318 research outputs found

    Reliability and Efficiency of Vehicular Network Applications

    Get PDF
    The DSRC/WAVE initiative is forecast to enable a plethora of applications, classified in two broad types of safety and non-safety applications. In the former type, the reliability performance is of tremendous prominence while, in the latter case, the efficiency of information dissemination is the key driving factor. For safety applications, we adopt a systematic approach to analytically investigate the reliability of the communication system in a symbiotic relationship with the host system comprising a vehicular traffic system and radio propagation environment. To this aim, the¬ interference factor is identified as the central element of the symbiotic relationship. Our approach to the investigation of interference and its impacts on the communication reliability departs from previous studies by the degree of realism incorporated in the host system model. In one dimension, realistic traffic models are developed to describe the vehicular traffic behaviour. In a second dimension, a realistic radio propagation model is employed to capture the unique signal propagation aspects of the host system. We address the case of non-safety applications by proposing a generic framework as a capstone architecture for the development of new applications and the efficiency evaluation of existing ones. This framework, while being independent from networking technology, enables accurate characterization of the various information dissemination tasks that a node performs in cooperation with others. As the central element of the framework, we propose a game theoretic model to describe the interaction of meeting nodes aiming to exchange information of mutual or social interests. An adaptive mechanism is designed to enable a mobile node to measure the social significance of various information topics, which is then used by the node to prioritize the forwarding of information objects

    Joint ERCIM eMobility and MobiSense Workshop

    Get PDF

    Assessing the Performance of a Particle Swarm Optimization Mobility Algorithm in a Hybrid Wi-Fi/LoRa Flying Ad Hoc Network

    Get PDF
    Research on Flying Ad-Hoc Networks (FANETs) has increased due to the availability of Unmanned Aerial Vehicles (UAVs) and the electronic components that control and connect them. Many applications, such as 3D mapping, construction inspection, or emergency response operations could benefit from an application and adaptation of swarm intelligence-based deployments of multiple UAVs. Such groups of cooperating UAVs, through the use of local rules, could be seen as network nodes establishing an ad-hoc network for communication purposes. One FANET application is to provide communication coverage over an area where communication infrastructure is unavailable. A crucial part of a FANET implementation is computing the optimal position of UAVs to provide connectivity with ground nodes while maximizing geographic span. To achieve optimal positioning of FANET nodes, an adaptation of the Particle Swarm Optimization (PSO) algorithm is proposed. A 3D mobility model is defined by adapting the original PSO algorithm and combining it with a fixed-trajectory initial flight. A Long Range (LoRa) mesh network is used for air-to-air communication, while a Wi-Fi network provides air-to-ground communication to several ground nodes with unknown positions. The optimization problem has two objectives: maximizing coverage to ground nodes and maintaining an end-to-end communication path to a control station, through the UAV mesh. The results show that the hybrid mobility approach performs similarly to the fixed trajectory flight regarding coverage, and outperforms fixed trajectory and PSO-only algorithms in both path maintenance and overall network efficiency, while using fewer UAVs

    Reliable Message Dissemination in Mobile Vehicular Networks

    Full text link
    Les réseaux véhiculaires accueillent une multitude d’applications d’info-divertissement et de sécurité. Les applications de sécurité visent à améliorer la sécurité sur les routes (éviter les accidents), tandis que les applications d’info-divertissement visent à améliorer l'expérience des passagers. Les applications de sécurité ont des exigences rigides en termes de délais et de fiabilité ; en effet, la diffusion des messages d’urgence (envoyés par un véhicule/émetteur) devrait être fiable et rapide. Notons que, pour diffuser des informations sur une zone de taille plus grande que celle couverte par la portée de transmission d’un émetteur, il est nécessaire d’utiliser un mécanisme de transmission multi-sauts. De nombreuses approches ont été proposées pour assurer la fiabilité et le délai des dites applications. Toutefois, ces méthodes présentent plusieurs lacunes. Cette thèse, nous proposons trois contributions. La première contribution aborde la question de la diffusion fiable des messages d’urgence. A cet égard, un nouveau schéma, appelé REMD, a été proposé. Ce schéma utilise la répétition de message pour offrir une fiabilité garantie, à chaque saut, tout en assurant un court délai. REMD calcule un nombre optimal de répétitions en se basant sur l’estimation de la qualité de réception de lien dans plusieurs locations (appelées cellules) à l’intérieur de la zone couverte par la portée de transmission de l’émetteur. REMD suppose que les qualités de réception de lien des cellules adjacentes sont indépendantes. Il sélectionne, également, un nombre de véhicules, appelés relais, qui coopèrent dans le contexte de la répétition du message d’urgence pour assurer la fiabilité en multi-sauts. La deuxième contribution, appelée BCRB, vise à améliorer REMD ; elle suppose que les qualités de réception de lien des cellules adjacentes sont dépendantes ce qui est, généralement, plus réaliste. BCRB utilise les réseaux Bayésiens pour modéliser les dépendances en vue d’estimer la qualité du lien de réception avec une meilleure précision. La troisième contribution, appelée RICS, offre un accès fiable à Internet. RICS propose un modèle d’optimisation, avec une résolution exacte optimale à l'aide d’une technique de réduction de la dimension spatiale, pour le déploiement des passerelles. Chaque passerelle utilise BCRB pour établir une communication fiable avec les véhicules.Vehicular networks aim to enable a plethora of safety and infotainment applications. Safety applications aim to preserve people's lives (e.g., by helping in avoiding crashes) while infotainment applications focus on enhancing the passengers’ experience. These applications, especially safety applications, have stringent requirements in terms of reliability and delay; indeed, dissemination of an emergency message (e.g., by a vehicle/sender involved in a crash) should be reliable while satisfying short delay requirements. Note, that multi-hop dissemination is needed to reach all vehicles, in the target area, that may be outside the transmission range of the sender. Several schemes have been proposed to provide reliability and short delay for vehicular applications. However, these schemes have several limitations. Thus, the design of new solutions, to meet the requirement of vehicular applications in terms of reliability while keeping low end-to-end delay, is required. In this thesis, we propose three schemes. The first scheme is a multi-hop reliable emergency message dissemination scheme, called REMD, which guarantees a predefined reliability , using message repetitions/retransmissions, while satisfying short delay requirements. It computes an optimal number of repetitions based on the estimation of link reception quality at different locations (called cells) in the transmission range of the sender; REMD assumes that link reception qualities of adjacent cells are independent. It also adequately selects a number of vehicles, called forwarders, that cooperate in repeating the emergency message with the objective to satisfy multi-hop reliability requirements. The second scheme, called BCRB, overcomes the shortcoming of REMD by assuming that link reception qualities of adjacent cells are dependent which is more realistic in real-life scenarios. BCRB makes use of Bayesian networks to model these dependencies; this allows for more accurate estimation of link reception qualities leading to better performance of BCRB. The third scheme, called RICS, provides internet access to vehicles by establishing multi-hop reliable paths to gateways. In RICS, the gateway placement is modeled as a k-center optimisation problem. A space dimension reduction technique is used to solve the problem in exact time. Each gateway makes use of BCRB to establish reliable communication paths to vehicles

    A survey on gas leakage source detection and boundary tracking with wireless sensor networks

    Get PDF
    Gas leakage source detection and boundary tracking of continuous objects have received a significant research attention in the academic as well as the industries due to the loss and damage caused by toxic gas leakage in large-scale petrochemical plants. With the advance and rapid adoption of wireless sensor networks (WSNs) in the last decades, source localization and boundary estimation have became the priority of research works. In addition, an accurate boundary estimation is a critical issue due to the fast movement, changing shape, and invisibility of the gas leakage compared with the other single object detections. We present various gas diffusion models used in the literature that offer the effective computational approaches to measure the gas concentrations in the large area. In this paper, we compare the continuous object localization and boundary detection schemes with respect to complexity, energy consumption, and estimation accuracy. Moreover, this paper presents the research directions for existing and future gas leakage source localization and boundary estimation schemes with WSNs

    An incentive game based evolutionary model for crowd sensing networks

    Get PDF
    Crowd sensing networks can be used for large scale sensing of the physical world or other information service by leveraging the available sensors on the phones. The collector hopes to collect as much as sensed data at relatively low cost. However, the sensing participants want to earn much money at low cost. This paper examines the evolutionary process among participants sensing networks and proposes an evolutionary game model to depict collaborative game phenomenon in the crowd sensing networks based on the principles of game theory in economics. A effectively incentive mechanism is established through corrected the penalty function of the game model accordance with the cooperation rates of the participant, and corrected the game times in accordance with it’s payoff. The collector controls the process of game by adjusting the price function. We find that the proposed incentive game based evolutionary model can help decision makers simulate evolutionary process under various scenarios. The crowd sensing networks structure significantly influence cooperation ratio and the total number of participant involved in the game, and the distribution of population with different game strategy. Through evolutionary game model, the manager can select an optimal price to facilitate the system reach equilibrium state quickly, and get the number of participants involved in the game. The incentive game based evolutionary model in crowd sensing networks provides valuable decision-making support to managers

    Facilitating Internet of Things on the Edge

    Get PDF
    The evolution of electronics and wireless technologies has entered a new era, the Internet of Things (IoT). Presently, IoT technologies influence the global market, bringing benefits in many areas, including healthcare, manufacturing, transportation, and entertainment. Modern IoT devices serve as a thin client with data processing performed in a remote computing node, such as a cloud server or a mobile edge compute unit. These computing units own significant resources that allow prompt data processing. The user experience for such an approach relies drastically on the availability and quality of the internet connection. In this case, if the internet connection is unavailable, the resulting operations of IoT applications can be completely disrupted. It is worth noting that emerging IoT applications are even more throughput demanding and latency-sensitive which makes communication networks a practical bottleneck for the service provisioning. This thesis aims to eliminate the limitations of wireless access, via the improvement of connectivity and throughput between the devices on the edge, as well as their network identification, which is fundamentally important for IoT service management. The introduction begins with a discussion on the emerging IoT applications and their demands. Subsequent chapters introduce scenarios of interest, describe the proposed solutions and provide selected performance evaluation results. Specifically, we start with research on the use of degraded memory chips for network identification of IoT devices as an alternative to conventional methods, such as IMEI; these methods are not vulnerable to tampering and cloning. Further, we introduce our contributions for improving connectivity and throughput among IoT devices on the edge in a case where the mobile network infrastructure is limited or totally unavailable. Finally, we conclude the introduction with a summary of the results achieved

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Internet of Things and Sensors Networks in 5G Wireless Communications

    Get PDF
    The Internet of Things (IoT) has attracted much attention from society, industry and academia as a promising technology that can enhance day to day activities, and the creation of new business models, products and services, and serve as a broad source of research topics and ideas. A future digital society is envisioned, composed of numerous wireless connected sensors and devices. Driven by huge demand, the massive IoT (mIoT) or massive machine type communication (mMTC) has been identified as one of the three main communication scenarios for 5G. In addition to connectivity, computing and storage and data management are also long-standing issues for low-cost devices and sensors. The book is a collection of outstanding technical research and industrial papers covering new research results, with a wide range of features within the 5G-and-beyond framework. It provides a range of discussions of the major research challenges and achievements within this topic
    • …
    corecore