
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2023

Assessing the Performance of a Particle Swarm Optimization Assessing the Performance of a Particle Swarm Optimization

Mobility Algorithm in a Hybrid Wi-Fi/LoRa Flying Ad Hoc Network Mobility Algorithm in a Hybrid Wi-Fi/LoRa Flying Ad Hoc Network

William David Paredes
University of North Florida, davidparedesm@gmail.com

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Aeronautical Vehicles Commons, Artificial Intelligence and Robotics Commons, Digital

Communications and Networking Commons, Electrical and Electronics Commons, Multi-Vehicle Systems

and Air Traffic Control Commons, Navigation, Guidance, Control and Dynamics Commons, Numerical

Analysis and Scientific Computing Commons, Programming Languages and Compilers Commons,

Systems and Communications Commons, Systems Engineering and Multidisciplinary Design

Optimization Commons, and the Theory and Algorithms Commons

Suggested Citation Suggested Citation
Paredes, William David, "Assessing the Performance of a Particle Swarm Optimization Mobility Algorithm
in a Hybrid Wi-Fi/LoRa Flying Ad Hoc Network" (2023). UNF Graduate Theses and Dissertations. 1191.
https://digitalcommons.unf.edu/etd/1191

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 2023 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/219?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/262?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/227?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/227?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/226?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/147?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/221?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/221?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/1191?utm_source=digitalcommons.unf.edu%2Fetd%2F1191&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

Assessing the Performance of a Particle Swarm

Optimization Mobility Algorithm in a Hybrid

Wi-Fi/LoRa Flying Ad Hoc Network

by

William David Paredes Molina

A thesis submitted to the School of Engineering in partial fulfillment of the requirements for the

degree of

Master of Science in Electrical Engineering

University of North Florida

College of Computing, Engineering, and Construction

July 2023

ii

ACKNOWLEDGMENTS

First, I would like to thank my wife Ana and my sons, David and Daniel, for their love and

encouragement throughout this challenging journey. Their patience and understanding have been

invaluable during times of intense focus and dedication. I am immensely fortunate to have such a

loving family by my side, and I am forever grateful for the joy, strength, and inspiration they bring

to my life.

I would also like to thank my parents, Norma and Gonzalo, my sisters, Norma and Stefany, and

my brother-in-law, Víctor. This achievement would not have been possible without their support

and motivation.

I am deeply grateful to my thesis advisor, Dr. Hemani Kaushal, for the guidance and expertise that

shaped this research. Her unwavering dedication and insightful feedback enhanced the quality of

my thesis. I would also like to thank my co-advisor, Dr. Iman Vakilinia, for his availability and

empathetic support, which helped me overcome challenges with confidence. Additionally, I would

like to convey my heartfelt thanks to Dr. Zornitza Prodanoff. Besides her ability to balance

theoretical frameworks with real-world applications, her pragmatic approach has been invaluable

in ensuring the relevance of my study. I feel privileged to have worked under their mentorship,

and I am indebted to them for their patience and encouragement.

I am equally thankful to Alethia Wilkerson for going beyond her responsibilities to provide

assistance and support. Her outstanding dedication, both professionally and personally, has made

this experience more enriching and fulfilling.

Finally, I would like to acknowledge the faculty members and staff of the University of North

Florida, including Dr. Christopher Baynard, Dr. Patrick Kreidl, Dr. Alan Harris, Dr. Mona Nasseri,

Michael Boyles, Brigid Fitzpatrick, and the late Dr. Chiu Choi, for fostering an enriching

environment that facilitated my academic development and personal growth.

iii

Contents

ACKNOWLEDGMENTS .. ii

Contents .. iii

List of Tables ... vii

List of Figures ... ix

ABSTRACT .. xiii

1 Introduction ... 1

1.1 Motivation .. 5

1.2 Objectives and Contributions ... 5

1.3 Organization ... 6

2 Technical Overview ... 7

2.1 UAV Taxonomy ... 8

2.2 Differences between FANETs, VANETs, and MANETs .. 9

2.3 FANET Communications ... 10

2.3.1 Network Architecture.. 11

2.3.2 Communication Channel .. 13

2.3.3 Low Power Wide Area Networks (LPWANs).. 18

2.4 LoRa ... 19

2.4.1 CSS Modulation .. 19

2.4.2 Frequency .. 20

2.4.3 Bandwidth (BW) ... 20

2.4.4 Spreading Factor (SF) ... 21

2.4.5 Coding Rate (CR) Index ... 21

2.4.6 Transmission Power .. 22

2.4.7 LoRa Frame Format .. 23

2.5 IEEE 802.11 ... 24

2.5.1 IEEE 802.11p .. 25

iv

2.5.2 IEEE 802.11s .. 25

2.5.3 IEEE 802.11ax .. 25

2.6 FANET Mobility .. 26

2.6.1 Mobility objectives ... 27

2.6.2 Mobility models .. 27

2.7 Optimization Approach to the Mobility Problem .. 29

2.7.1 Global and Local Optimization ... 30

2.7.2 Single-Objective and Multiobjective Optimization .. 31

2.7.3 Single-Solution and Multiple-Solution Optimization ... 31

2.7.4 Particle Swarm Optimization .. 32

2.8 Related work .. 33

2.8.1 FANET Architectures Involving LoRa or LoRaWAN ... 33

2.8.2 FANET Mobility ... 33

3 Simulation Framework Development .. 36

3.1 System Architecture ... 37

3.2 Considerations and Assumptions ... 38

3.2.1 Communications ... 38

3.3 Definition of the Objective Function ... 40

3.3.1 Multiobjective Optimization ... 45

3.3.2 Problem Formulation .. 49

3.4 Solution Using a PSO Mobility Model .. 50

3.4.1 Search Space Constraint Handling.. 51

3.4.2 Kinematic Constraints Handling ... 52

3.4.3 Dynamic Clustering .. 55

3.4.4 Hybrid PSO ... 57

3.4.5 Stopping Criteria ... 60

3.5 Simulation Parameters.. 61

3.5.1 Node configuration ... 61

3.5.2 Propagation Models .. 63

3.5.3 Mobility... 64

4 Results and Analysis .. 68

4.1 Comparison between Different Objective Functions ... 68

4.1.1 Coverage Reward Only ... 70

v

4.1.2 Coverage and Path Maintenance Rewards .. 73

4.2 Comparison between Different PSO Configurations ... 85

4.2.1 Adaptive Inertia Weight vs. Guaranteed Convergence Parameters 86

4.2.2 Propagation Model Alternatives ... 89

4.2.3 Stopping Criteria Alternatives .. 92

4.3 Performance Metrics .. 95

4.3.1 Number of Iterations Required for Stabilization or Stoppage (𝒕𝒔) 95

4.3.2 Percentage of Covered Ground Nodes (𝑪%) .. 95

4.3.3 FANET Coverage Efficiency (𝜼𝑪) ... 96

4.3.4 Percentage of Ground Nodes with a Path to the Control Station (𝑷%) 97

4.3.5 Overall Efficiency (𝜼𝑶) .. 97

4.4 Performance Evaluation of the Different Mobility Algorithms 98

4.4.1 Number of Iterations ... 99

4.4.2 Percentage of Covered Ground Nodes .. 101

4.4.3 FANET Coverage Efficiency .. 102

4.4.4 Percentage of Ground Nodes with a Path to the Control Station 103

4.4.5 Overall Efficiency ... 105

5 Conclusions and Future Work ... 107

5.1 Conclusions .. 107

5.1.1 Regarding the Objective Function and Multiobjective Optimization 107

5.1.2 Regarding the Optimization Algorithm .. 109

5.1.3 Regarding Overall Performance ... 111

5.1.4 Regarding the Use of LoRa... 111

5.2 Future Work ... 112

5.2.1 Communications ... 112

5.2.2 Mobility based on Multiobjective Optimization ... 113

5.2.3 Energy ... 114

5.2.4 The Use of LoRa in FANETs ... 114

REFERENCES .. 115

APPENDIX A: Main MATLAB Script... 122

APPENDIX B: Implementation of Dijkstra’s Algorithm in MATLAB 142

vi

APPENDIX C: Modified MATLAB Functions to Load Configuration Parameters 144

APPENDIX D: Function Used to Obtain the Path Loss Table ... 148

APPENDIX E: Function to Implement the Free Space Propagation Model 149

APPENDIX F: Performance Evaluation of the Different Mobility Algorithms (Tabulated

Results) ... 151

vii

List of Tables

Table 2.1: UAV taxonomy. ... 9

Table 2.2: Radio channel models and their characteristics. .. 16

Table 2.3: Summary of LoRa modulation parameters. ... 22

Table 2.4: Summary of IEEE 802.11 standards and their characteristics. 24

Table 3.1: MAC and PHY configuration parameters. .. 62

Table 3.2: Application traffic configuration. .. 62

Table 3.3: General mobility parameters. ... 64

Table 3.4: PSO configuration parameters. .. 66

Table 4.1: Model configuration parameters. ... 69

Table 4.2: Link and trajectory plot legends for Figures 4.1(a)–4.18(a). 69

Table 4.3: Alternative gains applied only for covering multiple ground nodes using Hybrid PSO

(1500 m x 1500 m). ... 70

Table 4.4: Coverage and path maintenance reward alternatives using Hybrid PSO (1500 m x 1500

m). ... 73

Table 4.5: Coverage and path maintenance reward alternatives using Hybrid PSO (2000 m x 2000

m). ... 75

Table 4.6: Coverage and path maintenance reward alternatives using Hybrid PSO (2000 m x 2000

m). ... 78

Table 4.7: Coverage and path maintenance reward alternatives using PSO-only (1500 m x 1500

m). ... 80

Table 4.8: Coverage and path maintenance reward alternatives using PSO-only (2000 m x 2000

m). ... 83

viii

Table 4.9: Summary of results for the objective function analysis for the Hybrid PSO. 85

Table 4.10: Summary of results for the objective function analysis for PSO-only. 85

Table 4.11: Adaptive inertia weight vs. guaranteed convergence parameters. 86

Table 4.12: Propagation model alternatives using adaptive inertia weight. 89

Table 4.13: Stopping criteria alternatives using adaptive inertia weight and log-normal

propagation. .. 92

Table 4.14: Objective function and PSO configuration. ... 98

Table 4.15: Assessment scenarios... 98

Table 4.16: Final model configuration parameters. .. 99

ix

List of Figures

Figure 1.1: Proposed scenario. .. 4

Figure 2.1: Relationship between MANET, VANET and FANET. ... 7

Figure 2.2: FANET types of links... 11

Figure 2.3: FANET topologies. .. 13

Figure 2.4: Chirp spread spectrum (CSS) modulation. ... 20

Figure 2.5: LoRa frame format ... 23

Figure 3.1: System architecture. ... 37

Figure 3.2: Approaches to distance calculation between two points in a square grid of side l. ... 43

Figure 3.3: Air-to-ground distance at height h for the expected ground-to-ground distance d. ... 44

Figure 3.4: Proximity ranges between UAVs. .. 46

Figure 3.5: Basic PSO algorithm flowchart. ... 51

Figure 3.6: Dynamic clustering... 55

Figure 3.7: Example of traffic configuration for ten ground nodes and a Wi-Fi backhaul. 63

Figure 4.1: Topology and convergence results when applying a base-2 exponential gain for

covering multiple ground nodes (Hybrid PSO). (a) Network topology after stopping criteria are

met. (b) Aggregated received power levels at each UAV. ... 71

Figure 4.2: Topology and convergence results when applying a distance-based gain for covering

multiple ground nodes (Hybrid PSO). (a) Network topology after stopping criteria are met. (b)

Aggregated received power levels at each UAV. ... 72

Figure 4.3: Topology and convergence results when applying a base-2 exponential gain for

covering multiple ground nodes (Hybrid PSO). (a) Network topology after stopping criteria are

met. (b) Aggregated received power levels at each UAV. ... 74

x

Figure 4.4: Topology and convergence results when applying a distance-based gain for having a

path to the control station (Hybrid PSO). (a) Network topology after stopping criteria are met. (b)

Aggregated received power levels at each UAV. ... 75

Figure 4.5: Topology and convergence results when applying a base-2 exponential gain for

covering multiple ground nodes (Hybrid PSO 2000m). (a) Network topology after stopping criteria

are met. (b) Aggregated received power levels at each UAV. .. 76

Figure 4.6: Topology and convergence results when applying a distance-based gain for having a

path to the control station (Hybrid PSO 2000m). (a) Network topology after stopping criteria are

met. (b) Aggregated received power levels at each UAV. ... 77

Figure 4.7: Topology and convergence results when applying a base-2 exponential gain for

covering multiple ground nodes (Hybrid PSO 2000m until convergence). (a) Network topology

after stopping criteria are met. (b) Aggregated received power levels at each UAV. 78

Figure 4.8: Topology and convergence results when applying a distance-based gain for having a

path to the control station (Hybrid PSO 2000m until covergence). (a) Network topology after

stopping criteria are met. (b) Aggregated received power levels at each UAV. 79

Figure 4.9: Topology and convergence results when applying a base-2 exponential gain for

covering multiple ground nodes (PSO-only). (a) Network topology after stopping criteria are met.

(b) Aggregated received power levels at each UAV. ... 81

Figure 4.10: Topology and convergence results when applying a distance-based gain for having a

path to the control station (PSO-only). (a) Network topology after stopping criteria are met. (b)

Aggregated received power levels at each UAV. ... 82

xi

Figure 4.11: Topology and convergence results when applying a base-2 exponential gain for

covering multiple ground nodes (PSO-only 2000m). (a) Network topology after stopping criteria

are met. (b) Aggregated received power levels at each UAV. .. 83

Figure 4.12: Topology and convergence results when applying a distance-based gain for having a

path to the control station (PSO-only 2000m). (a) Network topology after stopping criteria are met.

(b) Aggregated received power levels at each UAV. ... 84

Figure 4.13: Topology and convergence results when using adaptive inertia weight (Hybrid PSO).

(a) Network topology after stopping criteria are met. (b) Aggregated received power levels at each

UAV. ... 87

Figure 4.14: Topology and convergence results when using guaranteed convergence PSO

parameters (Hybrid PSO). (a) Network topology after stopping criteria are met. (b) Aggregated

received power levels at each UAV. ... 88

Figure 4.15: Topology and convergence results when using a ray tracing propagation model

(Hybrid PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received power

levels at each UAV. .. 90

Figure 4.16: Topology and convergence results when using a log-normal propagation model

(Hybrid PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received power

levels at each UAV. .. 91

Figure 4.17: Topology and convergence results when using signal stability as fitness function

(Hybrid PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received power

levels at each UAV. .. 93

xii

Figure 4.18: Topology and convergence results when using position stability as fitness function

(Hybrid PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received power

levels at each UAV. .. 94

Figure 4.19: Number of iterations required for stabilization or stoppage (𝑡𝑠). (a) Ray tracing

propagation model. (b) Log-normal propagation model. (c) Log-normal propagation model with

LoRa backhaul. ... 100

Figure 4.20: Percentage of covered ground nodes (𝐶%). (a) Ray tracing propagation model. (b)

Log-normal propagation model. (c) Log-normal propagation model with LoRa backhaul. 101

Figure 4.21: FANET Coverage Efficiency (𝜂𝐶). (a) Ray tracing propagation model. (b) Log-

normal propagation model. (c) Log-normal propagation model with LoRa backhaul. 103

Figure 4.22: Percentage of ground nodes with a path to the control station (𝑃%). (a) Ray tracing

propagation model. (b) Log-normal propagation model. (c) Log-normal propagation model with

LoRa backhaul. ... 104

Figure 4.23: Overall efficiency (𝜂𝑂). (a) Ray tracing propagation model. (b) Log-normal

propagation model. (c) Log-normal propagation model with LoRa backhaul. 106

xiii

ABSTRACT

Research on Flying Ad-Hoc Networks (FANETs) has increased due to the availability of

Unmanned Aerial Vehicles (UAVs) and the electronic components that control and connect them.

Many applications, such as 3D mapping, construction inspection, or emergency response

operations could benefit from an application and adaptation of swarm intelligence-based

deployments of multiple UAVs. Such groups of cooperating UAVs, through the use of local rules,

could be seen as network nodes establishing an ad-hoc network for communication purposes.

One FANET application is to provide communication coverage over an area where communication

infrastructure is unavailable. A crucial part of a FANET implementation is computing the optimal

position of UAVs to provide connectivity with ground nodes while maximizing geographic span.

To achieve optimal positioning of FANET nodes, an adaptation of the Particle Swarm

Optimization (PSO) algorithm is proposed. A 3D mobility model is defined by adapting the

original PSO algorithm and combining it with a fixed-trajectory initial flight. A Long Range

(LoRa) mesh network is used for air-to-air communication, while a Wi-Fi network provides air-

to-ground communication to several ground nodes with unknown positions. The optimization

problem has two objectives: maximizing coverage to ground nodes and maintaining an end-to-end

communication path to a control station, through the UAV mesh. The results show that the hybrid

mobility approach performs similarly to the fixed trajectory flight regarding coverage, and

outperforms fixed trajectory and PSO-only algorithms in both path maintenance and overall

network efficiency, while using fewer UAVs.

1

Chapter 1

1 Introduction

The past few decades have witnessed the “wireless revolution” [1,2], a significant increase in the

number of connected devices. These devices, such as body sensors, light dimmers, vacuum

cleaners, thermostats, refrigerators, and autonomous vehicles, have been designed to simplify our

lives both at home and in the workplace. This expansion has been so substantial that numerous

sources now indicate that the number of connected devices has far exceeded the number of

connected individuals, reaching an estimated count of tens of billions [3-5]. For these

interconnected devices to function effectively, they require the ability to communicate with each

other and with users. This concept is widely referred to as the Internet of Things (IoT). In essence,

IoT encompasses a collection of objects equipped with sensors and actuators that are linked

together via either private or public networks, with the Internet being the most common option.

The growth of the IoT, like other technological advancements, has been motivated by the

aspiration to enhance quality of life in a cost-efficient manner [3].

While human communications often demand a considerable bandwidth (e.g., on-demand video

streaming and file sharing) and have little tolerance to delay (e.g., voice calls and

videoconference), communications between objects have different characteristics, at least for the

time being. IoT communications usually involve low data rates, where a relaxation of bandwidth

constraints usually results in lower power consumption and a longer communication range,

considering that these devices might be placed at isolated locations with no access to a power grid

or Wide Area Networks (WANs) such as those available through internet service providers, mobile

carriers, or proprietary deployments.

2

In a natural step in the development of wireless technologies, Ad Hoc networks were conceived as

a method of connecting nodes when no centralized infrastructure is available, and the concept of

mobility was immediately tied to this type of network [6]. Mobile Ad-Hoc Networks (MANETs)

have been used for military applications for many years [7]. As they increasingly connect more

and more objects across the globe, MANETs have become one of the fundamental network

paradigms in IoT. Moreover, the recent surge in the availability of Unmanned Aerial Vehicles

(UAVs), also known as drones, has given rise to the concept of Flying Ad-Hoc Networks

(FANETs). FANETs are a type of wireless network that consists of UAVs that communicate with

each other to provide wireless connectivity.

In a FANET, UAVs act as nodes that communicate with each other to form a network. These nodes

can either act as routers or end devices, and they use wireless communication protocols to

exchange data. The network topology in FANETs is dynamic, as UAVs move around in different

directions and distances, and the network must adapt to the changes in topology.

The use of UAVs in FANETs provides several advantages over traditional wireless networks.

UAVs can be deployed in areas where traditional networks are not available or are destroyed, such

as disaster-stricken areas, remote locations, or war zones. Additionally, UAVs can be rapidly

deployed and redeployed to cover a larger area or to provide connectivity to a specific location.

Furthermore, FANETs can provide a higher degree of reliability and fault tolerance, as UAVs can

act as relays and reconfigure the network in case of a node failure or damage.

Despite the potential advantages of FANETs, there are several challenges that need to be addressed

to make them a practical solution. One of the main challenges is the design of communication

protocols that can operate in a highly dynamic and unpredictable environment. The communication

protocols should be able to handle the rapid changes in topology, bandwidth, latency, and

3

interference, and should be scalable to support a large number of nodes. The communication

protocols should also be energy-efficient, as the UAVs have limited battery life and need to

conserve energy for flight and other tasks.

Another challenge in FANETs is the development of robust mobility algorithms for autonomous

flight that are capable of maintaining efficient and reliable communication among UAVs, adapting

to environmental disturbances and changes in the network, while minimizing energy consumption

and avoiding collisions.

The design of FANETs should consider the regulatory and ethical issues related to the use of

UAVs. The use of UAVs for commercial or civilian purposes is subject to regulations and

guidelines set by the civil aviation authorities, such as the Federal Aviation Administration (FAA)

in the United States or the European Aviation Safety Agency (EASA) in Europe. These regulations

cover various aspects of UAV operations, such as airworthiness, pilot certification, flight

restrictions, and privacy.

While existing wireless technologies —such as cellular and Wi-Fi— have been adopted for IoT

[8,9], Low Power Wide Area Networks (LPWANs) have been developed specifically as one of

IoT’s enabling technologies for long-range applications [10-13]. LoRa (named after “long range”)

is a physical-layer (PHY) LPWAN technology that provides long-range communication at low

data rates. Due to its scalability, low power consumption, and ease of deployment, LoRa

technology has recently gained significant attention from researchers recently. Its attributes make

it suitable for IoT applications, particularly when used as part of LoRaWAN —a protocol used to

create a star topology network using LoRa technology. However, when it comes to MANETs and

FANETs, LoRaWAN presents some limitations regarding its star topology, its medium access

control (MAC) layer and its lack of routing procedures [14]. Some work has been done to assess

4

the performance of LoRa without the constraints of LoRaWAN, for static and ground-mobile ad-

hoc mesh networks in typical IoT scenarios [15-23]. Nevertheless, there is little research activity

on FANETs using LoRa technology.

In this research, an optimization approach is adopted to govern FANET mobility and to ultimately

determine UAV positions that maximize network coverage to a series of ground nodes. The

proposed FANET, shown in Figure 1.1, relies on a Wi-Fi access network (air-to-ground links),

and a backhaul mesh network (air-to-air links) consisting of LoRa or Wi-Fi, depending on the

application. An adaptation of Particle Swarm Optimization (PSO) is proposed as the optimization

algorithm used to achieve UAV mobility and self-positioning.

Figure 1.1: Proposed scenario.

5

1.1 Motivation

The motivation behind conducting research on FANET mobility using PSO and LoRa lies in the

pursuit of efficient and reliable communication in aerial networks. FANETs have emerged as a

promising solution for various applications, including disaster management, environmental

monitoring, and surveillance. However, ensuring seamless communication and optimal mobility

of UAVs in dynamic environments remains a significant challenge. By integrating PSO, a nature-

inspired optimization algorithm, with LoRa, a low-power, long-range wireless technology, the aim

is to develop an approach to enhance FANET mobility. PSO can be utilized to optimize UAV

movement to maximize network coverage or minimize energy consumption. Additionally,

leveraging the long-range capabilities of LoRa enables reliable and long-distance communication

among UAVs, facilitating data exchange and coordination. The use of Wi-Fi as access network

accounts for the widespread availability of these devices among end users.

1.2 Objectives and Contributions

The main goal of this research is to develop and assess the performance of a FANET that

maximizes network coverage to ground nodes with unknown positions. To achieve this goal, the

following contribution have been made:

• An exploration of the state of the art of FANET mobility.

• An exploration of the state of the art of the use of LoRa technology in FANETs.

• The development of a comprehensive FANET simulation framework.

• The definition of a single objective function that contains the elements to achieve

multiobjective optimization.

• The development of a PSO algorithm that governs autonomous flight, while taking into

consideration a wide range of constraints associated with the proposed scenario.

6

• The definition of performance metrics to measure the fulfilment of multiple optimization

objectives separately and jointly.

• The performance evaluation of the proposed FANET in terms of the defined performance

metrics.

1.3 Organization

The remainder of this thesis is organized as follows: Chapter 2 presents a technical overview of

FANETs, LoRa, Wi-Fi, and PSO, as well as a summary of related work. Chapter 3 covers the

aspects involved in the development of the simulation framework. The presentation of the results

and a discussion of the findings are contained in Chapter 4. Finally, the concluding remarks and

future work are stated in Chapter 5.

7

Chapter 2

2 Technical Overview

In recent years, there has been an increasing interest in the development of Flying Ad Hoc

Networks (FANETs). FANETs are a type of Mobile Ad Hoc Network (MANET) that consists of

unmanned aerial vehicles (UAVs) or drones that communicate with each other wirelessly to

perform various tasks such as surveillance, reconnaissance, search and rescue, environmental

monitoring, and communication relay. More specifically, FANETs are also a subset of Vehicular

Ad Hoc Networks (VANETs). These networks are flexible, versatile, and have the potential to

operate in various challenging environments in which it is difficult or impossible for other types

of networks to operate. Figure 2.1 shows the relationship between MANETs, VANETs, and

FANETs [24].

Figure 2.1: Relationship between MANET, VANET and FANET.

8

FANETs are typically self-organizing, decentralized networks, which do not require any pre-

existing infrastructure. Each UAV in the network acts as a node, and they communicate with each

other using wireless links. These networks are highly dynamic, and the topology changes rapidly

as the UAVs move around, making it challenging to maintain reliable communication and

coordination among them.

The technical topics involved in FANETs include:

• Wireless communication: FANETs rely on wireless communication technologies, such as

IEEE 802.11 (Wi-Fi), Bluetooth, LoRa, Zigbee, combined with built-in or supplementary

ad hoc networking protocols, to enable communication between UAVs. These wireless

technologies allow UAVs to exchange data, such as sensor readings, location information,

and control commands, without the need for a physical wired connection.

• Mobility: Mobility is a critical aspect of FANETs, as it directly affects network

performance, energy consumption, and safety. Mobility models describe the movement

patterns of UAVs in FANETs. These models are used to simulate the behavior of UAVs in

different scenarios and evaluate the performance of FANET protocols and algorithms.

• Energy: FANETs have limited battery life, and power management is critical to ensure that

UAVs can operate for an extended period without requiring frequent battery replacement.

Power management techniques include duty cycling, sleep mode, and energy harvesting.

2.1 UAV Taxonomy

Regarding UAV taxonomy, multiple categorizations are proposed in [25-27]. A summary of this

topic is presented in Table 2.1.

9

Table 2.1: UAV taxonomy.

By wing

type

By

size

By

type

of

flight

By flight range
By energy

autonomy

By

altitude
By purpose

F
ix

ed
 w

in
g
 [

2
5
-2

7
]

R
o
ta

ry
 w

in
g
 [

2
5
-2

7
]

H
y
b
ri

d
 [

2
7
]

L
ar

g
e

[2
5
,2

6
]

S
m

al
l

[2
5
,2

6
]

A
u
to

n
o
m

o
u
s

[2
6
]

R
em

o
te

ly
 c

o
n
tr

o
ll

ed
 [

2
6
]

C
lo

se
-r

an
g
e

[2
5
]

S
h
o
rt

-r
an

g
e

[2
5

]

M
id

-r
an

g
e

[2
5

]

L
o
n
g

-r
an

g
e

H
ig

h
 [

2
6
]

M
ed

iu
m

 [
2
6
]

L
o
w

 [
2
6
]

H
ig

h
 [

2
6
]

M
ed

iu
m

 [
2
6
]

L
o
w

 [
2
6
]

M
il

it
ar

y
 [

2
7
]

C
o
m

m
u
n
ic

at
io

n
s

[2
6
,2

7
]

S
u
rv

ei
ll

an
ce

 [
2
7
]

P
h
o
to

g
ra

p
h
y
/M

ap
p
in

g
 [

2
5
,2

7
]

E
x
p

lo
ra

ti
o
n
/S

u
rv

ey
in

g
 [

2
7
]

R
em

o
te

 s
en

si
n
g

 [
2
7
]

D
el

iv
er

y
 [

2
5
]

F
ir

st
-P

er
so

n
 V

ie
w

(F
P

V
)/

E
n
te

rt
ai

n
m

en
t

2.2 Differences between FANETs, VANETs, and MANETs

The differences between FANETs, VANETs, and MANETs are analyzed from different

perspectives in [25-29]. The aforementioned works coincide with the fact that FANETs have

specific characteristics. Those specificities are summarized in the following fields:

• Node mobility: Contrary to the elements of MANETs and ground VANETs, UAVs

experience relatively fewer obstacles, which allows them to move in and around three axes

with a certain amount of freedom at somewhat constant speeds. However, holding a fixed

position can be more challenging, or even impossible, depending on weather conditions

and the type of UAV. These circumstances influence the mobility model to be applied but

also impact other characteristics, such as node density, topology change rate, localization

alternatives, and applicable propagation models.

• Radio propagation: The presence of fewer obstacles allows for the consideration of mostly

line-of-sight (LoS) propagation, especially for air-to-air links, while taking into account

10

weather conditions and the Doppler effect caused by the speed of UAVs relative to the

ground and to one another. Air-to-air and air-to-ground are the two main types of links that

can be identified, although air-to-satellite links might also be considered for some

applications.

• Energy constraints: They depend on the type of UAV. Battery-powered UAVs are more

energy-constrained, making it useful to have communication hardware that consumes less

power, allowing for increased flight time, although most of the energy is dedicated to keep

the UAV and its payload in the air. Large fixed-wing UAVs are most likely powered by

combustion engines that can carry and charge larger batteries, making them less energy-

constrained.

2.3 FANET Communications

UAVs communicate with each other using wireless protocols such as IEEE 802.11 (Wi-Fi), IEEE

802.15.4 (which is an IEEE standard for low-rate wireless personal area networks, or LR-WPANs),

and Low Power Wide Area Network (LPWAN) protocols, among others. These protocols must be

designed to handle the unique characteristics of FANETs, including high mobility, limited

bandwidth, and dynamic network topologies.

FANETs require efficient routing protocols that can adapt to the changing network topologies and

ensure reliable communication between UAVs. Some of the commonly used routing protocols in

FANETs include Ad Hoc On-Demand Distance Vector (AODV), Optimized Link State Routing

(OLSR), and Dynamic Source Routing (DSR). FANETs face various security and privacy

challenges, such as eavesdropping, spoofing, and denial of service attacks. Security and privacy

mechanisms, such as encryption, digital signatures, and access control, must be implemented to

protect FANETs from such threats.

11

2.3.1 Network Architecture

The network architecture is highly dependent on the FANET application. Single UAV

architectures are not considered as FANETs because FANETs are composed of more than one

UAV and communication between UAVs cannot rely on infrastructure networks [28]. Moreover,

this means that topologies can be mesh, star-of-meshes, or mesh-of-meshes.

As mentioned in Section 2.2, three different types of links can be identified according to the

location of the elements they connect, namely air-to-air (UAV to UAV), air-to-ground (UAV to

ground) and air-to-satellite (UAV to satellite). Links can also be classified according to the role

they play from a communications network perspective: access links, backhaul links, and backbone

links. The two mentioned classifications are il-lustrated in Figure 2.2.

(a) Terrestrial-only links (b) Terrestrial and satellite links

Figure 2.2: FANET types of links.

Four UAV communication architectures are mentioned in [25], based on the type of infrastructure

utilized: UAV direct communication, UAV communication via satellite networks, UAV

communication via cellular networks, and UAV communication via Ad-Hoc networks. However,

these could be further summarized into communication through infrastructure and infrastructure-

less communication, hence, only UAV communication via Ad-Hoc networks corresponds to

FANETs.

12

Three hierarchical architectures are described in [30,31], based on how the UAVs connect to each

other and to a ground base station. The first architecture relies on a single UAV acting as a hub to

connect a single group of UAVs to the base station. The second architecture involves clustering

UAVs into groups, each one of them having one hub to connect to the base station. Finally, in the

third architecture, multiple layers of UAV clusters connect to each other through one root UAV,

and only one of the groups has a hub that connects all others to the base station. According to the

description, UAV-to-UAV communication relies on low-power, short-range links, while

UAV-to-ground communication does it on high-power, long-range links. These architectures

could be employed in applications where compact swarms with longer UAV-to-ground ranges—

when compared to UAV-to-UAV ranges—are needed. Moreover, having centralized links to the

base station implies one or more of the following situations:

• Most communications would take place inside the swarms.

• Communication with the base station is less frequent or takes place at low data rates.

• The UAV that handles the link to the base station is a single point of failure and may

become a bottleneck.

To overcome the last issue, the authors of [32] propose a multi-layer architecture where clusters

are grouped in layers and each cluster selects a UAV that acts as a hub to connect to the base

station or to another layer, and a second UAV as a backup hub. The UAV clusters can be grouped

two-dimensionally or in multiple layers in the three-dimensional space. A similar multi-layer

approach is also presented in [33]. The architectures described in [30-33] can be synthesized by

topology into the categories shown in Figure 2.3.

13

(a) Single cluster (mesh topology) (b) Multi-cluster (star-of-meshes topology)

(c) 2D Multi-layer (mesh-of-meshes topology) (d) 3D Multi-layer (mesh-of-meshes topology)

Figure 2.3: FANET topologies.

2.3.2 Communication Channel

The wireless channel, or radio channel, refers to the wireless communication medium through

which signals are transmitted and received in wireless communication systems. The radio channel

is a harsh environment that poses restrictions on any wireless communication system. Modeling it

is a challenging task that depends on environmental factors, as well as on the specific application

and its required level of detail.

14

A. Radio Channel Models

In general, radio channel models are used to simulate the effects of the wireless channel on a

transmitted signal, by taking into account the physical characteristics of the environment, the

transmitter and receiver parameters, and the propagation mechanisms involved.

The free space propagation model describes the attenuation or loss of signal strength as

electromagnetic waves propagate through free space. In this model, the signal power decreases

proportionally to the square of the inverse of the distance from the transmitter. The free space

propagation model assumes an ideal scenario without any obstructions, diffraction, or reflection,

making it a simplified representation used to estimate the signal strength in open-air environments.

The log-normal propagation model is a statistical model used to describe the variability of signal

strength in wireless communication. Unlike the free space propagation model, it considers the

effects of obstacles, reflections, and diffraction, which can introduce random fluctuations in signal

strength. The model assumes that the received signal strength follows a log-normal distribution,

where the logarithm of the signal strength is normally distributed. This distribution captures the

variability caused by multipath propagation and environmental factors. The log-normal

propagation model is widely used in wireless system design, especially in scenarios where signal

strength variations need to be accounted for, such as urban environments with buildings and other

obstacles.

Ray tracing can be considered a family of models that share the basic principle of tracing the path

of electromagnetic waves as rays through a given environment. In a ray tracing model, the

environment is divided into a number of discrete regions, each with its own set of physical

properties such as refractive index, absorption coefficient, and reflection coefficient. The model

15

then traces individual rays through these regions, calculating the angle of reflection or refraction

at each interface, as well as the amount of attenuation due to absorption.

A list of channel models and their characteristics is presented in Table 2.2. Note that this is not an

exhaustive list of radio channel models, and there may be variations in the equations depending on

the specific implementation.

16

Table 2.2: Radio channel models and their characteristics.

Model
Propagation

Effects
Environment Equation / Output-Description

Free space [34] Path loss Indoor/Outdoor 𝑃𝑟 = 𝑃𝑡𝐺𝑡𝐺𝑟 (
𝜆

4𝜋𝑑
)
2

 (2.1)

Two-ray ground

reflection [34]

Path loss,

reflection
Outdoor 𝑃𝑟 =

𝑃𝑡𝐺𝑡𝐺𝑟(ℎ𝑡ℎ𝑟)
2

𝑑4
 (2.2)

Log-distance

[34]
Path loss Indoor/Outdoor 𝑃𝑟 = 𝑃𝑡𝐺𝑡𝐺𝑟 (

𝜆

4𝜋𝑑0
)
2

(
𝑑0
𝑑
)
𝑛

 (2.3)

Log-normal [34]
Path loss,

shadowing
Indoor/Outdoor 𝑃𝐿(𝑑)[𝑑𝐵] = 𝑃𝐿(𝑑0) + 10𝑛 log (

𝑑

𝑑0
) + 𝑋𝜎 (2.4)

Longley-Rice

[34]

Path loss,

shadowing
Outdoor The model operates in different modes

Rayleigh [34] Fading Outdoor [35]

Percentage of time that a signal is above a certain level. This

model is a statistical model that describes the variation of the

amplitude and phase of a signal due to multipath propagation.

Rician [34] Fading Indoor [35]

Percentage of time that a signal is above a certain level. This

model is similar to the Rayleigh fading model but assumes that

there is a dominant line-of-sight path in addition to the multipath

components.

WINNER II
Path loss,

shadowing, fading

Indoor/Outdoor
Comprehensive model

ITU-R P.1238-

11

Path loss,

shadowing, fading

Indoor
Comprehensive model

ITU-R P.1411-

11

Path loss,

shadowing, fading

Outdoor
Comprehensive model

Ray Tracing
Path loss,

shadowing, fading
Indoor/Outdoor Geometric model

17

B. Additional Considerations Applicable to FANETs

Regarding large-scale propagation effects, FANETs have advantages over other types of mobile

networks because of their ability to change altitude and move through a relatively less obstructed

environment to achieve LoS or near LoS communications. However, FANET channel modeling

presents additional conditions due to the mobility and variable altitude of the nodes involved. Some

considerations should be made when modeling the FANET channel:

• Doppler Shift: Due to the high speeds at which the FANET nodes move, there will be a

significant Doppler shift in the transmitted signals for air-to-air, air-to-ground, and air-to-

satellite links.

• Multipath: It affects mostly the ground receivers, since the effects of multipath are largely

determined by the local environment around the receiving antenna. This is because the

signal may be reflected on various surfaces in the local geometry, causing it to arrive at the

antenna through multiple paths [36]. However, FANET nodes may encounter multipath

components due to reflections and scattering from the ground, buildings, and other

obstacles when their height is below the height of surrounding structures.

• Shadowing: It is mostly generated by the environment surrounding the ground nodes.

However, it has been shown that a fixed-wing aircraft body can self-induce shadowing on

air-to-ground links while maneuvering [37].

• Variations from LoS to Non-line-of-sight (NLoS) Propagation: Due to the changes in

position and altitude of FANET nodes, there may be a significant amount of time when the

wireless links are NLOS.

• Interference: FANET nodes may also experience interference from other sources, such as

other FANET nodes or other wireless systems operating in the same frequency band.

18

In general, the channel model for FANET should be designed to capture the dynamic and complex

nature of the wireless links in such a network, and can be based on a combination of empirical

measurements and theoretical modeling.

2.3.3 Low Power Wide Area Networks (LPWANs)

LPWANs are wireless networks designed to provide long-range, low-power communication for

IoT devices, such as sensors and smart meters. LPWANs use radio frequencies to transmit small

amounts of data over long distances with low power consumption, and are ideal for applications

that require long-range communication over a wide area, but do not require high bandwidth or low

latency. Considering these characteristics, LPWANs and FANETs can complement each other in

certain applications.

LPWANs and FANETs can be used together to provide enhanced functionality. For example,

LPWANs can be used to transmit sensor data from ground-based IoT devices to UAVs in a FANET

for further processing and analysis. The UAVs can then use their mobility and communication

capabilities to transmit the processed data to a ground station or cloud-based server for storage and

analysis [38]. Another application where LPWANs and FANETs can be combined is precision

agriculture [39]. In this application, ground-based IoT sensors can provide data on soil moisture,

temperature, and other environmental factors, while UAVs in a FANET can provide aerial images

and real-time data on crop health and growth. The data from both the ground-based sensors and

the UAVs can be processed and analyzed to provide insights and recommendations for farmers to

optimize crop yields and reduce waste. Moreover, both networks can be used jointly to provide

location services or low-data-rate real time communications (such as text messaging) in disaster

scenarios [38,40].

19

There are several competing LPWAN technologies that use unlicensed spectrum such as Ingenu,

Weightless (W, N and P), SigFox, or LoRaWAN [10,12]. Among these, LoRaWAN is one of the

most adopted, because of its relative simplicity and low cost [10,41].

The Third Generation Partnership Project (3GPP) develops LPWAN standards that operate in

licensed bands, such as EC-GSM-IoT, Narrow Band IoT (NB-IoT), enhanced Machine Type

Communications (eMTC) [42], and Massive Machine-Type Communications (mMTC), which is

the current IoT specification in 5G (Releases 16 and 17) [43]. These specifications have managed

to reduce costs and energy consumption but have not been able to reach the adoption levels of

other LPWAN technologies [10,13].

2.4 LoRa

LoRa is an LPWAN technology that operates at the physical layer and provides long-range

communication at low data rates. LoRa and LoRaWAN are often mentioned interchangeably;

however, though complementary, they are two different things. LoRa is a PHY layer proprietary

technology owned by Semtech [44], while LoRaWAN is an open network protocol specification—

promoted by the LoRa Alliance—that uses LoRa as its physical layer but includes MAC and

application layers [44,45]. LoRa uses a form of spread spectrum modulation called chirp spread

spectrum (CSS) to achieve low power communications in the range of kilometers.

2.4.1 CSS Modulation

Chirp spread spectrum (CSS) is a modulation technique that was first introduced in the 1940s to

be used in military radar applications during World War II [46]. In CSS modulation, the data signal

is first converted into symbols, where symbols are made of chirps. Chirps are sinusoidal signals

whose frequency increases or decreases linearly within a certain range, defined by the bandwidth,

and at a certain rate, defined by the spreading factor as illustrated in Figure 2.4.

20

(a) Up chirp and down chirp

(b) Sweep signal length

Figure 2.4: Chirp spread spectrum (CSS) modulation.

The modulation parameters are described next and summarized in Table 2.3.

2.4.2 Frequency

LoRa was conceived to transmit over unlicensed spectrum in industrial, scientific, and medical

(ISM) bands. It currently operates in the 169 MHz, 433 MHz, 470 MHz, 490 MHz, 780 MHz,

868 MHz, 915 MHz and 2.4 GHz bands [47], subject to national and regional regulations.

2.4.3 Bandwidth (BW)

Bandwidth is the frequency range over which the chirps vary. It can take any of ten values ranging

from 7.8 kHz to 1625 kHz, depending on the chipset and frequency band [48-52].

21

2.4.4 Spreading Factor (SF)

The spreading factor represents the rate at which the frequency varies over the bandwidth. In other

words, it defines the chirp (symbol) duration. The SF currently ranges from 5 to 12 [50-52] and

the relationship between the SF value and the symbol duration is defined as follows:

𝑇𝑠 =
2𝑆𝐹

𝐵𝑊[𝐻𝑧]
[𝑠], (2.5)

where 𝑇𝑆 is the symbol duration. Reciprocally, the symbol rate can be defined as:

𝑅𝑠 =
𝐵𝑊[𝐻𝑧]

2𝑆𝐹
[
𝑠𝑦𝑚𝑏𝑜𝑙𝑠

𝑠
]. (2.6)

According to the LoRa design, SF also represents the number of modulated bits per symbol,

through which we can obtain the modulated bit rate:

𝑅𝑚 = 𝑆𝐹 × 𝑅𝑆 = 𝑆𝐹 ×
𝐵𝑊[𝐻𝑧]

2𝑆𝐹
[
𝑏𝑖𝑡𝑠

𝑠
]. (2.7)

Considering that each symbol has the same duration, this tells us that the symbols are defined by

the starting frequency of the chirp.

2.4.5 Coding Rate (CR) Index

LoRa implements forward error correction (FEC) by adding redundancy bits to every 4 bits of

data. The number of redundancy bits is given by the CR index, which can go from 1 to 4. Thus,

[46] defines the rate code (generally known as coding rate) as:

𝑅𝑎𝑡𝑒 𝐶𝑜𝑑𝑒 =
4

4 + 𝐶𝑅
. (2.8)

The coding rate and spreading factor are used to control the rate at which data is transmitted and

the level of redundancy in the transmission. Higher coding rate index and spreading factor values

yield a lower data rate, but a more robust transmission that is less susceptible to noise and

22

interference, thus resulting in a longer communication range. The data bit rate is the product of the

modulated bit rate and the rate code, as follows:

𝑅𝑏 = 𝑅𝑚 × 𝑅𝑎𝑡𝑒𝐶𝑜𝑑𝑒 = 𝑆𝐹 ×
𝐵𝑊[𝐻𝑧]

2𝑆𝐹
×

4

4 + 𝐶𝑅
[
𝑏𝑖𝑡𝑠

𝑠
]. (2.9)

2.4.6 Transmission Power

The transmission power can reach up to 22 dBm, depending on the chipset selection and power

amplifier configuration [48-52].

Two of the key parameters behind LoRa modulation are SF and BW. The relationship between

these two factors defines the signal’s data rate, range, and time on air. The higher the SF, the lower

the transmission rate and the longer the range. Conversely, the lower the SF, the higher the

transmission rate and the shorter the range.

Table 2.3: Summary of LoRa modulation parameters.

Parameter Magnitude/Range Chip Reference

Frequency

137 – 175 MHz SX1276/77/78/79 [48]

410 – 525 MHz SX1276/77/78/79 [48]

862 – 1020 MHz SX1276/77/79 [48]

860 – 1020 MHz SX1272/73 [49]

410 – 810 MHz SX1268 [50]

150 – 960 MHz SX1261/2 [51]

2.4 GHz SX1280/SX1281 [52]

Bandwidth

(BW)

7.8 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51]

10.4 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51]

15.6 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51]

20.8 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51]

31.2 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51]

41.7 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51]

62.5 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51]

125 kHz
SX1276/77/78/79, SX1272/73, SX1268,

SX1261/2
[48-51]

250 kHz
SX1276/77/78/79, SX1272/73, SX1268,

SX1261/2
[48-51]

500 kHz
SX1276/77/78/79, SX1272/73, SX1268,

SX1261/2
[48-51]

203 kHz SX1280/SX1281 [52]

23

Parameter Magnitude/Range Chip Reference

406 kHz SX1280/SX1281 [52]

812 kHz SX1280/SX1281 [52]

1625 kHz SX1280/SX1281 [52]

Spreading

Factor (SF)

5 SX1268, SX1261/2, SX1280/SX1281 [50-52]

6 - 9
SX1276/77/78/79, SX1272/73, SX1268,

SX1261/2, SX1280/SX1281
[48-52]

10 - 12
SX1276/78/79, SX1272, SX1268,

SX1261/2, SX1280/SX1281
[48-52]

Coding Rate

(CR)

1 (4/5)
SX1276/77/78/79, SX1272/73, SX1268,

SX1261/2, SX1280/SX1281
[48-52]

2 (4/6)
SX1276/77/78/79, SX1272/73, SX1268,

SX1261/2, SX1280/SX1281
[48-52]

3 (4/7)
SX1276/77/78/79, SX1272/73, SX1268,

SX1261/2, SX1280/SX1281
[48-52]

4 (4/8)
SX1276/77/78/79, SX1272/73, SX1268,

SX1261/2, SX1280/SX1281
[48-52]

Transmission

Power

-4 to 20 dBm SX1276/77/78/79 [48]

-1 to 20 dBm SX1272/73 [49]

-17 to 22 dBm SX1268 [50]

-17 to 22 dBm SX1261/2 [51]

-18 to 12.5 dBm SX1280/SX1281 [52]

2.4.7 LoRa Frame Format

The LoRa specification also defines frame formats. As with any protocol data unit, frame formats

are intended to allow communication between peer elements in a layered network, for which they

separate the protocol control information (overhead) from the payload, in a standardized way. A

LoRa frame consists of a preamble, a sync word, a header, the payload, and a cyclic redundancy

check (CRC) [48-52], as shown in Figure 2.5.

Figure 2.5: LoRa frame format

24

2.5 IEEE 802.11

IEEE 802.11 is a set of standards that define the technology behind wireless local area networks

(WLANs) [53]. These standards are commonly referred to as Wi-Fi and are used by devices to

communicate with each other over a wireless network. The IEEE 802.11 standards specify

different data rates, frequency bands, and modulation schemes that can be used to transmit data

wirelessly between devices. Some of the most commonly used standards include 802.11a, 802.11b,

802.11g, 802.11n, 802.11ac, and 802.11ax. A summary of IEEE 802.11 standards and their

characteristics is presented in Table 2.4.

Table 2.4: Summary of IEEE 802.11 standards and their characteristics.

Standard
Frequency

Band

Maximum

Data Rate
Modulation Techniques

Medium

Access

Control

Routing

Protocols

802.11a 5 GHz 54 Mbps OFDM CSMA/CA None

802.11b 2.4 GHz 11 Mbps DSSS CSMA/CA None

802.11g 2.4 GHz 54 Mbps OFDM, DSSS CSMA/CA None

802.11n 2.4/5 GHz 600 Mbps MIMO-OFDM CSMA/CA None

802.11ac 5 GHz 6.9 Gbps MIMO-OFDM CSMA/CA None

802.11ax 2.4/5/6 GHz 9.6 Gbps MIMO-OFDM, MU-MIMO CSMA/CA None

802.11p 5.9 GHz 27 Mbps OFDM CSMA/CA None

802.11s 2.4/5 GHz Variable Variable CSMA/CA HWMP

Note that the actual data rates that can be achieved on a wireless network will depend on a variety

of factors, including the distance between devices, the presence of obstacles or interference, and

the capabilities of the devices themselves.

In addition to specifying data rates and frequency bands, the IEEE 802.11 standards also include

provisions for security and quality of service (QoS). Security is provided through the use of

encryption algorithms such as WEP, WPA, and WPA2, while QoS is used to prioritize different

types of traffic on the network.

25

2.5.1 IEEE 802.11p

IEEE 802.11p is a standard for wireless communication in vehicular environments, designed to

support applications such as collision avoidance, traffic management, and infotainment systems in

vehicles [54]. It operates in the 5.9 GHz frequency band, which has been set aside for this purpose

by regulatory bodies in many countries. The maximum data rate for IEEE 802.11p is 27 Mbps,

which is lower than some of the other IEEE 802.11 standards, but is still sufficient for many

vehicular applications. The standard uses OFDM modulation, which allows for efficient use of the

available bandwidth, and the CSMA/CA medium access control protocol, which is used in all the

IEEE 802.11 standards.

2.5.2 IEEE 802.11s

IEEE 802.11s is a standard for wireless mesh networks, which allows multiple wireless access

points to work together to create a single, seamless network. Unlike traditional Wi-Fi networks,

where devices communicate directly with a single access point, wireless mesh networks allow

devices to communicate with multiple access points in order to find the best path for data

transmission.

The 802.11s standard specifies the use of the Hybrid Wireless Mesh Protocol (HWMP) for

managing the flow of data between different nodes on the mesh network. HWMP is inspired by

AODV and performs routing at the link layer based on MAC addresses [55]. The maximum data

rate for wireless mesh networks can vary depending on the number of nodes in the network and

the quality of the wireless links between them.

2.5.3 IEEE 802.11ax

IEEE 802.11ax, also known as Wi-Fi 6, is the latest wireless networking standard that builds upon

previous IEEE 802.11 standards, such as 802.11ac (Wi-Fi 5) and 802.11n. The goal of IEEE

26

802.11ax is to improve the speed, capacity, and overall performance of Wi-Fi networks, especially

in dense environments with many devices competing for network resources [56].

Some key features and benefits of IEEE 802.11ax include:

1. Increased data rates: IEEE 802.11ax supports maximum data rates of up to 9.6 Gbps.

2. Improved spectral efficiency: IEEE 802.11ax introduces a new modulation scheme called

1024-QAM, which enables more efficient use of the wireless spectrum. It also supports

narrower channel widths of 20 MHz, 40 MHz, and 80 MHz, which can help reduce

interference between Wi-Fi networks.

3. MU-MIMO: IEEE 802.11ax introduces Multi-User Multiple Input Multiple Output (MU-

MIMO) technology, which allows multiple devices to simultaneously communicate with

the access point using multiple antennas. This increases network capacity and reduces

latency, especially in environments with many devices.

4. OFDMA: IEEE 802.11ax introduces Orthogonal Frequency Division Multiple Access

(OFDMA), which divides a single Wi-Fi channel into multiple sub-channels to enable

multiple users to transmit data simultaneously. This can help improve network efficiency

and reduce latency.

5. Target Wake Time (TWT): IEEE 802.11ax includes a new power-saving feature called

TWT, which allows devices to schedule their wake-up times and communicate with the

access point only when necessary. This can help extend battery life in devices such as

smartphones and IoT devices.

2.6 FANET Mobility

FANET mobility is made possible through the use of advanced control systems and navigation

technologies that allow UAVs to fly autonomously and maintain formation while communicating

27

with other nodes in the network. One of FANETs’ challenges is the high mobility of UAVs, which

makes it difficult to maintain stable communication links between them. However, this ability to

move with a relatively higher level of freedom than other forms of MANET can be seen as an

opportunity instead of a problem, where nodes can move and reposition themselves to reconfigure

a network or to recover connectivity. In this section, the FANET mobility issue is broken down

into mobility objectives, mobility models, and the optimization approach to the mobility problem.

2.6.1 Mobility objectives

Mobility objectives can be described as optimization problems that are dependent on various

factors such as: application, environmental conditions, and available resources. Optimization

techniques can be useful in achieving the following objectives:

1. Optimal positioning: Where to go and why.

2. Optimal trajectory determination: How to get there and why.

3. Optimal agent selection: Which UAVs should get there and why.

Regardless of the specific application, a common requirement for FANETs is to maximize network

uptime, in the literal and figurative senses of the expression.

2.6.2 Mobility models

A mobility model is a mathematical model that describes the movement patterns of the nodes in a

network over time. Mobility models can be used to model movement for FANET simulation and

to achieve mobility optimization goals in practical implementations. In most of the research,

mobility models are used to simulate UAV movement in order to assess communication protocols

performance, but less have been used as a way to achieve coordinated motion in order to

accomplish a common objective.

28

Selecting a specific model depends, among other factors, on the application, on the required level

of detail, and on the type of UAV to be used, considering that not every type of UAV can perform

the same kind of movements. A summary of different mobility models presented in [25-27] is

provided next:

• Random Walk Model: The Random Walk model is one of the simplest mobility models

used for FANETs. In this model, the UAVs move in any direction with a constant velocity.

The direction of the UAVs' movement is determined randomly at each step. This model

assumes that the UAVs move independently of each other and that there are no external

factors affecting their movement.

• Random Waypoint Model (RWP): The Random Waypoint model is another widely used

mobility model for FANETs. In this model, the UAVs move in straight lines from one point

to another, with varying velocities. The direction and speed of the UAVs' movement are

chosen randomly. When the UAVs reach their destination, they pause for a random amount

of time before moving on to the next destination. This model is useful for simulating

mission-based scenarios, where the UAVs must reach specific waypoints.

• Gauss-Markov (GM): In this stochastic model, each UAV has a speed and a direction. The

speed and direction are updated at each time step, based on a random process. The direction

is chosen randomly from a uniform distribution over the range of 0 to 2π radians. The speed

of the UAVs follows a first-order autoregressive process, meaning that it depends on its

previous speed and a random error.

• Mission Plan (MP): This deterministic model is based on pre-defined flight plans or routes

that are created before the UAVs are deployed. The Mission Plan mobility model is often

used in military and surveillance applications, where the UAVs are required to fly specific

29

routes to collect data or perform other tasks. One limitation of the Mission Plan mobility

model is that it does not capture the unpredictability and randomness of real-world mobility

patterns.

• Semi-Random Circular Movement (SRCM): In this model, the UAVs move in circular

patterns around a fixed center point. In the SRCM mobility model, the UAVs move along

arch trajectories with a radius that varies randomly.

• Paparazzi Mobility Model (PPRZM): This stochastic model is named after the Paparazzi

UAV project, which is an open-source autopilot system used in FANETs [57]. PPRZM is

based on a state machine with five possible states or movement patterns: Eight-figure, Stay-

at, Waypoint, Oval, and Scan, where each type of movement has a different probability of

occurrence.

• Reference Point Group Mobility (RPGM) model: In this stochastic group mobility model,

UAVs form clusters. Each cluster has a central reference point that can be logical, or a

UAV selected as cluster head. The reference point moves using an RWP model, while the

other UAVs within the cluster move around the center.

2.7 Optimization Approach to the Mobility Problem

Optimization is the process of improving a system, process, or design in order to maximize its

efficiency. It is an essential concept in various fields, including engineering, economics, finance,

computer science, and management. The goal of optimization is to find the best possible solution

to a problem while satisfying certain constraints. The first step in this process is to identify the

objective and a way to measure it quantitatively. The next step is to identify the variables on which

the objective depends, also called unknowns. As the objective is a function of the variables, it is

also called objective function. In some cases, the variables are subject to constraints, and

30

identifying those constraints is the third step. Constraints are the limitations or restrictions that

must be considered when developing a solution. These constraints place limitations on the values

that the variables can take, and they are typically specified by equality or inequality relationships.

These first three steps are known as model development or modelling [58].

Once the model has been developed, the next step is to find a solution. The solution is the value or

set of values that the variables can take that maximize or minimize the objective function. This

involves using various optimization techniques to find the best possible solution that satisfies the

objectives and constraints. Optimization techniques could include linear programming, nonlinear

programming, dynamic programming, and heuristic methods.

The optimization approach can be applied to FANET mobility by defining an objective that is a

function of the UAVs’ positions. Ideally, the solutions will be the positions that minimize or

maximize the objective function. Furthermore, the mechanism employed to find the solution or

solutions can provide locations to dynamically position the UAVs. As in many other fields, some

FANET problems may present multiple conflicting objectives. In such cases, the optimal solution

must achieve a suitable trade-off between these objectives.

2.7.1 Global and Local Optimization

Global optimization refers to finding the best possible solution within the entire search space. This

search space can be very large, and finding the optimal solution can be very challenging. Global

optimization algorithms try to explore a large part of the search space in order to identify the global

optimum, using techniques such as random search, genetic algorithms, or simulated annealing.

However, these methods may require significant computational resources, and they are not always

guaranteed to find the global optimum.

31

In some cases, it is good enough to find only a local solution, which is a solution that is optimal

within a limited region of the search space or in the vicinity of a current solution. Local solutions

are typically not globally optimal, meaning that they are not necessarily the best possible solution

for the entire search space. Instead, they are the best possible solution within the specific

neighborhood that the local optimization algorithm is exploring.

2.7.2 Single-Objective and Multiobjective Optimization

Single-objective optimization is an optimization problem that involves finding the best solution to

a problem by optimizing a single objective function. In other words, it seeks to minimize or

maximize a single objective.

Alternatively, multiobjective optimization is an optimization problem that involves finding the

best solution to a problem by optimizing multiple objectives simultaneously. In this case, the

objective functions are usually conflicting and cannot be optimized independently at the same

time, so the goal is to find a set of solutions that achieve a reasonable trade-off between the

objectives. Multiobjective optimization problems have also multiple solutions [59].

2.7.3 Single-Solution and Multiple-Solution Optimization

Single solution optimization is an optimization problem where only one solution is required for a

single objective function.

In contrast, multiple-solution optimization is an optimization problem where multiple solutions

may satisfy the objective function or multiple objective functions simultaneously. The goal is to

find a set of optimal solutions that represent a trade-off between the different objectives. Multiple

solution-optimization is commonly used in problems where the objective function has multiple

local minima or maxima, or where multiple objectives need to be satisfied.

32

2.7.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization algorithm that was inspired by the social

behavior behind the coordinated flight of a flock of birds [60,61]. It works by simulating a swarm

of particles that move in a search space to find the optimal solution. Each particle in the swarm

represents a potential solution, and its position in the search space is adjusted according to its own

previous best solution and the best solution found by all the particles in the swarm. The equations

that govern PSO are:

𝑣𝑖(𝑡 + ∆𝑡) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔 − 𝑥𝑖(𝑡)), (2.10)

where 𝑣𝑖(𝑡) is the velocity of the i-th particle at time t, w is the inertia weight, 𝑝𝑖 is the personal

best position (pbest) of the i-th particle, 𝑥𝑖(𝑡) is the current position of the i-th particle at time t, g

is the global best position (gbest), 𝑐1 and 𝑐2 are the cognitive and social learning parameters, and

𝑟1 and 𝑟2 are random numbers between 0 and 1.

𝑥𝑖(𝑡 + ∆𝑡) = 𝑥𝑖(𝑡) + ∆𝑡 ∙ 𝑣𝑖(𝑡 + ∆𝑡), (2.11)

where 𝑥𝑖(𝑡 + ∆𝑡) is the updated position of the i-th particle at time 𝑡 + ∆𝑡.

The algorithm starts with randomly initializing the positions and velocities of the particles in the

search space. Then, for each iteration, the velocity and position of each particle are updated based

on the equations above. The personal best position of each particle is updated if a better solution

is found, and the global best position is updated if a particle finds a better solution than the current

global best. The algorithm continues until a stopping criterion is met, such as a maximum number

of iterations or a desired level of fitness.

33

2.8 Related work

There has been a significant amount of research in FANETs in recent years, addressing various

challenges and issues related to their operation. Researchers have proposed various protocols and

algorithms for efficient routing, data dissemination, and coordination among UAVs. These

protocols and algorithms are intended to optimize the performance of the network while

minimizing the energy consumption and maximizing the network lifetime.

2.8.1 FANET Architectures Involving LoRa or LoRaWAN

Regarding the use of LoRa or LoRaWAN, most works refer to UAV-aided wireless sensor

networks (WSNs) with single or independent UAVs [62-69]. WSNs are sets of sensors that

communicate with each other by forming an ad hoc network. By this definition, WSNs can be

considered a subset of IoT. However, even though WSNs and FANETs have a mesh nature in

common, a WSN aided by a single UAV is not considered a FANET by the definition presented

at the beginning of this chapter.

2.8.2 FANET Mobility

Reference Point Group Mobility (RPGM) is used as the mobility model for performance

evaluations in [70], which are carried out through simulations in Network Simulator (NS)-3. These

simulations show that the inclusion of an RSSI-based factor results in an improvement in network

throughput and a decrease in the number of route changes, with little to no impact on end-to-end

delay, especially for a mobile scenario.

An algorithm to find the optimal position of a UAV-mounted relay node is presented in [71] to

maximize the throughput between any pair of fixed ground nodes within a wireless mesh network.

To achieve this, nodes —whose positions are known— are first clustered in a way so that nodes

that connect within a certain RSSI margin are part of the same cluster. Then, the placement

34

optimization is performed by separating the positioning problem into horizontal and vertical

placement and iterating between the two. For the horizontal placement, clusters are considered

single entities around their center of gravity, and the UAV is positioned to maximize throughput

—as a function of signal-to-noise ratio— for the worst wireless link. Subsequently, vertical

positioning is determined to maximize throughput in the same manner. As this work focuses on

static mesh networks, routing is done by means of an optimized link state routing protocol (OLSR).

Simulations for up to 20 ground nodes are implemented using a 3D map. Also, an experimental

performance assessment is presented with four ground nodes separated into two clusters of two

nodes each.

Concerning mobility models in FANETs that use LoRa, a Connection Recovery and Maintenance

algorithm (CRM) is proposed in [38,72], where a two-dimensional mobility problem is divided

into four mobility modes. A Virtual Spring Force (VSF) mobility algorithm is used to handle

proximity between nodes to avoid collisions and to maintain distance within communications

range. Correspondingly, if the forces are in balance, the UAV goes into stationary mode. Then, if

a path to the base station is lost, the UAV goes into network recovery mode, where it moves in the

direction of the base station; and, if the connection is lost with a ground node, movement prediction

is used alongside the spring force mobility to try to reestablish it, based on the ground node’s last

known position, direction, and speed.

A two-phase particle swarm mobility model (PSMM) is proposed in [73] to generate fixed

waypoint trajectories that allow UAVs to maintain a stable formation in a swarm during a certain

simulation time. In the first phase, a variation of PSO is employed to determine each UAV’s next

waypoint. The proposed PSO algorithm excludes the personal component and uses the swarm’s

center of gravity at each time step as the global best position for the social component. In the

35

second phase, the previously generated waypoints are evaluated for excessive closeness and

adjusted to avoid collisions, while maintaining formation. The algorithm performance is compared

with those of RPGM, Manhattan, and RWP in terms of spatial correlation, temporal correlation,

and path availability.

In [74], the authors propose a PSO-based algorithm for dynamic positioning of UAVs in wireless

sensor networks (WSNs). The proposed algorithm is intended to optimize the placement of UAVs

to collect information from a set of ground sensors located at previously known positions and

transmit the collected information to a ground base station. The problem is considered as a

constrained, multiobjective optimization, where the algorithm dynamically adjusts the position of

the UAVs based on three factors: the value of their collected sensory information, the quality of

the sensor-ground base station communications path, and the existence of a path from each UAV

to the ground base station. The objective function, which is evaluated at the ground base station,

is defined as the product of the three factors for each UAV, and aggregated for all UAVs. The PSO

algorithm is also executed at the ground base station in a centralized manner. As opposed to the

study in [73], this work does not consider each particle to be a UAV, but a set of candidate positions

for each UAV. Therefore, the number of particles is not necessarily equal to the number of UAVs

and is, in fact, larger. It can be observed that an entire PSO simulation is executed at the base

station before actually transmitting new positions to the UAVs. Additionally, it is assumed that

every UAV will have a path to the control station at each new optimal position. Given the

centralized nature of the proposed algorithm, in the case of a real implementation, if such path

does not exist, the UAV would become isolated and potentially lost. Finally, a link state routing

algorithm is applied to establish a path from a set of ground sensors to a ground base station,

through the UAVs in the FANET.

36

Chapter 3

3 Simulation Framework Development

One of FANETs applications is to provide communication coverage over a wide area. These

networks can be used to provide seamless coverage in scenarios where ground-based

communication infrastructure is unavailable or unreliable, such as in disaster response, military

operations, or remote areas. Seamless coverage refers to the provision of uninterrupted

communication coverage even when devices move in and out of each other's range

[29,38,39,72,75,76]. This is achieved through the use of multi-hop communication, where UAVs

act as relays to forward data packets between nodes that are out of range of each other. As a UAV

moves out of range of one node, it automatically connects to the nearest available node and

continues to provide communication coverage. This ensures that the network maintains its

coverage even as UAVs move around or are added or removed from the network.

This chapter focuses on the development of a simulation framework for a scenario where seamless

coverage of ground sensor nodes is achieved through mobility optimization. The model has been

implemented in MATLAB R2022a, using the UAV and WLAN toolboxes taking communications

and mobility into consideration. The MATLAB main script is included in APPENDIX A. The

remainder of the chapter is organized as follows: The architecture of the proposed network is

discussed in Section 3.1. Section 3.2 deals with the considerations and assumptions that have been

made for the simulation. Section 3.3 provides the definition of the objective function followed by

Section 3.4, in which the mobility and the implementation of the PSO algorithm are discussed.

Finally, Section 3.5 presents additional details on the model configuration and a summary of the

simulation parameters.

37

3.1 System Architecture

From the communications perspective, the system follows a single-cluster mesh topology as

described in Figure 2.1. The network is composed of two layers: (i) the ground layer consisting of

ground nodes and a control station, and (ii) the air layer consisting of a swarm of UAVs,

specifically quadrotor drones., as illustrated in Figure 3.1.

Figure 3.1: System architecture.

The UAVs communicate with the ground nodes using Wi-Fi, as it is a more ubiquitous technology

among end users. On the other hand, the UAVs communicate with each other using LoRa or Wi-Fi

technologies. The network elements are described next:

• Ground nodes: User equipment with Wi-Fi transceivers.

• UAVs: Quadrotor drones equipped with Wi-Fi and LoRa transceivers.

• Control station: In the simulation environment, it is intended to receive information from

the ground nodes that has been relayed through the UAV FANET.

38

3.2 Considerations and Assumptions

The following general assumptions are made while the simulation framework:

• The ground nodes are at static positions inside a square grid during the simulation.

• The UAV flight dynamic model is limited to changes in position and velocity.

• The ground nodes’ x and y coordinates are independent random variables uniformly

distributed along their respective axes.

• The control station is at a fixed position.

• A flat earth model is implemented, considering that the maximum separation between

UAVs and ground nodes will not exceed a few tens of kilometers [34].

• The simulation time step (Δt) is set to 1 s.

• For radio propagation analysis, the UAVs ae assumed to be stationary at each time step.

• Wi-Fi nodes and access points (APs) are previously associated, meaning that the nodes

have established a connection to the APs in the past.

• UAVs within range of each other can share their positions and their received power levels.

• PSO random factors 𝑟1 and 𝑟2 are uniformly distributed numbers between 0 and 1.

• Communication is engaged once the UAVs have attained stable positions.

Further considerations regarding communications are described in the following subsections.

3.2.1 Communications

As the objective function is built on received power and other communications parameters, this

section elaborates on concepts that will be used for further improvement of the objective function.

39

A. Physical Layer

The physical layer relies on IEEE 802.11ax, also known as Wi-Fi 6, and LoRa protocols. Both

protocols will be considered as defined by their standardization body and provider, respectively.

Therefore, this section will focus on the propagation model that will be used to calculate the

received signal levels from the ground nodes and from other UAVs at each UAV. Moreover, the

ground-to-air and air-to-air received signal levels will be used subsequently to define and evaluate

the objective function for the optimization algorithm.

The path loss models include many empirical parameters. However, they all share the form of a

log-distance path model with shadowing, which is a form of log-normal propagation. Therefore,

for the purpose of the proposed model, the following large-scale propagation models are

implemented: free space path loss, ray tracing, and log-normal path loss with parameters for a rural

environment. In all cases, the path loss can be described using the general form of the log-normal

shadowing model shown in Equation (2.4). The path loss is used to calculate the received power

level at each UAV in dBm according to Equation (3.1):

𝑅(𝑥𝑖)𝑗[𝑑𝐵𝑚] = 𝑃𝑇𝑗[𝑑𝐵𝑚] + 𝐺𝑡[𝑑𝐵] + 𝐺𝑟[𝑑𝐵] − 𝑃𝐿(𝑑𝐴2𝐺)[𝑑𝐵] (3.1)

where 𝑅(𝑥𝑖)𝑗[𝑑𝐵𝑚] is the signal power received by UAV i, at time t, and position 𝑥𝑖, from the j-

th ground node; 𝑃𝑇𝑗 is the transmission power from ground node j; 𝐺𝑡 and 𝐺𝑟 are the transmission

and reception antenna gains, respectively; and 𝑃𝐿(𝑑𝐴2𝐺) is the path loss over the distance between

UAV i and ground node j.

B. Routing

Once a ground node has been found, a communication path to the control station must be

established. For this, a mechanism to find the shortest path between the UAV covering the source

40

ground node and the control station is needed. Since all received power levels in mW are positive,

Dijkstra’s algorithm can be implemented [77]. Here, the UAVs are considered vertices and the

connections between them are edges in a graph. The graph is characterized by an adjacency matrix

that represents the costs between nodes. Initially, a matrix is generated to record the received power

levels at each node, accounting for interactions with all other nodes. An edge is established

between two vertices if the received power level exceeds the defined receiving threshold. When

there is no connecting edge between two vertices, the cell value is set to infinity, ∞. In the next

step, the adjacency matrix is constructed, treating all edges linking two vertices as having a

uniform cost of one. As a result, the graph becomes unweighted. Furthermore, as the transmission

and reception parameters are the same for all nodes, this approach makes the graph undirected.

However, if different propagation parameters were to be used for each node, the procedure is the

same as before but would result in a directed graph.

The implementation of Dijkstra’s algorithm in MATLAB code is available on [78] under a General

Public License (GNU) v3.0 and presented in APPENDIX B. The function Dijkstras receives the

adjacency matrix, G, the source node, S, and the target node, T, as inputs, while it returns a shortest

path vector and its cost as outputs. The shortest path vector is a sequence of the traversed nodes,

starting at the source node and ending at the target node. If there is no valid path from the source

node to the target node, the returned path is an empty vector with infinite cost.

For the purposes of this model, the nodes have full knowledge of the network, making the

described approach a case of link state routing.

3.3 Definition of the Objective Function

Initially, the objective function is formulated as the sum of the received power levels from the

ground nodes that exceed a certain threshold, in this case, the sensitivity of the UAV's Wi-Fi

41

receiver. Additionally, if there are no signals whose power is above the threshold, the function

takes the maximum value among all the signals from the ground nodes. The objective function of

UAV i, at position 𝑥𝑖, 𝑓(𝑥𝑖)), is evaluated at each UAV, at every simulation step, according to

Equation (3.2):

𝑓(𝑥𝑖) =

{

∑{

𝑅(𝑥𝑖)𝑗, 𝑅(𝑥𝑖)𝑗 ≥ 𝜏

0, 𝑅(𝑥𝑖)𝑗 < 𝜏

𝑛

𝑗=1

 , |𝐴| > 0

max
1≤𝑗≤𝑛

𝑅(𝑥𝑖)𝑗 , |𝐴| = 0

 (3.2)

where n is the number of ground nodes, 𝑅(𝑥𝑖)𝑗 is the received power level from the j-th ground

node, and A is the set of 𝑅(𝑥𝑖) values above the threshold τ:

𝐴 = {𝑅(𝑥𝑖)|𝑅(𝑥𝑖) ≥ 𝜏}. (3.3)

Note that |A| represents the number of elements—or cardinality—of set A in Equation (3.2).

As it can be inferred from Equations (2.1)-(2.3), the received power levels vary exponentially with

the distance between transmitter and receiver. Therefore, there are situations where adding the

received power levels from multiple ground nodes above the threshold does not necessarily

improve the objective function value, when compared to a position closer to a single node. This is

because the received power level from a single node at a closer distance can be significantly higher

than the sum of the received power levels from multiple nodes, even if they are individually above

the threshold. To improve the value of the objective function when more than one node is covered,

an exponential reward factor was introduced as described in Equation (3.4).

42

𝑓(𝑥𝑖) =

{

2|𝐴|−1∑{

𝑅(𝑥𝑖)𝑗, 𝑅(𝑥𝑖)𝑗 ≥ 𝜏

0, 𝑅(𝑥𝑖)𝑗 < 𝜏

𝑛

𝑗=1

 , |𝐴| > 0

max
1≤𝑗≤𝑛

𝑅(𝑥𝑖)𝑗 , |𝐴| = 0

 (3.4)

where A remains as defined in Equation (3.3).

The base-2 exponential factor achieves an improvement of the objective function. However, it

does not adapt well to large changes in grid size, as the aggregated received power levels at each

UAV are dependent on grid size and ground node density. If the gain value is too low, the UAVs

might return to the previous best position with a single covered ground node, even if they find

more than one ground node at a different position. Conversely, if the factor is too high, the UAV

might find many ground nodes but become isolated from the swarm and the control station.

Therefore, it is essential to improve the value of the objective function when more than one ground

node is located so that it is comparable to or better than the one obtained when a single ground

node is found. It can be observed from Equation (2.1) that the improvement factor should be

proportional to the distance that separates two points on the grid: the point where the UAV locates

more than one ground node and a position where it finds only one node from which it receives a

signal with a substantially higher power. As the ground node positions are unknown for the UAVs,

the average distance between any two points on a square grid has been derived according to the

approach depicted in Figure 3.2.

43

(a) Distance using the points’ coordinates (b) Distance using the legs of a right triangle

Figure 3.2: Approaches to distance calculation between two points in a square grid of side l.

The approach illustrated in Figure 3.2(a) involves solving four iterated integrals of the distance as

a function of four uniform random variables, namely, x1, x2, y1, and y2, which is a long and

demanding task. Using the approach shown in Figure 3.2(b), the required distance d is equal to

√𝑥2 + 𝑦2. This value must be weighted by the average remaining length in each axis, which is

(𝑙 − 𝑥) horizontally and (𝑙 − 𝑦) vertically. Consequently, the average distance between any two

points becomes the quotient of two iterated integrals of functions of two variables:

�̅� =
∫ ∫ (𝑙 − 𝑥)(𝑙 − 𝑦)(√𝑥2 + 𝑦2)𝑑𝑥𝑑𝑦

𝑙

0

𝑙

0

∫ ∫ (𝑙 − 𝑥)(𝑙 − 𝑦)𝑑𝑥𝑑𝑦
𝑙

0

𝑙

0

 (3.5)

�̅� =

2 + √2 + 5 ln(1 + √2)
60

𝑙5

𝑙4

4

�̅� =
2 + √2 + 5 ln(1 + √2)

15
𝑙 ≅ 0.5214𝑙

The integration of the numerator was carried out for indefinite integrals using the online tool

Wolfram Alpha [79], but the resulting functions were manually evaluated by the author at each

44

iteration. The result shows that the expected distance between any two uniformly distributed points

on a square grid is dependent on the grid size only and not on the number of ground nodes, which

is convenient for the proposed scenario, as the grid size is known for the UAVs, but the number

of ground nodes is not. However, the effective distance is that between the UAV and a ground

node. Thus, the UAV height must be accounted for, as shown in Figure 3.3.

Figure 3.3: Air-to-ground distance at height h for the expected ground-to-ground distance d.

As power decays by a quadratic exponent in free space, the rewarding factor for finding more than

one ground node must play an inverse role, on account of which, the updated reward factor plays

the role of a gain. Thus, Equation (3.5) is modified as Equation (3.6) given below:

𝑓(𝑥𝑖) =

{

 𝐺𝑚𝑛∑{

𝑅(𝑥𝑖)𝑗 , 𝑅(𝑥𝑖)𝑗 ≥ 𝜏

0, 𝑅(𝑥𝑖)𝑗 < 𝜏

𝑛

𝑗=1

 , |𝐴| > 1

∑{
𝑅(𝑥𝑖)𝑗, 𝑅(𝑥𝑖)𝑗 ≥ 𝜏

0, 𝑅(𝑥𝑖)𝑗 < 𝜏

𝑛

𝑗=1

 , |𝐴| = 1

max
1≤𝑗≤𝑛

𝑅(𝑥𝑖)𝑗 , |𝐴| = 0

𝐺𝑚𝑛 = (0.5214𝑙)2 + ℎ2

(3.6)

where 𝐺𝑚𝑛 is the gain applied to the objective function for finding multiple nodes, and A remains

as defined in Equation (3.3).

45

This approach turns out to be convenient, as it does not depend on ground node density, which is

an unknown value for the UAVs, but only depends on the grid size and UAV height, which are

indeed known values for the drone at any moment.

3.3.1 Multiobjective Optimization

The main goal of this research work is to maximize the ground node coverage, as well as to

maintain end-to-end communication with the control station through the UAV mesh network.

Increasing coverage without maintaining communication to the distant control station would

oppose the whole purpose of a FANET. Therefore, it is crucial to balance the competing objectives

and handle the research problem using multiobjective optimization. This has been achieved by

using a method that rewards or penalizes the objective function based on its behavior relative to

the multiple problem objectives.

The gain applied to the objective function in Equation (3.6) is large because it accounts for the

exponential decay of the received power level with distance. If the optimization process is

performed solely based on the objective of finding more than one ground node without considering

the need for maintaining communication with the control station, the UAVs that do discover

multiple nodes may end up isolated if those nodes are located beyond the air-to-air range of the

UAV. If a similar compensating gain is applied independently when a communication path to the

control station is established, then the two objectives become conflictive and is difficult to

distinguish when one will overcome the other.

A hint to a possible solution is provided in the very problem formulation: maximize coverage to

as many ground nodes as possible while maintaining communication with the control station. This

means that both objectives should be achieved concurrently. Therefore, the gain described in

Equation (3.6) should only be applied if there is a path to the control station as defined by the

46

procedure explained in Section 3.2.1. Additionally, a reward factor should still be applied to the

function if a UAV covers more than one ground node as defined in Equation (3.4). After including

these considerations, the objective function is defined by Equation (3.7).

𝑓(𝑥𝑖) = 𝐺(𝑝𝑒)

{

2|𝐴|−1∑{

𝑅(𝑥𝑖)𝑗 , 𝑅(𝑥𝑖)𝑗 ≥ 𝜏

0, 𝑅(𝑥𝑖)𝑗 < 𝜏

𝑛

𝑗=1

 , |𝐴| > 0

max
1≤𝑗≤𝑛

𝑅(𝑥𝑖)𝑗 , |𝐴| = 0

𝐺(𝑝𝑒) = {
(0.5214𝑙)2 + ℎ2, 𝑝𝑒 = 1

1, 𝑝𝑒 = 0
,

(3.7)

where 𝑝𝑒 is equal to 1 if there is a path from UAV i to the control station and 0 if there is not, and

A remains as defined in Equation (3.3).

Further, a linear penalty/reward approach was introduced to maintain the UAVs within a desirable

range from each other. In this approach, a factor was included in the objective function to reward

or penalize it according to the distance between UAVs, where excessive closeness is penalized

according to proximity ranges, as illustrated in Figure 3.4.

Figure 3.4: Proximity ranges between UAVs.

The proximity ranges are defined by the maximum communication distance between UAVs,

which, in turn, is defined by the receiver sensitivity. From Equation (2.1), it follows that the

received power level increases by approximately 6 dB—for a quadratic path loss exponent—every

47

time the distance between two UAVs halves. Therefore, the received power level at a fractional

distance can be calculated as a function of the receiver sensitivity and the power increment in dB.

Furthermore, it can be used as a measure of proximity without the need to calculate the maximum

distance or determine the exact distance between UAVs, which may be convenient when exact

positions are not available. The objective function, with the additional proximity avoidance

consideration, is defined in Equation (3.8):

𝑓′(𝑥𝑖(𝑡)) = 𝑓(𝑥𝑖)∏

{

𝑎, 𝜏 ≤ 𝑅′(𝑥𝑖(𝑡))𝑗[𝑑𝐵𝑚] < 𝜏 + 6 𝑑𝐵

𝑏, 𝜏 + 6 𝑑𝐵 ≤ 𝑅′(𝑥𝑖(𝑡))𝑗
[𝑑𝐵𝑚] < 𝜏 + 18 𝑑𝐵

𝑐, 𝜏 + 18 𝑑𝐵 ≤ 𝑅′(𝑥𝑖(𝑡))𝑗[𝑑𝐵𝑚]

𝑑, 𝑅′(𝑥𝑖(𝑡))𝑗[𝑑𝐵𝑚] < 𝜏

𝑁

𝑗=1

,

𝑎 = 1, 𝑏 =
3

4
, 𝑐 =

1

4
, 𝑑 = 1.

(3.8)

where N is the number of UAVs, 𝑅′(𝑥𝑖(𝑡))𝑗 is the received power level from the j-th UAV at time

t expressed in dBm, 𝜏 is the receiver sensitivity, and 𝑓(𝑥𝑖) remains as defined in Equation (3.7).

In this case, 𝑓′(𝑥𝑖(𝑡)) is a function of position and time since the UAVs are dynamic as opposed

to the ground nodes.

Constant a takes a value of 1 because the range shown in green color in Figure 3.4 does not require

a reward. The value of constant b is set to 0.75 as it corresponds to three fourths of the distance

subject to penalty, while constant c takes a value of 0.25 to impose a penalty on being within the

closest quarter of the distance subject to penalty. Constant d takes a value of 1 because if it were

smaller, it would penalize not having a connection between each pair of UAVs. Furthermore, it is

not necessary to penalize not having a connection between each pair of UAVs, as having a

communication path to the control station is already being rewarded. In other words, constants a

48

and d are set to 1 because forming a full mesh does not need to be rewarded and not forming it

does not need to be penalized. As a result of implementing this feature, the UAVs avoid being too

close to each other when they approach convergence. This does not seem to guarantee collision

avoidance though, as the solution algorithm does not replace previous personal or group best

values that draw a UAV to the positions where those values were recorded. Nonetheless, a velocity

constraint could be applied to limit speed if the received signal power from other UAV keeps

increasing over a certain time interval.

A final consideration is made to safeguard the overall connection to the control station: UAV1 is

rewarded or penalized correspondingly to its distance to the control station, as defined in Equation

(3.9).

𝑓′′(𝑥1(𝑡)) =

{

𝑎′ ∙ 𝑓′(𝑥1(𝑡)), 𝜏 ≤ 𝑅

′(𝑥1)𝑐𝑠[𝑑𝐵𝑚] < 𝜏 + 6 𝑑𝐵

𝑏′ ∙ 𝑓′(𝑥1(𝑡)), 𝜏 + 6 𝑑𝐵 ≤ 𝑅′(𝑥1)𝑐𝑠[𝑑𝐵𝑚] < 𝜏 + 18 𝑑𝐵

𝑐′ ∙ 𝑓′(𝑥1(𝑡)), 𝜏 + 18 𝑑𝐵 ≤ 𝑅′(𝑥1)𝑐𝑠[𝑑𝐵𝑚]

𝑑′ ∙ 𝑓′(𝑥1(𝑡)), 𝑅
′(𝑥1)𝑐𝑠[𝑑𝐵𝑚] < 𝜏

𝑎′ = (0.5214𝑙)2 + ℎ2, 𝑏′ =
3

4
, 𝑐′ =

1

4
, 𝑑′ =

1

4
.

(3.9)

where 𝑓′(𝑥1(𝑡)) is the value of the objective function defined in Equation (3.8) for UAV1, and

𝑅′(𝑥1(𝑡))𝑐𝑠 is the received power level at UAV1 from the control station in dBm.

Constants b’ and c’ are established with the same consideration as in Equation (3.8). Constant d’

penalizes excessive distance between UAV1 and the control station in the same amount used to

penalize excessive closeness. The value of a’ is set high to guarantee that UAV1 remains within

the best range from the control station. This feature also improves convergence time for the entire

swarm.

49

3.3.2 Problem Formulation

In the proposed scenario, the problem is to determine the positions of the UAVs in a way that

maximizes coverage to a series of ground nodes with unknown positions, while providing a

communication path from the covered nodes to a control station. Therefore, the objective function

is a communications-related parameter that changes as a function of position. The selected

parameter to be maximized is the aggregated received power level at N UAVs from n ground

nodes. The variables of the problem are 𝑥𝑖, i = 1,…,N, and j = 1,…,n, where 𝑥𝑖 is the position of

UAV i. The UAVs must remain within the search space, S, defined by a square grid of side length,

l, and maximum height, ℎ𝑚𝑎𝑥. Additionally, the received power levels can only be aggregated

when they are above a certain threshold, 𝜏, otherwise, only the maximum received value from all

ground nodes is considered. Hence, the problem can be formulated as:

max
𝑥𝑖∈ℝ

3
{
𝑓′(𝑥𝑖(𝑡)), 𝑖 = 2, … ,𝑁

𝑓′′(𝑥1(𝑡)), 𝑖 = 1

(3.10)

subject to 𝑥𝑖 ∈ 𝑆

where 𝑓′(𝑥𝑖(𝑡)) and 𝑓′′(𝑥1(𝑡)) are defined by Equations (3.8) and (3.9), respectively.

The problem can be further characterized as a constrained, nonlinear, multiobjective optimization

with multiple local solutions over a large search space. From the problem requirements and

formulation, it follows that the optimization is performed at each UAV in a distributed manner.

This is a convenient approach with regards to achieving autonomous flight. Moreover, this tactic

is also consequent with the fact that this is a multiple-solution problem.

PSO is proposed as the optimization algorithm, due to the similarity between the FANET scenario

and the nature-inspired origin of PSO.

50

3.4 Solution Using a PSO Mobility Model

The mobility model was developed starting with a basic version of the PSO algorithm for

maximization problems, as described in Algorithm 3.1, where the UAVs are the particles, and all

the UAVs can share their positions and received power levels among themselves, regardless of the

distance between each other. A difference with the common PSO described in Chapter 2 is that

here the particles are not initialized with random positions and velocities, but rather start at the

same position at the corner of the grid with maximum velocity.

 Algorithm 3.1 Basic PSO

Create and initialize a swarm with N UAVs;

repeat while stopping criteria is false;

for each UAV i = 1 to N do

Eval objective function 𝑓′(𝑥𝑖(𝑡))
//set personal best position

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓(𝑏𝑒𝑠𝑡𝑥𝑖) then

𝑏𝑒𝑠𝑡𝑥𝑖 = 𝑥𝑖(𝑡);
end

//set global best position

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓(𝑏𝑒𝑠𝑡𝑥) then

𝑏𝑒𝑠𝑡𝑥 =𝑏𝑒𝑠𝑡𝑥𝑖;
end

end

for each UAV i = 1 to N do

update UAV i velocity according to Equation (2.10);

move UAV i to position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11);

end

t = t + ∆t;
end

The flowchart for Algorithm 3.1 is depicted in Figure 3.5.

51

Figure 3.5: Basic PSO algorithm flowchart.

3.4.1 Search Space Constraint Handling

To keep the UAVs from wandering beyond the search space, which would otherwise result in

increased convergence time, a modification was introduced in the algorithm to limit the UAV

velocity in a given direction if the next position is outside the search space boundary in that

direction. This modification, known as velocity clamping [61], is described in Algorithm 3.2.

Algorithm 3.2 PSO with bounded search space

Create and initialize a swarm with N UAVs;

repeat while stopping criteria is false;

for each UAV i = 1 to N do

52

Algorithm 3.2 PSO with bounded search space

Eval objective function 𝑓′(𝑥𝑖(𝑡))
//set personal best position

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓(𝑏𝑒𝑠𝑡𝑥𝑖) then

𝑏𝑒𝑠𝑡𝑥𝑖 = 𝑥𝑖(𝑡);
end

//set global best position

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓(𝑏𝑒𝑠𝑡𝑥) then

𝑏𝑒𝑠𝑡𝑥 =𝑏𝑒𝑠𝑡𝑥𝑖;
end

end

for each UAV i = 1 to N do

calculate velocity 𝑣𝑖(𝑡 + ∆𝑡) according to Equation (2.10);

calculate position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11);

if 𝑥𝑖(𝑡 + ∆𝑡) is outside of the search space in directions X, Y, or Z then

update UAV i velocity making it 0 in the corresponding directions;

move UAV i to position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11);

end

end

t = t + ∆t;
end

In a practical implementation, a positioning mechanism such as GPS is needed to keep the UAVs

within the search space boundaries.

3.4.2 Kinematic Constraints Handling

The next set of modifications was introduced to keep the UAV speed below or equal to its

maximum value. First, a UAV’s next instant speed is clipped if its velocity magnitude is above the

defined maximum. Second, a stall counter was included to determine if the search process is

stagnating, as well as to adjust the inertia weight, w, accordingly. This modification is implemented

as described in [80]. The stall counter increases when gbest has not improved in an iteration and

decreases otherwise. Together with the stall counter, the adaptive inertia weight serves two

purposes: 1) Increasing exploration when gbest keeps improving during early stages, and 2)

increasing exploitation (reducing exploration) when gbest improves at later stages, which can be

a sign of an optimal solution being found. Finally, the inertia weight must also be limited to keep

53

it from growing excessively, which might lead to low spatial resolution and increased instability,

even when the maximum speed is constrained. These modifications, shown in Algorithm 3.3, help

to evaluate the objective function at practical distance steps (spatial resolution) without losing

potentially good values.

54

Algorithm 3.3 PSO with maximum speed constraint

Create and initialize a swarm with N UAVs;

repeat while stopping criteria is false;

for each UAV i = 1 to N do

Eval objective function 𝑓′(𝑥𝑖(𝑡))
//set personal best position

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓(𝑏𝑒𝑠𝑡𝑥𝑖) then

𝑏𝑒𝑠𝑡𝑥𝑖 = 𝑥𝑖(𝑡);
end

//set global best position

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓(𝑏𝑒𝑠𝑡𝑥) then

𝑏𝑒𝑠𝑡𝑥 =𝑏𝑒𝑠𝑡𝑥𝑖;
stallcount = max(0, stallcount - 1);

if stallcount < 2 then

 w = min(2 * w, UAV max speed);

end

if stallcount > 5 then

 w = w / 2;

end

else

stallcount = stallcount + 1;

end

end

for each UAV i = 1 to N do

calculate velocity 𝑣𝑖(𝑡 + ∆𝑡) according to Equation (2.10);

if |UAV i velocity| > UAV max speed then

UAV i velocity = UAV i velocity * UAV max speed / |UAV i velocity|;

end

calculate position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11);

if 𝑥𝑖(𝑡 + ∆𝑡) is outside of the search space in directions X, Y, or Z then

update UAV i velocity making it 0 in the corresponding directions;

move UAV i to position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11);

end

end

t = t + ∆t;
end

Reducing speed to a maximum physical constraint is not mandatory in a real-world FANET

implementation, as the speed would be limited naturally. However, a stall counter and an adaptive

inertia weight are useful in applications with a reduced number of particles over large search

55

spaces. Moreover, constraining speed might be a requirement when energy efficiency is part of the

problem objectives.

3.4.3 Dynamic Clustering

In order to account for potential loss of air-to-air links between UAVs during flight, dynamic

clusters are being formed, which requires the determination of gbest among the neighboring

UAVs. Furthermore, each UAV locally defines gbest without considering itself in order to avoid

giving excessive weight to its own pbest anytime it is in fact the best within its neighborhood (see

Figure 3.6).

Figure 3.6: Dynamic clustering.

In the example shown in Figure 3.6, the UAV represented by the green circle is the cluster’s best

for the other three UAVs, while the UAV represented by the blue circle is the cluster’s best for the

UAV represented by the green circle. Additionally, the stall count variable and the inertia weight

56

are also maintained locally. Therefore, the algorithm must be updated to accommodate these

circumstances, according to Algorithm 3.4.

57

Algorithm 3.4 PSO with dynamic clustering

Create and initialize a swarm with N UAVs;

repeat while stopping criteria is false;

for each UAV i = 1 to N do

Eval objective function 𝑓′(𝑥𝑖(𝑡))
//set personal best position

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓′(𝑏𝑒𝑠𝑡𝑥𝑖) then

𝑏𝑒𝑠𝑡𝑥𝑖 = 𝑥𝑖(𝑡);
end

//set cluster best position locally within each UVA and not considering itself

for each UAV j = 1 to N do

if 𝑅′(𝑥𝑖(𝑡))𝑗 ≥ τ and j ≠ i

if 𝑓′(𝑥𝑗(𝑡)) > 𝑓′(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑏𝑒𝑠𝑡𝑥𝑖) then

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑏𝑒𝑠𝑡𝑥𝑖 =𝑏𝑒𝑠𝑡𝑥𝑗;

stallcounti = max(0, stallcounti - 1);

if stallcounti < 2 then

 wi = min(2 * wi, UAV max speed);

end

if stallcounti > 5 then

 wi = wi / 2;

end

else

stallcounti = stallcounti + 1;

end

end

end

end

for each UAV i = 1 to N do

calculate velocity 𝑣𝑖(𝑡 + ∆𝑡) according to Equation (2.10);

if |UAV i velocity| > UAV max speed then

UAV i velocity = UAV i velocity * UAV max speed / |UAV i velocity|;

end

calculate position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11);

if 𝑥𝑖(𝑡 + ∆𝑡) is outside of the search space in directions X, Y, or Z then

update UAV i velocity making it 0 in the corresponding directions;

move UAV i to position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11);

end

end

t = t + ∆t;
end

3.4.4 Hybrid PSO

58

Inspired by the application itself, a hybrid version of the PSO algorithm (Algorithm 3.5) was

devised in an attempt to increase the number of covered nodes and decrease the convergence time.

In the proposed version, the grid is divided into cells depending on the number of UAVs, and a

fixed waypoint trajectory is created for each UAV, from the starting point to the center of its

corresponding cell at a defined height, according to Algorithm 3.6.

In the hybrid approach, during the initial phase of the flight, the UAVs evaluate the objective

function and determine pbest as well as gbest, but do not start the stall count, do not update the

inertia weight, and do not update their positions according to the PSO algorithm. Once all UAVs

have reached the designated height for the fixed trajectory, they start the complete PSO mobility.

Algorithm 3.5 Hybrid PSO with fixed initial trajectory

Create and initialize a swarm with N UAVs;

Create initial fixed waypoint trajectory;

repeat while stopping criteria is false;

for each UAV i = 1 to N do

Eval objective function 𝑓′(𝑥𝑖(𝑡))
//set personal best position

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓′(𝑏𝑒𝑠𝑡𝑥𝑖) then

𝑏𝑒𝑠𝑡𝑥𝑖 = 𝑥𝑖(𝑡);
end

//set cluster best position locally within each UVA and not considering itself

for each UAV j = 1 to N do

if 𝑅′(𝑥𝑖(𝑡))𝑗 ≥ τ and j ≠ i

if 𝑓′(𝑥𝑗(𝑡)) > 𝑓′(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑏𝑒𝑠𝑡𝑥𝑖) then

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑏𝑒𝑠𝑡𝑥𝑖 =𝑏𝑒𝑠𝑡𝑥𝑗;

if the fixed initial trajectory has been completed

 stallcounti = max(0, stallcounti - 1);

 if stallcounti < 2 then

 wi = min(2 * wi, UAV max speed);

 end

 if stallcounti > 5 then

 wi = wi / 2;

 end

end

else

if the fixed initial trajectory has been completed

59

Algorithm 3.5 Hybrid PSO with fixed initial trajectory

 stallcounti = stallcounti + 1;

end

end

end

end

end

for each UAV i = 1 to N do

if the fixed initial trajectory has been completed

 calculate velocity 𝑣𝑖(𝑡 + ∆𝑡) according to Equation (2.10);

 if |UAV i velocity| > UAV max speed then

 UAV i velocity = UAV i velocity * UAV max speed / |UAV i velocity|;

 end

 calculate position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11);

 if 𝑥𝑖(𝑡 + ∆𝑡) is outside of the search space in directions X, Y, or Z then

 update UAV i velocity making it 0 in the corresponding directions;

 move UAV i to position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11);

 end

else

 move UAV i to position 𝑥𝑖(𝑡 + ∆𝑡) according to the fixed initial trajectory;

end

t = t + ∆t;
end

The initial trajectory flight for the Hybrid PSO algorithm is defined by the grid size, the number

of UAVs, the maximum height of the fixed trajectory, and the UAV maximum speed (𝑣𝑚𝑎𝑥). Also,

the fixed trajectory parameters determine the speed and direction for the first instant of the PSO-

only flight.

Algorithm 3.6 Create initial fixed waypoint trajectory

//set starting and ending positions

// East is X and North is Y

nlength = floor(sqrt(N));

elength = ceil(N/nlength);

FixedTRJHeight = fixed trajectory height;

for each UAV i = 1 to N do

startPosi = [-l/2, l/2, 0]; //[X coord., Y coord., Z coord.]

end

i = 1;

for column = 1 to nlength do

 for row = 1 to elength do

60

Algorithm 3.6 Create initial fixed waypoint trajectory

destPosi = [-(l/2)-(l/elength/2)+row*(l/elength), (l/2)+(l/nlength/2)-column*(l/nlength),…

FixedTRJHeight]; //[X coord., Y coord., Z coord.]

i = i + 1;

 end

end

3.4.5 Stopping Criteria

This parameter determines when to stop the algorithm. Common stopping criteria include reaching

a maximum number of iterations, achieving a desired level of fitness, or when the improvement in

fitness is below a certain threshold. Three parameters are considered as stopping criteria for the

present research. The PSO algorithm stops when the objective function has not improved for a

certain time, when the maximum number of iterations has been reached, or when the relative

change in fitness is below a certain threshold. Two alternative functions have been developed to

quantify the relative change in fitness. In the first alternative, the fitness function of UAV i, at

position 𝑥𝑖, and time t is defined as the level of relative change in the total received power at UAV

i in the last iteration with respect to the average over the previous ten iterations, as expressed in

Equation (3.11):

𝜑1(𝑥𝑖(𝑡)) =

|𝑅(𝑥𝑖(𝑡)) −
∑ 𝑅(𝑥𝑖(𝑇))
𝑡
𝑇=𝑡−9

10 |

∑ 𝑅(𝑥𝑖(𝑇))
𝑡
𝑇=𝑡−9

10

. (3.11)

The fitness threshold is reached when the maximum value of 𝜑1 over all the UAVs is equal to or

less than 2%. This provides a sense of the stability that the FANET has achieved regarding the

received signal power.

61

In the second alternative, the fitness function of UAV i, at position 𝑥𝑖, and time t is defined as the

average distance of its current and previous ten positions to the center of gravity of its previous

ten positions, as expressed in Equation (3.12):

𝜑2(𝑥𝑖(𝑡)) =
∑ 𝑑𝑥𝑖−𝐶𝐺(𝑇′)
𝑡
𝑇′=𝑡−10

11
,

𝐶𝐺 =
∑ 𝑥𝑖(𝑇)
𝑡−1
𝑇=𝑡−10

10
.

(3.12)

The fitness threshold is reached when the maximum value of 𝜑2 over all the UAVs is equal to or

less than the distance a UAV travels at maximum speed during the defined time step. This

alternative provides a sense of the spatial stability that the FANET has achieved and is useful with

stochastic propagation models that induce a level of randomness in the received power level.

3.5 Simulation Parameters

In the previous sections, the objective function has been defined by Equations (3.7), (3.8) and

(3.9), while the PSO mobility model has been defined by Algorithm 3.5, and Equations (3.11) and

(3.12). This section covers the specific configuration parameters used in MATLAB R2022a to

develop the simulation environment.

As mentioned in Section 3.2, communications start once the PSO algorithm has met the stopping

criteria. The communications part of the simulation was developed at system level using the

WLAN Toolbox. The term system level refers to the model ability to cover multiple links, cells,

and terminals [81].

3.5.1 Node configuration

The Wi-Fi nodes for UAVs and ground nodes are created using the ‘hCreateWLANNodes.m’

MATLAB function. MATLAB Wi-Fi nodes have 34 configuration parameters. The functions

62

‘hLoadConfigurationFull_Int_Traff_6.m’ and ‘hLoadConfigurationFull_Int_Traff_7.m’

(APPENDIX C) are used to configure PHY, MAC, and application traffic parameters for Wi-Fi

and LoRa backhauls, respectively. Both functions are modifications of the

‘hLoadConfiguration.m’ MATLAB function. All Wi-Fi nodes are configured as mesh nodes at a

frequency of 2437 MHz (Wi-Fi channel 6). A summary of all MAC and PHY configuration

parameters relevant to this simulation is presented in Table 3.1. All other parameters have been set

to their default values.

Table 3.1: MAC and PHY configuration parameters.

Transmit

Power

Transmit

Antenna

Gain

Receive

Antenna

Gain

Wi-Fi

Receiver

Sensitivity

Receiver

Noise

Figure

Is

Access

Point

Is Mesh

Node
MeshTTL

15 dBm 1 dB 0 dB -82 dBm 7 dBm No Yes 31 hops

To simulate the LoRa backhaul for mobility performance purposes, the receiver sensitivity is set

at -105 dBm, which is considered a reasonable compromise value for a 500 kHz bandwidth and a

spreading factor of 5, based on the product specifications [50-52], though no specific value is

provided for this configuration. The possible LoRa frequency configurations are 900 MHz, 2.4

GHz, and 400 MHz.

Regarding traffic configuration, MATLAB provides four types of WLAN application traffic: Best

Effort (BE), Background (BK), Video (VI), and Voice (VO). BE traffic is defined by MATLAB

as the default access category and is the one used in this model. Besides the type of traffic, traffic

configurations are applied as shown in Table 3.2.

Table 3.2: Application traffic configuration.

Backhaul Data Rate (kbps) Packet Size [bytes] Access Category

Wi-Fi 100000 1500 BE (0)

LoRa 62.5 250 BE (0)

63

The LoRa data rate can be calculated using Equation (2.9) for a 500 kHz bandwidth, a spreading

factor of 5, and a 4/5 coding rate. Additionally, the traffic originates at the ground nodes and is

destined for the control station. An example of traffic configuration is shown in Figure 3.7.

Figure 3.7: Example of traffic configuration for ten ground nodes and a Wi-Fi backhaul.

3.5.2 Propagation Models

Three propagation models are included in the simulation: Free space, ray tracing, and log-normal.

For all the propagation models, a path loss table is obtained using the function

‘hCreatePathlossTableDP.m’ (APPENDIX D). This function is a modification of the

‘hCreatePathlossTable.m’ MATLAB function.

A. Free Space Propagation Model

This model is implemented in the function ‘hFreeSpacePathLoss.m’ (APPENDIX E) as defined in

Equation (2.1). The function ‘hFreeSpacePathLoss.m’ is a modification of the

‘hTGaxResidentialPathLoss.m’ MATLAB function.

B. Ray Tracing

This model is implemented using the ‘propagationModel’ MATLAB function with the following

parameters:

64

propModel =
propagationModel("raytracing","Method","image","MaxNumReflections",1,"CoordinateSyste
m","cartesian");

C. Log-normal

This model is implemented using the ‘propagationModel’ MATLAB function with the following

parameters:

propModel = propagationModel('close-in');
propModel.PathLossExponent = 2.3;
propModel.Sigma = 0.1;

These parameters are suited to represent a rural outdoor area [34], but can be modified to represent

different environments.

3.5.3 Mobility

The mobility model has been developed using MATLAB’s UAV Toolbox. The overall maximum

height is set to 121 m (400 ft.), and the UAV maximum speed (𝑣𝑚𝑎𝑥) is set to 44.5 m/s (100 mph),

which are defined by the Federal Aviation Administration (FAA) as the maximum altitude above

ground level and the maximum groundspeed, respectively, for small unmanned aircraft [82]. The

general mobility parameters are listed in Table 3.3.

Table 3.3: General mobility parameters.

Parameter Value

Fixed trajectory max. height 60 m

Time step (Δt) 1 s

Overall maximum height (ℎ𝑚𝑎𝑥) 121 m (400 ft.)

UAV initial speed 30 m/s

UAV maximum speed (𝑣𝑚𝑎𝑥) 30 m/s

A. PSO Parameters

The value assigned to the PSO parameters can affect the algorithm's effectiveness and efficiency.

Setting these parameters appropriately is important to ensure its performance and convergence to

65

an optimal solution. These parameters and the way in which they impact convergence are

explained next:

• Inertia weight (w): This parameter controls the influence of the particle's previous velocity

on the current velocity. A high value of w results in increased exploration of the search

space, but it also means a lower spatial resolution which may cause the algorithm to

overlook positions that could produce optimal solutions. A low value of w leads to slower

convergence, but it may also prevent the algorithm from getting stuck in a local optimum.

• Cognitive learning parameter (𝑐1) and social learning parameter (𝑐2): These parameters

control the influence of the particle's personal best (pbest) and the global best (gbest)

positions on the current velocity, respectively. A higher value of 𝑐1 increases the focus on

pbest, while a higher value of 𝑐2 increases the focus on gbest.

• Number of particles (N): This parameter determines the size of the swarm, and a higher

value of N usually leads to a better exploration of the search space. However, increasing N

beyond a certain threshold may also increase the computational cost for simulations, and

be unattainable for real-world implementations.

• UAV maximum speed (𝑣𝑚𝑎𝑥): This parameter limits the maximum velocity of each particle

to provide a good spatial resolution. A high value of 𝑣𝑚𝑎𝑥 may lead to unstable behavior,

while a low value of 𝑣𝑚𝑎𝑥 may slow down the convergence. In theoretical optimization

applications this value can be set to arbitrarily high values. However, in simulations and

practical implementations this value is limited by aerodynamic constraints.

The relationship between the values of w, 𝑐1, and 𝑐2 can determine if the particles achieve

convergence or if they behave erratically. According to [61,83], convergence is guaranteed if the

following condition is met:

66

1 > 𝑤 >
1

2
(𝑐1 + 𝑐2) − 1 ≥ 0. (3.13)

As Equation (3.13) was demonstrated removing the random components, the UAVs may converge

when using the stochastic components and a value of w that does not comply with this condition

[61]. Given the dynamic nature of a FANET and the problem characterization provided in Section

3.3.2, a higher value of 𝑐1 and a lower value of 𝑐2 are preferred, as the opposite configuration

would result in an attraction of all UAVs to a single best position. Therefore, the PSO parameters

are set according to Table 3.4.

Table 3.4: PSO configuration parameters.

Parameter Value

𝑤 0.95

𝑐1 1.35

𝑐2 0.01

Max. number of iterations 180

Max. stall count 150

During preliminary tests, a value of -0.05 was set for 𝑐2 to cause a repelling effect between UAVs.

However, a small attraction value was ultimately configured that resulted in improved path

formation to avoid using a reward for keeping a path for other UAVs. 𝑐1 and 𝑐2 are fixed for the

entire simulation. 𝑤, however, is only an initial value, as the adaptive, constrained inertia weight

mentioned in section 3.4.2 is implemented to achieve improved convergence. Furthermore, 𝑤 is

independent for each UAV as per the dynamic clustering scheme described in Section 3.4.3.

Another factor that may impact PSO performance is the initial position of the particles [61].

Considering that in many of the FANET applications described in Chapter 2, it is likely that the

UAVs are deployed from a single position, UAVs are initially located at one corner of the grid.

67

Nevertheless, different initial positions could be tested in further research. Moreover, the Hybrid

PSO described in Section 3.4.4 could be considered a PSO where each UAV starts at a different

position.

68

Chapter 4

4 Results and Analysis

As explained in Section 2.7, there are two main parts in the optimization process: (i) model

development, and (ii) solution discovery. Regarding model development, the identification of

variables and constraints was, to a certain extent, a straightforward process. However, the

definition of an objective function that achieves multiobjective optimization proved to be more

challenging. On the subject of finding a solution, setting up the PSO parameters demonstrated to

be equally demanding. There exist numerous possible combinations of objective functions, PSO

variations, and communication considerations. The communication details involve the propagation

models and the backhaul networks to be used. These combinations were examined in a sequential

manner, and the most effective alternative was chosen as input for the subsequent stage. Once the

objective function has been defined and the PSO parameters have been configured, a performance

analysis of the solution can be carried out in terms of performance metrics. Therefore, this chapter

is organized in the following manner: Section 4.1 presents a comparison between the different

objective function alternatives listed in Section 3.3. Section 4.2 shows a comparison between

different PSO configurations and propagation models. The metrics used to assess the proposed

FANET performance are defined in Section 4.3. Finally, three positioning algorithms are evaluated

with a complete model in Section 4.4 according to the performance metrics.

4.1 Comparison between Different Objective Functions

As a single objective function is proposed in the present research to achieve multiobjective

optimization, multiple ways of rewarding coverage and path maintenance, as described in Section

3.3, were compared in terms of the number of iterations required for convergence or stoppage. The

69

model parameters presented in Table 4.1 were used for the comparison in this section, unless

otherwise stated.

Table 4.1: Model configuration parameters.

General Parameters

Grid size 1500 m x 1500 m Overall max. height 121 m

(400 ft.)

Number of UAVs 6 Initial speed 30 m/s

Number of ground nodes 10 Maximum speed 30 m/s

Fixed trajectory max. height 60 m Time step 0.5 s

Radio Parameters

Backhaul technology Wi-Fi LoRa1

Frequency 2.437 GHz 900 MHz

Tx power 15 dBm 15 dBm

Tx gain 1 dB 1 dB

Receiver sensitivity -82 dBm -105 dBm

Rx gain 0 dB 0 dB

Propagation model Ray tracing

PSO Parameters

Inertial weight (w) 0.95 Max. stall count 150

Individual weight (c1) 1.35 Max. iterations 180

Group weight (c2) 0.01

Stopping criteria Mean distance to CoG, max. stall count, max. number of

iterations

Table 4.2 shows the meaning of the different link and trajectory plots for Figures 4.1(a)–4.18(a).

Table 4.2: Link and trajectory plot legends for Figures 4.1(a)–4.18(a).

Link/Trajectory Description Line

Air-to-air links Dashed line

Air-to-ground links Dotted line

No air-to-air link No line

No air to ground link No line

Hybrid PSO trajectory Continuous white line

PSO-only trajectory No line

1 When applicable

70

4.1.1 Coverage Reward Only

First, the base-2 exponential gain factor was compared to the distance-based quadratic gain factor,

when applied for covering more than one node, as defined by Equations (3.4) and (3.6),

respectively. Figure 4.1 shows the results for the base-2 exponential gain factor, where Figure

4.1(a) shows the network topology after the stopping criteria are met, while Figure 4.1(b) shows the

number of iterations required for position stabilization, which in this case is 141 and is achieved

before reaching the maximum stall count or the maximum number of iterations.

Table 4.3: Alternative gains applied only for covering multiple ground nodes using Hybrid PSO (1500 m

x 1500 m).

Parameter
Base-2 Exponential

Gain
Distance-based Gain

Grid size 1500 m x 1500 m

Mobility algorithm Hybrid PSO

Coverage gain Equation (3.4) Equation (3.6)

Path maintenance gain --- ---

Excessive closeness penalty Equation (3.8) Equation (3.8)

UAV1 connection to Control Station Equation (3.9) Equation (3.9)

Stopping criteria reached Convergence Max. iterations

Number of iterations 141 180

71

(a)

(b)

Figure 4.1: Topology and convergence results when applying a base-2 exponential gain for covering

multiple ground nodes (Hybrid PSO). (a) Network topology after stopping criteria are met. (b)

Aggregated received power levels at each UAV.

Figure 4.2 shows the results for the distance-based gain factor, where Figure 4.2(a) shows the

network topology after the stopping criteria are met, while Figure 4.2(b) shows that the maximum

number of iterations was reached before achieving convergence.

72

(a)

(b)

Figure 4.2: Topology and convergence results when applying a distance-based gain for covering multiple

ground nodes (Hybrid PSO). (a) Network topology after stopping criteria are met. (b) Aggregated

received power levels at each UAV.

The network topology graphs show that, although both alternatives achieve coverage and a path to

the control station for all ground nodes, the base-2 exponential gain factor has a better distance

between UAV 2 and UAV 3. Additionally, the base-2 exponential gain factor achieves a faster and

more stable convergence without applying a path maintenance reward. Hence, it might seem that

the base-2 exponential gain factor is a good enough alternative compared to the distance-based

gain when both are applied only for covering more than one ground node under the specified

73

conditions. Moreover, it might seem that multiobjective optimization has been achieved and that

a path maintenance reward is not necessary, as all ground nodes have a path to the control station

in option 1. Nonetheless, the objective function must perform adequately under different

circumstances. Therefore, further alternatives are compared in the next section.

4.1.2 Coverage and Path Maintenance Rewards

To expand the analysis from the previous section, the following alternatives were compared for

different grid sizes and mobility algorithms:

1. The base-2 exponential gain factor applied for covering multiple nodes, as defined by

Equation (3.4), together with a gain factor of 2 applied for having a path to the control

station.

2. The distance-based quadratic gain factor applied for establishing a path to the control

station, in conjunction with the application of the base-2 exponential gain factor for

covering multiple nodes, as defined by Equation (3.7).

A path maintenance gain factor of 2 is applied to option 1 in order to ensure a fair comparison of

results under somewhat similar conditions.

Table 4.4: Coverage and path maintenance reward alternatives using Hybrid PSO (1500 m x 1500 m).

Parameter
Base-2 Exponential

Gain
Distance-based Gain

Grid size 1500 m x 1500 m

Mobility algorithm Hybrid PSO

Coverage gain Equation (3.4) Equation (3.7)

Path maintenance gain 2 Equation (3.7)

Excessive closeness penalty Equation (3.8) Equation (3.8)

UAV1 connection to Control Station Equation (3.9) Equation (3.9)

Stopping criteria reached Convergence Convergence

Number of iterations 141 141

Nodes with path to Control Station 10/10 10/10

74

(a)

(b)

Figure 4.3: Topology and convergence results when applying a base-2 exponential gain for covering

multiple ground nodes (Hybrid PSO). (a) Network topology after stopping criteria are met. (b)

Aggregated received power levels at each UAV.

75

(a)

(b)

Figure 4.4: Topology and convergence results when applying a distance-based gain for having a path to

the control station (Hybrid PSO). (a) Network topology after stopping criteria are met. (b) Aggregated

received power levels at each UAV.

The results in Figures 4.3 and 4.4 show that both alternatives behave in the same way for the

Hybrid PSO algorithm. Consequently, the Hybrid PSO algorithm was tested again increasing the

grid size to 2000 m x 2000 m, and keeping all other configuration parameters as defined in Table

4.1.

Table 4.5: Coverage and path maintenance reward alternatives using Hybrid PSO (2000 m x 2000 m).

76

Parameter
Base-2 Exponential

Gain

Distance-based Gain

Grid size 2000 m x 2000 m

Mobility algorithm Hybrid PSO

Coverage gain Equation (3.4) Equation (3.7)

Path maintenance gain 2 Equation (3.7)

Excessive closeness penalty Equation (3.8) Equation (3.8)

UAV1 connection to Control Station Equation (3.9) Equation (3.9)

Stopping criteria reached Max. iterations Max. iterations

Number of iterations 180 180

Nodes with path to Control Station 3/10 9/10

(a)

(b)

Figure 4.5: Topology and convergence results when applying a base-2 exponential gain for covering

multiple ground nodes (Hybrid PSO 2000m). (a) Network topology after stopping criteria are met. (b)

Aggregated received power levels at each UAV.

77

(a)

(b)

Figure 4.6: Topology and convergence results when applying a distance-based gain for having a path to

the control station (Hybrid PSO 2000m). (a) Network topology after stopping criteria are met. (b)

Aggregated received power levels at each UAV.

The results in Figures 4.5 and 4.6 show that the topology achieved when applying a distance-based

gain for having a path to the control station outperforms that of the base-2 exponential gain for

covering multiple ground nodes, since all covered ground nodes (9 out of 10) have a path to the

control station. However, neither alternative achieved spatial convergence before the maximum

number of iterations was reached. Thus, both alternatives were tested again, removing the

maximum stall count and the maximum number of iterations from the stopping criteria, and

considering the relative change in mean position only.

78

Table 4.6: Coverage and path maintenance reward alternatives using Hybrid PSO (2000 m x 2000 m).

Parameter
Base-2 Exponential

Gain

Distance-based Gain

Grid size 2000 m x 2000 m

Mobility algorithm Hybrid PSO

Coverage gain Equation (3.4) Equation (3.7)

Path maintenance gain 2 Equation (3.7)

Excessive closeness penalty Equation (3.8) Equation (3.8)

UAV1 connection to Control Station Equation (3.9) Equation (3.9)

Stopping criteria reached Convergence Convergence

Number of iterations 186 226

Nodes with path to Control Station 3/10 10/10

(a)

(b)

Figure 4.7: Topology and convergence results when applying a base-2 exponential gain for covering

multiple ground nodes (Hybrid PSO 2000m until convergence). (a) Network topology after stopping

criteria are met. (b) Aggregated received power levels at each UAV.

79

It can be seen in Figure 4.7(a) that even after position convergence, a path to the control station

does not exist for the UAVs at right hand side of the grid. The number of iterations in Figure 4.7(b)

is 186.

(a)

(b)

Figure 4.8: Topology and convergence results when applying a distance-based gain for having a path to

the control station (Hybrid PSO 2000m until covergence). (a) Network topology after stopping criteria are

met. (b) Aggregated received power levels at each UAV.

Figure 4.8(a) shows that, after position convergence, all nodes are covered and maintain a path to

the control station when applying a distance-based gain. When comparing the number of iterations

required for position stabilization between Figures 4.7(b) and 4.8(b), the latter requires a higher

80

number of iterations (226 compared to 186). In Figure 4.8(b), the number of iterations required for

position stabilization is higher than when applying a base-2 exponential gain for covering multiple

ground nodes (226 compared to 186 iterations). However, the importance of achieving coverage

and path maintenance objectives outweighs the potential increase in convergence time. Moreover,

the final positions shown in Figures 4.6(a) and 4.8(a) are virtually the same.

To verify that the distance-based gain for having a path to the control station outperforms the base-

2 exponential gain for covering multiple ground nodes, the PSO-only algorithm was tested next

with the same configuration and objective function parameters for both 1500 m x 1500 m and 2000

m x 2000 m grids, keeping all other configuration parameters as defined in Table 4.1.

Table 4.7: Coverage and path maintenance reward alternatives using PSO-only (1500 m x 1500 m).

Parameter
Base-2 Exponential

Gain

Distance-based Gain

Grid size 1500 m x 1500 m

Mobility algorithm PSO-only

Coverage gain Equation (3.4) Equation (3.7)

Path maintenance gain 2 Equation (3.7)

Excessive closeness penalty Equation (3.8) Equation (3.8)

UAV1 connection to Control Station Equation (3.9) Equation (3.9)

Stopping criteria reached Convergence Convergence

Number of iterations 80 80

Nodes with path to Control Station 8/10 8/10

81

(a)

(b)

Figure 4.9: Topology and convergence results when applying a base-2 exponential gain for covering

multiple ground nodes (PSO-only). (a) Network topology after stopping criteria are met. (b) Aggregated

received power levels at each UAV.

82

(a)

(b)

Figure 4.10: Topology and convergence results when applying a distance-based gain for having a path to

the control station (PSO-only). (a) Network topology after stopping criteria are met. (b) Aggregated

received power levels at each UAV.

The results in Figures 4.9 and 4.10 show that both gain alternatives behave in the same way for a

1500 x 1500 m grid with the PSO-only algorithm as well. Therefore, the PSO-only algorithm was

tested next for a 2000 x 2000 m grid with the same configuration and objective function

parameters.

83

Table 4.8: Coverage and path maintenance reward alternatives using PSO-only (2000 m x 2000 m).

Parameter
Base-2 Exponential

Gain

Distance-based Gain

Grid size 2000 m x 2000 m

Mobility algorithm PSO-only

Coverage gain Equation (3.4) Equation (3.7)

Path maintenance gain 2 Equation (3.7)

Excessive closeness penalty Equation (3.8) Equation (3.8)

UAV1 connection to Control Station Equation (3.9) Equation (3.9)

Stopping criteria reached Max. Iterations Convergence

Number of iterations 180 110

Nodes with path to Control Station 6/10 3/10

(a)

(b)

Figure 4.11: Topology and convergence results when applying a base-2 exponential gain for covering

multiple ground nodes (PSO-only 2000m). (a) Network topology after stopping criteria are met. (b)

Aggregated received power levels at each UAV.

84

(a)

(b)

Figure 4.12: Topology and convergence results when applying a distance-based gain for having a path to

the control station (PSO-only 2000m). (a) Network topology after stopping criteria are met. (b)

Aggregated received power levels at each UAV.

Figure 4.12(b) shows that by using a distance-based gain, convergence was achieved before

reaching the maximum stall count or the maximum number of iterations, and, though only three

ground nodes are covered, all UAVs have a path to the control station—as well as the covered

nodes. Moreover, applying a base-2 exponential gain for covering multiple ground nodes in this

configuration did not achieve convergence after more than 18,000 iterations. This shows that the

85

distance-based gain adapts better to changes in grid size for both Hybrid PSO and PSO-only

algorithms. Therefore, as explained in Section 3.3, the objective function is defined by Equations

(3.7), (3.8) and (3.9) for the comparison between different PSO configurations. The results for the

objective function analysis are summarized in Tables 4.9 and 4.10:

Table 4.9: Summary of results for the objective function analysis for the Hybrid PSO.

Parameter Base-2 Exponential Gain Distance-based Gain

Mobility algorithm Hybrid PSO

Coverage gain Equation (3.4) Equation (3.7)

Path maintenance gain 2 Equation (3.7)

Excessive closeness penalty Equation (3.8) Equation (3.8)

UAV1 connection to Control Station Equation (3.9) Equation (3.9)

Grid size 1500 m 2000 m 1500 m 2000 m

Stopping criteria reached Convergence Convergence Convergence Convergence

Number of iterations 141 186 141 226

Nodes with path to Control Station 10/10 3/10 10/10 10/10

Figure Figure 4.3 Figure 4.7 Figure 4.4 Figure 4.8

Table 4.10: Summary of results for the objective function analysis for PSO-only.

Parameter Base-2 Exponential Gain Distance-based Gain

Mobility algorithm PSO-only

Coverage gain Equation (3.4) Equation (3.7)

Path maintenance gain 2 Equation (3.7)

Excessive closeness penalty Equation (3.8) Equation (3.8)

UAV1 connection to Control Station Equation (3.9) Equation (3.9)

Grid size 1500 m 2000 m 1500 m 2000 m

Stopping criteria reached Convergence Max. Iterations Convergence Convergence

Number of iterations 80 180 80 110

Nodes with path to Control Station 8/10 6/10 8/10 3/10

Figure Figure 4.9 Figure 4.11 Figure 4.10 Figure 4.12

4.2 Comparison between Different PSO Configurations

Once the objective function has been defined, the proposed solution algorithm, as described in

Section 3.4, must be configured adequately. In this section, the performance of different PSO

configurations is compared in terms of the number of iterations required for convergence or

86

stoppage, according to the general configuration parameters from Table 4.1, unless otherwise

stated.

4.2.1 Adaptive Inertia Weight vs. Guaranteed Convergence Parameters

The performance of the adaptive inertia weight mechanism described in Section 3.4.2 is compared

to that of PSO parameters established for guaranteed convergence according to Equation (3.13).

The values set in each case for 𝑤, 𝑐1, and 𝑐2 are shown in Table 4.11.

Table 4.11: Adaptive inertia weight vs. guaranteed convergence parameters.

Parameter Adaptive Inertia Weight
Guaranteed

Convergence

Grid size 1500 m x 1500 m

Mobility algorithm Hybrid PSO

Coverage gain Equation (3.7)

Path maintenance gain Equation (3.7)

Excessive closeness penalty Equation (3.8)

UAV1 connection to Control Station Equation (3.9)

Inertial weight (w) 0.95 0.95

Individual weight (c1) 1.35 1.85

Group weight (c2) 0.01 0.25

Stopping criteria reached Convergence Convergence

Number of iterations 141 175

As shown in Figures 4.13(a) and 4.14(a), the network topology after convergence is similar for

both alternatives, with the adaptive inertia weight providing a slightly better topology when

considering the distance between UAV2 and UAV3.

87

(a)

(b)

Figure 4.13: Topology and convergence results when using adaptive inertia weight (Hybrid PSO). (a)

Network topology after stopping criteria are met. (b) Aggregated received power levels at each UAV.

88

(a)

(b)

Figure 4.14: Topology and convergence results when using guaranteed convergence PSO parameters

(Hybrid PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received power levels

at each UAV.

Additionally, a more stable convergence is achieved sooner when using an adaptive inertia weight

(141 vs. 175 iterations), as can be seen in Figures 4.13(b) and 4.14(b). Therefore, the use of the

adaptive inertia weight with 𝑤 = 0.95, 𝑐1 = 1.35, and 𝑐2 = 0.01 is preferred over the values for

guaranteed convergence and kept for further testing.

89

4.2.2 Propagation Model Alternatives

The implemented propagation models allow to simulate radio coverage in different scenarios. The

free space model is a theoretical concept that serves as a reference for evaluating radio waves

propagation through free space. It assumes there is no presence of obstacles or other forms of

interference, making it a model that only applies under ideal conditions. The ray tracing model

performs similarly to the free space model but considers reflections from the ground and from

other UAVs; therefore, is suited for the ideal geometry of the proposed scenario. Moreover, it is

ready to account for terrain and buildings if such maps are included in future research. The log-

normal model considers stochastic shadowing effects and is configured for a rural outdoor area

(path loss exponent equal to 2.2 and sigma equal to 0.1), which provides a reference of how the

simulation would perform on irregular terrain with scattered obstructions. Therefore, ray tracing

and log-normal models will be used for the performance analysis.

Table 4.12: Propagation model alternatives using adaptive inertia weight.

Parameter Ray tracing Log-normal

Grid size 1500 m x 1500 m

Mobility algorithm Hybrid PSO

Coverage gain Equation (3.7)

Path maintenance gain Equation (3.7)

Excessive closeness penalty Equation (3.8)

UAV1 connection to Control Station Equation (3.9)

Stopping criteria reached Convergence Convergence

Number of iterations 141 135

90

(a)

(b)

Figure 4.15: Topology and convergence results when using a ray tracing propagation model (Hybrid

PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received power levels at each

UAV.

91

(a)

(b)

Figure 4.16: Topology and convergence results when using a log-normal propagation model

(Hybrid PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received

power levels at each UAV.

As shown in Figures 4.15(a) and 4.16(a), the network topology after convergence looks very

similar for both alternatives. However, in a somehow counterintuitive manner, a faster

convergence is achieved when using the log-normal propagation model (141 vs. 135 iterations),

as can be seen in Figures 4.15(b) and 4.16(b). This improved convergence could be attributed to

the log-normal model presenting more distinctive values of received power levels at each position,

that lead to less conflicting objective function values.

92

4.2.3 Stopping Criteria Alternatives

As mentioned in Section 3.4.5, the PSO algorithm stops when any of the three following conditions

is met: (i) the objective function has not improved for a certain time (the maximum stall count has

been reached), (ii) when the maximum number of iterations has been reached, or (iii) when the

relative change in fitness is below a certain threshold. Two alternative fitness functions were

developed to quantify the relative change in fitness: (i) level of relative change in total received

power in the last iteration with respect to the average over the previous ten iterations, as a measure

of signal stability defined by Equation (3.11), and (ii) average distance of the current and previous

ten positions to the center of gravity of the previous ten positions, as a measure of position stability

as defined by Equation (3.12). Their performance is compared in this section using the log-normal

propagation model, as it provides more challenging conditions for both of them.

Table 4.13: Stopping criteria alternatives using adaptive inertia weight and log-normal propagation.

Parameter
Signal Stability

Equation (3.11)

Position Stability

Equation (3.12)

Grid size 1500 m x 1500 m

Mobility algorithm Hybrid PSO

Coverage gain Equation (3.7)

Path maintenance gain Equation (3.7)

Excessive closeness penalty Equation (3.8)

UAV1 connection to Control Station Equation (3.9)

Propagation Model Log-normal

Stopping criteria reached Max. iterations Convergence

Number of iterations 180 135

93

(a)

(b)

Figure 4.17: Topology and convergence results when using signal stability as fitness function (Hybrid

PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received power levels at each

UAV.

94

(a)

(b)

Figure 4.18: Topology and convergence results when using position stability as fitness function (Hybrid

PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received power levels at each

UAV.

As shown in Figures 4.17(a) and 4.18(a), the network topology after convergence looks very

similar for both alternatives. However, a faster convergence is achieved when using the average

position change as stopping criterion (135 vs. 180 iterations), as can be seen in Figures 4.17(b) and

4.18(b). In fact, convergence is not reached when using the relative change in aggregated received

power, due to the stochastic variations in the signal. These results suggest that the random

component present in real-world radio signals can lead to signal stability not being achieved even

95

when position stability may have been attained. The threshold to consider a signal as stable could

be increased to a certain amount, but that amount depends on changing propagation conditions.

On the other hand, the fitness threshold to determine position stability depends only on the UAV

maximum speed, which is a previously known and fixed value. Therefore, the average position

change, as defined in Section 3.4.5 and Equation (3.12), will be used for the performance analysis.

4.3 Performance Metrics

Once the objective function has been defined and the PSO parameters have been configured, the

mobility algorithm can be applied, and the effectiveness and efficiency of the solution can be

assessed in terms of performance metrics. The performance of the proposed FANET is evaluated

in terms of the objectives defined in the problem formulation: maximizing coverage and

maintaining a communications path to the control station. Therefore, the following metrics have

been defined:

4.3.1 Number of Iterations Required for Stabilization or Stoppage (𝒕𝒔)

This metric represents the amount of time or iterations required by the mobility optimization

algorithm to find a solution or in other words, the time required to achieve position stability. It is

determined by the stopping criteria and provides a measure of the FANETs’ time efficiency.

4.3.2 Percentage of Covered Ground Nodes (𝑪%)

This metric represents the FANET effectiveness in providing coverage to the ground nodes. It is

defined as the percentage of ground nodes covered by at least one UAV after 𝑡𝑠, as shown in in

Equation (4.1).

𝐶% =
𝑛𝑓

𝑛
× 100. (4.1)

96

where 𝑛𝑓 is the number of ground nodes covered by at least one UAV after 𝑡𝑠, and 𝑛 is the total

number of ground nodes.

4.3.3 FANET Coverage Efficiency (𝜼𝑪)

For the purpose of this research, the FANET is held to be more efficient if a higher percentage of

ground nodes are covered, without having ground nodes being covered by more than one UAV,

and without having UAVs not covering any ground node. Under certain circumstances, a degree

of redundancy and reserve may be desirable. However, for the case of maximizing coverage with

the least number of UAVs, having ground nodes being covered by more than one UAV is

considered redundant, and UAVs not covering at least one ground node are considered idle.

As shown in Equation (4.2), FANET coverage efficiency is defined as the ratio of ground nodes

covered by at least one UAV after 𝑡𝑠 to the total number of ground nodes (a measure of coverage

effectiveness), times the ratio of covered ground nodes to the total number of UAV connections

with ground nodes (a measure of redundancy), times the ratio of UAVs that have connections with

ground nodes to the total number of UAVs (a measure of inactivity).

𝜂𝐶 =
𝑛𝑓

𝑛
×
𝑛𝑓

𝑛𝑠
×
𝑁𝑓

𝑁
 (4.2)

where 𝑛𝑓 is the number of ground nodes covered by at least one UAV after 𝑡𝑠, 𝑛 is the total number

of ground nodes, 𝑛𝑠 is the total number of UAV connections with ground nodes, 𝑁𝑓 is the number

of UAVs that have connections with ground nodes, and 𝑁 is the total number of UAVs.

The coverage efficiency value ranges from 0 to 1, with a higher value indicating a higher

percentage of ground nodes being covered with less redundant links and with less idle UAVs.

97

4.3.4 Percentage of Ground Nodes with a Path to the Control Station (𝑷%)

This metric represents the FANET effectiveness in providing the ground nodes with a path to the

control station. It is defined as the percentage of ground nodes that have a path to the control station

after 𝑡𝑠, as shown in in Equation (4.3).

𝑃% =
𝑛𝑝

𝑛
× 100. (4.3)

where 𝑛𝑝 is the number of ground nodes that have a path to the control station after 𝑡𝑠, and 𝑛 is

the total number of ground nodes.

4.3.5 Overall Efficiency (𝜼𝑶)

This metric represents the overall FANET efficiency regarding fulfilment of the coverage

maximization and path maintenance objectives. It is defined as the coverage efficiency, 𝜂𝐶 , times

the ratio of ground nodes that have a path to the control station to the total number of ground nodes,

as presented in Equation (4.4).

𝜂𝑂 = 𝜂𝐶 ×
𝑛𝑝

𝑛

𝜂𝑂 =
𝑛𝑓

𝑛
×
𝑛𝑓

𝑛𝑠
×
𝑁𝑓

𝑁
×
𝑛𝑝

𝑛

(4.4)

where 𝑛𝐶 is the FANET Coverage Efficiency after 𝑡𝑠, 𝑛𝑝 is the number of ground nodes that have

a path to the control station after 𝑡𝑠, and 𝑛 is the total number of ground nodes.

The overall efficiency value ranges from 0 to 1, with a higher value indicating a higher percentage

of ground nodes being covered with less redundant links, with less idle UAVs, and with more

ground nodes having a path to the control station.

98

4.4 Performance Evaluation of the Different Mobility

Algorithms

The best alternatives for objective function, PSO parameters configuration, stopping criteria, and

propagation models have been determined and summarized in Table 4.14. Consequently, the

performance is assessed under the three scenarios described in Table 4.15, according to the model

parameters presented in Table 4.16, for the following three mobility algorithms:

• Fixed trajectory: The UAVs fly through a fixed trajectory.

• PSO-only: The UAVs fly applying PSO from the start.

• Hybrid PSO: The UAVs fly through a fixed trajectory first and apply PSO afterwards.

The fixed trajectory is generated using Algorithm 3.6 as defined in Section 3.4.4. Each of the three

mobility algorithms is assessed under the three scenarios described in. The results are tabulated in

APPENDIX F and analyzed in the following subsections of this chapter.

Table 4.14: Objective function and PSO configuration.

Component Description Equation

Objective function Distance-based gain (3.7), (3.8), and (3.9)

PSO configuration Adaptive inertia weight ---

Propagation models Ray tracing and log-normal (2.4)

Stopping criteria Position stability (3.12)

Table 4.15: Assessment scenarios.

Identification
Propagation

Model

Access

Network

Backhaul

Network
Backbone

Ray tracing Ray tracing Wi-Fi Wi-Fi Wi-Fi

Log-normal Log-normal Wi-Fi Wi-Fi Wi-Fi

Log-normal + LoRa Log-normal Wi-Fi LoRa Wi-Fi

99

Table 4.16: Final model configuration parameters.

General Parameters

Grid size 2000 m x 2000 m Overall max. height 121 m (400 ft.)

Number of UAVs 1-25 Initial speed 30 m/s

Number of ground nodes 10, 20, 30 Maximum speed 45 m/s

Fixed trajectory max. height 60 m Time step 1 s

Radio Parameters

Backhaul technology Wi-Fi LoRa2

Frequency 2.437 GHz 900 MHz

Tx power 15 dBm 15 dBm

Tx gain 1 dB 1 dB

Receiver sensitivity -82 dBm -105 dBm

Rx gain 0 dB 0 dB

Propagation model Ray tracing, log-normal

PSO Parameters

Inertial weight (w) 0.95 Max. stall count 150

Individual weight (c1) 1.35 Max. iterations 180

Group weight (c2) 0.01

Stopping criteria Mean distance to CoG, max. stall count, max. number of iterations

4.4.1 Number of Iterations

The three mobility algorithms have been tested regarding the number of iterations required for

stabilization or stoppage. Figure 4.19 shows that the number of iterations remains the same for the

fixed trajectory flight regardless of the propagation model or the backhaul network employed, as

it is only dependent on the size of the grid and the number of UAVs. The fixed trajectory algorithm,

in general, performs better than the other two regarding the number of iterations. However, it is

worth noting that the PSO-only algorithm converges faster for a single UAV, and that the number

of iterations for the hybrid algorithm with a single UAV is roughly the sum of the number of

iterations required for both the fixed-trajectory and the PSO-only algorithms. Also, when a larger

number of UAVs is deployed, the maximum number of iterations is reached before position

stabilization is achieved. This saturation occurs with both the hybrid and PSO-only algorithms,

2 When applicable

100

and could be attributed to the increased rate at which UAVs dynamically change clusters leading

to higher instability.

(a) (b)

(c)

Figure 4.19: Number of iterations required for stabilization or stoppage (𝑡𝑠). (a) Ray tracing propagation

model. (b) Log-normal propagation model. (c) Log-normal propagation model with LoRa backhaul.

Figures 4.19(b) and 4.19(c) show that there are exceptions to this grid saturation. In the case of 9

UAVs, which are arranged in a square-grid formation at the maximum height of the fixed

trajectory, the proximity and connectivity between the UAVs are higher compared to other

configurations. This allows for higher information exchange among UAVs, enabling them to

converge more quickly towards an optimal solution. A similar scenario that enhances the

cooperation among the swarm happens for 16 UAVs.

Another potential cause for saturation when a larger number of UAVs is deployed lies in the

penalties for excessive closeness that might conflict with the path maintenance objective, although

101

the exceptions mentioned in the previous paragraph seem to rebuff this possibility. Nonetheless,

an increase in the number of iterations up to a tolerable limit can be an acceptable byproduct of

applying penalties for excessive closeness, if a suitable solution is found with regard to coverage

and path maintenance, or if a better solution is found using less UAVs.

4.4.2 Percentage of Covered Ground Nodes

The plots in Figures 4.20(b) and 4.20(c) show that the percentage of covered ground nodes remains

identical for the fixed trajectory algorithm (blue line), as coverage depends on the UAVs’ final

positions, the propagation model, and the access network, which are the same in both cases.

(a) (b)

(c)

Figure 4.20: Percentage of covered ground nodes (𝐶%). (a) Ray tracing propagation model. (b) Log-

normal propagation model. (c) Log-normal propagation model with LoRa backhaul.

The fixed trajectory has shown to provide the best coverage results across all three scenarios.

However, the Hybrid PSO performance becomes comparable to that of the fixed algorithm, with

102

the hybrid algorithm outperforming the fixed trajectory flight for a swarm made up of 5 UAVs.

When a 5-UAV swarm is employed, the arrangement at the maximum height of the fixed trajectory

is asymmetrical and one grid segment is left uncovered by the fixed trajectory algorithm. The fact

that the Hybrid PSO outperforms the fixed trajectory algorithm for this configuration indicates that

the adaptive nature of the Hybrid PSO allows it to perform better under irregular conditions.

4.4.3 FANET Coverage Efficiency

From the results shown in Figure 4.21, it is reasonable to expect a higher coverage efficiency with

the fixed trajectory algorithm, as the likelihood of having more than one UAV covering the same

ground node is lower when the UAVs are uniformly distributed above the grid—even though

deterministically—and the ground nodes are also uniformly distributed—even though randomly.

Although it has not been tested, it is expected that PSO-only and Hybrid PSO algorithms

outperform the fixed trajectory algorithm for random distributions of ground nodes other than

uniform.

Additionally, it is observed that the coverage efficiency decreases with the increase in the number

of UAVs, irrespective of the propagation model. This is attributed to a higher probability of UAVs

having overlapping coverage areas. Multiple UAVs may end up covering the same ground nodes,

resulting in inefficient resource utilization. This redundancy leads to diminishing returns in terms

of coverage efficiency. Furthermore, in a real-world implementation, as the number of UAVs

increases, the likelihood of interference between their communication links would also increase,

leading to a disruption in overall communication and thus affecting coverage efficiency and

convergence time.

103

(a) (b)

(c)

Figure 4.21: FANET Coverage Efficiency (𝜂𝐶). (a) Ray tracing propagation model. (b) Log-normal

propagation model. (c) Log-normal propagation model with LoRa backhaul.

4.4.4 Percentage of Ground Nodes with a Path to the Control Station

The fixed trajectory algorithm achieves coverage maximization by uniformly distributing the

UAVs above the grid. Nonetheless, it does not take path maintenance into consideration, and only

attains it circumstantially when the number of UAVs is sufficiently large as to allow the

establishment of links between adjacent UAVs as well as between the control station and at least

one UAV. Hence, the Hybrid PSO and the PSO-only algorithms generally outperform the fixed

trajectory flight in the percentage of ground nodes with a path to the control station, especially

under a more conservative propagation model intended to represent less ideal propagation

conditions. However, when a larger number of UAVs is deployed, the increased instability results

in a performance decay of the PSO-based algorithms for the ray tracing propagation model and for

104

the log-normal propagation model when using LoRa as a Backhaul, as shown in Figures 4.22(a)

and 4.22(b).

Under the assumption of a flat earth model without any obstacles, the ray tracing propagation

model produces path loss values similar to those of the free-space model. The decrease in path loss

values results in enhanced air-to-air connectivity among neighboring UAVs when employing the

fixed trajectory algorithm. Consequently, as shown in Figure 4.22(a), a path to the control station

is established for most ground nodes when the number of UAVs is large enough. Nevertheless,

when using a more conservative propagation model, the Hybrid PSO clearly outperforms the fixed

trajectory flight as shown in Figure 4.22(b).

(a) (b)

(c)

Figure 4.22: Percentage of ground nodes with a path to the control station (𝑃%). (a) Ray tracing

propagation model. (b) Log-normal propagation model. (c) Log-normal propagation model with LoRa

backhaul.

105

When LoRa is used as backhaul, the air-to-air link distance is increased, which is equivalent to

reducing the size of the grid. Under these circumstances, the performance of the three algorithms

for a larger number of UAVs is affected consequently, with the fixed trajectory flight improving

and the PSO-based algorithms deteriorating. Still, the use of a LoRa backhaul can be worthy of a

compromise, if an acceptable solution is found with regard to coverage and overall efficiency, or

if a comparable solution is found using less UAVs.

4.4.5 Overall Efficiency

The overall efficiency is a combination of coverage efficiency, 𝜂𝐶 , and the percentage of ground

nodes with a path to the control station, 𝑃%. Thus, the results can be interpreted similarly to the

previous sections, with the Hybrid PSO algorithm clearly outperforming the other two, particularly

under the log-normal propagation model, that represents less favorable propagation conditions

despite the ideal conditions of the model scenario.

The Hybrid PSO outperforms the others in all three assessment scenarios as long as the number of

UAVs does not exceed 7–9. When the number of UAVs increases beyond 7–9 for the given grid

size, all algorithms’ efficiency decreases, but the PSO-based algorithms’ performance is affected

the most by augmented instability. Thus, it is important to identify the adequate number of UAVs,

given the grid size and propagation conditions.

The use of LoRa in air-to-air links increases the communication range between UAVs,

equivalently reducing the grid size, which also increases instability for the PSO-based algorithms

when using a larger number of drones. Therefore, when using LoRa, the number of UAVs can be

reduced or the grid size increased, compared to the number of UAVs or grid size when not using

such technology.

106

(a) (b)

(c)

Figure 4.23: Overall efficiency (𝜂𝑂). (a) Ray tracing propagation model. (b) Log-normal propagation

model. (c) Log-normal propagation model with LoRa backhaul.

To achieve overall efficiency maximization inside a 2 km by 2 km area, 9 UAVs could be deployed

on an open rural scenario, represented by the ray tracing propagation model, using either the

Hybrid PSO or the fixed trajectory algorithms. In a suburban scenario, represented by the log-

normal propagation model, 9 UAVs perform better in the same area using the Hybrid PSO. In a

suburban scenario, represented by the log-normal propagation model, where applications such as

short messaging or location services can tolerate lower data rates, 6 UAVs could be deployed using

LoRa technology as backhaul and the Hybrid PSO algorithm for mobility, or 8 UAVs using the

fixed trajectory algorithm if resources are available.

107

Chapter 5

5 Conclusions and Future Work

The mobility of UAVs in FANETs is crucial for network performance, and optimizing the mobility

patterns of UAVs can significantly enhance the network's efficiency. PSO is a bio-inspired

optimization algorithm that has gained popularity in solving various optimization problems. A

comprehensive simulation environment was developed in MATLAB where three mobility

algorithms have been compared based on ground coverage and topology formation. With 9 UAVs

and 10 ground nodes in a 2000 m x 2000 m grid, the Hybrid PSO achieves a 45% overall network

efficiency that is reduced only by redundant air-to-ground links. Furthermore, with this

configuration all ground nodes are covered and all of them have a path to the control station in

approximately 100 iterations, which are equivalent to less than 2 minutes under the simulation

conditions, and only around 20 seconds higher than the time it would take for the fixed trajectory

flight to reach their final positions. Therefore, the Hybrid PSO is a promising alternative to achieve

FANET mobility while maximizing coverage to fixed ground nodes and creating a path to a control

station. Further conclusions and future work by subject are presented in the following subsections.

5.1 Conclusions

5.1.1 Regarding the Objective Function and Multiobjective Optimization

Defining the objective function is a crucial step in optimization as it lays the foundation for the

entire process. However, setting parameters for the optimization algorithm is also a significant step

and is often connected to defining the objective function. These processes require careful

consideration and testing as many parameters come into play, and their impact must be

systematically analyzed one at a time. The task of setting parameters and defining the objective

108

function can be challenging but is essential for achieving successful optimization results.

Therefore, it is important to take the time to carefully define the objective function and set the

appropriate parameters for the optimization algorithm to ensure optimal results.

Multiobjective optimization involves solving problems that have multiple objectives that cannot

be optimized simultaneously. These objectives often conflict with one another, and finding a

solution that balances them is challenging. To accurately solve such problems, the objective

function should represent the trade-offs between the different objectives accurately. In other

words, the objective function should provide a way to measure how much progress is made towards

one objective while sacrificing some progress towards the others. By properly representing the

trade-offs, it becomes possible to identify and analyze the most effective solutions that achieve the

optimal balance between all objectives. Therefore, in multiobjective optimization, it is crucial to

ensure that the objective function accurately represents the trade-offs between the different

objectives.

The use of a single objective function to achieve multiobjective optimization has its advantages,

as it is a straightforward concept that provides a clear direction for optimization. However, this

approach has some significant disadvantages that must be considered. For example, it can be

challenging to tune the objective function properly to ensure that it provides optimal results.

Additionally, there is no clear reference for the range of values that the objective function can take.

As a result, it cannot be used to define an absolute fitness level, but only a relative one. These

disadvantages highlight the importance of carefully considering the objective function's design and

implementation to ensure that it provides the necessary information to guide optimization

effectively. Therefore, while the concept of using an objective function is straightforward, it

requires careful consideration to ensure that it is effective in practice.

109

Applying the expected distance-based quadratic gain when a path to the control station exists

produces better results in convergence time for different grid sizes than applying it just when more

than one node is found, particularly for the PSO-only algorithm. However, keeping a base-2

exponential gain when more than one node is found is also necessary to improve the balance

between objectives.

Applying a range-based penalty to all UAVs’ for excessive closeness helps to maintain the UAVs

within a desirable range from each other, which in turn results in a more efficient topology by

reducing redundant coverage. This does not seem to guarantee collision avoidance, though, given

that the solution algorithm does not replace previous personal or group best values that draw a

UAV to the positions where those values were previously recorded.

Applying the expected distance-based quadratic gain to UAV1’s function when it is in the optimal

range from the control station improves the likelihood of having a path to it from the covered

ground nodes, and also improves convergence time.

5.1.2 Regarding the Optimization Algorithm

Including constraints in the optimization algorithm allows for the incorporation of real-world

limitations and practical considerations into the optimization problem. Reducing speed to a

maximum physical constraint is not mandatory in a real-world FANET implementation, as the

speed would be limited naturally. However, a stall counter and an adaptive inertia weight are useful

in applications with a reduced number of particles over large search spaces.

Setting up parameters in the optimization algorithm is critical for obtaining good results in the

optimization process. The range of values defined for 𝑤, 𝑐1 and 𝑐2 in Equation (3.13) guarantee

convergence, but do not necessarily shorten convergence time, particularly for large search spaces.

110

During initial tests, a value of -0.05 was set for 𝑐2 to cause a repelling effect between UAVs.

However, a small attraction value of 0.01 was ultimately configured that resulted in improved path

formation.

The inertia weight, w, must also be limited to keep it from growing excessively, which might lead

to low spatial resolution and increased instability, even when the maximum speed is constrained.

Constraining speed below its maximum value might be a requirement when energy efficiency is

part of the problem objectives.

A higher temporal resolution improves the Hybrid PSO performance in the simulation. It takes

longer for the simulation to run, but collecting more and possibly better readings might produce

enhanced results. Figure 4.8(a) shows that all ground nodes have a path to the control station after

convergence using 6 UAVs for the Hybrid PSO algorithm. A time step of 0.5 seconds was

established in that simulation in order to test the best alternative for the objective function.

However, a lower temporal resolution with a time step of 1 second was set for the performance

assessment of the different mobility algorithms, in order to reduce the simulation time. As a result,

only 20 percent of the nodes have a path to the control station after convergence for the same

number of UAVs, grid size, and propagation model, as shown in Figure 4.22(a). Increasing the

maximum speed beyond practical values can produce a similar consequence, as it lowers spatial

resolution, even if the temporal resolution is kept at the same value.

Regarding the stopping criteria, using the mean distance to the center of gravity of the current and

previous positions as a stopping criterion results in shortened convergence time. Also, it performs

better when using stochastic propagation models, such as log-normal, that incorporate randomness

in the received signal. This suggests that it would also perform better in a practical implementation.

111

5.1.3 Regarding Overall Performance

Regarding coverage efficiency, although it has not been tested, it is expected that the PSO-only

and Hybrid PSO algorithms will outperform the fixed trajectory algorithm for node distributions

other than randomly uniform.

The fixed trajectory algorithm outperforms the Hybrid-PSO and PSO-only in time and coverage

metrics but does not achieve multiobjective optimization purposefully, and only attains it

circumstantially when the number of UAVs is sufficiently large as to allow the establishment of

links between adjacent UAVs as well as between the control station and at least one UAV.

Nevertheless, it is a good alternative when resources are not a constraint.

However, when path formation to the control station is taken into consideration, the Hybrid-PSO

outperforms the others, except when LoRa comes into place. LoRa increases horizontal range,

which is comparable to making the grid smaller. As a result, the fixed trajectory outperforms the

others again. The Hybrid PSO does not perform well when the number of UAVs increases

excessively with respect to the grid size.

5.1.4 Regarding the Use of LoRa

When LoRa is used as backhaul, the air-to-air link distance is increased, which is equivalent to

reducing the size of the grid, which affects the performance of the PSO-based algorithms for a

larger number of UAVs. Still, the use of a LoRa backhaul can be worthy of a compromise, if an

acceptable solution is found with regard to coverage and overall efficiency, or if a comparable

solution is found using less UAVs.

LoRa technology offers significant benefits within the FANET context in maximizing the

communications range between UAVs, particularly in low-data-rate applications like WSN,

remote control, flight coordination, and drone identification. Its long-range capabilities make it

112

well-suited for these specific use cases. However, when considering the use of LoRa as a FANET

access network, it's important to acknowledge that its adoption among end users is not as

widespread compared to other types of communication technologies. As a result, its applicability

in certain domains may be limited.

In scenarios where human-oriented communications are crucial, a hybrid network that combines

different communication technologies could be more convenient. For example, Wi-Fi or cellular

networks, which are widely used and accessible to a large number of users, can be integrated

alongside LoRa. This hybrid approach would be beneficial in applications such as localization,

short messaging, or search and rescue operations, where the access network needs to cater to

widespread usage and enable efficient communication between UAVs and humans.

5.2 Future Work

5.2.1 Communications

In terms of communications, several areas can be explored further. One aspect is to include terrain

and building maps in order to test different propagation models. Additionally, developing a system

level simulation for technologies like LoRa, other LPWANs, LTE, or 5G could provide valuable

insights.

Continuing the analysis of small-scale propagation effects for the FANET channel is another

important avenue for future work. This can involve testing various parameters such as end-to-end

throughput, packet delivery ratio (PDR), and latency. Additionally, exploring different levels of

physical and MAC layer abstraction, improving routing for load balancing, and testing link level

parameters subject to UAV movement would contribute to a comprehensive understanding of the

system.

113

5.2.2 Mobility based on Multiobjective Optimization

Additional research can be performed to further assess the performance of the multiobjective

optimization approach to FANET mobility. It would be beneficial to test the performance of the

proposed objective function for different grid sizes and numbers of ground nodes, in order to

provide a measure of the system scalability.

Exploring different approaches to solve the multiobjective optimization problem, such as dynamic

UAV team assignment with one team per objective, can provide insights into efficiency. It would

also be valuable to include communications performance parameters like throughput, PDR, and

latency in the objective function and test their inclusion as fitness measures in the stopping criteria.

Energy optimization can also be included as part of the objective function, and testing the use of

penalties only for the objective function is another avenue to explore. Automating the process of

obtaining performance metrics would streamline the evaluation process.

Testing UAV dynamic models under various environmental conditions, such as windspeed, would

enhance the understanding of their performance. Including features such as lidar, radar, and

position-based collision avoidance can contribute to safer and more efficient mobility.

Additionally, exploring the use of machine learning approaches, such as Support Vector Machine

(SVM), to improve mobility efficiency would be worthwhile.

Considering that in many of the FANET applications described in Chapter 2, it is likely that the

UAVs might be deployed from a single position, UAVs are initially located at one corner of the

grid for this study. Nevertheless, the performance of deploying each UAV from a different initial

position could be tested in further research.

114

Testing different heights for the fixed trajectory and determining the optimal height based on

frequency, grid size, and the number of UAVs would further optimize the system. Incorporating

maximum acceleration and deceleration constraints can also be considered.

5.2.3 Energy

The energy aspect of FANETs is another area for future work. It would be beneficial to include

low-battery UAV recharge and replacement mechanisms in the system. Testing energy

replenishment methods like energy harvesting and solar power can contribute to sustainable and

prolonged UAV operation.

5.2.4 The Use of LoRa in FANETs

Exploring the use of LoRa in FANETs is another important focus. Testing the maximum

communication ranges at the maximum data rate available for the latest LoRa chips in the 2.4 GHz

band can provide insights into their performance. Additionally, investigating the concept of chirp

modulation to improve the balance between data rate performance and energy consumption is

valuable, as FANETs do not impose the same energy constraints as small battery-powered IoT

sensors. One approach could involve reducing chirp duration by half.

As a final insight into future work, to carry out an experimental implementation would be

instrumental to validate the results of this simulation-based study under practical conditions, as

well as to tune the PSO and other configuration parameters such as time step, maximum UAV

speed, fixed trajectory maximum height, and receiver sensitivity.

115

REFERENCES

[1] Rappaport, T.S. The wireless revolution. IEEE Communications Magazine 1991, 29, 52-71,

DOI 10.1109/35.109666. Available online: https://ieeexplore.ieee.org/document/109666.

[2] George, T.D. Enabling the wireless revolution, 1993 International Symposium on VLSI

Technology, Systems, and Applications, , Taipei, Taiwan, 12-14 May 19931993; , pp. 7.

[3] Gazis, V.; Görtz, M.; Huber, M.; Leonardi, A.; Mathioudakis, K.; Wiesmaier, A.; Zeiger, F.;

Vasilomanolakis, E. A survey of technologies for the internet of things, 2015 International

Wireless Communications and Mobile Computing Conference (IWCMC), 2015; , pp. 1090-

1095.

[4] Firouzi, F.; Farahani, B.; Weinberger, M.; DePace, G.; Aliee, F.S. IoT Fundamentals:

Definitions, Architectures, Challenges, and Promises. In Intelligent Internet of Things: From

Device to Fog and Cloud; Firouzi, F.; Chakrabarty, K.; Nassif, S., Eds.; Springer International

Publishing: Cham, 2020; pp. 3-50.

[5] Ansere, J.A.; Han, G.; Liu, L.; Peng, Y.; Kamal, M. Optimal Resource Allocation in Energy-

Efficient Internet-of-Things Networks With Imperfect CSI. IEEE Internet of Things Journal

2020, 7, 5401-5411.

[6] Johnson, D.B. Routing in Ad Hoc Networks of Mobile Hosts, 1994 First Workshop on Mobile

Computing Systems and Applications, , Santa Cruz, CA, USA, 8 - 9 December 19941994; ,

pp. 158-163.

[7] Tavli, B.; Heinzelman, W. Introduction. In Mobile Ad Hoc Networks; Tavli, B.; Heinzelman,

W., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 1-8.

[8] Čolaković, A.; Hadžialić, M. Internet of Things (IoT): A review of enabling technologies,

challenges, and open research issues. Computer Networks 2018, 144, 17-39, DOI

https://doi.org/10.1016/j.comnet.2018.07.017. Available online:

https://www.sciencedirect.com/science/article/pii/S1389128618305243.

[9] Fraccaroli, E.; Quaglia, D. Engineering IoT Networks. In Intelligent Internet of Things: From

Device to Fog and Cloud; Firouzi, F.; Chakrabarty, K.; Nassif, S., Eds.; Springer International

Publishing: Cham, 2020; pp. 97-171.

[10] Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T.

Understanding the Limits of LoRaWAN. IEEE Communications Magazine 2017, 55, 34-40,

DOI 10.1109/MCOM.2017.1600613. Available online:

https://ieeexplore.ieee.org/document/8030482.

[11] Aggarwal, S.; Nasipuri, A. Survey and Performance Study of Emerging LPWAN

Technologies for IoT Applications, 2019 IEEE 16th International Conference on Smart Cities:

Improving Quality of Life Using ICT & IoT and AI (HONET-ICT), 2019; , pp. 69.

https://ieeexplore.ieee.org/document/109666.
https://doi.org/10.1016/j.comnet.2018.07.017.
https://www.sciencedirect.com/science/article/pii/S1389128618305243.
https://ieeexplore.ieee.org/document/8030482.

116

[12] Ghazali, M.H.M.; Teoh, K.; Rahiman, W. A Systematic Review of Real-Time Deployments

of UAV-Based LoRa Communication Network. IEEE Access 2021, 9, 124817-124830, DOI

10.1109/ACCESS.2021.3110872. Available online:

https://ieeexplore.ieee.org/document/9530545.

[13] Sundaram, J.P.S.; Du, W.; Zhao, Z. A Survey on LoRa Networking: Research Problems,

Current Solutions, and Open Issues. IEEE Communications Surveys & Tutorials 2020, 22,

371-388, DOI 10.1109/COMST.2019.2949598. Available online:

https://ieeexplore.ieee.org/document/8883217.

[14] Centelles, R.P.; Freitag, F.; Meseguer, R.; Navarro, L. Beyond the Star of Stars: An

Introduction to Multihop and Mesh for LoRa and LoRaWAN. IEEE Pervasive Computing

2021, 20, 63-72, DOI 10.1109/MPRV.2021.3063443. Available online:

https://ieeexplore.ieee.org/document/9385408.

[15] Tran, H.P.; Jung, W.; Yoo, D.; Oh, H. Design and Implementation of a Multi-Hop Real-Time

LoRa Protocol for Dynamic LoRa Networks. Sensors 2022, 22, DOI 10.3390/s22093518.

[16] Berto, R.; Napoletano, P.; Savi, M. A LoRa-Based Mesh Network for Peer-to-Peer Long-

Range Communication. Sensors 2021, 21, DOI 10.3390/s21134314.

[17] Liu, Y.; Liu, L.; Liang, J.; Chai, J.; Lei, X.; Zhang, H. High-Performance Long Range-Based

Medium Access Control Layer Protocol. Electronics 2020, 9, DOI

10.3390/electronics9081273.

[18] Macaraeg, K.C.V.G.; Hilario, C.A.G.; Ambatali, C.D.C. LoRa-based Mesh Network for Off-

grid Emergency Communications, 2020 IEEE Global Humanitarian Technology Conference

(GHTC), 2020; , pp. 1-4.

[19] de Farias Medeiros, D.; Villarim, M.R.; de Carvalho, F.B.S.; de Souza, C.P. Implementation

and Analysis of Routing Protocols for LoRa Wireless Mesh Networks, 2020 11th IEEE

Annual Information Technology, Electronics and Mobile Communication Conference

(IEMCON), 2020; , pp. 20.

[20] Chache, F.M.; Maxon, S.; Narayanan, R.M.; Bharadwaj, R. QoS Extension to a

B.A.T.M.A.N. based LoRa Mesh Network, MILCOM 2021 - 2021 IEEE Military

Communications Conference (MILCOM), 2021; , pp. 43-48.

[21] Almeida, N.C.; Rolle, R.P.; Godoy, E.P.; Ferrari, P.; Sisinni, E. Proposal of a Hybrid LoRa

Mesh / LoRaWAN Network, 2020 IEEE International Workshop on Metrology for Industry

4.0 & IoT, 2020; , pp. 702-707.

[22] Pham, V.D.; Kisel, V.; Kirichek, R.; Koucheryavy, A.; Shestakov, A. Evaluation of A Mesh

Network based on LoRa Technology, 2022 24th International Conference on Advanced

Communication Technology (ICACT), 2022; , pp. 1280-1285.

https://ieeexplore.ieee.org/document/9530545.
https://ieeexplore.ieee.org/document/8883217.
https://ieeexplore.ieee.org/document/9385408.

117

[23] Lundell, D.; Hedberg, A.; Nyberg, C.; Fitzgerald, E. A Routing Protocol for LoRA Mesh

Networks, 2018 IEEE 19th International Symposium on "A World of Wireless, Mobile and

Multimedia Networks" (WoWMoM), 2018; , pp. 14-19.

[24] Paredes, W.D.; Kaushal, H.; Vakilinia, I.; Prodanoff, Z. LoRa Technology in Flying Ad Hoc

Networks: A Survey of Challenges and Open Issues. Sensors 2023, 23, 2403.

[25] Chriki, A.; Touati, H.; Snoussi, H.; Kamoun, F. FANET: Communication, mobility models

and security issues. Computer Networks 2019, 163, 106877, DOI

https://doi.org/10.1016/j.comnet.2019.106877. Available online:

https://www.sciencedirect.com/science/article/pii/S1389128618309034.

[26] Guillen-Perez, A.; Cano, M. Flying Ad Hoc Networks: A New Domain for Network

Communications. Sensors 2018, 18, DOI 10.3390/s18103571.

[27] Srivastava, A.; Prakash, J. Future FANET with application and enabling techniques:

Anatomization and sustainability issues. Computer Science Review 2021, 39, 100359, DOI

https://doi.org/10.1016/j.cosrev.2020.100359. Available online:

https://www.sciencedirect.com/science/article/pii/S1574013720304597.

[28] Bekmezci, İ; Sahingoz, O.K.; Temel, Ş Flying Ad-Hoc Networks (FANETs): A survey. Ad

Hoc Networks 2013, 11, 1254-1270, DOI https://doi.org/10.1016/j.adhoc.2012.12.004.

Available online: https://www.sciencedirect.com/science/article/pii/S1570870512002193.

[29] Wang, J.; Jiang, C. Introduction of Flying Ad Hoc Networks. In Flying Ad Hoc Networks;

Shen, X.S., Ed.; Springer: Singapore, 2022; .

[30] Khan, M.A.; Safi, A.; Qureshi, I.M.; Khan, I.U. Flying ad-hoc networks (FANETs): A review

of communication architectures, and routing protocols, 2017 First International Conference

on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT),

2017; , pp. 1-9.

[31] Khan, M.A.; Qureshi, I.M.; Khanzada, F. A Hybrid Communication Scheme for Efficient and

Low-Cost Deployment of Future Flying Ad-Hoc Network (FANET). Drones 2019, 3, DOI

10.3390/drones3010016.

[32] Al-Emadi, S.; Al-Mohannadi, A. Towards Enhancement of Network Communication

Architectures and Routing Protocols for FANETs: A Survey, 2020; , pp. 1-10.

[33] Wu, Q.; Zhang, M.; Dong, C.; Feng, Y.; Yuan, Y.; Feng, S.; Quek, T.Q.S. Routing protocol

for heterogeneous FANETs with mobility prediction. ChinaComm 2022, 19, 186-201, DOI

10.23919/JCC.2022.01.014. Available online: https://ieeexplore.ieee.org/document/9693479.

[34] Rappaport, T.S. Wireless Communications-: Principles and Practice, 2nd Edition ed.;

Prentice-Hall: Upper Saddle River, NJ, USA, 2002; pp. 86.

[35] Stallings, W. Wireless Communications and Networking, 1st Edition ed.; Prentice Hall: Upper

Saddle River, NJ, 2002;.

https://doi.org/10.1016/j.comnet.2019.106877.
https://www.sciencedirect.com/science/article/pii/S1389128618309034.
https://doi.org/10.1016/j.cosrev.2020.100359.
https://www.sciencedirect.com/science/article/pii/S1574013720304597.
https://doi.org/10.1016/j.adhoc.2012.12.004.
https://www.sciencedirect.com/science/article/pii/S1570870512002193.
https://ieeexplore.ieee.org/document/9693479.

118

[36] Pesce, V.; Hermosin, P.; Rivolta, A.; Bhaskaran, S.; Silvestrini, S.; Colagrossi, A. Chapter

Nine - Navigation. In Modern Spacecraft Guidance, Navigation, and Control; Pesce, V.;

Colagrossi, A.; Silvestrini, S., Eds.; Elsevier: 2023; pp. 441-542.

[37] Meng, Y.S.; Lee, Y.H. Study of shadowing effect by aircraft maneuvering for air-to-ground

communication. Aeu-international Journal of Electronics and Communications - AEU-INT J

ELECTRON COMMUN 2012, 66, DOI 10.1016/j.aeue.2011.04.006.

[38] Stellin, M.; Sabino, S.; Grilo, A. LoRaWAN Networking in Mobile Scenarios Using a WiFi

Mesh of UAV Gateways. Electronics 2020, 9, DOI 10.3390/electronics9040630.

[39] Davoli, L.; Pagliari, E.; Ferrari, G. Hybrid LoRa-IEEE 802.11s Opportunistic Mesh

Networking for Flexible UAV Swarming. Drones 2021, 5, DOI 10.3390/drones5020026.

[40] Suryadevara, N.K.; Dutta, A. Meshtastic Infrastructure-less Networks for Reliable Data

Transmission to Augment Internet of Things Applications, Wireless and Satellite, , Systems;

Guo, Q., Meng, W., Jia, M. and Wang, X., Eds.; Springer International Publishing: Cham,

2022; , pp. 622-640.

[41] Lalle, Y.; Fourati, M.; Fourati, L.C.; Barraca, J.P. Routing Strategies for LoRaWAN Multi-

Hop Networks: A Survey and an SDN-Based Solution for Smart Water Grid. IEEE Access

2021, 9, 168624-168647, DOI 10.1109/ACCESS.2021.3135080. Available online:

https://ieeexplore.ieee.org/document/9648161.

[42] Diaz Zayas, A.; Merino, P. The 3GPP NB-IoT system architecture for the Internet of Things,

- 2017 IEEE International Conference on Communications Workshops (ICC Workshops),

2017; , pp. 277-282.

[43] 3GPP Releases. Available online: https://www.3gpp.org/specifications/releases (Accessed on

2 September 2022).

[44] LoRaWAN L2 1.0.4 Specification. Available online: https://resources.lora-

alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification (Accessed

on 26 August 2022).

[45] Lopez, V.H., Performance Evaluation of Long Range (LoRa) Wireless RF Technology for

the Internet of Things (IoT) Using Dragino LoRa at 915 MHz. Master's Thesis, University of

North Florida, Jacksonville, FL, USA, 2020.

[46] AN1200.22 LoRa Modulation Basics. Available online:

https://www.semtech.com/products/wireless-rf/lora-connect/sx1276#documentation

(Accessed on 2 September 2022).

[47] LoRa Connect. Available online: https://www.semtech.com/products/wireless-rf/lora-

connect#resources (Accessed on 2 September 2022).

[48] SX1276/77/78/79 Datasheet. Available online: https://www.semtech.com/products/wireless-

rf/lora-connect/sx1276#documentation (Accessed on 2 September 2022).

https://ieeexplore.ieee.org/document/9648161.
https://www.3gpp.org/specifications/releases
https://resources.lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification
https://resources.lora-alliance.org/technical-specifications/ts001-1-0-4-lorawan-l2-1-0-4-specification
https://www.semtech.com/products/wireless-rf/lora-connect/sx1276#documentation
https://www.semtech.com/products/wireless-rf/lora-connect#resources
https://www.semtech.com/products/wireless-rf/lora-connect#resources
https://www.semtech.com/products/wireless-rf/lora-connect/sx1276#documentation
https://www.semtech.com/products/wireless-rf/lora-connect/sx1276#documentation

119

[49] SX1272/73 Datasheet. Available online: https://www.semtech.com/products/wireless-rf/lora-

connect/sx1272#documentation (Accessed on 2 September 2022).

[50] SX1268 Long Range, Low Power, sub-GHz RF Transceiver Datasheet. Available online:

https://www.semtech.com/products/wireless-rf/lora-connect/sx1268#documentation

(Accessed on 2 September 2022).

[51] SX1261/2 Long Range, Low Power, sub-GHz RF Transceiver Datasheet. Available online:

https://www.semtech.com/products/wireless-rf/lora-connect/sx1261#documentation

(Accessed on 2 September 2022).

[52] SX1280/SX1281 Datasheet. Available online: https://www.semtech.com/products/wireless-

rf/lora-connect/sx1280#documentation (Accessed on 16 September 2022).

[53] IEEE Standard for Information Technology--Telecommunications and Information Exchange

between Systems - Local and Metropolitan Area Networks--Specific Requirements - Part 11:

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

Available online: https://ieeexplore.ieee.org/document/9363693 (Accessed on Mar 21, 2023).

[54] IEEE Standard for Information technology-- Local and metropolitan area networks-- Specific

requirements-- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer

(PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments. Available

online: https://ieeexplore.ieee.org/document/5514475 (Accessed on Mar 21, 2023).

[55] IEEE 802.11s: The WLAN Mesh Standard. Available online:

https://ieeexplore.ieee.org/document/5416357 (Accessed on Mar 21, 2023).

[56] IEEE Standard for Information Technology--Telecommunications and Information Exchange

between Systems Local and Metropolitan Area Networks--Specific Requirements Part 11:

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications

Amendment 1: Enhancements for High-Efficiency WLAN. Available online:

https://ieeexplore.ieee.org/document/9442429 (Accessed on Mar 21, 2023).

[57] Bouachir, O.; Abrassart, A.; Garcia, F.; Larrieu, N. A Mobility Model for UAV Ad Hoc

Network, 2014 international conference on unmanned aircraft systems (ICUAS), IEEE: 2014;

, pp. 383-388.

[58] Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd Edition ed.; Springer: New York, USA,

2006; pp. 2-9.

[59] Hutchison, D.; Weikum, G.; Vardi, M.Y.; Tygar, D.; Terzopoulos, D.; Sudan, M.; Steffen, B.;

Słowiński, R.; Pandu Rangan, C.; Nierstrasz, O.; Naor, M.; Mitchell, J.C.; Miettinen, K.;

Mattern, F.; Kleinberg, J.M.; Kittler, J.; Kanade, T.; Deb, K.; Branke, J., Eds.; In

Multiobjective Optimization : Interactive and Evolutionary Approaches; Lecture Notes in

Computer Science; 2008; Volume 5252.

[60] Kennedy, J.; Eberhart, R. Particle Swarm Optimization, Proceedings of ICNN'95 -

International Conference on Neural Networks, 1995; , pp. 1942-1948 vol.4.

https://www.semtech.com/products/wireless-rf/lora-connect/sx1272#documentation
https://www.semtech.com/products/wireless-rf/lora-connect/sx1272#documentation
https://www.semtech.com/products/wireless-rf/lora-connect/sx1268#documentation
https://www.semtech.com/products/wireless-rf/lora-connect/sx1261#documentation
https://www.semtech.com/products/wireless-rf/lora-connect/sx1280#documentation
https://www.semtech.com/products/wireless-rf/lora-connect/sx1280#documentation
https://ieeexplore.ieee.org/document/9363693
https://ieeexplore.ieee.org/document/5514475
https://ieeexplore.ieee.org/document/5416357
https://ieeexplore.ieee.org/document/9442429

120

[61] Engelbrecht, A.P. Computational Intelligence: An Introduction, 2nd Edition ed.; John Wiley

& Sons: West Sussex, England, 2007; pp. 289-358.

[62] Gallego-Madrid, J.; Molina-Zarca, A.; Sanchez-Iborra, R.; Bernal-Bernabe, J.; Santa, J.; Ruiz,

P.M.; Skarmeta-Gómez, A.F. Enhancing Extensive and Remote LoRa Deployments through

MEC-Powered Drone Gateways. Sensors 2020, 20, DOI 10.3390/s20154109.

[63] Bravo-Arrabal, J.; Toscano-Moreno, M.; Fernandez-Lozano, J.; Mandow, A.; Gomez-Ruiz,

J.; García-Cerezo, A. The Internet of Cooperative Agents Architecture (X-IoCA) for Robots,

Hybrid Sensor Networks, and MEC Centers in Complex Environments: A Search and Rescue

Case Study. Sensors 2021, 21, DOI 10.3390/s21237843.

[64] Lakshmi, P.; Rejith, G.; Toby, T.; Sai Shibu, N.B.; Rao, S.N. A Resilient IoT System

Architecture for Disaster Management in Collapsed Buildings, 2022; , pp. 282-287.

[65] Marchese, M.; Moheddine, A.; Patrone, F. UAV and Satellite Employment for the Internet of

Things Use Case, 2020; , pp. 1-8.

[66] Sharma, R.; Arya, R. UAV based long range environment monitoring system with Industry

5.0 perspectives for smart city infrastructure. Comput Ind Eng 2022, 168, 108066, DOI

https://doi.org/10.1016/j.cie.2022.108066. Available online:

https://www.sciencedirect.com/science/article/pii/S036083522200136X.

[67] Mujumdar, O.; Celebi, H.; Guvenc, I.; Sichitiu, M.; Hwang, S.; Kang, K. Use of LoRa for

UAV Remote ID with Multi-User Interference and Different Spreading Factors, 2021; , pp.

1-7.

[68] Delafontaine, V.; Schiano, F.; Cocco, G.; Rusu, A.; Floreano, D. Drone-aided Localization in

LoRa IoT Networks, 2020; , pp. 286-292.

[69] Rahman, G.M.E.; Wahid, K.A. LDAP: Lightweight Dynamic Auto-Reconfigurable Protocol

in an IoT-Enabled WSN for Wide-Area Remote Monitoring. Remote Sensing 2020, 12, DOI

10.3390/rs12193131.

[70] Bautista, O.; Akkaya, K.; Uluagac, A.S. Customized novel routing metrics for wireless mesh-

based swarm-of-drones applications. Internet of Things 2020, 11, 100265, DOI

https://doi.org/10.1016/j.iot.2020.100265. Available online:

https://www.sciencedirect.com/science/article/pii/S2542660520300998.

[71] Esrafilian, O.; Gangula, R.; Gesbert, D. Autonomous UAV-aided Mesh Wireless Networks,

IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops

(INFOCOM WKSHPS), 2020; , pp. 634-640.

[72] Stellin, M., LoRa Networking in Mobile Scenarios using UAV Gateways. Master's Thesis,

Instituto Superior Técnico, Lisboa, Portugal, 2018.

https://doi.org/10.1016/j.cie.2022.108066.
https://www.sciencedirect.com/science/article/pii/S036083522200136X.
https://doi.org/10.1016/j.iot.2020.100265.
https://www.sciencedirect.com/science/article/pii/S2542660520300998.

121

[73] Xianfeng Li; Tao Zhang; Jianfeng Li A Particle Swarm Mobility Model for Flying Ad Hoc

Networks, GLOBECOM 2017 - 2017 IEEE Global Communications Conference, ,

2017IEEE: Singapore, 2017; , pp. 1-6.

[74] Na, H.J.; Yoo, S. PSO-based dynamic UAV positioning algorithm for sensing information

acquisition in wireless sensor networks. Access 2019, 7, 77499-77513, DOI

10.1109/ACCESS.2019.2922203. Available online:

https://ieeexplore.ieee.org/document/8735725.

[75] Pan, M.; Chen, C.; Yin, X.; Huang, Z. UAV-Aided Emergency Environmental Monitoring in

Infrastructure-Less Areas: LoRa Mesh Networking Approach. IEEE Internet of Things

Journal 2022, 9, 2918-2932, DOI 10.1109/JIOT.2021.3095494. Available online:

https://ieeexplore.ieee.org/document/9477431.

[76] Zirak, Q.; Shashev, D.; Shidlovskiy, S. Swarm of Drones Using LoRa Flying Ad-Hoc

Network, 2021 International Conference on Information Technology (ICIT), 2021; , pp. 400-

405.

[77] Tanenbaum, A.S. Computer Networks, 5th Edition ed.; Prentice-Hall: Boston, Massachusetts,

2011; pp. 362-363.

[78] GitHub - nohd0/Dijkstras: MATLAB implementation of Dijkstra's Algorithm. Available

online: https://github.com/nohd0/Dijkstras (Accessed on 20 March 2023).

[79] Wolfram Alpha. Available online:

https://www.wolframalpha.com/examples/mathematics/calculus-and-analysis/integrals

(Accessed on Apr 4, 2023).

[80] Particle Swarm Optimization Algorithm. Available online:

https://www.mathworks.com/help/gads/particle-swarm-optimization-algorithm.html

(Accessed on Sep 2, 2022).

[81] International Telecommunications Union, R.S. Report ITU-R M.2135-1: Guidelines for

evaluation of radio interface technologies for IMT-Advanced. International

Telecommunications Union, Radiocommunications Sector 2009.

[82] Small Unmanned Aircraft Systems (UAS) Regulations (Part 107). Available online:

https://www.faa.gov/newsroom/small-unmanned-aircraft-systems-uas-regulations-part-107

(Accessed on Sep 2, 2022).

[83] van den Bergh, F.; Engelbrecht, A.P. A Study of Particle Swarm Optimization Particle

Trajectories. Inf Sci 2006, 176, 937-971, DOI 10.1016/j.ins.2005.02.003. Available online:

https://www.sciencedirect.com/science/article/pii/S0020025505000630.

https://ieeexplore.ieee.org/document/8735725.
https://ieeexplore.ieee.org/document/9477431.
https://github.com/nohd0/Dijkstras
https://www.wolframalpha.com/examples/mathematics/calculus-and-analysis/integrals
https://www.mathworks.com/help/gads/particle-swarm-optimization-algorithm.html
https://www.faa.gov/newsroom/small-unmanned-aircraft-systems-uas-regulations-part-107
https://www.sciencedirect.com/science/article/pii/S0020025505000630.

122

APPENDIX A: Main MATLAB Script

%% UAV_SWARM main script
%% Receive input parameters and initialize common variables (UAV, WLAN)
simTime = 40; % in seconds
updateRate = 2; % in Hz for UAV scenario and lidar sensors
time_step = 1; % in s for comms and mobility
FixedTRJHeight = 60; % in m
MaxHeight = 121; % in m
VertThresh = -82; % in dBm
LoRaThresh = -105; % in dBm
UAVinitspeed = 30; % in m/s
UAVmaxspeed = 44.5; % in m/s
UAVmaxaccel = 5; % in m/s2
gridsize = input("Grid size [m]:");
N = input("Number of drones:");
n = input("Number of ground nodes:");
PSO_type = input("PSO type: [1 for Fixed, 2 for Hybrid, 3 for PSO-only]:");
runflightsim = input("Run flight simulation? [1 for true, 0 for false]:");
runnetsim = input("Run network simulation? [1 for true, 0 for false]:");
switch runnetsim
 case 1
 % Show live state transition plot for all nodes
 showLiveStateTransitionPlot = input("Show Live State Transition Plot? [1 for
true, 0 for false]:");
 otherwise
 showLiveStateTransitionPlot = false;
end
propaga = input("Propagation model [1 for Free Space, 2 for Ray Tracing, 3 for Log-
normal 4 for TGax Residential]:");
backhaul = input("Backhaul: [1 for Wi-Fi, 2 for LoRa]:");
switch backhaul
 case 2
 freqLoRa = input("LoRa frequency: [1 for 900 MHz, 2 for 2.4 GHz, 3 for 400
MHz]:");
 BckhaulThresh = LoRaThresh; % in dBm
 otherwise
 freqLoRa = 0;
 BckhaulThresh = VertThresh; % in dBm
end
pfun_Eval = input("Apply DistanceNodesGain to: [1 path_exists, 2 More nodes +
path_exists, 3 No path_exists, 4 Extra for other's paths, 5 Original, 6 More
nodes]:");
pen_UAV1_CtrlSta = input("Reward/Penalize UAV1-to-CtrlSta link: [1 for true, 0 for
false]:");
pen_exclo_a2g = input("Penalize if too close to the ground: [1 for true, 0 for
false]:");
stopCriteria = input("Stopping Criteria: [1 for Mean Max, 2 for Mean Sum, 3 for Mean
Pos]:");
switch freqLoRa
 case 0
 freqLoRa = 0;
 case 1
 freqLoRa = 900e6; % in Hz
 case 2

123

 freqLoRa = 2400e6; % in Hz
 case 3
 freqLoRa = 400e6; % in Hz
end

%% Create Scenario with Polygon Building Meshes

% Create the UAV scenario.
scene =
uavScenario("UpdateRate",updateRate,"StopTime",simTime,"ReferenceLocation",[30.27 -
81.505 0],"MaxNumFrames",200);

% Add a ground plane based on gridsize. East is X and North is Y.
color.Gray = 0.651*ones(1,3);
color.Green = [0.3922 0.8314 0.0745];
color.Red = [1 0 0];
color.Sky = [135/255 206/255 235/255];
addMesh(scene,"polygon",{[-gridsize/2 -gridsize/2; gridsize/2 -gridsize/2; ...
 gridsize/2 gridsize/2; -gridsize/2 gridsize/2], [-10 0]}, color.Gray)
addMesh(scene,"surface",{[gridsize/2 gridsize/2; gridsize/2 gridsize/2], ...
 [-gridsize/2 gridsize/2; -gridsize/2 gridsize/2], [0 0; 90 90]}, color.Sky)
addMesh(scene,"surface",{[gridsize/2 -gridsize/2; gridsize/2 -gridsize/2], ...
 [-gridsize/2 -gridsize/2; -gridsize/2 -gridsize/2], [0 0; 90 90]}, color.Sky)

% Show the scenario.
% Get screen resolution
resolution = get(0, 'screensize');
screenWidth = resolution(3);
screenHeight = resolution(4);
figureWidth = screenWidth*0.8;
figureHeight = screenHeight*0.8;
f1 = figure('Position', [screenWidth*0.025, screenHeight*0.075, figureWidth,
figureHeight]);
t = tiledlayout(f1,1,2);
ax = nexttile(t);
show3D(scene,'Parent',ax);
xlim([-250 250])
ylim([-250 250])
zlim([0 120])
view([-110 30])
axis equal
hold on

%% Set starting and ending positions, create UAV Fixed trajectories, create UAV
platforms, and mount sensors (UAV TOOLBOX)
nlength = floor(sqrt(N));
elength = ceil(N/nlength);

% initial_pose = [gridsize/2 -gridsize/2 0 1 0 0 0];
startPos = repmat([-gridsize/2 gridsize/2 0],1,1,nlength*elength);

% Create destination positions based on gridsize, the number of drones N
% and a 120 m height. Height is POSITIVE here because of the ENU
% reference frame for UAVs and sensors.
cellcount = 1;

124

destPos = zeros(1,3,nlength*elength);
eucdistance_vec = [];
for column = 1:nlength
 for row = 1:elength
 destPos(1,:,cellcount) = [-(gridsize/2)-
(gridsize/elength/2)+row*(gridsize/elength),...
 (gridsize/2)+(gridsize/nlength/2)-column*(gridsize/nlength),
FixedTRJHeight];
 eucdistance_vec = cat(3,eucdistance_vec,sqrt((destPos(1,1,cellcount)-
startPos(1,1,cellcount))^2+ ...
 (destPos(1,2,cellcount)-
startPos(1,2,cellcount))^2+(destPos(1,3,cellcount)-startPos(1,3,cellcount))^2));
 cellcount = cellcount + 1;
 end
end

% Create Waypoints vectors, orientations and ToAs for each UAV: 2 wp, 2 orient and 1
% ToA for each UAV. ToA is based on s-d distances and constant speed
% (calculated from the distance to the farthest destination and simTime

waypoints = [startPos;destPos];
orientation_eul = [0 0 0];
orientation_quat = quaternion(eul2quat(orientation_eul));
orientation_vec = repmat(orientation_quat,size(waypoints,1),1,nlength*elength);
speed = max(eucdistance_vec)/simTime;
toa_vect = eucdistance_vec/UAVinitspeed;
FixedTRJTime = max(eucdistance_vec)/UAVinitspeed;
sampleTimes = 0:time_step:FixedTRJTime;

% Initialize platforms and sensors to improve runtime
plat = uavPlatform.empty;
lidar = uavSensor.empty;

% Initialize trajectoty elements arrays
trajectory = cell(1,1,nlength*elength);
pos_array = zeros(500,3,N);
ori_array = zeros(500,1,N,'quaternion');
vel_array = zeros(500,3,N);
acc_array = zeros(500,3,N);
ang_array = zeros(500,3,N);

% Initialize lidar model
lidarmodel1 = uavLidarPointCloudGenerator("AzimuthResolution",0.3324099,...
 "ElevationLimits",[-90 20],"ElevationResolution",1.25,...
 "MaxRange",120,"UpdateRate",2,"HasOrganizedOutput",true);

% Iterate to create trajectories for each cell
for cellcount = 1:nlength*elength
 % Create Trajectory based on starting and final positions
 trajectory{1,1,cellcount} =
waypointTrajectory("Waypoints",waypoints(:,:,cellcount),...
 "Orientation",orientation_vec(:,:,cellcount),"SampleRate",(1/time_step),...
 "ReferenceFrame","ENU","TimeOfArrival",[0 toa_vect(1,1,cellcount)]);

125

 % Look up the waypoints of the trajectory in the local navigation coordinate
system in meters.
 [position,orientation,velocity,acceleration,angularVelocity] =
lookupPose(trajectory{1,1,cellcount},sampleTimes);

 % Clean trajectories of NaN (replace NaN with the last position).
 traject_length = size(position,1);
 for traj_count = 1:traject_length
 if anynan(position(traj_count,:))
 position(traj_count,:) = position(traj_count-1,:);
 orientation(traj_count,:) = orientation(traj_count-1,:);
 velocity(traj_count,:) = velocity(traj_count-1,:);
 acceleration(traj_count,:) = acceleration(traj_count-1,:);
 angularVelocity(traj_count,:) = angularVelocity(traj_count-1,:);
 end
 end

 % Populate trajectoty elements arrays
 pos_array(1:size(position,1),:,cellcount) = position;
 ori_array(1:size(position,1),:,cellcount) = orientation;
 vel_array(1:size(position,1),:,cellcount) = velocity;
 acc_array(1:size(position,1),:,cellcount) = acceleration;
 ang_array(1:size(position,1),:,cellcount) = angularVelocity;
end

% Set up platforms at their initial positions to be used together with
% the move method
for platcount = 1:N
 UAVstrname = strcat("UAV",string(platcount));
 plat(1,1,platcount) = uavPlatform(UAVstrname,scene,"ReferenceFrame","ENU",...
 "InitialPosition",pos_array(1,:,platcount),...
 "InitialVelocity",vel_array(1,:,platcount),...
 "InitialAcceleration",acc_array(1,:,platcount),...
 "InitialOrientation",eul2quat(quat2eul(ori_array(1,:,platcount))),...
 "InitialAngularVelocity",ang_array(1,:,platcount));

 % Set up platform mesh. Add a rotation to orient the mesh to the UAV body frame.
 updateMesh(plat(1,1,platcount),"quadrotor",{10},color.Red,[0 0 0],eul2quat([0 0
pi]));

 % Mount sensors. You can choose to mount different sensors to your UAV
 %SENSORstrname = strcat("Lidar",string(cellcount));
 lidar(1,1,platcount) =
uavSensor("Lidar",plat(1,1,platcount),lidarmodel1,"MountingLocation",[0 0 -
1],"MountingAngles",[0 0 0]);
end

%% Create WiFi Network
% Create APs and Ground Nodes (WLAN TOOLBOX modified)

% Configuration Parameters
rng(1, 'simdTwister'); % Seed for random number generator
displayStatistics = false; % Display statistics at the end of the
simulation

126

% Add the folder to the path for access to all helper files
addpath(genpath(fullfile(pwd, 'mlWLANSystemSimulation')));

ScenarioParameters = struct;
% Number of rooms in [x,y,z] directions
ScenarioParameters.BuildingLayout = [1 1 1];
% Size of each room in meters [x,y,z]
ScenarioParameters.RoomSize = [gridsize gridsize MaxHeight+100];
% Number of STAs per room
ScenarioParameters.NumRxPerRoom = n;

% Drop nodes
staPositions = hDropNodes(n, gridsize);
interm = permute(pos_array(1,1:3,:),[3 2 1]);
apPositions = interm(:,:,1);
staPositions = cat(1, staPositions, [(-gridsize/2)*1 (gridsize/2)*1 1.5]);

% Create triangulation object for TGax propagation model
tri = hTGaxResidentialTriangulation(ScenarioParameters);

% Set propagation model
switch propaga
 case 1
 propModel =
hFreeSpacePathLoss('Triangulation',tri,'ShadowSigma',0,'FacesPerWall',1);
 if backhaul == 2
 propModelHori = propagationModel('freespace');
 end
 case 2
 propModel =
propagationModel("raytracing","Method","image","MaxNumReflections",1,"CoordinateSyste
m","cartesian");
 if backhaul == 2
 propModelHori =
propagationModel("raytracing","Method","image","MaxNumReflections",1,"CoordinateSyste
m","cartesian");
 end
 case 3
 propModel = propagationModel('close-in');
 propModel.PathLossExponent = 2.2;
 propModel.Sigma = 0.1;
 if backhaul == 2
 propModelHori = propagationModel('close-in');
 propModelHori.PathLossExponent = 2.2;
 propModelHori.Sigma = 0.1;
 end
 case 4
 propModel =
hTGaxResidentialPathLoss('Triangulation',tri,'ShadowSigma',0.1,'FacesPerWall',1);
 if backhaul == 2
 propModelHori = propagationModel('close-in');
 propModelHori.ReferenceDistance = 5;
 propModelHori.PathLossExponent = 3.5;
 propModelHori.Sigma = 0.1;
 end

127

end

% Node parameters
% Get the IDs, positions, and traffic configurations of each node
switch backhaul
 case 2
 [nodeConfigs, trafficConfigs] = hLoadConfigurationFull_Int_Traff_7(N, n,
apPositions, staPositions, VertThresh);
 otherwise
 [nodeConfigs, trafficConfigs] = hLoadConfigurationFull_Int_Traff_6(N, n,
apPositions, staPositions, VertThresh);
end

% Set abstraction level
MACFrameAbstraction = true;
PHYAbstractionType = "TGax Evaluation Methodology Appendix 1";

disablenames = false;

%pl = zeros(N+n,N+n,size(pos_array, 1));
TxPowerMat = zeros(1,N+n+1);
TxAntGMat = zeros(1,N+n+1);
RxAntGMat = zeros(1,N+n+1);
for wcount = 1:(N+n+1)
 TxAntGMat(1,wcount) = nodeConfigs(wcount).TxGain;
 RxAntGMat(1,wcount) = nodeConfigs(wcount).RxGain;
end
TxAntGMat = repmat(TxAntGMat,N+n+1,1);
RxAntGMat = repmat(RxAntGMat,N+n+1,1);
RxPowerMat = zeros(N+n+1,N+n+1,size(pos_array, 1));
RxPowerMatW = zeros(N+n+1,N+n+1,size(pos_array, 1));
RxPowerMatDij = zeros(N+n+1,N+n+1);

%% Fly the UAV Platforms Along the Fixed Trajectories and Collect Point Cloud Sensor
Readings

% Visualize the scene
figure(f1)
[ax,plotFrames] = show3D(scene);

% Update plot view for better visibility
xlim([-250 200])
ylim([-150 180])
zlim([0 50])
view([-110 20])
axis equal
hold on

% Create a scatter plot for the point clouds. Update the data source properties
again.
colormap("jet")
pt = pointCloud(nan(N,1,3));
% Uncomment and repeat the following code as many times as there are UAVs
% scatterplot1 = scatter3(ax,nan,nan,nan,1,[0.3020 0.7451 0.9333],...
% "Parent",plotFrames.UAV1.Lidar);

128

% scatterplot1.XDataSource = "reshape(pt(1,1).Location(:,:,1),[],1)";
% scatterplot1.YDataSource = "reshape(pt(1,1).Location(:,:,2),[],1)";
% scatterplot1.ZDataSource = "reshape(pt(1,1).Location(:,:,3),[],1)";
% scatterplot1.CDataSource = "reshape(pt(1,1).Location(:,:,3),[],1) -
min(reshape(pt(1,1).Location(:,:,3),[],1))";
% scatterplot2 = scatter3(nan,nan,nan,1,[0.3020 0.7451 0.9333],...
% "Parent",plotFrames.UAV2.Lidar);

%Create an occupancy map for a more efficient way to store the point cloud
%data. Use a minimum resolution of 1 cell per meter.
map3D = occupancyMap3D(1);

% Set up the simulation
setup(scene)

% Initialize sensor variables, lastest-position vectors, and PSO variables
ptIdx = 1;
isupdated = zeros(1,1,N);
lidarSampleTime = zeros(1,1,N);
motion = zeros(size(pos_array, 1),16,N); % read(plat) returns a 16-element motion
vector
LLA = zeros(size(pos_array, 1),3,N); % read(plat) returns a 3-element LLA
vector
cont = 0;
pfun = 0;
fBest = zeros(size(pos_array, 1),N);
pfBest = zeros(size(pos_array, 1),N);
clusterfBest = zeros(size(pos_array, 1),N,N);
pBestInst = zeros(1,N);
pBestPos = pos_array(1,:,:);
gBestPos = zeros(N,3);
if PSO_type == 3
 fixedTraj = 1;
else
 fixedTraj = size(position, 1);
end
itera = true;
w = 0.95*ones(1,N);
y1 = 1.35;
y2 = 0.01;
stallcount = zeros(1,N);
flag = false;
yy = zeros(N,ptIdx);
labels = [];
g1 = gobjects(N,N);
g2 = gobjects(N,n);
g3 = gobjects(1,1);
plr = zeros(N+n+1,N+n+1);

for platcount = 1:N
 labels = cat(2,labels,strcat('UAV',string(platcount)));
end

% Iterate through the positions and show the scene each time any of the lidar sensors
updates

129

while itera

 delete(g1(:,:));
 delete(g2(:,:));
 delete(g3(:,:));

 path_exists = zeros(1,N+n);

 % Read all platforms' latest position and
 % Rearrange pos_array to accommodate WLAN reqs.
 for platcount = 1:N
 [motion(ptIdx,:,platcount),LLA(ptIdx,:,platcount)] =
read(plat(:,:,platcount));
 end
 interm = permute(motion(ptIdx,1:3,:),[3 2 1]);
 apPositions = interm(:,:,1);

 % Simulate wireless network
 % Get updated AP positions
 if ptIdx > 1
 for platcount = 1:N
 nodeConfigs(platcount).NodePosition = apPositions(platcount,:);
 end
 end

 % Create transmitter and receiver sites
 [txs,rxs] = hCreateSitesFromNodesDP(nodeConfigs,N,n);
 switch freqLoRa
 case 0
 otherwise
 %txLoRa = txs;
 %rxLoRa = rxs;
 [txLoRa,rxLoRa] = hCreateSitesFromNodesDP(nodeConfigs,N,n);
 for i = 1:N
 txLoRa(i).TransmitterFrequency = freqLoRa;
 end
 end

 % Visualize the scenario
 [Txnameshandle,Rxnameshandle,UAVshandle] =
hVisualizeScenarioDP(tri,ax,txs,rxs,apPositions,"DisableNames",disablenames);

 % Obtain pathloss and RxPower between each pair of nodes
 for wcount = 1:(N+n+1)
 TxPowerMat(1,wcount) = nodeConfigs(wcount).TxPower; %Allows dynamic power
config
 end
 TxPowerMat = repmat(TxPowerMat,N+n+1,1);
 switch propaga
 case 2
 [plWiFi,pathlossFnHdl] = hCreatePathlossTableDP(txs,rxs,propModel,1);
 if backhaul == 2
 plLoRa = pathloss(propModelHori,rxLoRa,txLoRa);
 for row = 1:N
 for column = 1:N

130

 if plLoRa{row,column} ~= -Inf
 plr(row,column) = [plLoRa{row,column}];
 else
 plr(row,column) = 0;
 end
 end
 end
 end
 otherwise
 [plWiFi,pathlossFnHdl] = hCreatePathlossTableDP(txs,rxs,propModel);
 if backhaul == 2
 plLoRa = pathloss(propModelHori,rxLoRa,txLoRa);
 for row = 1:N
 for column = 1:N
 if plLoRa(row,column) ~= -Inf
 plr(row,column) = plLoRa(row,column);
 else
 plr(row,column) = 0;
 end
 end
 end
 end
 end
 switch backhaul
 case 2
 RxPowerMat(1:N,1:N,ptIdx) = TxPowerMat(1:N,1:N,1) + TxAntGMat(1:N,1:N,1)
- plr(1:N,1:N,1);
 RxPowerMat(N+1:N+n+1,1:N+n+1,ptIdx) = TxPowerMat(N+1:N+n+1,1:N+n+1,1) +
TxAntGMat(N+1:N+n+1,1:N+n+1,1) - plWiFi(N+1:N+n+1,1:N+n+1,1);
 RxPowerMat(1:N,N+1:N+n+1,ptIdx) = TxPowerMat(1:N,N+1:N+n+1,1) +
TxAntGMat(1:N,N+1:N+n+1,1) - plWiFi(1:N,N+1:N+n+1,1);
 otherwise
 RxPowerMat(:,:,ptIdx) = TxPowerMat + TxAntGMat - plWiFi(:,:,1);
 end
 RxPowerMatW(:,:,ptIdx) = 10.^(RxPowerMat(:,:,ptIdx)/10);
 RxPowerMatDij = RxPowerMat(:,:,ptIdx);
 RxPowerMatDij = RxPowerMatDij - diag(diag(RxPowerMatDij));
 for row = 1:N
 for column = 1:N
 if RxPowerMatDij(row,column) >= BckhaulThresh
 RxPowerMatDij(row,column) = 1;
 else
 RxPowerMatDij(row,column) = Inf;
 end
 end
 end
 for row = N+1:N+n+1
 for column = 1:N+n+1
 if RxPowerMatDij(row,column) >= VertThresh
 RxPowerMatDij(row,column) = 1;
 else
 RxPowerMatDij(row,column) = Inf;
 end
 end
 end

131

 for row = 1:N
 for column = N+1:N+n+1
 if RxPowerMatDij(row,column) >= VertThresh
 RxPowerMatDij(row,column) = 1;
 else
 RxPowerMatDij(row,column) = Inf;
 end
 end
 end
 RxPowerMatDijUAV = RxPowerMatDij;
 RxPowerMatDijUAV(N+1:N+n,:) = Inf;
 RxPowerMatDijUAV(:,N+1:N+n) = Inf;
 TxPowerMat = zeros(1,N+n+1);

 %% Determine if a path to ControlSTA exists

 % Interface index on which packet has to be forwarded to next node.
 destID = N+n+1; % Destination node ID (ControlSTA)

 % Configure routing table at MeshN to reach ControlSTA
 % MeshN-1 is the next hop node from MeshN
 for platcount = 1:N
 [cost, Dij_path] = Dijkstras(RxPowerMatDijUAV,platcount,destID);
 if cost ~= Inf
 path_exists(1,platcount) = 1;
 end
 end

 %% Particle Swarm Optimization

 % Evaluate objective function, get best p and g values, and get best group
position
 % Move through UAVs
 for platcount = 1:N
 [pfun,g1,g2,g3] =
ObjFunEval(RxPowerMatW,VertThresh,BckhaulThresh,path_exists,...

N,n,ptIdx,platcount,ax,g1,g2,g3,pos_array,staPositions,gridsize,pfun_Eval,...
 pen_exclo_a2g,pen_UAV1_CtrlSta);
 %fprintf('2. %d %d %.2d %d %d\n', ptIdx, platcount, pfun, 10*log10(pfun),
minTemp)
 if ptIdx > 1
 if pfun > pfBest(ptIdx-1,platcount)
 pfBest(ptIdx,platcount) = pfun;
 pBestInst(1,platcount) = ptIdx;
 pBestPos(1,:,platcount) = motion(ptIdx,1:3,platcount); %Get best
individual positions
 else
 pfBest(ptIdx,platcount) = pfBest(ptIdx-1,platcount);
 end
 else
 if pfun > pfBest(ptIdx,platcount)
 pfBest(ptIdx,platcount) = pfun;
 pBestInst(1,platcount) = ptIdx;

132

 pBestPos(1,:,platcount) = motion(ptIdx,1:3,platcount); %Get best
individual positions
 end
 end
 end

 % Draw lidar plots to simulate coverage
 % This part must be located after the part that plots the link
 % lines (ObjFunEval) so they can be seen before being deleted in the
 % next iteration, but before the loop that moves the platforms. That is
 % why this code is in the middle of the PSO section.
 % Read all sensors' data from the scenario
 for lidarcount = 1:N
 [isupdated(1,1,lidarcount),lidarSampleTime(1,1,lidarcount), pt(lidarcount,:)]
= read(lidar(1,1,lidarcount));
 end

 if runflightsim
 % If any sensor is updated then show the scene
 if any(isupdated)
 % Use fast update to move platform visualization frames.

show3D(scene,"Time",lidarSampleTime(1,1,N),"FastUpdate",true,"Parent",ax);
 % Refresh all plot data and visualize.
 refreshdata(f1,'caller')
 drawnow
 end
 end

 % Determine GBest locally at each UAV among those UAVs within its range
 % and move platforms.
 for platcount = 1:N
 % Determine GBest locally at each UAV among those UAVs within its
 % range (cluster/neighborhood).
 for pfBestcount =1:N
 if pfBestcount ~= platcount %Not considering itself for cluster best
 if RxPowerMat(pfBestcount,platcount,ptIdx) >= BckhaulThresh
 clusterfBest(ptIdx,pfBestcount,platcount) =
pfBest(ptIdx,pfBestcount);
 else
 clusterfBest(ptIdx,pfBestcount,platcount) = 0;
 end
 else
 clusterfBest(ptIdx,pfBestcount,platcount) = 0;
 end
 end
 [fBestTemp, gBestNodeTemp] = max(clusterfBest(ptIdx,:,platcount));
 if ptIdx > 1
 if ptIdx >= fixedTraj
 if fBestTemp > fBest(ptIdx-1,platcount)
 fBest(ptIdx,platcount) = fBestTemp;
 gBestInst = ptIdx;
 gBestNode = gBestNodeTemp;
 gBestPos(platcount,:) = pBestPos(1,:,gBestNode);
 stallcount(1,platcount) = max(0, stallcount(1,platcount)-1);

133

 if stallcount(1,platcount) < 2
 w(1,platcount) = min(2*w(1,platcount),UAVmaxspeed);
 end
 if stallcount(1,platcount) > 5
 w(1,platcount) = w(1,platcount)/2;
 end
 else
 stallcount(1,platcount) = stallcount(1,platcount)+1;
 fBest(ptIdx,platcount) = fBest(ptIdx-1,platcount);
 end
 else
 if fBestTemp > fBest(ptIdx-1,platcount)
 fBest(ptIdx,platcount) = fBestTemp;
 gBestInst = ptIdx;
 gBestNode = gBestNodeTemp;
 gBestPos(platcount,:) = pBestPos(1,:,gBestNode);
 else
 fBest(ptIdx,platcount) = fBest(ptIdx-1,platcount);
 end
 end
 else
 if fBestTemp > fBest(ptIdx,platcount)
 fBest(ptIdx,platcount) = fBestTemp;
 gBestInst = ptIdx;
 gBestNode = gBestNodeTemp;
 gBestPos(platcount,:) = pBestPos(1,:,gBestNode);
 end
 end

 % Move platforms.
 if ptIdx < fixedTraj
 move(plat(1,1,platcount),[pos_array(ptIdx+1,:,platcount),...
 vel_array(ptIdx+1,:,platcount),...
 acc_array(ptIdx+1,:,platcount),...
 eul2quat(quat2eul(ori_array(ptIdx+1,:,platcount))),...
 ang_array(ptIdx+1,:,platcount)])
 else
 if PSO_type ~= 1
 vel_array(ptIdx+1,:,platcount) =
w(1,platcount)*vel_array(ptIdx,:,platcount) + ...
 y1*rand()*(pBestPos(1,:,platcount)-pos_array(ptIdx,:,platcount))
+ ...
 y2*rand()*(gBestPos(platcount,:)-pos_array(ptIdx,:,platcount));
 speed2 = sqrt(vel_array(ptIdx+1,1,platcount)^2 +
vel_array(ptIdx+1,2,platcount)^2 + ...
 vel_array(ptIdx+1,3,platcount)^2);
 if speed2 > UAVmaxspeed
 vel_array(ptIdx+1,:,platcount) = vel_array(ptIdx+1,:,platcount) *
...
 UAVmaxspeed / speed2;
 end
 diffpos = time_step*vel_array(ptIdx+1,:,platcount);
 nextpos = pos_array(ptIdx,:,platcount) + diffpos;
 if nextpos(1,1,1) >= -gridsize/2 && nextpos(1,1,1) <= gridsize/2 &&
...

134

 nextpos(1,2,1) >= -gridsize/2 && nextpos(1,2,1) <= gridsize/2
&& ...
 nextpos(1,3,1) >= 0 && nextpos(1,3,1) <= MaxHeight
 pos_array(ptIdx+1,:,platcount) = pos_array(ptIdx,:,platcount) +
diffpos;
 acc_array(ptIdx+1,:,platcount) = acc_array(ptIdx,:,platcount);
 ori_array(ptIdx+1,:,platcount) = ori_array(ptIdx,:,platcount);
 ang_array(ptIdx+1,:,platcount) = ang_array(ptIdx,:,platcount);
 else
 if nextpos(1,1,1) < -gridsize/2 || nextpos(1,1,1) > gridsize/2
 vel_array(ptIdx+1,1,platcount) = 0;
 end
 if nextpos(1,2,1) < -gridsize/2 || nextpos(1,2,1) > gridsize/2
 vel_array(ptIdx+1,2,platcount) = 0;
 end
 if nextpos(1,3,1) < 0 || nextpos(1,3,1) > MaxHeight
 vel_array(ptIdx+1,3,platcount) = 0;
 end
 diffpos = time_step*vel_array(ptIdx+1,:,platcount);
 pos_array(ptIdx+1,:,platcount) = pos_array(ptIdx,:,platcount) +
diffpos;
 acc_array(ptIdx+1,:,platcount) = acc_array(ptIdx,:,platcount);
 ori_array(ptIdx+1,:,platcount) = ori_array(ptIdx,:,platcount);
 ang_array(ptIdx+1,:,platcount) = ang_array(ptIdx,:,platcount);
 end
 move(plat(1,1,platcount),[pos_array(ptIdx+1,:,platcount),...
 vel_array(ptIdx+1,:,platcount),...
 acc_array(ptIdx+1,:,platcount),...
 eul2quat(quat2eul(ori_array(ptIdx+1,:,platcount))),...
 ang_array(ptIdx+1,:,platcount)])
 else
 itera = false;
 end
 end
 % Create a line plot for the trajectories
 if (PSO_type == 1 || PSO_type == 2) && itera == true
 plot3(ax,pos_array(ptIdx:ptIdx+1,1,platcount),...
 pos_array(ptIdx:ptIdx+1,2,platcount),...
 pos_array(ptIdx:ptIdx+1,3,platcount),...
 "Color",[1 1 1],"LineWidth",2);
 end

 % Create a tile within the figure to plot the RxPowerLevels
 % It only happens during the first iteration
 if and(ptIdx == 1,platcount ==1)
 ax2 = nexttile(t);
 end
 end

 % Create a line plot for the RxPowerLevels (depends on the selected
 % stopping criteria
 switch stopCriteria
 case 1
 pivotmat2 = reshape(max(RxPowerMat(N+1:N+n,1:N,ptIdx),[],1),1,[]);
 otherwise

135

 pivotmat2 =
reshape(10.*log10(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx),1)),1,[]);
 end
 yy(1:N,ptIdx) = pivotmat2;
 plot(ax2,1:ptIdx,yy(1:N,1:ptIdx),"LineWidth",1);
 title(ax2,'Received Power Levels at Each UAV')
 legend(ax2,labels)
 xlabel(ax2, 'Number of Iterations')
 ylabel(ax2, 'Received Power Levels [dBm]')
 set(ax2, 'YGrid', 'on', 'XGrid', 'off')

 % Check if stopping criteria is met
 switch stopCriteria
 case 1
 switch PSO_type
 case 3
 if ptIdx > 10 && ptIdx > fixedTraj
 change = abs(max(RxPowerMat(N+1:N+n,1:N,ptIdx),[],1)-...
 mean(max(RxPowerMat(N+1:N+n,1:N,ptIdx-10:ptIdx-
1),[],1),3));
 relatchange_mean =
change./abs(mean(max(RxPowerMat(N+1:N+n,1:N,ptIdx-10:ptIdx-1),[],1),3));
 if max(relatchange_mean) <= 0.02 || min(stallcount) >= 150 ||
ptIdx >= 180
 itera = false;
 end
 end
 otherwise
 if ptIdx > 10 && ptIdx > fixedTraj + 20
 change = abs(max(RxPowerMat(N+1:N+n,1:N,ptIdx),[],1)-...
 mean(max(RxPowerMat(N+1:N+n,1:N,ptIdx-10:ptIdx-
1),[],1),3));
 relatchange_mean =
change./abs(mean(max(RxPowerMat(N+1:N+n,1:N,ptIdx-10:ptIdx-1),[],1),3));
 if max(relatchange_mean) <= 0.02 || min(stallcount) >= 150 ||
ptIdx >= 180
 itera = false;
 end
 end
 end
 case 2
 switch PSO_type
 case 3
 if ptIdx > 10 && ptIdx > fixedTraj
 change = abs(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx),1)-...
 mean(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx-10:ptIdx-
1),1),3));
 relatchange_mean =
change./abs(mean(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx-10:ptIdx-1),1),3));
 if max(relatchange_mean) <= 0.02 || min(stallcount) >= 150 ||
ptIdx >= 180
 itera = false;
 end
 end
 otherwise

136

 if ptIdx > 10 && ptIdx > fixedTraj + 20
 change = abs(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx),1)-...
 mean(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx-10:ptIdx-
1),1),3));
 relatchange_mean =
change./abs(mean(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx-10:ptIdx-1),1),3));
 if max(relatchange_mean) <= 0.02 || min(stallcount) >= 150 ||
ptIdx >= 180
 itera = false;
 end
 end
 end
 otherwise
 switch PSO_type
 case 3
 if ptIdx > 10 && ptIdx > fixedTraj
 cent_grav = mean(pos_array(ptIdx-10:ptIdx-1,:,1:N),1); %
Center of gravity 10 previous pos
 cent_grav = repmat(cent_grav,11,1);
 pos_change = pos_array(ptIdx-10:ptIdx,:,1:N)-cent_grav; %
Distances from all 11 last points
 pos_change = pos_change.^2;
 pos_change = sum(pos_change,2).^0.5;
 if max(mean(pos_change)) <= UAVmaxspeed*time_step ||
min(stallcount) >= 150 || ptIdx >= 180 %Mean inside sphere arround CoG
 itera = false;
 end
 end
 otherwise
 if ptIdx > 10 && ptIdx > fixedTraj + 20
 cent_grav = mean(pos_array(ptIdx-10:ptIdx-1,:,1:N),1); %
Center of gravity 10 previous pos
 cent_grav = repmat(cent_grav,11,1);
 pos_change = pos_array(ptIdx-10:ptIdx,:,1:N)-cent_grav; %
Distances from all 11 last points
 pos_change = pos_change.^2;
 pos_change = sum(pos_change,2).^0.5;
 if max(mean(pos_change)) <= UAVmaxspeed*time_step ||
min(stallcount) >= 150 || ptIdx >= 180 %Mean inside sphere arround CoG
 itera = false;
 end
 end
 end
 end
 ptIdx = ptIdx + 1;
 % Advance scene simulation time
 advance(scene);
 % Update all sensors in the scene.
 updateSensors(scene)
 % Delete UAVs names from plot
 if itera
 delete(Txnameshandle);
 delete(Rxnameshandle);
 delete(UAVshandle);
 end

137

end

if ~runflightsim
% If any sensor is updated then show the scene
 if any(isupdated)
 % Use fast update to move platform visualization frames.
 show3D(scene,"Time",lidarSampleTime(1,1,N),"FastUpdate",true,"Parent",ax);
 % Refresh all plot data and visualize.
 refreshdata(f1,'caller') % Esto hace que se actualicen las variables sin
estar en el lazo
 drawnow
 end
end

%% Simulate communication
% Create nodes
wlanNodes = hCreateWLANNodes(nodeConfigs, trafficConfigs, ...
'CustomPathLoss', pathlossFnHdl, 'MACFrameAbstraction', MACFrameAbstraction,
'PHYAbstractionType', PHYAbstractionType);

% Configure mesh routing table
% Interface index on which packet has to be forwarded to next node.
forwardInterfaceID = 1;
destID = N+n+1; % Destination node ID (ControlSTA)
destAddress = wlanNodes{destID}.MAC.MACAddress; % Destination MAC address

for platcount = 1:N
 [cost, Dij_path] = Dijkstras(RxPowerMatDijUAV,platcount,destID);
 if cost ~= Inf
 nextHopAddress = wlanNodes{Dij_path(2)}.MAC.MACAddress; % Next hop MAC
address
 addPath(wlanNodes{platcount}, destID, destAddress, nextHopAddress, ...
 forwardInterfaceID); %ForwardTable
 path_exists(1,platcount) = 1;
 end
end

for ground_node = N+1:N+n
 RxPowerMatDijGN = RxPowerMatDij;
 RxPowerMatDijGN(N+1:N+n,:) = Inf;
 RxPowerMatDijGN(:,N+1:N+n) = Inf;
 RxPowerMatDijGN(ground_node,1:N) = RxPowerMatDij(ground_node,1:N);
 RxPowerMatDijGN(1:N,ground_node) = RxPowerMatDij(1:N,ground_node);
 [cost, Dij_path] = Dijkstras(RxPowerMatDijGN,ground_node,destID);
 if cost ~= Inf
 nextHopAddress = wlanNodes{Dij_path(2)}.MAC.MACAddress; % Next hop MAC
address
 addPath(wlanNodes{ground_node}, destID, destAddress, nextHopAddress,
forwardInterfaceID); %ForwardTable
 path_exists(1,ground_node) = 1;
 end
end

% WiFi visualization parameters
% Initialize visualization parameters

138

visualizationInfo = struct;
visualizationInfo.Nodes = wlanNodes;
statsLogger = hWLANStatsLogger(visualizationInfo);
statistics = cell(0);

if runnetsim
 % Configure state transition visualization
 if showLiveStateTransitionPlot
 hPlotStateTransition(visualizationInfo);
 end

 % Initialize wireless network simulator
 networkSimulator = hWirelessNetworkSimulator(wlanNodes);

 % When you run the script from the MATLAB command prompt, pause the
 % execution to refresh visualization after every 5 milliseconds

 if showLiveStateTransitionPlot
 scheduleEvent(networkSimulator, @() pause(0.001), [], 0, 5);
 end
 run(networkSimulator, time_step*1000*1);

 % Retrieve the statistics
 statistics = getStatistics(statsLogger, displayStatistics);

 % Plot the throughput, packet loss ratio, and average packet latency at each node
 hPlotNetworkStats(statistics, wlanNodes);
end

pfBestdBm = 10.*log10(pfBest);

for nodecount = 1:N+n+1
 for instant = 1:ptIdx-1
 TableForExcel(instant,:,nodecount) = RxPowerMat(nodecount,:,instant);
 end
end

writematrix(TableForExcel,'RxPowerMat.xlsx')

% Cleanup the persistent variables used in functions
clear hPlotStateTransition;

% Save the statistics to a mat file
save('statistics.mat', 'statistics');

hold off

%% Objective Function Evaluation
function [pfun,g1,g2,g3] =
ObjFunEval(RxPowerMatW,VertThresh,BckhaulThresh,path_exists,...
 N,n,ptIdx,platcount,ax,g1,g2,g3,pos_array,staPositions,gridsize,pfun_Eval,...
 pen_exclo_a2g,pen_UAV1_CtrlSta)
 pfun = 0;
 cont = 0;

139

 % Move through ground nodes searching for Rx powers greater than
 % VertThresh dBm and add them up if more than one is found
 for ground_node = N+1:N+n
 maxTemp = abs(RxPowerMatW(ground_node,platcount,ptIdx));
 if maxTemp >= 10^(VertThresh/10)
 cont = cont + 1;
 if cont > 1
 pfun = pfun + maxTemp;
 else
 pfun = maxTemp;
 end
 % Create a line plot for the connections between UAVs and
 % ground nodes
 g2(platcount, ground_node-N) = plot3(ax,[pos_array(ptIdx,1,platcount)
staPositions(ground_node-N,1)],...
 [pos_array(ptIdx,2,platcount) staPositions(ground_node-N,2)],...
 [pos_array(ptIdx,3,platcount) staPositions(ground_node-N,3)],...
 ':',"Color",[0 1 0],"LineWidth",0.75);
 else
 if maxTemp > pfun
 pfun = maxTemp;
 end
 end
 end

 switch pen_exclo_a2g
 case 1
 for ground_node = N+1:N+n
 maxTemp = abs(RxPowerMatW(ground_node,platcount,ptIdx));
 if maxTemp >= 10^((BckhaulThresh+18)/10)
 pfun = 0.25 * pfun;
 end
 end
 otherwise
 end

 switch pfun_Eval
 case 1
 if path_exists(1,platcount)
 pfun = pfun * ((0.5214*gridsize)^2+pos_array(ptIdx,3,platcount)^2);
 end
 case 2
 pfun = pfun*2^(max(cont,1)-1);
 if path_exists(1,platcount)
 pfun = pfun * ((0.5214*gridsize)^2+pos_array(ptIdx,3,platcount)^2);
 end
 case 3
 if ~path_exists(1,platcount)
 pfun = pfun / ((0.5214*gridsize)^2+pos_array(ptIdx,3,platcount)^2);
 end
 pfun = pfun/2^(N-sum(path_exists(1,1:N)));
 case 4
 if path_exists(1,platcount)
 pfun = pfun * ((0.5214*gridsize)^2+pos_array(ptIdx,3,platcount)^2);
 end

140

 pfun = pfun*2^(sum(path_exists(1,1:N)));
 case 5
 pfun = pfun*2^(max(cont,1)-1);
 if path_exists(1,platcount)
 pfun = 2*pfun;
 end
 case 6
 if cont > 1
 pfun = pfun * ((0.5214*gridsize)^2+pos_array(ptIdx,3,platcount)^2);
 end
 if path_exists(1,platcount)
 pfun = 2*pfun;
 end
 end

 % Move through the other UAVs searching for Rx powers in the
 % arbitrary optimal range. When the Rx power is in the optimal
 % range, pfun is increased, otherwise is penalized (it is not
 % optimal to be so close and it is much worse to be out of range).
 for air_node = 1:N
 minTemp = abs(RxPowerMatW(air_node,platcount,ptIdx));
 if air_node ~= platcount % Conditional to not consider itself
 if minTemp <= 10^((BckhaulThresh+6)/10) && minTemp >=
10^(BckhaulThresh/10)
 g1(platcount, air_node) = plot3(ax,[pos_array(ptIdx,1,platcount)
pos_array(ptIdx,1,air_node)],...
 [pos_array(ptIdx,2,platcount) pos_array(ptIdx,2,air_node)],...
 [pos_array(ptIdx,3,platcount) pos_array(ptIdx,3,air_node)],...
 '--',"Color",[0 1 0],"LineWidth",0.75);
 else
 if minTemp > 10^((BckhaulThresh+18)/10)
 pfun = 0.25 * pfun;
 % Create a line plot for the connections between UAVs
 g1(platcount, air_node) = plot3(ax,[pos_array(ptIdx,1,platcount)
pos_array(ptIdx,1,air_node)],...
 [pos_array(ptIdx,2,platcount)
pos_array(ptIdx,2,air_node)],...
 [pos_array(ptIdx,3,platcount)
pos_array(ptIdx,3,air_node)],...
 '--',"Color",[1 0 0],"LineWidth",0.75);
 end
 if minTemp < 10^(BckhaulThresh/10)
 pfun = 1 * pfun;
 end
 if minTemp <= 10^((BckhaulThresh+18)/10) && minTemp >
10^((BckhaulThresh+6)/10)
 pfun = 0.75 * pfun;
 % Create a line plot for the connections between UAVs
 g1(platcount, air_node) = plot3(ax,[pos_array(ptIdx,1,platcount)
pos_array(ptIdx,1,air_node)],...
 [pos_array(ptIdx,2,platcount)
pos_array(ptIdx,2,air_node)],...
 [pos_array(ptIdx,3,platcount)
pos_array(ptIdx,3,air_node)],...
 '--',"Color",[1 1 0],"LineWidth",0.75);

141

 end
 end
 end
 end
 minTemp = abs(RxPowerMatW(N+n+1,platcount,ptIdx));
 if minTemp <= 10^((VertThresh+6)/10) && minTemp >= 10^((VertThresh)/10)
 % Reward/penalize UAV1 based on its link to ControlSTA
 if platcount == 1 && pen_UAV1_CtrlSta==1
 pfun = pfun * ((0.5214*gridsize)^2+pos_array(ptIdx,3,platcount)^2);
 end
 % Create a line plot for the connections between UAV1 and
 % ControlSTA
 g3(platcount, 1) = plot3(ax,[pos_array(ptIdx,1,platcount)
staPositions(n+1,1)],...
 [pos_array(ptIdx,2,platcount) staPositions(n+1,2)],...
 [pos_array(ptIdx,3,platcount) staPositions(n+1,3)],...
 'h',"Color",[0 1 0],"LineWidth",1.75);
 else
 if minTemp > 10^((VertThresh+18)/10)
 % Reward/penalize UAV1 based on its link to ControlSTA
 if platcount == 1 && pen_UAV1_CtrlSta==1
 pfun = 0.25 * pfun;
 end
 % Create a line plot for the connections between UAV1
 % and ControlSTA
 g3(platcount, 1) = plot3(ax,[pos_array(ptIdx,1,platcount)
staPositions(n+1,1)],...
 [pos_array(ptIdx,2,platcount) staPositions(n+1,2)],...
 [pos_array(ptIdx,3,platcount) staPositions(n+1,3)],...
 'h',"Color",[1 0.75 0],"LineWidth",1.75);
 end
 if minTemp < 10^((VertThresh)/10)
 % Reward/penalize UAV1 based on its link to ControlSTA
 if platcount == 1 && pen_UAV1_CtrlSta==1
 pfun = 0.25 * pfun;
 end
 end
 if minTemp <= 10^((VertThresh+18)/10) && minTemp > 10^((VertThresh+6)/10)
 % Create a line plot for the connections between UAV1
 % and ControlSTA
 if platcount == 1 && pen_UAV1_CtrlSta==1
 pfun = 0.75 * pfun;
 end
 g3(platcount, 1) = plot3(ax,[pos_array(ptIdx,1,platcount)
staPositions(n+1,1)],...
 [pos_array(ptIdx,2,platcount) staPositions(n+1,2)],...
 [pos_array(ptIdx,3,platcount) staPositions(n+1,3)],...
 'h',"Color",[1 1 0],"LineWidth",1.75);
 end
 end
end

142

APPENDIX B: Implementation of Dijkstra’s Algorithm in MATLAB
function [Cost, Route] = Dijkstras(Graph, SourceNode, TerminalNode)
%Dijkstras.m Given a graph with distances from node to node calculates the
%optimal route from the Source Node to the Terminal Node as defined by the
%inputs.
% Check for valid parameters
if size(Graph,1) ~= size(Graph,2)
 fprintf('The Graph must be a square Matrix\n');
 return;
elseif min(min(Graph)) < 0
 fprintf('Dijkstras algorithm cannot handle negative costs.\n')
 fprintf('Please use Bellman-Ford or another alternative instead\n');
 return;
elseif SourceNode < 1 && (rem(SourceNode,1)==0) && (isreal(SourceNode)) &&
(SourceNode <= size(Graph,1))
 fprintf('The source node must be an integer within [1, sizeofGraph]\n');
 return;
elseif TerminalNode < 1 && (rem(TerminalNode,1)==0) && isreal(TerminalNode) &&
(TerminalNode <= size(Graph,1))
 fprintf('The terminal node must be an integer within [1, sizeofGraph]\n');
 return;
end

% Special Case so no need to waste time doing initializations
if SourceNode == TerminalNode
 Cost = Graph(SourceNode, TerminalNode);
 Route = SourceNode;
 return;
end

% Set up a cell structure so that I can store the optimal path from source
% node to each node in this structure. This structure stores the
% antecedents so for instance if there is a path to B through A-->C-->D-->B
% you will see [A,C,D] in cell{B} (as well as a bunch of filler 0's after
% that)
PathToNode = cell(size(Graph,1),1);

% Initialize all Node costs to infinity except for the source node
NodeCost = Inf.*ones(1,size(Graph,1));
NodeCost(SourceNode) = 0;

% Initialize the Current Node to be the Source Node
CurrentNode = SourceNode;

% Initialize the set of Visited and Unvisited Nodes
VisitedNodes = SourceNode;
UnvisitedNodes = 1:size(Graph,2);
UnvisitedNodes = UnvisitedNodes(UnvisitedNodes ~= VisitedNodes);

while (CurrentNode ~= TerminalNode)
 % Extract the Costs/Path Lengths to each node from the current node
 CostVector = Graph(CurrentNode, :);
 % Only look at valid neighbors ie. those nodes which are unvisited
 UnvisitedNeighborsCostVector = CostVector(UnvisitedNodes);

143

 % Extract the cost to get to the Current Node
 CurrentNodeCost = NodeCost(CurrentNode);
 % Extract the path to the current node
 PathToCurrentNode = PathToNode{CurrentNode};
 % Iterate through the Unvisited Neighbors assigning them a new tentative cost
 for i = 1:length(UnvisitedNeighborsCostVector)
 if UnvisitedNeighborsCostVector(i) ~= Inf % Only Check for update if non-
infinite
 tempCost = CurrentNodeCost + UnvisitedNeighborsCostVector(i); % The
tentative cost to get to the neighbor through the current node
 % Compare the tentative cost to the currently assigned cost and
 % assign the minimum
 if tempCost < NodeCost(UnvisitedNodes(i))
 NewPathToNeighbor = [PathToCurrentNode(PathToCurrentNode~=0)
CurrentNode]; % The new path to get to the neighbor
 NewPath = [NewPathToNeighbor zeros(1,size(Graph,1)-
size(NewPathToNeighbor,2))];
 PathToNode{UnvisitedNodes(i)}(:) = NewPath;
 NodeCost(UnvisitedNodes(i)) = tempCost;
 end
 end
 end
 % Search for the smallest cost remaining that is in the unvisited set
 RemainingCosts = NodeCost(UnvisitedNodes);
 [MIN, MIN_IND] = min(RemainingCosts);

 % If the smallest remaining cost amongst the unvisited set of nodes is
 % infinite then there is no valid path from the source node to the
 % terminal node.
 if MIN == Inf
 Cost = Inf;
 Route = [];
 return;
 end

 % Update the Visited and Unvisited Nodes
 VisitedNodes = [VisitedNodes CurrentNode];
 CurrentNode = UnvisitedNodes(MIN_IND);
 UnvisitedNodes = UnvisitedNodes(UnvisitedNodes~=CurrentNode);
end

Route = PathToNode{TerminalNode};
Route = Route(Route~=0);
Route = [Route TerminalNode];
Cost = NodeCost(TerminalNode);
end

144

APPENDIX C: Modified MATLAB Functions to Load Configuration Parameters

function [nodeConfigs, trafficConfigs] = hLoadConfigurationFull_Int_Traff_6(N, n,
apPositions, staPositions, VertThresh)
%loadConfiguration Returns the node and traffic configuration

numRooms = 1;
numAPs = N;
numSTAs = n;
%numAPPerRoom = numAPs/numRooms; % One AP in each room
numSTAPerRoom = numSTAs/numRooms;
numNodes = numAPs + numSTAs;

% Get the node IDs and positions for all the nodes
[nodeIDs, positions] = hGetIDsAndPositions(numAPs, numSTAs, apPositions,
staPositions);

% Load the application traffic configuration for WLAN nodes
s = load('wlanTrafficConfig.mat', 'wlanTrafficConfig');

% Configure application traffic such that each AP has traffic for all STAs
% present in same room.
traffSize = n;
trafficConfigs = repmat(s.wlanTrafficConfig, 1, traffSize);
% ControlSTA (Grdnd to ControlSTA)
for rooomIdx = 1:n
 trafficConfigs(rooomIdx).SourceNode = ['Node' num2str(rooomIdx)];
 trafficConfigs(rooomIdx).DestinationNode = ['ControlSTA' '1'];
 trafficConfigs(rooomIdx).DataRateKbps = 100000;
end

% Load the node configuration structure and initialize for all the nodes
s = load('wlanNodeConfig.mat', 'wlanNodeConfig');
nodeConfigs = repmat(s.wlanNodeConfig, 1, numNodes+1);

% Customize configuration for nodes
% Set node positions in each node configuration
for nodeIdx = 1:numAPs
 nodeConfigs(nodeIdx).NodeName = ['UAV' num2str(nodeIdx)];
 nodeConfigs(nodeIdx).NodePosition = apPositions(nodeIdx,:);
 nodeConfigs(nodeIdx).IsMeshNode = 1;
 nodeConfigs(nodeIdx).EDThreshold = VertThresh;
end

for nodeIdx = numAPs+1:numNodes
 nodeConfigs(nodeIdx).NodeName = ['Node' num2str(nodeIdx-numAPs)];
 nodeConfigs(nodeIdx).NodePosition = staPositions(nodeIdx-numAPs,:);
 nodeConfigs(nodeIdx).IsMeshNode = 1;
 nodeConfigs(nodeIdx).EDThreshold = VertThresh;
end

nodeConfigs(numNodes+1).NodeName = ['ControlSTA' '1'];
nodeConfigs(numNodes+1).NodePosition = staPositions(numSTAs+1,:);
nodeConfigs(numNodes+1).IsMeshNode = 1;
nodeConfigs(nodeIdx).EDThreshold = VertThresh;

145

end

function [nodeIDs, positions] = hGetIDsAndPositions(N, n, apPositions, staPositions)
%hGetIDsAndPositions Returns the IDs and positions of nodes in the network

numRooms = 1;
numAPs = N;
numSTAs = n;
%numAPPerRoom = numAPs/numRooms; % N APs in each room
numSTAPerRoom = numSTAs/numRooms;
numNodes = numAPs + numSTAs;

apNodeIDs = (1:numAPs)';
staNodeIDs = (numAPs+1:numNodes);

nodeIDs = zeros(numAPs, numSTAPerRoom+1);

positions = cell(numAPs, numSTAPerRoom+1);

% Assign IDs and positions to each node
nodeIDs(:, 1) = apNodeIDs;
for roomIdx = 1:numAPs
 positions{roomIdx, 1} = apPositions(roomIdx, :);

 for staIdx = 1:numSTAPerRoom
 nodeIDs(roomIdx, staIdx+1) = staNodeIDs(staIdx);
 positions{roomIdx, staIdx+1} = staPositions(staIdx, :);
 end
end
end

function [nodeConfigs, trafficConfigs] = hLoadConfigurationFull_Int_Traff_7(N, n,
apPositions, staPositions, VertThresh)
%loadConfiguration Returns the node and traffic configuration

numRooms = 1;
numAPs = N;
numSTAs = n;
%numAPPerRoom = numAPs/numRooms; % One AP in each room
numSTAPerRoom = numSTAs/numRooms;
numNodes = numAPs + numSTAs;

% Get the node IDs and positions for all the nodes
[nodeIDs, positions] = hGetIDsAndPositions(numAPs, numSTAs, apPositions,
staPositions);

% Load the application traffic configuration for WLAN nodes
s = load('wlanTrafficConfig.mat', 'wlanTrafficConfig');

% Configure application traffic such that each AP has traffic for all STAs
% present in same room.
traffSize = n;
trafficConfigs = repmat(s.wlanTrafficConfig, 1, traffSize);

146

% ControlSTA (Grdnd to ControlSTA)
for rooomIdx = 1:n
 trafficConfigs(rooomIdx).SourceNode = ['Node' num2str(rooomIdx)];
 trafficConfigs(rooomIdx).DestinationNode = ['ControlSTA' '1'];
 trafficConfigs(rooomIdx).PacketSize = 250;
 trafficConfigs(rooomIdx).DataRateKbps = 62.5;
end

% Load the node configuration structure and initialize for all the nodes
s = load('wlanNodeConfig.mat', 'wlanNodeConfig');
nodeConfigs = repmat(s.wlanNodeConfig, 1, numNodes+1);

% Customize configuration for nodes
% Set node positions in each node configuration
for nodeIdx = 1:numAPs
 nodeConfigs(nodeIdx).NodeName = ['UAV' num2str(nodeIdx)];
 nodeConfigs(nodeIdx).NodePosition = apPositions(nodeIdx,:);
 nodeConfigs(nodeIdx).IsMeshNode = 1;
 nodeConfigs(nodeIdx).EDThreshold = VertThresh;
end

for nodeIdx = numAPs+1:numNodes
 nodeConfigs(nodeIdx).NodeName = ['Node' num2str(nodeIdx-numAPs)];
 nodeConfigs(nodeIdx).NodePosition = staPositions(nodeIdx-numAPs,:);
 nodeConfigs(nodeIdx).IsMeshNode = 1;
 nodeConfigs(nodeIdx).EDThreshold = VertThresh;
end

nodeConfigs(numNodes+1).NodeName = ['ControlSTA' '1'];
nodeConfigs(numNodes+1).NodePosition = staPositions(numSTAs+1,:);
nodeConfigs(numNodes+1).IsMeshNode = 1;
nodeConfigs(nodeIdx).EDThreshold = VertThresh;
end

function [nodeIDs, positions] = hGetIDsAndPositions(N, n, apPositions, staPositions)
%hGetIDsAndPositions Returns the IDs and positions of nodes in the network

numRooms = 1;
numAPs = N;
numSTAs = n;
%numAPPerRoom = numAPs/numRooms; % N APs in each room
numSTAPerRoom = numSTAs/numRooms;
numNodes = numAPs + numSTAs;

apNodeIDs = (1:numAPs)';
staNodeIDs = (numAPs+1:numNodes);

nodeIDs = zeros(numAPs, numSTAPerRoom+1);

positions = cell(numAPs, numSTAPerRoom+1);

% Assign IDs and positions to each node
nodeIDs(:, 1) = apNodeIDs;
for roomIdx = 1:numAPs
 positions{roomIdx, 1} = apPositions(roomIdx, :);

147

 for staIdx = 1:numSTAPerRoom
 nodeIDs(roomIdx, staIdx+1) = staNodeIDs(staIdx);
 positions{roomIdx, staIdx+1} = staPositions(staIdx, :);
 end
end
end

148

APPENDIX D: Function Used to Obtain the Path Loss Table

function [pl,pathlossFn] = hCreatePathlossTableDP(txs,rxs,propModel,varargin)
%hCreatePathlossTable Create path loss table from transmitter and receiver sites

[numFreqs,numNodes] = size(txs);
assert(isequal(size(txs),size(rxs)))

% Use first column to get frequencies used
uniqueFreqs = [txs(:,1).TransmitterFrequency];

% Rows are transmitters, columns are receivers
pl = zeros(numNodes,numNodes,numFreqs);
for i = 1:numFreqs
 plf = pathloss(propModel,rxs(i,:),txs(i,:));
 % Make pathloss for links reciprocal - shadow fading may cause them not
 % to be when generated with pathloss
 if isempty(varargin)
 pl(:,:,i) = triu(plf) + triu(plf,1)';
 else
 N = size(plf,1);
 for countr = 1:(N)
 for countc =1:(N)
 if plf{countr,countc} ~= 0
 pl(countr,countc) = [plf{countr,countc}];
 else
 pl(countr,countc) = 0;
 end
 end
 end
 end
end

% Handle to lookup table anonymous function
pathlossFn = @(txIdx,rxIdx,freq) pl(txIdx,rxIdx,freq==uniqueFreqs);

end

149

APPENDIX E: Function to Implement the Free Space Propagation Model

classdef hFreeSpacePathLoss < rfprop.PropagationModel

 properties
 Triangulation;

 TriangulationUnit (1,1) double {mustBeFinite, mustBeReal, mustBeNonnegative,
mustBeNonzero, mustBeNonsparse} = 1;

 FacesPerWall (1,1) double {mustBeFinite, mustBeReal, mustBeNonnegative,
mustBeNonzero, mustBeNonsparse} = 2;

 ShadowSigma (1,1) double {mustBeFinite, mustBeReal, mustBeNonnegative,
mustBeNonsparse} = 5;

 WallZThreshold (1,1) double {mustBeFinite, mustBeReal, mustBeNonnegative,
mustBeNonzero, mustBeNonsparse} = 0.1;

 FloorThicknessThreshold (1,1) double {mustBeFinite, mustBeReal,
mustBeNonnegative, mustBeNonzero, mustBeNonsparse} = 0.6;
 end

 methods
 function [numFloors,numWalls,distance] = linkInfo(plm,txs,rxs)

 % Determine number of floors and walls penetrated for each link
 [~,numFloors,numWalls,distance] = wlanresidentialpnl(plm,txs,rxs);
 end

 function visualizeLinkInfo(plm,tx,rx)
 visualize = true;
 hTGaxIndoorLinkInfo(plm.Triangulation, tx, rx, plm.TriangulationUnit,
visualize, ...
 'FacesPerWall', plm.FacesPerWall, ...
 'WallZThreshold', plm.WallZThreshold, ...
 'FloorThicknessThreshold', plm.FloorThicknessThreshold);
 end
 end

 methods(Access = protected)
 function pl = pathlossOverDistance(pm, rxs, tx, d, ~)
 % Scale distance into meters
 d = d*pm.TriangulationUnit;

 % Path loss
 pl = wlanresidentialpl(pm,d,tx.TransmitterFrequency);

 % Penetration loss
 pnl = wlanresidentialpnl(pm,tx,rxs);

 % Large-scale shadow fading
 sf = pm.ShadowSigma*randn(size(pl));

 pl = pl + pnl + sf;

150

 end
 end

 methods (Access = protected)

 function L = wlanresidentialpl(~,R,freq)
 %wlanresidentialpl wlanresidential path loss
 % L = wlanresidential() returns the WLAN Residential scenario path loss
in dB.
 %
 % Note that the best case is lossless, so the loss is always greater
than
 % or equal to 0 dB.

 R = max(R,1); % minimum distance is 1 meter
 L = 40.05+20*log10(freq/2.4e9) + 20*log10(R);
 end

 function [L,numFloors,numWalls,distance] = wlanresidentialpnl(plm,txs,rxs)
 %wlanresidentialpnl wlanresidential penetration loss
 % L = wlanresidentialpnl() returns the WLAN Residential scenario path
loss in dB.
 %
 % Note that the best case is lossless, so the loss is always greater
than
 % or equal to 0 dB.

 % Determine number of floors and walls penetrated for each link
 [numFloors,numWalls,distance] = hTGaxIndoorLinkInfo(plm.Triangulation,
txs, rxs, plm.TriangulationUnit, ...
 'FacesPerWall', plm.FacesPerWall, ...
 'WallZThreshold', plm.WallZThreshold, ...
 'FloorThicknessThreshold', plm.FloorThicknessThreshold);

 % penetration loss
 L = 18.3*numFloors.^((numFloors+2)./(numFloors+1) -0.46) + 5*numWalls;
 end

 end

end

151

APPENDIX F: Performance Evaluation of the Different Mobility Algorithms (Tabulated Results)

Ray tracing

FIXED

No.
UAVs GN

ITERATI
ONS 1s

COVER
AGE

EFICIEN
CY PATH

COMM
EFF nf ns NF

UAVS
WITH
PATH TO
CS

UAVS
CONNECTED
TO CS NTX nodes

NTX nodes
reach CS

1 10 48 40% 40% 0% 0% 4 4 1 0 0 0 0

2 10 61 70% 54% 0% 0% 7 9 2 0 0 0 0

3 10 65 70% 54% 0% 0% 7 9 3 0 0 0 0

4 10 71 100% 77% 20% 15% 10 13 4 1 1 2 0

5 10 75 80% 49% 30% 15% 8 13 5 3 1 3 1

6 10 75 100% 56% 30% 17% 10 18 6 3 1 3 1

7 10 77 100% 50% 30% 15% 10 20 7 4 1 3 1

8 10 77 100% 40% 30% 12% 10 25 8 4 1 3 2

9 10 79 100% 40% 100% 40% 10 25 9 9 1 10 3

10 20 81 95% 27% 95% 26% 19 66 10 10 1 19 4

15 20 82 100% 22% 100% 22% 20 92 15 15 2 20 2

16 20 83 100% 19% 100% 19% 20 107 16 16 1 20 1

25 30 85 100% 13% 100% 13% 30 229 25 25 3 30 4

HYBRID

No.
UAVs GN

ITERATI
ONS 1s

COVER
AGE

EFICIEN
CY PATH

COMM
EFF nf ns NF

UAVS
WITH
PATH TO
CS

UAVS
CONNECTED
TO CS NTX nodes

NTX nodes
reach CS

1 10 81 20% 20% 20% 4% 2 2 1 1 1 2 1

2 10 82 30% 18% 30% 5% 3 5 2 2 1 3 1

3 10 87 30% 15% 30% 5% 3 6 3 3 1 3 1

152

4 10 180 80% 40% 80% 32% 8 16 4 4 1 8 1

5 10 101 80% 40% 80% 32% 8 16 5 5 1 8 1

6 10 101 100% 45% 30% 14% 10 22 6 3 1 3 1

7 10 128 80% 29% 80% 23% 8 22 7 7 1 8 1

8 10 166 90% 29% 90% 26% 9 28 8 8 1 9 1

9 10 180 100% 36% 100% 36% 10 28 9 9 2 10 2

10 20 180 80% 17% 80% 13% 16 77 10 10 1 16 3

15 20 180 85% 12% 85% 10% 17 117 15 15 2 17 4

16 20 180 100% 16% 100% 16% 20 123 16 16 1 20 6

25 30 180 100% 10% 100% 10% 30 290 25 25 3 30 3

PSO-
only

No.
UAVs GN

ITERATI
ONS 1s

COVER
AGE

EFICIEN
CY PATH

COMM
EFF nf ns NF

UAVS
WITH
PATH TO
CS

UAVS
CONNECTED
TO CS NTX nodes

NTX nodes
reach CS

1 10 21 20% 20% 20% 4% 2 2 1 1 1 2 1

2 10 137 20% 13% 20% 3% 2 3 2 2 2 2 1

3 10 180 30% 18% 30% 5% 3 5 3 3 2 3 1

4 10 180 40% 23% 10% 2% 4 7 4 2 2 1 1

5 10 177 60% 33% 60% 20% 6 11 5 5 2 6 4

6 10 175 70% 20% 70% 14% 7 24 6 6 1 7 1

7 10 173 80% 28% 20% 6% 8 23 7 3 2 2 1

8 10 180 90% 23% 10% 2% 9 35 8 1 1 1 1

9 10 180 90% 30% 60% 18% 9 27 9 8 3 6 1

10 20 180 95% 24% 75% 18% 19 76 10 9 3 15 2

15 20 180 80% 10% 80% 8% 16 134 15 15 2 16 2

16 20 180 90% 12% 90% 11% 18 133 16 16 3 18 1

25 30 180 87% 9% 87% 7% 26 317 30 25 6 26 5

153

Log-normal

FIXED

No.
UAVs GN

ITERATI
ONS 1s

COVER
AGE

EFICIEN
CY PATH

COMM
EFF nf ns NF

UAVS
WITH
PATH TO
CS

UAVS
CONNECTED
TO CS NTX nodes

NTX nodes
reach CS

1 10 48 20% 20% 0% 0% 2 2 1 0 0 0 0

2 10 61 30% 30% 0% 0% 3 3 2 0 0 0 0

3 10 65 50% 50% 0% 0% 5 5 3 0 0 0 0

4 10 71 80% 64% 0% 0% 8 10 4 0 0 0 0

5 10 75 70% 61% 0% 0% 7 8 5 0 0 0 0

6 10 75 100% 83% 0% 0% 10 12 6 0 0 0 0

7 10 77 80% 49% 30% 15% 8 13 7 4 1 3 1

8 10 77 100% 67% 30% 20% 10 15 8 4 1 3 1

9 10 79 100% 59% 10% 6% 10 17 9 1 1 1 0

10 20 81 95% 48% 40% 19% 19 38 10 4 1 8 3

15 20 82 100% 33% 40% 13% 20 61 15 4 1 8 2

16 20 83 100% 34% 100% 34% 20 58 16 16 1 20 4

HYBRID

No.
UAVs GN

ITERATI
ONS 1s

COVER
AGE

EFICIEN
CY PATH

COMM
EFF nf ns NF

UAVS
WITH
PATH TO
CS

UAVS
CONNECTED
TO CS NTX nodes

NTX nodes
reach CS

1 10 75 10% 10% 10% 1% 1 1 1 1 1 1 0

2 10 88 20% 13% 20% 3% 2 3 2 2 1 2 1

3 10 88 30% 15% 30% 5% 3 6 3 3 1 3 1

4 10 100 60% 45% 10% 5% 6 8 4 2 2 1 1

5 10 101 80% 53% 30% 16% 8 12 5 3 1 3 1

154

6 10 103 80% 43% 20% 9% 8 15 6 3 1 2 2

7 10 180 80% 32% 80% 26% 8 20 7 7 1 8 2

8 10 180 90% 31% 90% 28% 9 26 8 6 1 9 1

9 10 102 100% 45% 100% 45% 10 22 9 9 2 10 3

10 20 180 80% 17% 80% 14% 16 74 10 10 1 16 2

15 20 180 100% 19% 100% 19% 20 107 15 15 4 20 2

16 20 107 100% 19% 100% 19% 20 108 16 16 1 20 5

PSO-
only

No.
UAVs GN

ITERATI
ONS 1s

COVER
AGE

EFICIEN
CY PATH

COMM
EFF nf ns NF

UAVS
WITH
PATH TO
CS

UAVS
CONNECTED
TO CS NTX nodes

NTX nodes
reach CS

1 10 23 20% 20% 20% 4% 2 2 1 1 1 2 1

2 10 180 10% 5% 10% 1% 1 2 2 2 2 1 1

3 10 151 40% 27% 40% 11% 4 6 3 3 1 4 1

4 10 180 50% 36% 10% 4% 5 7 4 2 2 1 1

5 10 177 30% 13% 30% 4% 3 7 5 5 2 3 2

6 10 177 40% 16% 40% 6% 4 10 6 6 3 4 1

7 10 176 60% 26% 60% 15% 6 14 7 7 2 6 1

8 10 180 80% 22% 80% 18% 8 29 8 8 2 8 1

9 10 180 80% 34% 80% 27% 8 19 9 9 4 8 0

10 20 174 70% 12% 70% 9% 14 79 10 10 2 14 1

15 20 180 70% 8% 70% 5% 14 125 15 15 3 14 1

16 20 180 80% 11% 80% 9% 16 118 16 16 2 16 3

155

Log-normal + LoRa

FIXED

No.
UAVs GN

ITERATI
ONS 1s

COVER
AGE

EFICIEN
CY PATH

COMM
EFF nf ns NF

UAVS
WITH
PATH TO
CS

UAVS
CONNECTED
TO CS NTX nodes

NTX nodes
reach CS

1 10 48 20% 20% 0% 0% 2 2 1 0 0 0 0

2 10 61 30% 30% 0% 0% 3 3 2 0 0 0 0

3 10 65 50% 50% 0% 0% 5 5 3 0 0 0 0

4 10 71 80% 64% 0% 0% 8 10 4 0 0 0 0

5 10 75 70% 61% 0% 0% 7 8 5 0 0 0 0

6 10 75 100% 83% 0% 0% 10 12 6 0 0 0 0

7 10 77 80% 49% 80% 39% 8 13 7 7 1 8 3

8 10 77 100% 67% 100% 67% 10 15 8 8 1 10 2

9 10 79 100% 59% 100% 59% 10 17 9 9 1 10 1

10 20 81 95% 48% 95% 45% 19 38 10 10 1 19 3

15 20 82 100% 33% 100% 33% 20 61 15 15 1 20 5

16 20 83 100% 34% 100% 34% 20 58 16 16 1 20 5

HYBRID

No.
UAVs GN

ITERATI
ONS 1s

COVER
AGE

EFICIEN
CY PATH

COMM
EFF nf ns NF

UAVS
WITH
PATH TO
CS

UAVS
CONNECTED
TO CS NTX nodes

NTX nodes
reach CS

1 10 73 20% 20% 20% 4% 2 2 1 1 1 2 1

2 10 79 30% 30% 30% 9% 3 3 2 2 1 3 2

3 10 91 40% 27% 40% 11% 4 6 3 3 2 4 1

4 10 99 80% 64% 80% 51% 8 10 4 4 2 8 4

5 10 101 80% 53% 80% 43% 8 12 5 5 1 8 4

156

6 10 101 100% 56% 100% 56% 10 18 6 6 1 10 3

7 10 180 80% 43% 80% 34% 8 15 7 7 2 8 3

8 10 180 90% 39% 90% 35% 9 21 8 8 2 9 3

9 10 139 90% 30% 90% 27% 9 27 9 9 2 9 2

10 20 180 75% 18% 75% 14% 15 61 10 10 4 15 6

15 20 180 90% 12% 90% 11% 18 96 11 15 4 18 4

16 20 129 75% 8% 75% 6% 15 106 12 16 5 15 5

PSO-
only

No.
UAVs GN

ITERATI
ONS 1s

COVER
AGE

EFICIEN
CY PATH

COMM
EFF nf ns NF

UAVS
WITH
PATH TO
CS

UAVS
CONNECTED
TO CS NTX nodes

NTX nodes
reach CS

1 10 22 20% 20% 20% 4% 2 2 1 1 1 2 1

2 10 180 10% 5% 10% 1% 1 2 2 2 1 1 1

3 10 180 10% 3% 10% 0% 1 3 3 3 3 1 1

4 10 112 70% 49% 70% 34% 7 10 4 4 2 7 3

5 10 174 20% 7% 20% 1% 2 6 5 5 3 2 2

6 10 174 50% 25% 50% 13% 5 10 6 6 5 5 1

7 10 169 60% 19% 60% 12% 6 16 6 6 2 6 1

8 10 180 90% 31% 90% 28% 9 26 8 8 3 9 2

9 10 125 60% 21% 60% 13% 6 17 9 9 4 6 4

10 20 166 65% 14% 65% 9% 13 59 10 10 7 13 3

15 20 178 75% 10% 75% 7% 15 118 15 15 4 15 4

16 20 71 80% 11% 80% 8% 16 121 16 16 2 16 2

	Assessing the Performance of a Particle Swarm Optimization Mobility Algorithm in a Hybrid Wi-Fi/LoRa Flying Ad Hoc Network
	Suggested Citation

	Title Page
	ACKNOWLEDGMENTS
	Contents
	List of Tables
	List of Figures
	ABSTRACT
	1 Introduction
	Figure 1.1: Proposed scenario
	1.1 Motivation
	1.2 Objectives and Contributions
	1.3 Organization

	2 Technical Overview
	Figure 2.1: Relationship between MANET, VANET and FANET
	2.1 UAV Taxonomy
	Table 2.1: UAV taxonomy

	2.2 Differences between FANETs, VANETs, and MANETs
	2.3 FANET Communications
	2.3.1 Network Architecture
	Figure 2.2: FANET types of links
	Figure 2.3: FANET topologies

	2.3.2 Communication Channel
	A. R adio Channel Models
	Table 2.2: Radio channel models and their characteri

	B. Additional Considerations Applicable to FANETs

	2.3.3 Low Power Wide Area Networks 9LPWANs)

	2.4 LoRa
	2.4.1 CSS Modulation
	Figure 2.4: Chirp spread spectrum (CSS) modulation

	2.4.2 Frequency
	2.4.3 Bandwidth (BW)
	2.4.4 Spreading Factor (SF)
	2.4.5 Coding Rate (CR) Index
	2.4.6 Transmission Power
	Table 2.3: Summary of LoRa modulation parametes

	2.4.7 LoRa Frame Format
	Figure 2.5: LoRa frame format

	2.5 IEEE 802.11
	Table 2.4: Summary of IEEE 802.11 standards and their characteristics
	2.5.1 IEEE 802.11p
	2.5.2 IEEE 802.11s
	2.5.3 IEEE 802.11ax

	2.6 FANET Mobility
	2.6.1 Mobility objectives
	2.6.2 Mobility models

	2.7 Optimization Approach to the Mobility Problem
	2.7.1 Global and local Optimization
	2.7.2 Single-Objective and Multiobjective Optimization
	2.7.3 Single-Solution and Multiple-Solution Optimization
	2.7.4 Particle Swarm Optimization

	2.8 Related work
	2.8.1 FANET Architectures Involving LoRa or LoRaWAN
	2.8.2 FANET Mobility

	3 Simulation Framework Development
	3.1 System Architecture
	Figure 3.1: System architecture

	3.2 Considerations and Assumptions
	3.2.1 Communications
	A. Physical Layer
	B. Routing

	3.3 Definition of the Objective Function
	3.3.1 Multiobjective Optimization
	Figure 3.4: Proximity ranges between UAVs

	3.3.2 Problem Formulation

	3.4 Solution Using a PSO Mobility Model
	Figure 3.5: Basic PSO algorithm flowchart
	3.4.1 Search Space Constraint Handling
	3.4.2 Kinematic Constraints Handling
	3.4.3 Dynamic Clustering
	Figure 3.6: Dynamic clustering

	3.4.4 Hybrid PSO
	3.4.5 Stopping Criteria

	3.5 Simulation Parameters
	3.5.1 Node configuration
	Table 3.1: MAC and PHY configuration parameters
	Table 3.2: Application traffic configuration
	Figure 3.7: Example of traffic configuration for ten ground nodes and a Wi-Fi backhaul

	3.5.2 Propagation Models
	A. Free Space Propagation Model
	B. Ray Tracing
	C. Log-normal

	3.5.3 Mobility
	Table 3.3: General mobility parameters
	A. PSO Parameters
	Table 3.4: PSO configuration parameters

	4 Results and Analysis
	4.1 Comparison between Different Objective Functions
	Table 4.1: Model configuration parameters
	Table 4.2: Link and trajectory plot legends for Figures 4.1 (a)-4.18 (a)
	4.1.1 Coverage Reward only
	Table 4.3: Alternative gains applied only for covering multiple ground nodes using Hybrid PSO (1500 m x 1500 m)
	Figure 4.1: Topology and convergence results when applying a base-2 exponential gain for covering multiple ground nodes (Hybrid PSO).
	Figure 4.2: Topology and convergence results when applying a distance-based gain for covering multiple ground nodes (Hybrid PSO)

	4.2 Comparison between Different PSO Configurations
	4.2.1 Adaptive Inertia Weight vs. Guaranteed Convergence Parameters
	Table 4.11: Adaptive inertia weight vs. guaranteed convergence parameters
	Figure 4.13: Topology and convergence results when using adaptive inertia weight (Hybrid PSO).
	Figure 4.14: Topology and convergence results when using guaranteed convergence PSO parameters (Hybrid PSO)

	4.2.2 Propagation Model Alternatives
	Table 4.12: Propagation model alternatives using adaptive inertia weight
	Figure 4.15: Topology and convergence results when using a ray tracing propagation model (Hybrid PSO)
	Figure 4.16: Topology and convergence results when using a log-normal propagantion model (Hybridn PSO)

	4.2.3 Stopping Criteria Alternatives
	Table 4.13: Stopping criteria alternatives using adaptive inertia weight and log-normal propagation
	Figure 4.17: Topology and convergence results when using signal stability as fitness function (Hybrid PSO)
	Figure 4.18: Topology and convergence results when using position stability as fitness function (Hybrid PSO)

	4.3 Performance Metrics
	4.3.1 Number of Iterations Required for Stabilization or Stoppage (,𝒕-𝒔.)
	4.3.2 Percentage of Covered Ground Nodes (𝑪%)
	4.3.3 FANET Coverage Efficiency (,𝜼-𝑪.)
	4.3.4 Percentage of Ground Nodes with a Path to the Control Station (𝑷%)
	4.3.5 Overall Efficiency (,𝜼-𝑶.)

	4.4 Performance Evaluation of the Different Mobility Algorithms
	Table 4.14: Objective function and PSO configuration
	Table 4:15: Assessment scenarios
	Table 4:16: Final model configuration parameters
	4.4.1 Number of Iterations
	Figure 4.19: Number of iterations required for stabilization or stoppage

	4.4.2 Percentage of Coered Ground Nodes
	Figure 4.20: Percentage of covered ground nodes (C%)

	4.4.3 FANET Coverage Efficiency
	Figure 4.21: FANET coverage Efficiency

	4.4.4 Percentage of Ground Nodes with a Path to the Control Station
	Figure 4.22: Percentage of ground nodes with a path to the control station (P %)

	4.4.5 Overall Efficiency
	Figure 4.23: Overall efficiency

	5 Conclusions and Future Work
	5.1 Conclusions
	5.1.1 Regarding the Objective Function and Multiobjective Optimization
	5.1.2 Regarding the Optimization Algorithm
	5.1.3 Regarding Overall Performance
	5.1.4 Regarding the Use of LoRa

	5.2 Future Work
	5.2.1 Communications
	5.2.2 Mobility based on Multiobjective Optimization
	5.2.3 Energy
	5.2.4 The Use of LoRa in FANETs

	REFERENCES
	APPENDIX A: Main MATLAB Script
	APPENDIX B: Implementation of Dijkstra’s Algorithm in MATLAB
	APPENDIX C: Modified MATLAB Functions to Load Configuration Parameters
	APPENDIX D: Function Used to Obtain the Path Loss Table
	APPENDIX E: Function to Implement the Free Space Propagation Model
	APPENDIX F: Performance Evaluation of the Different Mobility Algorithms (Tabulated Results)

