
Time Properties Dedicated Transformation from

UML-MARTE Activity to Time Petri Net

Ning Ge, Marc Pantel, Xavier Crégut

To cite this version:

Ning Ge, Marc Pantel, Xavier Crégut. Time Properties Dedicated Transformation from UML-
MARTE Activity to Time Petri Net. 2012. <hal-00686986>

HAL Id: hal-00686986

https://hal.archives-ouvertes.fr/hal-00686986

Submitted on 11 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50539485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00686986

Time Properties Dedicated Transformation from UML-MARTE Activity to
Time Petri Net

Ning Ge, Marc Pantel and Xavier Crégut
University of Toulouse, IRIT/INPT

2 rue Charles Camichel, BP 7122, 31071 Toulouse cedex 7, France
{Ning.Ge, Marc.Pantel, Xavier.Cregut}@enseeiht.fr

Abstract

Critical Real-Time Embedded Systems (RTES) have strong
requirement regarding system’s reliability. UML and its pro-
file MARTE are standardized modeling language that are
getting widely accepted by industrial designers to cope with
the development of complex RTES. Relying on Model-Driven
Engineering (MDE), critical time properties’ verification in
UML-MARTE model at early phases of the system lifecycle
becomes possible. However, many challenges still exist. A
key challenge is to eliminate the gap between UML semi-
formal semantics and fully formal executable semantics us-
ing model transformation. The model transformation must
ensure on the one hand the consistency between high-level
user dedicated models and lower-level verification dedicated
ones, and on the other hand that the subsequent verification
is not too expensive and can be applied to real size industrial
models. This paper presents an approach to translate UML-
MARTE Activity Diagrams to Time Petri Net (TPN) with
the aim of verifying efficiently time properties. This work
is under the framework of the UML-MARTE Model Checker
which is dedicated to verifying time properties (synchroniza-
tion, schedulability, boundedness, WCET, etc.) in RTES.
This contribution focuses on how to define the TPN formal
semantics to avoid the core problem of state space explosion
in model checking. The proposed method is validated using
a representative case study. Experimental results are given
that demonstrate the method’s performance.

Introduction

As the complexity of RTES increases, requirements for sys-
tem’s reliability become more and more stringent. The chal-
lenges are to guarantee the system reliability while ensuring
that the functional requirements are completely met with less
trade-off for system design’s efficiency. Model-driven Engi-
neering (MDE) allows an early integration of feasibility anal-
ysis in the conception phase, and enables a rapid iterative
design-prototype cycle. The core issue of MDE for RTES is
how to rapidly validate and verify that the system’s behavior
matches the specification, especially for the temporal aspect.

UML (Unified Modeling Language) and its profile MARTE
(Modeling and Analysis of Real Time and Embedded sys-
tems) are standardized modeling languages that are getting
widely accepted by industrial designers to cope with the de-
velopment of complex RTES. But, properties cannot be ver-
ified directly using the UML semi-formal semantic. A trans-

lation from UML into a formal domain must be performed
where the key challenge consists in expressing the temporal
semantics between the user high level models and the veri-
fication low level formal ones while keeping the verification
scalable enough to be applied to real industrial models.

This paper presents an approach to translate UML-
MARTE Activity Diagrams to Time Petri Net (TPN), which
is driven by the requirement that the time properties’ ver-
ification needs to be conducted in a practical time scale.
This work is under the framework of UML-MARTE Model
Checker that is dedicated to verifying time properties (syn-
chronization, schedulability, boundedness, WCET, etc) in
RTES. This contribution focuses on how to define TPN based
formal semantics for UML-MARTE Activity Diagrams to
avoid the core problem of state space explosion in model
checking. TPN is selected as verification model, not only
because of the maturity of both its theory and the associ-
ated TINA toolset [BRV04], but also because of its powerful
capacity to express temporal semantics.

This paper is organized as follows: Section 1 introduces
some preliminaries. Section 2 compares this work with re-
lated ones. Section 3 presents a brief overview of UML-
MARTE Model Checker. Section 4 describes the methodol-
ogy. Section 5 presents the transformation approach. Section
6 evaluates the proposed approach by illustrating experimen-
tal results and discussing the method’s performance based on
a case study. Section 7 gives some concluding remarks.

1 Preliminaries

1.1 UML Activity Diagram

UML Activity [Obj09a] modeling emphasizes the sequence
and conditions for coordinating lower-level behaviors, rather
than which classifiers own those behaviors. These are com-
monly called control flow and object flow models. The ac-
tions coordinated by activity models can be initiated because
other actions finish executing, because objects and data be-
come available, or because events occur external to the flow.

1.2 MARTE

MARTE [Obj09b] is a UML profile standardized by the
OMG. It adds capabilities to UML for model-driven devel-
opment of RTES. MARTE provides foundations for model-
based description of RTES. These core concepts are then
refined for both modeling and analysis concerns.

1

1.3 Time Petri Net
Time Petri Net [MF76] model is an extension of Petri Net
which allows the symbolic expression of execution time. A
Time Petri Net T is a tuple (P, T, E, W, M0, (α, β)), where

• P represents a finite set of places,

• T represents a finite set of transitions,

• E represents the edges by E ⊆ (P × T) ∪ (T × P),

• W represents the weight of the edges,

• M0 represents the initial marking,

• α ∈ (Q ≥ 0) and β ∈ (Q ≥ 0 ∪∞) respectively represent
the earliest and latest firing time constraints.

2 Related Works
According to the OMG, UML 2 Activity models are based on
Petri Net semantics making them the best choice as tools for
system behavior description and for property verification.

Many transformation approaches from UML Activity Dia-
grams (AD) to Petri Nets exist. They rely on Colored Petri
Net (CPN) [Sta08], Stochastic Petri Nets (SPN) [LGMC04],
Instantiable Petri Net (IPN) [TMH08], Timed Color Petri
Net with Inhibitor Arc (TCPNIA) [YYSQ10], or Time Petri
Net (TPN) [AMCN09].

[Sta08] presented an intuitive conversion from UML-AD
into CPN. It focused on how to ease the understanding of
models whilst the fundamental features are retained.

[LGMC04] aimed to translate UML-AD into SPN and ap-
plied it in Software Performance Engineering (SPE) process
to measure system’s performance.

[TMH08] defined IPN and translated UML model into IPN
models with the purpose of verifying the correctness and
inter-diagram consistency of UML diagrams.

[YYSQ10] maps UML-MARTE AD into TCPNIA to pro-
vide a possible foundation for analyzing non-functional prop-
erties of system. But it does not propose the corresponding
analysis approach, which remains open according to our un-
derstanding. Thus, we cannot evaluate the performance of
this mapping method in verification aspect.

[AMCN09] is an approach relying on TPN as verification
model. It proposed a methodology aiming to map SysML
Activity Diagrams to TPN with energy constraints (ETPN)
to estimate the energy consumption and execution time of
the system. Compared with the other works, it dealt with
the temporal semantics in UML, although it only estimated
execution time of system. However, its relative static trans-
formation method leads to a limit for its extension capacity
to cover more properties.

To summarize these translation approaches, none of them
aimed to verify time properties for safety critical RTES,
which means that, to our knowledge and understanding, time
property verification dedicated transformation from UML-
MARTE Activity to Petri Net has not been dealt with so
far.

3 Overview of UML-MARTE Model
Checker

The goal of the UML-MARTE Model Checker1 (Figure 1) is
to verify whether a UML-MARTE RTES Model satisfies the
designed Time Specifications or respects the required Time
Constraints.

TPN Model
TPN Model
with Observer

LTL/CTL

TPN Model Checker

Tagged
Verification
Result

Behaviour/Structure
mapping

Quantitative property
verification model

generation

Quantitative property
verification result
interpretation

Tag

Quantitative
Result

Time
Specification/Constraint

 mapping
Formal Time
Specification/
Constraint Computation

Time Property
Verification Result

UML-MARTE

Model

Checker

TPN
Optimization

Design Refinement

UML-MARTE RTES Model

System Model
Time

Specification/
Constraint

Behaviour

Model

Architecture

Model

Figure 1: UML-MARTE Model Checker

It takes the System Model and Time Specification/Con-
straint as input. The System Model consists of two con-
cerns: Behaviour Model and Architecture Model. The former
defines how the system will act and respond to its outside
world while the latter describes the interconnection relation
between sub-components of the system. The Time Spec-
ification/Constraint consists of two categories: functional
and non-functional. The former concerns whether system’s
output value is consistent with what it is designed for and
whether the output is generated at desired time, while the
latter focus on the performance requirements, etc.
System Model and Time Specification/Constraint are re-

spectively transformed to associated semantic components at
TPN level through Behavior/Structure Mapping and Time
Specification/Constraint Mapping approaches. All the trans-
formations are performed automatically and the executable
formal model is hidden to the end user.

After TPN Optimization, the formal verification is per-
formed using the generated TPN Model and Generated
Quantitative Timing Property, in which a dedicated iterative
observer-based model checking method and the TINA toolset
are applied. Finally, Computation is performed with Quan-
titative Results and Formal Time Specification/Constraint
to get the target Time Property Verification Result used to
refine the original design.

We have proposed efficient approach for each core issue
in the whole framework. In this paper, we focus on the ap-
proach Behavior/Structure Mapping of UML Activity.

1This work was funded by the French ministries of Industry and Re-
search and the Midi-Pyrénées regional authorities through the ITEA2
OPEES and FUI Projet P projects

2

4 Methodology Description

4.1 General Transformation Pattern
In order to automate the assembly of the TPN elements
transformed from UML, a general pattern (Figure 2) of tar-
get TPN is predefined. Only the TPN elements (transition,
place, arc) in real line are belonging to the transformed result
of given AD elements; those in dotted line are the mapping
result of other related AD elements.

Transition-place structure

C_IN

C_OUT
[0,0]

Figure 2: General Pattern

4.2 Transformation Principle
Our translation approach from UML-MARTE-AD is driven
by the assessed time properties. The approach should respect
the following 6 principles.

1. This transformation approach corresponds to the TPN
abstraction without data, which means the models are
data independent.

2. The transformation of one UML-AD element may be
different according to the time property to be assessed.

3. For some intuitive elements not influencing time proper-
ties, the translated TPN semantic can be standardized
and homogeneous for all the property.

4. The transformation should guarantee the consistency of
the semantics between high-level user model and lower-
lever verification model. However, a correct transforma-
tion here does not imply a 100% semantic preservation,
but rather to make sure that the semantics necessary for
the properties to be assessed are preserved during the
model transformation.

5. The generated TPN models should be able to perform a
highly efficient verification of time properties, especially
in large scale asynchronous applications.

6. The transformed elements should facilitate the assembly,
which may cause the performance a little degraded than
manual modelled one.

4.3 Mono-clock/Multi-clock Based System
For RTES components, execution can be driven by the same
clock or by different clocks. The main difference between
these two scenarios for time properties’ verification is that
clock drifts must be taken into account in multi-clock envi-
ronment. In mono-clock context, it is not mandatory to dis-
tinguish the notion of tick and tick cycle, because the differ-
ence between tick duration and physical time is of the same

proportion at any given time. If a clock drift occurs, it is also
effective for every component in the system. In a multi-clock
based system, however, the model transformation need to be
compatible to present the correct polychronic semantics of
clock-driven system as well as the clock drift. The main idea
is to assume a global physical clock and project each time
consumption and drift on this precise time reference. In our
study, we use strictly the physical time notion as the exact
reference for both mono and multi-clock based system. On
the other hand, as the physical time is dense and the verifi-
cation tools rely on dense symbolic time, our approach can
handle both dense time problem together with discrete time.

4.4 Resource Scheduling

The transformation of some well-known scheduling algorithm
to TPN models will often introduce some semantic ambi-
guities. Moreover, the exact behaviour of some dynamic
scheduling algorithm could not be modelled by TPN in trivial
ways. To cope with the above problems, our transformation
method for resource proposes a universal scheduling algo-
rithm for both non-preemptive scheduling and pre-emptive
scheduling rather than a specific one.

5 Transformation Rules

We present transformation rules for control nodes, action,
resource, object, and connections in UML Activity.

5.1 Control Nodes

The mapping of some control elements is intuitive, because
TPN has the semantic equivalence of these control charac-
teristics (branch, concurrence, sequence, etc...). In addition,
the semantics of some control nodes are dual. So the TPN
modeling is also dual for these elements.

5.1.1 Initial Node & Flow Final Node

Initial node and flow final node (Figure 3) are dual elements
for flow token control. The dual characteristic is that one
emits the control token, and one destroys the control token.
As in UML-AD, an initial node could not have predecessor
and a flow final node could not have successor, a derivation to
the general pattern of the TPN model transformation occurs:
initial node does not have C_IN and flow final node does not
have C_OUT.

C_OUT [0,0]

C_IN

Initial Node Flow Final Node

Figure 3: Initial Node & Flow Final Node

3

5.1.2 Activity Final Node

Activity final node (see Figure 4) requires terminating all the
activity flow immediately and destroying all control tokens,
while in TPN the later one could not be modelled perfectly.
The compromise we make in this paper is only considering
to terminate all the activity flow once the activity final node
receives the control token. In TPN, this "sudden exit" is im-
plemented by using inhibitor arc to link to all the transitions
in this mapping TPN. As the mass usage of inhibitor will
potentially degrade the computation performance in TPN
model checker, we strongly recommend using flow final node
in UML-AD to model those normally ended flow.

[0,0] C_OUT

C_IN

Activity Final Node

For each transitions
in this TPN, an
inhibitor arc is linked

Figure 4: Activity Final Node

5.1.3 Fork Node & Join Node

Fork node and join node (Figure 5) are dual nodes for con-
currence control. The common characteristic is that each
branch has an "eventually and" relation, which means their
execution are eventually concurrent.

[0,0]

C_IN

C_OUT

Branch 1

Branch 2

Branch N

...

[0,0]

C_IN

C_OUT

Fork Join

Figure 5: Fork Node & Join Node

5.1.4 Decision Node & Merge Node

Decision node and merge node (Figure 6) are dual nodes
for branch control. The common characteristic is that each
branch has a "or" relation, which means their execution are
mutually exclusive.

5.1.5 Decision Node (with Finite Loop)

If the decision node (Figure 7) has loop branches which ex-
ecute finitely, the bound of loop should be added into the
transformation and the reset function of loop bound should
be executed for preparing next loop activation once the deci-
sion node chooses a non-loop branch (the loop is over). One
intuitive doubt with this semantic is that the state space
may grow up rapidly along with the increase of loop bound

Decision

Branch 1

Branch 2

Branch N

...

C_IN

C_OUT

C_IN

Merge

[0,0]

[0,0]

[0,0]

[0,0] C_OUT

Figure 6: Decision Node & Merge Node

during the verification, because the loop counter conserves
the same quantity of state than the loop bound. We prove
in the evaluation section that the time complexity and space
complexity are O(n2), where n is the loop bound.

C_IN

C_OUT

[0,0]

[0,0]

[0,0]

k

[0,0]

loop bound restore

[0,0]
k

Finite loop
branch

Non-Finite loop
branch

C_OUT

Figure 7: Decision Node (with Finite Loop)

5.2 Action

Action is the fundamental unit of executable functionality.
It takes a set of inputs and converts them into a set of out-
puts. Depending on its abstraction scales, an action could
represent a complex processing flow or a primitive one which
either carries out a computation or assess object memory.

UML-AD defines 55 types of actions. In order to focus
on the core semantics concerned by this paper, we generalize
the concept and harmonize it with the UML-AD usage. Then
we introduce the transformation semantics separately for the
mono-time based systems and the multi-time based systems.

5.2.1 Action Semantic Pattern

An action is an n-tuple of (I, C, T ,R,D), in which:

• I refers to identification, which is derived from its be-
havior semantics. Only two actions with exactly the
same behavior can have the same identification.

• C refers to context. An action’s behavior model could
be the same but if the behavioral context is different,
then it should be labelled with the same identification
but different context.

4

• T refers to time measure. In this paper, only the mini-
mum and maximum execution time are considered.

• R refers to resource usages. The execution of an action
will go on only when its required resources are ready
and allocated to it. More precisely, the resource usages
is a set of < R,N >, which indicates that for a given
resource type R, the action requires N of its available
instances.

• D refers to data section. It contains both inputs and
outputs. It should be clear that the data modeling in
AD is value-independent; it only makes sense for data
dependency and data type definition.

The transformation approach is illustrated by Figure 8.

• All input resource should be linked to A; All output
resource should be linked to D.

• All input data-related flows should be linked to B, if in
the action there is an <InputPin>, or connected by an
<ObjectLink>; All output data-related flows should be
linked to C, if in the action there is an <OutputPin>,
or connected by an <ObjectLink>.

• The execution time is modelled by transition C.

[0,0] [0,0] [0,0]

C_IN

C_OUT[0,0] [0,0]

Casual
ready

Resource
ready

Input
ready

Output
ready

Resource
released

ENDA B C D

[min,max]

Figure 8: UML Action Transformation to TPN

5.2.2 Mono-Clock Scenario Action

For mono-clock actions, the measured execution time is di-
rectly used after a global normalization of the time units.
For example, if action A takes [3.4 ms, 4.7 ms] and actions
B [78.9 us, 463.5 us], the correspondent min time and max
time on the TPN transition is [34000, 47000] and [789, 4635]
respectively, with the common unit of 0.1 us to keep all the
results to be integers.

5.2.3 Multi-Clock Scenario Action

For multi-clock actions, the measured execution time need to
be translated first into tick numbers from the global physical
clock, and then its physical model time is deduced by asso-
ciating each clock’s drift. We use the same example but give
respectively its correspondent clock property: let clock A and
B tick theoretically every 1 us, and their backward drift and
forward drift are both 1%, therefore action A’s tick number
is [3400, 4700] and [78.9, 463.5] for action B. As tick number
must be integer, a rounding strategy must be designed to

handle this problem without introducing unreasonable con-
version error. In our study, we use the floor function for tmin

and ceiling function for tmax. Therefore, we have A for [3400,
4700] and B for [78, 464] as tick numbers after the rounding.

As the corresponding tick time range is [0.99 us, 1.01 us]
due to the mentioned clock property, the drift-based action
physical time duration is calculated by multiplying this range
and action’s tick number range. Following the same principle
of unit normalization, the final min time and max time on
the TPN transition is [336600, 4747000] and [7821, 46763]
respectively, with the common unit of 0.01 us. Comparing
to the same purpose in mono-clock context, it is noticed that
under the principle of physical time reference, the main dif-
ference is that the model precision is increased.

5.3 Resource

5.3.1 Resource Semantic Pattern

In UML-MARTE, more than 10 types of resource are pro-
posed to be used in the modeling. According to the same
paradigm of concept generalization:

A resource is a 3-tuple of (I, S, Q), in which:

• I refers to identification, which designates the type of
the resource.

• S is the scheduler used to respond the requirement of
the resource. A scheduler has two main characteristics:
scheduling algorithm and whether it allows pre-emption.

• Q is the instance quantity of the given resource.

For example, a 4-core CPU could be modelled as (CPU-
CORE, pre-emptive / Round Robin, 4).

5.3.2 Non-preemptive Resource Scheduling

The non-preemptive resource scheduling can be transformed
to TPN as shown in Figure 9.

[0,0] [0,0] [0,0]

C_IN

C_OUT[0,0] [0,0]

Casual
ready

Resource
ready

Input
ready

Output
ready

Resource
released

ENDA B C D

[min,max]

Non-preemptive
Resource

Resource
Number

Resource
Number

Figure 9: Non-Preemptive Resource Scheduling

5.3.3 Pre-emptive Resource Scheduling

The TPN with stopwatch is used to cope with the preemp-
tive modeling. In our study, however, it is found that it
is very expensive in terms of reachability graph generation

5

when performing the model checking. Therefore, an alter-
native solution is proposed to avoid this problem. The idea
is to use the time slice of preemptive scheduler as the time
unit to segregate the action’s execution. The transition of
execution in pre-emptive scenario has been divided into the
structure presented in Figure 10. The place representing the
resource will be connected to each transition to model the
preemptive scheduling.

Input Ready

...

[A,ts]

(0,ts]

[ts,ts]

(0,B]

K SK+1

ts : time slice of scheduler

K =⎣tmin∕ts⎦
S =⎣tmax∕ts⎦
A = tmin - K⋅ts

B = tmax -S⋅ts

Output Ready

Resource

...

[ts,ts]

[ts,ts][ts,ts]

[ts,ts]

[ts,ts]

[ts,ts]

[ts,ts]

Figure 10: Pre-emptive Resource Scheduling

5.4 Object
The most important factor in object element transformation
is to keep the data dependency information in the TPN. Each
data dependency is represented by a TPN place. This trans-
formation approach (Figure 11) has a little drawback how-
ever to present the non-transient semantics. The expected
behaviour of a non-transient object element (like <DataS-
tore>) is once the data is feed, it will never lose. In contrast,
the model transformed in TPN will only guarantee that data
persists only in this current execution of activity.

Object Element
(transitent)

Object 1

Object 2 Object 1

Object 2

K.Object 1

K.Object 2

Activity

Diagram
TPN

Action w

Action x

Action y

Action z

w.B

x.B

y.C

z.C

Action u

Object 2

u.BAction v

Object 1

v.C

Object Element
(non-transitent)

Object 1

Object 2 Object 1

Object 2

K.Object 1

K.Object 2

Action w

Action x

Action y

Action z

w.B

x.B

y.C

z.C

Action u

Object 2

u.BAction v

Object 1

v.C

K

K

Figure 11: Object Transformation

A more common pattern to model the data dependency is

directly by <Object Flow> between two actions. Therefore
an implicit transformation should be posed (Figure 12).

Action w Action yObject 1
Object Element
(transitent) Object 1Action w Action yObject 1

Implicit conversion

Figure 12: Object Transformation General Pattern

5.5 Connection
Object flow and control flow are translated directly into TPN
transition (Figure 13).

[min,max]

Figure 13: Connection

6 Evaluation of Proposed Approach

6.1 Case Study
The real-time embedded applications of aircraft control sys-
tem are extremely strict in temporal aspect. A simplified
Flight Warning System (FWS) Application (Figure 14) of a
well-known aircraft program is introduced as case study to
evaluate the proposed approach.

The Sensor (Figure 15) periodically captures at a given
rate two categories of data: airborne system data like opera-
tional status and availability, and air data like attack angle
and relevant air speed. Both of them are sent through AFDX
to the redundant calculators CPIOM, where FWS Applica-
tions (Figure 16) are running. Once a previewed warning
is detected, the Multi-Function Display (MFD) (Figure 17)
receives the redundant alerts via AFDX and displays the in-
formation to the pilot after comparing the redundant alerts
to make sure they are the same.

AC System : Sensor

<<Allocated>>air data<<Allocated>>sys data

CPIOM_C1 : FWS

<<Allocated>>air data

<<Allocated>>alert

<<Allocated>>sys data

display : MFD

<<Allocated>>alert1 <<Allocated>>alert2

CPIOM_C2 : FWS

<<Allocated>>air data

<<Allocated>>alert

<<Allocated>>sys data

Figure 14: FWS Architecture

Due to the modeling rules, the MARTE profiles are used
to represent the time specification, including the execution
time for each action (Table 1) and the time configuration for
communication (Table 2).

6

<<ResourceUsage>>

System Data Acquisition

<<Allocated>>sys data

<<ResourceUsage>>

Air Data Acquistion
<<Allocated>>air data

<<ResourceUsage>>

Wait

Figure 15: FWS Sensor Behavior

<<ResourceUsage>>

Alerts Dectection

<<Allocated>>sys data

<<Allocated>>air data

<<ResourceUsage>>

Send Alerts

<<Allocated>>alert

Figure 16: FWS Application Behavior

<<ResourceUsage>>

Receive Alert 1

<<Allocated>>alert 1

<<ResourceUsage>>

Receive Alert 2

<<Allocated>>alert 2

<<ResourceUsage>>

Compare

<<ResourceUsage>>

Update Display

100

Figure 17: FWS Display Behavior

Table 1: Action Execution Time

Behaviour Action TMin TMax

Sensor
System Data Acquisition 14 34

Air Data Acquisition 28 46
Wait 3000 3000

FWS Alerts Detection 128 189
Send Alert 3 10

MFD

Recv Alert 1 3 10
Recv Alert 2 3 10

Compare 11 19
Update Display 110 133

Table 2: Communication Configuration

Component Component Pin Comm. Delay ADFX
From To TMin / TMax Switch

A/C System CPIOM-1 sys data 3 / 8 S1
A/C System CPIOM-1 air data 3 / 9 S1
A/C System CPIOM-2 sys data 3 / 8 S1
A/C System CPIOM-2 air data 3 / 9 S1
CPIOM-1 Display alert 3 / 8 S2
CPIOM-2 Display alert 3 / 9 S2

6.2 Assessed Time Properties

The system integrator may want to know by verification:

• Whether the pilot will be informed in time when some
abnormal event occurs. This can be answered by know-
ing the min/max time interval between Data Acquisition
of Sensor and Update Display of MFD.

• The designer may want to optimize the sampling rate
of sensor, because if sensor updates too frequently the
data, the FWS may not be able to handle them correctly

due to its computation capacity; if too slowly, the other
system like flight control may lose air-plane real-time
status.

6.3 Transformation & Optimization Result
The transformation approach with property dedicated opti-
mization approach produces the TPN of Figure 18.

[1
31
,1
99
]

[1
1,
19
]

[0
,0
]

[3
,1
0]

[3
,9
]

[1
31
,1
99
]

[0
,0
]

[3
00
0,
30
00
]

[0
,0
]

[0
,0
]

10
0

[0
,0
]

[1
10
,1
33
]

[0
,0
]

[3
,1
0]

[3
,8
]

[0
,0
]

[3
,9
]

[2
8,
46
]

[1
4,
34
]

[3
,9
]

[3
,8
]

2

[0
,0
]

10
0

[0
,0
] [3
,8
]

Figure 18: FWS Transformation & Optimization TPN

6.4 Verification Result
We apply an observer based verification approach and use
TINA toolset to compute the time properties mentioned
above. The verification results and computation time are
shown in Table 3.

Table 3: Verification Result for Time Properties

Time Property Result(TUnit) Computation Time(ms)
Min Time Interval 154 4276
Max Time Interval 2334 5711

Optimized Wait Time 2034 6437

6.5 Performance Analysis
The whole framework will optimise the generated TPN in ac-
cordance with time property. The optimization will remove
the irrelevant parallelism of the TPN as much as possible be-
cause in each verification, we need to only focus on the time
properties between two actions. Thus the key factor influenc-
ing the computation performance in terms of both time and
space is the transformed components in a relatively sequen-
tial TPN. In this section, we choose to prove, using the case
study, that the transformation method for Decision Node
with finite loop branch has a complexity of O(n2), where n
is the loop bound. The performance result for other trans-
formed components are ignored because they are all linearly
scalable along with the TPN’s dimension.

The computation time and state class number grows re-
spectively along with the loop bound (Figure 19(a), 19(b)).
In order to illustrate a O(n2) relation, we add in Figure 20(a)
and 20(b) their deviation ratio with the increment of the loop
bound. As the deviation ratio is nearly a constant for both

7

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 200 400 600 800 1000 1200 1400 1600

T
im

e
 P

ro
p

e
rt

y
 V

e
ri
fi
c
a

ti
o

n
 T

im
e

 (
m

s
)

Loop Bound

(a) Computation Time

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 200 400 600 800 1000 1200 1400 1600

T
P

N
 g

e
n

e
ra

te
d

 k
tz

 s
ta

te

Loop Bound

(b) State Class Number

Figure 19: Computation Time & State Class Number

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 400 600 800 1000 1200 1400 1600

D
e

ri
v
a

ti
o

n
(T

im
e

/L
o

o
p

B
o

u
n

d
)

Loop Bound

(a) Time Rate

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 400 600 800 1000 1200 1400 1600

D
e

ri
v
a

ti
o

n
(S

ta
te

/L
o

o
p

B
o

u
n

d
)

Loop Bound

(b) State Rate

Figure 20: Derivation of (Computation Time/Loop Bound)
& (State Class Number/Loop Bound)

state and computation time, we can deduced that it satisfies
the O(n2) relation. Theoretically this conclusion is also valid
because at restore phase for the loop bound, the restore tran-
sition will fire the same times than loop bound to get back
the initial state of the decision node.

7 Conclusion and Future Work

Time property verification issue becomes a stringent require-
ment in RTES. In the existing translation approaches from
UML-AD into Petri Nets, none of them aimed to verify time
properties for safety critical RTES so far. To solve the key
challenge in it, we present in this paper an efficient and
property driven transformation approach for mapping UML-
MARTE Activity Diagram into Time Petri Net.

By applying this transformation approach, our UML-
MARTE Model Checker covers a large range of time prop-
erties’ verification, including synchronization, schedulability,
boundedness, WCET, etc, in both mono-clock and multi-
clock system, for discrete and dense time concept, and for
finite and infinite time scope.

With the result of the case study illustrated, we demon-
strate that this verification-driven approach is able to guar-
antee the correctness of system’s temporal properties, per-
form efficient verification and assist in the optimization of
system’s design at early phase of RTES’s lifecycle.

In the future, we will focus on improving the transfor-
mation rules for each functional action and extending this
framework by covering a wider range of properties. On the
technical side, we will try to optimise UML to TPN trans-
formation by finding some structural patterns which can be
reduced without influencing the time properties.

References
[AMCN09] E. Andrade, P. Maciel, G. Callou, and

B. Nogueira. A methodology for mapping sysml
activity diagram to time petri net for require-
ment validation of embedded real-time systems
with energy constraints. In Digital Society, 2009.
ICDS ’09., 2009.

[BRV04] B. Berthomieu *, P.-O. Ribet, and F. Verna-
dat. The tool tina - construction of abstract
state spaces for petri nets and time petri nets.
International Journal of Production Research,
42(14):2741–2756, 2004.

[LGMC04] Juan Pablo López-Grao, José Merseguer, and
Javier Campos. From uml activity diagrams to
stochastic petri nets: application to software per-
formance engineering. In Proceedings of the 4th
international workshop on Software and perfor-
mance, WOSP ’04, pages 25–36, New York, NY,
USA, 2004. ACM.

[MF76] P. Merlin and D. Farber. Recoverability of com-
munication protocols–implications of a theoreti-
cal study. Communications, IEEE Transactions
on, 24(9):1036 – 1043, sep 1976.

[Obj09a] Object Management Group, Inc. OMG Uni-
fied Modeling LanguageTM (OMG UML), Super-
structure, February 2009.

[Obj09b] Object Management Group, Inc. UML Pro-
file for MARTE: Modeling and Analysis of Real-
Time Embedded Systems Version 1.0, November
2009.

[Sta08] Tony Spiteri Staines. Intuitive mapping of uml
2 activity diagrams into fundamental modeling
concept petri net diagrams and colored petri
nets. In Proceedings of the 15th Annual IEEE
International Conference and Workshop on the
Engineering of Computer Based Systems, pages
191–200, Washington, DC, USA, 2008. IEEE
Computer Society.

[TMH08] Yann Thierry-Mieg and Lom-Messan Hillah.
Uml behavioral consistency checking using in-
stantiable petri nets. Innovations in Systems and
Software Engineering, 4(3):293–300, 2008.

[YYSQ10] Nianhua Yang, Huiqun Yu, Hua Sun, and Zhilin
Qian. Mapping uml activity diagrams to ana-
lyzable petri net models. In Quality Software
(QSIC), 2010 10th International Conference on,
pages 369 –372, july 2010.

8

