We introduce a new model of evolution on a fitness landscape possessing a
tunable degree of neutrality. The model allows us to study the general
properties of molecular species undergoing neutral evolution. We find that a
number of phenomena seen in RNA sequence-structure maps are present also in our
general model. Examples are the occurrence of "common" structures which occupy
a fraction of the genotype space which tends to unity as the length of the
genotype increases, and the formation of percolating neutral networks which
cover the genotype space in such a way that a member of such a network can be
found within a small radius of any point in the space. We also describe a
number of new phenomena which appear to be general properties of neutrally
evolving systems. In particular, we show that the maximum fitness attained
during the adaptive walk of a population evolving on such a fitness landscape
increases with increasing degree of neutrality, and is directly related to the
fitness of the most fit percolating network.Comment: 16 pages including 4 postscript figures, typeset in LaTeX2e using the
Elsevier macro package elsart.cl