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Abstract—Architecture Description Languages (ADLs) support
modeling and analysis of systems through models transformation
and exploration. Various contributions made proposals to bring
verification capabilities to designers through model-based frame-
works and illustrated benefits to the overall system quality.

Model-level analyses are usually performed as an exogenous,
unidirectional and semantically weak transformation towards a
third-party model. We claim such process can be incomplete
and/or inefficient because gathered results lead to evolution of
the primary model. This is particularly problematic for the design
of Distributed Real-Time Embedded (DRE) systems that has to
tackle many concerns like time, security or safety.

In this paper, we argue why analysis should no longer be
considered as a side step in the design process but, rather,
should be embedded as a first-class citizen in the model itself. We
review several standardized architecture description languages,
which consider analysis as a goal. As an element of solution, we
introduce current work on the definition of a language dedicated
to the analysis of models within the scope of one particular ADL,
namely the Architecture Analysis and Design Language (AADL).

I. INTRODUCTION

Distributed Real-time Embedded (DRE) systems are integral
part of safety-critical domains such as transportation, telecom-
munications, health services, military or space. These systems
have to meet both functional and non-functional requirements.
For this, DRE systems encompass specific technologies well-
beyond software engineering to realize the required service
with the expected performances (e.g. time, security or safety)
through dedicated networks, processors and real-time oper-
ating systems. Prior to system exploitation, the Engineering
process has to ensure the system will correctly behave, that is,
functional and non-functional expectations are met.

Engineering practices address the development life-cycle
of DRE systems following successive and precise activities
spanning from the definition of users’ requirements, via system
design and implementation, to final V&V (Verification &
Validation) activities. Yet, many experiments indicate that
the distance between the activities steps is detrimental and
usually slows down the development process [1]. In practice,
a significant part of errors is injected at early-stages of the
engineering process, while being detected later in the process.
As a consequence, regressions and rework activities have an
important weight on the overall project costs.

As part of the solution, model-based methodologies have
emerged to support and alleviate traditional practices. Method-
ologies proposed in the context of Model-Driven Engineering
(MDE) involve models definitions and transformations to
cover the development life-cycle towards system qualification.
It has been successfully applied in two dimensions: 1) defi-
nition of standardized notations for the modeling of complex
systems architectures such as AUTOSAR/EAST-ADL [2], [3],
OMG MARTE and SysML [4], [5] or SAE AADL [6] and
2) model-based support for V&V activities, targeting model
checkers, performance analysis tools, etc.

Merging model-based solutions with the typical V-cycle
leads to the manipulation of various models capturing systems
elements, from early requirements down to implementation.
During the design phases, models are refined from abstract to
more precise ones; traceability links can be maintained to link
design and implementation choices to earlier requirements. In
complement, part of verification activities may be carried out
thought analyses applied on the model(s) so as to ensure that
the designed system is sound; checking components interfaces,
verifying the non-functional properties are met and preserved
across modeling activities are among those analyses. Although
such approaches may favor the early discovery of errors,
design and verification activities remain loosely coupled and
the use of analyses in the process not clearly stated so far.
Still, previously underlined drawbacks persist.

We claim that modeling and analysis should be jointly
carried out within a common framework. More importantly,
analysis – as a set of model assessment activities – should be
part of the model in a form that constraints its construction.

In Section II, we review several existing MDE frameworks
dedicated to the architecture design and analysis of DRE sys-
tems and sketch some elements of comparison. The Section III
outlines several challenges that show why analysis should
no longer be considered apart from the design process but,
rather, should be involved for the definition of models and
their evaluation. In the last part of the paper (section IV), we
provide some elements of solution applied to the Architecture
Analysis and Design Language (AADL) and introduce the
AADL Constraint Language that aims at unifying AADL
modeling concepts and analyses.



II. ANALYSIS IN THE SCOPE OF ARCHITECTURE

MODELING FRAMEWORKS

The term “analysis” has several definitions. In this paper,
we retain the following1: “a careful study of something to

learn about its parts, what they do, and how they are related

to each other; an explanation of the nature and meaning of

something”. Analysis is concerned both by the architecture of
a system, and the information or knowledge we gain from it.

Analysis is a central modeling objective in MDE, yet
with different supporting approaches. In the following, we
review support for analysis in OMG MARTE and SysML,
AUTOSAR/EAST-ADL and SAE AADL.

A. MARTE and SysML

MARTE (Modeling and Analysis of Real-Time and Em-
bedded Systems) [4] is a UML profile for the modeling
and analysis of real-time and embedded systems. It relies on
domain-specific extensions of general UML to bring concepts
for modeling real-time and embedded applications. These ex-
tensions focus on non-functional elements of real-time applica-
tions. These elements fall in two categories: quantitative and
qualitative aspects at different levels of abstraction. Finally,
they may be defined to support modeling, analysis, or both.

MARTE is structured as a hierarchy of UML profiles. The
top package, which is the foundation of MARTE, consists of
four UML extensions (sub-profiles):

Non-functional properties (NFP): this profile provides mod-
eling constructs for declaring, qualifying, and applying seman-
tically well-formed non-functional aspects of UML models as
data types. It is complemented by VSL, the Value Specification
Language. VSL is a textual language for specifying algebraic
expressions, stating relationships between types, etc.

Time: defines concepts for time in various representations
and models: chronometric, logical and synchronous.

Resource (GRM): this profile proposes definition of re-
sources used by software and associated resource usage. It
is an abstract level of modeling.

Allocation modeling (Alloc): this profile allows designers to
allocate functions to entities to support it, e.g. allocation for
scheduling. Non-functional characteristics may be attached to
an allocation description (e.g., when specifying the allocation
of a function to a given execution engine, it is possible to
specify its worst case execution time).

Model-based analysis using MARTE is done through the
extensions defined either in the Generic Quantitative Analysis
Modeling profile (GQAM), or one of its refinements, dedicated
to schedulability analysis and performance analysis. The an-
notation mechanism used in MARTE to support model-based
analyses uses UML stereotypes. These typically map the UML
model elements of the application into corresponding analysis
domain concepts, and also allow specification of values for
properties that are needed to carry out the analyses.

1coming from http://www.merriam-webster.com/

MARTE is associated with modeling process to guide the
designer, like Optimum [7] which clarifies usage of MARTE
concepts for schedulability analysis, or dependability [8]

Let us note there is an on-going work to define a conver-
gence of NFP concepts of MARTE with SysML [], and define
a seamless interface between system engineering concerns and
precise engineering of embedded systems.

B. AUTOSAR and EAST-ADL

AUTOSAR (AUTomotive Open System ARchitecture) [2]
is a standardized automotive software architecture, developed
as a cooperation between automobile manufacturers, suppliers
and tool developers. Its objective is to create and establish
open standards for automotive electronic architectures.

AUTOSAR follows a component-based approach. A model
relies on application software components that are linked
through an abstract component: the virtual function bus.

This bus connects the different software components in
the design model. This abstract component interconnects the
different application software components and handles the
information exchange between them. This bus abstracts away
all hardware and system services offered by the vehicular
system, allowing designers to focus first on the function, and
later on the actual hardware/software decomposition.

In addition to this component model, AUTOSAR specifies
standardized interfaces for all the application software com-
ponents necessary for various automotive applications.

AUTOSAR enforces a standardized modeling process, using
a layered architecture to preserve separation of concerns:

• Basic Software Layer: this layer acts as an hardware
abstraction layer;

• Runtime environment: handles the information exchange
between software components bound to various Elec-
tronic Control Units (ECUs), it has the role of a com-
munication middleware;

• Application Layer: hosts the actual functions.

Both the Basic Software and Runtime Environment imple-
ment the virtual function bus of AUTOSAR.

As defined, AUTOSAR is focused primarily on the imple-
mentation of the ECUs through system description, configu-
ration and generation of software binaries. It does not address
higher-level requirements.

EAST-ADL (Electronics Architecture and Software Tech-
nology - Architecture Description Language) [3] is an Archi-
tecture Description Language (ADL) for automotive embedded
systems, developed in several European research projects. It is
based on concepts from UML, SysML and AADL, but adapted
for automotive needs and compliance with AUTOSAR. EAST-
ADL has been designed to complement AUTOSAR with de-
scriptions at higher level of abstractions: vehicle features, func-
tions, requirements, variability, software components, hard-
ware components and communication

EAST-ADL primary focus is the development of safety-
related embedded control systems. It supports the main phases
of software development, from early analysis via functional
design to the implementation and back to integration and



validation on vehicle level. The main role of EAST-ADL is
that of providing an integrated system model. Its focus is on

• documentation, as a single integrated model of a system;
• communication between engineers, through synthetic

views on the system;
• analysis, through the description of system structure and

associated non-functional properties. This view focuses
on an analytic decomposition of a system, not on the
analysis of its properties per se;

• simulation or code generation, through behavioral models
such as a subsystem in MATLAB/Simulink [9].

In [10] and [11], authors discuss analysis of EAST-ADL
models, focusing on model checking using SPIN, safety anal-
ysis using Hip-Hops and some timing analysis. This work is
later completed in [12] and addresses optimizations of archi-
tectures through specific analysis combined to multi-domain
optimization techniques based on genetic algorithms. In these
experiments, analysis is through exogenous transformations.

C. AADLv2

The “Architecture Analysis and Design Language”
(AADL) [6] is a textual and graphical language for model-
based engineering of embedded real-time systems. AADL
is used to design and analyze software and hardware
architectures of embedded real-time systems.

The AADL allows for the description of both software and
hardware parts of a system. It focuses on the definition of
clear block interfaces, and separates the implementations from
these interfaces. From the separate description of these blocks,
one can build an assembly of blocks that represent the full
system. To take into account the multiple ways to connect
components, the AADL defines different connection patterns:
subcomponent, connection, binding.

An AADL model can incorporate non-architectural ele-
ments: non-functional properties (execution time, memory
footprint, . . . ), behavioral or fault descriptions. Hence it is
possible to use AADL as a backbone to describe all the aspects
of a system. Let us review these elements:

An AADL description is made of components. Each
component category describes well-identified elements of
the actual architecture, using the same vocabulary of sys-
tem or software engineering. The AADL standard defines
software components (data, thread, thread group,
subprogram, process) and execution platform compo-
nents (memory, bus, processor, device, virtual

processor, virtual bus) and hybrid components
(system) or imprecise (abstract).

Component declarations have to be instantiated into sub-
components of other components in order to model an archi-
tecture. At the top-level, a system contains all the component
instances. Most components can have subcomponents, so that
an AADL description is hierarchical. A complete AADL
description must provide a top-most level system that will
contain certain kind of components (processor, process, bus,
device, abstract and memory), thus providing the root of the

architecture tree. The architecture in itself is the instantiation
of this system, which is called the root system.

The interface of a component is called component type.
It provides features (e.g. communication ports). Components
communicate one with another by connecting their features.
To a given component type correspond zero or several imple-
mentations. Each of them describes the internal structure of
the components: subcomponents, connections between those
subcomponents. They can also refine non-functional proper-
ties.

The AADL defines the notion of properties. They model
non-functional properties that can be attached to model el-
ements (components, connections, features, instances, etc.).
Properties are typed attributes that specify constraints or
characteristics that apply to the elements of the architecture
such as clock frequency of a processor, execution time of
a thread, bandwidth of a bus. Some standard properties are
defined, e.g. for timing aspects; but it is possible to define
new properties for different analysis (e.g. to define particular
security policies). Besides, the language is defined by a
companion standard document that defines legality rules for
component assemblies, its static and execution semantics.

AADL initial requirement document mentions analysis as
the key, objective. AADL is backed with a large set of analysis
tools2, covering many different domains: scheduling analysis
like Cheddar [13] and MAST [14]; dependability assessment:
AADL provides an annex for modeling propagation of error,
like COMPASS project [15], or ADAPT [16]; behavioral
analysis: mapping to formal methods and associated model
checkers have been defined for Petri Nets [17], RT-Maude [18]
and many others code generation: Ocarina implements Ada
and C code generators for distributed systems [19]; mapping
to hardware description language System-C [20].

D. Comparison

Actually, all three modeling frameworks stand equal: gate-
ways can be established between the notations. In [21], authors
compare EAST-ADL and AADL, and conclude that they have
lot of similarities, yet EAST-ADL primary focus is on model
exchange and understandability, while AADL focuses more
on analysis and code generation. In [22], authors demonstrate
that AADL concepts can be expressed using MARTE; another
group explored similar considerations from SysML [23].

We note most of the differences are not in the notation itself,
but on the way it is used, and its capability to be extended:

• Coverage of the V-cycle: MARTE/SysML combined fo-
cuses on the whole engineering cycle, whereas EAST-
ADL and AADL focus more on the architectural defini-
tion, down to code generation and V&V activities.

• Extensibility: all three notations allow for extensions
through model-based specific constructs: stereotypes, spe-
cific NFPs. The preservation of the semantic, and con-
sistency in case of heterogeneous extensions, e.g. for
reliability, and targeting (implicitly) different tools;

2An updated list of supporting tools, projects and papers can be found on
the official AADL web site http://www.aadl.info.



Another aspect is on the coverage of analysis provided.
Without much surprise, we not the three notations propose
very similar support for schedulability or reliability analysis,
but also code generation. Main differences stem in the tools
or methods used, not in the information found in the models.

Yet, we note similar shortcomings with respect to analysis:

• Analysis concepts (non-functional properties, topologies,
etc.) are part of the modeling space; yet the analysis
itself is external, done through an exogenous model trans-
formation targeting another tool. Adding a new simple
analysis cannot be done by the designer, but requires tool
expertise.

• Addition of new concerns is done through the refinement
or addition of new properties, but also through specific
modeling patterns. We claim this could jeopardize the
genericity of the modeling framework itself. One risk is
for instance to use two sets of NFP for related concerns
such as safety and reliability. This could later introduce
model discrepancies.

• Results of the analysis are not preserved: analysis is
viewed as an additional semantic check to confirm the
model is correct with respect to particular verification
objectives, even-though the associated computation time
can be high. This is a short-term view; the result of an
analysis can be later used to refine some system metrics.
Furthermore, in case of model modification, it is unclear
whether an analysis should be redone or not.

These shortcomings greatly reduce the usability of models
in the building of large-scale systems. Analysis is reduced
to a model validation that is performed depending on the
maturity of the model. We claim analysis concerns should be
an integrated part of the modeling process, and be expanded
beyond typical modeling patterns and NFP. We review several
usage scenarios in the next section.

III. ANALYSIS AS A FIRST-CLASS CITIZEN: WHY?

Through the manipulation of models, designers and ar-
chitects master concepts and technologies involved in the
system they deal with, being able to deliver a well-structured
product intended to a given purpose. In complement to the
modeling activities, analyses applied directly or indirectly onto
the models are helpful to assess the quality of the delivered
product.

In the previous section, we reviewed three key standard-
ized languages for the modeling of embedded systems, their
similarities, and how they address analysis as an objective. In
this section, we outline some important issues and challenges
pointing the fateful role of analyses in the design process.
We motivate and illustrate the challenges with use cases
encountered in the literature and provided solutions.

A. Enforcing models consistency

In the case of design space extension, such as the addition
of new components, properties or connections, it is not impos-
sible to introduce hidden errors and cause undesired problems;
overwriting of previously defined properties, data or interfaces

inconsistencies are some examples. The fact is the designer
lacks of support to fully control and master the design space.

Actually, the modeling framework should perform back-
ground consistency checks (which are sort of analyses) to
ensure that a) the modeling artifacts are correctly used and b)
evolutions do not break the initial meta-model assumptions.
These are constraints applied to models: each rule enforces
particular restrictions in the way model entities are built or
combined. Models can be constrained through specific rules
applied directly on the initial meta-model, or through external
constraints applied on the meta-model or model instances. As
an example, the Object Constraint Language (OCL) can be
used to enforce that strategy on UML diagrams [24].

Second question is to know when to attach a constraint to a
model or a model element. For instance, for large systems, it is
likely that two subsystems will be built on top of incompatible
restrictions. For instance, an Unmanned Aerial Vehicle (UAV)
ground station can relax many of the restrictions to be applied
on the UAV itself. Therefore, one needs a convenient way to
weave constraints and model entities.

“REAL” (Requirement Enforcement and Analysis Lan-
guage) [25] is an annex language that applies on AADL
models. It provides a basic mathematical notation, bound to
AADL concepts, to express static invariants a model must
enforce. This language has been deployed in various settings
to ensure a model conforms to architectural patterns (e.g.,
ARINC653, MILS, Ravenscar) but can also serve extensions
and ensure a model conforms to assumptions of a given
computational model. Such approach proved to be convenient:
one can select granularity of restrictions to be applied on
model elements, or the whole.

One other approach is to define contracts attached to model
elements so as to formalize the composition of model enti-
ties [26]. Yet, the scope is reduced to component interfaces.

B. Facing analysis complexity

We note analyses are truly diverse in complexity, and
that the value attached to one result is not correlated to its
implementation complexity.

As an example, in [27], authors performed an architectural
analysis of a satellite mission, linking performance metrics to
analysis objective such as weight, energy or mission require-
ments (e.g. number of devices required). Surprisingly, many
of those analyses are basic computations of the architectural
graph (e.g. summing the weight of each element of the
designed system to check the overall weight of the system).

Such simple operations can be implemented with a con-
straint language like OCL or REAL operating directly on the
design model.

Yet, other analyses are much more complex. For instance,
let us consider the design of a DRE system subject to real-
time or safety constraints. Such a design requires to apply
appropriate analyses including schedulability analysis or safety
analysis that may involve analytical methods [13] or model
checking applied considering a scenario expressed in temporal
logic [17]. It is obvious that the case of those "advanced"



Fig. 1. A classic analysis strategy : the one-to-one transformation workflow

analyses requires more specific analysis methods performed
by standalone analysis engines. Consequently, filling the gap
between modeling and analysis calls for dedicated support
in order to navigate between design model(s) and analysis
method(s).

Up to now, this problem is handled in a one-to-one transfor-
mation fashion (Figure 1). Mostly (if not always), considered
analyses are hard-wired in a transformation framework that
will translate the design-related model to a “proprietary”
analysis-related model responding to the execution needs of
a specific analysis engine.

C. Handling models evolution

In line with the previous concerns, we note the question
of model maturity is central in the engineering of embedded
systems. The key question is to know when to move from one
modeling activity to one analysis phase.

First of all, let us note that each analysis comes with its set
of expectations; for instance, in terms of presence of NFPs, or
specific communication patterns [28].

Gaudel et al. [29] addressed the interoperability between
design models and analysis tools, introducing the notion of
subset. They specified them as specific restrictions (so-called
cardinality constraints) over the design-related meta-model and
implemented them using a Domain-Specific Language (DSL).

In [30], the authors introduced the concept of real-time

context as being attached to a real-time system model. It is
defined as a specific set of assumptions on the design-related

model, compliant to a precise analytical model onto which
an analysis can be performed (task model, hypothesis, etc.).
Given the real-time context of a model, it is possible to execute
associated analyses. In this work, detecting real-time contexts
is enforced through structural rules applied onto the model
instances using OCL.

In both cases, the notion of constraint (as introduced in
the section III-A) has been extended to implement a set of
predicates on the design model. These are used so as to know
whether a given analysis can be triggered prior to run the
model transformation (see figure 1).

On the one-hand, predicates act as a validation engine prior
to perform the actual analysis. On the other hand, from the
error report they produce, they act as “wizards” that point to
model missing bits, thus providing methodological support to
the designer.

D. Exploiting analyses outcomes

Designers can gain more information on their models
through analysis. Yet, analysis is not a dead-end: from an
analysis outcome, the designer can validate, correct or refine
his system; or extend it adding another view, for instance in the
MARTE or AUTOSAR. So far, the one-to-one transformation
fashion (as mentioned in the section III-B), hardly eases
feedbacks of analysis results in the design space (see fig-
ure 1). Because models and analyses are loosely-coupled, the
semantics could be changed during the transformation process,
implying that computed results have a weak meaning vis-a-vis

the initial models. For the best of our knowledge, inclusion
of analysis outcomes in the context of models correction or
refinement has been relatively unexplored so far. Analysis
results can be considered in two ways:

1) Validation capabilities: in case both the input(s) and the
output(s) of an analysis are part of the model, applying an
analysis can ensure the model elements are coherently defined
regarding each other. This gathers two situations:

• model over-engineering : model elements can be a priori

deduced from others,
• model inconsistency : refers to the a posteriori detection

of mismatch between modeling elements; a mismatch
being the sign of a bogus design.

The case of over-engineering has been investigated in [31] :
the authors showed it is possible to deduce configuration
parameters for an embedded network using non-functional
properties of data flows and threads present in an AADL
model.

2) Analysis factory: in case the output(s) of an analysis
can feed another analysis, one can derive wider results by
reviewing the “interfaces” associated to the analyses. In this
case, any analysis can be seen as a black box that implements a
transformation function (the analysis itself) regarding required

inputs (the parameters to analyze) and provided outputs (the
computed result(s)).

Such “analysis factory” has been experimented in the en-
gineering of the Perseus rocket [32]. This sub-sonic launcher
has to meet particular performance metrics to ensure launch
success. AADL and REAL languages have been used to
respectively define (a) the system components and their NFPs
and (b) the computation of these metrics. The computation of
all metrics is actually a tree, mixing data from the model and
intermediate computations. Using the signature associated to
each computation, REAL orders the successive computations
and triggers the necessary analyses. Let us note that some
analyses are simple computations while others may rely on
external tools.

E. Summary : addressing analysis intends

Early resources provisioning, design space exploration,
multi-criteria design optimization [33], [12] or, more classi-
cally, final validation of a complete system are some examples
of analysis intends. Actually, such intends are different levels
for a same philosophy : models, as time-variant artifacts, are



dynamically assessed and checked on a multi-criteria basis
with intervention of the user or not.

Addressing analysis intends calls for a clear and well-
structured coupling between model(s) and applicable analyses,
thus requiring answering three questions:

1) Is the model well-formed and, Is there any analysis
applicable to the current model? (Sections III-A, III-C)

2) How will the analysis be performed? (Section III-B)
3) What can we learn from the analysis? (Section III-D)

From the experiments outlined for each challenge, we note
a convergence between modeling and analysis concerns:

• constraints in the form of restrictions to be applied on
the model under construction are mandatory so as to 1)
avoid ill-formed models and 2) respect context-specific
requirements (e.g. from specific models of computation,
or modeling guidelines);

• some "simple" analyses can be performed using a basic
DSL, still contributing significantly to the assessment of
the system quality. Other analyses require a transforma-
tion automaton to translate the design model into a third-
party model exploited by the analysis engine;

• third-party computations are based on information ex-
tracted from the design model(s). Constraints can be used
to restrict the scope of computations (e.g. detecting NFPs
or patterns belonging to a specific analytical model), thus
maintaining the semantics of the model transformation;

• exploiting analysis results in the design space requires a
systematic and formalized approach so as to 1) structure
and exploit the relationships between analyses and then
2) validate the design choices.

Hence, modeling and analysis are dual activities: models
are built with an analysis objective, while analysis can provide
guidance for the model(s) definition. Besides, dealing with the
numerous couplings between the two activities – referred to
as under multiple names such as "constraints", "restrictions"
or "contracts" – calls for a more systematic approach for the
use of analyses.

IV. ANALYSIS AS A FIRST CLASS CITIZEN: HOW?

As we mentioned, designers have multiple analysis objec-
tives. Addressing such analysis intends requires embedding
solutions within the model-based environment at very various
levels (that is to say, to reason at meta or instance levels
for instance). As a matter of fact, we note that any analysis
activation is made through the use of static predicates whose
evaluation to false means the impossibility to proceed further.

As part of the AADL working group, a proposal emerged to
merge various initiatives: ACL – AADL Constraint Language
– and its roadmap.

A. ACL – An AADL annex language for analysis

The analysis objectives of a model can cover heterogeneous
concerns like scheduling, security, safety, power consump-
tion . . . Besides, the evaluation of metrics can be project or
platform dependent, and rely on different analysis frameworks.

Fig. 2. Layers of ACL – AADL Constraint Language

Thus, one needs a versatile way to define and combine
analyses.

These considerations led to the definition of ACL – AADL
Constraint Language. Its is defined as an AADL annex lan-
guage and is resulting from various experiments made in the
scope of languages such as REAL (Requirement Enforcement
Analysis Language) [25] or Lute [34] that share similarities
in terms of philosophy and syntax.

This language aims at defining analysis strategies on archi-
tectural descriptions. ACL pursues multiple design goals:

• Enabling easy navigation through AADL meta-model
elements, yet being at a high-level abstraction. To do
so, we discarded the use of the UML Object Constraint
Language (OCL) and decided to define a specific DSL
based on AADL concepts to ease writing of analysis.

• Allowing to define generic rules. We note that mathemat-
ics universal quantifiers (∀, ∃) notation is interesting to
define metrics that can apply to a wide range of models,
not just specific instances.

• Allowing for modularity through definition of separate
analyses that can be later combined.

• Being integrated to the AADL as an annex language, so
that analysis are coupled to models in a single repository.

B. Definition of ACL

ACL is built on top of a family of languages (figure 2); each
language aims at modularizing accessors on model elements,
definition of analysis predicate for both static and dynamic
cases and finally coupling of such predicates to the model.

1) Model accessors: extraction of NFPs (1); access to
component interfaces (2); model traversal functions (4)

2) Basic computations: Relational and Boolean expressions
grammar rules (3), Reusable static scalar functions /



predicates (5), Set building operators and reusable set
building functions grammar (6 & 7)

3) Dynamic predicates based on state sequence expressions
from PSL SERE subset (7); subset of PSL Foundation
Logic (LTL) temporal operators on Boolean and State
Sequence Expressions (9)

4) Static predicates based on Lute/Real languages (8)
5) Modularity Grouping predicates into standard or custom

defined analysis viewpoints (10, 11 & 12)

From these goals, we defined ACL with the following design
decisions: the language is based on set theory and associated
mathematical notations. The basic unit of ACL is a theorem.
A theorem verifies an expression over all the elements of a
set that is called the range set. It allows one to build sets
whose elements are AADL entities (connections, components
or subprogram calls). Verification or computations can then be
performed on either a set or its elements by stating Boolean
expressions. Listing 1 illustrate some elements of ACL syntax
from the PALS case study from [34].

−− A s t r u c t u r a l con t rac t i s a set o f s t a t i c p red ica tes
−− a model must meet to be c o r r e c t
st ructura l contract PalsChecks {
theorem PALS_Period

foreach s in PALS_Threads do {
−− Ca l l to a f u n c t i o n
PALS_Group := PALS_Group ( s ) ;
C l o c k _ J i t t e r := Max_Thread_Ji t ter ( PALS_Group ) ;

−− Accessing the maximum value of a proper ty on a
−− set o f model elements

Max_Latency := Max ( { Upper ( Proper ty ( c , " Latency " ) )
f o r c in Connections_Among ( PALS_Group ) } ) ;

Deadl ine := Proper ty ( s , " Deadl ine " ) ;
PALS_Period := PALS_Period ( s ) ;

−− S t r u c t u r a l asse r t i on to be v e r i f i e d
check ( Deadl ine

< PALS_Period − 2 ∗ C l o c k _ J i t t e r − Max_Latency ) ;
} ;

end PALS_Period ;

−− Grouping o f atomic ana lys i s
PALS_Requirements_Ver i f icat ion :

check theorem PALS_Period_is_Period ;
check theorem PALS_Group_shares_PALS_Period ;
check theorem PALS_Causality ;
check theorem PALS_Period ;

} ;

Listing 1. ACL example

From this set of definitions, one may now attach constraints
to model elements using the annex subclause mechanism of
AADL. This allows one to attach extraneous information to
model entities.

system Pals_System_Example
−− some fea tu res d e c l a r a t i o n

annex Constraint_Annex {∗∗
−− Any implementat ion o f Pals_system_example must
−− respect the f o l l o w i n g con t rac t

enforce st ructura l contract PalsChecks ;
∗∗}
end Pals_System_Example ;

Listing 2. Attaching constraints to model elements

Using AADL extensions and inheritance mechanism, one
can later propagate predicates to component implementation,

subcomponents or extensions, thus controlling the scope of a
set of analysis. This mechanism allows for a fine-grain control
of the constraints to be applied on a system.

C. Status and roadmap

AADL Constraints Annex relies on many previous exper-
iments around AADL in the definition of a language for
analysis models: REAL and Lute. Annex main goal is to turn
those experiments into a concrete standard to reduce the gap
between model and V&V activities.

A first prototype, derived from REAL is under imple-
mentation. The core of REAL is preserved by ACL; the
main modification concerns the grouping of predicates into
analysis contracts. We are in the process of porting all existing
library of analysis we did in the past for AADL subsets:
IMA, ARINC653, Ravenscar, Time-Triggered, Synchronous
and project-specific analysis: PERSEUS rocket, UAVs.

Future work will consider the extension to dynamic pred-
icates, using concepts from the IEEE PSL Language for
specifying expected observable behaviors in the system.

As defined, ACL has clear interfaces towards AADL el-
ements:properties, model traversal functions and constraints
binding to model elements. A similar approach could be
made available to MARTE or AUTOSAR, allowing for similar
analysis to be run on heterogeneous models in a designer-
friendly mode.

V. CONCLUSION

The advance of Architecture Description Languages in the
scope of Model-Driven Engineering provides foundation for
system analysis through model transformation and exploration.
Numerous contributions made proposals to bring verification
and validation capabilities to designers through model-based
frameworks and illustrate benefits to the overall system quality.

Reviewing the major standards for the modeling of DRE
systems, we noted that model-level analyses are usually per-
formed as an exogenous, unidirectional, transformation to a
third-party model. We notes this narrow the scope of analysis
to a one-step process that belongs to tool experts.

We provided arguments to support the idea that analysis
should be first-class citizen, at model level. Actually, many
analyses are concerned with the correctness of the models,
and are bound to domain-specific extensions, enforcement of
particular modeling guidelines. In the later case, such guide-
lines are either process-specific, or encode assumptions done
by an analysis plug-in (e.g. for schedulability or reliability).

To help in the definition of such analysis, we first note those
are reducible to a set of static or dynamic constraints to be
applied on model entities. Such constraints based on model
queries allow for validating particular combination of model
elements match expected results.

We then introduced ACL, AADL Constraint Languages, as
an ongoing work in implementing support for such predicates.
ACL relies on previous experiment that demonstrated the
versatility of such approach to support various kind of analysis.



Future work will consider the extensions of ACL towards
dynamic predicates, and the experimentation of wider test case
for Perseus launchers and UAVs designed at ISAE.
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