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ABSTRACT 

 

Research on Flying Ad-Hoc Networks (FANETs) has increased due to the availability of 

Unmanned Aerial Vehicles (UAVs) and the electronic components that control and connect them. 

Many applications, such as 3D mapping, construction inspection, or emergency response 

operations could benefit from an application and adaptation of swarm intelligence-based 

deployments of multiple UAVs. Such groups of cooperating UAVs, through the use of local rules, 

could be seen as network nodes establishing an ad-hoc network for communication purposes. 

One FANET application is to provide communication coverage over an area where communication 

infrastructure is unavailable. A crucial part of a FANET implementation is computing the optimal 

position of UAVs to provide connectivity with ground nodes while maximizing geographic span. 

To achieve optimal positioning of FANET nodes, an adaptation of the Particle Swarm 

Optimization (PSO) algorithm is proposed. A 3D mobility model is defined by adapting the 

original PSO algorithm and combining it with a fixed-trajectory initial flight. A Long Range 

(LoRa) mesh network is used for air-to-air communication, while a Wi-Fi network provides air-

to-ground communication to several ground nodes with unknown positions. The optimization 

problem has two objectives: maximizing coverage to ground nodes and maintaining an end-to-end 

communication path to a control station, through the UAV mesh. The results show that the hybrid 

mobility approach performs similarly to the fixed trajectory flight regarding coverage, and 

outperforms fixed trajectory and PSO-only algorithms in both path maintenance and overall 

network efficiency, while using fewer UAVs. 
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Chapter 1 

1 Introduction 

 

The past few decades have witnessed the “wireless revolution” [1,2], a significant increase in the 

number of connected devices. These devices, such as body sensors, light dimmers, vacuum 

cleaners, thermostats, refrigerators, and autonomous vehicles, have been designed to simplify our 

lives both at home and in the workplace. This expansion has been so substantial that numerous 

sources now indicate that the number of connected devices has far exceeded the number of 

connected individuals, reaching an estimated count of tens of billions [3-5]. For these 

interconnected devices to function effectively, they require the ability to communicate with each 

other and with users. This concept is widely referred to as the Internet of Things (IoT). In essence, 

IoT encompasses a collection of objects equipped with sensors and actuators that are linked 

together via either private or public networks, with the Internet being the most common option. 

The growth of the IoT, like other technological advancements, has been motivated by the 

aspiration to enhance quality of life in a cost-efficient manner [3]. 

While human communications often demand a considerable bandwidth (e.g., on-demand video 

streaming and file sharing) and have little tolerance to delay (e.g., voice calls and 

videoconference), communications between objects have different characteristics, at least for the 

time being. IoT communications usually involve low data rates, where a relaxation of bandwidth 

constraints usually results in lower power consumption and a longer communication range, 

considering that these devices might be placed at isolated locations with no access to a power grid 

or Wide Area Networks (WANs) such as those available through internet service providers, mobile 

carriers, or proprietary deployments. 
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In a natural step in the development of wireless technologies, Ad Hoc networks were conceived as 

a method of connecting nodes when no centralized infrastructure is available, and the concept of 

mobility was immediately tied to this type of network [6]. Mobile Ad-Hoc Networks (MANETs) 

have been used for military applications for many years [7]. As they increasingly connect more 

and more objects across the globe, MANETs have become one of the fundamental network 

paradigms in IoT. Moreover, the recent surge in the availability of Unmanned Aerial Vehicles 

(UAVs), also known as drones, has given rise to the concept of Flying Ad-Hoc Networks 

(FANETs). FANETs are a type of wireless network that consists of UAVs that communicate with 

each other to provide wireless connectivity. 

In a FANET, UAVs act as nodes that communicate with each other to form a network. These nodes 

can either act as routers or end devices, and they use wireless communication protocols to 

exchange data. The network topology in FANETs is dynamic, as UAVs move around in different 

directions and distances, and the network must adapt to the changes in topology. 

The use of UAVs in FANETs provides several advantages over traditional wireless networks. 

UAVs can be deployed in areas where traditional networks are not available or are destroyed, such 

as disaster-stricken areas, remote locations, or war zones. Additionally, UAVs can be rapidly 

deployed and redeployed to cover a larger area or to provide connectivity to a specific location. 

Furthermore, FANETs can provide a higher degree of reliability and fault tolerance, as UAVs can 

act as relays and reconfigure the network in case of a node failure or damage. 

Despite the potential advantages of FANETs, there are several challenges that need to be addressed 

to make them a practical solution. One of the main challenges is the design of communication 

protocols that can operate in a highly dynamic and unpredictable environment. The communication 

protocols should be able to handle the rapid changes in topology, bandwidth, latency, and 
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interference, and should be scalable to support a large number of nodes. The communication 

protocols should also be energy-efficient, as the UAVs have limited battery life and need to 

conserve energy for flight and other tasks. 

Another challenge in FANETs is the development of robust mobility algorithms for autonomous 

flight that are capable of maintaining efficient and reliable communication among UAVs, adapting 

to environmental disturbances and changes in the network, while minimizing energy consumption 

and avoiding collisions. 

The design of FANETs should consider the regulatory and ethical issues related to the use of 

UAVs. The use of UAVs for commercial or civilian purposes is subject to regulations and 

guidelines set by the civil aviation authorities, such as the Federal Aviation Administration (FAA) 

in the United States or the European Aviation Safety Agency (EASA) in Europe. These regulations 

cover various aspects of UAV operations, such as airworthiness, pilot certification, flight 

restrictions, and privacy. 

While existing wireless technologies —such as cellular and Wi-Fi— have been adopted for IoT 

[8,9], Low Power Wide Area Networks (LPWANs) have been developed specifically as one of 

IoT’s enabling technologies for long-range applications [10-13]. LoRa (named after “long range”) 

is a physical-layer (PHY) LPWAN technology that provides long-range communication at low 

data rates. Due to its scalability, low power consumption, and ease of deployment, LoRa 

technology has recently gained significant attention from researchers recently. Its attributes make 

it suitable for IoT applications, particularly when used as part of LoRaWAN —a protocol used to 

create a star topology network using LoRa technology. However, when it comes to MANETs and 

FANETs, LoRaWAN presents some limitations regarding its star topology, its medium access 

control (MAC) layer and its lack of routing procedures [14]. Some work has been done to assess 
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the performance of LoRa without the constraints of LoRaWAN, for static and ground-mobile ad-

hoc mesh networks in typical IoT scenarios [15-23]. Nevertheless, there is little research activity 

on FANETs using LoRa technology. 

In this research, an optimization approach is adopted to govern FANET mobility and to ultimately 

determine UAV positions that maximize network coverage to a series of ground nodes. The 

proposed FANET, shown in Figure 1.1, relies on a Wi-Fi access network (air-to-ground links), 

and a backhaul mesh network (air-to-air links) consisting of LoRa or Wi-Fi, depending on the 

application. An adaptation of Particle Swarm Optimization (PSO) is proposed as the optimization 

algorithm used to achieve UAV mobility and self-positioning. 

 

 
Figure 1.1: Proposed scenario. 
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1.1 Motivation 

The motivation behind conducting research on FANET mobility using PSO and LoRa lies in the 

pursuit of efficient and reliable communication in aerial networks. FANETs have emerged as a 

promising solution for various applications, including disaster management, environmental 

monitoring, and surveillance. However, ensuring seamless communication and optimal mobility 

of UAVs in dynamic environments remains a significant challenge. By integrating PSO, a nature-

inspired optimization algorithm, with LoRa, a low-power, long-range wireless technology, the aim 

is to develop an approach to enhance FANET mobility. PSO can be utilized to optimize UAV 

movement to maximize network coverage or minimize energy consumption. Additionally, 

leveraging the long-range capabilities of LoRa enables reliable and long-distance communication 

among UAVs, facilitating data exchange and coordination. The use of Wi-Fi as access network 

accounts for the widespread availability of these devices among end users. 

1.2 Objectives and Contributions 

The main goal of this research is to develop and assess the performance of a FANET that 

maximizes network coverage to ground nodes with unknown positions. To achieve this goal, the 

following contribution have been made: 

• An exploration of the state of the art of FANET mobility. 

• An exploration of the state of the art of the use of LoRa technology in FANETs. 

• The development of a comprehensive FANET simulation framework. 

• The definition of a single objective function that contains the elements to achieve 

multiobjective optimization. 

• The development of a PSO algorithm that governs autonomous flight, while taking into 

consideration a wide range of constraints associated with the proposed scenario. 
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• The definition of performance metrics to measure the fulfilment of multiple optimization 

objectives separately and jointly. 

• The performance evaluation of the proposed FANET in terms of the defined performance 

metrics. 

1.3 Organization 

The remainder of this thesis is organized as follows: Chapter 2 presents a technical overview of 

FANETs, LoRa, Wi-Fi, and PSO, as well as a summary of related work. Chapter 3 covers the 

aspects involved in the development of the simulation framework. The presentation of the results 

and a discussion of the findings are contained in Chapter 4. Finally, the concluding remarks and 

future work are stated in Chapter 5.  
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Chapter 2 

2 Technical Overview 

 

In recent years, there has been an increasing interest in the development of Flying Ad Hoc 

Networks (FANETs). FANETs are a type of Mobile Ad Hoc Network (MANET) that consists of 

unmanned aerial vehicles (UAVs) or drones that communicate with each other wirelessly to 

perform various tasks such as surveillance, reconnaissance, search and rescue, environmental 

monitoring, and communication relay. More specifically, FANETs are also a subset of Vehicular 

Ad Hoc Networks (VANETs). These networks are flexible, versatile, and have the potential to 

operate in various challenging environments in which it is difficult or impossible for other types 

of networks to operate. Figure 2.1 shows the relationship between MANETs, VANETs, and 

FANETs [24]. 

 
Figure 2.1: Relationship between MANET, VANET and FANET. 
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FANETs are typically self-organizing, decentralized networks, which do not require any pre-

existing infrastructure. Each UAV in the network acts as a node, and they communicate with each 

other using wireless links. These networks are highly dynamic, and the topology changes rapidly 

as the UAVs move around, making it challenging to maintain reliable communication and 

coordination among them. 

The technical topics involved in FANETs include: 

• Wireless communication: FANETs rely on wireless communication technologies, such as 

IEEE 802.11 (Wi-Fi), Bluetooth, LoRa, Zigbee, combined with built-in or supplementary 

ad hoc networking protocols, to enable communication between UAVs. These wireless 

technologies allow UAVs to exchange data, such as sensor readings, location information, 

and control commands, without the need for a physical wired connection. 

• Mobility: Mobility is a critical aspect of FANETs, as it directly affects network 

performance, energy consumption, and safety. Mobility models describe the movement 

patterns of UAVs in FANETs. These models are used to simulate the behavior of UAVs in 

different scenarios and evaluate the performance of FANET protocols and algorithms. 

• Energy: FANETs have limited battery life, and power management is critical to ensure that 

UAVs can operate for an extended period without requiring frequent battery replacement. 

Power management techniques include duty cycling, sleep mode, and energy harvesting. 

2.1 UAV Taxonomy 

Regarding UAV taxonomy, multiple categorizations are proposed in [25-27]. A summary of this 

topic is presented in Table 2.1. 
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Table 2.1: UAV taxonomy. 
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2.2 Differences between FANETs, VANETs, and MANETs 

The differences between FANETs, VANETs, and MANETs are analyzed from different 

perspectives in [25-29]. The aforementioned works coincide with the fact that FANETs have 

specific characteristics. Those specificities are summarized in the following fields: 

• Node mobility: Contrary to the elements of MANETs and ground VANETs, UAVs 

experience relatively fewer obstacles, which allows them to move in and around three axes 

with a certain amount of freedom at somewhat constant speeds. However, holding a fixed 

position can be more challenging, or even impossible, depending on weather conditions 

and the type of UAV. These circumstances influence the mobility model to be applied but 

also impact other characteristics, such as node density, topology change rate, localization 

alternatives, and applicable propagation models. 

• Radio propagation: The presence of fewer obstacles allows for the consideration of mostly 

line-of-sight (LoS) propagation, especially for air-to-air links, while taking into account 
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weather conditions and the Doppler effect caused by the speed of UAVs relative to the 

ground and to one another. Air-to-air and air-to-ground are the two main types of links that 

can be identified, although air-to-satellite links might also be considered for some 

applications. 

• Energy constraints: They depend on the type of UAV. Battery-powered UAVs are more 

energy-constrained, making it useful to have communication hardware that consumes less 

power, allowing for increased flight time, although most of the energy is dedicated to keep 

the UAV and its payload in the air. Large fixed-wing UAVs are most likely powered by 

combustion engines that can carry and charge larger batteries, making them less energy-

constrained. 

2.3 FANET Communications 

UAVs communicate with each other using wireless protocols such as IEEE 802.11 (Wi-Fi), IEEE 

802.15.4 (which is an IEEE standard for low-rate wireless personal area networks, or LR-WPANs), 

and Low Power Wide Area Network (LPWAN) protocols, among others. These protocols must be 

designed to handle the unique characteristics of FANETs, including high mobility, limited 

bandwidth, and dynamic network topologies.  

FANETs require efficient routing protocols that can adapt to the changing network topologies and 

ensure reliable communication between UAVs. Some of the commonly used routing protocols in 

FANETs include Ad Hoc On-Demand Distance Vector (AODV), Optimized Link State Routing 

(OLSR), and Dynamic Source Routing (DSR). FANETs face various security and privacy 

challenges, such as eavesdropping, spoofing, and denial of service attacks. Security and privacy 

mechanisms, such as encryption, digital signatures, and access control, must be implemented to 

protect FANETs from such threats. 
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2.3.1 Network Architecture 

The network architecture is highly dependent on the FANET application. Single UAV 

architectures are not considered as FANETs because FANETs are composed of more than one 

UAV and communication between UAVs cannot rely on infrastructure networks [28]. Moreover, 

this means that topologies can be mesh, star-of-meshes, or mesh-of-meshes. 

As mentioned in Section 2.2, three different types of links can be identified according to the 

location of the elements they connect, namely air-to-air (UAV to UAV), air-to-ground (UAV to 

ground) and air-to-satellite (UAV to satellite). Links can also be classified according to the role 

they play from a communications network perspective: access links, backhaul links, and backbone 

links. The two mentioned classifications are il-lustrated in Figure 2.2. 

  
(a) Terrestrial-only links (b) Terrestrial and satellite links 

Figure 2.2: FANET types of links. 

Four UAV communication architectures are mentioned in [25], based on the type of infrastructure 

utilized: UAV direct communication, UAV communication via satellite networks, UAV 

communication via cellular networks, and UAV communication via Ad-Hoc networks. However, 

these could be further summarized into communication through infrastructure and infrastructure-

less communication, hence, only UAV communication via Ad-Hoc networks corresponds to 

FANETs. 
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Three hierarchical architectures are described in [30,31], based on how the UAVs connect to each 

other and to a ground base station. The first architecture relies on a single UAV acting as a hub to 

connect a single group of UAVs to the base station. The second architecture involves clustering 

UAVs into groups, each one of them having one hub to connect to the base station. Finally, in the 

third architecture, multiple layers of UAV clusters connect to each other through one root UAV, 

and only one of the groups has a hub that connects all others to the base station. According to the 

description, UAV-to-UAV communication relies on low-power, short-range links, while 

UAV-to-ground communication does it on high-power, long-range links. These architectures 

could be employed in applications where compact swarms with longer UAV-to-ground ranges—

when compared to UAV-to-UAV ranges—are needed. Moreover, having centralized links to the 

base station implies one or more of the following situations: 

• Most communications would take place inside the swarms. 

• Communication with the base station is less frequent or takes place at low data rates. 

• The UAV that handles the link to the base station is a single point of failure and may 

become a bottleneck. 

To overcome the last issue, the authors of [32] propose a multi-layer architecture where clusters 

are grouped in layers and each cluster selects a UAV that acts as a hub to connect to the base 

station or to another layer, and a second UAV as a backup hub. The UAV clusters can be grouped 

two-dimensionally or in multiple layers in the three-dimensional space. A similar multi-layer 

approach is also presented in [33]. The architectures described in [30-33] can be synthesized by 

topology into the categories shown in Figure 2.3. 
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(a) Single cluster (mesh topology) (b) Multi-cluster (star-of-meshes topology) 

  
(c) 2D Multi-layer (mesh-of-meshes topology) (d) 3D Multi-layer (mesh-of-meshes topology) 

Figure 2.3: FANET topologies. 

2.3.2 Communication Channel 

The wireless channel, or radio channel, refers to the wireless communication medium through 

which signals are transmitted and received in wireless communication systems. The radio channel 

is a harsh environment that poses restrictions on any wireless communication system. Modeling it 

is a challenging task that depends on environmental factors, as well as on the specific application 

and its required level of detail. 
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A. Radio Channel Models 

In general, radio channel models are used to simulate the effects of the wireless channel on a 

transmitted signal, by taking into account the physical characteristics of the environment, the 

transmitter and receiver parameters, and the propagation mechanisms involved.  

The free space propagation model describes the attenuation or loss of signal strength as 

electromagnetic waves propagate through free space. In this model, the signal power decreases 

proportionally to the square of the inverse of the distance from the transmitter. The free space 

propagation model assumes an ideal scenario without any obstructions, diffraction, or reflection, 

making it a simplified representation used to estimate the signal strength in open-air environments. 

The log-normal propagation model is a statistical model used to describe the variability of signal 

strength in wireless communication. Unlike the free space propagation model, it considers the 

effects of obstacles, reflections, and diffraction, which can introduce random fluctuations in signal 

strength. The model assumes that the received signal strength follows a log-normal distribution, 

where the logarithm of the signal strength is normally distributed. This distribution captures the 

variability caused by multipath propagation and environmental factors. The log-normal 

propagation model is widely used in wireless system design, especially in scenarios where signal 

strength variations need to be accounted for, such as urban environments with buildings and other 

obstacles. 

Ray tracing can be considered a family of models that share the basic principle of tracing the path 

of electromagnetic waves as rays through a given environment. In a ray tracing model, the 

environment is divided into a number of discrete regions, each with its own set of physical 

properties such as refractive index, absorption coefficient, and reflection coefficient. The model 
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then traces individual rays through these regions, calculating the angle of reflection or refraction 

at each interface, as well as the amount of attenuation due to absorption. 

A list of channel models and their characteristics is presented in Table 2.2. Note that this is not an 

exhaustive list of radio channel models, and there may be variations in the equations depending on 

the specific implementation. 
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Table 2.2: Radio channel models and their characteristics. 

Model 
Propagation 

Effects 
Environment Equation / Output-Description 

Free space [34] Path loss Indoor/Outdoor 𝑃𝑟 = 𝑃𝑡𝐺𝑡𝐺𝑟 (
𝜆

4𝜋𝑑
)
2

 (2.1) 

Two-ray ground 

reflection [34] 

Path loss, 

reflection 
Outdoor 𝑃𝑟 =

𝑃𝑡𝐺𝑡𝐺𝑟(ℎ𝑡ℎ𝑟)
2

𝑑4
 (2.2) 

Log-distance 

[34] 
Path loss Indoor/Outdoor 𝑃𝑟 = 𝑃𝑡𝐺𝑡𝐺𝑟 (

𝜆

4𝜋𝑑0
)
2

(
𝑑0
𝑑
)
𝑛

 (2.3) 

Log-normal [34] 
Path loss, 

shadowing 
Indoor/Outdoor 𝑃𝐿(𝑑)[𝑑𝐵] = 𝑃𝐿(𝑑0) + 10𝑛 log (

𝑑

𝑑0
) + 𝑋𝜎 (2.4) 

Longley-Rice 

[34] 

Path loss, 

shadowing 
Outdoor The model operates in different modes  

Rayleigh [34] Fading Outdoor [35] 

Percentage of time that a signal is above a certain level. This 

model is a statistical model that describes the variation of the 

amplitude and phase of a signal due to multipath propagation. 

 

Rician [34] Fading Indoor [35] 

Percentage of time that a signal is above a certain level. This 

model is similar to the Rayleigh fading model but assumes that 

there is a dominant line-of-sight path in addition to the multipath 

components. 

 

WINNER II 
Path loss, 

shadowing, fading 

Indoor/Outdoor 
Comprehensive model  

ITU-R P.1238-

11 

Path loss, 

shadowing, fading 

Indoor 
Comprehensive model  

ITU-R P.1411-

11 

Path loss, 

shadowing, fading 

Outdoor 
Comprehensive model 

 

Ray Tracing 
Path loss, 

shadowing, fading 
Indoor/Outdoor Geometric model 
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B. Additional Considerations Applicable to FANETs 

Regarding large-scale propagation effects, FANETs have advantages over other types of mobile 

networks because of their ability to change altitude and move through a relatively less obstructed 

environment to achieve LoS or near LoS communications. However, FANET channel modeling 

presents additional conditions due to the mobility and variable altitude of the nodes involved. Some 

considerations should be made when modeling the FANET channel: 

• Doppler Shift: Due to the high speeds at which the FANET nodes move, there will be a 

significant Doppler shift in the transmitted signals for air-to-air, air-to-ground, and air-to-

satellite links. 

• Multipath: It affects mostly the ground receivers, since the effects of multipath are largely 

determined by the local environment around the receiving antenna. This is because the 

signal may be reflected on various surfaces in the local geometry, causing it to arrive at the 

antenna through multiple paths [36]. However, FANET nodes may encounter multipath 

components due to reflections and scattering from the ground, buildings, and other 

obstacles when their height is below the height of surrounding structures. 

• Shadowing: It is mostly generated by the environment surrounding the ground nodes. 

However, it has been shown that a fixed-wing aircraft body can self-induce shadowing on 

air-to-ground links while maneuvering [37]. 

• Variations from LoS to Non-line-of-sight (NLoS) Propagation: Due to the changes in 

position and altitude of FANET nodes, there may be a significant amount of time when the 

wireless links are NLOS. 

• Interference: FANET nodes may also experience interference from other sources, such as 

other FANET nodes or other wireless systems operating in the same frequency band. 
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In general, the channel model for FANET should be designed to capture the dynamic and complex 

nature of the wireless links in such a network, and can be based on a combination of empirical 

measurements and theoretical modeling. 

2.3.3 Low Power Wide Area Networks (LPWANs) 

LPWANs are wireless networks designed to provide long-range, low-power communication for 

IoT devices, such as sensors and smart meters. LPWANs use radio frequencies to transmit small 

amounts of data over long distances with low power consumption, and are ideal for applications 

that require long-range communication over a wide area, but do not require high bandwidth or low 

latency. Considering these characteristics, LPWANs and FANETs can complement each other in 

certain applications. 

LPWANs and FANETs can be used together to provide enhanced functionality. For example, 

LPWANs can be used to transmit sensor data from ground-based IoT devices to UAVs in a FANET 

for further processing and analysis. The UAVs can then use their mobility and communication 

capabilities to transmit the processed data to a ground station or cloud-based server for storage and 

analysis [38]. Another application where LPWANs and FANETs can be combined is precision 

agriculture [39]. In this application, ground-based IoT sensors can provide data on soil moisture, 

temperature, and other environmental factors, while UAVs in a FANET can provide aerial images 

and real-time data on crop health and growth. The data from both the ground-based sensors and 

the UAVs can be processed and analyzed to provide insights and recommendations for farmers to 

optimize crop yields and reduce waste. Moreover, both networks can be used jointly to provide 

location services or low-data-rate real time communications (such as text messaging) in disaster 

scenarios [38,40].  



19 

 

There are several competing LPWAN technologies that use unlicensed spectrum such as Ingenu, 

Weightless (W, N and P), SigFox, or LoRaWAN [10,12]. Among these, LoRaWAN is one of the 

most adopted, because of its relative simplicity and low cost [10,41]. 

The Third Generation Partnership Project (3GPP) develops LPWAN standards that operate in 

licensed bands, such as EC-GSM-IoT, Narrow Band IoT (NB-IoT), enhanced Machine Type 

Communications (eMTC) [42], and Massive Machine-Type Communications (mMTC), which is 

the current IoT specification in 5G (Releases 16 and 17) [43]. These specifications have managed 

to reduce costs and energy consumption but have not been able to reach the adoption levels of 

other LPWAN technologies [10,13]. 

2.4 LoRa 

LoRa is an LPWAN technology that operates at the physical layer and provides long-range 

communication at low data rates. LoRa and LoRaWAN are often mentioned interchangeably; 

however, though complementary, they are two different things. LoRa is a PHY layer proprietary 

technology owned by Semtech [44], while LoRaWAN is an open network protocol specification—

promoted by the LoRa Alliance—that uses LoRa as its physical layer but includes MAC and 

application layers [44,45]. LoRa uses a form of spread spectrum modulation called chirp spread 

spectrum (CSS) to achieve low power communications in the range of kilometers. 

2.4.1 CSS Modulation 

Chirp spread spectrum (CSS) is a modulation technique that was first introduced in the 1940s to 

be used in military radar applications during World War II [46]. In CSS modulation, the data signal 

is first converted into symbols, where symbols are made of chirps. Chirps are sinusoidal signals 

whose frequency increases or decreases linearly within a certain range, defined by the bandwidth, 

and at a certain rate, defined by the spreading factor as illustrated in Figure 2.4. 
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(a) Up chirp and down chirp 

 
(b) Sweep signal length 

Figure 2.4: Chirp spread spectrum (CSS) modulation. 

The modulation parameters are described next and summarized in Table 2.3. 

2.4.2 Frequency 

LoRa was conceived to transmit over unlicensed spectrum in industrial, scientific, and medical 

(ISM) bands. It currently operates in the 169 MHz, 433 MHz, 470 MHz, 490 MHz, 780 MHz, 

868 MHz, 915 MHz and 2.4 GHz bands [47], subject to national and regional regulations. 

2.4.3 Bandwidth (BW) 

Bandwidth is the frequency range over which the chirps vary. It can take any of ten values ranging 

from 7.8 kHz to 1625 kHz, depending on the chipset and frequency band [48-52]. 
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2.4.4 Spreading Factor (SF) 

The spreading factor represents the rate at which the frequency varies over the bandwidth. In other 

words, it defines the chirp (symbol) duration. The SF currently ranges from 5 to 12 [50-52] and 

the relationship between the SF value and the symbol duration is defined as follows: 

𝑇𝑠 =
2𝑆𝐹

𝐵𝑊[𝐻𝑧]
[𝑠], (2.5) 

where 𝑇𝑆 is the symbol duration. Reciprocally, the symbol rate can be defined as: 

𝑅𝑠 =
𝐵𝑊[𝐻𝑧]

2𝑆𝐹
[
𝑠𝑦𝑚𝑏𝑜𝑙𝑠

𝑠
]. (2.6) 

According to the LoRa design, SF also represents the number of modulated bits per symbol, 

through which we can obtain the modulated bit rate: 

𝑅𝑚 = 𝑆𝐹 × 𝑅𝑆 = 𝑆𝐹 ×
𝐵𝑊[𝐻𝑧]

2𝑆𝐹
[
𝑏𝑖𝑡𝑠

𝑠
]. (2.7) 

Considering that each symbol has the same duration, this tells us that the symbols are defined by 

the starting frequency of the chirp. 

2.4.5 Coding Rate (CR) Index 

LoRa implements forward error correction (FEC) by adding redundancy bits to every 4 bits of 

data. The number of redundancy bits is given by the CR index, which can go from 1 to 4. Thus, 

[46] defines the rate code (generally known as coding rate) as: 

𝑅𝑎𝑡𝑒 𝐶𝑜𝑑𝑒 =
4

4 + 𝐶𝑅
. (2.8) 

The coding rate and spreading factor are used to control the rate at which data is transmitted and 

the level of redundancy in the transmission. Higher coding rate index and spreading factor values 

yield a lower data rate, but a more robust transmission that is less susceptible to noise and 
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interference, thus resulting in a longer communication range. The data bit rate is the product of the 

modulated bit rate and the rate code, as follows: 

𝑅𝑏 = 𝑅𝑚 × 𝑅𝑎𝑡𝑒𝐶𝑜𝑑𝑒 = 𝑆𝐹 ×
𝐵𝑊[𝐻𝑧]

2𝑆𝐹
×

4

4 + 𝐶𝑅
[
𝑏𝑖𝑡𝑠

𝑠
]. (2.9) 

2.4.6 Transmission Power 

The transmission power can reach up to 22 dBm, depending on the chipset selection and power 

amplifier configuration [48-52]. 

Two of the key parameters behind LoRa modulation are SF and BW. The relationship between 

these two factors defines the signal’s data rate, range, and time on air. The higher the SF, the lower 

the transmission rate and the longer the range. Conversely, the lower the SF, the higher the 

transmission rate and the shorter the range. 

Table 2.3: Summary of LoRa modulation parameters. 

Parameter Magnitude/Range Chip Reference 

Frequency 

137 – 175 MHz SX1276/77/78/79 [48] 

410 – 525 MHz SX1276/77/78/79 [48] 

862 – 1020 MHz SX1276/77/79 [48] 

860 – 1020 MHz SX1272/73 [49] 

410 – 810 MHz SX1268 [50] 

150 – 960 MHz SX1261/2 [51] 

2.4 GHz SX1280/SX1281 [52] 

Bandwidth 

(BW) 

7.8 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51] 

10.4 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51] 

15.6 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51] 

20.8 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51] 

31.2 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51] 

41.7 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51] 

62.5 kHz SX1276/77/78/79, SX1268, SX1261/2 [48,50,51] 

125 kHz 
SX1276/77/78/79, SX1272/73, SX1268, 

SX1261/2 
[48-51] 

250 kHz 
SX1276/77/78/79, SX1272/73, SX1268, 

SX1261/2 
[48-51] 

500 kHz 
SX1276/77/78/79, SX1272/73, SX1268, 

SX1261/2 
[48-51] 

203 kHz SX1280/SX1281 [52] 
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Parameter Magnitude/Range Chip Reference 

406 kHz SX1280/SX1281 [52] 

812 kHz SX1280/SX1281 [52] 

1625 kHz SX1280/SX1281 [52] 

Spreading 

Factor (SF) 

5 SX1268, SX1261/2, SX1280/SX1281 [50-52] 

6 - 9 
SX1276/77/78/79, SX1272/73, SX1268, 

SX1261/2, SX1280/SX1281 
[48-52] 

10 - 12 
SX1276/78/79, SX1272, SX1268, 

SX1261/2, SX1280/SX1281 
[48-52] 

Coding Rate 

(CR) 

1 (4/5) 
SX1276/77/78/79, SX1272/73, SX1268, 

SX1261/2, SX1280/SX1281 
[48-52] 

2 (4/6) 
SX1276/77/78/79, SX1272/73, SX1268, 

SX1261/2, SX1280/SX1281 
[48-52] 

3 (4/7) 
SX1276/77/78/79, SX1272/73, SX1268, 

SX1261/2, SX1280/SX1281 
[48-52] 

4 (4/8) 
SX1276/77/78/79, SX1272/73, SX1268, 

SX1261/2, SX1280/SX1281 
[48-52] 

Transmission 

Power 

-4 to 20 dBm SX1276/77/78/79 [48] 

-1 to 20 dBm SX1272/73 [49] 

-17 to 22 dBm SX1268 [50] 

-17 to 22 dBm SX1261/2 [51] 

-18 to 12.5 dBm SX1280/SX1281 [52] 

2.4.7 LoRa Frame Format 

The LoRa specification also defines frame formats. As with any protocol data unit, frame formats 

are intended to allow communication between peer elements in a layered network, for which they 

separate the protocol control information (overhead) from the payload, in a standardized way. A 

LoRa frame consists of a preamble, a sync word, a header, the payload, and a cyclic redundancy 

check (CRC) [48-52], as shown in Figure 2.5. 

 
Figure 2.5: LoRa frame format 
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2.5 IEEE 802.11 

IEEE 802.11 is a set of standards that define the technology behind wireless local area networks 

(WLANs) [53]. These standards are commonly referred to as Wi-Fi and are used by devices to 

communicate with each other over a wireless network. The IEEE 802.11 standards specify 

different data rates, frequency bands, and modulation schemes that can be used to transmit data 

wirelessly between devices. Some of the most commonly used standards include 802.11a, 802.11b, 

802.11g, 802.11n, 802.11ac, and 802.11ax. A summary of IEEE 802.11 standards and their 

characteristics is presented in Table 2.4. 

Table 2.4: Summary of IEEE 802.11 standards and their characteristics. 

Standard 
Frequency 

Band 

Maximum 

Data Rate 
Modulation Techniques 

Medium 

Access 

Control 

Routing 

Protocols 

802.11a 5 GHz 54 Mbps OFDM CSMA/CA None 

802.11b 2.4 GHz 11 Mbps DSSS CSMA/CA None 

802.11g 2.4 GHz 54 Mbps OFDM, DSSS CSMA/CA None 

802.11n 2.4/5 GHz 600 Mbps MIMO-OFDM CSMA/CA None 

802.11ac 5 GHz 6.9 Gbps MIMO-OFDM CSMA/CA None 

802.11ax 2.4/5/6 GHz 9.6 Gbps MIMO-OFDM, MU-MIMO CSMA/CA None 

802.11p 5.9 GHz 27 Mbps OFDM CSMA/CA None 

802.11s 2.4/5 GHz Variable Variable CSMA/CA HWMP 

Note that the actual data rates that can be achieved on a wireless network will depend on a variety 

of factors, including the distance between devices, the presence of obstacles or interference, and 

the capabilities of the devices themselves. 

In addition to specifying data rates and frequency bands, the IEEE 802.11 standards also include 

provisions for security and quality of service (QoS). Security is provided through the use of 

encryption algorithms such as WEP, WPA, and WPA2, while QoS is used to prioritize different 

types of traffic on the network. 
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2.5.1 IEEE 802.11p 

IEEE 802.11p is a standard for wireless communication in vehicular environments, designed to 

support applications such as collision avoidance, traffic management, and infotainment systems in 

vehicles [54]. It operates in the 5.9 GHz frequency band, which has been set aside for this purpose 

by regulatory bodies in many countries. The maximum data rate for IEEE 802.11p is 27 Mbps, 

which is lower than some of the other IEEE 802.11 standards, but is still sufficient for many 

vehicular applications. The standard uses OFDM modulation, which allows for efficient use of the 

available bandwidth, and the CSMA/CA medium access control protocol, which is used in all the 

IEEE 802.11 standards. 

2.5.2 IEEE 802.11s 

IEEE 802.11s is a standard for wireless mesh networks, which allows multiple wireless access 

points to work together to create a single, seamless network. Unlike traditional Wi-Fi networks, 

where devices communicate directly with a single access point, wireless mesh networks allow 

devices to communicate with multiple access points in order to find the best path for data 

transmission. 

The 802.11s standard specifies the use of the Hybrid Wireless Mesh Protocol (HWMP) for 

managing the flow of data between different nodes on the mesh network. HWMP is inspired by 

AODV and performs routing at the link layer based on MAC addresses [55]. The maximum data 

rate for wireless mesh networks can vary depending on the number of nodes in the network and 

the quality of the wireless links between them. 

2.5.3 IEEE 802.11ax 

IEEE 802.11ax, also known as Wi-Fi 6, is the latest wireless networking standard that builds upon 

previous IEEE 802.11 standards, such as 802.11ac (Wi-Fi 5) and 802.11n. The goal of IEEE 
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802.11ax is to improve the speed, capacity, and overall performance of Wi-Fi networks, especially 

in dense environments with many devices competing for network resources [56].  

Some key features and benefits of IEEE 802.11ax include: 

1. Increased data rates: IEEE 802.11ax supports maximum data rates of up to 9.6 Gbps. 

2. Improved spectral efficiency: IEEE 802.11ax introduces a new modulation scheme called 

1024-QAM, which enables more efficient use of the wireless spectrum. It also supports 

narrower channel widths of 20 MHz, 40 MHz, and 80 MHz, which can help reduce 

interference between Wi-Fi networks. 

3. MU-MIMO: IEEE 802.11ax introduces Multi-User Multiple Input Multiple Output (MU-

MIMO) technology, which allows multiple devices to simultaneously communicate with 

the access point using multiple antennas. This increases network capacity and reduces 

latency, especially in environments with many devices. 

4. OFDMA: IEEE 802.11ax introduces Orthogonal Frequency Division Multiple Access 

(OFDMA), which divides a single Wi-Fi channel into multiple sub-channels to enable 

multiple users to transmit data simultaneously. This can help improve network efficiency 

and reduce latency. 

5. Target Wake Time (TWT): IEEE 802.11ax includes a new power-saving feature called 

TWT, which allows devices to schedule their wake-up times and communicate with the 

access point only when necessary. This can help extend battery life in devices such as 

smartphones and IoT devices. 

2.6 FANET Mobility 

FANET mobility is made possible through the use of advanced control systems and navigation 

technologies that allow UAVs to fly autonomously and maintain formation while communicating 
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with other nodes in the network. One of FANETs’ challenges is the high mobility of UAVs, which 

makes it difficult to maintain stable communication links between them. However, this ability to 

move with a relatively higher level of freedom than other forms of MANET can be seen as an 

opportunity instead of a problem, where nodes can move and reposition themselves to reconfigure 

a network or to recover connectivity. In this section, the FANET mobility issue is broken down 

into mobility objectives, mobility models, and the optimization approach to the mobility problem. 

2.6.1 Mobility objectives 

Mobility objectives can be described as optimization problems that are dependent on various 

factors such as: application, environmental conditions, and available resources. Optimization 

techniques can be useful in achieving the following objectives: 

1. Optimal positioning: Where to go and why. 

2. Optimal trajectory determination: How to get there and why. 

3. Optimal agent selection: Which UAVs should get there and why. 

Regardless of the specific application, a common requirement for FANETs is to maximize network 

uptime, in the literal and figurative senses of the expression. 

2.6.2 Mobility models 

A mobility model is a mathematical model that describes the movement patterns of the nodes in a 

network over time. Mobility models can be used to model movement for FANET simulation and 

to achieve mobility optimization goals in practical implementations. In most of the research, 

mobility models are used to simulate UAV movement in order to assess communication protocols 

performance, but less have been used as a way to achieve coordinated motion in order to 

accomplish a common objective. 
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Selecting a specific model depends, among other factors, on the application, on the required level 

of detail, and on the type of UAV to be used, considering that not every type of UAV can perform 

the same kind of movements. A summary of different mobility models presented in [25-27] is 

provided next: 

• Random Walk Model: The Random Walk model is one of the simplest mobility models 

used for FANETs. In this model, the UAVs move in any direction with a constant velocity. 

The direction of the UAVs' movement is determined randomly at each step. This model 

assumes that the UAVs move independently of each other and that there are no external 

factors affecting their movement. 

• Random Waypoint Model (RWP): The Random Waypoint model is another widely used 

mobility model for FANETs. In this model, the UAVs move in straight lines from one point 

to another, with varying velocities. The direction and speed of the UAVs' movement are 

chosen randomly. When the UAVs reach their destination, they pause for a random amount 

of time before moving on to the next destination. This model is useful for simulating 

mission-based scenarios, where the UAVs must reach specific waypoints. 

• Gauss-Markov (GM): In this stochastic model, each UAV has a speed and a direction. The 

speed and direction are updated at each time step, based on a random process. The direction 

is chosen randomly from a uniform distribution over the range of 0 to 2π radians. The speed 

of the UAVs follows a first-order autoregressive process, meaning that it depends on its 

previous speed and a random error. 

• Mission Plan (MP): This deterministic model is based on pre-defined flight plans or routes 

that are created before the UAVs are deployed. The Mission Plan mobility model is often 

used in military and surveillance applications, where the UAVs are required to fly specific 



29 

 

routes to collect data or perform other tasks. One limitation of the Mission Plan mobility 

model is that it does not capture the unpredictability and randomness of real-world mobility 

patterns. 

• Semi-Random Circular Movement (SRCM): In this model, the UAVs move in circular 

patterns around a fixed center point. In the SRCM mobility model, the UAVs move along 

arch trajectories with a radius that varies randomly. 

• Paparazzi Mobility Model (PPRZM): This stochastic model is named after the Paparazzi 

UAV project, which is an open-source autopilot system used in FANETs [57]. PPRZM is 

based on a state machine with five possible states or movement patterns: Eight-figure, Stay-

at, Waypoint, Oval, and Scan, where each type of movement has a different probability of 

occurrence. 

• Reference Point Group Mobility (RPGM) model: In this stochastic group mobility model, 

UAVs form clusters. Each cluster has a central reference point that can be logical, or a 

UAV selected as cluster head. The reference point moves using an RWP model, while the 

other UAVs within the cluster move around the center. 

2.7 Optimization Approach to the Mobility Problem 

Optimization is the process of improving a system, process, or design in order to maximize its 

efficiency. It is an essential concept in various fields, including engineering, economics, finance, 

computer science, and management. The goal of optimization is to find the best possible solution 

to a problem while satisfying certain constraints. The first step in this process is to identify the 

objective and a way to measure it quantitatively. The next step is to identify the variables on which 

the objective depends, also called unknowns. As the objective is a function of the variables, it is 

also called objective function. In some cases, the variables are subject to constraints, and 
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identifying those constraints is the third step. Constraints are the limitations or restrictions that 

must be considered when developing a solution. These constraints place limitations on the values 

that the variables can take, and they are typically specified by equality or inequality relationships. 

These first three steps are known as model development or modelling [58]. 

Once the model has been developed, the next step is to find a solution. The solution is the value or 

set of values that the variables can take that maximize or minimize the objective function. This 

involves using various optimization techniques to find the best possible solution that satisfies the 

objectives and constraints. Optimization techniques could include linear programming, nonlinear 

programming, dynamic programming, and heuristic methods. 

The optimization approach can be applied to FANET mobility by defining an objective that is a 

function of the UAVs’ positions. Ideally, the solutions will be the positions that minimize or 

maximize the objective function. Furthermore, the mechanism employed to find the solution or 

solutions can provide locations to dynamically position the UAVs. As in many other fields, some 

FANET problems may present multiple conflicting objectives. In such cases, the optimal solution 

must achieve a suitable trade-off between these objectives. 

2.7.1 Global and Local Optimization 

Global optimization refers to finding the best possible solution within the entire search space. This 

search space can be very large, and finding the optimal solution can be very challenging. Global 

optimization algorithms try to explore a large part of the search space in order to identify the global 

optimum, using techniques such as random search, genetic algorithms, or simulated annealing. 

However, these methods may require significant computational resources, and they are not always 

guaranteed to find the global optimum.  
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In some cases, it is good enough to find only a local solution, which is a solution that is optimal 

within a limited region of the search space or in the vicinity of a current solution. Local solutions 

are typically not globally optimal, meaning that they are not necessarily the best possible solution 

for the entire search space. Instead, they are the best possible solution within the specific 

neighborhood that the local optimization algorithm is exploring. 

2.7.2 Single-Objective and Multiobjective Optimization 

Single-objective optimization is an optimization problem that involves finding the best solution to 

a problem by optimizing a single objective function. In other words, it seeks to minimize or 

maximize a single objective. 

Alternatively, multiobjective optimization is an optimization problem that involves finding the 

best solution to a problem by optimizing multiple objectives simultaneously. In this case, the 

objective functions are usually conflicting and cannot be optimized independently at the same 

time, so the goal is to find a set of solutions that achieve a reasonable trade-off between the 

objectives. Multiobjective optimization problems have also multiple solutions [59]. 

2.7.3 Single-Solution and Multiple-Solution Optimization 

Single solution optimization is an optimization problem where only one solution is required for a 

single objective function. 

In contrast, multiple-solution optimization is an optimization problem where multiple solutions 

may satisfy the objective function or multiple objective functions simultaneously. The goal is to 

find a set of optimal solutions that represent a trade-off between the different objectives. Multiple 

solution-optimization is commonly used in problems where the objective function has multiple 

local minima or maxima, or where multiple objectives need to be satisfied. 
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2.7.4 Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is an optimization algorithm that was inspired by the social 

behavior behind the coordinated flight of a flock of birds [60,61]. It works by simulating a swarm 

of particles that move in a search space to find the optimal solution. Each particle in the swarm 

represents a potential solution, and its position in the search space is adjusted according to its own 

previous best solution and the best solution found by all the particles in the swarm. The equations 

that govern PSO are: 

𝑣𝑖(𝑡 + ∆𝑡) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1( 𝑝𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔 − 𝑥𝑖(𝑡)), (2.10) 

where 𝑣𝑖(𝑡) is the velocity of the i-th particle at time t, w is the inertia weight, 𝑝𝑖 is the personal 

best position (pbest) of the i-th particle, 𝑥𝑖(𝑡) is the current position of the i-th particle at time t, g 

is the global best position (gbest), 𝑐1 and 𝑐2 are the cognitive and social learning parameters, and 

𝑟1 and 𝑟2 are random numbers between 0 and 1. 

𝑥𝑖(𝑡 + ∆𝑡) = 𝑥𝑖(𝑡) + ∆𝑡 ∙ 𝑣𝑖(𝑡 + ∆𝑡), (2.11) 

where 𝑥𝑖(𝑡 + ∆𝑡) is the updated position of the i-th particle at time 𝑡 + ∆𝑡. 

The algorithm starts with randomly initializing the positions and velocities of the particles in the 

search space. Then, for each iteration, the velocity and position of each particle are updated based 

on the equations above. The personal best position of each particle is updated if a better solution 

is found, and the global best position is updated if a particle finds a better solution than the current 

global best. The algorithm continues until a stopping criterion is met, such as a maximum number 

of iterations or a desired level of fitness. 
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2.8 Related work 

There has been a significant amount of research in FANETs in recent years, addressing various 

challenges and issues related to their operation. Researchers have proposed various protocols and 

algorithms for efficient routing, data dissemination, and coordination among UAVs. These 

protocols and algorithms are intended to optimize the performance of the network while 

minimizing the energy consumption and maximizing the network lifetime. 

2.8.1 FANET Architectures Involving LoRa or LoRaWAN 

Regarding the use of LoRa or LoRaWAN, most works refer to UAV-aided wireless sensor 

networks (WSNs) with single or independent UAVs [62-69]. WSNs are sets of sensors that 

communicate with each other by forming an ad hoc network. By this definition, WSNs can be 

considered a subset of IoT. However, even though WSNs and FANETs have a mesh nature in 

common, a WSN aided by a single UAV is not considered a FANET by the definition presented 

at the beginning of this chapter. 

2.8.2 FANET Mobility 

Reference Point Group Mobility (RPGM) is used as the mobility model for performance 

evaluations in [70], which are carried out through simulations in Network Simulator (NS)-3. These 

simulations show that the inclusion of an RSSI-based factor results in an improvement in network 

throughput and a decrease in the number of route changes, with little to no impact on end-to-end 

delay, especially for a mobile scenario. 

An algorithm to find the optimal position of a UAV-mounted relay node is presented in [71] to 

maximize the throughput between any pair of fixed ground nodes within a wireless mesh network. 

To achieve this, nodes —whose positions are known— are first clustered in a way so that nodes 

that connect within a certain RSSI margin are part of the same cluster. Then, the placement 
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optimization is performed by separating the positioning problem into horizontal and vertical 

placement and iterating between the two. For the horizontal placement, clusters are considered 

single entities around their center of gravity, and the UAV is positioned to maximize throughput 

—as a function of signal-to-noise ratio— for the worst wireless link. Subsequently, vertical 

positioning is determined to maximize throughput in the same manner. As this work focuses on 

static mesh networks, routing is done by means of an optimized link state routing protocol (OLSR). 

Simulations for up to 20 ground nodes are implemented using a 3D map. Also, an experimental 

performance assessment is presented with four ground nodes separated into two clusters of two 

nodes each. 

Concerning mobility models in FANETs that use LoRa, a Connection Recovery and Maintenance 

algorithm (CRM) is proposed in [38,72], where a two-dimensional mobility problem is divided 

into four mobility modes. A Virtual Spring Force (VSF) mobility algorithm is used to handle 

proximity between nodes to avoid collisions and to maintain distance within communications 

range. Correspondingly, if the forces are in balance, the UAV goes into stationary mode. Then, if 

a path to the base station is lost, the UAV goes into network recovery mode, where it moves in the 

direction of the base station; and, if the connection is lost with a ground node, movement prediction 

is used alongside the spring force mobility to try to reestablish it, based on the ground node’s last 

known position, direction, and speed. 

A two-phase particle swarm mobility model (PSMM) is proposed in [73] to generate fixed 

waypoint trajectories that allow UAVs to maintain a stable formation in a swarm during a certain 

simulation time. In the first phase, a variation of PSO is employed to determine each UAV’s next 

waypoint. The proposed PSO algorithm excludes the personal component and uses the swarm’s 

center of gravity at each time step as the global best position for the social component. In the 
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second phase, the previously generated waypoints are evaluated for excessive closeness and 

adjusted to avoid collisions, while maintaining formation. The algorithm performance is compared 

with those of RPGM, Manhattan, and RWP in terms of spatial correlation, temporal correlation, 

and path availability. 

In [74], the authors propose a PSO-based algorithm for dynamic positioning of UAVs in wireless 

sensor networks (WSNs). The proposed algorithm is intended to optimize the placement of UAVs 

to collect information from a set of ground sensors located at previously known positions and 

transmit the collected information to a ground base station. The problem is considered as a 

constrained, multiobjective optimization, where the algorithm dynamically adjusts the position of 

the UAVs based on three factors: the value of their collected sensory information, the quality of 

the sensor-ground base station communications path, and the existence of a path from each UAV 

to the ground base station. The objective function, which is evaluated at the ground base station, 

is defined as the product of the three factors for each UAV, and aggregated for all UAVs. The PSO 

algorithm is also executed at the ground base station in a centralized manner. As opposed to the 

study in [73], this work does not consider each particle to be a UAV, but a set of candidate positions 

for each UAV. Therefore, the number of particles is not necessarily equal to the number of UAVs 

and is, in fact, larger. It can be observed that an entire PSO simulation is executed at the base 

station before actually transmitting new positions to the UAVs. Additionally, it is assumed that 

every UAV will have a path to the control station at each new optimal position. Given the 

centralized nature of the proposed algorithm, in the case of a real implementation, if such path 

does not exist, the UAV would become isolated and potentially lost. Finally, a link state routing 

algorithm is applied to establish a path from a set of ground sensors to a ground base station, 

through the UAVs in the FANET.  
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Chapter 3 

3 Simulation Framework Development 

 

One of FANETs applications is to provide communication coverage over a wide area. These 

networks can be used to provide seamless coverage in scenarios where ground-based 

communication infrastructure is unavailable or unreliable, such as in disaster response, military 

operations, or remote areas. Seamless coverage refers to the provision of uninterrupted 

communication coverage even when devices move in and out of each other's range 

[29,38,39,72,75,76]. This is achieved through the use of multi-hop communication, where UAVs 

act as relays to forward data packets between nodes that are out of range of each other. As a UAV 

moves out of range of one node, it automatically connects to the nearest available node and 

continues to provide communication coverage. This ensures that the network maintains its 

coverage even as UAVs move around or are added or removed from the network. 

This chapter focuses on the development of a simulation framework for a scenario where seamless 

coverage of ground sensor nodes is achieved through mobility optimization. The model has been 

implemented in MATLAB R2022a, using the UAV and WLAN toolboxes taking communications 

and mobility into consideration. The MATLAB main script is included in APPENDIX A. The 

remainder of the chapter is organized as follows: The architecture of the proposed network is 

discussed in Section 3.1. Section 3.2 deals with the considerations and assumptions that have been 

made for the simulation. Section 3.3 provides the definition of the objective function followed by 

Section 3.4, in which the mobility and the implementation of the PSO algorithm are discussed. 

Finally, Section 3.5 presents additional details on the model configuration and a summary of the 

simulation parameters. 
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3.1 System Architecture 

From the communications perspective, the system follows a single-cluster mesh topology as 

described in Figure 2.1. The network is composed of two layers: (i) the ground layer consisting of 

ground nodes and a control station, and (ii) the air layer consisting of a swarm of UAVs, 

specifically quadrotor drones., as illustrated in Figure 3.1. 

 
Figure 3.1: System architecture. 

The UAVs communicate with the ground nodes using Wi-Fi, as it is a more ubiquitous technology 

among end users. On the other hand, the UAVs communicate with each other using LoRa or Wi-Fi 

technologies. The network elements are described next: 

• Ground nodes: User equipment with Wi-Fi transceivers. 

• UAVs: Quadrotor drones equipped with Wi-Fi and LoRa transceivers. 

• Control station: In the simulation environment, it is intended to receive information from 

the ground nodes that has been relayed through the UAV FANET. 
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3.2 Considerations and Assumptions 

The following general assumptions are made while the simulation framework: 

• The ground nodes are at static positions inside a square grid during the simulation. 

• The UAV flight dynamic model is limited to changes in position and velocity. 

• The ground nodes’ x and y coordinates are independent random variables uniformly 

distributed along their respective axes.  

• The control station is at a fixed position. 

• A flat earth model is implemented, considering that the maximum separation between 

UAVs and ground nodes will not exceed a few tens of kilometers [34]. 

• The simulation time step (Δt) is set to 1 s. 

• For radio propagation analysis, the UAVs ae assumed to be stationary at each time step. 

• Wi-Fi nodes and access points (APs) are previously associated, meaning that the nodes 

have established a connection to the APs in the past. 

• UAVs within range of each other can share their positions and their received power levels. 

• PSO random factors 𝑟1 and 𝑟2 are uniformly distributed numbers between 0 and 1. 

• Communication is engaged once the UAVs have attained stable positions. 

Further considerations regarding communications are described in the following subsections. 

3.2.1 Communications 

As the objective function is built on received power and other communications parameters, this 

section elaborates on concepts that will be used for further improvement of the objective function. 
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A. Physical Layer 

The physical layer relies on IEEE 802.11ax, also known as Wi-Fi 6, and LoRa protocols. Both 

protocols will be considered as defined by their standardization body and provider, respectively. 

Therefore, this section will focus on the propagation model that will be used to calculate the 

received signal levels from the ground nodes and from other UAVs at each UAV. Moreover, the 

ground-to-air and air-to-air received signal levels will be used subsequently to define and evaluate 

the objective function for the optimization algorithm. 

The path loss models include many empirical parameters. However, they all share the form of a 

log-distance path model with shadowing, which is a form of log-normal propagation. Therefore, 

for the purpose of the proposed model, the following large-scale propagation models are 

implemented: free space path loss, ray tracing, and log-normal path loss with parameters for a rural 

environment. In all cases, the path loss can be described using the general form of the log-normal 

shadowing model shown in Equation (2.4). The path loss is used to calculate the received power 

level at each UAV in dBm according to Equation (3.1): 

𝑅(𝑥𝑖)𝑗[𝑑𝐵𝑚] = 𝑃𝑇𝑗[𝑑𝐵𝑚] + 𝐺𝑡[𝑑𝐵] + 𝐺𝑟[𝑑𝐵] − 𝑃𝐿(𝑑𝐴2𝐺)[𝑑𝐵] (3.1) 

where 𝑅(𝑥𝑖)𝑗[𝑑𝐵𝑚] is the signal power received by UAV i, at time t, and position 𝑥𝑖, from the j-

th ground node; 𝑃𝑇𝑗 is the transmission power from ground node j; 𝐺𝑡 and 𝐺𝑟 are the transmission 

and reception antenna gains, respectively; and 𝑃𝐿(𝑑𝐴2𝐺) is the path loss over the distance between 

UAV i and ground node j. 

B. Routing 

Once a ground node has been found, a communication path to the control station must be 

established. For this, a mechanism to find the shortest path between the UAV covering the source 
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ground node and the control station is needed. Since all received power levels in mW are positive, 

Dijkstra’s algorithm can be implemented [77]. Here, the UAVs are considered vertices and the 

connections between them are edges in a graph. The graph is characterized by an adjacency matrix 

that represents the costs between nodes. Initially, a matrix is generated to record the received power 

levels at each node, accounting for interactions with all other nodes. An edge is established 

between two vertices if the received power level exceeds the defined receiving threshold. When 

there is no connecting edge between two vertices, the cell value is set to infinity, ∞. In the next 

step, the adjacency matrix is constructed, treating all edges linking two vertices as having a 

uniform cost of one. As a result, the graph becomes unweighted. Furthermore, as the transmission 

and reception parameters are the same for all nodes, this approach makes the graph undirected. 

However, if different propagation parameters were to be used for each node, the procedure is the 

same as before but would result in a directed graph. 

The implementation of Dijkstra’s algorithm in MATLAB code is available on [78] under a General 

Public License (GNU) v3.0 and presented in APPENDIX B. The function Dijkstras receives the 

adjacency matrix, G, the source node, S, and the target node, T, as inputs, while it returns a shortest 

path vector and its cost as outputs. The shortest path vector is a sequence of the traversed nodes, 

starting at the source node and ending at the target node.  If there is no valid path from the source 

node to the target node, the returned path is an empty vector with infinite cost. 

For the purposes of this model, the nodes have full knowledge of the network, making the 

described approach a case of link state routing. 

3.3 Definition of the Objective Function 

Initially, the objective function is formulated as the sum of the received power levels from the 

ground nodes that exceed a certain threshold, in this case, the sensitivity of the UAV's Wi-Fi 
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receiver. Additionally, if there are no signals whose power is above the threshold, the function 

takes the maximum value among all the signals from the ground nodes. The objective function of 

UAV i, at position 𝑥𝑖, 𝑓(𝑥𝑖)), is evaluated at each UAV, at every simulation step, according to 

Equation (3.2): 

𝑓(𝑥𝑖) =

{
 
 

 
 
∑{

𝑅(𝑥𝑖)𝑗, 𝑅(𝑥𝑖)𝑗 ≥ 𝜏

0, 𝑅(𝑥𝑖)𝑗 < 𝜏

𝑛

𝑗=1

 , |𝐴| > 0

max
1≤𝑗≤𝑛

𝑅(𝑥𝑖)𝑗 ,                                       |𝐴| = 0

 (3.2) 

where n is the number of ground nodes, 𝑅(𝑥𝑖)𝑗 is the received power level from the j-th ground 

node, and A is the set of 𝑅(𝑥𝑖) values above the threshold τ: 

𝐴 = {𝑅(𝑥𝑖)|𝑅(𝑥𝑖) ≥ 𝜏}. (3.3) 

Note that |A| represents the number of elements—or cardinality—of set A in Equation (3.2). 

As it can be inferred from Equations (2.1)-(2.3), the received power levels vary exponentially with 

the distance between transmitter and receiver. Therefore, there are situations where adding the 

received power levels from multiple ground nodes above the threshold does not necessarily 

improve the objective function value, when compared to a position closer to a single node. This is 

because the received power level from a single node at a closer distance can be significantly higher 

than the sum of the received power levels from multiple nodes, even if they are individually above 

the threshold. To improve the value of the objective function when more than one node is covered, 

an exponential reward factor was introduced as described in Equation (3.4). 
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𝑓(𝑥𝑖) =

{
 
 

 
 
2|𝐴|−1∑{

𝑅(𝑥𝑖)𝑗, 𝑅(𝑥𝑖)𝑗 ≥ 𝜏

0, 𝑅(𝑥𝑖)𝑗 < 𝜏

𝑛

𝑗=1

 , |𝐴| > 0

max
1≤𝑗≤𝑛

𝑅(𝑥𝑖)𝑗 ,                                                   |𝐴| = 0

 (3.4) 

where A remains as defined in Equation (3.3). 

The base-2 exponential factor achieves an improvement of the objective function. However, it 

does not adapt well to large changes in grid size, as the aggregated received power levels at each 

UAV are dependent on grid size and ground node density. If the gain value is too low, the UAVs 

might return to the previous best position with a single covered ground node, even if they find 

more than one ground node at a different position. Conversely, if the factor is too high, the UAV 

might find many ground nodes but become isolated from the swarm and the control station. 

Therefore, it is essential to improve the value of the objective function when more than one ground 

node is located so that it is comparable to or better than the one obtained when a single ground 

node is found. It can be observed from Equation (2.1) that the improvement factor should be 

proportional to the distance that separates two points on the grid: the point where the UAV locates 

more than one ground node and a position where it finds only one node from which it receives a 

signal with a substantially higher power. As the ground node positions are unknown for the UAVs, 

the average distance between any two points on a square grid has been derived according to the 

approach depicted in Figure 3.2. 
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(a) Distance using the points’ coordinates (b) Distance using the legs of a right triangle 

Figure 3.2: Approaches to distance calculation between two points in a square grid of side l. 

The approach illustrated in Figure 3.2(a) involves solving four iterated integrals of the distance as 

a function of four uniform random variables, namely, x1, x2, y1, and y2, which is a long and 

demanding task. Using the approach shown in Figure 3.2(b), the required distance d is equal to  

√𝑥2 + 𝑦2. This value must be weighted by the average remaining length in each axis, which is  

(𝑙 − 𝑥) horizontally and (𝑙 − 𝑦) vertically. Consequently, the average distance between any two 

points becomes the quotient of two iterated integrals of functions of two variables: 

�̅� =
∫ ∫ (𝑙 − 𝑥)(𝑙 − 𝑦)(√𝑥2 + 𝑦2)𝑑𝑥𝑑𝑦

𝑙

0

𝑙

0

∫ ∫ (𝑙 − 𝑥)(𝑙 − 𝑦)𝑑𝑥𝑑𝑦
𝑙

0

𝑙

0

 (3.5) 

�̅� =

2 + √2 + 5 ln(1 + √2)
60

𝑙5

𝑙4

4

  

�̅� =
2 + √2 + 5 ln(1 + √2)

15
𝑙 ≅ 0.5214𝑙  

The integration of the numerator was carried out for indefinite integrals using the online tool 

Wolfram Alpha [79], but the resulting functions were manually evaluated by the author at each 
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iteration. The result shows that the expected distance between any two uniformly distributed points 

on a square grid is dependent on the grid size only and not on the number of ground nodes, which 

is convenient for the proposed scenario, as the grid size is known for the UAVs, but the number 

of ground nodes is not. However, the effective distance is that between the UAV and a ground 

node. Thus, the UAV height must be accounted for, as shown in Figure 3.3.  

 
Figure 3.3: Air-to-ground distance at height h for the expected ground-to-ground distance d. 

As power decays by a quadratic exponent in free space, the rewarding factor for finding more than 

one ground node must play an inverse role, on account of which, the updated reward factor plays 

the role of a gain. Thus, Equation (3.5) is modified as Equation (3.6) given below: 

𝑓(𝑥𝑖) =

{
 
 
 

 
 
 𝐺𝑚𝑛∑{

𝑅(𝑥𝑖)𝑗 , 𝑅(𝑥𝑖)𝑗 ≥ 𝜏

0, 𝑅(𝑥𝑖)𝑗 < 𝜏

𝑛

𝑗=1

 , |𝐴| > 1

∑{
𝑅(𝑥𝑖)𝑗,                  𝑅(𝑥𝑖)𝑗 ≥ 𝜏

0,                           𝑅(𝑥𝑖)𝑗 < 𝜏

𝑛

𝑗=1

 , |𝐴| = 1

max
1≤𝑗≤𝑛

𝑅(𝑥𝑖)𝑗 ,                                                |𝐴| = 0

  

𝐺𝑚𝑛 = (0.5214𝑙)2 + ℎ2 

(3.6) 

where 𝐺𝑚𝑛 is the gain applied to the objective function for finding multiple nodes, and A remains 

as defined in Equation (3.3). 
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This approach turns out to be convenient, as it does not depend on ground node density, which is 

an unknown value for the UAVs, but only depends on the grid size and UAV height, which are 

indeed known values for the drone at any moment. 

3.3.1 Multiobjective Optimization 

The main goal of this research work is to maximize the ground node coverage, as well as to 

maintain end-to-end communication with the control station through the UAV mesh network. 

Increasing coverage without maintaining communication to the distant control station would 

oppose the whole purpose of a FANET. Therefore, it is crucial to balance the competing objectives 

and handle the research problem using multiobjective optimization. This has been achieved by 

using a method that rewards or penalizes the objective function based on its behavior relative to 

the multiple problem objectives.  

The gain applied to the objective function in Equation (3.6) is large because it accounts for the 

exponential decay of the received power level with distance. If the optimization process is 

performed solely based on the objective of finding more than one ground node without considering 

the need for maintaining communication with the control station, the UAVs that do discover 

multiple nodes may end up isolated if those nodes are located beyond the air-to-air range of the 

UAV. If a similar compensating gain is applied independently when a communication path to the 

control station is established, then the two objectives become conflictive and is difficult to 

distinguish when one will overcome the other. 

A hint to a possible solution is provided in the very problem formulation: maximize coverage to 

as many ground nodes as possible while maintaining communication with the control station. This 

means that both objectives should be achieved concurrently. Therefore, the gain described in 

Equation (3.6) should only be applied if there is a path to the control station as defined by the 
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procedure explained in Section 3.2.1. Additionally, a reward factor should still be applied to the 

function if a UAV covers more than one ground node as defined in Equation (3.4). After including 

these considerations, the objective function is defined by Equation (3.7). 

𝑓(𝑥𝑖) = 𝐺(𝑝𝑒)

{
 
 

 
 
2|𝐴|−1∑{

𝑅(𝑥𝑖)𝑗 , 𝑅(𝑥𝑖)𝑗 ≥ 𝜏

0, 𝑅(𝑥𝑖)𝑗 < 𝜏

𝑛

𝑗=1

 , |𝐴| > 0

max
1≤𝑗≤𝑛

𝑅(𝑥𝑖)𝑗 ,                                                   |𝐴| = 0

 

𝐺(𝑝𝑒) = {
(0.5214𝑙)2 + ℎ2, 𝑝𝑒 = 1

1, 𝑝𝑒 = 0
, 

(3.7) 

where 𝑝𝑒 is equal to 1 if there is a path from UAV i to the control station and 0 if there is not, and 

A remains as defined in Equation (3.3). 

Further, a linear penalty/reward approach was introduced to maintain the UAVs within a desirable 

range from each other. In this approach, a factor was included in the objective function to reward 

or penalize it according to the distance between UAVs, where excessive closeness is penalized 

according to proximity ranges, as illustrated in Figure 3.4. 

 
Figure 3.4: Proximity ranges between UAVs. 

The proximity ranges are defined by the maximum communication distance between UAVs, 

which, in turn, is defined by the receiver sensitivity. From Equation (2.1), it follows that the 

received power level increases by approximately 6 dB—for a quadratic path loss exponent—every 
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time the distance between two UAVs halves. Therefore, the received power level at a fractional 

distance can be calculated as a function of the receiver sensitivity and the power increment in dB. 

Furthermore, it can be used as a measure of proximity without the need to calculate the maximum 

distance or determine the exact distance between UAVs, which may be convenient when exact 

positions are not available. The objective function, with the additional proximity avoidance 

consideration, is defined in Equation (3.8): 

𝑓′(𝑥𝑖(𝑡)) = 𝑓(𝑥𝑖)∏

{
 
 

 
 
𝑎,                          𝜏 ≤ 𝑅′(𝑥𝑖(𝑡))𝑗[𝑑𝐵𝑚] < 𝜏 + 6 𝑑𝐵

𝑏, 𝜏 + 6 𝑑𝐵 ≤ 𝑅′(𝑥𝑖(𝑡))𝑗
[𝑑𝐵𝑚] < 𝜏 + 18 𝑑𝐵

𝑐,                              𝜏 + 18 𝑑𝐵 ≤ 𝑅′(𝑥𝑖(𝑡))𝑗[𝑑𝐵𝑚]

𝑑,                                         𝑅′(𝑥𝑖(𝑡))𝑗[𝑑𝐵𝑚] < 𝜏

𝑁

𝑗=1

, 

𝑎 = 1, 𝑏 =
3

4
, 𝑐 =

1

4
, 𝑑 = 1. 

(3.8) 

where N is the number of UAVs, 𝑅′(𝑥𝑖(𝑡))𝑗 is the received power level from the j-th UAV at time 

t expressed in dBm, 𝜏 is the receiver sensitivity, and 𝑓(𝑥𝑖) remains as defined in Equation (3.7). 

In this case, 𝑓′(𝑥𝑖(𝑡)) is a function of position and time since the UAVs are dynamic as opposed 

to the ground nodes. 

Constant a takes a value of 1 because the range shown in green color in Figure 3.4 does not require 

a reward. The value of constant b is set to 0.75 as it corresponds to three fourths of the distance 

subject to penalty, while constant c takes a value of 0.25 to impose a penalty on being within the 

closest quarter of the distance subject to penalty. Constant d takes a value of 1 because if it were 

smaller, it would penalize not having a connection between each pair of UAVs. Furthermore, it is 

not necessary to penalize not having a connection between each pair of UAVs, as having a 

communication path to the control station is already being rewarded. In other words, constants a 
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and d are set to 1 because forming a full mesh does not need to be rewarded and not forming it 

does not need to be penalized. As a result of implementing this feature, the UAVs avoid being too 

close to each other when they approach convergence. This does not seem to guarantee collision 

avoidance though, as the solution algorithm does not replace previous personal or group best 

values that draw a UAV to the positions where those values were recorded. Nonetheless, a velocity 

constraint could be applied to limit speed if the received signal power from other UAV keeps 

increasing over a certain time interval. 

A final consideration is made to safeguard the overall connection to the control station: UAV1 is 

rewarded or penalized correspondingly to its distance to the control station, as defined in Equation 

(3.9). 

𝑓′′(𝑥1(𝑡)) =

{
 

 
𝑎′ ∙ 𝑓′(𝑥1(𝑡)),                          𝜏 ≤ 𝑅

′(𝑥1)𝑐𝑠[𝑑𝐵𝑚] < 𝜏 + 6 𝑑𝐵

𝑏′ ∙ 𝑓′(𝑥1(𝑡)), 𝜏 + 6 𝑑𝐵 ≤ 𝑅′(𝑥1)𝑐𝑠[𝑑𝐵𝑚] < 𝜏 + 18 𝑑𝐵

𝑐′ ∙ 𝑓′(𝑥1(𝑡)),                              𝜏 + 18 𝑑𝐵 ≤ 𝑅′(𝑥1)𝑐𝑠[𝑑𝐵𝑚]

𝑑′ ∙ 𝑓′(𝑥1(𝑡)),                                                𝑅
′(𝑥1)𝑐𝑠[𝑑𝐵𝑚] < 𝜏

 

𝑎′ = (0.5214𝑙)2 + ℎ2, 𝑏′ =
3

4
, 𝑐′ =

1

4
, 𝑑′ =

1

4
. 

(3.9) 

where 𝑓′(𝑥1(𝑡)) is the value of the objective function defined in Equation (3.8) for UAV1, and 

𝑅′(𝑥1(𝑡))𝑐𝑠 is the received power level at UAV1 from the control station in dBm. 

Constants b’ and c’ are established with the same consideration as in Equation (3.8). Constant d’ 

penalizes excessive distance between UAV1 and the control station in the same amount used to 

penalize excessive closeness. The value of a’ is set high to guarantee that UAV1 remains within 

the best range from the control station. This feature also improves convergence time for the entire 

swarm. 
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3.3.2 Problem Formulation 

In the proposed scenario, the problem is to determine the positions of the UAVs in a way that 

maximizes coverage to a series of ground nodes with unknown positions, while providing a 

communication path from the covered nodes to a control station. Therefore, the objective function 

is a communications-related parameter that changes as a function of position. The selected 

parameter to be maximized is the aggregated received power level at N UAVs from n ground 

nodes. The variables of the problem are 𝑥𝑖, i = 1,…,N, and j = 1,…,n, where 𝑥𝑖 is the position of 

UAV i. The UAVs must remain within the search space, S, defined by a square grid of side length, 

l, and maximum height, ℎ𝑚𝑎𝑥. Additionally, the received power levels can only be aggregated 

when they are above a certain threshold, 𝜏, otherwise, only the maximum received value from all 

ground nodes is considered. Hence, the problem can be formulated as: 

max
𝑥𝑖∈ℝ

3
{
𝑓′(𝑥𝑖(𝑡)), 𝑖 =  2, … ,𝑁

𝑓′′(𝑥1(𝑡)), 𝑖 = 1
 

(3.10) 

subject to 𝑥𝑖 ∈ 𝑆 

where 𝑓′(𝑥𝑖(𝑡)) and 𝑓′′(𝑥1(𝑡)) are defined by Equations (3.8) and (3.9), respectively. 

The problem can be further characterized as a constrained, nonlinear, multiobjective optimization 

with multiple local solutions over a large search space. From the problem requirements and 

formulation, it follows that the optimization is performed at each UAV in a distributed manner. 

This is a convenient approach with regards to achieving autonomous flight. Moreover, this tactic 

is also consequent with the fact that this is a multiple-solution problem. 

PSO is proposed as the optimization algorithm, due to the similarity between the FANET scenario 

and the nature-inspired origin of PSO. 
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3.4 Solution Using a PSO Mobility Model 

The mobility model was developed starting with a basic version of the PSO algorithm for 

maximization problems, as described in Algorithm 3.1, where the UAVs are the particles, and all 

the UAVs can share their positions and received power levels among themselves, regardless of the 

distance between each other. A difference with the common PSO described in Chapter 2 is that 

here the particles are not initialized with random positions and velocities, but rather start at the 

same position at the corner of the grid with maximum velocity. 

 Algorithm 3.1 Basic PSO 

Create and initialize a swarm with N UAVs; 

repeat while stopping criteria is false; 

for each UAV i = 1 to N do 

Eval objective function 𝑓′(𝑥𝑖(𝑡)) 
//set personal best position 

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓(𝑏𝑒𝑠𝑡𝑥𝑖) then 

𝑏𝑒𝑠𝑡𝑥𝑖 = 𝑥𝑖(𝑡); 
end 

//set global best position 

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓(𝑏𝑒𝑠𝑡𝑥) then 

𝑏𝑒𝑠𝑡𝑥 =𝑏𝑒𝑠𝑡𝑥𝑖; 
end 

end 

for each UAV i = 1 to N do 

update UAV i velocity according to Equation (2.10); 

move UAV i to position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11); 

end 

t =  t +  ∆t; 
end 

The flowchart for Algorithm 3.1 is depicted in Figure 3.5. 
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Figure 3.5: Basic PSO algorithm flowchart. 

3.4.1 Search Space Constraint Handling 

To keep the UAVs from wandering beyond the search space, which would otherwise result in 

increased convergence time, a modification was introduced in the algorithm to limit the UAV 

velocity in a given direction if the next position is outside the search space boundary in that 

direction. This modification, known as velocity clamping [61], is described in Algorithm 3.2. 

Algorithm 3.2 PSO with bounded search space 

Create and initialize a swarm with N UAVs; 

repeat while stopping criteria is false; 

for each UAV i = 1 to N do 
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Algorithm 3.2 PSO with bounded search space 

Eval objective function 𝑓′(𝑥𝑖(𝑡)) 
//set personal best position 

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓(𝑏𝑒𝑠𝑡𝑥𝑖) then 

𝑏𝑒𝑠𝑡𝑥𝑖 = 𝑥𝑖(𝑡); 
end 

//set global best position 

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓(𝑏𝑒𝑠𝑡𝑥) then 

𝑏𝑒𝑠𝑡𝑥 =𝑏𝑒𝑠𝑡𝑥𝑖; 
end 

end 

for each UAV i = 1 to N do 

calculate velocity 𝑣𝑖(𝑡 + ∆𝑡) according to Equation (2.10); 

calculate position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11); 

if 𝑥𝑖(𝑡 + ∆𝑡) is outside of the search space in directions X, Y, or Z then 

update UAV i velocity making it 0 in the corresponding directions; 

move UAV i to position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11); 

end 

end 

t =  t +  ∆t; 
end 

In a practical implementation, a positioning mechanism such as GPS is needed to keep the UAVs 

within the search space boundaries. 

3.4.2 Kinematic Constraints Handling 

The next set of modifications was introduced to keep the UAV speed below or equal to its 

maximum value. First, a UAV’s next instant speed is clipped if its velocity magnitude is above the 

defined maximum. Second, a stall counter was included to determine if the search process is 

stagnating, as well as to adjust the inertia weight, w, accordingly. This modification is implemented 

as described in [80]. The stall counter increases when gbest has not improved in an iteration and 

decreases otherwise. Together with the stall counter, the adaptive inertia weight serves two 

purposes: 1) Increasing exploration when gbest keeps improving during early stages, and 2) 

increasing exploitation (reducing exploration) when gbest improves at later stages, which can be 

a sign of an optimal solution being found. Finally, the inertia weight must also be limited to keep 
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it from growing excessively, which might lead to low spatial resolution and increased instability, 

even when the maximum speed is constrained. These modifications, shown in Algorithm 3.3, help 

to evaluate the objective function at practical distance steps (spatial resolution) without losing 

potentially good values. 
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Algorithm 3.3 PSO with maximum speed constraint 

Create and initialize a swarm with N UAVs; 

repeat while stopping criteria is false; 

for each UAV i = 1 to N do 

Eval objective function 𝑓′(𝑥𝑖(𝑡)) 
//set personal best position 

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓(𝑏𝑒𝑠𝑡𝑥𝑖) then 

𝑏𝑒𝑠𝑡𝑥𝑖 = 𝑥𝑖(𝑡); 
end 

//set global best position 

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓(𝑏𝑒𝑠𝑡𝑥) then 

𝑏𝑒𝑠𝑡𝑥 =𝑏𝑒𝑠𝑡𝑥𝑖; 
stallcount = max(0, stallcount - 1); 

if stallcount < 2 then 

            w = min(2 * w, UAV max speed); 

end 

if stallcount > 5 then 

            w = w / 2; 

end 

else 

stallcount = stallcount + 1; 

end 

end 

for each UAV i = 1 to N do 

calculate velocity 𝑣𝑖(𝑡 + ∆𝑡) according to Equation (2.10); 

if |UAV i velocity| > UAV max speed then 

UAV i velocity = UAV i velocity * UAV max speed / |UAV i velocity|; 

end 

calculate position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11); 

if 𝑥𝑖(𝑡 + ∆𝑡) is outside of the search space in directions X, Y, or Z then 

update UAV i velocity making it 0 in the corresponding directions; 

move UAV i to position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11); 

end 

end 

t =  t +  ∆t; 
end 

Reducing speed to a maximum physical constraint is not mandatory in a real-world FANET 

implementation, as the speed would be limited naturally. However, a stall counter and an adaptive 

inertia weight are useful in applications with a reduced number of particles over large search 
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spaces. Moreover, constraining speed might be a requirement when energy efficiency is part of the 

problem objectives. 

3.4.3 Dynamic Clustering 

In order to account for potential loss of air-to-air links between UAVs during flight, dynamic 

clusters are being formed, which requires the determination of gbest among the neighboring 

UAVs. Furthermore, each UAV locally defines gbest without considering itself in order to avoid 

giving excessive weight to its own pbest anytime it is in fact the best within its neighborhood (see 

Figure 3.6). 

 
Figure 3.6: Dynamic clustering. 

In the example shown in Figure 3.6, the UAV represented by the green circle is the cluster’s best 

for the other three UAVs, while the UAV represented by the blue circle is the cluster’s best for the 

UAV represented by the green circle. Additionally, the stall count variable and the inertia weight 
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are also maintained locally. Therefore, the algorithm must be updated to accommodate these 

circumstances, according to Algorithm 3.4. 
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Algorithm 3.4 PSO with dynamic clustering 

Create and initialize a swarm with N UAVs; 

repeat while stopping criteria is false; 

for each UAV i = 1 to N do 

Eval objective function 𝑓′(𝑥𝑖(𝑡)) 
//set personal best position 

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓′(𝑏𝑒𝑠𝑡𝑥𝑖) then 

𝑏𝑒𝑠𝑡𝑥𝑖 = 𝑥𝑖(𝑡); 
end 

//set cluster best position locally within each UVA and not considering itself 

for each UAV j = 1 to N do 

if 𝑅′(𝑥𝑖(𝑡))𝑗 ≥ τ and j ≠ i 

if 𝑓′(𝑥𝑗(𝑡)) > 𝑓′(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑏𝑒𝑠𝑡𝑥𝑖) then 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑏𝑒𝑠𝑡𝑥𝑖 =𝑏𝑒𝑠𝑡𝑥𝑗; 

stallcounti = max(0, stallcounti - 1); 

if stallcounti < 2 then 

            wi = min(2 * wi, UAV max speed); 

end 

if stallcounti > 5 then 

            wi = wi / 2; 

end 

else 

stallcounti = stallcounti + 1; 

end 

end 

end 

end 

for each UAV i = 1 to N do 

calculate velocity 𝑣𝑖(𝑡 + ∆𝑡) according to Equation (2.10); 

if |UAV i velocity| > UAV max speed then 

UAV i velocity = UAV i velocity * UAV max speed / |UAV i velocity|; 

end 

calculate position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11); 

if 𝑥𝑖(𝑡 + ∆𝑡) is outside of the search space in directions X, Y, or Z then 

update UAV i velocity making it 0 in the corresponding directions; 

move UAV i to position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11); 

end 

end 

t =  t +  ∆t; 
end 

3.4.4 Hybrid PSO 
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Inspired by the application itself, a hybrid version of the PSO algorithm (Algorithm 3.5) was 

devised in an attempt to increase the number of covered nodes and decrease the convergence time. 

In the proposed version, the grid is divided into cells depending on the number of UAVs, and a 

fixed waypoint trajectory is created for each UAV, from the starting point to the center of its 

corresponding cell at a defined height, according to Algorithm 3.6. 

In the hybrid approach, during the initial phase of the flight, the UAVs evaluate the objective 

function and determine pbest as well as gbest, but do not start the stall count, do not update the 

inertia weight, and do not update their positions according to the PSO algorithm. Once all UAVs 

have reached the designated height for the fixed trajectory, they start the complete PSO mobility. 

Algorithm 3.5 Hybrid PSO with fixed initial trajectory 

Create and initialize a swarm with N UAVs; 

Create initial fixed waypoint trajectory; 

repeat while stopping criteria is false; 

for each UAV i = 1 to N do 

Eval objective function 𝑓′(𝑥𝑖(𝑡)) 
//set personal best position 

if 𝑓′(𝑥𝑖(𝑡)) > 𝑓′(𝑏𝑒𝑠𝑡𝑥𝑖) then 

𝑏𝑒𝑠𝑡𝑥𝑖 = 𝑥𝑖(𝑡); 
end 

//set cluster best position locally within each UVA and not considering itself 

for each UAV j = 1 to N do 

if 𝑅′(𝑥𝑖(𝑡))𝑗 ≥ τ and j ≠ i 

if 𝑓′(𝑥𝑗(𝑡)) > 𝑓′(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑏𝑒𝑠𝑡𝑥𝑖) then 

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑏𝑒𝑠𝑡𝑥𝑖 =𝑏𝑒𝑠𝑡𝑥𝑗; 

if the fixed initial trajectory has been completed 

      stallcounti = max(0, stallcounti - 1); 

      if stallcounti < 2 then 

            wi = min(2 * wi, UAV max speed); 

      end 

      if stallcounti > 5 then 

            wi = wi / 2; 

      end 

end 

else 

if the fixed initial trajectory has been completed 
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Algorithm 3.5 Hybrid PSO with fixed initial trajectory 

      stallcounti = stallcounti + 1; 

end 

end 

end 

end 

end 

for each UAV i = 1 to N do 

if the fixed initial trajectory has been completed 

      calculate velocity 𝑣𝑖(𝑡 + ∆𝑡) according to Equation (2.10); 

      if |UAV i velocity| > UAV max speed then 

      UAV i velocity = UAV i velocity * UAV max speed / |UAV i velocity|; 

      end 

      calculate position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11); 

      if 𝑥𝑖(𝑡 + ∆𝑡) is outside of the search space in directions X, Y, or Z then 

      update UAV i velocity making it 0 in the corresponding directions; 

      move UAV i to position 𝑥𝑖(𝑡 + ∆𝑡) according to Equation (2.11); 

      end 

else 

      move UAV i to position 𝑥𝑖(𝑡 + ∆𝑡) according to the fixed initial trajectory; 

end 

t =  t +  ∆t; 
end 

The initial trajectory flight for the Hybrid PSO algorithm is defined by the grid size, the number 

of UAVs, the maximum height of the fixed trajectory, and the UAV maximum speed (𝑣𝑚𝑎𝑥). Also, 

the fixed trajectory parameters determine the speed and direction for the first instant of the PSO-

only flight. 

Algorithm 3.6 Create initial fixed waypoint trajectory 

//set starting and ending positions 

// East is X and North is Y 

nlength = floor(sqrt(N)); 

elength = ceil(N/nlength); 

FixedTRJHeight = fixed trajectory height; 

for each UAV i = 1 to N do 

startPosi = [-l/2, l/2, 0];    //[X coord., Y coord., Z coord.] 

end 

i = 1; 

for column = 1 to nlength do 

    for row = 1 to elength do 
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Algorithm 3.6 Create initial fixed waypoint trajectory 

destPosi = [-(l/2)-(l/elength/2)+row*(l/elength), (l/2)+(l/nlength/2)-column*(l/nlength),… 

FixedTRJHeight];    //[X coord., Y coord., Z coord.] 

i = i + 1; 

    end 

end 

3.4.5 Stopping Criteria 

This parameter determines when to stop the algorithm. Common stopping criteria include reaching 

a maximum number of iterations, achieving a desired level of fitness, or when the improvement in 

fitness is below a certain threshold. Three parameters are considered as stopping criteria for the 

present research. The PSO algorithm stops when the objective function has not improved for a 

certain time, when the maximum number of iterations has been reached, or when the relative 

change in fitness is below a certain threshold. Two alternative functions have been developed to 

quantify the relative change in fitness. In the first alternative, the fitness function of UAV i, at 

position 𝑥𝑖, and time t is defined as the level of relative change in the total received power at UAV 

i in the last iteration with respect to the average over the previous ten iterations, as expressed in 

Equation (3.11): 

𝜑1(𝑥𝑖(𝑡)) =

|𝑅(𝑥𝑖(𝑡)) −
∑ 𝑅(𝑥𝑖(𝑇))
𝑡
𝑇=𝑡−9

10 |

∑ 𝑅(𝑥𝑖(𝑇))
𝑡
𝑇=𝑡−9

10

. (3.11) 

The fitness threshold is reached when the maximum value of 𝜑1 over all the UAVs is equal to or 

less than 2%. This provides a sense of the stability that the FANET has achieved regarding the 

received signal power. 
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In the second alternative, the fitness function of UAV i, at position 𝑥𝑖, and time t is defined as the 

average distance of its current and previous ten positions to the center of gravity of its previous 

ten positions, as expressed in Equation (3.12): 

𝜑2(𝑥𝑖(𝑡)) =
∑ 𝑑𝑥𝑖−𝐶𝐺(𝑇′)
𝑡
𝑇′=𝑡−10

11
, 

𝐶𝐺 =
∑ 𝑥𝑖(𝑇)
𝑡−1
𝑇=𝑡−10

10
. 

(3.12) 

The fitness threshold is reached when the maximum value of 𝜑2 over all the UAVs is equal to or 

less than the distance a UAV travels at maximum speed during the defined time step. This 

alternative provides a sense of the spatial stability that the FANET has achieved and is useful with 

stochastic propagation models that induce a level of randomness in the received power level. 

3.5 Simulation Parameters 

In the previous sections, the objective function has been defined by Equations (3.7), (3.8) and 

(3.9), while the PSO mobility model has been defined by Algorithm 3.5, and Equations (3.11) and 

(3.12). This section covers the specific configuration parameters used in MATLAB R2022a to 

develop the simulation environment. 

As mentioned in Section 3.2, communications start once the PSO algorithm has met the stopping 

criteria. The communications part of the simulation was developed at system level using the 

WLAN Toolbox. The term system level refers to the model ability to cover multiple links, cells, 

and terminals [81].  

3.5.1 Node configuration 

The Wi-Fi nodes for UAVs and ground nodes are created using the ‘hCreateWLANNodes.m’ 

MATLAB function. MATLAB Wi-Fi nodes have 34 configuration parameters. The functions 
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‘hLoadConfigurationFull_Int_Traff_6.m’ and ‘hLoadConfigurationFull_Int_Traff_7.m’ 

(APPENDIX C) are used to configure PHY, MAC, and application traffic parameters for Wi-Fi 

and LoRa backhauls, respectively. Both functions are modifications of the 

‘hLoadConfiguration.m’ MATLAB function. All Wi-Fi nodes are configured as mesh nodes at a 

frequency of 2437 MHz (Wi-Fi channel 6). A summary of all MAC and PHY configuration 

parameters relevant to this simulation is presented in Table 3.1. All other parameters have been set 

to their default values. 

Table 3.1: MAC and PHY configuration parameters. 

Transmit 

Power 

Transmit 

Antenna 

Gain 

Receive 

Antenna 

Gain 

Wi-Fi 

Receiver 

Sensitivity 

Receiver 

Noise 

Figure 

Is 

Access 

Point 

Is Mesh 

Node 
MeshTTL 

15 dBm 1 dB 0 dB -82 dBm 7 dBm No Yes 31 hops 

To simulate the LoRa backhaul for mobility performance purposes, the receiver sensitivity is set 

at -105 dBm, which is considered a reasonable compromise value for a 500 kHz bandwidth and a 

spreading factor of 5, based on the product specifications [50-52], though no specific value is 

provided for this configuration. The possible LoRa frequency configurations are 900 MHz, 2.4 

GHz, and 400 MHz. 

Regarding traffic configuration, MATLAB provides four types of WLAN application traffic: Best 

Effort (BE), Background (BK), Video (VI), and Voice (VO). BE traffic is defined by MATLAB 

as the default access category and is the one used in this model. Besides the type of traffic, traffic 

configurations are applied as shown in Table 3.2. 

Table 3.2: Application traffic configuration. 

Backhaul Data Rate (kbps) Packet Size [bytes] Access Category 

Wi-Fi 100000 1500 BE (0) 

LoRa 62.5 250 BE (0) 
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The LoRa data rate can be calculated using Equation (2.9) for a 500 kHz bandwidth, a spreading 

factor of 5, and a 4/5 coding rate. Additionally, the traffic originates at the ground nodes and is 

destined for the control station. An example of traffic configuration is shown in Figure 3.7. 

 
Figure 3.7: Example of traffic configuration for ten ground nodes and a Wi-Fi backhaul. 

3.5.2 Propagation Models 

Three propagation models are included in the simulation: Free space, ray tracing, and log-normal. 

For all the propagation models, a path loss table is obtained using the function 

‘hCreatePathlossTableDP.m’ (APPENDIX D). This function is a modification of the 

‘hCreatePathlossTable.m’ MATLAB function. 

A. Free Space Propagation Model 

This model is implemented in the function ‘hFreeSpacePathLoss.m’ (APPENDIX E) as defined in 

Equation (2.1). The function ‘hFreeSpacePathLoss.m’ is a modification of the 

‘hTGaxResidentialPathLoss.m’ MATLAB function.  

B. Ray Tracing 

This model is implemented using the ‘propagationModel’ MATLAB function with the following 

parameters: 
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propModel = 
propagationModel("raytracing","Method","image","MaxNumReflections",1,"CoordinateSyste
m","cartesian"); 

C. Log-normal 

This model is implemented using the ‘propagationModel’ MATLAB function with the following 

parameters: 

propModel = propagationModel('close-in'); 
propModel.PathLossExponent = 2.3; 
propModel.Sigma = 0.1; 

These parameters are suited to represent a rural outdoor area [34], but can be modified to represent 

different environments. 

3.5.3 Mobility 

The mobility model has been developed using MATLAB’s UAV Toolbox. The overall maximum 

height is set to 121 m (400 ft.), and the UAV maximum speed (𝑣𝑚𝑎𝑥) is set to 44.5 m/s (100 mph), 

which are defined by the Federal Aviation Administration (FAA) as the maximum altitude above 

ground level and the maximum groundspeed, respectively, for small unmanned aircraft [82]. The 

general mobility parameters are listed in Table 3.3. 

Table 3.3: General mobility parameters. 

Parameter Value 

Fixed trajectory max. height 60 m 

Time step (Δt) 1 s 

Overall maximum height (ℎ𝑚𝑎𝑥) 121 m (400 ft.) 

UAV initial speed 30 m/s 

UAV maximum speed (𝑣𝑚𝑎𝑥) 30 m/s 

A. PSO Parameters 

The value assigned to the PSO parameters can affect the algorithm's effectiveness and efficiency. 

Setting these parameters appropriately is important to ensure its performance and convergence to 
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an optimal solution. These parameters and the way in which they impact convergence are 

explained next: 

• Inertia weight (w): This parameter controls the influence of the particle's previous velocity 

on the current velocity. A high value of w results in increased exploration of the search 

space, but it also means a lower spatial resolution which may cause the algorithm to 

overlook positions that could produce optimal solutions. A low value of w leads to slower 

convergence, but it may also prevent the algorithm from getting stuck in a local optimum. 

• Cognitive learning parameter (𝑐1) and social learning parameter (𝑐2): These parameters 

control the influence of the particle's personal best (pbest) and the global best (gbest) 

positions on the current velocity, respectively. A higher value of 𝑐1 increases the focus on 

pbest, while a higher value of 𝑐2 increases the focus on gbest. 

• Number of particles (N): This parameter determines the size of the swarm, and a higher 

value of N usually leads to a better exploration of the search space. However, increasing N 

beyond a certain threshold may also increase the computational cost for simulations, and 

be unattainable for real-world implementations. 

• UAV maximum speed (𝑣𝑚𝑎𝑥): This parameter limits the maximum velocity of each particle 

to provide a good spatial resolution. A high value of 𝑣𝑚𝑎𝑥 may lead to unstable behavior, 

while a low value of 𝑣𝑚𝑎𝑥 may slow down the convergence. In theoretical optimization 

applications this value can be set to arbitrarily high values. However, in simulations and 

practical implementations this value is limited by aerodynamic constraints. 

The relationship between the values of w, 𝑐1, and 𝑐2 can determine if the particles achieve 

convergence or if they behave erratically. According to  [61,83], convergence is guaranteed if the 

following condition is met: 
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1 > 𝑤 >
1

2
(𝑐1 + 𝑐2) − 1 ≥ 0. (3.13) 

As Equation (3.13) was demonstrated removing the random components, the UAVs may converge 

when using the stochastic components and a value of w that does not comply with this condition  

[61]. Given the dynamic nature of a FANET and the problem characterization provided in Section 

3.3.2, a higher value of 𝑐1 and a lower value of 𝑐2 are preferred, as the opposite configuration 

would result in an attraction of all UAVs to a single best position. Therefore, the PSO parameters 

are set according to Table 3.4. 

 

Table 3.4: PSO configuration parameters. 

Parameter Value 

𝑤 0.95 

𝑐1 1.35 

𝑐2 0.01 

Max. number of iterations 180 

Max. stall count 150 

During preliminary tests, a value of -0.05 was set for 𝑐2 to cause a repelling effect between UAVs. 

However, a small attraction value was ultimately configured that resulted in improved path 

formation to avoid using a reward for keeping a path for other UAVs. 𝑐1 and 𝑐2 are fixed for the 

entire simulation. 𝑤, however, is only an initial value, as the adaptive, constrained inertia weight 

mentioned in section 3.4.2 is implemented to achieve improved convergence. Furthermore, 𝑤 is 

independent for each UAV as per the dynamic clustering scheme described in Section 3.4.3. 

Another factor that may impact PSO performance is the initial position of the particles [61]. 

Considering that in many of the FANET applications described in Chapter 2, it is likely that the 

UAVs are deployed from a single position, UAVs are initially located at one corner of the grid. 
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Nevertheless, different initial positions could be tested in further research. Moreover, the Hybrid 

PSO described in Section 3.4.4 could be considered a PSO where each UAV starts at a different 

position.  
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Chapter 4 

4 Results and Analysis 

 

As explained in Section 2.7, there are two main parts in the optimization process: (i) model 

development, and (ii) solution discovery. Regarding model development, the identification of 

variables and constraints was, to a certain extent, a straightforward process. However, the 

definition of an objective function that achieves multiobjective optimization proved to be more 

challenging. On the subject of finding a solution, setting up the PSO parameters demonstrated to 

be equally demanding. There exist numerous possible combinations of objective functions, PSO 

variations, and communication considerations. The communication details involve the propagation 

models and the backhaul networks to be used. These combinations were examined in a sequential 

manner, and the most effective alternative was chosen as input for the subsequent stage. Once the 

objective function has been defined and the PSO parameters have been configured, a performance 

analysis of the solution can be carried out in terms of performance metrics. Therefore, this chapter 

is organized in the following manner: Section 4.1 presents a comparison between the different 

objective function alternatives listed in Section 3.3. Section 4.2 shows a comparison between 

different PSO configurations and propagation models. The metrics used to assess the proposed 

FANET performance are defined in Section 4.3. Finally, three positioning algorithms are evaluated 

with a complete model in Section 4.4 according to the performance metrics. 

4.1 Comparison between Different Objective Functions 

As a single objective function is proposed in the present research to achieve multiobjective 

optimization, multiple ways of rewarding coverage and path maintenance, as described in Section 

3.3, were compared in terms of the number of iterations required for convergence or stoppage. The 
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model parameters presented in Table 4.1 were used for the comparison in this section, unless 

otherwise stated. 

Table 4.1: Model configuration parameters. 

General Parameters 

Grid size 1500 m x 1500 m Overall max. height 121 m 

(400 ft.) 

Number of UAVs 6 Initial speed 30 m/s 

Number of ground nodes 10 Maximum speed 30 m/s 

Fixed trajectory max. height 60 m Time step 0.5 s 

Radio Parameters 

Backhaul technology Wi-Fi LoRa1 

Frequency 2.437 GHz 900 MHz 

Tx power 15 dBm 15 dBm 

Tx gain 1 dB 1 dB 

Receiver sensitivity -82 dBm -105 dBm 

Rx gain 0 dB 0 dB 

Propagation model Ray tracing 

PSO Parameters 

Inertial weight (w) 0.95 Max. stall count 150 

Individual weight (c1) 1.35 Max. iterations 180 

Group weight (c2) 0.01   

Stopping criteria Mean distance to CoG, max. stall count, max. number of 

iterations 

Table 4.2 shows the meaning of the different link and trajectory plots for Figures 4.1(a)–4.18(a). 

Table 4.2: Link and trajectory plot legends for Figures 4.1(a)–4.18(a). 

Link/Trajectory Description Line 

Air-to-air links Dashed line  

Air-to-ground links Dotted line  

No air-to-air link No line  

No air to ground link No line  

Hybrid PSO trajectory Continuous white line  

PSO-only trajectory No line  

 

 
1 When applicable 
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4.1.1 Coverage Reward Only 

First, the base-2 exponential gain factor was compared to the distance-based quadratic gain factor, 

when applied for covering more than one node, as defined by Equations (3.4) and (3.6), 

respectively. Figure 4.1 shows the results for the base-2 exponential gain factor, where Figure 

4.1(a) shows the network topology after the stopping criteria are met, while Figure 4.1(b) shows the 

number of iterations required for position stabilization, which in this case is 141 and is achieved 

before reaching the maximum stall count or the maximum number of iterations. 

 

Table 4.3:  Alternative gains applied only for covering multiple ground nodes using Hybrid PSO (1500 m 

x 1500 m). 

Parameter 
Base-2 Exponential 

Gain 
Distance-based Gain 

Grid size 1500 m x 1500 m 

Mobility algorithm Hybrid PSO 

Coverage gain Equation (3.4) Equation (3.6) 

Path maintenance gain --- --- 

Excessive closeness penalty Equation (3.8) Equation (3.8) 

UAV1 connection to Control Station Equation (3.9)  Equation (3.9) 

Stopping criteria reached Convergence Max. iterations 

Number of iterations 141 180 
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(a) 

 
(b) 

Figure 4.1: Topology and convergence results when applying a base-2 exponential gain for covering 

multiple ground nodes (Hybrid PSO). (a) Network topology after stopping criteria are met. (b) 

Aggregated received power levels at each UAV. 

Figure 4.2 shows the results for the distance-based gain factor, where Figure 4.2(a) shows the 

network topology after the stopping criteria are met, while Figure 4.2(b) shows that the maximum 

number of iterations was reached before achieving convergence. 
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(a) 

 
(b) 

Figure 4.2: Topology and convergence results when applying a distance-based gain for covering multiple 

ground nodes (Hybrid PSO). (a) Network topology after stopping criteria are met. (b) Aggregated 

received power levels at each UAV. 

The network topology graphs show that, although both alternatives achieve coverage and a path to 

the control station for all ground nodes, the base-2 exponential gain factor has a better distance 

between UAV 2 and UAV 3. Additionally, the base-2 exponential gain factor achieves a faster and 

more stable convergence without applying a path maintenance reward. Hence, it might seem that 

the base-2 exponential gain factor is a good enough alternative compared to the distance-based 

gain when both are applied only for covering more than one ground node under the specified 
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conditions. Moreover, it might seem that multiobjective optimization has been achieved and that 

a path maintenance reward is not necessary, as all ground nodes have a path to the control station 

in option 1. Nonetheless, the objective function must perform adequately under different 

circumstances. Therefore, further alternatives are compared in the next section. 

4.1.2 Coverage and Path Maintenance Rewards 

To expand the analysis from the previous section, the following alternatives were compared for 

different grid sizes and mobility algorithms: 

1. The base-2 exponential gain factor applied for covering multiple nodes, as defined by 

Equation (3.4), together with a gain factor of 2 applied for having a path to the control 

station. 

2. The distance-based quadratic gain factor applied for establishing a path to the control 

station, in conjunction with the application of the base-2 exponential gain factor for 

covering multiple nodes, as defined by Equation (3.7). 

A path maintenance gain factor of 2 is applied to option 1 in order to ensure a fair comparison of 

results under somewhat similar conditions. 

Table 4.4: Coverage and path maintenance reward alternatives using Hybrid PSO (1500 m x 1500 m). 

Parameter 
Base-2 Exponential 

Gain 
Distance-based Gain 

Grid size 1500 m x 1500 m 

Mobility algorithm Hybrid PSO 

Coverage gain Equation (3.4) Equation (3.7) 

Path maintenance gain 2 Equation (3.7) 

Excessive closeness penalty Equation (3.8) Equation (3.8) 

UAV1 connection to Control Station Equation (3.9)  Equation (3.9) 

Stopping criteria reached Convergence Convergence 

Number of iterations 141 141 

Nodes with path to Control Station 10/10 10/10 
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(a) 

 
(b) 

Figure 4.3: Topology and convergence results when applying a base-2 exponential gain for covering 

multiple ground nodes (Hybrid PSO). (a) Network topology after stopping criteria are met. (b) 

Aggregated received power levels at each UAV. 
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(a) 

 
(b) 

Figure 4.4: Topology and convergence results when applying a distance-based gain for having a path to 

the control station (Hybrid PSO). (a) Network topology after stopping criteria are met. (b) Aggregated 

received power levels at each UAV. 

The results in Figures 4.3 and 4.4 show that both alternatives behave in the same way for the 

Hybrid PSO algorithm. Consequently, the Hybrid PSO algorithm was tested again increasing the 

grid size to 2000 m x 2000 m, and keeping all other configuration parameters as defined in Table 

4.1. 

Table 4.5:  Coverage and path maintenance reward alternatives using Hybrid PSO (2000 m x 2000 m). 
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Parameter 
Base-2 Exponential 

Gain 

Distance-based Gain 

Grid size 2000 m x 2000 m 

Mobility algorithm Hybrid PSO 

Coverage gain Equation (3.4) Equation (3.7) 

Path maintenance gain 2 Equation (3.7) 

Excessive closeness penalty Equation (3.8) Equation (3.8) 

UAV1 connection to Control Station Equation (3.9)  Equation (3.9) 

Stopping criteria reached Max. iterations Max. iterations 

Number of iterations 180 180 

Nodes with path to Control Station 3/10 9/10 

 

 
(a) 

 
(b) 

Figure 4.5: Topology and convergence results when applying a base-2 exponential gain for covering 

multiple ground nodes (Hybrid PSO 2000m). (a) Network topology after stopping criteria are met. (b) 

Aggregated received power levels at each UAV. 
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(a) 

 
(b) 

Figure 4.6: Topology and convergence results when applying a distance-based gain for having a path to 

the control station (Hybrid PSO 2000m). (a) Network topology after stopping criteria are met. (b) 

Aggregated received power levels at each UAV. 

The results in Figures 4.5 and 4.6 show that the topology achieved when applying a distance-based 

gain for having a path to the control station outperforms that of the base-2 exponential gain for 

covering multiple ground nodes, since all covered ground nodes (9 out of 10) have a path to the 

control station. However, neither alternative achieved spatial convergence before the maximum 

number of iterations was reached. Thus, both alternatives were tested again, removing the 

maximum stall count and the maximum number of iterations from the stopping criteria, and 

considering the relative change in mean position only. 
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Table 4.6:  Coverage and path maintenance reward alternatives using Hybrid PSO (2000 m x 2000 m). 

Parameter 
Base-2 Exponential 

Gain 

Distance-based Gain 

Grid size 2000 m x 2000 m 

Mobility algorithm Hybrid PSO 

Coverage gain Equation (3.4) Equation (3.7) 

Path maintenance gain 2 Equation (3.7) 

Excessive closeness penalty Equation (3.8) Equation (3.8) 

UAV1 connection to Control Station Equation (3.9)  Equation (3.9) 

Stopping criteria reached Convergence Convergence 

Number of iterations 186 226 

Nodes with path to Control Station 3/10 10/10 

 

 
(a) 

 
(b) 

Figure 4.7: Topology and convergence results when applying a base-2 exponential gain for covering 

multiple ground nodes (Hybrid PSO 2000m until convergence). (a) Network topology after stopping 

criteria are met. (b) Aggregated received power levels at each UAV. 
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It can be seen in Figure 4.7(a) that even after position convergence, a path to the control station 

does not exist for the UAVs at right hand side of the grid. The number of iterations in Figure 4.7(b) 

is 186. 

 
(a) 

 
(b) 

Figure 4.8: Topology and convergence results when applying a distance-based gain for having a path to 

the control station (Hybrid PSO 2000m until covergence). (a) Network topology after stopping criteria are 

met. (b) Aggregated received power levels at each UAV. 

Figure 4.8(a) shows that, after position convergence, all nodes are covered and maintain a path to 

the control station when applying a distance-based gain. When comparing the number of iterations 

required for position stabilization between Figures 4.7(b) and 4.8(b), the latter requires a higher 
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number of iterations (226 compared to 186). In Figure 4.8(b), the number of iterations required for 

position stabilization is higher than when applying a base-2 exponential gain for covering multiple 

ground nodes (226 compared to 186 iterations). However, the importance of achieving coverage 

and path maintenance objectives outweighs the potential increase in convergence time. Moreover, 

the final positions shown in Figures 4.6(a) and 4.8(a) are virtually the same. 

To verify that the distance-based gain for having a path to the control station outperforms the base-

2 exponential gain for covering multiple ground nodes, the PSO-only algorithm was tested next 

with the same configuration and objective function parameters for both 1500 m x 1500 m and 2000 

m x 2000 m grids, keeping all other configuration parameters as defined in Table 4.1. 

Table 4.7:  Coverage and path maintenance reward alternatives using PSO-only (1500 m x 1500 m). 

Parameter 
Base-2 Exponential 

Gain 

Distance-based Gain 

Grid size 1500 m x 1500 m 

Mobility algorithm PSO-only 

Coverage gain Equation (3.4) Equation (3.7) 

Path maintenance gain 2 Equation (3.7) 

Excessive closeness penalty Equation (3.8) Equation (3.8) 

UAV1 connection to Control Station Equation (3.9)  Equation (3.9) 

Stopping criteria reached Convergence Convergence 

Number of iterations 80 80 

Nodes with path to Control Station 8/10 8/10 
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(a) 

 
(b) 

Figure 4.9: Topology and convergence results when applying a base-2 exponential gain for covering 

multiple ground nodes (PSO-only). (a) Network topology after stopping criteria are met. (b) Aggregated 

received power levels at each UAV. 
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(a) 

 
(b) 

Figure 4.10: Topology and convergence results when applying a distance-based gain for having a path to 

the control station (PSO-only). (a) Network topology after stopping criteria are met. (b) Aggregated 

received power levels at each UAV. 

The results in Figures 4.9 and 4.10 show that both gain alternatives behave in the same way for a 

1500 x 1500 m grid with the PSO-only algorithm as well. Therefore, the PSO-only algorithm was 

tested next for a 2000 x 2000 m grid with the same configuration and objective function 

parameters. 
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Table 4.8:  Coverage and path maintenance reward alternatives using PSO-only (2000 m x 2000 m). 

Parameter 
Base-2 Exponential 

Gain 

Distance-based Gain 

Grid size 2000 m x 2000 m 

Mobility algorithm PSO-only 

Coverage gain Equation (3.4) Equation (3.7) 

Path maintenance gain 2 Equation (3.7) 

Excessive closeness penalty Equation (3.8) Equation (3.8) 

UAV1 connection to Control Station Equation (3.9)  Equation (3.9) 

Stopping criteria reached Max. Iterations Convergence 

Number of iterations 180 110 

Nodes with path to Control Station 6/10 3/10 

 

 
(a) 

 
(b) 

Figure 4.11: Topology and convergence results when applying a base-2 exponential gain for covering 

multiple ground nodes (PSO-only 2000m). (a) Network topology after stopping criteria are met. (b) 

Aggregated received power levels at each UAV. 
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(a) 

 
(b) 

Figure 4.12: Topology and convergence results when applying a distance-based gain for having a path to 

the control station (PSO-only 2000m). (a) Network topology after stopping criteria are met. (b) 

Aggregated received power levels at each UAV. 

Figure 4.12(b) shows that by using a distance-based gain, convergence was achieved before 

reaching the maximum stall count or the maximum number of iterations, and, though only three 

ground nodes are covered, all UAVs have a path to the control station—as well as the covered 

nodes. Moreover, applying a base-2 exponential gain for covering multiple ground nodes in this 

configuration did not achieve convergence after more than 18,000 iterations. This shows that the 
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distance-based gain adapts better to changes in grid size for both Hybrid PSO and PSO-only 

algorithms. Therefore, as explained in Section 3.3, the objective function is defined by Equations 

(3.7), (3.8) and (3.9) for the comparison between different PSO configurations. The results for the 

objective function analysis are summarized in Tables 4.9 and 4.10: 

Table 4.9:  Summary of results for the objective function analysis for the Hybrid PSO. 

Parameter Base-2 Exponential Gain Distance-based Gain 

Mobility algorithm Hybrid PSO 

Coverage gain Equation (3.4) Equation (3.7) 

Path maintenance gain 2 Equation (3.7) 

Excessive closeness penalty Equation (3.8) Equation (3.8) 

UAV1 connection to Control Station Equation (3.9) Equation (3.9) 

Grid size 1500 m 2000 m 1500 m 2000 m 

Stopping criteria reached Convergence Convergence Convergence Convergence 

Number of iterations 141 186 141 226 

Nodes with path to Control Station 10/10 3/10 10/10 10/10 

Figure Figure 4.3 Figure 4.7 Figure 4.4 Figure 4.8 

Table 4.10:  Summary of results for the objective function analysis for PSO-only. 

Parameter Base-2 Exponential Gain Distance-based Gain 

Mobility algorithm PSO-only 

Coverage gain Equation (3.4) Equation (3.7) 

Path maintenance gain 2 Equation (3.7) 

Excessive closeness penalty Equation (3.8) Equation (3.8) 

UAV1 connection to Control Station Equation (3.9) Equation (3.9) 

Grid size 1500 m 2000 m 1500 m 2000 m 

Stopping criteria reached Convergence Max. Iterations Convergence Convergence 

Number of iterations 80 180 80 110 

Nodes with path to Control Station 8/10 6/10 8/10 3/10 

Figure Figure 4.9 Figure 4.11 Figure 4.10 Figure 4.12 

4.2 Comparison between Different PSO Configurations 

Once the objective function has been defined, the proposed solution algorithm, as described in 

Section 3.4, must be configured adequately. In this section, the performance of different PSO 

configurations is compared in terms of the number of iterations required for convergence or 
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stoppage, according to the general configuration parameters from Table 4.1, unless otherwise 

stated. 

4.2.1 Adaptive Inertia Weight vs. Guaranteed Convergence Parameters 

The performance of the adaptive inertia weight mechanism described in Section 3.4.2 is compared 

to that of PSO parameters established for guaranteed convergence according to Equation (3.13). 

The values set in each case for 𝑤, 𝑐1, and 𝑐2 are shown in Table 4.11. 

Table 4.11:  Adaptive inertia weight vs. guaranteed convergence parameters. 

Parameter Adaptive Inertia Weight 
Guaranteed 

Convergence 

Grid size 1500 m x 1500 m 

Mobility algorithm Hybrid PSO 

Coverage gain Equation (3.7) 

Path maintenance gain Equation (3.7) 

Excessive closeness penalty Equation (3.8) 

UAV1 connection to Control Station Equation (3.9) 

Inertial weight (w) 0.95 0.95 

Individual weight (c1) 1.35 1.85 

Group weight (c2) 0.01 0.25 

Stopping criteria reached Convergence Convergence 

Number of iterations 141 175 

As shown in Figures 4.13(a) and 4.14(a), the network topology after convergence is similar for 

both alternatives, with the adaptive inertia weight providing a slightly better topology when 

considering the distance between UAV2 and UAV3. 
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(a) 

 
(b) 

Figure 4.13: Topology and convergence results when using adaptive inertia weight (Hybrid PSO). (a) 

Network topology after stopping criteria are met. (b) Aggregated received power levels at each UAV. 
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(a) 

 
(b) 

Figure 4.14: Topology and convergence results when using guaranteed convergence PSO parameters 

(Hybrid PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received power levels 

at each UAV. 

Additionally, a more stable convergence is achieved sooner when using an adaptive inertia weight 

(141 vs. 175 iterations), as can be seen in Figures 4.13(b) and 4.14(b). Therefore, the use of the 

adaptive inertia weight with 𝑤 = 0.95, 𝑐1 = 1.35, and 𝑐2 = 0.01 is preferred over the values for 

guaranteed convergence and kept for further testing. 



89 

 

4.2.2 Propagation Model Alternatives 

The implemented propagation models allow to simulate radio coverage in different scenarios. The 

free space model is a theoretical concept that serves as a reference for evaluating radio waves 

propagation through free space. It assumes there is no presence of obstacles or other forms of 

interference, making it a model that only applies under ideal conditions. The ray tracing model 

performs similarly to the free space model but considers reflections from the ground and from 

other UAVs; therefore, is suited for the ideal geometry of the proposed scenario. Moreover, it is 

ready to account for terrain and buildings if such maps are included in future research. The log-

normal model considers stochastic shadowing effects and is configured for a rural outdoor area 

(path loss exponent equal to 2.2 and sigma equal to 0.1), which provides a reference of how the 

simulation would perform on irregular terrain with scattered obstructions. Therefore, ray tracing 

and log-normal models will be used for the performance analysis. 

Table 4.12:  Propagation model alternatives using adaptive inertia weight. 

Parameter Ray tracing Log-normal 

Grid size 1500 m x 1500 m 

Mobility algorithm Hybrid PSO 

Coverage gain Equation (3.7) 

Path maintenance gain Equation (3.7) 

Excessive closeness penalty Equation (3.8) 

UAV1 connection to Control Station Equation (3.9) 

Stopping criteria reached Convergence Convergence 

Number of iterations 141 135 
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(a) 

 
(b) 

Figure 4.15: Topology and convergence results when using a ray tracing propagation model (Hybrid 

PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received power levels at each 

UAV. 
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(a) 

 
(b) 

Figure 4.16: Topology and convergence results when using a log-normal propagation model 

(Hybrid PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received 

power levels at each UAV. 

As shown in Figures 4.15(a) and 4.16(a), the network topology after convergence looks very 

similar for both alternatives. However, in a somehow counterintuitive manner, a faster 

convergence is achieved when using the log-normal propagation model (141 vs. 135 iterations), 

as can be seen in Figures 4.15(b) and 4.16(b). This improved convergence could be attributed to 

the log-normal model presenting more distinctive values of received power levels at each position, 

that lead to less conflicting objective function values. 
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4.2.3 Stopping Criteria Alternatives 

As mentioned in Section 3.4.5, the PSO algorithm stops when any of the three following conditions 

is met: (i) the objective function has not improved for a certain time (the maximum stall count has 

been reached), (ii) when the maximum number of iterations has been reached, or (iii) when the 

relative change in fitness is below a certain threshold. Two alternative fitness functions were 

developed to quantify the relative change in fitness: (i) level of relative change in total received 

power in the last iteration with respect to the average over the previous ten iterations, as a measure 

of signal stability defined by Equation (3.11), and (ii) average distance of the current and previous 

ten positions to the center of gravity of the previous ten positions, as a measure of position stability 

as defined by Equation (3.12). Their performance is compared in this section using the log-normal 

propagation model, as it provides more challenging conditions for both of them. 

Table 4.13:  Stopping criteria alternatives using adaptive inertia weight and log-normal propagation. 

Parameter 
Signal Stability 

Equation (3.11) 

Position Stability 

Equation (3.12) 

Grid size 1500 m x 1500 m 

Mobility algorithm Hybrid PSO 

Coverage gain Equation (3.7) 

Path maintenance gain Equation (3.7) 

Excessive closeness penalty Equation (3.8) 

UAV1 connection to Control Station Equation (3.9) 

Propagation Model Log-normal 

Stopping criteria reached Max. iterations Convergence 

Number of iterations 180 135 
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(a) 

 
(b) 

Figure 4.17: Topology and convergence results when using signal stability as fitness function (Hybrid 

PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received power levels at each 

UAV. 
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(a) 

 
(b) 

Figure 4.18: Topology and convergence results when using position stability as fitness function (Hybrid 

PSO). (a) Network topology after stopping criteria are met. (b) Aggregated received power levels at each 

UAV. 

As shown in Figures 4.17(a) and 4.18(a), the network topology after convergence looks very 

similar for both alternatives. However, a faster convergence is achieved when using the average 

position change as stopping criterion (135 vs. 180 iterations), as can be seen in Figures 4.17(b) and 

4.18(b). In fact, convergence is not reached when using the relative change in aggregated received 

power, due to the stochastic variations in the signal. These results suggest that the random 

component present in real-world radio signals can lead to signal stability not being achieved even 
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when position stability may have been attained. The threshold to consider a signal as stable could 

be increased to a certain amount, but that amount depends on changing propagation conditions. 

On the other hand, the fitness threshold to determine position stability depends only on the UAV 

maximum speed, which is a previously known and fixed value. Therefore, the average position 

change, as defined in Section 3.4.5 and Equation (3.12), will be used for the performance analysis. 

4.3 Performance Metrics 

Once the objective function has been defined and the PSO parameters have been configured, the 

mobility algorithm can be applied, and the effectiveness and efficiency of the solution can be 

assessed in terms of performance metrics. The performance of the proposed FANET is evaluated 

in terms of the objectives defined in the problem formulation: maximizing coverage and 

maintaining a communications path to the control station. Therefore, the following metrics have 

been defined: 

4.3.1 Number of Iterations Required for Stabilization or Stoppage (𝒕𝒔) 

This metric represents the amount of time or iterations required by the mobility optimization 

algorithm to find a solution or in other words, the time required to achieve position stability. It is 

determined by the stopping criteria and provides a measure of the FANETs’ time efficiency. 

4.3.2 Percentage of Covered Ground Nodes (𝑪%) 

This metric represents the FANET effectiveness in providing coverage to the ground nodes. It is 

defined as the percentage of ground nodes covered by at least one UAV after 𝑡𝑠, as shown in in 

Equation (4.1). 

𝐶% =
𝑛𝑓

𝑛
× 100. (4.1) 
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where 𝑛𝑓 is the number of ground nodes covered by at least one UAV after 𝑡𝑠, and 𝑛 is the total 

number of ground nodes. 

4.3.3 FANET Coverage Efficiency (𝜼𝑪) 

For the purpose of this research, the FANET is held to be more efficient if a higher percentage of 

ground nodes are covered, without having ground nodes being covered by more than one UAV, 

and without having UAVs not covering any ground node. Under certain circumstances, a degree 

of redundancy and reserve may be desirable. However, for the case of maximizing coverage with 

the least number of UAVs, having ground nodes being covered by more than one UAV is 

considered redundant, and UAVs not covering at least one ground node are considered idle.  

As shown in Equation (4.2), FANET coverage efficiency is defined as the ratio of ground nodes 

covered by at least one UAV after 𝑡𝑠 to the total number of ground nodes (a measure of coverage 

effectiveness), times the ratio of covered ground nodes to the total number of UAV connections 

with ground nodes (a measure of redundancy), times the ratio of UAVs that have connections with 

ground nodes to the total number of UAVs (a measure of inactivity). 

𝜂𝐶 =
𝑛𝑓

𝑛
×
𝑛𝑓

𝑛𝑠
×
𝑁𝑓

𝑁
 (4.2) 

where 𝑛𝑓 is the number of ground nodes covered by at least one UAV after 𝑡𝑠, 𝑛 is the total number 

of ground nodes, 𝑛𝑠 is the total number of UAV connections with ground nodes, 𝑁𝑓 is the number 

of UAVs that have connections with ground nodes, and 𝑁 is the total number of UAVs. 

The coverage efficiency value ranges from 0 to 1, with a higher value indicating a higher 

percentage of ground nodes being covered with less redundant links and with less idle UAVs. 



97 

 

4.3.4 Percentage of Ground Nodes with a Path to the Control Station (𝑷%) 

This metric represents the FANET effectiveness in providing the ground nodes with a path to the 

control station. It is defined as the percentage of ground nodes that have a path to the control station 

after 𝑡𝑠, as shown in in Equation (4.3). 

𝑃% =
𝑛𝑝

𝑛
× 100. (4.3) 

where 𝑛𝑝 is the number of ground nodes that have a path to the control station after 𝑡𝑠, and 𝑛 is 

the total number of ground nodes. 

4.3.5 Overall Efficiency (𝜼𝑶) 

This metric represents the overall FANET efficiency regarding fulfilment of the coverage 

maximization and path maintenance objectives. It is defined as the coverage efficiency, 𝜂𝐶 , times 

the ratio of ground nodes that have a path to the control station to the total number of ground nodes, 

as presented in Equation (4.4). 

𝜂𝑂 = 𝜂𝐶 ×
𝑛𝑝

𝑛
 

𝜂𝑂 =
𝑛𝑓

𝑛
×
𝑛𝑓

𝑛𝑠
×
𝑁𝑓

𝑁
×
𝑛𝑝

𝑛
 

(4.4) 

where 𝑛𝐶  is the FANET Coverage Efficiency after 𝑡𝑠, 𝑛𝑝 is the number of ground nodes that have 

a path to the control station after 𝑡𝑠, and 𝑛 is the total number of ground nodes.  

The overall efficiency value ranges from 0 to 1, with a higher value indicating a higher percentage 

of ground nodes being covered with less redundant links, with less idle UAVs, and with more 

ground nodes having a path to the control station. 
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4.4 Performance Evaluation of the Different Mobility 

Algorithms 

The best alternatives for objective function, PSO parameters configuration, stopping criteria, and 

propagation models have been determined and summarized in Table 4.14. Consequently, the 

performance is assessed under the three scenarios described in Table 4.15, according to the model 

parameters presented in Table 4.16, for the following three mobility algorithms: 

• Fixed trajectory: The UAVs fly through a fixed trajectory. 

• PSO-only: The UAVs fly applying PSO from the start. 

• Hybrid PSO: The UAVs fly through a fixed trajectory first and apply PSO afterwards. 

The fixed trajectory is generated using Algorithm 3.6 as defined in Section 3.4.4. Each of the three 

mobility algorithms is assessed under the three scenarios described in. The results are tabulated in 

APPENDIX F and analyzed in the following subsections of this chapter. 

Table 4.14: Objective function and PSO configuration. 

Component Description Equation 

Objective function Distance-based gain (3.7), (3.8), and (3.9) 

PSO configuration Adaptive inertia weight --- 

Propagation models Ray tracing and log-normal (2.4) 

Stopping criteria Position stability (3.12) 

 

Table 4.15: Assessment scenarios. 

Identification 
Propagation 

Model 

Access 

Network 

Backhaul 

Network 
Backbone 

Ray tracing Ray tracing Wi-Fi Wi-Fi Wi-Fi 

Log-normal Log-normal Wi-Fi Wi-Fi Wi-Fi 

Log-normal + LoRa Log-normal Wi-Fi LoRa Wi-Fi 

 

 



99 

 

Table 4.16: Final model configuration parameters. 

General Parameters 

Grid size 2000 m x 2000 m Overall max. height 121 m (400 ft.) 

Number of UAVs 1-25 Initial speed 30 m/s 

Number of ground nodes 10, 20, 30 Maximum speed 45 m/s 

Fixed trajectory max. height 60 m Time step 1 s 

Radio Parameters 

Backhaul technology Wi-Fi LoRa2 

Frequency 2.437 GHz 900 MHz 

Tx power 15 dBm 15 dBm 

Tx gain 1 dB 1 dB 

Receiver sensitivity -82 dBm -105 dBm 

Rx gain 0 dB 0 dB 

Propagation model Ray tracing, log-normal 

PSO Parameters 

Inertial weight (w) 0.95 Max. stall count 150 

Individual weight (c1) 1.35 Max. iterations 180 

Group weight (c2) 0.01   

Stopping criteria Mean distance to CoG, max. stall count, max. number of iterations 

4.4.1 Number of Iterations 

The three mobility algorithms have been tested regarding the number of iterations required for 

stabilization or stoppage. Figure 4.19 shows that the number of iterations remains the same for the 

fixed trajectory flight regardless of the propagation model or the backhaul network employed, as 

it is only dependent on the size of the grid and the number of UAVs. The fixed trajectory algorithm, 

in general, performs better than the other two regarding the number of iterations. However, it is 

worth noting that the PSO-only algorithm converges faster for a single UAV, and that the number 

of iterations for the hybrid algorithm with a single UAV is roughly the sum of the number of 

iterations required for both the fixed-trajectory and the PSO-only algorithms. Also, when a larger 

number of UAVs is deployed, the maximum number of iterations is reached before position 

stabilization is achieved. This saturation occurs with both the hybrid and PSO-only algorithms, 

 
2 When applicable 
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and could be attributed to the increased rate at which UAVs dynamically change clusters leading 

to higher instability. 

  
(a) (b) 

 
(c) 

Figure 4.19: Number of iterations required for stabilization or stoppage (𝑡𝑠). (a) Ray tracing propagation 

model. (b) Log-normal propagation model. (c) Log-normal propagation model with LoRa backhaul. 

Figures 4.19(b) and 4.19(c) show that there are exceptions to this grid saturation. In the case of 9 

UAVs, which are arranged in a square-grid formation at the maximum height of the fixed 

trajectory, the proximity and connectivity between the UAVs are higher compared to other 

configurations. This allows for higher information exchange among UAVs, enabling them to 

converge more quickly towards an optimal solution. A similar scenario that enhances the 

cooperation among the swarm happens for 16 UAVs. 

Another potential cause for saturation when a larger number of UAVs is deployed lies in the 

penalties for excessive closeness that might conflict with the path maintenance objective, although 
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the exceptions mentioned in the previous paragraph seem to rebuff this possibility. Nonetheless, 

an increase in the number of iterations up to a tolerable limit can be an acceptable byproduct of 

applying penalties for excessive closeness, if a suitable solution is found with regard to coverage 

and path maintenance, or if a better solution is found using less UAVs. 

4.4.2 Percentage of Covered Ground Nodes 

The plots in Figures 4.20(b) and 4.20(c) show that the percentage of covered ground nodes remains 

identical for the fixed trajectory algorithm (blue line), as coverage depends on the UAVs’ final 

positions, the propagation model, and the access network, which are the same in both cases.  

  
(a) (b) 

 
(c) 

Figure 4.20: Percentage of covered ground nodes (𝐶%). (a) Ray tracing propagation model. (b) Log-

normal propagation model. (c) Log-normal propagation model with LoRa backhaul. 

The fixed trajectory has shown to provide the best coverage results across all three scenarios. 

However, the Hybrid PSO performance becomes comparable to that of the fixed algorithm, with 
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the hybrid algorithm outperforming the fixed trajectory flight for a swarm made up of 5 UAVs. 

When a 5-UAV swarm is employed, the arrangement at the maximum height of the fixed trajectory 

is asymmetrical and one grid segment is left uncovered by the fixed trajectory algorithm. The fact 

that the Hybrid PSO outperforms the fixed trajectory algorithm for this configuration indicates that 

the adaptive nature of the Hybrid PSO allows it to perform better under irregular conditions. 

4.4.3 FANET Coverage Efficiency 

From the results shown in Figure 4.21, it is reasonable to expect a higher coverage efficiency with 

the fixed trajectory algorithm, as the likelihood of having more than one UAV covering the same 

ground node is lower when the UAVs are uniformly distributed above the grid—even though 

deterministically—and the ground nodes are also uniformly distributed—even though randomly. 

Although it has not been tested, it is expected that PSO-only and Hybrid PSO algorithms 

outperform the fixed trajectory algorithm for random distributions of ground nodes other than 

uniform. 

Additionally, it is observed that the coverage efficiency decreases with the increase in the number 

of UAVs, irrespective of the propagation model. This is attributed to a higher probability of UAVs 

having overlapping coverage areas. Multiple UAVs may end up covering the same ground nodes, 

resulting in inefficient resource utilization. This redundancy leads to diminishing returns in terms 

of coverage efficiency. Furthermore, in a real-world implementation, as the number of UAVs 

increases, the likelihood of interference between their communication links would also increase, 

leading to a disruption in overall communication and thus affecting coverage efficiency and 

convergence time. 
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(a) (b) 

 
(c) 

Figure 4.21: FANET Coverage Efficiency (𝜂𝐶). (a) Ray tracing propagation model. (b) Log-normal 

propagation model. (c) Log-normal propagation model with LoRa backhaul. 

4.4.4  Percentage of Ground Nodes with a Path to the Control Station 

The fixed trajectory algorithm achieves coverage maximization by uniformly distributing the 

UAVs above the grid. Nonetheless, it does not take path maintenance into consideration, and only 

attains it circumstantially when the number of UAVs is sufficiently large as to allow the 

establishment of links between adjacent UAVs as well as between the control station and at least 

one UAV.  Hence, the Hybrid PSO and the PSO-only algorithms generally outperform the fixed 

trajectory flight in the percentage of ground nodes with a path to the control station, especially 

under a more conservative propagation model intended to represent less ideal propagation 

conditions. However, when a larger number of UAVs is deployed, the increased instability results 

in a performance decay of the PSO-based algorithms for the ray tracing propagation model and for 
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the log-normal propagation model when using LoRa as a Backhaul, as shown in Figures 4.22(a) 

and 4.22(b). 

Under the assumption of a flat earth model without any obstacles, the ray tracing propagation 

model produces path loss values similar to those of the free-space model. The decrease in path loss 

values results in enhanced air-to-air connectivity among neighboring UAVs when employing the 

fixed trajectory algorithm. Consequently, as shown in Figure 4.22(a), a path to the control station 

is established for most ground nodes when the number of UAVs is large enough. Nevertheless, 

when using a more conservative propagation model, the Hybrid PSO clearly outperforms the fixed 

trajectory flight as shown in Figure 4.22(b). 

  
(a) (b) 

 
(c) 

Figure 4.22: Percentage of ground nodes with a path to the control station (𝑃%). (a) Ray tracing 

propagation model. (b) Log-normal propagation model. (c) Log-normal propagation model with LoRa 

backhaul. 
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When LoRa is used as backhaul, the air-to-air link distance is increased, which is equivalent to 

reducing the size of the grid. Under these circumstances, the performance of the three algorithms 

for a larger number of UAVs is affected consequently, with the fixed trajectory flight improving 

and the PSO-based algorithms deteriorating. Still, the use of a LoRa backhaul can be worthy of a 

compromise, if an acceptable solution is found with regard to coverage and overall efficiency, or 

if a comparable solution is found using less UAVs. 

4.4.5 Overall Efficiency 

The overall efficiency is a combination of coverage efficiency, 𝜂𝐶 , and the percentage of ground 

nodes with a path to the control station, 𝑃%. Thus, the results can be interpreted similarly to the 

previous sections, with the Hybrid PSO algorithm clearly outperforming the other two, particularly 

under the log-normal propagation model, that represents less favorable propagation conditions 

despite the ideal conditions of the model scenario. 

The Hybrid PSO outperforms the others in all three assessment scenarios as long as the number of 

UAVs does not exceed 7–9. When the number of UAVs increases beyond 7–9 for the given grid 

size, all algorithms’ efficiency decreases, but the PSO-based algorithms’ performance is affected 

the most by augmented instability. Thus, it is important to identify the adequate number of UAVs, 

given the grid size and propagation conditions. 

The use of LoRa in air-to-air links increases the communication range between UAVs, 

equivalently reducing the grid size, which also increases instability for the PSO-based algorithms 

when using a larger number of drones. Therefore, when using LoRa, the number of UAVs can be 

reduced or the grid size increased, compared to the number of UAVs or grid size when not using 

such technology. 
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Figure 4.23: Overall efficiency (𝜂𝑂). (a) Ray tracing propagation model. (b) Log-normal propagation 

model. (c) Log-normal propagation model with LoRa backhaul. 

To achieve overall efficiency maximization inside a 2 km by 2 km area, 9 UAVs could be deployed 

on an open rural scenario, represented by the ray tracing propagation model, using either the 

Hybrid PSO or the fixed trajectory algorithms. In a suburban scenario, represented by the log-

normal propagation model, 9 UAVs perform better in the same area using the Hybrid PSO. In a 

suburban scenario, represented by the log-normal propagation model, where applications such as 

short messaging or location services can tolerate lower data rates, 6 UAVs could be deployed using 

LoRa technology as backhaul and the Hybrid PSO algorithm for mobility, or 8 UAVs using the 

fixed trajectory algorithm if resources are available. 
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Chapter 5 

5 Conclusions and Future Work 

 

The mobility of UAVs in FANETs is crucial for network performance, and optimizing the mobility 

patterns of UAVs can significantly enhance the network's efficiency. PSO is a bio-inspired 

optimization algorithm that has gained popularity in solving various optimization problems. A 

comprehensive simulation environment was developed in MATLAB where three mobility 

algorithms have been compared based on ground coverage and topology formation. With 9 UAVs 

and 10 ground nodes in a 2000 m x 2000 m grid, the Hybrid PSO achieves a 45% overall network 

efficiency that is reduced only by redundant air-to-ground links. Furthermore, with this 

configuration all ground nodes are covered and all of them have a path to the control station in 

approximately 100 iterations, which are equivalent to less than 2 minutes under the simulation 

conditions, and only around 20 seconds higher than the time it would take for the fixed trajectory 

flight to reach their final positions. Therefore, the Hybrid PSO is a promising alternative to achieve 

FANET mobility while maximizing coverage to fixed ground nodes and creating a path to a control 

station. Further conclusions and future work by subject are presented in the following subsections. 

5.1 Conclusions 

5.1.1 Regarding the Objective Function and Multiobjective Optimization 

Defining the objective function is a crucial step in optimization as it lays the foundation for the 

entire process. However, setting parameters for the optimization algorithm is also a significant step 

and is often connected to defining the objective function. These processes require careful 

consideration and testing as many parameters come into play, and their impact must be 

systematically analyzed one at a time. The task of setting parameters and defining the objective 
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function can be challenging but is essential for achieving successful optimization results. 

Therefore, it is important to take the time to carefully define the objective function and set the 

appropriate parameters for the optimization algorithm to ensure optimal results. 

Multiobjective optimization involves solving problems that have multiple objectives that cannot 

be optimized simultaneously. These objectives often conflict with one another, and finding a 

solution that balances them is challenging. To accurately solve such problems, the objective 

function should represent the trade-offs between the different objectives accurately. In other 

words, the objective function should provide a way to measure how much progress is made towards 

one objective while sacrificing some progress towards the others. By properly representing the 

trade-offs, it becomes possible to identify and analyze the most effective solutions that achieve the 

optimal balance between all objectives. Therefore, in multiobjective optimization, it is crucial to 

ensure that the objective function accurately represents the trade-offs between the different 

objectives. 

The use of a single objective function to achieve multiobjective optimization has its advantages, 

as it is a straightforward concept that provides a clear direction for optimization. However, this 

approach has some significant disadvantages that must be considered. For example, it can be 

challenging to tune the objective function properly to ensure that it provides optimal results. 

Additionally, there is no clear reference for the range of values that the objective function can take. 

As a result, it cannot be used to define an absolute fitness level, but only a relative one. These 

disadvantages highlight the importance of carefully considering the objective function's design and 

implementation to ensure that it provides the necessary information to guide optimization 

effectively. Therefore, while the concept of using an objective function is straightforward, it 

requires careful consideration to ensure that it is effective in practice. 
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Applying the expected distance-based quadratic gain when a path to the control station exists 

produces better results in convergence time for different grid sizes than applying it just when more 

than one node is found, particularly for the PSO-only algorithm. However, keeping a base-2 

exponential gain when more than one node is found is also necessary to improve the balance 

between objectives. 

Applying a range-based penalty to all UAVs’ for excessive closeness helps to maintain the UAVs 

within a desirable range from each other, which in turn results in a more efficient topology by 

reducing redundant coverage. This does not seem to guarantee collision avoidance, though, given 

that the solution algorithm does not replace previous personal or group best values that draw a 

UAV to the positions where those values were previously recorded. 

Applying the expected distance-based quadratic gain to UAV1’s function when it is in the optimal 

range from the control station improves the likelihood of having a path to it from the covered 

ground nodes, and also improves convergence time. 

5.1.2 Regarding the Optimization Algorithm 

Including constraints in the optimization algorithm allows for the incorporation of real-world 

limitations and practical considerations into the optimization problem. Reducing speed to a 

maximum physical constraint is not mandatory in a real-world FANET implementation, as the 

speed would be limited naturally. However, a stall counter and an adaptive inertia weight are useful 

in applications with a reduced number of particles over large search spaces. 

Setting up parameters in the optimization algorithm is critical for obtaining good results in the 

optimization process. The range of values defined for 𝑤, 𝑐1 and 𝑐2 in Equation (3.13) guarantee 

convergence, but do not necessarily shorten convergence time, particularly for large search spaces. 
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During initial tests, a value of -0.05 was set for 𝑐2 to cause a repelling effect between UAVs. 

However, a small attraction value of 0.01 was ultimately configured that resulted in improved path 

formation. 

The inertia weight, w, must also be limited to keep it from growing excessively, which might lead 

to low spatial resolution and increased instability, even when the maximum speed is constrained. 

Constraining speed below its maximum value might be a requirement when energy efficiency is 

part of the problem objectives. 

A higher temporal resolution improves the Hybrid PSO performance in the simulation. It takes 

longer for the simulation to run, but collecting more and possibly better readings might produce 

enhanced results. Figure 4.8(a) shows that all ground nodes have a path to the control station after 

convergence using 6 UAVs for the Hybrid PSO algorithm. A time step of 0.5 seconds was 

established in that simulation in order to test the best alternative for the objective function. 

However, a lower temporal resolution with a time step of 1 second was set for the performance 

assessment of the different mobility algorithms, in order to reduce the simulation time. As a result, 

only 20 percent of the nodes have a path to the control station after convergence for the same 

number of UAVs, grid size, and propagation model, as shown in Figure 4.22(a). Increasing the 

maximum speed beyond practical values can produce a similar consequence, as it lowers spatial 

resolution, even if the temporal resolution is kept at the same value. 

Regarding the stopping criteria, using the mean distance to the center of gravity of the current and 

previous positions as a stopping criterion results in shortened convergence time. Also, it performs 

better when using stochastic propagation models, such as log-normal, that incorporate randomness 

in the received signal. This suggests that it would also perform better in a practical implementation. 
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5.1.3 Regarding Overall Performance 

Regarding coverage efficiency, although it has not been tested, it is expected that the PSO-only 

and Hybrid PSO algorithms will outperform the fixed trajectory algorithm for node distributions 

other than randomly uniform. 

The fixed trajectory algorithm outperforms the Hybrid-PSO and PSO-only in time and coverage 

metrics but does not achieve multiobjective optimization purposefully, and only attains it 

circumstantially when the number of UAVs is sufficiently large as to allow the establishment of 

links between adjacent UAVs as well as between the control station and at least one UAV. 

Nevertheless, it is a good alternative when resources are not a constraint. 

However, when path formation to the control station is taken into consideration, the Hybrid-PSO 

outperforms the others, except when LoRa comes into place. LoRa increases horizontal range, 

which is comparable to making the grid smaller. As a result, the fixed trajectory outperforms the 

others again. The Hybrid PSO does not perform well when the number of UAVs increases 

excessively with respect to the grid size. 

5.1.4 Regarding the Use of LoRa 

When LoRa is used as backhaul, the air-to-air link distance is increased, which is equivalent to 

reducing the size of the grid, which affects the performance of the PSO-based algorithms for a 

larger number of UAVs. Still, the use of a LoRa backhaul can be worthy of a compromise, if an 

acceptable solution is found with regard to coverage and overall efficiency, or if a comparable 

solution is found using less UAVs. 

LoRa technology offers significant benefits within the FANET context in maximizing the 

communications range between UAVs, particularly in low-data-rate applications like WSN, 

remote control, flight coordination, and drone identification. Its long-range capabilities make it 
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well-suited for these specific use cases. However, when considering the use of LoRa as a FANET 

access network, it's important to acknowledge that its adoption among end users is not as 

widespread compared to other types of communication technologies. As a result, its applicability 

in certain domains may be limited. 

In scenarios where human-oriented communications are crucial, a hybrid network that combines 

different communication technologies could be more convenient. For example, Wi-Fi or cellular 

networks, which are widely used and accessible to a large number of users, can be integrated 

alongside LoRa. This hybrid approach would be beneficial in applications such as localization, 

short messaging, or search and rescue operations, where the access network needs to cater to 

widespread usage and enable efficient communication between UAVs and humans. 

5.2 Future Work 

5.2.1 Communications 

In terms of communications, several areas can be explored further. One aspect is to include terrain 

and building maps in order to test different propagation models. Additionally, developing a system 

level simulation for technologies like LoRa, other LPWANs, LTE, or 5G could provide valuable 

insights. 

Continuing the analysis of small-scale propagation effects for the FANET channel is another 

important avenue for future work. This can involve testing various parameters such as end-to-end 

throughput, packet delivery ratio (PDR), and latency. Additionally, exploring different levels of 

physical and MAC layer abstraction, improving routing for load balancing, and testing link level 

parameters subject to UAV movement would contribute to a comprehensive understanding of the 

system. 
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5.2.2 Mobility based on Multiobjective Optimization 

Additional research can be performed to further assess the performance of the multiobjective 

optimization approach to FANET mobility. It would be beneficial to test the performance of the 

proposed objective function for different grid sizes and numbers of ground nodes, in order to 

provide a measure of the system scalability. 

Exploring different approaches to solve the multiobjective optimization problem, such as dynamic 

UAV team assignment with one team per objective, can provide insights into efficiency. It would 

also be valuable to include communications performance parameters like throughput, PDR, and 

latency in the objective function and test their inclusion as fitness measures in the stopping criteria. 

Energy optimization can also be included as part of the objective function, and testing the use of 

penalties only for the objective function is another avenue to explore. Automating the process of 

obtaining performance metrics would streamline the evaluation process. 

Testing UAV dynamic models under various environmental conditions, such as windspeed, would 

enhance the understanding of their performance. Including features such as lidar, radar, and 

position-based collision avoidance can contribute to safer and more efficient mobility. 

Additionally, exploring the use of machine learning approaches, such as Support Vector Machine 

(SVM), to improve mobility efficiency would be worthwhile. 

Considering that in many of the FANET applications described in Chapter 2, it is likely that the 

UAVs might be deployed from a single position, UAVs are initially located at one corner of the 

grid for this study. Nevertheless, the performance of deploying each UAV from a different initial 

position could be tested in further research. 
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Testing different heights for the fixed trajectory and determining the optimal height based on 

frequency, grid size, and the number of UAVs would further optimize the system. Incorporating 

maximum acceleration and deceleration constraints can also be considered. 

5.2.3 Energy 

The energy aspect of FANETs is another area for future work. It would be beneficial to include 

low-battery UAV recharge and replacement mechanisms in the system. Testing energy 

replenishment methods like energy harvesting and solar power can contribute to sustainable and 

prolonged UAV operation. 

5.2.4 The Use of LoRa in FANETs 

Exploring the use of LoRa in FANETs is another important focus. Testing the maximum 

communication ranges at the maximum data rate available for the latest LoRa chips in the 2.4 GHz 

band can provide insights into their performance. Additionally, investigating the concept of chirp 

modulation to improve the balance between data rate performance and energy consumption is 

valuable, as FANETs do not impose the same energy constraints as small battery-powered IoT 

sensors. One approach could involve reducing chirp duration by half. 

 

As a final insight into future work, to carry out an experimental implementation would be 

instrumental to validate the results of this simulation-based study under practical conditions, as 

well as to tune the PSO and other configuration parameters such as time step, maximum UAV 

speed, fixed trajectory maximum height, and receiver sensitivity. 
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APPENDIX A: Main MATLAB Script 

%% UAV_SWARM main script 
%% Receive input parameters and initialize common variables (UAV, WLAN) 
simTime = 40;               % in seconds 
updateRate = 2;             % in Hz for UAV scenario and lidar sensors 
time_step = 1;              % in s for comms and mobility 
FixedTRJHeight = 60;        % in m 
MaxHeight = 121;            % in m 
VertThresh = -82;           % in dBm 
LoRaThresh = -105;          % in dBm 
UAVinitspeed = 30;          % in m/s 
UAVmaxspeed = 44.5;         % in m/s 
UAVmaxaccel = 5;            % in m/s2 
gridsize = input("Grid size [m]:"); 
N = input("Number of drones:"); 
n = input("Number of ground nodes:"); 
PSO_type = input("PSO type: [1 for Fixed, 2 for Hybrid, 3 for PSO-only]:"); 
runflightsim = input("Run flight simulation? [1 for true, 0 for false]:"); 
runnetsim = input("Run network simulation? [1 for true, 0 for false]:"); 
switch runnetsim 
    case 1 
        % Show live state transition plot for all nodes 
        showLiveStateTransitionPlot = input("Show Live State Transition Plot? [1 for 
true, 0 for false]:"); 
    otherwise 
        showLiveStateTransitionPlot = false; 
end 
propaga = input("Propagation model [1 for Free Space, 2 for Ray Tracing, 3 for Log-
normal 4 for TGax Residential]:"); 
backhaul = input("Backhaul: [1 for Wi-Fi, 2 for LoRa]:"); 
switch backhaul 
    case 2 
        freqLoRa = input("LoRa frequency: [1 for 900 MHz, 2 for 2.4 GHz, 3 for 400 
MHz]:"); 
        BckhaulThresh = LoRaThresh;        % in dBm 
    otherwise 
        freqLoRa = 0; 
        BckhaulThresh = VertThresh;        % in dBm 
end 
pfun_Eval = input("Apply DistanceNodesGain to: [1 path_exists, 2 More nodes + 
path_exists, 3 No path_exists, 4 Extra for other's paths, 5 Original, 6 More 
nodes]:"); 
pen_UAV1_CtrlSta = input("Reward/Penalize UAV1-to-CtrlSta link: [1 for true, 0 for 
false]:"); 
pen_exclo_a2g = input("Penalize if too close to the ground: [1 for true, 0 for 
false]:"); 
stopCriteria = input("Stopping Criteria: [1 for Mean Max, 2 for Mean Sum, 3 for Mean 
Pos]:"); 
switch freqLoRa 
    case 0 
        freqLoRa = 0; 
    case 1 
        freqLoRa = 900e6;   % in Hz 
    case 2 
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        freqLoRa = 2400e6;  % in Hz 
    case 3 
        freqLoRa = 400e6;   % in Hz 
end 
 
%% Create Scenario with Polygon Building Meshes 
 
% Create the UAV scenario. 
scene = 
uavScenario("UpdateRate",updateRate,"StopTime",simTime,"ReferenceLocation",[30.27 -
81.505 0],"MaxNumFrames",200); 
 
% Add a ground plane based on gridsize. East is X and North is Y. 
color.Gray = 0.651*ones(1,3); 
color.Green = [0.3922 0.8314 0.0745]; 
color.Red = [1 0 0]; 
color.Sky = [135/255 206/255 235/255]; 
addMesh(scene,"polygon",{[-gridsize/2 -gridsize/2; gridsize/2 -gridsize/2; ... 
    gridsize/2 gridsize/2; -gridsize/2 gridsize/2], [-10 0]}, color.Gray) 
addMesh(scene,"surface",{[gridsize/2 gridsize/2; gridsize/2 gridsize/2], ... 
    [-gridsize/2 gridsize/2; -gridsize/2 gridsize/2], [0 0; 90 90]}, color.Sky) 
addMesh(scene,"surface",{[gridsize/2 -gridsize/2; gridsize/2 -gridsize/2], ... 
    [-gridsize/2 -gridsize/2; -gridsize/2 -gridsize/2], [0 0; 90 90]}, color.Sky) 
 
% Show the scenario. 
% Get screen resolution 
resolution = get(0, 'screensize'); 
screenWidth = resolution(3); 
screenHeight = resolution(4); 
figureWidth = screenWidth*0.8; 
figureHeight = screenHeight*0.8; 
f1 = figure('Position', [screenWidth*0.025, screenHeight*0.075, figureWidth, 
figureHeight]); 
t = tiledlayout(f1,1,2); 
ax = nexttile(t); 
show3D(scene,'Parent',ax); 
xlim([-250 250]) 
ylim([-250 250]) 
zlim([0 120]) 
view([-110 30]) 
axis equal 
hold on 
 
%% Set starting and ending positions, create UAV Fixed trajectories, create UAV 
platforms, and mount sensors (UAV TOOLBOX) 
nlength = floor(sqrt(N)); 
elength = ceil(N/nlength); 
 
% initial_pose = [gridsize/2 -gridsize/2 0 1 0 0 0]; 
startPos = repmat([-gridsize/2 gridsize/2 0],1,1,nlength*elength); 
 
% Create destination positions based on gridsize, the number of drones N  
% and a 120 m height. Height is POSITIVE here because of the ENU  
% reference frame for UAVs and sensors. 
cellcount = 1; 



124 

 

destPos = zeros(1,3,nlength*elength); 
eucdistance_vec = []; 
for column = 1:nlength 
    for row = 1:elength 
        destPos(1,:,cellcount) = [-(gridsize/2)-
(gridsize/elength/2)+row*(gridsize/elength),... 
            (gridsize/2)+(gridsize/nlength/2)-column*(gridsize/nlength), 
FixedTRJHeight]; 
        eucdistance_vec = cat(3,eucdistance_vec,sqrt((destPos(1,1,cellcount)-
startPos(1,1,cellcount))^2+ ... 
            (destPos(1,2,cellcount)-
startPos(1,2,cellcount))^2+(destPos(1,3,cellcount)-startPos(1,3,cellcount))^2)); 
        cellcount = cellcount + 1; 
    end 
end 
 
% Create Waypoints vectors, orientations and ToAs for each UAV: 2 wp, 2 orient and 1 
% ToA for each UAV. ToA is based on s-d distances and constant speed 
% (calculated from the distance to the farthest destination and simTime 
 
waypoints = [startPos;destPos]; 
orientation_eul = [0 0 0]; 
orientation_quat = quaternion(eul2quat(orientation_eul));  
orientation_vec = repmat(orientation_quat,size(waypoints,1),1,nlength*elength); 
speed = max(eucdistance_vec)/simTime; 
toa_vect = eucdistance_vec/UAVinitspeed; 
FixedTRJTime = max(eucdistance_vec)/UAVinitspeed; 
sampleTimes = 0:time_step:FixedTRJTime; 
 
% Initialize platforms and sensors to improve runtime 
plat = uavPlatform.empty; 
lidar = uavSensor.empty; 
 
% Initialize trajectoty elements arrays 
trajectory = cell(1,1,nlength*elength); 
pos_array = zeros(500,3,N); 
ori_array = zeros(500,1,N,'quaternion'); 
vel_array = zeros(500,3,N); 
acc_array = zeros(500,3,N); 
ang_array = zeros(500,3,N); 
 
% Initialize lidar model 
lidarmodel1 = uavLidarPointCloudGenerator("AzimuthResolution",0.3324099,... 
    "ElevationLimits",[-90 20],"ElevationResolution",1.25,... 
    "MaxRange",120,"UpdateRate",2,"HasOrganizedOutput",true); 
 
% Iterate to create trajectories for each cell 
for cellcount = 1:nlength*elength 
    % Create Trajectory based on starting and final positions 
    trajectory{1,1,cellcount} = 
waypointTrajectory("Waypoints",waypoints(:,:,cellcount),... 
        "Orientation",orientation_vec(:,:,cellcount),"SampleRate",(1/time_step),... 
        "ReferenceFrame","ENU","TimeOfArrival",[0 toa_vect(1,1,cellcount)]); 
 



125 

 

    % Look up the waypoints of the trajectory in the local navigation coordinate 
system in meters. 
    [position,orientation,velocity,acceleration,angularVelocity] = 
lookupPose(trajectory{1,1,cellcount},sampleTimes); 
     
    % Clean trajectories of NaN (replace NaN with the last position). 
    traject_length = size(position,1); 
    for traj_count = 1:traject_length 
        if anynan(position(traj_count,:)) 
            position(traj_count,:) = position(traj_count-1,:); 
            orientation(traj_count,:) = orientation(traj_count-1,:); 
            velocity(traj_count,:) = velocity(traj_count-1,:); 
            acceleration(traj_count,:) = acceleration(traj_count-1,:); 
            angularVelocity(traj_count,:) = angularVelocity(traj_count-1,:); 
        end 
    end 
     
    % Populate trajectoty elements arrays 
    pos_array(1:size(position,1),:,cellcount) = position; 
    ori_array(1:size(position,1),:,cellcount) = orientation; 
    vel_array(1:size(position,1),:,cellcount) = velocity; 
    acc_array(1:size(position,1),:,cellcount) = acceleration; 
    ang_array(1:size(position,1),:,cellcount) = angularVelocity; 
end 
 
% Set up platforms at their initial positions to be used together with 
% the move method 
for platcount = 1:N 
    UAVstrname = strcat("UAV",string(platcount)); 
    plat(1,1,platcount) = uavPlatform(UAVstrname,scene,"ReferenceFrame","ENU",... 
        "InitialPosition",pos_array(1,:,platcount),... 
        "InitialVelocity",vel_array(1,:,platcount),... 
        "InitialAcceleration",acc_array(1,:,platcount),... 
        "InitialOrientation",eul2quat(quat2eul(ori_array(1,:,platcount))),... 
        "InitialAngularVelocity",ang_array(1,:,platcount)); 
 
    % Set up platform mesh. Add a rotation to orient the mesh to the UAV body frame. 
    updateMesh(plat(1,1,platcount),"quadrotor",{10},color.Red,[0 0 0],eul2quat([0 0 
pi])); 
 
    % Mount sensors. You can choose to mount different sensors to your UAV 
    %SENSORstrname = strcat("Lidar",string(cellcount)); 
    lidar(1,1,platcount) = 
uavSensor("Lidar",plat(1,1,platcount),lidarmodel1,"MountingLocation",[0 0 -
1],"MountingAngles",[0 0 0]); 
end 
 
%% Create WiFi Network 
% Create APs and Ground Nodes (WLAN TOOLBOX modified) 
 
% Configuration Parameters 
rng(1, 'simdTwister');                % Seed for random number generator 
displayStatistics = false;               % Display statistics at the end of the 
simulation 
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% Add the folder to the path for access to all helper files 
addpath(genpath(fullfile(pwd, 'mlWLANSystemSimulation'))); 
 
ScenarioParameters = struct; 
% Number of rooms in [x,y,z] directions 
ScenarioParameters.BuildingLayout = [1 1 1]; 
% Size of each room in meters [x,y,z] 
ScenarioParameters.RoomSize = [gridsize gridsize MaxHeight+100]; 
% Number of STAs per room 
ScenarioParameters.NumRxPerRoom = n; 
 
% Drop nodes 
staPositions = hDropNodes(n, gridsize); 
interm = permute(pos_array(1,1:3,:),[3 2 1]); 
apPositions = interm(:,:,1); 
staPositions = cat(1, staPositions, [(-gridsize/2)*1 (gridsize/2)*1 1.5]); 
 
% Create triangulation object for TGax propagation model 
tri = hTGaxResidentialTriangulation(ScenarioParameters); 
 
% Set propagation model 
switch propaga 
    case 1 
        propModel = 
hFreeSpacePathLoss('Triangulation',tri,'ShadowSigma',0,'FacesPerWall',1); 
        if backhaul == 2 
            propModelHori = propagationModel('freespace'); 
        end 
    case 2 
        propModel = 
propagationModel("raytracing","Method","image","MaxNumReflections",1,"CoordinateSyste
m","cartesian"); 
        if backhaul == 2 
            propModelHori = 
propagationModel("raytracing","Method","image","MaxNumReflections",1,"CoordinateSyste
m","cartesian"); 
        end 
    case 3 
        propModel = propagationModel('close-in'); 
        propModel.PathLossExponent = 2.2; 
        propModel.Sigma = 0.1; 
        if backhaul == 2 
            propModelHori = propagationModel('close-in'); 
            propModelHori.PathLossExponent = 2.2; 
            propModelHori.Sigma = 0.1; 
        end 
    case 4 
        propModel = 
hTGaxResidentialPathLoss('Triangulation',tri,'ShadowSigma',0.1,'FacesPerWall',1); 
        if backhaul == 2 
            propModelHori = propagationModel('close-in'); 
            propModelHori.ReferenceDistance = 5; 
            propModelHori.PathLossExponent = 3.5; 
            propModelHori.Sigma = 0.1; 
        end 
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end 
 
% Node parameters 
% Get the IDs, positions, and traffic configurations of each node 
switch backhaul 
    case 2 
        [nodeConfigs, trafficConfigs] = hLoadConfigurationFull_Int_Traff_7(N, n, 
apPositions, staPositions, VertThresh); 
    otherwise 
        [nodeConfigs, trafficConfigs] = hLoadConfigurationFull_Int_Traff_6(N, n, 
apPositions, staPositions, VertThresh); 
end 
 
% Set abstraction level  
MACFrameAbstraction = true; 
PHYAbstractionType  = "TGax Evaluation Methodology Appendix 1"; 
 
disablenames = false; 
 
%pl = zeros(N+n,N+n,size(pos_array, 1)); 
TxPowerMat = zeros(1,N+n+1); 
TxAntGMat = zeros(1,N+n+1); 
RxAntGMat = zeros(1,N+n+1); 
for wcount = 1:(N+n+1) 
    TxAntGMat(1,wcount) = nodeConfigs(wcount).TxGain; 
    RxAntGMat(1,wcount) = nodeConfigs(wcount).RxGain; 
end 
TxAntGMat = repmat(TxAntGMat,N+n+1,1); 
RxAntGMat = repmat(RxAntGMat,N+n+1,1); 
RxPowerMat = zeros(N+n+1,N+n+1,size(pos_array, 1)); 
RxPowerMatW = zeros(N+n+1,N+n+1,size(pos_array, 1)); 
RxPowerMatDij = zeros(N+n+1,N+n+1); 
 
%% Fly the UAV Platforms Along the Fixed Trajectories and Collect Point Cloud Sensor 
Readings 
 
% Visualize the scene 
figure(f1) 
[ax,plotFrames] = show3D(scene); 
 
% Update plot view for better visibility 
xlim([-250 200]) 
ylim([-150 180]) 
zlim([0 50]) 
view([-110 20]) 
axis equal 
hold on 
 
% Create a scatter plot for the point clouds. Update the data source properties 
again. 
colormap("jet") 
pt = pointCloud(nan(N,1,3)); 
% Uncomment and repeat the following code as many times as there are UAVs  
% scatterplot1 = scatter3(ax,nan,nan,nan,1,[0.3020 0.7451 0.9333],... 
%     "Parent",plotFrames.UAV1.Lidar); 
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% scatterplot1.XDataSource = "reshape(pt(1,1).Location(:,:,1),[],1)"; 
% scatterplot1.YDataSource = "reshape(pt(1,1).Location(:,:,2),[],1)"; 
% scatterplot1.ZDataSource = "reshape(pt(1,1).Location(:,:,3),[],1)"; 
% scatterplot1.CDataSource = "reshape(pt(1,1).Location(:,:,3),[],1) - 
min(reshape(pt(1,1).Location(:,:,3),[],1))"; 
% scatterplot2 = scatter3(nan,nan,nan,1,[0.3020 0.7451 0.9333],... 
%     "Parent",plotFrames.UAV2.Lidar); 
 
%Create an occupancy map for a more efficient way to store the point cloud 
%data. Use a minimum resolution of 1 cell per meter. 
map3D = occupancyMap3D(1); 
 
% Set up the simulation 
setup(scene) 
 
% Initialize sensor variables, lastest-position vectors, and PSO variables 
ptIdx = 1; 
isupdated = zeros(1,1,N); 
lidarSampleTime = zeros(1,1,N); 
motion = zeros(size(pos_array, 1),16,N);     % read(plat) returns a 16-element motion 
vector 
LLA = zeros(size(pos_array, 1),3,N);         % read(plat) returns a 3-element LLA 
vector 
cont = 0; 
pfun = 0; 
fBest = zeros(size(pos_array, 1),N); 
pfBest = zeros(size(pos_array, 1),N); 
clusterfBest = zeros(size(pos_array, 1),N,N); 
pBestInst = zeros(1,N); 
pBestPos = pos_array(1,:,:); 
gBestPos = zeros(N,3); 
if PSO_type == 3  
    fixedTraj = 1; 
else 
    fixedTraj = size(position, 1); 
end 
itera = true; 
w = 0.95*ones(1,N); 
y1 = 1.35; 
y2 = 0.01; 
stallcount = zeros(1,N); 
flag = false; 
yy = zeros(N,ptIdx); 
labels = []; 
g1 = gobjects(N,N); 
g2 = gobjects(N,n); 
g3 = gobjects(1,1); 
plr = zeros(N+n+1,N+n+1); 
 
for platcount = 1:N 
    labels = cat(2,labels,strcat('UAV',string(platcount))); 
end 
 
% Iterate through the positions and show the scene each time any of the lidar sensors 
updates 
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while itera 
     
    delete(g1(:,:)); 
    delete(g2(:,:)); 
    delete(g3(:,:)); 
 
    path_exists = zeros(1,N+n); 
     
    % Read all platforms' latest position and 
    % Rearrange pos_array to accommodate WLAN reqs. 
    for platcount = 1:N 
        [motion(ptIdx,:,platcount),LLA(ptIdx,:,platcount)] = 
read(plat(:,:,platcount)); 
    end 
    interm = permute(motion(ptIdx,1:3,:),[3 2 1]); 
    apPositions = interm(:,:,1); 
 
    % Simulate wireless network 
    % Get updated AP positions 
    if ptIdx > 1 
        for platcount = 1:N 
            nodeConfigs(platcount).NodePosition = apPositions(platcount,:); 
        end 
    end 
     
    % Create transmitter and receiver sites 
    [txs,rxs] = hCreateSitesFromNodesDP(nodeConfigs,N,n); 
    switch freqLoRa 
        case 0 
        otherwise 
            %txLoRa = txs; 
            %rxLoRa = rxs; 
            [txLoRa,rxLoRa] = hCreateSitesFromNodesDP(nodeConfigs,N,n); 
            for i = 1:N 
                txLoRa(i).TransmitterFrequency = freqLoRa; 
            end 
    end 
     
    % Visualize the scenario 
    [Txnameshandle,Rxnameshandle,UAVshandle] = 
hVisualizeScenarioDP(tri,ax,txs,rxs,apPositions,"DisableNames",disablenames); 
     
    % Obtain pathloss and RxPower between each pair of nodes 
    for wcount = 1:(N+n+1) 
        TxPowerMat(1,wcount) = nodeConfigs(wcount).TxPower;     %Allows dynamic power 
config 
    end 
    TxPowerMat = repmat(TxPowerMat,N+n+1,1); 
    switch propaga 
        case 2 
            [plWiFi,pathlossFnHdl] = hCreatePathlossTableDP(txs,rxs,propModel,1); 
            if backhaul == 2 
                plLoRa = pathloss(propModelHori,rxLoRa,txLoRa); 
                for row = 1:N 
                    for column = 1:N 



130 

 

                        if plLoRa{row,column} ~= -Inf 
                            plr(row,column) = [plLoRa{row,column}]; 
                        else 
                            plr(row,column) = 0; 
                        end 
                    end 
                end 
            end 
        otherwise 
            [plWiFi,pathlossFnHdl] = hCreatePathlossTableDP(txs,rxs,propModel); 
            if backhaul == 2 
                plLoRa = pathloss(propModelHori,rxLoRa,txLoRa); 
                for row = 1:N 
                    for column = 1:N 
                        if plLoRa(row,column) ~= -Inf 
                            plr(row,column) = plLoRa(row,column); 
                        else 
                            plr(row,column) = 0; 
                        end 
                    end 
                end 
            end 
    end 
    switch backhaul 
        case 2 
            RxPowerMat(1:N,1:N,ptIdx) = TxPowerMat(1:N,1:N,1) + TxAntGMat(1:N,1:N,1) 
- plr(1:N,1:N,1); 
            RxPowerMat(N+1:N+n+1,1:N+n+1,ptIdx) = TxPowerMat(N+1:N+n+1,1:N+n+1,1) + 
TxAntGMat(N+1:N+n+1,1:N+n+1,1) - plWiFi(N+1:N+n+1,1:N+n+1,1); 
            RxPowerMat(1:N,N+1:N+n+1,ptIdx) = TxPowerMat(1:N,N+1:N+n+1,1) + 
TxAntGMat(1:N,N+1:N+n+1,1) - plWiFi(1:N,N+1:N+n+1,1); 
        otherwise 
            RxPowerMat(:,:,ptIdx) = TxPowerMat + TxAntGMat - plWiFi(:,:,1); 
    end 
    RxPowerMatW(:,:,ptIdx) = 10.^(RxPowerMat(:,:,ptIdx)/10); 
    RxPowerMatDij = RxPowerMat(:,:,ptIdx); 
    RxPowerMatDij = RxPowerMatDij - diag(diag(RxPowerMatDij)); 
    for row = 1:N 
        for column = 1:N 
            if RxPowerMatDij(row,column) >= BckhaulThresh 
                RxPowerMatDij(row,column) = 1; 
            else 
                RxPowerMatDij(row,column) = Inf; 
            end 
        end 
    end 
    for row = N+1:N+n+1 
        for column = 1:N+n+1 
            if RxPowerMatDij(row,column) >= VertThresh 
                RxPowerMatDij(row,column) = 1; 
            else 
                RxPowerMatDij(row,column) = Inf; 
            end 
        end 
    end 
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    for row = 1:N 
        for column = N+1:N+n+1 
            if RxPowerMatDij(row,column) >= VertThresh 
                RxPowerMatDij(row,column) = 1; 
            else 
                RxPowerMatDij(row,column) = Inf; 
            end 
        end 
    end 
    RxPowerMatDijUAV = RxPowerMatDij; 
    RxPowerMatDijUAV(N+1:N+n,:) = Inf; 
    RxPowerMatDijUAV(:,N+1:N+n) = Inf; 
    TxPowerMat = zeros(1,N+n+1); 
     
    %% Determine if a path to ControlSTA exists 
 
    % Interface index on which packet has to be forwarded to next node. 
    destID = N+n+1;     % Destination node ID (ControlSTA) 
     
    % Configure routing table at MeshN to reach ControlSTA 
    % MeshN-1 is the next hop node from MeshN 
    for platcount = 1:N 
        [cost, Dij_path] = Dijkstras(RxPowerMatDijUAV,platcount,destID); 
        if cost ~= Inf 
            path_exists(1,platcount) = 1; 
        end 
    end 
         
    %% Particle Swarm Optimization 
     
    % Evaluate objective function, get best p and g values, and get best group 
position 
    % Move through UAVs 
    for platcount = 1:N 
        [pfun,g1,g2,g3] = 
ObjFunEval(RxPowerMatW,VertThresh,BckhaulThresh,path_exists,... 
            
N,n,ptIdx,platcount,ax,g1,g2,g3,pos_array,staPositions,gridsize,pfun_Eval,... 
            pen_exclo_a2g,pen_UAV1_CtrlSta); 
        %fprintf('2. %d %d %.2d %d %d\n', ptIdx, platcount, pfun, 10*log10(pfun), 
minTemp) 
        if ptIdx > 1 
            if pfun > pfBest(ptIdx-1,platcount) 
                pfBest(ptIdx,platcount) = pfun; 
                pBestInst(1,platcount) = ptIdx; 
                pBestPos(1,:,platcount) = motion(ptIdx,1:3,platcount);   %Get best 
individual positions 
            else 
                pfBest(ptIdx,platcount) = pfBest(ptIdx-1,platcount); 
            end 
        else 
            if pfun > pfBest(ptIdx,platcount) 
                pfBest(ptIdx,platcount) = pfun; 
                pBestInst(1,platcount) = ptIdx; 
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                pBestPos(1,:,platcount) = motion(ptIdx,1:3,platcount);   %Get best 
individual positions 
            end 
        end 
    end 
     
    % Draw lidar plots to simulate coverage 
    % This part must be located after the part that plots the link 
    % lines (ObjFunEval) so they can be seen before being deleted in the  
    % next iteration, but before the loop that moves the platforms. That is 
    % why this code is in the middle of the PSO section. 
    % Read all sensors' data from the scenario 
    for lidarcount = 1:N 
        [isupdated(1,1,lidarcount),lidarSampleTime(1,1,lidarcount), pt(lidarcount,:)] 
= read(lidar(1,1,lidarcount)); 
    end 
 
    if runflightsim 
    % If any sensor is updated then show the scene 
        if any(isupdated) 
            % Use fast update to move platform visualization frames. 
            
show3D(scene,"Time",lidarSampleTime(1,1,N),"FastUpdate",true,"Parent",ax); 
            % Refresh all plot data and visualize. 
            refreshdata(f1,'caller') 
            drawnow 
        end 
    end 
 
    % Determine GBest locally at each UAV among those UAVs within its range 
    % and move platforms. 
    for platcount = 1:N 
        % Determine GBest locally at each UAV among those UAVs within its  
        % range (cluster/neighborhood). 
        for pfBestcount =1:N 
            if pfBestcount ~= platcount  %Not considering itself for cluster best 
                if RxPowerMat(pfBestcount,platcount,ptIdx) >= BckhaulThresh 
                    clusterfBest(ptIdx,pfBestcount,platcount) = 
pfBest(ptIdx,pfBestcount); 
                else 
                    clusterfBest(ptIdx,pfBestcount,platcount) = 0; 
                end 
            else 
                clusterfBest(ptIdx,pfBestcount,platcount) = 0; 
            end 
        end 
        [fBestTemp, gBestNodeTemp] = max(clusterfBest(ptIdx,:,platcount)); 
        if ptIdx > 1 
            if ptIdx >= fixedTraj 
                if fBestTemp > fBest(ptIdx-1,platcount) 
                    fBest(ptIdx,platcount) = fBestTemp; 
                    gBestInst = ptIdx; 
                    gBestNode = gBestNodeTemp; 
                    gBestPos(platcount,:) = pBestPos(1,:,gBestNode); 
                    stallcount(1,platcount) = max(0, stallcount(1,platcount)-1); 
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                    if stallcount(1,platcount) < 2 
                        w(1,platcount) = min(2*w(1,platcount),UAVmaxspeed); 
                    end 
                    if stallcount(1,platcount) > 5 
                        w(1,platcount) = w(1,platcount)/2; 
                    end 
                else 
                    stallcount(1,platcount) = stallcount(1,platcount)+1; 
                    fBest(ptIdx,platcount) = fBest(ptIdx-1,platcount); 
                end 
            else 
                if fBestTemp > fBest(ptIdx-1,platcount) 
                    fBest(ptIdx,platcount) = fBestTemp; 
                    gBestInst = ptIdx; 
                    gBestNode = gBestNodeTemp; 
                    gBestPos(platcount,:) = pBestPos(1,:,gBestNode); 
                else 
                    fBest(ptIdx,platcount) = fBest(ptIdx-1,platcount); 
                end 
            end 
        else 
            if fBestTemp > fBest(ptIdx,platcount) 
                fBest(ptIdx,platcount) = fBestTemp; 
                gBestInst = ptIdx; 
                gBestNode = gBestNodeTemp; 
                gBestPos(platcount,:) = pBestPos(1,:,gBestNode); 
            end 
        end 
         
        % Move platforms. 
        if ptIdx < fixedTraj 
            move(plat(1,1,platcount),[pos_array(ptIdx+1,:,platcount),... 
                vel_array(ptIdx+1,:,platcount),... 
                acc_array(ptIdx+1,:,platcount),... 
                eul2quat(quat2eul(ori_array(ptIdx+1,:,platcount))),... 
                ang_array(ptIdx+1,:,platcount)]) 
        else 
            if PSO_type ~= 1  
                vel_array(ptIdx+1,:,platcount) = 
w(1,platcount)*vel_array(ptIdx,:,platcount) + ... 
                    y1*rand()*(pBestPos(1,:,platcount)-pos_array(ptIdx,:,platcount)) 
+ ... 
                    y2*rand()*(gBestPos(platcount,:)-pos_array(ptIdx,:,platcount)); 
                speed2 = sqrt(vel_array(ptIdx+1,1,platcount)^2 + 
vel_array(ptIdx+1,2,platcount)^2 + ... 
                    vel_array(ptIdx+1,3,platcount)^2); 
                if speed2 > UAVmaxspeed 
                    vel_array(ptIdx+1,:,platcount) = vel_array(ptIdx+1,:,platcount) * 
... 
                        UAVmaxspeed / speed2; 
                end 
                diffpos = time_step*vel_array(ptIdx+1,:,platcount); 
                nextpos = pos_array(ptIdx,:,platcount) + diffpos; 
                if nextpos(1,1,1) >= -gridsize/2 && nextpos(1,1,1) <= gridsize/2 && 
... 
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                        nextpos(1,2,1) >= -gridsize/2 && nextpos(1,2,1) <= gridsize/2 
&& ... 
                        nextpos(1,3,1) >= 0 && nextpos(1,3,1) <= MaxHeight 
                    pos_array(ptIdx+1,:,platcount) = pos_array(ptIdx,:,platcount) + 
diffpos; 
                    acc_array(ptIdx+1,:,platcount) = acc_array(ptIdx,:,platcount); 
                    ori_array(ptIdx+1,:,platcount) = ori_array(ptIdx,:,platcount); 
                    ang_array(ptIdx+1,:,platcount) = ang_array(ptIdx,:,platcount); 
                else 
                    if nextpos(1,1,1) < -gridsize/2 || nextpos(1,1,1) > gridsize/2 
                        vel_array(ptIdx+1,1,platcount) = 0; 
                    end 
                    if nextpos(1,2,1) < -gridsize/2 || nextpos(1,2,1) > gridsize/2 
                        vel_array(ptIdx+1,2,platcount) = 0; 
                    end 
                    if nextpos(1,3,1) < 0 || nextpos(1,3,1) > MaxHeight 
                        vel_array(ptIdx+1,3,platcount) = 0; 
                    end 
                    diffpos = time_step*vel_array(ptIdx+1,:,platcount); 
                    pos_array(ptIdx+1,:,platcount) = pos_array(ptIdx,:,platcount) + 
diffpos; 
                    acc_array(ptIdx+1,:,platcount) = acc_array(ptIdx,:,platcount); 
                    ori_array(ptIdx+1,:,platcount) = ori_array(ptIdx,:,platcount); 
                    ang_array(ptIdx+1,:,platcount) = ang_array(ptIdx,:,platcount); 
                end 
                move(plat(1,1,platcount),[pos_array(ptIdx+1,:,platcount),... 
                    vel_array(ptIdx+1,:,platcount),... 
                    acc_array(ptIdx+1,:,platcount),... 
                    eul2quat(quat2eul(ori_array(ptIdx+1,:,platcount))),... 
                    ang_array(ptIdx+1,:,platcount)]) 
            else 
                itera = false; 
            end 
        end 
        % Create a line plot for the trajectories 
        if (PSO_type == 1 || PSO_type == 2) && itera == true 
            plot3(ax,pos_array(ptIdx:ptIdx+1,1,platcount),... 
                pos_array(ptIdx:ptIdx+1,2,platcount),... 
                pos_array(ptIdx:ptIdx+1,3,platcount),... 
                "Color",[1 1 1],"LineWidth",2); 
        end 
         
        % Create a tile within the figure to plot the RxPowerLevels 
        % It only happens during the first iteration 
        if and(ptIdx == 1,platcount ==1) 
            ax2 = nexttile(t); 
        end 
    end 
     
    % Create a line plot for the RxPowerLevels (depends on the selected 
    % stopping criteria 
    switch stopCriteria 
        case 1 
            pivotmat2 = reshape(max(RxPowerMat(N+1:N+n,1:N,ptIdx),[],1),1,[]); 
        otherwise 
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            pivotmat2 = 
reshape(10.*log10(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx),1)),1,[]); 
    end 
    yy(1:N,ptIdx) = pivotmat2; 
    plot(ax2,1:ptIdx,yy(1:N,1:ptIdx),"LineWidth",1); 
    title(ax2,'Received Power Levels at Each UAV') 
    legend(ax2,labels) 
    xlabel(ax2, 'Number of Iterations') 
    ylabel(ax2, 'Received Power Levels [dBm]') 
    set(ax2, 'YGrid', 'on', 'XGrid', 'off') 
     
    % Check if stopping criteria is met 
    switch stopCriteria 
        case 1 
            switch PSO_type 
                case 3 
                    if ptIdx > 10 && ptIdx > fixedTraj 
                        change = abs(max(RxPowerMat(N+1:N+n,1:N,ptIdx),[],1)-... 
                            mean(max(RxPowerMat(N+1:N+n,1:N,ptIdx-10:ptIdx-
1),[],1),3)); 
                        relatchange_mean = 
change./abs(mean(max(RxPowerMat(N+1:N+n,1:N,ptIdx-10:ptIdx-1),[],1),3)); 
                        if max(relatchange_mean) <= 0.02 || min(stallcount) >= 150 || 
ptIdx >= 180 
                            itera = false; 
                        end 
                    end 
                otherwise 
                    if ptIdx > 10 && ptIdx > fixedTraj + 20 
                        change = abs(max(RxPowerMat(N+1:N+n,1:N,ptIdx),[],1)-... 
                            mean(max(RxPowerMat(N+1:N+n,1:N,ptIdx-10:ptIdx-
1),[],1),3)); 
                        relatchange_mean = 
change./abs(mean(max(RxPowerMat(N+1:N+n,1:N,ptIdx-10:ptIdx-1),[],1),3)); 
                        if max(relatchange_mean) <= 0.02 || min(stallcount) >= 150 || 
ptIdx >= 180 
                            itera = false; 
                        end 
                    end 
            end 
        case 2 
            switch PSO_type 
                case 3 
                    if ptIdx > 10 && ptIdx > fixedTraj 
                        change = abs(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx),1)-... 
                            mean(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx-10:ptIdx-
1),1),3));      
                        relatchange_mean = 
change./abs(mean(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx-10:ptIdx-1),1),3)); 
                        if max(relatchange_mean) <= 0.02 || min(stallcount) >= 150 || 
ptIdx >= 180 
                            itera = false; 
                        end 
                    end 
                otherwise 
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                    if ptIdx > 10 && ptIdx > fixedTraj + 20 
                        change = abs(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx),1)-... 
                            mean(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx-10:ptIdx-
1),1),3));      
                        relatchange_mean = 
change./abs(mean(sum(RxPowerMatW(N+1:N+n,1:N,ptIdx-10:ptIdx-1),1),3)); 
                        if max(relatchange_mean) <= 0.02 || min(stallcount) >= 150 || 
ptIdx >= 180 
                            itera = false; 
                        end 
                    end 
            end 
        otherwise 
            switch PSO_type 
                case 3 
                    if ptIdx > 10 && ptIdx > fixedTraj 
                        cent_grav = mean(pos_array(ptIdx-10:ptIdx-1,:,1:N),1); % 
Center of gravity 10 previous pos 
                        cent_grav = repmat(cent_grav,11,1); 
                        pos_change = pos_array(ptIdx-10:ptIdx,:,1:N)-cent_grav; % 
Distances from all 11 last points 
                        pos_change = pos_change.^2; 
                        pos_change = sum(pos_change,2).^0.5; 
                        if max(mean(pos_change)) <= UAVmaxspeed*time_step || 
min(stallcount) >= 150 || ptIdx >= 180 %Mean inside sphere arround CoG 
                            itera = false; 
                        end 
                    end 
                otherwise 
                    if ptIdx > 10 && ptIdx > fixedTraj + 20 
                        cent_grav = mean(pos_array(ptIdx-10:ptIdx-1,:,1:N),1); % 
Center of gravity 10 previous pos 
                        cent_grav = repmat(cent_grav,11,1); 
                        pos_change = pos_array(ptIdx-10:ptIdx,:,1:N)-cent_grav; % 
Distances from all 11 last points 
                        pos_change = pos_change.^2; 
                        pos_change = sum(pos_change,2).^0.5; 
                        if max(mean(pos_change)) <= UAVmaxspeed*time_step || 
min(stallcount) >= 150 || ptIdx >= 180 %Mean inside sphere arround CoG 
                            itera = false; 
                        end 
                    end 
            end 
    end 
    ptIdx = ptIdx + 1; 
    % Advance scene simulation time 
    advance(scene); 
    % Update all sensors in the scene. 
    updateSensors(scene) 
    % Delete UAVs names from plot 
    if itera 
        delete(Txnameshandle); 
        delete(Rxnameshandle); 
        delete(UAVshandle); 
    end 
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end 
 
if ~runflightsim 
% If any sensor is updated then show the scene 
    if any(isupdated) 
        % Use fast update to move platform visualization frames. 
        show3D(scene,"Time",lidarSampleTime(1,1,N),"FastUpdate",true,"Parent",ax); 
        % Refresh all plot data and visualize. 
        refreshdata(f1,'caller') % Esto hace que se actualicen las variables sin 
estar en el lazo 
        drawnow 
    end 
end 
 
%% Simulate communication 
% Create nodes 
wlanNodes = hCreateWLANNodes(nodeConfigs, trafficConfigs, ... 
'CustomPathLoss', pathlossFnHdl, 'MACFrameAbstraction', MACFrameAbstraction, 
'PHYAbstractionType', PHYAbstractionType); 
     
% Configure mesh routing table 
% Interface index on which packet has to be forwarded to next node. 
forwardInterfaceID = 1; 
destID = N+n+1;                          % Destination node ID (ControlSTA) 
destAddress = wlanNodes{destID}.MAC.MACAddress;   % Destination MAC address 
 
for platcount = 1:N 
    [cost, Dij_path] = Dijkstras(RxPowerMatDijUAV,platcount,destID); 
    if cost ~= Inf 
        nextHopAddress = wlanNodes{Dij_path(2)}.MAC.MACAddress;   % Next hop MAC 
address 
        addPath(wlanNodes{platcount}, destID, destAddress, nextHopAddress, ... 
            forwardInterfaceID); %ForwardTable 
        path_exists(1,platcount) = 1; 
    end 
end 
 
for ground_node = N+1:N+n 
    RxPowerMatDijGN = RxPowerMatDij; 
    RxPowerMatDijGN(N+1:N+n,:) = Inf; 
    RxPowerMatDijGN(:,N+1:N+n) = Inf; 
    RxPowerMatDijGN(ground_node,1:N) = RxPowerMatDij(ground_node,1:N); 
    RxPowerMatDijGN(1:N,ground_node) = RxPowerMatDij(1:N,ground_node); 
    [cost, Dij_path] = Dijkstras(RxPowerMatDijGN,ground_node,destID); 
    if cost ~= Inf 
        nextHopAddress = wlanNodes{Dij_path(2)}.MAC.MACAddress;   % Next hop MAC 
address 
        addPath(wlanNodes{ground_node}, destID, destAddress, nextHopAddress, 
forwardInterfaceID); %ForwardTable 
        path_exists(1,ground_node) = 1; 
    end 
end 
 
% WiFi visualization parameters 
% Initialize visualization parameters 
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visualizationInfo = struct; 
visualizationInfo.Nodes = wlanNodes; 
statsLogger = hWLANStatsLogger(visualizationInfo); 
statistics = cell(0); 
 
if runnetsim 
    % Configure state transition visualization 
    if showLiveStateTransitionPlot 
        hPlotStateTransition(visualizationInfo); 
    end 
 
    % Initialize wireless network simulator 
    networkSimulator = hWirelessNetworkSimulator(wlanNodes); 
 
    % When you run the script from the MATLAB command prompt, pause the 
    % execution to refresh visualization after  every 5 milliseconds 
     
    if showLiveStateTransitionPlot 
        scheduleEvent(networkSimulator, @() pause(0.001), [], 0, 5); 
    end 
    run(networkSimulator, time_step*1000*1); 
         
    % Retrieve the statistics 
    statistics = getStatistics(statsLogger, displayStatistics); 
     
    % Plot the throughput, packet loss ratio, and average packet latency at each node 
    hPlotNetworkStats(statistics, wlanNodes); 
end 
 
pfBestdBm = 10.*log10(pfBest); 
 
for nodecount = 1:N+n+1 
    for instant = 1:ptIdx-1 
        TableForExcel(instant,:,nodecount) = RxPowerMat(nodecount,:,instant); 
    end 
end 
 
writematrix(TableForExcel,'RxPowerMat.xlsx') 
 
% Cleanup the persistent variables used in functions 
clear hPlotStateTransition; 
 
% Save the statistics to a mat file 
save('statistics.mat', 'statistics'); 
 
hold off 
 
%% Objective Function Evaluation 
function [pfun,g1,g2,g3] = 
ObjFunEval(RxPowerMatW,VertThresh,BckhaulThresh,path_exists,... 
    N,n,ptIdx,platcount,ax,g1,g2,g3,pos_array,staPositions,gridsize,pfun_Eval,... 
    pen_exclo_a2g,pen_UAV1_CtrlSta) 
    pfun = 0; 
    cont = 0; 
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    % Move through ground nodes searching for Rx powers greater than  
    % VertThresh dBm and add them up if more than one is found  
    for ground_node = N+1:N+n 
        maxTemp = abs(RxPowerMatW(ground_node,platcount,ptIdx)); 
        if maxTemp >= 10^(VertThresh/10) 
            cont = cont + 1; 
            if cont > 1 
                pfun = pfun + maxTemp; 
            else 
                pfun = maxTemp; 
            end 
            % Create a line plot for the connections between UAVs and 
            % ground nodes 
            g2(platcount, ground_node-N) = plot3(ax,[pos_array(ptIdx,1,platcount) 
staPositions(ground_node-N,1)],... 
                [pos_array(ptIdx,2,platcount) staPositions(ground_node-N,2)],... 
                [pos_array(ptIdx,3,platcount) staPositions(ground_node-N,3)],... 
                ':',"Color",[0 1 0],"LineWidth",0.75); 
        else 
            if maxTemp > pfun 
                pfun = maxTemp; 
            end 
        end 
    end 
     
    switch pen_exclo_a2g 
        case 1 
            for ground_node = N+1:N+n 
                maxTemp = abs(RxPowerMatW(ground_node,platcount,ptIdx)); 
                if maxTemp >= 10^((BckhaulThresh+18)/10) 
                pfun = 0.25 * pfun; 
                end 
            end 
        otherwise 
    end 
 
    switch pfun_Eval 
        case 1 
            if path_exists(1,platcount) 
                pfun = pfun * ((0.5214*gridsize)^2+pos_array(ptIdx,3,platcount)^2); 
            end 
        case 2 
            pfun = pfun*2^(max(cont,1)-1); 
            if path_exists(1,platcount) 
                pfun = pfun * ((0.5214*gridsize)^2+pos_array(ptIdx,3,platcount)^2); 
            end 
        case 3 
            if ~path_exists(1,platcount) 
                pfun = pfun / ((0.5214*gridsize)^2+pos_array(ptIdx,3,platcount)^2); 
            end 
            pfun = pfun/2^(N-sum(path_exists(1,1:N))); 
        case 4 
            if path_exists(1,platcount) 
                pfun = pfun * ((0.5214*gridsize)^2+pos_array(ptIdx,3,platcount)^2); 
            end 
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            pfun = pfun*2^(sum(path_exists(1,1:N))); 
        case 5 
            pfun = pfun*2^(max(cont,1)-1); 
            if path_exists(1,platcount) 
                pfun = 2*pfun; 
            end 
        case 6 
            if cont > 1 
                pfun = pfun * ((0.5214*gridsize)^2+pos_array(ptIdx,3,platcount)^2); 
            end 
            if path_exists(1,platcount) 
                pfun = 2*pfun; 
            end 
    end 
 
    % Move through the other UAVs searching for Rx powers in the 
    % arbitrary optimal range. When the Rx power is in the optimal 
    % range, pfun is increased, otherwise is penalized (it is not 
    % optimal to be so close and it is much worse to be out of range). 
    for air_node = 1:N 
        minTemp = abs(RxPowerMatW(air_node,platcount,ptIdx)); 
        if air_node ~= platcount % Conditional to not consider itself 
            if minTemp <= 10^((BckhaulThresh+6)/10) && minTemp >= 
10^(BckhaulThresh/10) 
                g1(platcount, air_node) = plot3(ax,[pos_array(ptIdx,1,platcount) 
pos_array(ptIdx,1,air_node)],... 
                    [pos_array(ptIdx,2,platcount) pos_array(ptIdx,2,air_node)],... 
                    [pos_array(ptIdx,3,platcount) pos_array(ptIdx,3,air_node)],... 
                    '--',"Color",[0 1 0],"LineWidth",0.75); 
            else 
                if minTemp > 10^((BckhaulThresh+18)/10) 
                    pfun = 0.25 * pfun; 
                    % Create a line plot for the connections between UAVs 
                    g1(platcount, air_node) = plot3(ax,[pos_array(ptIdx,1,platcount) 
pos_array(ptIdx,1,air_node)],... 
                        [pos_array(ptIdx,2,platcount) 
pos_array(ptIdx,2,air_node)],... 
                        [pos_array(ptIdx,3,platcount) 
pos_array(ptIdx,3,air_node)],... 
                        '--',"Color",[1 0 0],"LineWidth",0.75); 
                end 
                if minTemp < 10^(BckhaulThresh/10) 
                    pfun = 1 * pfun; 
                end 
                if minTemp <= 10^((BckhaulThresh+18)/10) && minTemp > 
10^((BckhaulThresh+6)/10) 
                    pfun = 0.75 * pfun; 
                    % Create a line plot for the connections between UAVs 
                    g1(platcount, air_node) = plot3(ax,[pos_array(ptIdx,1,platcount) 
pos_array(ptIdx,1,air_node)],... 
                        [pos_array(ptIdx,2,platcount) 
pos_array(ptIdx,2,air_node)],... 
                        [pos_array(ptIdx,3,platcount) 
pos_array(ptIdx,3,air_node)],... 
                        '--',"Color",[1 1 0],"LineWidth",0.75); 
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                end 
            end 
        end 
    end 
    minTemp = abs(RxPowerMatW(N+n+1,platcount,ptIdx)); 
    if minTemp <= 10^((VertThresh+6)/10) && minTemp >= 10^((VertThresh)/10) 
        % Reward/penalize UAV1 based on its link to ControlSTA 
        if platcount == 1 && pen_UAV1_CtrlSta==1 
            pfun = pfun * ((0.5214*gridsize)^2+pos_array(ptIdx,3,platcount)^2); 
        end 
        % Create a line plot for the connections between UAV1 and 
        % ControlSTA 
        g3(platcount, 1) = plot3(ax,[pos_array(ptIdx,1,platcount) 
staPositions(n+1,1)],... 
            [pos_array(ptIdx,2,platcount) staPositions(n+1,2)],... 
            [pos_array(ptIdx,3,platcount) staPositions(n+1,3)],... 
            'h',"Color",[0 1 0],"LineWidth",1.75); 
    else 
        if minTemp > 10^((VertThresh+18)/10) 
            % Reward/penalize UAV1 based on its link to ControlSTA 
            if platcount == 1 && pen_UAV1_CtrlSta==1 
                pfun = 0.25 * pfun; 
            end 
            % Create a line plot for the connections between UAV1 
            % and ControlSTA 
            g3(platcount, 1) = plot3(ax,[pos_array(ptIdx,1,platcount) 
staPositions(n+1,1)],... 
                [pos_array(ptIdx,2,platcount) staPositions(n+1,2)],... 
                [pos_array(ptIdx,3,platcount) staPositions(n+1,3)],... 
                'h',"Color",[1 0.75 0],"LineWidth",1.75); 
        end 
        if minTemp < 10^((VertThresh)/10) 
            % Reward/penalize UAV1 based on its link to ControlSTA 
            if platcount == 1 && pen_UAV1_CtrlSta==1 
                pfun = 0.25 * pfun; 
            end 
        end 
        if minTemp <= 10^((VertThresh+18)/10) && minTemp > 10^((VertThresh+6)/10) 
            % Create a line plot for the connections between UAV1 
            % and ControlSTA 
            if platcount == 1 && pen_UAV1_CtrlSta==1 
                pfun = 0.75 * pfun; 
            end 
            g3(platcount, 1) = plot3(ax,[pos_array(ptIdx,1,platcount) 
staPositions(n+1,1)],... 
                [pos_array(ptIdx,2,platcount) staPositions(n+1,2)],... 
                [pos_array(ptIdx,3,platcount) staPositions(n+1,3)],... 
                'h',"Color",[1 1 0],"LineWidth",1.75); 
        end 
    end 
end 
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APPENDIX B: Implementation of Dijkstra’s Algorithm in MATLAB 
function [Cost, Route] = Dijkstras( Graph, SourceNode, TerminalNode ) 
%Dijkstras.m Given a graph with distances from node to node calculates the 
%optimal route from the Source Node to the Terminal Node as defined by the 
%inputs. 
% Check for valid parameters 
if size(Graph,1) ~= size(Graph,2) 
   fprintf('The Graph must be a square Matrix\n'); 
   return;  
elseif min(min(Graph)) < 0 
    fprintf('Dijkstras algorithm cannot handle negative costs.\n') 
    fprintf('Please use Bellman-Ford or another alternative instead\n'); 
    return; 
elseif SourceNode < 1 && (rem(SourceNode,1)==0) && (isreal(SourceNode)) && 
(SourceNode <= size(Graph,1)) 
    fprintf('The source node must be an integer within [1, sizeofGraph]\n'); 
    return; 
elseif TerminalNode < 1 && (rem(TerminalNode,1)==0) && isreal(TerminalNode) && 
(TerminalNode <= size(Graph,1)) 
    fprintf('The terminal node must be an integer within [1, sizeofGraph]\n'); 
    return; 
end 
 
% Special Case so no need to waste time doing initializations 
if SourceNode == TerminalNode 
    Cost = Graph(SourceNode, TerminalNode); 
    Route = SourceNode; 
    return; 
end 
 
% Set up a cell structure so that I can store the optimal path from source  
% node to each node in this structure. This structure stores the 
% antecedents so for instance if there is a path to B through A-->C-->D-->B 
% you will see [A,C,D] in cell{B} (as well as a bunch of filler 0's after 
% that) 
PathToNode = cell(size(Graph,1),1); 
 
% Initialize all Node costs to infinity except for the source node 
NodeCost = Inf.*ones(1,size(Graph,1)); 
NodeCost(SourceNode) = 0; 
 
% Initialize the Current Node to be the Source Node 
CurrentNode = SourceNode; 
 
% Initialize the set of Visited and Unvisited Nodes 
VisitedNodes = SourceNode; 
UnvisitedNodes = 1:size(Graph,2); 
UnvisitedNodes = UnvisitedNodes(UnvisitedNodes ~= VisitedNodes); 
 
while (CurrentNode ~= TerminalNode) 
    % Extract the Costs/Path Lengths to each node from the current node 
    CostVector = Graph(CurrentNode, :); 
    % Only look at valid neighbors ie. those nodes which are unvisited 
    UnvisitedNeighborsCostVector = CostVector(UnvisitedNodes); 
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    % Extract the cost to get to the Current Node 
    CurrentNodeCost = NodeCost(CurrentNode); 
    % Extract the path to the current node 
    PathToCurrentNode = PathToNode{CurrentNode}; 
    % Iterate through the Unvisited Neighbors assigning them a new tentative cost 
    for i = 1:length(UnvisitedNeighborsCostVector) 
       if UnvisitedNeighborsCostVector(i) ~= Inf % Only Check for update if non-
infinite 
           tempCost = CurrentNodeCost + UnvisitedNeighborsCostVector(i); % The 
tentative cost to get to the neighbor through the current node 
           % Compare the tentative cost to the currently assigned cost and 
           % assign the minimum 
           if tempCost < NodeCost(UnvisitedNodes(i)) 
               NewPathToNeighbor = [PathToCurrentNode(PathToCurrentNode~=0) 
CurrentNode]; % The new path to get to the neighbor 
               NewPath = [NewPathToNeighbor zeros(1,size(Graph,1)-
size(NewPathToNeighbor,2))]; 
               PathToNode{UnvisitedNodes(i)}(:) = NewPath; 
               NodeCost(UnvisitedNodes(i)) = tempCost; 
           end 
       end 
    end 
    % Search for the smallest cost remaining that is in the unvisited set 
    RemainingCosts = NodeCost(UnvisitedNodes); 
    [MIN, MIN_IND] = min(RemainingCosts); 
     
    % If the smallest remaining cost amongst the unvisited set of nodes is 
    % infinite then there is no valid path from the source node to the 
    % terminal node.  
    if MIN == Inf 
       Cost = Inf; 
       Route = []; 
       return; 
    end 
     
    % Update the Visited and Unvisited Nodes 
    VisitedNodes = [VisitedNodes CurrentNode]; 
    CurrentNode = UnvisitedNodes(MIN_IND); 
    UnvisitedNodes = UnvisitedNodes(UnvisitedNodes~=CurrentNode); 
end 
 
Route = PathToNode{TerminalNode}; 
Route = Route(Route~=0); 
Route = [Route TerminalNode]; 
Cost = NodeCost(TerminalNode); 
end 
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APPENDIX C: Modified MATLAB Functions to Load Configuration Parameters 

function [nodeConfigs, trafficConfigs] = hLoadConfigurationFull_Int_Traff_6(N, n, 
apPositions, staPositions, VertThresh) 
%loadConfiguration Returns the node and traffic configuration 
 
numRooms = 1; 
numAPs = N; 
numSTAs = n; 
%numAPPerRoom = numAPs/numRooms; % One AP in each room 
numSTAPerRoom = numSTAs/numRooms; 
numNodes = numAPs + numSTAs; 
 
% Get the node IDs and positions for all the nodes 
[nodeIDs, positions] = hGetIDsAndPositions(numAPs, numSTAs, apPositions, 
staPositions); 
 
% Load the application traffic configuration for WLAN nodes 
s = load('wlanTrafficConfig.mat', 'wlanTrafficConfig'); 
 
% Configure application traffic such that each AP has traffic for all STAs 
% present in same room. 
traffSize = n; 
trafficConfigs = repmat(s.wlanTrafficConfig, 1, traffSize); 
% ControlSTA (Grdnd to ControlSTA) 
for rooomIdx = 1:n 
    trafficConfigs(rooomIdx).SourceNode = ['Node' num2str(rooomIdx)]; 
    trafficConfigs(rooomIdx).DestinationNode = ['ControlSTA' '1']; 
    trafficConfigs(rooomIdx).DataRateKbps = 100000; 
end 
 
% Load the node configuration structure and initialize for all the nodes 
s = load('wlanNodeConfig.mat', 'wlanNodeConfig'); 
nodeConfigs = repmat(s.wlanNodeConfig, 1, numNodes+1); 
 
% Customize configuration for nodes 
% Set node positions in each node configuration 
for nodeIdx = 1:numAPs 
    nodeConfigs(nodeIdx).NodeName = ['UAV' num2str(nodeIdx)]; 
    nodeConfigs(nodeIdx).NodePosition = apPositions(nodeIdx,:); 
    nodeConfigs(nodeIdx).IsMeshNode = 1; 
    nodeConfigs(nodeIdx).EDThreshold = VertThresh; 
end 
 
for nodeIdx = numAPs+1:numNodes 
    nodeConfigs(nodeIdx).NodeName = ['Node' num2str(nodeIdx-numAPs)]; 
    nodeConfigs(nodeIdx).NodePosition = staPositions(nodeIdx-numAPs,:); 
    nodeConfigs(nodeIdx).IsMeshNode = 1; 
    nodeConfigs(nodeIdx).EDThreshold = VertThresh; 
end 
 
nodeConfigs(numNodes+1).NodeName = ['ControlSTA' '1']; 
nodeConfigs(numNodes+1).NodePosition = staPositions(numSTAs+1,:); 
nodeConfigs(numNodes+1).IsMeshNode = 1; 
nodeConfigs(nodeIdx).EDThreshold = VertThresh; 
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end 
 
function [nodeIDs, positions] = hGetIDsAndPositions(N, n, apPositions, staPositions) 
%hGetIDsAndPositions Returns the IDs and positions of nodes in the network 
 
numRooms = 1; 
numAPs = N; 
numSTAs = n; 
%numAPPerRoom = numAPs/numRooms; % N APs in each room 
numSTAPerRoom = numSTAs/numRooms; 
numNodes = numAPs + numSTAs; 
 
apNodeIDs = (1:numAPs)'; 
staNodeIDs = (numAPs+1:numNodes); 
 
nodeIDs = zeros(numAPs, numSTAPerRoom+1); 
 
positions = cell(numAPs, numSTAPerRoom+1); 
 
% Assign IDs and positions to each node 
nodeIDs(:, 1) = apNodeIDs; 
for roomIdx = 1:numAPs 
    positions{roomIdx, 1} = apPositions(roomIdx, :); 
 
    for staIdx = 1:numSTAPerRoom 
        nodeIDs(roomIdx, staIdx+1) = staNodeIDs(staIdx); 
        positions{roomIdx, staIdx+1} = staPositions(staIdx, :); 
    end 
end 
end 

 

function [nodeConfigs, trafficConfigs] = hLoadConfigurationFull_Int_Traff_7(N, n, 
apPositions, staPositions, VertThresh) 
%loadConfiguration Returns the node and traffic configuration 
 
numRooms = 1; 
numAPs = N; 
numSTAs = n; 
%numAPPerRoom = numAPs/numRooms; % One AP in each room 
numSTAPerRoom = numSTAs/numRooms; 
numNodes = numAPs + numSTAs; 
 
% Get the node IDs and positions for all the nodes 
[nodeIDs, positions] = hGetIDsAndPositions(numAPs, numSTAs, apPositions, 
staPositions); 
 
% Load the application traffic configuration for WLAN nodes 
s = load('wlanTrafficConfig.mat', 'wlanTrafficConfig'); 
 
% Configure application traffic such that each AP has traffic for all STAs 
% present in same room. 
traffSize = n; 
trafficConfigs = repmat(s.wlanTrafficConfig, 1, traffSize); 
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% ControlSTA (Grdnd to ControlSTA) 
for rooomIdx = 1:n 
    trafficConfigs(rooomIdx).SourceNode = ['Node' num2str(rooomIdx)]; 
    trafficConfigs(rooomIdx).DestinationNode = ['ControlSTA' '1']; 
    trafficConfigs(rooomIdx).PacketSize = 250; 
    trafficConfigs(rooomIdx).DataRateKbps = 62.5; 
end 
 
% Load the node configuration structure and initialize for all the nodes 
s = load('wlanNodeConfig.mat', 'wlanNodeConfig'); 
nodeConfigs = repmat(s.wlanNodeConfig, 1, numNodes+1); 
 
% Customize configuration for nodes 
% Set node positions in each node configuration 
for nodeIdx = 1:numAPs 
    nodeConfigs(nodeIdx).NodeName = ['UAV' num2str(nodeIdx)]; 
    nodeConfigs(nodeIdx).NodePosition = apPositions(nodeIdx,:); 
    nodeConfigs(nodeIdx).IsMeshNode = 1; 
    nodeConfigs(nodeIdx).EDThreshold = VertThresh; 
end 
 
for nodeIdx = numAPs+1:numNodes 
    nodeConfigs(nodeIdx).NodeName = ['Node' num2str(nodeIdx-numAPs)]; 
    nodeConfigs(nodeIdx).NodePosition = staPositions(nodeIdx-numAPs,:); 
    nodeConfigs(nodeIdx).IsMeshNode = 1; 
    nodeConfigs(nodeIdx).EDThreshold = VertThresh; 
end 
 
nodeConfigs(numNodes+1).NodeName = ['ControlSTA' '1']; 
nodeConfigs(numNodes+1).NodePosition = staPositions(numSTAs+1,:); 
nodeConfigs(numNodes+1).IsMeshNode = 1; 
nodeConfigs(nodeIdx).EDThreshold = VertThresh; 
end 
 
function [nodeIDs, positions] = hGetIDsAndPositions(N, n, apPositions, staPositions) 
%hGetIDsAndPositions Returns the IDs and positions of nodes in the network 
 
numRooms = 1; 
numAPs = N; 
numSTAs = n; 
%numAPPerRoom = numAPs/numRooms; % N APs in each room 
numSTAPerRoom = numSTAs/numRooms; 
numNodes = numAPs + numSTAs; 
 
apNodeIDs = (1:numAPs)'; 
staNodeIDs = (numAPs+1:numNodes); 
 
nodeIDs = zeros(numAPs, numSTAPerRoom+1); 
 
positions = cell(numAPs, numSTAPerRoom+1); 
 
% Assign IDs and positions to each node 
nodeIDs(:, 1) = apNodeIDs; 
for roomIdx = 1:numAPs 
    positions{roomIdx, 1} = apPositions(roomIdx, :); 
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    for staIdx = 1:numSTAPerRoom 
        nodeIDs(roomIdx, staIdx+1) = staNodeIDs(staIdx); 
        positions{roomIdx, staIdx+1} = staPositions(staIdx, :); 
    end 
end 
end 
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APPENDIX D: Function Used to Obtain the Path Loss Table 

function [pl,pathlossFn] = hCreatePathlossTableDP(txs,rxs,propModel,varargin) 
%hCreatePathlossTable Create path loss table from transmitter and receiver sites 
 
[numFreqs,numNodes] = size(txs); 
assert(isequal(size(txs),size(rxs))) 
 
% Use first column to get frequencies used 
uniqueFreqs = [txs(:,1).TransmitterFrequency]; 
 
% Rows are transmitters, columns are receivers 
pl = zeros(numNodes,numNodes,numFreqs); 
for i = 1:numFreqs 
    plf = pathloss(propModel,rxs(i,:),txs(i,:)); 
    % Make pathloss for links reciprocal - shadow fading may cause them not 
    % to be when generated with pathloss 
    if isempty(varargin) 
        pl(:,:,i) = triu(plf) + triu(plf,1)'; 
    else 
        N = size(plf,1); 
        for countr = 1:(N) 
            for countc =1:(N) 
                if plf{countr,countc} ~= 0 
                    pl(countr,countc) = [plf{countr,countc}]; 
                else 
                    pl(countr,countc) = 0; 
                end 
            end 
        end 
    end 
end 
 
% Handle to lookup table anonymous function 
pathlossFn = @(txIdx,rxIdx,freq) pl(txIdx,rxIdx,freq==uniqueFreqs); 
 
end 
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APPENDIX E: Function to Implement the Free Space Propagation Model 

classdef hFreeSpacePathLoss < rfprop.PropagationModel 
         
    properties 
        Triangulation; 
 
        TriangulationUnit (1,1) double {mustBeFinite, mustBeReal, mustBeNonnegative, 
mustBeNonzero, mustBeNonsparse} = 1; 
 
        FacesPerWall (1,1) double {mustBeFinite, mustBeReal, mustBeNonnegative, 
mustBeNonzero, mustBeNonsparse} = 2; 
         
        ShadowSigma (1,1) double {mustBeFinite, mustBeReal, mustBeNonnegative, 
mustBeNonsparse} = 5; 
         
        WallZThreshold (1,1) double {mustBeFinite, mustBeReal, mustBeNonnegative, 
mustBeNonzero, mustBeNonsparse} = 0.1; 
         
        FloorThicknessThreshold (1,1) double {mustBeFinite, mustBeReal, 
mustBeNonnegative, mustBeNonzero, mustBeNonsparse} = 0.6; 
    end 
     
    methods       
      function [numFloors,numWalls,distance] = linkInfo(plm,txs,rxs) 
         
          % Determine number of floors and walls penetrated for each link 
          [~,numFloors,numWalls,distance] = wlanresidentialpnl(plm,txs,rxs); 
      end 
       
      function visualizeLinkInfo(plm,tx,rx) 
          visualize = true; 
          hTGaxIndoorLinkInfo(plm.Triangulation, tx, rx, plm.TriangulationUnit, 
visualize, ... 
              'FacesPerWall', plm.FacesPerWall, ... 
              'WallZThreshold', plm.WallZThreshold, ... 
              'FloorThicknessThreshold', plm.FloorThicknessThreshold); 
      end 
    end 
 
    methods(Access = protected) 
        function pl = pathlossOverDistance(pm, rxs, tx, d, ~) 
            % Scale distance into meters 
            d = d*pm.TriangulationUnit; 
           
            % Path loss 
            pl = wlanresidentialpl(pm,d,tx.TransmitterFrequency); 
 
            % Penetration loss 
            pnl = wlanresidentialpnl(pm,tx,rxs); 
             
            % Large-scale shadow fading 
            sf = pm.ShadowSigma*randn(size(pl)); 
             
            pl = pl + pnl + sf; 
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        end 
    end 
     
    methods (Access = protected) 
         
        function L = wlanresidentialpl(~,R,freq) 
            %wlanresidentialpl     wlanresidential path loss 
            %   L = wlanresidential() returns the WLAN Residential scenario path loss  
in dB. 
            % 
            %   Note that the best case is lossless, so the loss is always greater 
than 
            %   or equal to 0 dB. 
             
            R = max(R,1); % minimum distance is 1 meter 
            L = 40.05+20*log10(freq/2.4e9) + 20*log10(R); 
        end 
         
        function [L,numFloors,numWalls,distance] = wlanresidentialpnl(plm,txs,rxs) 
            %wlanresidentialpnl     wlanresidential penetration loss 
            %   L = wlanresidentialpnl() returns the WLAN Residential scenario path 
loss  in dB. 
            % 
            %   Note that the best case is lossless, so the loss is always greater 
than 
            %   or equal to 0 dB. 
 
            % Determine number of floors and walls penetrated for each link 
            [numFloors,numWalls,distance] = hTGaxIndoorLinkInfo(plm.Triangulation, 
txs, rxs, plm.TriangulationUnit, ... 
              'FacesPerWall', plm.FacesPerWall, ... 
              'WallZThreshold', plm.WallZThreshold, ... 
              'FloorThicknessThreshold', plm.FloorThicknessThreshold); 
                         
            % penetration loss 
            L = 18.3*numFloors.^((numFloors+2)./(numFloors+1) -0.46) + 5*numWalls; 
        end 
         
    end 
     
end 
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APPENDIX F: Performance Evaluation of the Different Mobility Algorithms (Tabulated Results) 

Ray tracing 

FIXED              

No. 
UAVs GN 

ITERATI
ONS 1s 

COVER
AGE 

EFICIEN
CY PATH 

COMM
EFF nf ns NF 

UAVS 
WITH 
PATH TO 
CS 

UAVS 
CONNECTED 
TO CS NTX nodes 

NTX nodes 
reach CS 

1 10 48 40% 40% 0% 0% 4 4 1 0 0 0 0 

2 10 61 70% 54% 0% 0% 7 9 2 0 0 0 0 

3 10 65 70% 54% 0% 0% 7 9 3 0 0 0 0 

4 10 71 100% 77% 20% 15% 10 13 4 1 1 2 0 

5 10 75 80% 49% 30% 15% 8 13 5 3 1 3 1 

6 10 75 100% 56% 30% 17% 10 18 6 3 1 3 1 

7 10 77 100% 50% 30% 15% 10 20 7 4 1 3 1 

8 10 77 100% 40% 30% 12% 10 25 8 4 1 3 2 

9 10 79 100% 40% 100% 40% 10 25 9 9 1 10 3 

10 20 81 95% 27% 95% 26% 19 66 10 10 1 19 4 

15 20 82 100% 22% 100% 22% 20 92 15 15 2 20 2 

16 20 83 100% 19% 100% 19% 20 107 16 16 1 20 1 

25 30 85 100% 13% 100% 13% 30 229 25 25 3 30 4 

              

              

HYBRID              

No. 
UAVs GN 

ITERATI
ONS 1s 

COVER
AGE 

EFICIEN
CY PATH 

COMM
EFF nf ns NF 

UAVS 
WITH 
PATH TO 
CS 

UAVS 
CONNECTED 
TO CS NTX nodes 

NTX nodes 
reach CS 

1 10 81 20% 20% 20% 4% 2 2 1 1 1 2 1 

2 10 82 30% 18% 30% 5% 3 5 2 2 1 3 1 

3 10 87 30% 15% 30% 5% 3 6 3 3 1 3 1 
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4 10 180 80% 40% 80% 32% 8 16 4 4 1 8 1 

5 10 101 80% 40% 80% 32% 8 16 5 5 1 8 1 

6 10 101 100% 45% 30% 14% 10 22 6 3 1 3 1 

7 10 128 80% 29% 80% 23% 8 22 7 7 1 8 1 

8 10 166 90% 29% 90% 26% 9 28 8 8 1 9 1 

9 10 180 100% 36% 100% 36% 10 28 9 9 2 10 2 

10 20 180 80% 17% 80% 13% 16 77 10 10 1 16 3 

15 20 180 85% 12% 85% 10% 17 117 15 15 2 17 4 

16 20 180 100% 16% 100% 16% 20 123 16 16 1 20 6 

25 30 180 100% 10% 100% 10% 30 290 25 25 3 30 3 

              

              
PSO-
only              

No. 
UAVs GN 

ITERATI
ONS 1s 

COVER
AGE 

EFICIEN
CY PATH 

COMM
EFF nf ns NF 

UAVS 
WITH 
PATH TO 
CS 

UAVS 
CONNECTED 
TO CS NTX nodes 

NTX nodes 
reach CS 

1 10 21 20% 20% 20% 4% 2 2 1 1 1 2 1 

2 10 137 20% 13% 20% 3% 2 3 2 2 2 2 1 

3 10 180 30% 18% 30% 5% 3 5 3 3 2 3 1 

4 10 180 40% 23% 10% 2% 4 7 4 2 2 1 1 

5 10 177 60% 33% 60% 20% 6 11 5 5 2 6 4 

6 10 175 70% 20% 70% 14% 7 24 6 6 1 7 1 

7 10 173 80% 28% 20% 6% 8 23 7 3 2 2 1 

8 10 180 90% 23% 10% 2% 9 35 8 1 1 1 1 

9 10 180 90% 30% 60% 18% 9 27 9 8 3 6 1 

10 20 180 95% 24% 75% 18% 19 76 10 9 3 15 2 

15 20 180 80% 10% 80% 8% 16 134 15 15 2 16 2 

16 20 180 90% 12% 90% 11% 18 133 16 16 3 18 1 

25 30 180 87% 9% 87% 7% 26 317 30 25 6 26 5 
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Log-normal 

FIXED              

No. 
UAVs GN 

ITERATI
ONS 1s 

COVER
AGE 

EFICIEN
CY PATH 

COMM
EFF nf ns NF 

UAVS 
WITH 
PATH TO 
CS 

UAVS 
CONNECTED 
TO CS NTX nodes 

NTX nodes 
reach CS 

1 10 48 20% 20% 0% 0% 2 2 1 0 0 0 0 

2 10 61 30% 30% 0% 0% 3 3 2 0 0 0 0 

3 10 65 50% 50% 0% 0% 5 5 3 0 0 0 0 

4 10 71 80% 64% 0% 0% 8 10 4 0 0 0 0 

5 10 75 70% 61% 0% 0% 7 8 5 0 0 0 0 

6 10 75 100% 83% 0% 0% 10 12 6 0 0 0 0 

7 10 77 80% 49% 30% 15% 8 13 7 4 1 3 1 

8 10 77 100% 67% 30% 20% 10 15 8 4 1 3 1 

9 10 79 100% 59% 10% 6% 10 17 9 1 1 1 0 

10 20 81 95% 48% 40% 19% 19 38 10 4 1 8 3 

15 20 82 100% 33% 40% 13% 20 61 15 4 1 8 2 

16 20 83 100% 34% 100% 34% 20 58 16 16 1 20 4 

              

              

HYBRID              

No. 
UAVs GN 

ITERATI
ONS 1s 

COVER
AGE 

EFICIEN
CY PATH 

COMM
EFF nf ns NF 

UAVS 
WITH 
PATH TO 
CS 

UAVS 
CONNECTED 
TO CS NTX nodes 

NTX nodes 
reach CS 

1 10 75 10% 10% 10% 1% 1 1 1 1 1 1 0 

2 10 88 20% 13% 20% 3% 2 3 2 2 1 2 1 

3 10 88 30% 15% 30% 5% 3 6 3 3 1 3 1 

4 10 100 60% 45% 10% 5% 6 8 4 2 2 1 1 

5 10 101 80% 53% 30% 16% 8 12 5 3 1 3 1 
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6 10 103 80% 43% 20% 9% 8 15 6 3 1 2 2 

7 10 180 80% 32% 80% 26% 8 20 7 7 1 8 2 

8 10 180 90% 31% 90% 28% 9 26 8 6 1 9 1 

9 10 102 100% 45% 100% 45% 10 22 9 9 2 10 3 

10 20 180 80% 17% 80% 14% 16 74 10 10 1 16 2 

15 20 180 100% 19% 100% 19% 20 107 15 15 4 20 2 

16 20 107 100% 19% 100% 19% 20 108 16 16 1 20 5 

              

              
PSO-
only              

No. 
UAVs GN 

ITERATI
ONS 1s 

COVER
AGE 

EFICIEN
CY PATH 

COMM
EFF nf ns NF 

UAVS 
WITH 
PATH TO 
CS 

UAVS 
CONNECTED 
TO CS NTX nodes 

NTX nodes 
reach CS 

1 10 23 20% 20% 20% 4% 2 2 1 1 1 2 1 

2 10 180 10% 5% 10% 1% 1 2 2 2 2 1 1 

3 10 151 40% 27% 40% 11% 4 6 3 3 1 4 1 

4 10 180 50% 36% 10% 4% 5 7 4 2 2 1 1 

5 10 177 30% 13% 30% 4% 3 7 5 5 2 3 2 

6 10 177 40% 16% 40% 6% 4 10 6 6 3 4 1 

7 10 176 60% 26% 60% 15% 6 14 7 7 2 6 1 

8 10 180 80% 22% 80% 18% 8 29 8 8 2 8 1 

9 10 180 80% 34% 80% 27% 8 19 9 9 4 8 0 

10 20 174 70% 12% 70% 9% 14 79 10 10 2 14 1 

15 20 180 70% 8% 70% 5% 14 125 15 15 3 14 1 

16 20 180 80% 11% 80% 9% 16 118 16 16 2 16 3 
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Log-normal + LoRa 

FIXED              

No. 
UAVs GN 

ITERATI
ONS 1s 

COVER
AGE 

EFICIEN
CY PATH 

COMM
EFF nf ns NF 

UAVS 
WITH 
PATH TO 
CS 

UAVS 
CONNECTED 
TO CS NTX nodes 

NTX nodes 
reach CS 

1 10 48 20% 20% 0% 0% 2 2 1 0 0 0 0 

2 10 61 30% 30% 0% 0% 3 3 2 0 0 0 0 

3 10 65 50% 50% 0% 0% 5 5 3 0 0 0 0 

4 10 71 80% 64% 0% 0% 8 10 4 0 0 0 0 

5 10 75 70% 61% 0% 0% 7 8 5 0 0 0 0 

6 10 75 100% 83% 0% 0% 10 12 6 0 0 0 0 

7 10 77 80% 49% 80% 39% 8 13 7 7 1 8 3 

8 10 77 100% 67% 100% 67% 10 15 8 8 1 10 2 

9 10 79 100% 59% 100% 59% 10 17 9 9 1 10 1 

10 20 81 95% 48% 95% 45% 19 38 10 10 1 19 3 

15 20 82 100% 33% 100% 33% 20 61 15 15 1 20 5 

16 20 83 100% 34% 100% 34% 20 58 16 16 1 20 5 

              

              

HYBRID              

No. 
UAVs GN 

ITERATI
ONS 1s 

COVER
AGE 

EFICIEN
CY PATH 

COMM
EFF nf ns NF 

UAVS 
WITH 
PATH TO 
CS 

UAVS 
CONNECTED 
TO CS NTX nodes 

NTX nodes 
reach CS 

1 10 73 20% 20% 20% 4% 2 2 1 1 1 2 1 

2 10 79 30% 30% 30% 9% 3 3 2 2 1 3 2 

3 10 91 40% 27% 40% 11% 4 6 3 3 2 4 1 

4 10 99 80% 64% 80% 51% 8 10 4 4 2 8 4 

5 10 101 80% 53% 80% 43% 8 12 5 5 1 8 4 
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6 10 101 100% 56% 100% 56% 10 18 6 6 1 10 3 

7 10 180 80% 43% 80% 34% 8 15 7 7 2 8 3 

8 10 180 90% 39% 90% 35% 9 21 8 8 2 9 3 

9 10 139 90% 30% 90% 27% 9 27 9 9 2 9 2 

10 20 180 75% 18% 75% 14% 15 61 10 10 4 15 6 

15 20 180 90% 12% 90% 11% 18 96 11 15 4 18 4 

16 20 129 75% 8% 75% 6% 15 106 12 16 5 15 5 

              

              
PSO-
only              

No. 
UAVs GN 

ITERATI
ONS 1s 

COVER
AGE 

EFICIEN
CY PATH 

COMM
EFF nf ns NF 

UAVS 
WITH 
PATH TO 
CS 

UAVS 
CONNECTED 
TO CS NTX nodes 

NTX nodes 
reach CS 

1 10 22 20% 20% 20% 4% 2 2 1 1 1 2 1 

2 10 180 10% 5% 10% 1% 1 2 2 2 1 1 1 

3 10 180 10% 3% 10% 0% 1 3 3 3 3 1 1 

4 10 112 70% 49% 70% 34% 7 10 4 4 2 7 3 

5 10 174 20% 7% 20% 1% 2 6 5 5 3 2 2 

6 10 174 50% 25% 50% 13% 5 10 6 6 5 5 1 

7 10 169 60% 19% 60% 12% 6 16 6 6 2 6 1 

8 10 180 90% 31% 90% 28% 9 26 8 8 3 9 2 

9 10 125 60% 21% 60% 13% 6 17 9 9 4 6 4 

10 20 166 65% 14% 65% 9% 13 59 10 10 7 13 3 

15 20 178 75% 10% 75% 7% 15 118 15 15 4 15 4 

16 20 71 80% 11% 80% 8% 16 121 16 16 2 16 2 
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