332 research outputs found

    Anpassen verteilter eingebetteter Anwendungen im laufenden Betrieb

    Get PDF
    The availability of third-party apps is among the key success factors for software ecosystems: The users benefit from more features and innovation speed, while third-party solution vendors can leverage the platform to create successful offerings. However, this requires a certain decoupling of engineering activities of the different parties not achieved for distributed control systems, yet. While late and dynamic integration of third-party components would be required, resulting control systems must provide high reliability regarding real-time requirements, which leads to integration complexity. Closing this gap would particularly contribute to the vision of software-defined manufacturing, where an ecosystem of modern IT-based control system components could lead to faster innovations due to their higher abstraction and availability of various frameworks. Therefore, this thesis addresses the research question: How we can use modern IT technologies and enable independent evolution and easy third-party integration of software components in distributed control systems, where deterministic end-to-end reactivity is required, and especially, how can we apply distributed changes to such systems consistently and reactively during operation? This thesis describes the challenges and related approaches in detail and points out that existing approaches do not fully address our research question. To tackle this gap, a formal specification of a runtime platform concept is presented in conjunction with a model-based engineering approach. The engineering approach decouples the engineering steps of component definition, integration, and deployment. The runtime platform supports this approach by isolating the components, while still offering predictable end-to-end real-time behavior. Independent evolution of software components is supported through a concept for synchronous reconfiguration during full operation, i.e., dynamic orchestration of components. Time-critical state transfer is supported, too, and can lead to bounded quality degradation, at most. The reconfiguration planning is supported by analysis concepts, including simulation of a formally specified system and reconfiguration, and analyzing potential quality degradation with the evolving dataflow graph (EDFG) method. A platform-specific realization of the concepts, the real-time container architecture, is described as a reference implementation. The model and the prototype are evaluated regarding their feasibility and applicability of the concepts by two case studies. The first case study is a minimalistic distributed control system used in different setups with different component variants and reconfiguration plans to compare the model and the prototype and to gather runtime statistics. The second case study is a smart factory showcase system with more challenging application components and interface technologies. The conclusion is that the concepts are feasible and applicable, even though the concepts and the prototype still need to be worked on in future -- for example, to reach shorter cycle times.Eine große Auswahl von Drittanbieter-Lösungen ist einer der Schlüsselfaktoren für Software Ecosystems: Nutzer profitieren vom breiten Angebot und schnellen Innovationen, während Drittanbieter über die Plattform erfolgreiche Lösungen anbieten können. Das jedoch setzt eine gewisse Entkopplung von Entwicklungsschritten der Beteiligten voraus, welche für verteilte Steuerungssysteme noch nicht erreicht wurde. Während Drittanbieter-Komponenten möglichst spät -- sogar Laufzeit -- integriert werden müssten, müssen Steuerungssysteme jedoch eine hohe Zuverlässigkeit gegenüber Echtzeitanforderungen aufweisen, was zu Integrationskomplexität führt. Dies zu lösen würde insbesondere zur Vision von Software-definierter Produktion beitragen, da ein Ecosystem für moderne IT-basierte Steuerungskomponenten wegen deren höherem Abstraktionsgrad und der Vielzahl verfügbarer Frameworks zu schnellerer Innovation führen würde. Daher behandelt diese Dissertation folgende Forschungsfrage: Wie können wir moderne IT-Technologien verwenden und unabhängige Entwicklung und einfache Integration von Software-Komponenten in verteilten Steuerungssystemen ermöglichen, wo Ende-zu-Ende-Echtzeitverhalten gefordert ist, und wie können wir insbesondere verteilte Änderungen an solchen Systemen konsistent und im Vollbetrieb vornehmen? Diese Dissertation beschreibt Herausforderungen und verwandte Ansätze im Detail und zeigt auf, dass existierende Ansätze diese Frage nicht vollständig behandeln. Um diese Lücke zu schließen, beschreiben wir eine formale Spezifikation einer Laufzeit-Plattform und einen zugehörigen Modell-basierten Engineering-Ansatz. Dieser Ansatz entkoppelt die Design-Schritte der Entwicklung, Integration und des Deployments von Komponenten. Die Laufzeit-Plattform unterstützt den Ansatz durch Isolation von Komponenten und zugleich Zeit-deterministischem Ende-zu-Ende-Verhalten. Unabhängige Entwicklung und Integration werden durch Konzepte für synchrone Rekonfiguration im Vollbetrieb unterstützt, also durch dynamische Orchestrierung. Dies beinhaltet auch Zeit-kritische Zustands-Transfers mit höchstens begrenzter Qualitätsminderung, wenn überhaupt. Rekonfigurationsplanung wird durch Analysekonzepte unterstützt, einschließlich der Simulation formal spezifizierter Systeme und Rekonfigurationen und der Analyse der etwaigen Qualitätsminderung mit dem Evolving Dataflow Graph (EDFG). Die Real-Time Container Architecture wird als Referenzimplementierung und Evaluationsplattform beschrieben. Zwei Fallstudien untersuchen Machbarkeit und Nützlichkeit der Konzepte. Die erste verwendet verschiedene Varianten und Rekonfigurationen eines minimalistischen verteilten Steuerungssystems, um Modell und Prototyp zu vergleichen sowie Laufzeitstatistiken zu erheben. Die zweite Fallstudie ist ein Smart-Factory-Demonstrator, welcher herausforderndere Applikationskomponenten und Schnittstellentechnologien verwendet. Die Konzepte sind den Studien nach machbar und nützlich, auch wenn sowohl die Konzepte als auch der Prototyp noch weitere Arbeit benötigen -- zum Beispiel, um kürzere Zyklen zu erreichen

    Architecture-based Evolution of Dependable Software-intensive Systems

    Get PDF
    This cumulative habilitation thesis, proposes concepts for (i) modelling and analysing dependability based on architectural models of software-intensive systems early in development, (ii) decomposition and composition of modelling languages and analysis techniques to enable more flexibility in evolution, and (iii) bridging the divergent levels of abstraction between data of the operation phase, architectural models and source code of the development phase

    Reconfigurable Computing Systems for Robotics using a Component-Oriented Approach

    Get PDF
    Robotic platforms are becoming more complex due to the wide range of modern applications, including multiple heterogeneous sensors and actuators. In order to comply with real-time and power-consumption constraints, these systems need to process a large amount of heterogeneous data from multiple sensors and take action (via actuators), which represents a problem as the resources of these systems have limitations in memory storage, bandwidth, and computational power. Field Programmable Gate Arrays (FPGAs) are programmable logic devices that offer high-speed parallel processing. FPGAs are particularly well-suited for applications that require real-time processing, high bandwidth, and low latency. One of the fundamental advantages of FPGAs is their flexibility in designing hardware tailored to specific needs, making them adaptable to a wide range of applications. They can be programmed to pre-process data close to sensors, which reduces the amount of data that needs to be transferred to other computing resources, improving overall system efficiency. Additionally, the reprogrammability of FPGAs enables them to be repurposed for different applications, providing a cost-effective solution that needs to adapt quickly to changing demands. FPGAs' performance per watt is close to that of Application-Specific Integrated Circuits (ASICs), with the added advantage of being reprogrammable. Despite all the advantages of FPGAs (e.g., energy efficiency, computing capabilities), the robotics community has not fully included them so far as part of their systems for several reasons. First, designing FPGA-based solutions requires hardware knowledge and longer development times as their programmability is more challenging than Central Processing Units (CPUs) or Graphics Processing Units (GPUs). Second, porting a robotics application (or parts of it) from software to an accelerator requires adequate interfaces between software and FPGAs. Third, the robotics workflow is already complex on its own, combining several fields such as mechanics, electronics, and software. There have been partial contributions in the state-of-the-art for FPGAs as part of robotics systems. However, a study of FPGAs as a whole for robotics systems is missing in the literature, which is the primary goal of this dissertation. Three main objectives have been established to accomplish this. (1) Define all components required for an FPGAs-based system for robotics applications as a whole. (2) Establish how all the defined components are related. (3) With the help of Model-Driven Engineering (MDE) techniques, generate these components, deploy them, and integrate them into existing solutions. The component-oriented approach proposed in this dissertation provides a proper solution for designing and implementing FPGA-based designs for robotics applications. The modular architecture, the tool 'FPGA Interfaces for Robotics Middlewares' (FIRM), and the toolchain 'FPGA Architectures for Robotics' (FAR) provide a set of tools and a comprehensive design process that enables the development of complex FPGA-based designs more straightforwardly and efficiently. The component-oriented approach contributed to the state-of-the-art in FPGA-based designs significantly for robotics applications and helps to promote their wider adoption and use by specialists with little FPGA knowledge

    Architectural Support for Software Performance in Continuous Software Engineering: A Systematic Mapping Study

    Full text link
    The continuous software engineering paradigm is gaining popularity in modern development practices, where the interleaving of design and runtime activities is induced by the continuous evolution of software systems. In this context, performance assessment is not easy, but recent studies have shown that architectural models evolving with the software can support this goal. In this paper, we present a mapping study aimed at classifying existing scientific contributions that deal with the architectural support for performance-targeted continuous software engineering. We have applied the systematic mapping methodology to an initial set of 215 potentially relevant papers and selected 66 primary studies that we have analyzed to characterize and classify the current state of research. This classification helps to focus on the main aspects that are being considered in this domain and, mostly, on the emerging findings and implications for future researc

    Design and management of image processing pipelines within CPS : Acquired experience towards the end of the FitOptiVis ECSEL Project

    Get PDF
    Cyber-Physical Systems (CPSs) are dynamic and reactive systems interacting with processes, environment and, sometimes, humans. They are often distributed with sensors and actuators, characterized for being smart, adaptive, predictive and react in real-time. Indeed, image- and video-processing pipelines are a prime source for environmental information for systems allowing them to take better decisions according to what they see. Therefore, in FitOptiVis, we are developing novel methods and tools to integrate complex image- and video-processing pipelines. FitOptiVis aims to deliver a reference architecture for describing and optimizing quality and resource management for imaging and video pipelines in CPSs both at design- and run-time. The architecture is concretized in low-power, high-performance, smart components, and in methods and tools for combined design-time and run-time multi-objective optimization and adaptation within system and environment constraints.Peer reviewe

    Combining SysML and Timed Coloured Petri Nets for Designing Smart City Applications

    Get PDF
    A smart city is an urban centre that integrates a variety of solutions to improve infrastructure performance and achieve sustainable urban development. Urban roads are a crucial infrastructure highly demanded by citizens and organisations interested in their deployment, performance, and safety. Urban traffic signal control is an important and challenging real-world problem that aims to monitor and improve traffic congestion. The deployment of traffic signals for vehicles or pedestrians at an intersection is a complex activity that changes constantly, so it is necessary to establish rules to control the flow of vehicles and pedestrians. Thus, this article describes the joint use of the SmartCitySysML, a profile proposed by the authors, with TCPN (Timed Coloured Petri Nets) to refine and formally model SysML diagrams specifying the internal behaviour, and then verify the developed model to prove behavioural properties of an urban traffic signal control system

    Advantages of Model-Based Development in terms of Business Benefits

    Get PDF
    Today’s industries require quick reactions and high-quality solutions. Businesses want to keep costs and resource misuse to a minimum for greater benefits. Automated processes can suit the efficiency needed in businesses. In the software field, this means quick development time and maintainability. Different methods have advantages towards these goals. One of these methods is model-based development. This thesis analyses model-based development as the method emphasises automation effi-ciency and high quality. Model-based development is based on capturing required elements in-to a model. The model is processed with appropriate tools to form a wanted outcome. The tools tend to be highly automatic. The approach is applied in different development fields, more with practical simpler systems than complex software. The simpler ones usually have functional behaviour that can be modelled easier. This thesis includes multiple advantages of a model-based approach that can answer the needs and requirements of industries, even overcome them. Advantages like reduced development time with high quality and model reusability can result in business-level benefits. To exploit the benefits in today’s state requires costs and effort as they are many times needed to be performed in a specific environment and with specific tools. The environment sets the need for specific knowledge of practises and effort in understanding the method to succeed. The challenges are needed to be overcome by more generally applicable solutions. The analysing of the advantages in this thesis shows that there is no significant benefit that can be achieved through model-based development. The benefits are due to the overall advantageous nature of the approach. While the commercial usage of the model-based development is still narrow, there is a future for the methodology. Research regarding model-based development is refining the used concepts and providing new ways to exploit the advantages

    Early timing analysis based on scenario requirements and platform models

    Get PDF
    Distributed, software-intensive systems (e.g., in the automotive sector) must fulfill communication requirements under hard real-time constraints. The requirements have to be documented and validated carefully using a systematic requirements engineering (RE) approach, for example, by applying scenario-based requirements notations. The resources of the execution platforms and their properties (e.g., CPU frequency or bus throughput) induce effects on the timing behavior, which may lead to violations of the real-time requirements. Nowadays, the platform properties and their induced timing effects are verified against the real-time requirements by means of timing analysis techniques mostly implemented in commercial-off-the-shelf tools. However, such timing analyses are conducted in late development phases since they rely on artifacts produced during these phases (e.g., the platform-specific code). In order to enable early timing analyses already during RE, we extend a scenario-based requirements notation with allocation means to platform models and define operational semantics for the purpose of simulation-based, platform-aware timing analyses. We illustrate and evaluate the approach with an automotive software-intensive system

    WCET and Priority Assignment Analysis of Real-Time Systems using Search and Machine Learning

    Get PDF
    Real-time systems have become indispensable for human life as they are used in numerous industries, such as vehicles, medical devices, and satellite systems. These systems are very sensitive to violations of their time constraints (deadlines), which can have catastrophic consequences. To verify whether the systems meet their time constraints, engineers perform schedulability analysis from early stages and throughout development. However, there are challenges in obtaining precise results from schedulability analysis due to estimating the worst-case execution times (WCETs) and assigning optimal priorities to tasks. Estimating WCET is an important activity at early design stages of real-time systems. Based on such WCET estimates, engineers make design and implementation decisions to ensure that task executions always complete before their specified deadlines. However, in practice, engineers often cannot provide a precise point of WCET estimates and they prefer to provide plausible WCET ranges. Task priority assignment is an important decision, as it determines the order of task executions and it has a substantial impact on schedulability results. It thus requires finding optimal priority assignments so that tasks not only complete their execution but also maximize the safety margins from their deadlines. Optimal priority values increase the tolerance of real-time systems to unexpected overheads in task executions so that they can still meet their deadlines. However, it is a hard problem to find optimal priority assignments because their evaluation relies on uncertain WCET values and complex engineering constraints must be accounted for. This dissertation proposes three approaches to estimate WCET and assign optimal priorities at design stages. Combining a genetic algorithm and logistic regression, we first suggest an automatic approach to infer safe WCET ranges with a probabilistic guarantee based on the worst-case scheduling scenarios. We then introduce an extended approach to account for weakly hard real-time systems with an industrial schedule simulator. We evaluate our approaches by applying them to industrial systems from different domains and several synthetic systems. The results suggest that they are possible to estimate probabilistic safe WCET ranges efficiently and accurately so the deadline constraints are likely to be satisfied with a high degree of confidence. Moreover, we propose an automated technique that aims to identify the best possible priority assignments in real-time systems. The approach deals with multiple objectives regarding safety margins and engineering constraints using a coevolutionary algorithm. Evaluation with synthetic and industrial systems shows that the approach significantly outperforms both a baseline approach and solutions defined by practitioners. All the solutions in this dissertation scale to complex industrial systems for offline analysis within an acceptable time, i.e., at most 27 hours

    Onto4CAAL: An Ontology to Support Requirements Specification in the Development of AAL (Ambient Assisted Living) Systems

    Get PDF
    The Ambient Assisted Living (AAL) is a technological approach that emerged to meet the demands of the elderly and people with disabilities. As they are considered complex and multidisciplinary systems, it is necessary to identify and define which modules need to compose these systems. Among the challenges found in the development of the AAL systems are the alignment with functional and/or non-functional requirements and the compliance with ethical, legal, social, medical and technical restrictions that guide these types of systems. Therefore, this work presents a core ontology (Onto4CAAL) to support the specification of requirements in AAL systems, where the elements that are part of the system type are integrated. Using this ontology, it was possible to develop a domain ontology (Onto4Elev) for Vertical Lift Platforms, where a validation was carried out with the industry in relation to the elements that constitute it and, later, a scenario was built for the application simulation and verification. With the use of ontology, it will be possible to standardize the understanding of the associated terms and, at the same time, to verify the relationship among the elements, helping the designer in the decision making
    • …
    corecore