution control chart combin-

ing the control with reconfiguration level. An RFB allows several ways of functioning

thanks to reconfiguration. Hence, it reduces the number of FBs used in the design as well

as its complexity. Additionally, it minimises the number of events, data, states and tran-

sitions. An RFB facilitates the design of reconfigurable distributed automation systems.

Moreover, the rules in the reconfiguration matrix can be changed online. To optimize the

network of FBs and make it more adjustable to external changes, we propose an RFB

network that provides a simple model of reconfigurable systems. An RFB can be related

to BFB standard. Clearly, the time of a path execution is lower than the time using BFBs.
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3.9 Conclusion

There is now considerable concern about reconfiguration in IEC 61499. Hence, a new

reconfigurable function block is proposed. It is different from BFB and CFB as it puts

forward a master-slave execution control chart architecture and reconfiguration events.

This function block, based on a decision algorithm and the occurred events, is responsible

for executing the adequate reconfiguration scenario. It guarantees a fast switching from

one scenario to another while reducing the number of function blocks, states, events, and

transitions.
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Chapter 4

Formal Modelling of Reconfigurable
Distributed Control Systems based on

RFBs

4.1 Introduction

RFBA methodology seeks to design the system mainly with RFBs. In order to verify the

proposed pattern with model checking technique and mitigate the state space explosion

problem, we propose to translate the RFB model automatically into a generalized model

of reconfigurable timed net condition/event systems (GR-TNCESs). Therefore, a set of

transformation rules is defined in this chapter. Furthermore, a new software environment

called RFBTool is developed to support the RFBA approach from design to verification.

4.2 Motivation

IEC 61499 standard cannot ensure correctness and coherence of states such as simulta-

neous transition and deadlocks. The simulation technique supported in the existing IEC

61499 compliant software might provide wrong results and affect negatively the target

application code. Moreover, analysing qualitative and quantitative properties to verify

IEC 61499 model is a crucial need for companies and engineers. At the best of our

knowledge, none focuses on combining qualitative and quantitative verification in IEC

61499 model except the work of [Bhatti et al., 2017]. The authors in this work propose

to convert directly IEC 61499 model into a specific PRISM model, and then inject some

faults in the model to verify safety properties using the model checker PRISM. However,

the direct translation from IEC 61499 to a Markov chain aggravates the state explosion

problem for large scale systems. Indeed, the total verification time increases exponen-

tially with the total number of possible states in the system. For this reason, a modular

verification is recommended for complex systems.
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Additionally, modelling and verification are well-known approaches in the distributed

control systems. Petri nets are extensively used in the modelling and analysis of discrete

event control systems [Ivanova-Vasileva et al., 2008, Pang and Vyatkin, 2008, Zhang

et al., 2013, Zhang et al., 2018a, Khlifi et al., 2019]. Compared with relevant studies in

Petri nets, GR-TNCES formalism [Khlifi et al., 2015] models the dynamic behaviour of

a reconfigurable distributed event control system with less number of places and transi-

tions. The main reasons for selecting GR-TNCES from several other formalism can be

summarised in four points. The first point is the modularisation where the formalism is

based on control components. The second point is the reconfiguration. In GR-TNCES,

it is possible to switch from one configuration to another by enabling or disabling com-

ponents, updating token marking, and changing places/transitions on run-time. The third

point is the probabilistic aspect attached to the transition arcs which is needed for perfor-

mance estimation. Each TNCES in GR-TNCES can be characterised by a probability of

occurrence assigned on the arc, while in RFB formalisation, a reconfiguration event can

be attached with a probability. The last point is the possibility to check memory resources

and energy before executing a reconfiguration scenario which allows to guarantee system

safety. In the light of the above mentioned points, GR-TNCES fits perfectly with the

reconfigurable function block system. Accordingly, we are dealing with an automatic

transformation from an IEC 61499 model based on RFBs to a GR-TNCES model based

on RFBA methodology.

4.3 RFBA Approach

We propose an RFBA approach for the design, modelling and verification of reconfig-

urable distributed control system following the new extension to IEC 61499. This ap-

proach is detailed in the flow diagram in Fig. 4.1. It recapitulates how the system is

firstly specified, designed with RFBs, then transformed into a GR-TNCES model, after

that verified using PRISM model checker.

In the specification step, the designer captures all the possible reconfiguration scenar-

ios that can happen in the system and defines them. After that, RFBA permits to design

the captured scenarios with RFBs pattern. Additionally, for verification purposes, RFBA

converts automatically the designed RFB model to a generalised model of reconfigurable

timed net condition/event system GR-TNCES that makes it possible for the designer to

add probabilities to several events.

We characterise every input event of reconfiguration with a probability of occurrence

since most reconfiguration events are unpredictable and stochastic. They can be caused

by errors, weather, external environment changes, insufficient energy or resources, etc.

Probabilistic estimation leads to an improvement in the design and enhancement in the

system performance. We assume that they can be a Poisson mean arrival 1/λ.

66



Finally, a combined verification approach based on qualitative and quantitative anal-

yses is presented. It helps the designer and developer to refine the system model and es-

timate how much the model satisfies the functional specifications. It is based on a proba-

bilistic model checking ensured by the probabilistic symbolic model checker PRISM that

provides and analyses such results. In this step, the generated GR-TNCES model is con-

verted into a Discrete-Time Markov Chain (DTMC) analysed by PRISM. The designer

can specify several properties using computation tree logic for qualitative analysis and

probabilistic computation tree logic for quantitative analysis. If all the defined properties

are satisfied, then the verification is successful and the software code can be deployed.

Otherwise, the designer should refine the initial model.

The approach is supported by a toolchain composed of a new environment called RF-

BTool [Guellouz et al., 2016a], ZiZo v2 [Khlifi et al., 2015] and PRISM [Kwiatkowska

et al., 2002]. RFBTool is an environment developed to create and edit reconfigurable

function blocks model and transform it automatically to a GR-TNCES model. It imple-

ments also the RFB execution model. ZiZo v2 reads the generated GR-TNCES model,

simulates and converts it to a DTMC model.

The detection of the unfavourable cases before deployment is a major benefit of the

approach that engineers need to estimate and refine the designed model. Several proper-

ties are easily verified and estimated such as deadlock freedom, system feasibility, con-

fluence, estimation of the reconfiguration failure, and system availability.

4.4 Formal Modelling

The system design based on RFBs pattern is converted into a GR-TNCES model to verify

and validate the system on run-time. The architecture, behavioural semantics and recon-

figuration of an RFB system are very similar to a GR-TNCES model. In fact, the event-

driven, modularisation, reconfiguration, and probabilistic aspect of GR-TNCES comply

with the RFB formalism and its semantic. This motivates us to generate automatically

an optimised GR-TNCES model of the input system. Thanks to this typical Petri net,

memory and energy constraints can also be verified before executing a reconfiguration.

GR-TNCES formalism is considered to be more beneficial than automata, Colored

Petri Nets (CPNs) and other Petri nets since it inherits R-TNCES properties. R-TNCES

is based on control components which are software units encapsulating algorithms which

implement functionalities to control a physical process and interact with other processes

as follows: (i) it reads data from sensors, (ii) executes the appropriate algorithm that

needs these data, and (iii) upon the completion of the algorithm execution, event signals

are either sent to the corresponding controlled actuators in order to activate them, or to be

sent to the next control component [Zhang, 2015]. Each control component is a TNCES

module with temporal constraints. As discussed in [Zhang et al., 2018b], R-TNCESs are
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characterised by their dynamic reconfiguration process, their intuitive and direct struc-

ture change, and their ability to guarantee the state coherence during the design. They

also offer the possibility of events concurrence such as the occurrence of standard and

reconfiguration events, and the possibility of assigning an interleaving time for the re-

configuration events.

A GR-TNCES contains places modelling states, and transitions linking a state to

another. A transition associated with event can fire only when this event occurs and the

required conditions are fulfilled. In RFB interface, RFB data can be considered as GR-

TNCES conditions, whereas RFB events can be considered as GR-TNCES events, as

shown in Fig. 4.2.

Figure 4.2 RFB interface transformed into a GR-TNCES module

A GR-TNCES, denoted byG = {g1, g2, ···, gn}, is a set of |G| R-TNCES gi, where gi
= (B, R) with B being the behaviour module and R being the control module which is a

set of reconfiguration functions. The behaviour module B is a union of multiple TNCES

Ni as explained in Chapter 2 Section 2.5.4.

∪N = (P × T × F ×W × CN × EN ×DC × V )

∪N is a set of p feasible net structures that can be performed by an R-TNCES. Each

Ni ∈ ∪N , i ∈ [1 · · · |N |], is a behaviour in the GR-TNCES which corresponds to an ECC

slave Eij
s .

We propose in the next section the transformation rules needed to translate an RFB

model into a GR-TNCES model.

4.4.1 Transformation Rules

4.4.1.1 Rule 1: RFB Transformation Rule

Each RFB in the system is modelled as a GR-TNCES module TRi
where TRi

= {TInterface,
GEmaster, TESlaves} with TInterface={TEi

, TDi
, TWi

, TIVi
} detailed in the next rules. The

module TRi
= (B, R) is composed of a behaviour module B and a set of reconfiguration

functions R where
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B = (P , T , F , W , CN , EN , DC, V , Z0),

R = {r1, r2, · · ·, r|R|} and rk = (cond, P0, E0, M0, Q, L)

The RFB behaviourB module is the interconnection of the transformed RFB components

TInterface and TESlaves whereas the reconfiguration moduleR corresponds to the structure

changer GEmaster.

The RFB interface is mapped to a TNCES TInterface module RInterface → TInterface

where each component is translated to a TNCES: the events Ei → TEi
, data Di → TDi

,

with associations Wi → TWi
and the internal variables IV → TIVi

.

The structure changer of GR-TNCES GEmaster = (P, T, F, V,M0, P0) corresponds to

the ECC master Ei
m of an RFB Ri where M0 controls the memory requirements by the

TNCES and P0 is the TNCES probability. Each place p ∈ P in the structure changer

corresponds to a specific TNCES of the GR-TNCES model. The latter corresponds to a

slave Eij
s of the RFB Ri. Each transition in the structure-changer corresponds to a recon-

figuration function. It is characterised by a probability of occurrence that corresponds to

a probability of executing a slave. Each state in MSECC is translated into a correspond-

ing place in the GR-TNCES model. We can recognise the active state by a token. This

token is removed when a transition is fired and new tokens are generated for the next

target places. Each initial state is transformed into a place having a single token, while

each non-initial state is translated into a place without token.

4.4.1.2 Rule 2: Event Transformation Rule

Each event in an RFB Ri interface ie ∈ Ei remains as an event in GR-TNCES model

TRi
, i.e. Ei → TEi

. An input event ie can occur to trigger an RFB or can be cleared

after consuming it in the model. An input event in ie is translated into a TNCES mod-

ule as illustrated in Fig. 4.3. The TNCES of the transformed input event is composed

of two places, two transitions, two input events “ie1 arrives” and “clear ie1” and an

output event “read associated data of ie1” to read the associated data. It can be n

data associated to this event. Accordingly, n event will be emitted. The behaviour

of an input of reconfiguration tier1 ∈ TEi
is composed of: P={p1, p2}; T={t1, t2};

F={(p1, t1), (t1, p2), (p2, t2), (t2, p1)}; W={}; CN={}; EN={ie1, ie2, oe1}; DC={};
V (t1)=∧; V (t2)=∧; Z0={T0, D0} where T0(p1)=1, T0(p2)=0 and D0(p1)=0;

The same logic is respectively applied for all event types that are the output events,

input events of reconfiguration and the output events of reconfiguration.
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Figure 4.3 TNCES Model for Input Events Models.
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Clear <<oe1>> 

    read <<od1>> Set <<oer1>>

Clear <<oer1>> 

    read <<odr1>>

Figure 4.4 TNCES Model of Output Events.

4.4.1.3 Rule 3: Reconfiguration Data Transformation Rule

Each input data of reconfiguration is converted to a TNCES module Dri → TDri , as

depicted in Fig. 4.5. An input data of reconfiguration idr is associated to an input event of

reconfiguration. Accordingly, when an input event of reconfiguration “read idr” occurs,

the place p15 will take the decision and select the corresponding branch on basis of

the stored data. An output condition will be issued to activate the corresponding slave

module. The same rule is applied for the output data of reconfiguration.
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Figure 4.5 TNCES Model for Input and Output Data of Reconfiguration.
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4.4.1.4 Rule 4: ECC Master Transformation Rule

An ECC master Emi is transformed into a structure changer denoted by GEmaster mod-

ule,i.e. Emi → GEmaster, where each place corresponds to an ECC slave and each

transition corresponds to a reconfiguration function. A structure changer GEmaster, as

illustrated in Fig. 4.6, is composed of:

start
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time delay before firing next 
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T10
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Figure 4.6 GR-TNCES Model of an ECC Master.

• An initial marked place and a transition from that emerges |Esi| branches. Each

one has a certain probability λi that corresponds to the probability of each reconfig-

uration scenario where λi ∈ [0, 1] and
∑|Esi|

n=1 λi = 1. In other words, we assigned

a probability to each branch to indicate the chance of choosing such a path.

• Each branch is composed of three places and three transitions. The first transition is

associated with an input condition “esij true” coming from the module representing

the input data of reconfiguration. This indicates that slave esij will be enabled to
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fire the transition T2. This transition emerges u output events for enabling the slave

esij module and disabling the rest of slaves in RFB Ri. This ensures that a single

reconfiguration scenario is active at a given time.

• The second transition is linked to an input condition “esij finished”, which marks

the termination of execution of the current active slave esij . This condition came

from the slave module.

• Each branch terminates with a transition that emits two output events: the first

one is for setting the output events of reconfiguration oeri and the second one for

clearing the input event of reconfiguration ieri sent to gier module.

4.4.1.5 Rule 5: ECC Slave Transformation Rule

Each slave esij is transformed into a TNCES module denoted by Tsij ∈ TESlaves mod-

ule, i.e. esij → Tsij . A detailed slave is illustrated in Fig. 4.7. The slave esij , as we

aforementioned, is a standard execution control chart so it contains states, transitions and

actions. The initial state is transformed into an initial marked place linked to a transition

that is fired with the arrival of an input event for enabling esij module. Each state of

slave esij is transformed into two places “state run alg” and “state finish alg” as well

as a transition between them. Each action is modelled with: An initial place “wait”, an

initial transition that is fired when the input condition “start algorithm” is true and M

places linked to M transitions for running the algorithm Algt, where M is the number

of algorithms within the action and t ∈ [1,M ]. When all the algorithms in the dif-

ferent actions finish their execution, the slave esij generates an output condition “Es1

finished” indicating the end of the slave. To summarise, switching from one reconfig-

uration scenario to another in the transformed RFB model correlates with enabling the

corresponding TNCES and disabling the others in the GR-TNCES modelG. It affects the

other modules in the system which results in connecting, disconnecting modules, places,

transitions.

Adding a new reconfiguration scenario to an RFB in an existing IEC 61499 appli-

cation corresponds also to adding a new slave module Tsij to GR-TNCES system. The

GR-TNCES slave module is connected to the GR-TNCES master module via transitions,

events and condition signals.
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Figure 4.7 GR-TNCES Model of an ECC Slave.

4.4.1.6 Rule 6: FB Transformation Rule

Each basic function block is a TNCES module tfi having events, places, transitions and

conditions. The execution control chart is transformed into a TNCES. An FB event is

an event in TNCES, a FB state corresponds to a place in TNCES, an FB transition is a

transition, a condition is a condition arc, an action is a state with a transition.

4.4.1.7 Rule 7: System Transformation Rule

The transformed system TSys is a set of R-TNCES formalism, defined as a tuple TSys

= {TF , TL} where TF is the transformed function block module and TL is a set of

linking transitions which relate the tfi ∈ TF modules together. A tfi can be an RFB or

a basic function block. A link can be an event, condition, or a transition arc.

4.4.1.8 Rule 8: Resources model

A resource model in IEC 61499 is responsible for scheduling algorithms and communi-

cating with devices. A device model in IEC 61499 is responsible for mapping parameters

and also controlling energy. We propose a GR-TNCES module controlling the memory

and energy resources to avoid their violation during the reconfiguration process. Before

executing the highest probabilistic scenario, the scenario has to guarantee that: (i) the

needed energy and memory are available, (ii) time constraints are respected, and (iii)

the events and conditions occur at the firing time. The reconfiguration cannot start if the

memory reserve is lower than the chosen path’s consumption. The reconfiguration should

be synchronised in all devices.
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The control module R has a memory reserve Mem and an energy reserve Eng. The

executed reconfiguration scenario should not violate the global memory and energy, i.e.

E <= Eng and M <= Mem, and also the time t ∈ [t1, t2]. If the reconfiguration

is performed, the tokens reserved in the slave place will be consumed from the global

memory. At the end of reconfiguration, the memory tokens are added back to the model

reserve.

RTNCES1

M=15
E=12

RTNCES2

M=12
E=9

Rec: E<Eng?
 M<Mem?

RTNCES4

M=9
E=8

P1=0.25

P2=0.35

P4=0.4

Eng=41
Mem=46

Rec: Reconfiguration function

Pi:probability

[T1,T2]
[T1,T3]

[T4,T5]

Global Energy reserve

Global Memory reserve

Figure 4.8 A GR-TNCES module controlling memory and energy resources.

4.4.2 Formal Example

Reconfiguration in GR-TNCES is supported by enabling/disabling control components

and modifying condition/event signals among them. In this respect, it is plausible to

consider an IEC 61499 input system based on six basic function blocks and one RFB

RFB1 as shown in fig 4.9. In the system three feasible paths can be performed thanks to

the dynamic reconfiguration executed by RFB1:

1. path1: FB1-RFB1-FB3-FB4-FB5

2. path2: FB1-RFB1-FB2-FB4-FB5

3. path3: FB1-RFB1-FB6-FB5
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Figure 4.9 A system modelled with RFB and FBs.

On applying the transformation rules on the RFB system, the RFB1 is transformed

into a GR-TNCES module and each basic function block is transformed into a TNCES

module marked in blue. The transformed RFB model, as illustrated in Fig. 4.10, includes

an ECC master module and three slaves module configured by the master. In addition,

the same paths in RFB model are preserved in the transformed system.

4.5 Formal Verification

In order to mitigate the state space explosion problem, we propose in RFBA a design

based on modular RFB where each ECC slave is considered as an ECC master state and is

independently verified. Furthermore, the proposed master–slave based execution control

chart reduces the states and transitions number in the whole system as shown in the last

chapter. Finally, the verification module by module using a modular Petri net GR-TNCES

minimises the size of the state space that is divided into M modules. Accordingly, the

sum of verification time for each module is clearly less than the verification time of the

whole system without modularisation.

Modular verification in RFBA is considered for such complex reconfigurable dis-

tributed systems. It permits to minimise the risk of the state explosion problem and the

verification time since it does not check the modules that are not changed by the recon-

figuration. It is not required to check receptively the common parts in GR-TNCES that

are not changed by the reconfiguration and they have been checked to be correct in the

previous step. As a result, the total verification time of a target system is the sum of

verification time of only the changed modules after executing a reconfiguration scenario.
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The complexity of the proposed verification is O(n2) where n is the number of modules.

In the formal example, a modular verification is applied. The static part of the GR-

TNCES model is verified separately from the dynamic part. We verify first of all FB1

TNCES model then the RFB1 model, after that FB3, FB2 and FB6 simultaneously. At

the end we verify FB4 and FB5. As result, the verification time of the whole system

Tverification is equal to:

Tverification = TFB1 +TRFB + max(TFB2, TFB3, TFB6)+ TFB4 +TFB5

Therefore, it is clear that the verification layer by layer of such system takes less time

and resources since only one FB (FB1, FB2, FB3) is enabled in each path. Moreover,

the static part of the system is verified only one time if it is not changed by the reconfigu-

ration. The repetitive verification of the unchanged parts is avoided during the next steps

of the verification process.

A reconfiguration process can violate system safety. The activation/deactivation, ad-

dition or removal of a reconfiguration scenario during the execution of an old one can

lead to a deadlock within the system. For these reasons, deadlock-free, liveness and

safety properties should be proved using model checking.

Let’s consider (G, M0) the transformed Petri net G where M0 is its initial marking.

1. The deadlock is detected in the system (G, M0) using the CTL formula:

E[F“deadlock”].

The system is deadlock free if the property is false, i.e. every reachable marking

enables at least one transition (its successor). Otherwise, a deadlock exists and one

or more reachable markings are dead. Hence, the system model should be rectified.

2. (G, M0) is live if every transition can always fire again.

3. (G, M0) is bounded if for every place s there is a number b ≥ 0 such thatM(s) ≤ b

for every reachable marking M .

Moreover, in order to analyse and verify the correctness of the automatically gener-

ated model, confluence and termination properties are also checked. They are the most

important criteria that prove the correctness of the model transformation. The termi-

nation property guarantees the existence of a target model, i.e. that the transformation

execution is done for any well-formed transformation specification [Ulitin et al., 2019].

The termination property is guaranteed since the generated model is a set of finite state

machines.

The confluence property, i.e. determinism, ensures the uniqueness of the target model

for a given source model and transformation specification [Ulitin et al., 2019]. It ensures
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that transformations always produce the same result. This property is considered up to

the interactions with the environment or the users [Amrani et al., 2012]. The confluence

is also guaranteed when no more than one scenario is executed at the same time inside

each reconfigurable function block modelled with GR-TNCES. Within the framework

of these criteria, checking the correctness of the constructed models generated in RFBA

approach become attainable. However, the properties should be specified by the designer

in a computation tree logic language.

Thanks to the probabilistic aspect in the GR-TNCES, the designer can estimate also

system performance and quantify properties specified using probabilistic computation

tree logic and PRISM model checker. In order to support RFBA methodology and trans-

form an RFB model into a GR-TNCES model, an RFBtool environment is developed and

integrated with ZiZo v2.

4.6 RFBTool

RFBTool is a new environment developed to support RFBA approach from design to for-

mal modelling with a GR-TNCES formalism. It is integrated with ZiZo second version to

transform GR-TNCES into a discrete-time Markov chain for verifying it with the model

checker PRISM.

Interestingly, RFBTool is an RFB editor that designs any reconfigurable control sys-

tem using RFB formalism. It facilitates modelling different reconfiguration scenarios

using the hierarchical ECC master-slave, and then connecting RFB with other FB types

through standard event and data links. The complete designed system is saved as an

XML file validated against Document Type Definitions DTD. Holobloc has defined a

DTD structure in the IEC Standard 61499-2 to check the compliance of XML files gen-

erated by several tools. It specifies the structure, syntax, legal elements and attributes

following IEC 61499-2 [HOLOBLOC, 2019a]. In order to validate the generated XML

file, we propose a new DTD File defining the new types described in RFB model such as

events/data of reconfiguration and the master-slave hierarchy. An example of a generated

XML code is illustrated in Fig. 4.11.

Fig.4.12 presents the RFBTool class diagram that describes the RFBTool compo-

nents, its architecture, and the way in which the classes are linked together. The appli-

cation is composed of BFBs, CFBs, SIFBs, or RFBs executed in a resource container.

Each function block has standard events and data flow. However, RFB has extra events

of reconfiguration and types of data. It also has an ECC master and at least one ECC

slave.

The designer can create or load a project in RFBTool, after that he can create new

RFB or other function blocks types, instantiate them and link them using standard or

reconfiguration events and data. As shown in Fig. 4.13, the user can add the following
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Figure 4.11 A generated XML Code for an RFB Example.
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Figure 4.12 Class Diagram showing the Architecture of RFBTool.



components to an RFB: ECC master, ECC slave, standard events or events of reconfigu-

ration, standard data input/outputs or data of reconfiguration and internal variables. The

designer can add freely the aforementioned components to create the needed RFB. Fi-

nally, the designer must link the components of the RFB to the function block network

through event links, data links and with association links.

Figure 4.13 “Create RFB” Sequence diagram.

RFBTool proves to be an effective tool to create a new project and save it as an

XML file. It provides a “drag and drop” area for the system designer as well as allows

to load and edit an existing project from an XML file. Two RFBs are related together

with events and data are shown in Fig. 4.15. On the left, a hierarchy of the created

system is represented by a tree view. Furthermore, the tool offers an export feature that

automatically converts the created system to a GR-TNCES model saved in “.zz” file that

is based on the transformation rules mentioned in the previous section.

RFBTool also stems its originality from the fact that it is not just an editor but it in-

cludes also a run-time environment module. It is developed to implement the proposed

execution semantic detailed in section 3.3.4 (Execution Semantic and Event Consump-

tion Policy). It executes the ECC master in a thread and each slave in another thread both

controlled by the resource as shown in Fig. 4.14. It is allowed to execute only one slave

in parallel with the master. RFBtool implies a model of invocation which is implemented

with an optimised queue considering the arriving time, event type and priority. Further-

more, RFBTool guarantees that no more than one input event is emitted at any given time.

It allows the preemption but with some constraints. The execution of a reconfiguration

event may preempt the execution of other events since it has the highest priority. The ex-

ecution model is a preemptive multithreaded resource (PMTR) under special constraints.
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SequenceDiagram1sd

ECCMaster slave1Resource slave2

1 : eventOccurs

2 : sortEvents

3 : notify 4 : checkCurrentStaus

5 : slave1Active
6 : ExecDecisionAlg

7 : checkMemoryEnergy

8 : enableSlave2

9 : deactivateSlave1

10 : slave1Deactivated

11 : enable Slave2

12 : slave2 enabled

13 : execute Alg1
14 : Process Data

15 : execute Alg2

16 : processData

17 : endAlg2

18 : finish Slave2

19 : returnIdleState

Figure 4.14 Sequence diagram showing the RFB execution semantic.

RFBTool generates from the RFB model a C++ code for deployment. There is a thread

controlling the ECC master, and for each slave, a thread is implemented but only one can

be in process. RFBtool is integrated with the second version of ZiZo in order to verify

the GR-TNCES system.

83



Figure 4.15 RFBs Network as shown in RFBTool.

4.7 ZiZo V2

ZiZo v2 [Khlifi et al., 2015] is the unique tool that models GR-TNCES formalism. It is

developed in Saarland University Germany in collaboration with LISI Laboratory of IN-

SAT Institute Tunisia. It creates, edits, simulates and checks adaptive systems modelled

with GR-TNCES.

ZiZo v2 provides a graphical GR-TNCES module for each component in IEC 61499

as depicted in Fig. 4.16. It can also simulate the highest or lowest probabilistic scenario

to be executed in the project according to the user choice. The user should enter the

memory and energy reserves to verify resources by simulation. However, this feature

is not treated in the context of this thesis since we focus on the probabilistic and the

reconfiguration aspect of GR-TNCES and the model checking. Indeed, the designer

can inject in this step probability values on the GR-TNCES model to estimate certain

performance obtained from PRISM. The latter is a probabilistic model checker that is an

effective software tool used to verify functional, temporal and probabilistic properties.
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Figure 4.16 The Generated GR-TNCES model as shown in ZiZo v2 after exporting the
RFB model from RFBTool.

Furthermore, ZiZo v2 software allows to export the generated GR-TNCES model

into a specific PRISM model. It permits to convert a “.zz” file to a “.pm” file to check

functional and real-time properties. The generated PRISM model presents a discrete-time

Markov chain defined as a set of modules including places and probabilities. BRBTool

and the second version of Zizo construct toolchain.

4.8 Discussion and Originalities

In order to simplify and promote the design and verification of reconfigurable control

systems, we have proposed a new methodology called RFBA that is based on RFB pat-

tern. RFBA compared to other approaches has several benefits. It supports design based

RFBs, automatic formal modelling and verification. It reduces the verification time of

reconfigurable systems thanks to the modular verification. Only the changed modules

by reconfiguration will be checked during the reconfiguration. Thus, the state explo-

sion problem is mitigated. We introduce, in the GR-TNCES model, the probability cor-

responding to each reconfiguration scenario. This will allow the designer to estimate

probabilistic properties.

The design of reconfigurable systems following the IEC 61499 extension using the

existing IEC 61499 development tools is complex and difficult. Moreover, only simu-

lation technique is supported. Accordingly, we developed an RFBTool environment to

support:
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(i) design with RFB pattern,

(ii) automatic transformation from an RFB model to a GR-TNCES model by imple-

menting the defined set of transformation rules.

(iii) verification of the generated model with probabilistic model checking by integrat-

ing RFBTool with ZiZo second version.

As a result, our approach is very helpful in the development process of reconfigurable dis-

tributed automation systems. Qualitative and quantitative properties can be both proved

and estimated. The proposed toolchain is a very effective tool that insures the whole

process from the design with RFBs to verification.

4.9 Conclusion

This chapter highlights the importance of formal modelling and verification in checking

the system correctness. In RFBA methodology, IEC 61499 model based on RFBs is

transformed automatically into a GR-TNCES model thanks to a set of transformation

rules. This transformation is proposed due to the existence of several similarities between

both models. In order to support RFBA methodology, a new RFBTool environment is

implemented and integrated together with ZiZo v2. The whole approach will be applied

on a distributed power system in the next chapter.
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Chapter 5

Case Study and Performance
Evaluation

5.1 Introduction

In order to illustrate the whole contributions, and prove the efficiency of RFBA approach

for design, modelling and verification of reconfigurable distributed control system, RF-

BTool and the model checker are applied on a distributed power system. The “fault,

location, isolation, and supply restoration” (FLISR) case study part is published in IEEE

Transactions on Automation Science and Engineering (TASE) journal [Guellouz et al.,

2019].

5.2 Case Study Presentation

A distributed intelligent power system is presented in this chapter as illustrated in Fig.

5.1. It allows to distribute smartly the energy to different consumers according to their

demands. Photo-voltaic generators are installed to generate electricity in addition to the

utility grid.

The power system depends generally on uncontrolled events and unpredictable dis-

turbances like faults, meteorological factors, excess generation during low load periods,

interconnection issues, or an alteration of the grid topology. We characterise each unpre-

dictable event by its probability of occurrence based on a knowledge database located on

the data acquisition and management platform (DAMP).

The system is based on “fault, location, isolation, and supply restoration” (FLISR)

mechanism [Guellouz et al., 2019]. It detects automatically the faults. It identifies the

faulty section, isolates the fault and restores power to consumers by automatically switch-

ing the faulty section to the nearest non-faulty section. Consequently, most consumers

will be supplied without any manual intervention. Each occurred fault causes a recon-

figuration that is the automatic switching from a faulty section into a non-faulty one of
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Figure 5.1 Case Study Topology.

the system. The latter must have enough energy to supply the faulty section. When sev-

eral faults occur simultaneously, the software reconfiguration can resolve the problem if

it gets a sufficient supply from other feeders. The FLISR system in Fig. 5.1 contains

three feeders, each of which is consists of a circuit breaker (CB) and two sectionalis-

ing remotely operated switches (ROS) that divide the feeder into sections and by default

are closed (ROS1, ROS2 in feeder1, ROS5, ROS6 in feeder2, ROS7, and ROS8

in feeder3). The feeders are interconnected together via tie switches, i.e. ROS3 and

ROS4, that are open by default and may be closed if a successful reconfiguration is ex-

ecuted or by a maintenance crew. If a permanent fault occurs, then the system tries to

locate an alternative supply from the nearest neighbour feeder. If it succeeds to supply

the faulty section, then the reconfiguration is successful. Otherwise, it waits for manual

repair [Guellouz et al., 2019].

We apply in the next sections the proposed approach RFBA on the system. We start

by system specification, then design and after that formal verification. An estimation of

the system performance such as availability and probability of failed reconfiguration will
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be provided.

5.3 System Specification

We begin by capturing the system specification, determining the reconfiguration scenar-

ios within RFBs. Reconfiguration can be applied in case of faults occurrence: when a

fault occurs, the automatic switching from the faulty section into the nearest non-faulty

one in the system having enough energy is required. Accordingly, fault location, isolation

and supply restoration should be provided and modelled. Protection and control of the

switches in the system are also required.

5.4 RFBs-based Architecture

The control application is designed based on reconfigurable function blocks. The case

study is an extension to the [Zhabelova and Vyatkin, 2012] work where each logical node

presented in their study is modelled by an RFB where:

• PIOC is a logical node (LN) responsible for the protection of over-current relay

in the circuit breakers and switches.

• CSWI presents the switch control of a sectionalising ROS.

• XCBR is the primary equipment representing the circuit breaker CB.

• XSWI is the primary equipment representing a switch logical node,

• TCTR is the current transformer logical node in the circuit breaker CB.

As shown in Fig. 5.2, the model includes TCTRi, PIOCi, CSWIi and XCBRi

RFB instances. Each PIOC RFB type has in its interface an input event of reconfigu-

ration reserved for modelling unpredictable faults Fault, an ECC master em1 and two

ECC slaves es11 and es12 which represent the reconfiguration scenarios of this unit, as

depicted in Fig. 5.3. The first slave es11 is the FaultOperation mode that is enabled

by the master when a fault occurs, while the second slave es12 is the NormalOperation

mode that is enabled when the fault is restored or a request about its status is encountered.

All PIOCi in the model are instances of the PIOC RFB type where i ∈ [0, 3].

CSWI3 and CSWI4 RFBs correspond respectively to the tie switches ROS3 and

ROS4. The control switches logical nodesCSWI1,CSWI2,CSWI5,CSWI6,CSWI7

and CSWI8 corresponds respectively to the sectionalising remotely operated switches

ROS1, ROS2, ROS5, ROS6, ROS7, and ROS8.

The interaction between RFBs is as follows: TCTR1 is the current transformer of

CB1 which reads and compares continuously the electrical current value to a maximum
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Splitter

Figure 5.2 Subsystem B modelled with an RFB Network.

limit. If it detects a fault f1 in feeder1, it informs the corresponding PIOCs in the feeder

about their fault state. The input event of reconfiguration fault received from TCTR1

indicates that a permanent fault happens and a reconfiguration should be launched. Once

the event has been received, the upstream PIOC circulates the event to downstream PI-

OCs. All PIOCs on the faulty section enable the FaultOperation slave to locate exactly

the fault position. The ECC master em1 disables the NormalOperation scenario and

switches directly to the FaultOperation scenario. In the FaultOperation reconfigura-

tion scenario, PIOC executes the fault location algorithm and sends a request status to the

neighbours stat, as illustrated in Fig. 5.4. It can also receive a status request from other

PIOC and propagate the fault status. If the status of the next downstream PIOC is false,

then the fault is identified in this section of the feeder. Accordingly, the RFB PIOC1 of

the remote switch ROS1 sends the output data FPosition to CSWI1 to indicate that

the fault is located there.

CSWI1 receives FPosition true associated with ier1, enables the slave FaultOper-

ation to isolate the fault and emits help output events to CSWI2, CSWI3, and CSWI4

in order to determine an alternative supply, as illustrated in Fig. 5.2.
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Figure 5.3 PIOC0 Interface and its ECC master.

Each CSWI of a tie switch (CSWI3 andCSWI4) receives help and sendsHeadReq

to the CSWI of the sectionalising switches (CSWI5 and CSWI6 in feeder2) and

(CSWI7 andCSWI8 in feeder3) to determine the current headroom capacity. It replies

to the tie switch with the available headroom capacity HeadCap. The available head-

room capacity is the difference between the current energy and the needed load. The

output data HeadCap is associated with the output event headroom reply HeadRep. For

clarity reasons in Fig. 5.2, the association links are not mentioned.

Start

state1

state2

fault

FaultOperation

reqStat 

FaultLocationAlg

help
propagateFault

Status1

Figure 5.4 ECC slave es11 FaultOperation.

The CSWI3 RFB (respectively CSWI4) of the tie switch ROS3 (respectively,

ROS4) is able to decide if the capacity of the alternative supply satisfies the current

needed load on the faulty section or not. If it has an excess in feeder3, then CSWI3

sends a ready to give supply event readySupp to close the switch XSWI2 (respectively,

XSWI3). Consequently, the supply is restored on faulty switches and the correspond-

ing CSWIs will return to their normalOperation slave. The latter is responsible for

receiving the headroom request, calculating the headroom capacity and providing the

alternative supply.
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Figure 5.5 CSWI Interface and its slaves.

5.5 Automatic Transformation into a GR-TNCES Model

After designing the system with RFBs, the XML file is transformed automatically into

a GR-TNCES model using the RFBTool environment. The latter generates a “.zz” file

compatible with ZiZo v2 tool.

Figure 5.6 Successful Export to ZiZo v2 tool.

GR-TNCES is used in formal modelling to guarantee system correctness and robust-

ness. Thanks to ZiZo-v2 tool, we simulated the GR-TNCES model of FLISR system.

The obtained report proves that the system design based RFBs is deadlock-free after ex-

ploring 1053 places in 486 seconds, where ZiZo-v2 software is running on a PC with
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an Intel Core (TM) i5-3230M CPU @2.60GHz processor, Windows 10 operating system

and 4GB RAM. Additionally, ZiZo-V2 displays the generated GR-TNCES model and

gives us an overview about the FLISR system such as the number of transitions, places,

events and conditions, connections, and modules number. ZiZo shows that the whole

FLISR system is composed of 66 modules, 1053 places and 788 transitions, as presented

in Table 5.1.

Table 5.1 Components Size in the Generated GR-TNCES.

Places Transitions Events Conditions Connections Modules

1053 788 186 198 144 123

We inject in this step the probability of occurrence for each fault event in the PIOC

modules. The reconfiguration event fault is characterised by its probability of arrival λi.

We can also attach the probability of each branch in the structure changer to simulate the

highest probabilistic scenario path. We inject four faults in the system model in different

positions as follows:

(i) The fault f1 in feeder1 is between CB1 and ROS1 where its probability of oc-

currence is ones per month λ1 = 1
(1∗30∗24∗60∗60)

;

(ii) The fault f2 in feeder2 is between ROS2 and ROS4 where its probability of

occurrence is twice per month λ2 = 2
(1∗30∗24∗60∗60)

;

(iii) The fault f3 is triggered between ROS5 and ROS6 in feeder3. Its probability of

occurrence is three times per month λ3 = 3
(30∗24∗60∗60)

;

(iv) And the fault f4 in feeder2 is triggered when the link between ROS2 and ROS4

is cut. Its probability is five times per month λ4 = 5
(30∗24∗60∗60)

;

We also assume that every period Tr in seconds a repair agent checks the system

and repairs all the faulty sections. The expected repair rate is supposed to be equal to

µn = (n+1)
Tr

, where n is the fault number, and Tr is the repair time.

The main GR-TNCES modules modelling PIOC0 RFB are its ECC master and its

slaves. The transformed GR-TNCES model of the ECC master em1 in PIOC0 is de-

picted in Fig. 5.7 which corresponds to the ECC master shown in Fig. 5.3. In each arc in

the structure changer model, the probability of each scenario can be assigned. From the

transition t2 to p3 we assigned a probability of the slave es11 equal to λi. The master of

PIOC0 activates the transition that presents the corresponding scenario to be executed

according to the coming input condition. It issues an output event to deactivate the re-

mained slave. After executing the encapsulated algorithms, the master module receives
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an input condition. At the end of the slave, the fault occurred event is cleared and a

reconfiguration output event is issued to communicate with the next PIOC modules.

Figure 5.7 GR-TNCES Model of the PIOC0 ECC master.

Since the model is deadlock free, we can move to the probabilistic verification by

model checking. ZiZo-v2 tool facilitates the verification process by converting the “.zz”

file to a discrete-time Markov chain DTMC model that is compatible with PRISM model

checker.

5.6 Formal Verification

RFBA methodology seeks to verify qualitative and quantitative properties using the PRISM

model checker as well as the specified CTL and PCTL properties. PRISM supports model

checking for run-time verification of adaptive systems and analyses systems that exhibit

random or probabilistic behaviours. The goal of unified verification is to guarantee sys-

tem safety and evaluate in the worst-case scenarios some requirements such as system

availability. The generated GR-TNCES model describes in a PRISM language the sec-

tions control, the fault location, the fault occurrence, the repair process, and the reconfig-

uration in modules. Each module is connected to others. A fault reconfiguration module

is presented in Fig. 5.8. It includes several states that depend on fault occurrence, the

real-time needed load in the faulty feeder, the real-time available headroom capacity, and

the repair rate.

We illustrate in the next sections the feasibility of the system model starting by the

qualitative analysis and then exhibiting the quantitative analysis. We have verified the

functional correctness and the safety of individual RFBs as well as the entire system

using CTL and PCTL properties.
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Figure 5.8 PRISM Model Reconfiguration Module.

5.6.1 Qualitative Verification

We begin by verifying the deadlock problem in the whole system using the CTL formula:

E[F“deadlock”], as shown in Fig. 5.9. The formula was proven to be false. Moreover,

the termination property is guaranteed since finite state machines are generated in ZiZo-

v2 and PRISM model checker.

In the order to verify the confluence property, we have checked that no more than

one scenario is executed at the same time in each RFB. The PCTL formula P =?[F (p =

11 & p = 12)], is proven to be false for PIOC1 RFB, where p = 11 is the state of the

PIOC module corresponding the ECC slave es11, and p = 12 is the state corresponding

the ECC slave es12 in PIOC1. Thus, the ECC master of PIOC1 never executes two

ECC slaves at the same time (respectively, all the other instances are proven) and only

one is in active status.

Additionally, it is proven that the CSWI1 RFB executes only one scenario. We have

verified this property using the PCTL formula: P =?[F (p = 2 & p = 3)], where p = 2

indicates the ECC slave es21 corresponding to the FaultOperation and p = 3 indicates

the ECC slave es22 corresponding to NormalOperation in CSWI1. PRISM certifies
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Figure 5.9 Property of deadlock freedom using PRISM 4.6

that the probability of reaching ECC slave es21 and es22 simultaneously is zero, i.e. false,

as illustrated in Fig. 5.10.

We have also verified the concurrency property which is the ability to perform several

behaviours at the same time. We checked the simultaneous occurrence of reqStat event

with the fault reconfiguration event in PIOC1 RFB. In this case, concurrency is not

allowed since the priority is for the reconfiguration events. In the RFB concept, recon-

figuration events are more prioritised compared to standard events. The CTL formula

E[F (s = 1 & p = 1)] is proven to be false.

Figure 5.10 Simultaneous Scenarios Execution Property.
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5.6.2 Quantitative Verification

RFBA methodology aims to gain an insight into the design of efficient reconfigurable

distributed control systems. Using the PRISM model checker, we can not only analyse

the system behaviour, but also estimate system performances by computing probabilities

using PCTL and CSL in order to specify quantitative properties.

We assume that fault f2 between ROS5 and ROS6 occurs in feeder2 before that

fault f1 in feeder1 has been repaired. To restore the fault f2 in PIOC6, the system

should be informed by the results of reconfiguration. The reconfiguration depends mainly

on the real-time available headroom capacity in non-faulty feeders and the current needed

load. When f1 occurs, the reconfiguration can fail or succeed. In the case of:

(1) no available supply, the reconfiguration is failed. CSWI5 sends help to CSWI4

via CSWI3 and CSWI2. The control switch CSWI4 has already known the

available headroom capacity in feeder3. It compares it with the needed load in the

faulty section and then decides.

(2) successful reconfiguration where there is

(a) a supply from feeder2: CSWI5 sends to CSWI3 new event HeadRep

associated with the new headroom capacity. The ROS2 RFB is notified by the

change and searches another supply from feeder3.

(b) or a supply from feeder3. CSWI5 sends the needed load to CSWI4 that

calculates the current available headroom capacity and then decides if satisfies the

loads o not.

The reconfiguration module, depicted in Fig. 5.8, presents the fault states. The initial

state (s = 0) is the idle state of the system. If one fault f1 occurs in feeder1, then the

system goes to state (s = 1). From this state, several cases are possible:

(a) If the needed load in the faulty section is less than or equal to the available head-

room request in feeder3, then state (s = 5) is reached to get alternative supply

from feeder3, and consequently the reconfiguration succeeds,

(b) If the needed load in feeder1 is less than or equal to the available headroom re-

quest in feeder2, then state (s = 6) is reached to get supply from feeder2 and

accordingly the reconfiguration succeeds,

(c) If the needed load in feeder1 is greater than the available headroom request in

feeder2 and feeder3, then state (s = 7) is reached and the reconfiguration fails in

feeder1.
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Table 5.2 Steady-state properties.

Formula Results
S =?[s = 1] Fig. 5.11(a)
S =?[s = 2]
S =?[s = 3]
S =?[s = 4]
S =?[s = 1 & s = 2] Fig. 5.11(b)
S =?[s = 1 & s = 3]
S =?[s = 1 & s = 4]
S =?[s = 2 & s = 3]
S =?[s = 2 & s = 4]
S =?[s = 3 & s = 4]
S =?[s = 1 & s = 2 & s = 3] Fig. 5.11(c)
S =?[s = 1 & s = 3 & s = 4]
S =?[s = 2 & s = 3 & s = 4]
S =?[s = 1 & s = 2 & s = 4]
S =?[s = 1 & s = 2 & s = 3 & s = 4] Fig.5.11(d)

If a repair agent repairs the fault f1, the corresponding PIOC1 of the faulty section

will returns to its normalOperation scenario with a repair rate equal to 2
Tr

. The same

logic is applied to other faults.

Using PRISM, we can evaluate also the steady state probability that is the long-run

probability to reach a state st. The operator S in PRISM is applied to provide the long-run

probability that one or several faults occur. We can estimate the steady state probability

when (i) one fault appears, (ii) two faults appear in the system where the first fault occurs

before the previous one is fixed, (iii) three faults appears successively without manual

repair intervention and finally, (iv) four faults occur successively. The results are shown

in Fig. 5.11. The latter reveals the steady state probability of one to four faults in the

system when Tr varies between 10 and 150 minutes (i.e. 600 and 9000s). The curves

(a, b, c and d) are obtained on applying the PCTL formula included in Table 5.2 where

s = 1 (respectively s = 2, s = 3 , s = 4) is the state that denotes the occurrence of fault

f1 (respectively f2, f3, and f4). We deduce that the steady state probability grows in

accordance with the repair time parameter. If the repair time Tr is equal to 150 minutes,

the probability of successful or failed reconfiguration in the all the possible cases with

different order can be determined.
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(a) Case of single fault (b) Case of two simultaneous faults

(c) Case of three successive Faults (d) Case of four successive faults

Figure 5.11 Steady state probability in the case of one, two, three and four fault/s.

Furthermore, the probability of reconfiguration failure pfr denoting the case of no

supply from the alternative feeders can be estimated thanks to PRISM and the following

PCTL formula shown in Table 5.3. We assume that deadline variable is equal to 364 ∗
24 ∗ 3600 seconds.

(i) In the case of fault occurrence f1 and the case that the headroom capacity exceeds

the required load, pfr is equal to 0 and the alternative supply always satisfies the

needed load, using the formula (A) where s = 7 denotes the case of no available

supply for feeder1 within one year, and s = 1 corresponds to the occurred fault

f1;

(ii) In the case of two successive faults f1 & f3 without repair, pfr is equal to

1.09 ∗ 10−5 using the formula (B);

(iii) In the case of two successive faults f3 & f4 without repair, the probability of

failed reconfiguration pfr is equal to 5.1 ∗ 10−5 using the formula (C);
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(iv) And finally, in the case of three successive faults f1 & f2 & f3 without repair

intervention, the probability of failed reconfiguration pfr is equal to 1 using the

formula (D) where s = 55 is the state that denotes no reconfiguration in the whole

system. This result is obtained since feeder3 supplies feeder1 and feeder2 when

its available headroom capacity exceeds the required load in feeder1 and feeder2.

Table 5.3 The probability of failed reconfiguration properties.

Notation PRISM Formula

A P =?[trueU <= (deadline)(s = 7) & (s = 1)]

B P =?[trueU <= (deadline)(s = 14) & (s = 5|s = 6|s = 7)]

C P =?[trueU <= (deadline)(s = 24) & (s = 17)]

D P =?[trueU <= (deadline)(s = 55)]

Finally, we can expect in our case study that the gain is the probability of satisfying

all loads in a period without recoursing to a maintenance agent intervention. We assume

that the state “allsupplied” is reached when all sectionalising switches are closed and

(p = 35|p = 36|p = 37|p = 38) are manual repair states. Using the same assumption,

we have verified that the maximum probability of not using manual maintenance within

a deadline of 30 days is equal to 8, 75 ∗ 10−3 using the following formula:

Pmax =?[F (!(p = 35|p = 36|p = 37|p = 38) & “allsupplied”)Ut >= deadline]

5.6.3 PRISM Simulation

Using PRISM, we can also analyse the system using the simulation interface. The sim-

ulation results in the case of three successive faults without repair intervention (f1, then

f2, after that f3) are illustrated in Fig. 5.12 where the repair time is six hours, the needed

load neededLoadf1 in feeder1 can range between 300 and 390 (Watt) at the instant

when f1 occurs. The needed load neededLoadf2 in feeder2 can range between 50 and

150 (Watt) when f2 occurs. The available headroom capacity in feeder2 can range be-

tween 100 and 200 availableHCf2 ∈ [100, 200]. It can range in feeder3 between 400

and 521 availableHCf3 ∈ [400, 521].

In the simulation scenario, we suppose that the fault f2 appears before the repair of

f1, and after that, another fault f3 occurs before the repair of f2. The real-time needed

load in the faulty feeder and the real-time available headroom capacity are both defined

as time series in the simulation. As a result, it is clear that the reconfiguration succeeds

twice and then fails. The simulation is detailed as follows:

(i) At the instant t = 0.48, a fault f1 occurs in feeder1, the available headroom

capacity in feeder3 which is equal to 400W is higher than the actually required
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load in feeder1 300W, and then the reconfiguration will be held and the reached

state is s = 5;

(ii) At t = 3.52, a fault f2 appears in feeder2, the ROS switches in feeder2 ask

its neighbours to get supply, the current needed load is equal to 100W and the

available Headroom capacity in feeder3 is 100W . Then the supply is ensured by

feeder3 and the reconfiguration succeeds (state s = 9);

(iii) At t = 29.54, a fault f3 occurs in feeder3 that engenders no supply for feeder1

and feeder2. Therefore, the system reaches the state s = 10 that indicates a failed

reconfiguration.

(iv) At t = 29.64, the system returns to its idle state s = 0 after a manual repair

(repair = true).
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s=9: reconfiguration succeeds supply from feeder3 

s=10: f3 in feeder3 and reconfiguration fails 

s=5: reconfiguration succeeds supply from feeder3 

s=8: f2 occurs in feeder2 

s=0: start state 

s=1: f1 occurs in feeder1 

Figure 5.12 Fault simulation using PRISM.

5.6.4 System Availability

The system availability is the probability that the system is operating at a satisfying level

and all the customers are supplied. It can be ranged from 0%, i.e. never available, to

100% always available. It is then equal to the probability that the system is in its idle

state or in one of the possible states that succeeds to get a supply from a power source.

In case of error at instant t, or no supply, the system becomes not available.

The same parameters in the simulation section are assumed. We vary here the re-

pair time parameter during a period of eight days. As a result, the system availability

decreases when the repair time increases as shown in Fig. 5.13. In order to obtain a

system availability more than 99.5%, the time to detect and repair the faults should be

less than 0.5∗105 seconds, i.e. thirteen hours approximately. The designer and engineers
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can improve the system design and reduce the repair cost by adding another source in

feeder1.

Figure 5.13 The availability of the FLISR system during 8 days.

5.7 Evaluation of Performance

We compared RFBA approach with the approaches proposed in [Sinha et al., 2015],

[Bhatti et al., 2017], [Zhabelova et al., 2015], and [Zhabelova and Vyatkin, 2012] as

presented in Table 5.4. The authors in [Higgins et al., 2011] model every section of

transmission wires with basic function blocks. [Zhabelova and Vyatkin, 2012] model

each logical node with a complex composite function block. In the proposed RFBA

approach, each logical node in the FLISR system is modelled with an RFB considering

the case of one or multiple faults. RFBA splits the execution control chart of CSWI

function block, as shown in Fig. 9 in [Zhabelova et al., 2015], into an ECC master

and two ECC slaves. Accordingly, a slave for the normal operation and the other for

executing the fault operation. This separation aims to switch smoothly from a scenario

to another depending on the coming events and data. In the case of an occurred fault, all

the reconfigurable function blocks presented the faulty section switch directly from the

ECC slave normalOperation to the ECC slave FaultOperation by sending an output

event of reconfiguration split in the model.

In comparing the proposed approach with [Bhatti et al., 2017] approach, an estimation

of faults is provided in both studies. However, modelling directly IEC 61499 to a Markov

chain model is not suitable for reconfigurable systems since it can increase the explosion

state problem as explained in the previous chapter.

Compared with the study of [Sinha et al., 2015] based on hierarchical and concurrent

execution control chart HCECC, the reconfiguration feature and the easy switch from a

level to another are not supported. Only concurrency is ensured that is not needed inside

a reconfigurable function block.
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Table 5.4 Comparative study.

references ECC hier-
archy

Execution strategy Validation Features

[Zhabelova
et al.,
2015],[Zha-
belova and
Vyatkin,
2012]

Standard
ECC

Synchronous execu-
tion

The authors use Co-
simulation approach
to detect a single fault

Modelling with basic
function blocks. De-
liberative and reactive
layers in Logical
Node in IEC 61850.
Normal and faulty
mode are in the same
ECC as depicted
in Fig. 6 and 9 in
[Zhabelova et al.,
2015].

[Strasser
et al., 2014,
Zoitl and
Strasser,
2017]

function
blocks
manage-
ment

The authors propose
reconfiguration com-
mands. However, the
commands are exe-
cuted by the user and
the function block
type definitions must
exist in the target ex-
ecution environment.

System inconsisten-
cies can appear after
commands execution
which disturbs the
system. Simulation
and model checking
using SESA are used.

A reconfiguration
command is able to
create/update/delete
FBs on run-time.

[Sinha
et al.,
2015]

Hierarchical
concurrent
ECC
(HCECC)

Concurrent and par-
allel execution, No
inter-level communi-
cation, Static strat-
egy

No verification HCECCs are purely
syntactic sugar.
Transformation of the
parallel HCECC into
CFB.

Current
proposed
work

Master-
slave ECC
(MSECC)

The execution of the
suitable scenario ac-
cording to reconfig-
uration event, Inter-
level transitions, Dy-
namic strategy: acti-
vation and deactiva-
tion of reconfigura-
tion scenarios,

Model checking using
PRISM for the veri-
fication of determin-
istic and probabilis-
tic properties. Ver-
ification and simula-
tion process are possi-
ble. The authors con-
sider the case of one
or multiple faults and
their influence on the
system availability.

Separation between
Reconfiguration
and control model
within the RFB for
readability reason.
Formal Modelling
using GR-TNCES
model. Qualitative
and quantitative veri-
fication of the system.
Estimation of the
system availability.

[Bhatti
et al.,
2017]

Basic func-
tion blocks

synchronous exe-
cution semantics
[Yoong et al., 2014]
based on a time-
triggered way of
execution

Unified functional
safety assessment of
industrial automation
systems using IEC
61499 and a safety
standard IEC 61508

Qualitative and quan-
titative verification
using PRISM. Direct
translation from IEC
61499 model into a
Markov chain.
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In the comparative study about formal verification presented in Table 5.5, most stud-

ies have interested on qualitative analysis using model checkers such as SESA. Despite

the benefits of probabilistic model checker, only our work and [Kwiatkowska et al., 2002]

use PRISM to get quantitative analysis. GR-TNCES compared with other Petri nets is re-

configurable and probabilistic. While reconfiguration reduces notably the time of model

rebuilding [Zhang, 2015] since it checks only the changed states on real-time verification,

probability gives the designer an insight into system performance.

Table 5.5 Comparative study about verification.

References Model Model
checker

Features Verification strategy

[Vyatkin and
Hanisch, 2000a,

Pang and
Vyatkin, 2008]

NCES Vive/SESA Qualitative
analysis

High modelling effort.

[Stanica and
Guéguen, 2004]

timed
automata

Qualitative
analysis

High modelling effort.

[Pang and
Vyatkin, 2008]

TNCES SESA Qualitative
analysis

Time constraints,
functional and safety

properties are considered.
Automatic transformation

of IEC 61499 model.
The proposed

work[Guellouz
et al., 2019]

GR-TNCES PRISM
model

checker

Qualitative and
quantitative

analyses

Automatic modelling
transformation.

Probabilistic events,
modular and dynamic

verification is considered,
verification of time,
memory, and energy

constraints.

To overview, RFBA approach has important advantages since the designer can de-

scribe the reconfiguration scenarios which cannot be easily designed using basic function

blocks. The proposed master-slave execution control chart allows to promote the read-

ability and maintainability. The proposed methodology analyses the system functionali-

ties and estimates the system performance before deployment. The system designer can

verify qualitatively the functional correctness, and assess its availability that depends on

repair time in our case study and refine the system model. It permits to determine a real

estimation of the system availability and the probability of failed reconfiguration. Sev-

eral qualitative and quantitative properties are easily checked before deployment thanks

to ZIZO toolchain and PRISM such as: (i) deadlock detection, (ii) confluence properties,

(iii) system feasibility before and after reconfiguration, (iv) estimation of the reconfigu-

ration failure, (v) system availability, (vi) best repair time estimation.

The detection of the worst cases before deployment is the major strength of the ap-

proach that the system designer needs to evaluate and estimate in his attempt to ameliorate
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the current model. Accordingly, the designer can improve the system design and refine

the model depending on the results. For example, he can modify the hardware of the

system topology by adding other energy sources and determine the optimal repair time

and other parameters before deployment in the FLISR case study.

5.8 Conclusion

The goal of this chapter is to show that design based on RFBs, formal modelling and

verification can guarantee system correctness and can offer an insight into performance.

RFBA approach is applied on a smart grid system. We begin by system specification and

then the design based on RFBs, i.e. the new extension of IEC 61499. Formal modelling

and model checking are used. The developed RFBTool environment transforms auto-

matically the RFB model into a GR-TNCES model, and ZIZO v2 converts the generated

model into a deterministic Markov chain to check the designed model correctness and

evaluate system performance. In the FLISR case study, several faults have been injected

into the model to estimate system availability. The fault and repair events are charac-

terised by probabilistic information needed to get a better insight into the system perfor-

mance thanks to the probabilistic model checker PRISM. In order to obtain an optimised

system, several properties must be satisfied such as deadlock freedom, confluence, sys-

tem feasibility before and after reconfiguration. Additionally, the probability of a failed

reconfiguration, system availability, and estimation of best repair time can be estimated.
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Chapter 6

General Conclusion

6.1 Context and Challenges

Software reconfiguration is increasingly becoming a crucial need in industrial automa-

tion. The market fluctuations and the introduction of new strategies have led to several

changes in the system design, implementation and verification. Our research brings us

to the conclusion that IEC 61499 is the best standard which allows the design and de-

velopment of platform-independent applications for industrial processes, measurement

and control systems. It offers portability, interoperability and configurability features.

Clearly, IEC 61499 is based on function blocks that are software components represent-

ing hardware or service elements in an application. However, the design and develop-

ment of reconfiguration scenarios in reconfigurable distributed control systems are still

not easy. The static definition of a basic function block control logic, i.e. the execution

control chart ECC, imposes manual adjustment for every change in the environment or

user requirements. With the ongoing changes, a smart execution control chart is rec-

ommended. Using basic function block ECC, the system designer needs several states,

transitions, and actions to develop all reconfiguration scenarios. This results in a cum-

bersomeness in the design, low readability and maintainability as well as an increase in

design complexity. Hence, a hierarchical ECC structure is required to provide a dynamic

logic to the function block and a readable design. A separation between control and re-

configuration models proves effective in decreasing design complexity. While the control

model defines the behaviour, the reconfiguration model supervises each change to modify

the system behaviour appropriately.

IEC 61499 standard faces another limitation which is the verification of reconfig-

urable control systems. Although verification is crucial for ensuring system feasibility

and safety, it is not supported by any compliant tool. In fact, the reconfiguration process

changes the system behaviour and execution model. Consequently, the guarantee of the

system feasibility cannot be provided after executing a reconfiguration process. Addi-

tionally, most IEC 61499 compliant development tools offer simulation techniques that
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do not prove system correctness, deadlocks, and concurrent tasks.

Another important conclusion drawn from this work is that the analysis of the QoS is

of great importance for engineers and practitioners. However, only deterministic proper-

ties are checked in the existing research works. A quantitative analysis is necessary. It

offers the possibility to quantify and analyze some probabilistic properties such as system

availability, probability of successful reconfiguration or failed reconfiguration. This anal-

ysis also grants an efficient insight into the system while triggering the need for system

refinement.

6.2 Contributions and Originalities

We propose in this thesis a reconfigurable function block as an extension to IEC 61499

standard to support reconfiguration inside the function block. It is characterised by an

extra reconfiguration event associated with a reconfiguration data in its interface. More-

over, a dynamic master-slave execution control chart MSECC is proposed to separate

the reconfiguration model from the control model. While the control model defines the

behaviour, the reconfiguration model, i.e. the ECC master, supervises the changes and

executes the best control model,i.e. the ECC slave. Thanks to a decision algorithm and a

reconfiguration matrix that includes several rules, the RFB selects and executes dynami-

cally the most adequate reconfiguration scenario.

In this thesis, we have worked on a new methodology based on RFBs called (RFBA)

to deal with design, modelling and verification of reconfigurable distributed control sys-

tems in industrial automation. It is addressed to simplify the design and verify recon-

figuration feasibility. In order to verify a designed system with RFBs, formal modelling

is used. We transform automatically the RFB model into a Generalised Reconfigurable

Timed Net Condition/Event system (GR-TNCES) model which is a reconfigurable Petri

net class preserving RFB features and semantic. In GR-TNCES, switching from a config-

uration to another is made possible by enabling/disabling components. This fits perfectly

with the proposed master-slave execution control chart inside for modelling unpredictable

reconfiguration events. We integrate probability in the generated formal model to pro-

vide a quantitative analysis using a probabilistic model checker PRISM. This interest

is mainly due to the fact that checking and evaluating system performance as well as

estimating risks after reconfiguration have a major virtue for engineers.

Furthermore, the proposed RFBA approach allows a modular verification that miti-

gates the explosion state problem by verifying the model module by module. In order to

analyse qualitative and quantitative properties specified in computation tree logic, we at-

tempt to transform the GR-TNCES model into a discrete Markov chain model interpreted

by PRISM. ZiZo v2 tool is used to analyse the GR-TNCES models and export them to

PRISM models.
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The RFBA methodology is supported by a toolchain that includes RFBtool, ZiZo v2

and PRISM model checker. RFBtool is a new environment for RFB, it creates and edits

reconfigurable function blocks models and converts them automatically into GR-TNCES

models. If the verification is successful, a C++ code is generated and can be deployed in

any devices.

Several properties are easily checked and estimated using CTL and PCTL properties

such as system feasibility before and after reconfiguration, deadlock detection, conflu-

ence, estimation of the reconfiguration failure, system availability, and best repair time

that cannot be proved using simulation. The detection of the worst cases before deploy-

ment is also a major value of the approach that practitioners need to estimate. Accord-

ingly, they can refine and enhance the designed system.

The proposed framework also stems its originality from the fact that it can be applied

in any control system requiring reconfiguration, verification and performance estimation.

In order to show RFB feasibility, we adopt our contribution to a distributed power system

as a case study. As a result, we proved confluence properties, deadlocks freedom, sys-

tem availability, probability of successful reconfiguration. In addition, we compared the

results of our approach with the related works. It seems that in using RFBs the number

of application components becomes lower than the components of an application based

on BFBs, i.e. number of events, states and transitions. Moreover, the verification time is

reduced thanks to a modular verification.

6.3 Perspectives

As perspectives to our work, we will:

– extend RFBA approach to support reconfiguration in cloud for internet of things

(IoT) systems using web services to manage several reconfiguration matrices. The

reconfiguration model can be supervised by web services deployed in the cloud to

improve monitoring and online reconfiguration. Thus, the rules in the reconfigura-

tion matrix can be adjusted automatically by a web service.

– deal with the security of distributed RFBs in future work since a reconfiguration

event can be an attack that disturbs the predicted behaviours. In this case, securing

any reconfiguration of the execution control chart master is required for guarantee-

ing correct RFBs behaviour. Several security policies can be automatically applied

in order to restrict control access.

– improve our RFBtool interface and extend it to deploy RFBs in several independent

platforms and operating systems such as FreeRTOS. The current generated code is

only deployable on POSIX. Moreover, the existing IEC 61499 benchmarks are very
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basic. Therefore, we will develop reconfigurable and complicated benchmarks to

help engineers to use the proposed framework.

– work also on the automatic model rebuilding based on artificial intelligence in order

to refine automatically the existing models after a not satisfied verification. The

refinement is based on the results of qualitative and quantitative analyses as well

as the defined limits to obtain optimised system satisfying the needs of companies

and engineers.
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