
Verification of Synchronization-Related Properties for

UML-MARTE RTES Models with a Set of Time

Constraints Dedicated Formal Semantic

Ning Ge, Marc Pantel

To cite this version:

Ning Ge, Marc Pantel. Verification of Synchronization-Related Properties for UML-MARTE
RTES Models with a Set of Time Constraints Dedicated Formal Semantic. 2012. <hal-
00677925>

HAL Id: hal-00677925

https://hal.archives-ouvertes.fr/hal-00677925

Submitted on 10 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scientific Publications of the University of Toulouse II Le Mirail

https://core.ac.uk/display/50539547?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00677925

Verification of Synchronization-Related Properties for UML-MARTE RTES Models
with a Set of Time Constraints Dedicated Formal Semantic

Ning Ge and Marc Pantel
University of Toulouse, IRIT

2 rue Charles Camichel, BP 7122, 31071 Toulouse cedex 7, France
Email: firstname.lastname@enseeiht.fr

Abstract—Critical Real-Time Embedded Systems (RTES)
have strong requirement with respect to system’s reliability. In
Model-Driven Engineering (MDE), verification at early phases
of the system lifecycle is an important issue, especially for time
constraints in UML-MARTE RTES model. In order to assess
that the time requirements are met by the behavior models, the
key challenging problem is to transform these time constraints
from the UML-MARTE model to computable formal semantics
that provide time properties verification. Moreover, to allow
the application of this formal semantic to real industrial use
cases, the performance of verification should scale well. In this
paper, we present a set of time constraint dedicated semantics
under the framework for UML-MARTE RTES model’s time
requirement assessment. We focus on how to specify a set
of synchronization-related constraints between system’s tasks
relying on a formal semantics and to accomplish verification by
an efficient observer-based model checking method using Time
Petri Nets. We analyse the method’s computational complexity
and demonstrate the method’s scalability by illustrating some
performance results.

Keywords-MDE; UML; MARTE; real-time embedded sys-
tem; time requirements; formal semantic; verification; task
synchronization

I. INTRODUCTION

As the complexity of the real-time embedded systems
increases rapidly, the requirement of system’s reliability are
getting more and more pregnant. Model-driven Engineering
(MDE) allows an early integration of feasibility analysis
during design phase, and enables a rapid iterative design-
verification cycle. The core issue of MDE for RTES is how
to rapidly validate and verify that the system’s behavior
matches the specification, especially for the temporal aspect.

UML (Unified Modeling Language) [1] and its profile
MARTE (Modeling and Analysis of Real Time and Embed-
ded systems) [2] are standardized modeling language that
are getting widely accepted by industrial designers to cope
with the development of complex RTES.

Our research focuses on the use of MDE and formal meth-
ods in order to improve the development of safety critical
systems. This work focus on the verification of real time
properties for RTES the UML-MARTE modeling languages.
The challenging problem in the work presented in this paper
is how to encode the expected temporal properties in the
mapping from concrete-level model to abstract-level formal

semantic, and how to implement a scalable verification
toolset relying on the translated formal semantics.

In this paper, we introduce an approach relying on the
framework of the UML-MARTE Model Checker that was
presented in [3], to formalize synchronization-related con-
straints for UML-MARTE models as a set of computable
formal semantics that preserves the time consistency, and
propose an observer-based model checking method using
Time Petri Net (TPN) [4]. TPN has been selected as verifi-
cation support, not only because of the maturity of both its
theory and related toolset TINA [5], but also as it provides
a powerful capacity to express temporal semantic.

We aim to, in both finite and infinite time scope, verify
major tasks’ synchronization-related constraints at RTES
system-level. The main contributions in this paper are:

• Give out a formal definition of time constraints ded-
icated semantic at system level for both finite and
infinite time scope:

– Two tasks are coincident
– Synchronization of two tasks
– Mutual exclusion of two tasks’ execution
– One task is another one’s sub-occurrence
– One task is preceding another
– One task is causal with respect to another

• Define a computable time property expression at TPN
level for both finite and infinite time scope, and build
the mapping from system-level properties to these com-
putable properties.

• Demonstrate the approach is applicable and scalable for
industrial applications, by analysing the computational
complexity and illustrating the performance results.

The paper is organized as follows: Section II presents a
brief overview of UML-MARTE model checker. Section III
describes the proposed methodology. Section IV presents
the formal definition of synchronization-related constraints.
Section V introduces decomposition method concerning
computable time property set at TPN level. Section VI
discusses the computational complexity and illustrates a
performance report to demonstrate the method’s scalability.
Section VII compares our work with related works. Section
VIII gives some concluding remarks.

II. OVERVIEW OF UML-MARTE MODEL CHECKER

The architecture of the model checker for UML-MARTE
Model is shown in Fig. 1.

UML-Marte RTES Model

System Model
Time

Specification/
Constraint

Time Petri
Net Model

TPN Model
Checker

Behaviour
mapping

Quantitative
Result

Time
Specification/Constraint

mapping

Formal Time
Specification/
Constraints

Computation

Time Property
Verification Result

UML-Marte

Model

Checker

Behaviour

Model

Architecture

Model

Architecture
mapping

Decomposition

Quantitative
Temporal
Properties

Figure 1. UML-MARTE Model Checker

The objective of the UML-MARTE model checker is
to verify whether a <UML-MARTE Model> satisfies the
designed <Time Specifications> or respects the required
<Time Constraints>.

It takes the <System Model> and <Time Specification/-
Constraint> as input. The <System Model> consists of two
concerns: <Behavior Model> and <Architectural Model>.
The former defines how the system will act and response
to its outside world while the latter describes the inter-
connection relation between sub-components of the system.
The system <Specification/Constraint> consists of two cate-
gories: functional and non-functional. For RTES, the former
concerns whether system’s output value is consistent with
what it is designed for and whether the output is generated
at desired time, while the latter focus on the performance
requirements, sustainability, etc. The current OMG stan-
dard has not defined a complete specification framework
for verification purpose, so in practice, we add our own
profile to describe properties at task level. System and
specification/constraint models are respectively transformed
to associated semantic components at TPN level through
<Behavior/Structure Mapping> and <Time Specification/-
Constraint Mapping> approaches. All the transformations
are performed automatically and the computable formal
model is hidden to the end user.

Formal verification is performed with <TPN Model>
and <Generated Quantitative Timing Property> generated
by <Decomposition> method, in which a dedicated itera-
tive observer-based model checking method and the TINA
toolset are applied. Finally, <Computation> is performed

with <Quantitative Results> and <Formal Time Specifica-
tion/Constraint> to get the target <Time Property Verifica-
tion Result>.

We have proposed an efficient approach for each core
issue in the whole framework to accomplish the final veri-
fication purpose. In this paper, we focus on the approaches
<Time Specification/Constraint Mapping> and <Decompo-
sition>.

III. METHODOLOGY DESCRIPTION

The time property we want to verify at UML-MARTE
level are the synchronization-related constraints between
system’s tasks. The exact meaning of these constraints may
change in different context, so in order to have a general-
ized, complete and standard semantic, we investigate firstly
some common time properties in industrial RTES domain
and then synthesize them in a standard way to provide a
formal definition. In order to follow the OMG specification
framework, we choose the same basic semantic elements as
CCSL’s [6] but extended its semantic to cover chronometric
time model.

Three temporal aspects are taken into account when
defining the semantic of the time properties: it should be
indifferent for mono-clock and multi-clock system, for dis-
crete and dense time concept, and for finite and infinite time
scope. According to our study so far, for some properties,
if we want to use the same encoding for both finite and
infinite time scope, some properties like exclusion, sub-
occurence and precedent cannot be computed in finite time.
A compromise is made in this paper: in order to make all
time constraints dedicated semantic verifiable, for some of
the properties, we use a different semantic in finite time
scope and infinite time scope.

Another important factor is that, although the notion
of synchronization should enforce things to occur simul-
taneously, in real industrial RTES, the strict simultaneous
property is not be always expected to be perfectly achieved.
The design requirement is usually associated with temporal
tolerance. In order to take into account this more realistic
fact, we introduce this tolerance for all time constraints
dedicated semantic in this paper. The temporal tolerance is
denoted by δ (δ ∈ R+).

IV. FORMAL DEFINITION OF TIME CONSTRAINTS
DEDICATED SEMANTIC

A. Preliminary definitions

Task A task is considered as the smallest computable unit
in RTES, which will consume time and modify resources
(consumes and produces). Its general function is to compute
its outputs from its inputs. A task could be executed finitely
or infinitely many times according to the system design. The
terms task, operation and action in UML are equivalent.

Presence The presence of a task is the duration [ts, te]
for task’s execution where ts and and te are its start and end
time.

Occurrence Occurrence is an instant concept, so the
occurrence of a task is not significant, but need to precise
the associated inner event (start and end).

In order to simplify the presentation afterwards, we define
the expressions that defines these concepts in Table I.

Table I
SYMBOL OF SYNCHRONIZATION-RELATED FORMAL DEFINITION

Symbol Definition
X Task X
Xi The ith presence of task X
Xa The inner event1 a of task X
Xi

a The ith occurrence of Xa

Xt
a The occurrence of Xa which is the nearest (forward or

backward) to the time instant t
T (Xi

a) The occurring time instant of Xi
a

T (Xt
a) The occurring time instant of Xt

a
O(X) The max possible presence of task X .
O(Xa) The max possible occurrence for Xa.
O(Xt

a) The occurrence count for Xa at time t

B. Coincidence

Task X and Y are coincident iff. the nth occurrence of
X occurs simultaneously with the nth occurrence of Y while
n ∈ N. With a temporal tolerance introduced, it is possible
that an interleave exists between ith occurrence of X and jth

occurrence of Y when i 6= j, which violates the coincidence
definition. So constraints for consequent occurrences must
be added. The coincidence schema is shown in Figure 2.

X[i] X[i+1]

Y[i] Y[i+1]

! ! !

Coincide(X,Y,!) = true

X

Y

X[i] X[i+1]

! !

!

!

!

Interleave

Coincide(X,Y,!) = false

Figure 2. Coincidence

Definition 1 : Coincidence - Finite Time Scope
Cft(X,Y, δ) ≡
O(Xs) = O(Ys)
O(Xe) = O(Ye)
∀i ∈ [1, O(Xs)] : |T (Xi

s)− T (Y i
s)| < δ

∀i ∈ [1, O(Xe)] : |T (Xi
e)− T (Y i

e)| < δ
∀i ∈ [1, O(Xe)− 1] : T (Xi

e) + δ < T (Y i+1
s)

∀i ∈ [1, O(Ye)− 1] : T (Y i
e) + δ < T (Xi+1

s)

Definition 2 : Coincidence - Infinite Time Scope
Cift(X,Y, δ) ≡

1The inner event in this paper could be the start of task (Xs) or the end
of task (Xe).

∀t ∈ R+ : |O(Xt
s)−O(Y t

s)| < 2
∀t ∈ R+ : |O(Xt

e)−O(Y t
e)| < 2

∀t ∈ R+ : |T (Xt
s)− T (Y t

s)| < δ
∀t ∈ R+ : |T (Xt

e)− T (Y t
e)| < δ

∀i ∈ N∗ : T (Xi
e) + δ < T (Y i+1

s)
∀i ∈ N∗ : T (Y i

e) + δ < T (Xi+1
s)

C. Synchronization

Logical synchronization is a reduced coincidence relation
without restricting a simultaneously execution. The only
concern is that the execution order must persist.

Definition 3: Synchronization - Finite Time Scope
Synft(X,Y, δ) ≡
O(Xs) = O(Ys)
O(Xe) = O(Ye)
∀i ∈ [1, O(Xe)− 1] : T (Xi

e) + δ < T (Y i+1
s)

∀i ∈ [1, O(Ye)− 1] : T (Xi
e) + δ < T (Xi+1

s)

Definition 4 : Synchronization - Infinite Time Scope
Synift(X,Y, δ) ≡
∀t ∈ R+ : |O(Xt

s)−O(Y t
s)| < 2

∀t ∈ R+ : |O(Xt
e)−O(Y t

e)| < 2
∀i ∈ N∗ : T (Xi

e) + δ < T (Y i+1
s)

∀i ∈ N∗ : T (Y i
e) + δ < T (Xi+1

s)

D. Exclusion

Task X and Y are in exclusion relation iff. Not any
presence of X occurs simultaneously with any presence
of Y . This is not an intuitive definition for synchronous
behavior, however it could be considered as another form
of coincidence with some time offset. It needs equally to
add the constraints for interleave situation. The schema of
exclusion is shown in Figure 3.

X[i] X[i+1]

Y[j] Y[j+1]

!!!

Exclude(X,Y, !) = true

X[i] X[i+1]

Y[j+1]

!!!

Exclude(X,Y, !) = false

Y[j]

Figure 3. Exclusion

Definition 5 : Exclusion - Finite Time Scope
Eft(X,Y, δ) ≡
∀i ∈ [1, O(Xs)],∀j ∈ [1, O(Ys)] :
T (Xi

s) + δ < T (Y j
s)⇒ (T (Xi

e) + δ < T (Y j
s))∧

(T (Y j
e) + δ < T (Xi+1

s))
T (Xi

e) + δ < T (Y j
s)⇒ T (Y j

e) + δ < T (Xi+1
s)

T (Xi
s) + δ < T (Y j

e)⇒ T (Xi
e) + δ < T (Y j

s)
T (Xi

e) + δ < T (Y j
e)⇒ (T (Xi

e) + δ < T (Y j
s))∧

(T (Y j
e) + δ < T (Xi+1

s))

The original semantics can not be applied in infinite time
scope. A computable version reduces the semantics that the

execution of two tasks is overlapped and for any task there
is no more than one continuous occurrence.

Definition 6 : Exclusion - Infinite Time Scope
Eift(X,Y, δ) ≡
∀t ∈ R+ : |O(Xt

s)−O(Y t
s)| < 2

∀t ∈ R+ : |O(Xt
e)−O(Y t

e)| < 2
∀i ∈ N∗ :
T (Xi

s) + δ < T (Y i
s)⇒ (T (Xi

e) + δ < T (Y i
s))∧

(T (Y i
e) + δ < T (Xi+1

s))
T (Xi

e) + δ < T (Y i
s)⇒ T (Y i

e) + δ < T (Xi+1
s)

T (Xi
s) + δ < T (Y i

e)⇒ T (Xi
e) + δ < T (Y i

s)
T (Xi

e) + δ < T (Y i
e)⇒ (T (Xi

e) + δ < T (Y i
s))∧

(T (Y i
e) + δ < T (Xi+1

s))

E. Sub-occurrence

Task Y is a Sub-occurrence of X iff.tThe ith occurrence
of X and the jth occurrence of Y occur simultaneously,
where always j 6 i. The schema of sub-occurrence is shown
in Figure 4.

X[i]

Sub-Occurrence(X,Y, !) = true Sub-Occurrence(X,Y, !) = false

! ! ! !

X[i+1] X[i+2]

Y[j] Y[j+1]

X[i]

! ! !

X[i+1] X[i+2]

Y[j] Y[j+1]

Interleave

Figure 4. Suboccurrence

Definition 7: Sub-occurrence - Finite Time Scope
Sft(X,Y, δ) ≡
O(Xs) > O(Ys)
O(Xe) > O(Ye)
∀j ∈ [1, O(Ys)],∃i ∈ [j,O(Xs)] :
(|T (Xi

s)−T (Y j
s)| < δ)∧(|T (Xi

e)−T (Y j
e)| < δ)∧

(T (Xi−1
e)+δ < T (Y j

s))∧(T (Y j
e)+δ < T (Xi+1

s))

The original semantic can not be applied in infinite time
scope. A computable version reduces the semantic that the
faster one’s occurrence is always k(k ∈ N∗) times multiple
of the slower one’s.

Definition 8 : Sub-occurrence - Infinite Time Scope
Sift(X,Y, δ, k) ≡
∀t ∈ R+ : |O(Xt

s)/k −O(Y t
s)| < 2

∀t ∈ R+ : |O(Xt
e)/k −O(Y t

e)| < 2
∀i ∈ N∗ :
(|T (Xi·k

s)− T (Y i
s)| < δ)∧

(|T (Xi·k
e)− T (Y i

e)| < δ)∧
(T (Xi·k

e) + δ < T (Y i+1
s))∧

(T (Y i
e) + δ < T (Xi·k+1

s))

F. Precedence

Task X precedes Y iff. at any time, the occurrence of X
is larger than or equal to the occurrence of Y . This implies
Xi

s must precede Y i
s , however it is not necessary to also have

Xi
e precedes Y i

s in all context. So a supplementary parameter

to clarify the strict level of specification is maintained. From
L1 to L3, it represents respectively "less strict", "strict" and
"very strict".

Definition 9: Precedence - Finite Time Scope
Pft(X,Y, δ,L1) ≡
∀i ∈ [1, O(Xs)] : T (X

i
s) + δ < T (Y i

s)

Pft(X,Y, δ,L2) ≡
∀i ∈ [1, O(Xs)] :
(T (Xi

s) + δ < T (Y i
s)) ∧ (T (Xi

e) + δ < T (Y i
e))

Pft(X,Y, δ,L3) ≡
∀i ∈ [1, O(Xs)] : T (X

i
e) + δ < T (Y i

s)

The original semantic cannot be applied in infinite time
scope. A computable version reduces the semantic so that it
is the same to the causality definition in infinite time scope.

G. Causality

Causality is similar to Precedence, except that it requires
the maximum possible occurrence of X equals to that of
Y , because each occurrence/execution of X causes each
correspondent occurrence of Y .

Definition 10 : Causality - Finite Time Scope
Cft(X,Y, δ,L1) ≡
O(X) = O(Y), Pft(X,Y, δ,L1)

Cft(X,Y, δ,L2) ≡
O(X) = O(Y), Pft(X,Y, δ,L2)

Cft(X,Y, δ,L3) ≡
O(X) = O(Y), Pft(X,Y, δ,L3)

Definition 11 : Causality - Infinite Time Scope
Cift(X,Y, δ,L1) ≡
∀t ∈ R+ : |O(Xt

s)−O(Y t
s)| < 2

∀t ∈ R+ : |O(Xt
e)−O(Y t

e)| < 2
∀i ∈ N∗ : T (Xi

s) + δ < T (Y i
s)

Cift(X,Y, δ,L2) ≡
∀t ∈ R+ : |O(Xt

s)−O(Y t
s)| < 2

∀t ∈ R+ : |O(Xt
e)−O(Y t

e)| < 2
∀i ∈ N∗ :
(T (Xi

s) + δ < T (Y i
s)) ∧ (T (Xi

e) + δ < T (Y i
e))

Cift(X,Y, δ,L3) ≡
∀t ∈ R+ : |O(Xt

s)−O(Y t
s)| < 2

∀t ∈ R+ : |O(Xt
e)−O(Y t

e)| < 2
∀i ∈ N∗ : T (Xi

e) + δ < T (Y i
s)

V. DECOMPOSITION: LOW-LEVEL COMPUTABLE
PROPERTY SET

All the above definitions can be decomposed into a set of
properties (Table II and Table III) which are computable by
TPN model checker.

In general, our method will add some supplementary TPN
elements to the original TPN generated from the model
to compute whether these properties are guaranteed. The
detailed computation method for each of these elements

Table II
FINITE TIME SCOPE COMPUTABLE PROPERTY SET

Low-level Property Formal Definition
Max Occurrence Count ∀i ∈ N∗ : O(Xi

s) < constant

Min interval ∀i, j ∈ N∗ : T (Ei
1)− T (E

j
2) > δ

Max interval ∀i, j ∈ N∗ : T (Ei
1)− T (E

j
2) < δ

Table III
INFINITE TIME SCOPE COMPUTABLE PROPERTY SET

Low-level Property Formal Definition
Occurrence difference ∀t ∈ R+, k ∈ N∗ :

|O(Xt
s)/k −O(Y t

s)| < δ
Min interval ∀i ∈ N∗, k ∈ N∗, b ∈ N, j = i · k + b :

|T (Ei
1)− T (E

j
2)| > δ

Max interval ∀i ∈ N∗, k ∈ N∗, b ∈ N, j = i · k + b :

|T (Ei
1)− T (E

j
2)| < δ

is described in another article. In this paper we give out
the computational complexity of unfolding one TPN as the
computation unit. All these computable properties need only
one time TPN state space generation to know whether it
is true or false. An obvious advantage of this approach is
that as each computation unit is independent to the others,
a parallel computation platform is then adaptable for this
approach to deploy.

VI. COMPUTATIONAL COMPLEXITY & PERFORMANCE
ANALYSIS

A. Computational complexity

We present here a complete complexity analysis (Table
IV) for the computation cost of all the mentioned high-
level time constraint properties, including both finite and
infinite time range scope. In the finite time range scope,
computational complexity depends on the complexity of
system’s design. For simplicity of its presentation, we use
low-level computable property as the computation unit, and
denote A for upper bound of max occurrence of task in the
finite time range, which varies in accordance to system’s
design. We denote B = A · log2A. In the infinite time
range scope, the computational complexity is independent
of the system’s design, which leads that its complexity is a
constant.

B. Performance Analysis

We present the computational performance for each low-
level computable property, then the computational perfor-
mance of time constraints can be deduced by using the upper
complexity table. Two aspects concerning performance issue
are taken into account: to assess that the property is true, and
to prove it false.

Our method is relatively independent of the system size
and fast enough to assess that some low-level computable

Table IV
COMPUTATIONAL COMPLEXITY OF TIME CONSTRAINT DEFINITION

Property finite infinite
Coincidence A+ B 
Exclusion A 
Sub-occurrence A + B 
Precedence (less strict) A 
Precedence (strict) A 
Precedence (very strict) A 
Causality (less strict) A+ B 
Causality (strict) A+ B 
Causality (very strict) A+ B 
Synchronization A+ B 

properties are false. In table V, we categorize these low-level
properties by this character of independence.

Table V
DEPENDENCE OF LOW-LEVEL PROPERTY

Low-level Property Proof: true Proof: false
Min Interval (finite) dependent dependent
Max Interval (finite) dependent dependent
Max Occurrence Count (finite) dependent independent
Occurrence Difference (infinite) dependent independent
Min Interval (infinite) dependent independent
Max Interval (infinite) dependent independent

On the other hand, to prove the property is true depends
on the system feature, so it is important to measure the
performance influence to the original TPN by the added
TPN elements. It is computed by comparing the state space
generation time of the original TPN and the TPN modified
by our method. In our test scope, it demonstrates that the
over-cost of the observer is very slight, which implies if
the original TPN can terminate its state space generation
in an acceptable time range, the time constraint is also
computable.

In order to make this performance result be significant
to demonstrate that the method is applicable for pragmatic
RTES, we randomly generate the system which scales from
2 to 10 parallel threads, in which each thread dispose of 10-
100 periodic tasks. As we need to compare both finite and
infinite scenarios, the upper bound of these periodic tasks’
occurrence in finite scenario is set to 100.

As shown in Figure 5, 6 and 7, the performance varies in
scope of 40% variation, which means it is very stable.

VII. RELATED WORKS

Several formal specifications of timing constraint exist.
CCSL standardizes clock constraint semantic within the
UML/MARTE framework to formally express causal and
temporal constraints between the previously defined clocks
and proposes a process to model time specification. It defines
a complete set for clock constraints, which can be seen as
driven by instantaneous events. However, as it focus on the

-10

 0

 10

 20

 30

 40

 0 10 20 30 40 50 60

d
if
fe

re
n

c
e

 t
o

 o
ri
g

in
a

l
T

P
N

 (
%

)

system scale

Max occurrence count
Min/Max interval

Figure 5. Performance Influence: Finite System Measured in Finite Time
Range Scope

-10

 0

 10

 20

 30

 40

 0 10 20 30 40 50 60

d
if
fe

re
n

c
e

 t
o

 o
ri
g

in
a

l
T

P
N

 (
%

)

system scale

Occurrence difference
Max interval
Max interval

Figure 6. Performance Influence: Finite System Measured in Infinite Time
Range Scope

low-level event concept, there is still a gap in UML/MARTE
for task-level’s temporal specification and their verification.

Concerning the verification method, CCSL transforms
UML model to SyncCharts, and uses Esterel assertions
to express clock constraints. This language has a well-
defined notion of instant, and at each reaction, any signal
has a unique status. This is not the case with non-strictly
synchronous languages [7]. It is thus less applicable in a
real RTES scenario, as the designers need always a time
duration to tolerate. Another issue is that, in [8], the author
gives also an intuitive interpretation on Time Petri Net for a
chosen sub-set of CCSL constraints. However, the intuitive
interpretations are not quite suitable for computation. Com-
pared to the work of CCSL, we avoid these problems for
both specification and verification aspect in our work.

VIII. CONCLUSION

We have first given an overview of our framework en-
abling model-checking for UML/MARTE in RTES’s MDE
approach. Then we focus on the formal semantic for time
constraint at task-level, which extends the capacity to define
the verification requirement for pragmatic RTES. It also
extends these specifications to cover infinite time range
scenarios, which makes the verification of periodic system
to be more practical. Further, the correspondent verification
method is presented to demonstrate that these temporal
properties’ verification based on both finite and infinite time
range are computable. Finally, it is shown that our method

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0 10 20 30 40 50 60

d
if
fe

re
n

c
e

 t
o

 o
ri
g

in
a

l
T

P
N

 (
%

)

system scale

Occurrence difference
Max interval
Min interval

Figure 7. Performance Influence: Infinite System Measured in Infinite
Time Range Scope

is not too expensive, which adds value to have it applied in
real RTES’s verification.

The usage of this framework would shorten the RTES
development time by accelerating the V&V cycle at model
level. It is also presented that all the computation units for
verification is independent to each other and then can be
engaged natively in parallel computation environment. Our
future work is then to apply this approach on real industrial
applications.

REFERENCES

[1] OMG Unified Modeling LanguageTM (OMG UML), Superstruc-
ture, Object Management Group, Inc., Feb. 2009.

[2] UML Profile for MARTE: Modeling and Analysis of Real-Time
Embedded Systems Version 1.0, Object Management Group,
Inc., Nov. 2009.

[3] N. Ge and M. Pantel, “Time properties dedicated semantics for
uml-marte safety critical real-time system verification,” July
2012, submitted to 8th European Conference on Modelling
Foundations and Applications (ECMFA). [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00675778

[4] P. Merlin and D. Farber, “Recoverability of communication
protocols–implications of a theoretical study,” Communica-
tions, IEEE Transactions on, vol. 24, no. 9, pp. 1036 – 1043,
sep 1976.

[5] B. Berthomieu *, P.-O. Ribet, and F. Vernadat, “The tool tina -
construction of abstract state spaces for petri nets and time petri
nets,” International Journal of Production Research, vol. 42,
no. 14, pp. 2741–2756, 2004.

[6] M. Peraldi-Frati and J. DeAntoni, “Scheduling multi clock
real time systems: From requirements to implementation,”
in Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC), 2011 14th IEEE International Symposium
on, march 2011, pp. 50 –57.

[7] C. André, “Verification of clock constraints: CCSL Observers
in Esterel,” INRIA, Rapport de recherche RR-7211, Feb. 2010.

[8] F. Mallet and C. Andre, “On the semantics of uml/marte clock
constraints,” in Object/Component/Service-Oriented Real-Time
Distributed Computing, 2009. ISORC ’09. IEEE International
Symposium on, march 2009, pp. 305 –312.

