4,423 research outputs found

    A 96-Channel FPGA-based Time-to-Digital Converter

    Full text link
    We describe an FPGA-based, 96-channel, time-to-digital converter (TDC) intended for use with the Central Outer Tracker (COT) in the CDF Experiment at the Fermilab Tevatron. The COT system is digitized and read out by 315 TDC cards, each serving 96 wires of the chamber. The TDC is physically configured as a 9U VME card. The functionality is almost entirely programmed in firmware in two Altera Stratix FPGA's. The special capabilities of this device are the availability of 840 MHz LVDS inputs, multiple phase-locked clock modules, and abundant memory. The TDC system operates with an input resolution of 1.2 ns. Each input can accept up to 7 hits per collision. The time-to-digital conversion is done by first sampling each of the 96 inputs in 1.2-ns bins and filling a circular memory; the memory addresses of logical transitions (edges) in the input data are then translated into the time of arrival and width of the COT pulses. Memory pipelines with a depth of 5.5 μ\mus allow deadtime-less operation in the first-level trigger. The TDC VME interface allows a 64-bit Chain Block Transfer of multiple boards in a crate with transfer-rates up to 47 Mbytes/sec. The TDC also contains a separately-programmed data path that produces prompt trigger data every Tevatron crossing. The full TDC design and multi-card test results are described. The physical simplicity ensures low-maintenance; the functionality being in firmware allows reprogramming for other applications.Comment: 32 pages, 13 figure

    Bio-inspired 0.35μm CMOS Time-to-Digital Converter with 29.3ps LSB

    Get PDF
    Time-to-digital converter (TDC) integrated circuit is introduced in this paper. It is based on chain of delay elements composing a regular scalable structure. The scheme is analogous to the sound direction sensitivity nerve system found in barn owl. The circuit occupies small silicon area, and its direct mapping from time to position-code makes conversion rates up to 500Msps possible. Specialty of the circuit is the structural and functional symmetry. Therefore the role of start and stop signals are interchangeable. In other words negative delay is acceptable: the circuit has no dead time problems. These are benefits of the biology model of the auditory scene representation in the bird's brain. The prototype chip is implemented in 0.35μm CMOS having less than 30ps single-shot resolution in the measurements.Hungarian National Research Foundation TS4085

    A Novel Cyclic Time to Digital Converter Based on Triple-Slope Interpolation and Time Amplification

    Get PDF
    This paper investigates a novel cyclic time-to-digital converter (TDC) which employs triple-slope analog interpolation and time amplification techniques for digitizing the time interval between the rising edges of two input signals(Start and Stop). The proposed converter will be a 9-bit cyclic time-to-digital converter that does not use delay lines in its structure. Therefore, it has a low sensitivity to temperature, power supply and process (PVT) variations. The other advantages of the proposed converter are low circuit complexity, and high accuracy compared with the time-to-digital converters that have previously been proposed. Also, this converter improves the time resolution and the dynamic range. In the same resolution, linear range and dynamic range, the proposed cyclic TDC reduces the number of circuit elements compared with the converters that have a similar circuit structure. Thus, the converter reduces the chip area, the power consumption and the figure of merit (FoM). In this converter, the integral nonlinearity (INL) and differential nonlinearity (DNL) errors are reduced. In order to evaluate the idea, the proposed time-to-digital converter is designed in TSMC 45 nm CMOS technology and simulated. Comparison of the theoretical and simulation results confirms the benefits of the proposed TDC

    The SAMPIC Waveform and Time to Digital Converter

    Get PDF
    Sce ElectroniqueInternational audienceSAMPIC is a Waveform and Time to DigitalConverter (WTDC) multichannel chip. Each of its 16 channelsassociates a DLL-based TDC providing a raw time with an ultrafastanalog memory allowing fine timing extraction as well asother parameters of the pulse. Each channel also integrates adiscriminator that can trigger itself independently or participateto a more complex trigger. After triggering, analog data isdigitized by an on-chip ADC and only that corresponding to aregion of interest is sent serially to the DAQ. The association ofthe raw and fine timings permits achieving timing resolutions of afew ps rms. The paper describes the detailed SAMPIC0architecture and reports its main measured performances

    Time-to-Digital Converter Architectures Based on Mathematics

    Get PDF
    学位記番号:理工博甲10

    Low Resource FPGA Based Time-to-Digital Converter

    Get PDF
    For the precise measurement of the time difference between the arrival of different signals coming from the different channels, the time-to-digital converter (TDC) implemented in Field Programmable Gate Array (FPGA) is a very useful device. The TDC implemented so far are  basically tapped delay lines which provides a resolution of about 10 ps however such high resolution is necessary for some specific applications. So a low resource TDC implemented in FPGA is preferred which helps to measure the time difference between the signals.Keywords: analog-to-digital converter (ADC), resolution, DPLL, clock generation, jitte

    Technology independent ASIC based time to digital converter

    Get PDF
    This paper proposes a design methodology for a synthesizable, fully digital TDC architecture. The TDC was implemented using a hardware description language (HDL), which improves portability between platforms and technologies and significantly reduces design time. The proposed design flow is fully automated using TCL scripting and standard CAD tools configuration files. The TDC is based on a Tapped Delay Line architecture and explores the use of Structured Data Path (SDP) as a way to improve the TDL linearity by homogenizing the routing and parasitic capacitances across the multiple TDL’s steps. The studied approach also secures a stable, temperature independent measurement operation. The proposed TDC architecture was fabricated using TSMC 180nm CMOS process technology, with a 50MHz reference clock and a supply voltage of 1.8V. The fabricated TDC achieved an 111ps RMS resolution and a single-shot precision of 54ps (0.48 LSB) and 279ps (2.51 LSB), with and without post-measurement software calibration, respectively. The DNL across the channel is mostly under 0.3 LSB and a maximum of 8 LSB peak-to-peak INL was achieved, when no calibration is applied.- (037902
    corecore