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Abstract—For over a decade, model checking has been suc-
cessfully used to formally verify the instrumentation and control
(I&C) logic design in Finnish nuclear power plant projects. One
of the practical challenges is that the model checker NuSMV
forces the user to abstract the way analog signals are processed
in the model, which causes extra manual work, and could
mask actual design issues. In this paper, we experiment with
the newer tool nuXmv, which supports infinite-state modelling.
Using actual models from practical industrial projects, we show
that after changing the analog signal processing to be based on
real number math, the analysis times are still manageable. The
disadvantage is that certain useful types of formal properties are
not supported by the infinite-state algorithms. We also discuss
the nuclear industry specific features of I&C programming
languages, which cause significant constraints on domain-specific
formal verification method and tool development.

Index Terms—formal verification, model checking, control
engineering, software safety

I. INTRODUCTION

Modern digital instrumentation and control (I&C) system
platforms have made it deceptively easy to design control
logics that are very complex. Digital I&C has become the
norm, safety critical applications included—even nuclear re-
actors are kept safe using software based control [1]. In such
applications, simplicity is a requirement [2], but even the most
critical safety systems can still contain complex analog signal
processing [3].

Model checking [4] is a powerful formal verification
method. The result is either a logical proof that a stated
property holds, or a counterexample trace depicting unwanted
system model behaviour. Fondazione Bruno Kessler (FBK) has
released a popular, free, open-source model checker called
NuSMV [5]. In Finland, NuSMV has been used for over a
decade to verify I&C application logic design in nuclear power
plant (NPP) projects [6].

When using formal verification in safety critical appli-
cations, it is important to recognise the limitations of the
descriptions, methods, and tools in use [2]. A key limitation
of NuSMV is that the model is described in discrete, finite-
state terms. In practice, this means that analog signals have
to be discretized as integer variables, and only basic math
operations are supported. The analyst has to carefully abstract
the analog logics [7], increasing the need for time-consuming
manual work. Although outright errors in the abstractions are
often revealed through “spurious” counterexamples, it is also
possible that actual design issues are accidentally masked.

FBK has also released nuXmv [8], a model checker enabling
analysis of infinite-state models. Among other improvements
over NuSMV, nuXmv supports real number variables, and
several math operators. But does the improved functionality
come at a significant computational cost?

In this paper, we present our experiments on using the
infinite-domain algorithms of nuXmv to verify nuclear I&C
application logics that contain analog signal processing. The
contribution is threefold. First, we concretise the challenges
in using finite-state model checkers in our domain. Second,
we show that nuXmv is in practice effective in extending
the analysis to infinite-state models. Third, we discuss the
limitations nuXmv still imposes on the verification process.

In Section II, we cover the basics of model checking. In Sec-
tion III, we discuss the nuclear industry specific constraints on
formal I&C logic verification. Related research is summarised
in Section IV. Section V describes our case study. We then
discuss our results in Section VI, and present our conclusion
in Section VII.

II. MODEL CHECKING

A. Model checking algorithms

Model checking [4] is a computer-assisted method to for-
mally verify whether a system model satisfies stated properties.
A tool called a model checker checks if a desired property
holds for all the system model execution paths, through
exhaustive exploration of all the reachable states. A model
execution path that violates the property, if found, is returned
to the user as a counterexample.

The key challenge is to avoid state space explosion [4],
where the number of reachable states to enumerate becomes
enormous, and the analysis will not terminate in reasonable
time. Symbolic model checkers like NuSMV [5] try to avoid
the issue by using Binary Decision Diagrams (BDD) [9]
for canonical representation of Boolean formulae, avoiding
explicit-state processing which tools like SPIN [10] rely upon.
Boolean satisfiability (SAT) solvers are used for bounded
model checking (BMC), where the length of checked state
transition sequences is limited to a fixed search depth [11]. In
NuSMV, the target system is modeled as a finite state machine
(FSM), with synchronous processing of model components
over discrete transitions.

To enable infinite-state analysis, nuXmv [8] extends the
language of NuSMV with real and unbounded integer num-
bers, and offers new algorithms based on Satisfiability Modulo



Theory (SMT) [12] or abstraction, and a combination of
other techniques. IC3 [13], BMC, and simple bounded model
checking (SBMC) [14] are extended to the infinite-state case
by, e.g., using SMT instead of SAT [8].

In addition to supporting real number variables, nuXmv
adds the basic expressions pi, sin, cos, tan, exp, and ln.

Both NuSMV and nuXmv also support real time specifica-
tions, and can compute the length of the shortest or longest
path from one set of states to another [15]. For continuous time
analysis, UPPAAL [16] is a model checker based on timed
automata.

B. Property specification

For specifying the properties, temporal logic languages offer
a way to formulate statements over execution paths. Linear
Temporal Logic (LTL) [4] uses temporal operators such as
“Globally” (Gp : p is true at ever state of the path), “Finally”
(F p : p is true at some future state on the path), and “Until”
(pU q : q is true at some future state, and at every preceding
state on the path, p is true). Some tools also support past LTL
operators [17] like “Once” (O p : p is true at some past (or
the current) state on the path.)

Computation Tree Logic (CTL) [4] uses path quantifiers A
(all execution paths) and E (some execution path).

Property Specification Language (PSL) [18] is an extension
of LTL and CTL. The Sequential Regular Expressions (SERE)
style of PSL is convenient for expressing LTL type properties
for multi-cycle behaviour [19]. SERE properties are more
human readable than the equivalent nested LTL.

III. MODEL-CHECKING NUCLEAR I&C LOGICS

A. Practical projects in Finland

Since 2008, VTT1 has used model checking to verify I&C
application logic design in practical Finnish nuclear industry
projects [6], [20]. The method has been successfully used in
a new-build project (Olkiluoto 3), an I&C renewal project (at
Loviisa 1&2), and to verify early, functional design (Hanhikivi
1).

By 2020, VTT has identified a total of 66 confirmed design
issues, in some cases leading to redesign of the application
logic. The likelihood of the discovered issues varies, and the
estimated safety significance ranges from negligible to severe
[21]. Models created by VTT in the practical projects were
used in the experiments described in Section V-A.

To facilitate the practical work, VTT and the power com-
pany Fortum have developed a graphical front-end for the
NuSMV model checker called MODCHK [6].

B. Industry-specific challenges

A large share of the related research on I&C logic model
checking—particularly if the objective is automatic model
generation—is built upon the assumption that the design
follows the IEC 61131-3 standard. In the nuclear industry,
the assumption is not justified, as major safety I&C system

1VTT Technical Research Centre of Finland Ltd. is a state owned company
providing research and innovation services. https://www.vttresearch.com/.

suppliers like Framatome and Rolls-Royce use vendor-specific
programming languages.

Reasons for eschewing interoperability go beyond the sup-
pliers’ need to protect their intellectual property. The overall
I&C architecture of a NPP has to follow the design principle
of defence-in-depth (DiD) [22], and contain successive lay-
ers of protection. The different I&C systems on these DiD
layers need to be both independent from each other, but
also diverse, i.e., based on different technologies or design
principles. Otherwise, a common-cause failure (CCF) could
lead to simultaneous loss of several levels of protection. Ways
to achieve diversity in I&C logics include using different
programming languages, program architectures, runtime en-
vironments, coding styles, etc.. [2], [23]. In other words, one
should not follow a universal standard.

For formal verification, the use of non-standard program-
ming languages, along with the fact that the source code for
the elementary function blocks is not necessarily available,
means that at least part of the model generation has to be
done manually.

Another domain-specific, non-standard feature is signal va-
lidity. In nuclear I&C platforms like TELEPERM XS (TXS)
and Spinline, each signal in the block diagram is associated
with both a value and a status. If, for example, the input
processing logic detects an invalid sensor input, the associated
signal is set to “fault” status. The status is then used in the
logic to excluded invalid signals in majority voting, making the
overall design tolerant to single failures. Validity has been an
important factor in 9% of the design issues VTT has detected.

C. Analog logic modelling

Nuclear regulatory bodies agree that simplicity is required
for safety systems [2]. Still, the NPP I&C systems of even
the highest safety class can contain quite complex control
algorithms.

The U.S. Nuclear Regulatory Commission has published
the Final Safety Analysis Report (FSAR) for the proposed
U.S. European Pressurised Reactor (U.S.EPR) online [3].
The report contains detailed information about the Protection
System (PS), a safety-classified digital I&C system based on
the TXS platform. PS is used to prevent radiological release
in accidents by tripping the reactor and supplying emergency
cooling.

The high-level function block diagrams for the different
PS safety functions can also be found in the FSAR2. The
basic TXS function block types include complex elements like
PID Controller and Second Order Filter (See Figure 1). In
the diagrams, complex analog logics are used for calculating
trip criteria (e.g., high core power level, low departure from
nuclear boiling ratio) and actuator control (e.g., main steam
relief train).

Another practical example of complex logic in nuclear
safety I&C is shown in [6].

2The function block diagrams for PS can be found in [3] under Tier 2,
Chapter 7, in the files ML13220A735.pdf and ML13220A737.pdf. The basic
block types are introduced in the file ML13320A726.pfd.
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Fig. 1. Examples of non-standard, analog blocks used in the U.S.EPR
Protection System [3]

Such systems can only be modelled in discrete-state tools
like NuSMV if the analyst carefully abstracts parts of logic [7].
Analog inputs need to be described with integer variables,
and the possible values for the variables often need to be
limited to avoid state space explosion. Simple math is not
a challenge, but a particular problem is the use of analog
feedback loops [7]. Storing integer variables to memory seems
to significantly increase the analysis time for NuSMV.

IV. RELATED RESEARCH

As we discussed in Section III-B above, many works on
the topic of I&C system logics and model checking rely
on the assumption that logic either follows or can be easily
transformed to IEC standard 61131-3 or 61499 representations.
Examples can be found in, e.g., [24]–[27]. As we pointed
out, nuclear I&C logics contain vendor-specific solutions that
cannot be easily mapped to those standards.

In addition to the work done in Finland, model checking
has also been used in other nuclear I&C applications. In works
such as [28] and [29], however, the approach is still based on
IEC 61131-3. (In [29], an intermediate IEC 61131-3 model is
eventually transformed to a nuXmv model.) In [30], the target
application is based on non-standard TXS blocks (including
status processing), but after the diagrams were reinterpreted
as a Petri net, input constraining was necessary to make the
approach feasible. [31] deals with architecture-level analysis
of failure rates for I&C controllers using probabilistic model
checking.

In [32], nuXmv is used to support regression verification
for consecutive versions of a production system’s I&C logic
design.

In [33], the types of NuSMV models used in our work were
extended to timed models in nuXmv, in order to include com-
munication delay between I&C subsystems, and then check
real-time specifications. Due to the resulting complexity, IC3
did not compute in reasonable time, and the timed properties
could only be checked with BMC. Modelling of I&C hardware
failures is discussed in [34].

In our previous work [33], [35], we have found that NuSMV
is more applicable for the verification of nuclear I&C logics
than, e.g., the explicit-state model checker SPIN, or the real-
time model checker Uppaal. Therefore, in this paper, we focus
on comparing the performance of NuSMV and nuXmv.

V. CASE STUDY

A. Experimental design

To experiment with the scalability of nuXmv’s infinite
domain algortihms, we have collected eleven NuSMV models
constructed by VTT in practical customer projects in the
Finnish nuclear industry. These models are taken from three
different plant projects, and there are three different companies
responsible for the application logic designs. Each model
contains analog signal processing that has been significantly
abstracted by VTT analysts, in order to verify the logics with
NuSMV.

For one of the models—to use it as an example3—we have
simplified and modified the NuSMV model in order to mask
the origin. The masked logic is shown in Figure 2.4 The
original logic consisted of 58 blocks. The function is actuated
when the directly measured level—adjusted with a memorized
ratio between the measured level and an indirectly calculated
value—exceeds the allowed level by 5%. In case the adjusted
level differs from the indirectly calculated level by over 1%,
the memorized ratio is updated (the CORRECTION signal)
after a delay of 10 seconds.

OR
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Fig. 2. An exemplar application logic with analog processing

The processing logic of the basic blocks can be found in [3],
but we have added the division block, and the DANA and
DBIN cycle delay blocks based on our own invention. For

3The finite and infinite-domain input files for our example are available at:
http://doi.org/10.5281/zenodo.4316560

4In our example, we use the graphical elements of TXS because of the
amount of information publicly available in [3]. The reader should not assume
that the original logic was therefore based on TXS.



convenience, we explain the logic of the less trivial elements
in Figure 3.
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I1 I1

O1 O1

Cycle Delay
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processing order of feedback loops. 

Fig. 3. Explanation for selected function blocks used in the exemplar logic

(The design issue VTT detected with the original logic
has to do with the fact that the DANA block has a user-
configurable initial output value, which had been set to zero.
On initialisation, the switch component therefore outputs the
value zero for a minimum of ten seconds until the correction
can take effect. Assuming that the allowed level and the
calculated level are both positive, non-zero numbers, both of
the sum blocks will then output a negative value. A negative
value cannot be over 5%, so the ACT output is effectively
inhibited for the ten seconds after initialisation, no matter how
high the measured level is above the allowed level.)

In this example logic, there is only limited benefit on
the basic block level from infinite domain modelling—we
merely increase the accuracy of the multiplication and division
elements. The major benefit has to do with (1) the declaration
of the memory variable storing the input value from the last
cycle in the DANA element and (2) the declaration of the
analog input variables. The analyst can build the NuSMV input
file by declaring:

VAR
MEASURED_LEVEL: 1..120;
CALCULATED_LEVEL: 0..120;

...
MODULE DELAY_ANA(AI1, A1_FAULT, ...)

VAR
mem : 0..120;

The problem with the above solution is that the analysis
times become excessive. The analyst can alleviate the problem
by limiting the possible input values, and then—sometimes
through trial-and-error—also limit then minimize the possible
input values for the mem variable, e.g.:
VAR

MEASURED_LEVEL: 10, 40, 80, 100, 120;
CALCULATED_LEVEL: 0..120;

...
MODULE DELAY_ANA(AI1, A1_FAULT, ...)

VAR
mem: 0..12;

These changes require manual effort, but the effect on
analysis times is significant.

When constructing the nuXmv model, the analyst need not
worry with any of this, and can simply state:

VAR
MEASURED_LEVEL: real;
CALCULATED_LEVEL: real;

...
MODULE DELAY_ANA(AI1, A1_FAULT, ...)
VAR
mem: real;

The other ten NuSMV models where similarly modified for
nuXmv (although without any of the masking or simplification
we did for our public example). The analogue elements found
in each logic are listed in Table I. The above example is logic
7 in the table. A masked, simplified version of logic 2 is used
as an example in [6].

We rewrote the original PSL properties in LTL for nuXmv.
To experiment with the msat check ltlspec bmc command,
we also rewrote any property using past time temporal opera-
tors. (E.g., the property type G(response → Orequest) we
often use in properties addressing spurious actuation [6] was
changed to the equivalent [36] ¬(¬requestU (response ∧
¬request)).) We omitted the properties originally written in
CTL, which are not supported for the infinite domain.

B. Experimental results

For each of the eleven pairs of models, we checked the
same temporal properties, and calculated the average model
checking time for each property. We focus on the processing
time, because it is a tangible measure of computational cost.
The number of reachable states, for example, is not a sufficient
(or necessary even credible) criterion [6]. All the experiments
were done using in an Intel Core i7-6600U CPU with a clock
rate of 2.6 GHz. We used NuSMV version 2.6.0 and nuXmv
version 2.0.0. Table I shows the results of model checking
runs.

For the NuSMV benchmark, we ran BDD-based checks
using the commands check ltlspec, and check pslspec.

The nuxmv commands [15] we used where (as named in
Table I):

• IC3 : check ltlspec ic3
• BMC : msat check ltlspec bmc
• SBMC : msat check ltlspec sbmc inc
• invar. : check invar ic3

Each nuXmv algorithm was performed with bound k = 30.
We also experimented with the infinite domain command

msat check ltlspec inc coi, but the developers warn that
the feature is still experimental, and it failed to prove any
property TRUE (although it did successfully detect all the
FALSE properties). The algorithm was also the slowest one
for nuXmv. For logic 7, in particular, the average analysis time
exceeded two hours.



TABLE I
EXPERIMENTAL RESULTS

Average model checking time (s)
nuXmv

# Analog elements in logic NuSMV IC3 BMC SBMC invar.
1 cycle delay, functiona, limit treshold, multiplication, sum, switch 31,8 0,06 3,47 0,26 0,04
2 absolute, cycle delay, deadband, division, limit treshold, memory, multiplication, PIb, PIDb, sum 25,9 1,32 9,58 2,96 0,13d

3 cycle delay, division, limit treshold, limiter, maximum, memory, minimum, multiplication, switch 1,79 374 3080 80,0 0,07
4 limit treshold, 2nd maximum, 2nd minimum 0,41 0,28 0,88 0,63 0,03
5 binary adder, cycle delay, linear interpolation, memory, limit treshold, setpoint, switch 0,39 0,10 0,04 0,05 0,05
6 cycle delay, limit treshold, minimum, setpoint, sum, switch 0,20 0,15 22,9 1,41 0,03
7 cycle delay, division, limit treshold, multiplication, sum, switch 0,20 0,05 4,44c 5,91 0,03d

8 limit treshold, maximum, sum, 2nd maximum, 2nd minimum 0,15 0,07 2,53 1,56 0,04
9 binary adder, division, functiona, minimum, multiplication, sum, switch 0,13 0,04 0,34 0,22 0,02
10 functiona, limit treshold, sum 0,08 0,13 0,39c 0,18 0,04d

11 cycle delay, limit treshold, limiter, linear interpolation, minimum, sum 0,05 0,13 8,41 0,71 0,05d
a Custom algorithm for calculating plant-specific process variable(s)
b The detailed algorithm was not supplied by the designer. The block was abstracted in the model.
c Some properties were modified to replace temporal past operators.
d Some properties could not be expressed as invariants.

VI. DISCUSSION

A. Performance of nuXmv

Based on our experiments, of the nuXmv infinite domain
algorithms, IC3 seems to perform well. A notable exception
is logic 3 in Table I, but that particular logic contains several
feedback loops, as well as other elements that store real
values to memory. In our practical work with NuSMV, we
have generally noted that memorisation of analog values, in
particular, increases the analysis time. For logic 6, the setpoint
function block was modelled far more accurately for nuXmv,
contributing significantly to the complexity of the infinite-
domain model. Still, IC3 invariant checking performed well
for both logics 3 and 6.

IC3 invariant checking was the overall fastest method. A key
practical challenge is that nuXmv only supports one temporal
operator in invariants, next, and does not allow nesting (e.g.,
next(nextp)). This is a significant limitation—in three of our
11 examples, a real design issue was revealed by a property
that could not be expressed as an invariant.

The BMC and SBMC algorithms also performed well, and
were is some cases just as fast as IC3 to detect a FALSE
property. However, for the TRUE properties, with bound
k = 30, the analysis times were consistently longer. Limiting
the search depth (bound) makes BMC terminate faster, but
decreases the reliability.

The nuXmv developers point out that when the domain is
infinite, the verification problem is in general undecidable,
and IC3 may fail in proving a property [15]. However, in our
experiments, the IC3 algorithm was always able to determine
whether the property was TRUE or FALSE.

B. Implications for practical projects

Between NuSMV and nuXmv, the verification results did
not change. That is, the properties that we verified produced

the same outcome in both the finite-domain and the infinite-
domain case. On interpretation could be that the conserva-
tive assumptions VTT has made in abstracting the math for
NuSMV are reasonable.

In any case, it is clear that infinite-domain case makes it
easier for the analyst to model the logics that contain analog
signal processing, by reducing the need for abstractions.

Furthermore, it is most probable that the BDD-based, finite-
domain algorithms of nuXmv are more efficient than the ones
used in the older NuSMV.

One drawback of nuXmv’s infinite-domain algorithms is
that CTL is not supported. Some properties that have proven
useful cannot be formulated in LTL. E.g., AG EF p has in
practice revealed two real design issues where an output was
permanently stuck to some value (¬p).

A minor inconvenience is the lack of support for PSL.
Although the SERE style of PSL is merely syntactic sugar
for LTL, it is particularly convenient in expressing sequences
of states. Formal properties for process industry I&C often
deal with complex sequences and timing [19].

VII. CONCLUSION

The nuclear industry has justifiable reasons to use closed,
non-standard programming languages for safety classified I&C
systems. The downside is the need for manual work in building
the input files for model checking tools like NuSMV. Our
research shows that the infinite-domain algorithms of nuXmv
reduce the need for manual effort, particularly related to the
simplification and abstraction of analog signal processing, as
required by the heuristics of NuSMV.

In our previous work, we have shown that in the practical
verification work, the symbolic verification algorithms of
NuSVM consistently outperform the explicit-state algorithms
of tools like SPIN, and scale better than the real-time algo-
rithms of tools like UPPAAL. Now, it seems that nuXmv, in



turn, can outperform NuSMV, while improving coverage with
new functionality.

Currently, infinite-domain models cannot be checked against
CTL or PSL properties. Lack of support for PSL is an
inconvenience, but certain types of CTL properties—proven
useful in practice—cannot be expressed in LTL.
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