11,729 research outputs found

    A practical, unitary simulator for non-Markovian complex processes

    Full text link
    Stochastic processes are as ubiquitous throughout the quantitative sciences as they are notorious for being difficult to simulate and predict. In this letter we propose a unitary quantum simulator for discrete-time stochastic processes which requires less internal memory than any classical analogue throughout the simulation. The simulator's internal memory requirements equal those of the best previous quantum models. However, in contrast to previous models it only requires a (small) finite-dimensional Hilbert space. Moreover, since the simulator operates unitarily throughout, it avoids any unnecessary information loss. We provide a stepwise construction for simulators for a large class of stochastic processes hence directly opening the possibility for experimental implementations with current platforms for quantum computation. The results are illustrated for an example process.Comment: 12 pages, 5 figure

    A practical, unitary simulator for non-Markovian complex processes

    Full text link
    Stochastic processes are as ubiquitous throughout the quantitative sciences as they are notorious for being difficult to simulate and predict. In this letter we propose a unitary quantum simulator for discrete-time stochastic processes which requires less internal memory than any classical analogue throughout the simulation. The simulator's internal memory requirements equal those of the best previous quantum models. However, in contrast to previous models it only requires a (small) finite-dimensional Hilbert space. Moreover, since the simulator operates unitarily throughout, it avoids any unnecessary information loss. We provide a stepwise construction for simulators for a large class of stochastic processes hence directly opening the possibility for experimental implementations with current platforms for quantum computation. The results are illustrated for an example process.Comment: 12 pages, 5 figure

    Modified Sch\"odinger dynamics with attractive densities

    Full text link
    The linear Schr\"{o}dinger equation does not predict that macroscopic bodies should be located at one place only. Quantum mechanics textbooks generally solve the problem by introducing the projection postulate, which forces definite values to emerge during position measurements; many other interpretations have also been proposed.\ Here, in the same spirit as the GRW and CSL theories, we modify the Schr\"{o}dinger equation in a way that efficiently cancels macroscopic density fluctuations in space.\ Instead of introducing the stochastic dynamics of GRW or CSL, we assume a deterministic dynamics that includes an attraction term towards the density in space of the de Broglie-Bohm position of particles. This automatically ensures macroscopic uniqueness, so that the state vector can be considered as a direct representation of physical reality.Comment: 14 pages, no figure. This is the version accepted by the European Physical Journal, with a few additions in the text and a few more references. A typo has been corrected in Eq (4

    The non-Markovian stochastic Schrodinger equation for open systems

    Get PDF
    We present the non-Markovian generalization of the widely used stochastic Schrodinger equation. Our result allows to describe open quantum systems in terms of stochastic state vectors rather than density operators, without approximation. Moreover, it unifies two recent independent attempts towards a stochastic description of non-Markovian open systems, based on path integrals on the one hand and coherent states on the other. The latter approach utilizes the analytical properties of coherent states and enables a microscopic interpretation of the stochastic states. The alternative first approach is based on the general description of open systems using path integrals as originated by Feynman and Vernon.Comment: 9 pages, RevTe

    Review of Some Promising Fractional Physical Models

    Full text link
    Fractional dynamics is a field of study in physics and mechanics investigating the behavior of objects and systems that are characterized by power-law non-locality, power-law long-term memory or fractal properties by using integrations and differentiation of non-integer orders, i.e., by methods of the fractional calculus. This paper is a review of physical models that look very promising for future development of fractional dynamics. We suggest a short introduction to fractional calculus as a theory of integration and differentiation of non-integer order. Some applications of integro-differentiations of fractional orders in physics are discussed. Models of discrete systems with memory, lattice with long-range inter-particle interaction, dynamics of fractal media are presented. Quantum analogs of fractional derivatives and model of open nano-system systems with memory are also discussed.Comment: 38 pages, LaTe

    Beyond the Spectral Theorem: Spectrally Decomposing Arbitrary Functions of Nondiagonalizable Operators

    Full text link
    Nonlinearities in finite dimensions can be linearized by projecting them into infinite dimensions. Unfortunately, often the linear operator techniques that one would then use simply fail since the operators cannot be diagonalized. This curse is well known. It also occurs for finite-dimensional linear operators. We circumvent it by developing a meromorphic functional calculus that can decompose arbitrary functions of nondiagonalizable linear operators in terms of their eigenvalues and projection operators. It extends the spectral theorem of normal operators to a much wider class, including circumstances in which poles and zeros of the function coincide with the operator spectrum. By allowing the direct manipulation of individual eigenspaces of nonnormal and nondiagonalizable operators, the new theory avoids spurious divergences. As such, it yields novel insights and closed-form expressions across several areas of physics in which nondiagonalizable dynamics are relevant, including memoryful stochastic processes, open non unitary quantum systems, and far-from-equilibrium thermodynamics. The technical contributions include the first full treatment of arbitrary powers of an operator. In particular, we show that the Drazin inverse, previously only defined axiomatically, can be derived as the negative-one power of singular operators within the meromorphic functional calculus and we give a general method to construct it. We provide new formulae for constructing projection operators and delineate the relations between projection operators, eigenvectors, and generalized eigenvectors. By way of illustrating its application, we explore several, rather distinct examples.Comment: 29 pages, 4 figures, expanded historical citations; http://csc.ucdavis.edu/~cmg/compmech/pubs/bst.ht
    corecore