4,613 research outputs found

    Effects of neutral selection on the evolution of molecular species

    Full text link
    We introduce a new model of evolution on a fitness landscape possessing a tunable degree of neutrality. The model allows us to study the general properties of molecular species undergoing neutral evolution. We find that a number of phenomena seen in RNA sequence-structure maps are present also in our general model. Examples are the occurrence of "common" structures which occupy a fraction of the genotype space which tends to unity as the length of the genotype increases, and the formation of percolating neutral networks which cover the genotype space in such a way that a member of such a network can be found within a small radius of any point in the space. We also describe a number of new phenomena which appear to be general properties of neutrally evolving systems. In particular, we show that the maximum fitness attained during the adaptive walk of a population evolving on such a fitness landscape increases with increasing degree of neutrality, and is directly related to the fitness of the most fit percolating network.Comment: 16 pages including 4 postscript figures, typeset in LaTeX2e using the Elsevier macro package elsart.cl

    Degeneracy: a design principle for achieving robustness and evolvability

    Full text link
    Robustness, the insensitivity of some of a biological system's functionalities to a set of distinct conditions, is intimately linked to fitness. Recent studies suggest that it may also play a vital role in enabling the evolution of species. Increasing robustness, so is proposed, can lead to the emergence of evolvability if evolution proceeds over a neutral network that extends far throughout the fitness landscape. Here, we show that the design principles used to achieve robustness dramatically influence whether robustness leads to evolvability. In simulation experiments, we find that purely redundant systems have remarkably low evolvability while degenerate, i.e. partially redundant, systems tend to be orders of magnitude more evolvable. Surprisingly, the magnitude of observed variation in evolvability can neither be explained by differences in the size nor the topology of the neutral networks. This suggests that degeneracy, a ubiquitous characteristic in biological systems, may be an important enabler of natural evolution. More generally, our study provides valuable new clues about the origin of innovations in complex adaptive systems.Comment: Accepted in the Journal of Theoretical Biology (Nov 2009

    Red Queen Coevolution on Fitness Landscapes

    Full text link
    Species do not merely evolve, they also coevolve with other organisms. Coevolution is a major force driving interacting species to continuously evolve ex- ploring their fitness landscapes. Coevolution involves the coupling of species fit- ness landscapes, linking species genetic changes with their inter-specific ecological interactions. Here we first introduce the Red Queen hypothesis of evolution com- menting on some theoretical aspects and empirical evidences. As an introduction to the fitness landscape concept, we review key issues on evolution on simple and rugged fitness landscapes. Then we present key modeling examples of coevolution on different fitness landscapes at different scales, from RNA viruses to complex ecosystems and macroevolution.Comment: 40 pages, 12 figures. To appear in "Recent Advances in the Theory and Application of Fitness Landscapes" (H. Richter and A. Engelbrecht, eds.). Springer Series in Emergence, Complexity, and Computation, 201

    Genetic draft, selective interference, and population genetics of rapid adaptation

    Full text link
    To learn about the past from a sample of genomic sequences, one needs to understand how evolutionary processes shape genetic diversity. Most population genetic inference is based on frameworks assuming adaptive evolution is rare. But if positive selection operates on many loci simultaneously, as has recently been suggested for many species including animals such as flies, a different approach is necessary. In this review, I discuss recent progress in characterizing and understanding evolution in rapidly adapting populations where random associations of mutations with genetic backgrounds of different fitness, i.e., genetic draft, dominate over genetic drift. As a result, neutral genetic diversity depends weakly on population size, but strongly on the rate of adaptation or more generally the variance in fitness. Coalescent processes with multiple mergers, rather than Kingman's coalescent, are appropriate genealogical models for rapidly adapting populations with important implications for population genetic inference.Comment: supplementary illustrations and scripts are available at http://webdav.tuebingen.mpg.de/interference

    Universality classes of interaction structures for NK fitness landscapes

    Full text link
    Kauffman's NK-model is a paradigmatic example of a class of stochastic models of genotypic fitness landscapes that aim to capture generic features of epistatic interactions in multilocus systems. Genotypes are represented as sequences of LL binary loci. The fitness assigned to a genotype is a sum of contributions, each of which is a random function defined on a subset of kLk \le L loci. These subsets or neighborhoods determine the genetic interactions of the model. Whereas earlier work on the NK model suggested that most of its properties are robust with regard to the choice of neighborhoods, recent work has revealed an important and sometimes counter-intuitive influence of the interaction structure on the properties of NK fitness landscapes. Here we review these developments and present new results concerning the number of local fitness maxima and the statistics of selectively accessible (that is, fitness-monotonic) mutational pathways. In particular, we develop a unified framework for computing the exponential growth rate of the expected number of local fitness maxima as a function of LL, and identify two different universality classes of interaction structures that display different asymptotics of this quantity for large kk. Moreover, we show that the probability that the fitness landscape can be traversed along an accessible path decreases exponentially in LL for a large class of interaction structures that we characterize as locally bounded. Finally, we discuss the impact of the NK interaction structures on the dynamics of evolution using adaptive walk models.Comment: 61 pages, 9 figure

    Incorporating characteristics of human creativity into an evolutionary art algorithm (journal article)

    Get PDF
    A perceived limitation of evolutionary art and design algorithms is that they rely on human intervention; the artist selects the most aesthetically pleasing variants of one generation to produce the next. This paper discusses how computer generated art and design can become more creatively human-like with respect to both process and outcome. As an example of a step in this direction, we present an algorithm that overcomes the above limitation by employing an automatic fitness function. The goal is to evolve abstract portraits of Darwin, using our 2nd generation fitness function which rewards genomes that not just produce a likeness of Darwin but exhibit certain strategies characteristic of human artists. We note that in human creativity, change is less choosing amongst randomly generated variants and more capitalizing on the associative structure of a conceptual network to hone in on a vision. We discuss how to achieve this fluidity algorithmically

    Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein

    Full text link
    Epistatic interactions between residues determine a protein's adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1) using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient) condition that detects epistasis in most cases. We analyze the "fossils" of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing.Comment: 25 pages, 9 figures, plus Supplementary Material including Supplementary Text S1-S7, Supplementary Tables S1-S2, and Supplementary Figures S1-2. Version that appears in PLoS Genetic

    Digital Ecosystems: Ecosystem-Oriented Architectures

    Full text link
    We view Digital Ecosystems to be the digital counterparts of biological ecosystems. Here, we are concerned with the creation of these Digital Ecosystems, exploiting the self-organising properties of biological ecosystems to evolve high-level software applications. Therefore, we created the Digital Ecosystem, a novel optimisation technique inspired by biological ecosystems, where the optimisation works at two levels: a first optimisation, migration of agents which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. The Digital Ecosystem was then measured experimentally through simulations, with measures originating from theoretical ecology, evaluating its likeness to biological ecosystems. This included its responsiveness to requests for applications from the user base, as a measure of the ecological succession (ecosystem maturity). Overall, we have advanced the understanding of Digital Ecosystems, creating Ecosystem-Oriented Architectures where the word ecosystem is more than just a metaphor.Comment: 39 pages, 26 figures, journa
    corecore