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Abstract

The DSRC/WAVE initiative is forecast to enable a plethora of ap-

plications, categorised in two broad classes of safety and non-safety

applications. With the improvement of driver awareness being the pri-

mary objective of the safety applications, the performance and hence

the users’ satisfaction are driven foremost by the reliability of ap-

plications in providing the users with fresh kinematic and warning

information about hazardous events. However, due to limited tasks

performed in the application layer, the reliability of these applications

reduces substantially to the reliability of the underlying communica-

tion system. In non-safety applications, on the other hand, many

different tasks are performed and decisions are made in the applica-

tion layer. To gain a holistic view of the impacts of such diverse tasks

and decisions on the efficiency of information dissemination as the pri-

mary task of these applications, it is required that a comprehensive

application framework be designed in the first place.

In this dissertation, we adopt a systematic approach to analytically

investigate the reliability of the communication system in a symbiotic

relationship with the host system comprising a vehicular traffic sys-

tem and radio propagation environment. To this aim, the interference

factor is identified as the central element of the symbiotic relationship.

Our approach to the investigation of interference and its impacts on

the communication reliability departs from previous studies by the

degree of realism incorporated in the host system model. In one di-

mension, realistic traffic models are developed to describe the vehicu-

lar traffic behaviour in urban traffic systems as the major overlooked

scenario in the previous studies. In a second dimension, a state-of-the-

art radio propagation model targeted to vehicular network (VANET)



environments is employed to capture the unique signal propagation

aspects of the host system. Our key findings are summarised as fol-

lows: (i) in urban traffic scenarios, the use of lower data rates in the

nominal range stipulated by DSRC/WAVE initiative to fulfil the load

demand of applications is questionable, unless the transmission range

is controlled effectively, (ii) the worst-case reliability takes place in po-

sitions behind the traffic light queue where vehicles are decelerating

from high velocity. Such positions are arguably the most important

for timely alerting of dangerous traffic conditions, (iii) the hidden ter-

minal interference causes a significant decline in the reachable distance

of broadcast safety messages, which in several cases drop to distances

shorter than the minimum required coverage of medium range safety

applications, and (iv) the hidden terminal interference happens to be

the most severe within a short distance from the intersection, imply-

ing the likeliness of severe reliability degradation in safety applications

targeted to intersection scenarios.

This dissertation addresses the case of non-safety applications by

proposing a generic framework as a capstone architecture for the de-

velopment of new applications and the evaluation of existing ones.

This framework, while being independent from the underlying net-

working technology, enables accurate characterization of the various

information dissemination tasks that a node performs individually

and in cooperation with others. As the central element of the frame-

work, we propose a game theoretic model to describe the interaction

of meeting nodes aiming to exchange information of mutual or social

interests. An adaptive mechanism is designed to enable a mobile node

to measure the social significance of various information topics, which

is then used by the node to prioritize the forwarding of information

objects. Our study reveals that the physical structure of the network

is not the sole factor driving the behaviour of the dissemination task.

Instead, the logical structure characterized by the contact and interest

patterns of the participating nodes is the key influential factor.



Highlighted Findings

X In our study of radio overlapping and channel load in the urban
traffic scenario, we found a strong evidence that the use of data
rates in the lower part of the nominal range specified for VANETs
operation in the DSRC/WAVE standard is highly questionable in
urban areas when the wireless transmission range grows to the
required coverage of long range applications. (Chapter 3)

X In our study of the reliability performance in the urban scenario,
we observe that the worst case results take place in positions be-
hind the traffic light queue where vehicles are decelerating from
high velocity. It is notable that, from a traffic safety point of
view, these positions are arguably the most important for timely
alerting of dangerous traffic conditions, and their lower reliability
may correspondingly lead to an increased risk of serious incidents.
(Chapter 4)

X In our study of the hidden terminal problem in safety-critical traf-
fic scenarios, we observe that the hidden terminal interference
causes a significant decline in the reachable distance of broadcast
safety messages, which in several cases drop to distances shorter
than the minimum required coverage of medium range safety ap-
plications. (Chapter 5)

X Our study of the hidden terminal problem in traffic scenarios with
the presence of intersections reveals that the aggregate interference
power induced by hidden terminals may amount to values several
times larger than the induced interference power in an equivalent
road scenario, but in the absence of intersections. Our results
also show that the most severe interference occurs within a short
distance (∼ 200 meters) from the intersection center. These obser-
vations indicate the likeliness of severe reliability degradation in
safety applications targeted to intersection scenarios. (Chapter 5)

X In our study of information dissemination in non-safety applica-
tions, we observe that the physical structure of the network is not
the sole factor driving the outcome behaviour of the dissemination
task. Instead, the logical structure formed by the contact and in-
terest patterns of the participating nodes is the key influential
factor. (Chapter 7)
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Chapter 1

Introduction

With the introduction of DSRC/WAVE [2; 121] as candidate technology for en-

abling Vehicular Ad hoc NETworks (VANETs), a broad range of applications

spanning from safety to traffic monitoring and control, urban sensing, mobile

trading and more, are envisioned for deployment in the near future [3; 5; 87]. A

primary class of applications, with Forward Collision Warning (FCW) [5] as an

example, is targeted for the enhancement of traffic safety, while others are of con-

venience nature with the objective of facilitating information and content access

or discovery of local services while on the move. Such a rich range of applications

from safety to convenience or commercially-oriented is highly interesting from the

standpoint of car manufacturers, communication network providers, and service

providers. Other parties such as transportation authorities and policy makers are

more interested in enhancing the safety of drivers and pedestrians.

For various players from business or industry, achieving sustainable gain from

an application is significantly driven by the user satisfaction of the application

once deployed. To this end, the achievable service quality is the key to satisfy

the user expectations. However, the user expectation of service quality differs in

safety and non-safety (i.e., convenience) applications. In a safety application with

the objective of improving drivers’ awareness of potential hazards, the reliability

of the application is highly influential in the user experience of the service quality

and the level of his/her trust in the application. Furthermore, in these appli-

cations, the decisions made in the application layer of a node are very limited.

Hence, the reliability of applications is mainly dependent on the reliability of the
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underlying communication system.

In non-safety applications with information or content-centric nature, many

different tasks are carried out by a typical mobile node participating in the dis-

semination of information. Also, the node faces various decisions to be made

on which information objects to exchange at the time of meeting with others.

Above all, the degree of the node’s participation in the dissemination process

is determined by the node’s state and constraints in terms of the available re-

sources, contact duration, the relevance of information offered by other nodes,

etc. This, in turn, influences the ultimate efficiency of the application in terms of

dissemination performance and the utility accrued by the individual participating

nodes. Previous studies have addressed some aspects of information dissemina-

tion as the enabling mechanism for information-centric applications. However,

they stop short of addressing other key functionalities and the interplay of those

functionalities in a holistic view.

While safety and non-safety applications have some causes of performance

degradation in common, they exhibit some intrinsic differences mainly attributed

to the application layer architecture. This, in turn, triggers differentiation in the

approaches to be employed for the exploration of the degradation causes and the

countermeasures to be designed and deployed for the improvements. Because of

these differences, we opt to approach the two types of applications separately,

while we acknowledge the fact that these applications are potentially deployed in

the same environment (i.e., vehicular traffic network) and realized by the same

communication technology (i.e., DSRC/WAVE).

In the following, we introduce our work on safety applications in Section 1.1

followed by our work on information-centric non-safety applications in Section 1.2.

1.1 Reliability Performance of Safety Applica-

tions

In safety applications, such as Blind Spot Warning (BSW) [5], the driver’s expec-

tation of the application reliability is highly strict, meaning that few failures are

likely to result in driver’s distrust in the application. Efforts for the improvement
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of the application reliability and thus the acceptance by users should in the first

place concentrate on the underlying communication system to identify its poten-

tial bottlenecks. In view of this, a critical step is to understand the behaviour

of the communication system with respect to the characteristics of the host sys-

tem as the platform for the realization of the application. By host system, we

mean the vehicular traffic system and the environment encompassing the traffic

system. The traffic system, in turn, consists of the traffic network topology and

the regulations governing vehicles’ motion. The traffic environment encompasses

all physical objects including vehicles and the buildings surrounding the traffic

system which influence the performance of the communication system.

1.1.1 Symbiotic Modelling of Host and Communication

Systems

Accurate study of the behaviour of a VANET’s application requires that the

underlying host and communication systems are modelled in symbiosis. The

symbiotic relationship is interpreted as the impact(s) of one system on the other:

• Impacts of the Host System on the Communication System: the host sys-

tem affects the communication system in two major ways. First, the traffic

system determines the density of vehicles potentially using an application

via message communication. Also, the relative spatial arrangement of ve-

hicles at any time instant is determined by the mobility of vehicles and

other influential factors such as road structure, traffic regulation, etc. From

the standpoint of a sender and receiver of application data, both vehicle

density and the spatial arrangement affect the quality of data received in

the receiver side. The vehicle density affects the reception quality by giving

rise to the radio overlapping of vehicles competing for access to the com-

munication channel, which potentially results in increased packet collisions.

The relative arrangement of vehicles, on the other hand, determines the

distance of the sender and the intended receiver(s), which in turn deter-

mines the strength of the received signal carrying application’s data. The

physical objects in the environment account for another kind of impact of

the host system on the communication system in terms of radio propa-
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gation behaviour. The moving (e.g., vehicles) and static (e.g., buildings)

objects give rise to signal attenuation and the variation in the received

signal power. Such adverse environmental effects are attributed to signal

diffraction, signal reflection, multi path fading, and Doppler effects [120],

which collectively determine the quality of received signals, and thus the

ultimate performance of the application.

• Impacts of the Communication System on the Host System: the communi-

cation system facilitates the exchange of instant kinematic and global traffic

information among vehicles. On the reception of such information, some

responses (or feedbacks) are triggered in the recipients. The responses can

take many forms including instant braking, slowing down, lane changing,

and planning new routes. They affect the microscopic traffic parameters

such as vehicle spacing and the macroscopic parameters including density,

flow, and the average velocity of the traffic.

To study the symbiotic relationships of the two systems in terms of mutual im-

pacts, it is required to represent the systems by appropriate models. As such,

the degree of accuracy in characterizing the mutual impacts relates to the extent

of realism captured by the representative models. Although the two symbiotic

relationships described above are equally important for the purpose of studying

an application’s behaviour, in this thesis we focus on the first type of relationship,

that is, the impacts of host system on the communication system. To this end, the

host system is represented by appropriate traffic and radio propagation models.

These models are expected to facilitate the investigation of the communication

and application level factors on realistic grounds.

1.1.2 Communication and Application Level Factors

The communication level factor addressed in this thesis is interference and the

application level metric of interest is reliability. While other factors including

data rate, transmission power, and MAC layer parameters merit further study,

our focus on interference and reliability is justified by the following reasons:
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• The reliability of a safety application is the key factor influencing the ac-

ceptance of the application by drivers.

• The application reliability relates to the intensity of interference in the

communication level, which in turn is driven by the intensity of radio over-

lapping of the vehicles using the application.

• The amount and variation of interference, collectively describing the inter-

ference behaviour, are highly impacted by the characteristics of the host

system. This is explained by the strong relationship between interference

and traffic density and also the radio propagation environment. Bearing

in mind the fact that the building blocks of the host system, that is, the

traffic system and the environment encompassing the traffic system, are

uncontrolled and dynamic entities, to the same extent one can consider the

interference as an uncontrolled and challenging factor.

• Hidden terminal interference as a typical realization of the broad concept of

interference is a primary cause of performance degradation of applications

relying on the broadcast communication paradigm [78; 106; 108; 164; 165].

The applications relying on other forms of broadcast communication (e.g.,

geocast) are also highly vulnerable to the hidden terminal effect. The high

impact of the hidden terminal problem in broadcast mode is due to the fact

that virtual carrier sensing is not used in this mode and the applications

rely only on physical carrier sense [78; 108; 164]. This leads to a wide range

of hidden terminal activity in broadcast communication [108].

1.1.3 Motivations

While in the context of vehicular networks the interference and reliability factors

have been the focus of extensive research, in previous studies the traffic and

radio propagation models used for the representation of the host system do not

accurately capture the real world features of the host system. Our approach in

this thesis departs from previous studies by addressing the aforementioned factors

on more realistic grounds. More specifically, we identify three major directions
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where realistic approaches are absent in previous research or otherwise biased to

particular scenarios.

1.1.3.1 Realistic and Comprehensive Modelling of Vehicular Traffic

Amajor shortcoming in previous research on VANETs is found in the assumptions

and models applied to the vehicular traffic. To clarify this, we introduce some

fundamental concepts from traffic science.

Three macroscopic traffic parameters including traffic density, velocity, and

flow describe the traffic state by the following well-known expression termed fun-

damental traffic equation [140]:

Q = V ×K (1.1)

where Q, V , and K are the traffic flow, average velocity, and traffic density,

respectively. Depending on the density and velocity, several traffic states emerge.

The detailed features of these traffic states can be found in [140; 182]. In the

following, we present a brief introduction to the major traffic states as shown in

Figure 1.1.

In a road segment with sparse traffic conditions, the arriving and departing

flows are identical and queues do not emerge on the road segment. In this situa-

tion, the traffic flow is stable [182]. While the flow is in stable state, if the density

of traffic is low enough that drivers can drive as fast as they wish, the traffic is

presumed to be in free-flow situation [182]. The stable-flow state persists up to a

point where the density reaches a threshold termed optimal (or critical) density

(Ko) [140]. At this point, the traffic flow reaches its maximum, which is known

as the capacity of the road (Qmax) [142]. By increasing the density beyond the

critical density Ko, vehicles are forced to interact with their surrounding vehicles

in order to keep a safe distance. The traffic state corresponding to this situation

is termed forced-flow [182]. In forced-flow state, when the density reaches its

maximum (Kj), the traffic is known to be in jam state and vehicles are forced to

stop [182].

Each traffic state shown in Figure 1.1 imposes unique challenges on the ve-

hicular communication system. This, in particular, translates to heterogeneous
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Figure 1.1: Fundamental diagram of traffic flow [140]

performance of the communication system in reaction to various traffic states

potentially coexisting on a road segment. Hence, the challenges attributed to a

traffic state are required to be addressed both exclusively and also in relation to

other traffic states simultaneously present on the road segment. Previous stud-

ies on VANETs are rather selective in addressing the challenges of the traffic

states on the communication system. Apart from few simulation studies which

suffer from the lack of generalization, the analytical studies adopt some question-

able assumptions when they address traffic scenarios. The first widely-adopted

assumption is that the traffic is in steady-state. Following this assumption, a

number of distribution functions including uniform, Poisson, exponential, and

Poisson point process are employed for the modelling of traffic distribution on a

road. Second, they assume traffic is homogeneous, that is, at a given time instant

only a single traffic state exists on a road. Thus, the coexistence of various traffic

states is ignored. While these assumptions may be valid in highway scenarios with

free-flow traffic as the dominant traffic state, the extent to which they are appli-

cable to other traffic states (e.g., forced-flow) and to the scenarios with several

simultaneous traffic states is arguable. More specifically, in urban traffic systems,

the emergence of heterogeneous traffic states is inevitable due to the presence of

signalised (and give-way) intersections. Besides, in urban scenarios, the presence

of forced-flow traffic state is undoubted due to the relatively dense traffic and also

the impact of intersections. Furthermore, the steady-state assumption is not gen-

erally valid due to diverse drivers’ behaviour and the complex transitions of traffic

states. Therefore, previous models which are highly biased towards steady state,
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free-flow, and homogeneous traffic are not applicable to urban traffic scenarios.

To be able to design control mechanisms and countermeasures for the improve-

ment of applications’ reliability, in the first place, it is required that the bottle-

necks of the communication system are identified using realistic traffic models and

based on valid assumptions. It is therefore necessary to develop new model(s)

able to capture the core traffic properties and in the meantime comply to the real-

world traffic features. We acknowledge that currently there are many synthetic

traffic models suitable for simulation purposes; however, these models are not

tractable for generalised analytical studies of VANET issues. This motivates us

to develop parsimonious and tractable traffic models based on macroscopic traffic

aspects. Along the line of the arguments, we believe traffic density is a suitable

macroscopic parameter facilitating the study of interference and reliability issues

in vehicular communication networks.

1.1.3.2 Significance of Safety-Critical Scenarios

While addressing various traffic scenarios is a valuable effort for accurate under-

standing of the behaviour of communication system, identifying the safety-critical

traffic scenarios and studying the performance of communication system in such

scenarios is highly prominent. In safety-critical scenarios, the velocity of vehicles

is relatively high and the vehicles’ spacing or so-called headway distance is shorter

compared to drivers’ reaction time. These scenarios account for accident-prone

situations where the safety applications, in order to be useful, are required to be

extremely reliable. The mapping from a traffic scenario to the safety dimension

facilitates better understanding of the bottlenecks of DSRC/WAVE technology

in fulfilling stringent reliability requirements of the applications. In particular,

by addressing safety-critical scenarios, one can predict the reliability of the com-

munication system in worst case conditions, resembling the performance test of

industrial systems or software applications under stress. Surprisingly, safety-

critical scenarios and their implications for the communication system are not

addressed in previous studies in the context of VANETs. Those studies address-

ing various vehicle densities do not characterise the criticality of such densities

from traffic safety perspective.
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In view of the demand for addressing safety-critical scenarios, we believe that

the traffic scenarios corresponding to intersections and also the scenarios associ-

ated with the capacity of roads are examples of safety-critical and accident-prone

scenarios requiring dedicated research.

1.1.3.3 Application of Radio Propagation Models Targeted to Vehic-

ular Network Environment

The accuracy of conclusions derived from a study on the communication aspects

of VANETs also depends on the assumptions on the radio propagation and the

extent of realism captured by the propagation model used in the study. For the

purpose of clarification, we present an example of hidden terminal interference

which highlights the dependency of the outcome communication behaviour on the

radio propagation model employed. In this example, we borrowed the concepts of

coordinated and uncoordinated transmissions from [164], but to serve a different

purpose. As shown in Figure 1.2, three vehicles are situated on a traffic network.

Vehicle A is the target transmitter, vehicle B is the intended recipient of a mes-

sage from A, and C is a potential hidden terminal with respect to A. We assume

vehicle B is obstructing the Line of Sight (LOS) between A and C. Figure 1.2a

demonstrates the case of using a propagation model without the capability of

detecting or distinguishing LOS obstruction. In this case, the extra attenuation

due to LOS obstruction is not taken into account in the signal received in C from

A (PCA). Hence, it is likely that the signal is received with a power greater than

a Carrier Sense threshold (CSth). This results in a coordinated transmission by

vehicle C, because C detects the channel busy and defers its transmission. This

ultimately leads to a successful reception in vehicle B, if the impacts of other

factors are ignored. Consequently, C is not considered as a hidden terminal. If,

on the other hand, a realistic radio propagation model is used (Figure 1.2b), the

extra attenuation due to signal obstruction is captured by the model. Therefore,

the signal from A is likely to be received in C with a power (PCA) less than CSth.

In this case, vehicle C plays the role of hidden terminal whose uncoordinated

transmission potentially results in packet collision in B. The difference of the

outcome communication behaviour with respect to the employed radio propaga-
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tion model can be witnessed in numerous other cases, including Non Line of Sight

(NLOS) situations frequently occurring at intersection corners.

The above examples and many others drive us to conclude that the use of

realistic radio propagation models developed for the VANET environment will

highly add to the accuracy of the study.

CSth

tA

tC

CSth

CSth

A

B

C

PA
PAC

PBC

PC

PBA

PCA

(a) Unrealistic radio propagation model

A

B

C

tA

tC

CSth

CSth

CSth

PA

PAC

PBC

PC

PBA

PCA

(b) Realistic radio propagation model

Figure 1.2: The dependency of hidden terminal interference on the radio
propagation model

1.1.4 Contributions

The contributions of this thesis to the interference and reliability issues in vehic-

ular communication networks are as follows:

1. We develop a novel traffic density model for urban traffic scenarios. To

model the traffic density, we consider the impacts of urban intersections on

the traffic dynamic. We employ the traffic density model to characterise the

spatial-temporal behaviour of radio overlapping as a predictor of commu-

nication interference. Accordingly, a radio overlapping model is developed

and used for the study of channel load associated with periodic beaconing as

a fundamental mechanism for safety message communication in VANETs.

This contribution is presented in Chapter 3 and appears as a conference

publication [23].

2. An analytical model is developed to predict the reliability indicators of

safety applications in urban traffic scenarios. Focusing on a road segment
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linked to a signalized intersection as the building blocks of urban traffic

systems, we apply the traffic density model mentioned in the first contribu-

tion to investigate the spatial-temporal behaviour of the reliability metrics.

Also, we characterize the region(s) on the road segment according to the

achieved safety level. The proposed analytical model covers both periodic

and event-driven messaging mechanisms and integrates them in a single

universal model. This contribution is presented in Chapter 4 and appears

as a conference publication [24].

3. We develop an analytical framework to investigate the severity of hidden ter-

minal interference under realistic grounds and with focus on safety-critical

traffic scenarios. A state-of-the-art measurement-based shadow-fading path

loss model is used as the radio propagation model. Also, focusing on urban

traffic scenarios with forced-flow traffic, we identify two major safety-critical

traffic scenarios and find the upper-bound interference power induced by

hidden nodes and the lower-bound reachable distance of the safety mes-

sages. The proposed analytical framework has the capability of being used

as a benchmark for the assessment of the reliability risks of safety appli-

cations under safety-critical traffic scenarios. To the best our knowledge,

the approach of studying reliability issues under safety-critical conditions,

and also the degree of realism captured in the host system representation

within an analytical framework is unique to our work. This contribution is

presented in Chapter 5. Also, it is submitted as a journal article.

Our approach to addressing the real-world aspects of the host system is progres-

sive; contributions 1 and 2 emphasize the real-world aspects of vehicular traffic

(modelled as part of the first contribution) and the implications for radio over-

lapping, interference, and reliability issues. In contribution 3, the real-world

aspects of both radio propagation environment and the traffic system are taken

into account. The radio propagation environment is represented by a state-of-

the-art radio propagation model targeted to vehicular network environments, and

the traffic scenarios are derived from traffic theory and are represented by well-

established Cellular-Automaton (CA) modelling approach [47; 161].
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1.2 Efficiency of Information-Centric Non-Safety

Applications

Convenience and commercial VANET applications are information or content-

centric in nature. The performance of these applications relates to the satisfaction

of the users with the information of interest they fetch opportunistically in a

course of meetings with the peers or the infrastructure. More specifically, from the

standpoint of an individual user, the performance of the application is interpreted

as the degree of matching between the topic(s) of information delivered to the

user and the information interest(s) of user expressed in a measurable fashion.

From a network-wide or social perspective, the performance is determined by the

proportionality of the dissemination rate of information objects to the significance

of the objects. The significance of an information object is interpreted as the

popularity level of the topic(s) covered by the object.

There are a number of key features driving the performance of an information-

centric application as follows:

• Appropriate representation of user interests: the quality of information

delivered by the application depends on the degree of matching between

the user interests and the topics of information delivered to the user. In

line with this, the application should provide the users with mechanisms

to facilitate the representation and the advertisement of users’ interests.

In particular, such mechanisms must be flexible in the representation of

multiple information interests attributed to a single user.

• Fine granularity of information representation: an information object (e.g.,

file, message, video clip, etc.) may cover multiple topics or so-called at-

tributes, simultaneously. The application must be flexible in representing

information objects with as many attributes as they cover.

• Matching of compound information objects and user interests: with the

compound information objects (i.e., with multiple attributes) and user in-

terests as described above, the appropriate functionality must be available

to measure the similarity of the two compound entities.
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• Adaptation to the shift of user interests: the interest(s) of a user may change

with time. The application should provide mechanisms to react to the shift

in user interests, discover new interests, and apply the most recent interests

in the upcoming dissemination sessions.

• Timely access to the information of interest: users lose their patience when

facing prolonged access to their information of interest. Besides, some infor-

mation are only valid within a certain time frame. The application should

provide mechanisms for fast dissemination of information of high priority,

high popularity, or time-limited.

• Location awareness: if an information object is bounded to a geographical

region, the application should provide the functionality for representing

such property in the meta-data section of the information object and also

activate location-aware dissemination for this type of information.

• Individual and social satisfaction: in an individual-oriented dissemination

mechanism, the goal is to address the information interests of nodes individ-

ually, whereas in social-oriented mechanism the objective is to enhance the

overall satisfaction of nodes. The dissemination outcomes in the two modes

are not necessarily identical. Depending on the information type and the

current satisfaction level of the meeting nodes, an appropriate mechanism

should be activated to achieve maximum performance. The application

should provide sophisticated functionalities to choose or alternate between

these two modes, if necessary.

In a broader dimension, the efficiency of an application is interpreted as the

superposition of the performance (with the features mentioned above) and several

other properties not directly related to performance. Two properties of this kind

are related to the network and node resources with the following descriptions:

• Resource awareness: the contact time of meeting nodes and the communi-

cation bandwidth are precious network level resources. To use resources op-

timally, nodes are required to maintain a sufficient level of awareness about

the resources prior to and during the sessions of information exchange.
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• Indiscriminate resource utilization: with the limitation of resources of a

typical user device in mind, efficiency is related to the pattern of resource

usage of the application. Recalling that information muling is the major en-

abling mechanism for information dissemination, the application should not

put the burden on a certain number of nodes, leading to resource depletion

in those nodes while leaving others intact.

1.2.1 Motivations

Realizing an application framework that exhibits the aforementioned properties

is an important task. However, addressing all properties and the associated chal-

lenges demands a vast amount of research and it is beyond the scope of this thesis

to address all those challenges. For this reason, we are motivated to address the

most fundamental aspects of the problem listed as follows:

• A fundamental study of various aspects of the information dissemination

process, including efficiency aspects, demands the design of a generic frame-

work. The main objective of such a framework is to describe the various

tasks that a participating node performs individually and by cooperation

with others. To the best of our knowledge, such a framework has not been

addressed in previous studies.

• We are also motivated to address the case of network-wide efficiency of infor-

mation dissemination. While the efficiency of conventional publish/subscribe

methods [51] in satisfying the individual interests of nodes is acknowledged,

we opt to develop a social-oriented information dissemination mechanism.

To this aim, we believe a distributed and adaptive mechanism for the mea-

surement of information popularity plays the key role.

1.2.2 Contributions

This thesis advances the state of the art in information dissemination frame-

works targeted to DTNs, in general, and VANETs, in particular, by means of the

following main contribution:
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• A generic framework is designed to describe the characteristics of informa-

tion dissemination among participating nodes in a network. The proposed

framework describes the various tasks a node performs individually and in

cooperation with others to facilitate the dissemination of information ob-

jects with various degrees of significance. Our proposed framework involves

the following components and functionalities:

(a) A distributed and adaptive information popularity measurement is de-

veloped. On a meeting incidence, the nodes employ the popularity of

information to determine the ordering of information objects to be

exchanged.

(b) A user model is proposed with the capability of representing users with

compound interests.

(c) An information model is proposed with the capability of representing

information objects with compound attributes.

(d) A game theoretic interaction model is designed which takes into ac-

count the network and node resources together with the current states

and constraints of the meeting nodes intending for information ex-

change. Using a utility function as part of the game problem, the

meeting nodes are able to calculate the payoff they achieve by par-

ticipating in the information exchange. Also, the degree to which a

node participates in the exchange process is determined by the utility

function.

(e) A novel matching technique is proposed for the ranking of the infor-

mation objects with respect to the individual and/or social interests

of the meeting nodes.

The proposed framework with the aforementioned components and functionalities

is presented in Chapter 7 and appears as a conference publication [25].
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1.3 How to Read this Thesis

The remainder of this dissertation is organised as follows. In Chapter 2, we build

our background on interference and reliability issues in vehicular communication

networks. Additionally, in this chapter, we present evidence from previous stud-

ies to show that the application of realistic traffic and radio propagation models

for the purpose of simulation or analytical studies is crucial for deriving accurate

results. Chapter 3 presents our first contribution to reliability issues mentioned in

Section 1.1.4. The second and third contributions mentioned in Section 1.1.4 are

presented in Chapters 4 and 5, respectively. Chapter 6 presents the background

and related work on information dissemination issues. Chapter 7 presents our

contributions to information dissemination mentioned in Section 1.2.2. Chap-

ter 8 summarises this dissertation and proposes new directions for future work.

Appendix A introduces DSRC/WAVE technology and the various applications

envisioned for future deployment. In Appendix B, we present concepts, theories,

and modelling mechanisms applied to the context of vehicular traffic. Finally,

Appendix C contains the detailed experimental results used in our analysis in

Chapter 5.
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Chapter 2

Reliability of Safety Applications:

Background and Related Work

This chapter begins by introducing the concept of reliability in a broad term

(Section 2.1), followed by an overview of the major factors affecting the reliability

of safety applications (Section 2.2). In that regard, interference is highlighted

as the most challenging factor influenced by uncontrolled characteristics of the

radio propagation environment and the vehicular traffic system. In addition, the

reliability indicators addressed frequently in the literature are discussed and the

use cases of each indicator are highlighted (Section 2.3). A significant body of the

chapter is dedicated to the related analytical and simulation studies on reliability

issues (Section 2.4). In Section 2.5, we report some crucial evidence from the

literature indicating that the way the host system is modelled will highly impact

the credibility of the conclusions drawn from studies in the context of VANETs.

Such evidence covers a broad range of issues including reliability.

2.1 Definition and Interpretations

In a safety application relying on safety message broadcast, the reliability is de-

fined as the possibility that all intended recipients of a message will receive it

successfully and in a timely manner [108]. In the context of vehicular commu-

nications, the intended recipients are generally referred to as the vehicles in the
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transmission range of a vehicle currently broadcasting a safety message. From the

perspective of traffic safety, those vehicles situated in a critical traffic situation

with respect to the location of the transmitter or the location of a hazardous

incident reported by the transmitter are considered as intended recipients. The

timely delivery of a safety message is also meaningful when it is related to the

reaction time of drivers as well as the relative position of the intended recipients

with respect to the position of the transmitter or the present hazardous event.

Characterizing the exact relationship between the intended recipients and the

traffic characteristics is a complex task and demands inter-disciplinary research.

Due to the lack of mature research, most of previous studies in the context of

VANETs have adopted the conventional definition of intended recipients as those

vehicles in the communication range of a vehicle broadcasting safety messages.

2.2 Key Influential Factors

There are several factors influencing the reliability of safety applications. These

factors are generally classified in two categories: controlled and uncontrolled fac-

tors [21]. Controlled factors include the internal functionalities of the safety

application, the MAC layer functionalities, transmission power, data rate, modu-

lation scheme, and many others [21; 106; 108; 183]. In the uncontrolled category,

the communication interference is the primary factor. The significance of inter-

ference arises from the fact that it is highly dependent on the characteristics of

the host system, that is, the radio propagation environment and the vehicular

traffic system. Interference as a broad term is viewed in two main categories; in-

ternal and external interference [78]. Internal interference is caused by concurrent

transmissions of two nodes having radio overlap. This results in packet collision,

affecting the packet delivery rate of the transmitting node and the packet recep-

tion rate in some intended recipients. On the other hand, external interference

relates to the overlapping radios of hidden node(s) and the intended recipient(s)

of a given target transmitting node. In this case, an overlapped transmission (in

time dimension) of the hidden node(s) and the target transmitter potentially af-

fect the probability of successful reception in some intended recipients. It should

be noted that the radio overlap is not a sufficient condition for a reception to
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fail. Indeed, reception failure also relates to the relative strength of the received

signals propagated by the target transmitter and the hidden node(s) [164; 165].

2.2.1 Interference Issues

Radio Overlapping and Interference

In the literature, the communication interference is generally characterized by

overlapping radios. In line with this, the intensity of radio overlap is considered as

a predictor for the intensity of the communication interference. Depending on the

radio overlap as perceived from a sender or a receiver perspective, the interference

is investigated within two broad directions: sender-centric and receiver-centric.

The pioneering studies of interference with a sender-centric view are [119]

and [36]. [119] addressed the interference in relation with the traffic and conges-

tion level of the network. In [36], the authors proposed an explicit sender-centric

definition for interference. According to this study, given a communication range

R of nodes, the interference is described by the number of nodes within the over-

lapped region of the disks with radius R centred at various nodes. By applying

this sender-centric definition, the authors argued that, opposed to the widely

adopted assumption in the context of wireless communications, in sparse net-

works the intensity of interference is not necessarily low.

A pioneering study on interference with a receiver-centric view can be found

in [174]. According to the authors, the interference from the perspective of a

node w relates to the number of distinct radios overlapping the node w. Using

this receiver-centric notion of interference, [122] addressed the minimization of in-

terference in a given network while preserving some desired topological features,

e.g., network connectivity. To this aim, the authors introduced the notion of

average interference defined as the ratio of the total number of interference inci-

dents to the number of passive nodes [122]. Given a network topology, the nodes

are divided into passive and active nodes, where the active nodes are intended

to maintain some topological features while their radios may cover some other

nodes (i.e., passive nodes) [122].

In [70], Jain et al. adopted a hybrid sender and receiver-centric notion of

interference to define pairwise successful transmission or reception. According

19



2.2 Key Influential Factors

to [70], a transmission from a node u with another node v as the intended receiver

is successful if: duv ≤ Ru, and any node w provided that its distance from v

satisfies dwv ≤ Rw or its distance from u satisfies dwu ≤ Rw does not commit any

transmission. d is the Euclidean distance between two nodes. Ru and Rw are the

transmission ranges of u and w, respectively.

In [53], the definition by Jain et al. was employed to investigate the interfer-

ence issues in the context of vehicular communications. Given a predetermined

traffic density λ and free-flow mobility of vehicles in a highway scenario, the au-

thors characterized the interference behaviour. Also, the impacts of driving habits

defined by three types of drivers and the impacts of various traffic densities on

the interference behaviour were taken into account; however, in all cases, the au-

thors assumed that the traffic density is homogeneous and the traffic mobility is

in steady state. Therefore, the impacts of heterogeneous traffic states occurring

frequently in urban traffic systems were not addressed.

In our study presented in Chapter 3, we adopt a receiver-centric definition of

interference based on radio overlapping, defined as the number of nodes covering

a target node by their radios. Our work departs from the mentioned studies,

including [53], by addressing radio overlap dynamics in urban traffic scenarios

with heterogeneous traffic states.

Hidden Terminal Interference

Hidden terminals are a pair of nodes situated outside the interference range of

each another, but they share some nodes in the overlapping part of their trans-

mission ranges [32]. Hidden terminal interference is a major factor influencing

the performance of wireless ad hoc networks [106; 108; 109; 164; 165]. To allevi-

ate the adverse effects of hidden terminals, the IEEE 802.11 standard proposed

two different mechanisms including virtual carrier sensing realized by RTS/CTS

handshaking and physical carrier sensing. In unicast communications, which rely

on both mechanisms, the size of the potential hidden terminal area is determined

with respect to the distance between transmitter Tx and receiver Rx. However,

in a broadcast communication paradigm, virtual carrier sensing is suppressed and

the transmitting nodes rely only on physical sensing of the channel. The potential
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hidden terminal region in broadcast mode expands to the interference range of

all intended recipients, Rx, situated in the transmission range of the Tx [108].

Consequently, the potential hidden terminal region in broadcast communication

mode can be significantly larger than in the unicast counterpart [108]. This im-

plies that safety applications, relying mainly on broadcast communication, are

highly vulnerable to interference caused by hidden terminals.

The uncoordinated transmissions in random access MAC protocols, as in IEEE

802.11p for vehicular networks, is known to give rise to interference caused by

hidden terminals [32]. However, this phenomenon is not solely attributed to the

MAC functionality, but also to signal propagation properties. A node A commits

an uncoordinated transmission with respect to a currently transmitting node B

if the signal propagated by A arrives in B with a power too weak to detect that

the channel is busy. In such a case, a transmission from B is considered as unco-

ordinated [164; 165]. The extent to which the uncoordinated transmissions affect

successful reception from A in an intended receiver C depends on the relative

strength of the received power in C from A and B. This, in turn, is dependent on

several controlled and uncontrolled factors. The controlled factors include, but

are not limited to, the data rate and transmission powers, whereas the uncon-

trolled factors consist of the relative distance of the intended receiver C from A

and B, the propagation environment, and the nodes’ mobility [20]. Therefore, a

study of the hidden terminal problem owes much of its credibility to the radio

propagation model used and the traffic model adopted in the study. This moti-

vates us to investigate the hidden terminal problem within a realistic framework

consisting of realistic radio propagation and traffic models (Chapter 5).

2.3 Reliability Indicators

The reliability indicators applied to one-hop and multi-hop safety message broad-

casts are different in nature. Since the focus of this dissertation is the one-hop

broadcast, we opt to introduce the associated reliability indicators with a great

detail.

21



2.3 Reliability Indicators

2.3.1 Packet Delivery Ratio (PDR)

PDR describes the reliability from the standpoint of a target transmitter. It

is quantified as the ratio of the number of packets received successfully in all

intended recipients of a target transmitter to the total number of transmitted

packets [108]. PDR can be further characterized based on distance d of the po-

tential receivers from the transmitter. Thus, PDR factor describes the percentage

of error-free packets received by the intended recipients within the distance d from

a target transmitter [108]. PDR is strongly related to the degree of drivers’ aware-

ness about a hazardous event reported by a target node realizing the event. An

ideal PDR corresponds to the case that all packets of a safety message trans-

mitted by a target sender are received by all concerned vehicles. If the delivery

latency of a safety message is negligible compared to the driver reaction time, an

ideal PDR implies guaranteed and timely reaction of the concerned vehicles. This

indicator was employed in a number of works including [17; 102; 177] to address

the reliability of safety applications targeted to vehicular networks.

2.3.2 Packet Reception Ratio (PRR)

In contrast to PDR, the PRR indicator describes the receivers’ perception of

reliability. It is quantified as the percentage of nodes receiving a packet from a

target transmitter without error [108]. PRR in conjunction with PDR indicator

can be employed to assess the potential contribution of a safety application in

improving the awareness level of drivers. As with PDR indicator, PRR can be

characterized for a distance d from the target transmitter [101]. In contrast with

the average PRR which is measured over the entire communication range of a

transmitter, the distance-based PRR facilitates more accurate understanding of

the reliability as the distance from the transmitter grows. In a number of studies

including [101; 165; 179], the PRR indicator was employed to investigate the

reliability performance of vehicular communication networks.
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2.3.3 Probability of Successful Reception (psr)

psr is the probability that a node situated in the communication range of a target

transmitter receives a packet from the transmitter successfully [108]. In contrast

with packet delivery and reception ratios, which measure the reliability on av-

erage basis, psr relates to the reception quality of safety messages in a certain

vehicle(s). The rationale for psr is that in some vehicular network applications,

safety messages are important only to a certain vehicle(s) [108]. Given a network

setting, the average indicators may imply that the reliability is in a satisfactory

level, whereas the psr indicator measured in the same network may exhibit weak

reliability in some nodes [108].

2.3.4 Delivery Latency (DL)

The delivery latency of a packet is the time interval from the time point when a

packet is generated in the application layer to the time point when the packet is

received in an intended recipient [106]. The internal contention in the application

or MAC layers of the sender contributes to a time interval it takes for a packet

to become the head of the internal transmission queue. Once a packet of a

message is at the top of the transmission queue, another time interval is spent

to access the channel. The third element of DL is the packet propagation time.

Correspondingly, the delivery latency of a message is the aggregate latency of

all packets comprising the message. The DL indicator has been addressed in

a number of studies including [77; 101; 106; 177; 183]. Most of these studies

addressed the packet level latency. The issue of message level latency is considered

to be a research gap, and hence it merits a dedicated investigation.

2.3.5 Inter-Reception Time (IRT)

In safety applications relying on event-driven messages, the reliability is mainly

determined by the successful packet reception probability (psr) and the geograph-

ical coverage of the broadcast message. On the other hand, in case of periodic

messages, inter reception time (IRT) of messages is deemed to better describe

the reliability of the application [55]. According to Elbatt et al. [55], who first
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introduced the indicator, IRT integrates the variability of packet reception time

and packet reception probability into a single parameter. Intuitively, from the

perspective of an intended recipient vehicle, a high probability of message recep-

tion from neighbouring vehicles implies better overall awareness of the recipient

about their neighbourhood. Furthermore, the high frequency of message recep-

tion enhances the freshness of the information that a vehicle receives from its

neighbouring vehicles or from the infrastructure. This, in turn, improves the re-

action time of drivers to unpredicted hazardous events. Also, from the sender’s

point of view, the higher the chance that the neighbouring vehicles receive a

message successfully and timely, the better the achieved safety level will be. In a

recent study by Sepulcre et al. [151], the IRT indicator was used for the evaluation

of the reliability of cooperative safety applications relying on periodic message

dissemination. In our work in Chapter 4, we also apply the IRT indicator for the

performance evaluation of periodic safety message dissemination.

2.3.6 Effective Range (ER)

According to Yousefi et al. [184], ER is the distance from a transmitter where

a minimum service quality can be gained. The authors proposed the ER as a

reliability indicator and defined it as the distance from the transmitter where:

(i) the minimum delivery ratio is larger than a given threshold, and (ii) the

maximum latency is smaller than a given threshold. Yousefi et al. highlighted

the ER indicator as the most meaningful indicator for the reliability analysis of

safety applications, arguing that the contribution of a safety application to the

improvement of the safety level is equally important to all vehicles within a certain

range of a transmitter and must be guaranteed to a certain degree. According to

Yousefi et al., the service quality thresholds are dependent on the type of safety

application. In safety applications with the objective of assisting the drivers, psr

should be in the range [0.95, 0.99], whereas in more stringent safety applications it

must be larger than 0.99. A similar notion of ER indicator can be found in [108],

where the authors employed it for the study of reliability in one-hop broadcast.
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2.3.7 Reachable Distance

Reachable Distance (RD) is introduced as a reliability metric for the first time in

this dissertation (Chapter 5). RD is generally defined as the average distance to

which a safety message can reach in a one-hop broadcast, taking into account the

impacts of degradation caused by various factors including interference, channel

load, MAC issues, and the adverse effects of the radio propagation environment.

As a particular, yet significant case, the worst case reachable distance corresponds

to the distance to which a message can reach while the adverse factors are most

severe. In Chapter 5, we investigate the worst case (or lower bound) reachable

distance in one-hop broadcast with respect to severe interference caused by hidden

terminals.

2.4 Related Work

2.4.1 Analytical Studies

A pioneering study on one-hop broadcast can be found in [46], where the authors

proposed an analytical model for broadcast communication mode and investi-

gated the throughput in the presence of hidden terminals. They used unit disk

graph as the radio model. Their traffic model was comprised of random place-

ment of nodes within the communication range of a transmitter. Li et al. [95]

also used the unit disk graph as the radio model to analytically predict the opti-

mal range for maximizing broadcast coverage in one-hop mode. As in [46], they

addressed the case of traffic with nodes randomly placed around a transmitter.

Yadumurthy et al. [177] proposed a new MAC protocol to overcome the hidden

terminal problem in omni-directional and directional broadcasts. They used real

traffic traces for verification; however, the applicability of the proposed proto-

cols in real world situations is limited due to the assumption of perfect channel

adopted in their work. Balon and Guo [22] studied MAC-layer recovery of broad-

cast frames using a congestion detection mechanism. Assuming that the channel

is in perfect condition, they addressed the freeway scenario to evaluate the packet

delivery ratio. Lee et al. [85] developed a position-based broadcast suppression

protocol for vehicular communications and compared the PDRs achieved by their
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protocol with those of the neighbour-based broadcast suppression mechanisms.

As with the aforementioned studies, Lee et al. adopted a perfect channel model

in their study. Regarding the traffic model, they addressed a group-based node

mobility where the velocity of nodes is chosen randomly from a predetermined

range. Such a mobility model is not realistic since the random velocity does not

reflect the actual interaction of moving vehicles. In [83], a new broadcast proto-

col termed R-OB-VAN was proposed to overcome the shadowing problem caused

by large vehicles. PDR and DL indicators were the subject of improvement in

their study. A two-lane road segment with nodes distributed uniformly formed

their traffic model. For the channel model, they used a proprietary shadowing

model implemented in a simulator. An analytical model was proposed in [179]

to address the reliability of one-hop broadcast. The Rayleigh propagation model

was used and a one-dimensional network with random placement of nodes was

addressed to evaluate the packet reception ratio as the reliability indicator. A

drawback of their study is that they considered solely the channel issues as the

cause of packet reception failures. In particular, they stopped short of addressing

the impacts of other adverse factors such as interference caused by hidden termi-

nals. Furthermore, the generic propagation model used in their study does not

represent the vehicular environment well.

In [78], Khabazian et al. adopted a cautionary view in addressing the effects of

hidden terminals on the reliability of vehicular communications. Opposed to the

traditional assumption on hidden terminals, they argued that hidden terminals

are not isolated. With this assumption and using a one dimensional network with

predetermined traffic densities, they addressed some reliability aspects such as the

probability of reception failures due to interference caused by hidden terminals.

Khabazian et al. used a similar network and traffic settings in [77] to investigate

the average delay of event-driven messages in the presence of low priority regular

safety messages. The radio propagation issues were not taken into account in

this study. Also, given a traffic density, the authors assumed that the nodes are

randomly placed in the network, which is not a realistic assumption. Furthermore,

the one dimensional network topology does not represent the real topology of

vehicular networks.

In a series of works, Vinel et al. studied the reliability of periodic beacon-
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ing. In [171], the authors used a D/M/1 queueing system to model the MAC

functionalities and obtained the average delay incurred by beacon transmission.

Vinel et al. also investigated the psr indicator corresponding to periodic beacons

in [170] and [169]. In the former study, the beaconing rate was assumed saturated,

while in the latter work it was assumed unsaturated. There are three arguable

assumptions adopted in the work of Vinel et al.: (i) beacon messages arrive ran-

domly, and hence, the periodic nature of beacon messages and its impact on the

IRT indicator is not considered, (ii) traffic density was assumed homogeneous,

which is not applicable to urban scenarios, and (iii) the reception failures due to

channel issues were not taken into account in deriving the reliability indicators

corresponding to periodic messages.

In a series of works, Ma et al. studied different aspects of the broadcast

paradigm in MANETs and VANETs. In [102; 103], the authors addressed the

back-off process of IEEE 802.11 MAC. To this aim, they developed analytical

models using Markov chains and investigated the PDR indicator in a wireless lo-

cal area network under the assumptions of perfect channel and saturated packet

generation. With similar network settings, Ma et al. investigated the case of

unsaturated packet generation described by a random process [104]. In [44],

Chen et al. extended their previous models to address the case of safety message

broadcast in vehicular communication networks. In [180], Yin et al. developed a

model based on Markov process to characterize the continuous time behaviour of

channel contention and the MAC layer back-off process in broadcast communi-

cation mode. In all the aforementioned studies conducted by Ma and co-workers,

PDR was the main reliability indicator for the evaluation of the proposed models.

In [105], they addressed the PRR indicator corresponding to a one dimensional

mobile ad hoc network operating in multi hop communication mode. The case

of two dimensional network topology was addressed in [107; 108]. In [101; 106],

analytical models were developed to investigate the reliability performance of

vehicular broadcast communications in highway scenarios with steady state ve-

hicular traffic and assuming the IEEE 802.11a as the MAC layer protocol. In

this work, the event-driven and periodic beacon messages were addressed with

different priorities. In [109], Ma et al. employed most of their findings in previous

studies and proposed new broadcast schemes, aiming at better reliability of the
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broadcast mechanism in vehicular communication networks. Unfortunately, their

studies are limited to highway scenarios and the random distribution of nodes.

These drawbacks can be observed in the analytical models as well as the simu-

lations conducted for verification purposes. Another drawback of their studies is

attributed to the unrealistic assumptions on the radio propagation model. They

either assumed the channel is perfect or it can be described by Bit Error Rate

(BER) (or Packet Error Rate) derived from generic radio propagation models. We

argue that BER as an indicator for channel description must be derived from a

realistic channel model or from measurements, otherwise it will be too optimistic

for estimating the channel quality.

On the assumption that wireless communications are inherently unreliable,

Lidstrom et al. [97; 98] pursued a notably different approach to address the en-

hancement of driver safety. In [97], the authors proposed a model realized by

direct and relay-based observations of the traffic environment. The observation

data are fed to an inference system to predict those potentially hazardous sit-

uations not easily detectable by relying only on the node’s self-knowledge. In

particular, their proposed solution is able to predict communication disruptions

corresponding to the obstructed nodes and the potential disruptions due to traf-

fic congestion. In [98], Lidstrom et al. proposed models to predict dangerous

traffic situations. The models describe two major factors including vehicle and

environment, and infer the driver intention quantified as the probability distribu-

tion of path choices. The authors claim that such a capability, if enabled in the

vehicles in the form of a warning or driver recommendation system, will improve

the safety level of drivers; notwithstanding, they stop short of characterizing an

example application of that kind.

Torrent-Moreno [162] proposed a position-based forwarding mechanism termed

contention-based dissemination (CBD) together with a distributed power adap-

tation algorithm to improve the reception of safety messages while maintaining

the channel load below a given threshold. In this study, Nakagami model was em-

ployed as the channel model characterizing signal propagation in a highway traffic

scenario. Sepulcre et al. [149] adopted a novel top-down approach to studying the

reliability issues in vehicular networks. They stressed the necessity of mapping

from application-level requirements to the network-level performance metrics. To
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this aim, the authors identified a minimum warning distance (Dw) for two ex-

ample applications. Then, using a parametric warning time frame (TWindow),

the reliability of applications (papp) were expressed as a function of successful

packet reception (p). Through experiments and given a target application relia-

bility threshold, the authors further explored the optimal parameter settings for

transmission power, message frequency, and TWindow. The study in [54] ad-

dressed the prioritization of message dissemination based on message benefit. To

calculate the utility of a given message, individual nodes should independently

identify some context-based metrics extractable from the message itself, vehicle,

and exogenous information context (e.g. time of day). To maximize network

utilization, the authors suggest that the protocol architecture in the MAC and

data link layers should be designed in a way that it reflects the benefit-based dis-

semination paradigm. Practically, a proprietary architecture designed from the

scratch or derived by modifying the existing IEEE 802.11e EDCA mechanism are

two candidate ways to implement the proposed approach. Li et al. [93] argued

that the conventional methods applied in the multi-hop forwarding of emergency

messages do not provide sufficient reliability, and do not scale properly when the

traffic is dense or the size of network grows. To improve scalability, the authors

proposed a controlling mechanism for the selection of forwarders. To guarantee a

minimum reliability characterized by a given threshold, they proposed additional

forwarding of messages performed by intermediate nodes located between any

pair of subsequent main forwarders.

2.4.2 Simulation Studies

Elbatt et al. [55] investigated the reliability of Cooperative Collision Warning

(CCW) as a representative safety application relying on periodic beaconing. Sev-

eral reliability indicators including PDR, IRT, and DL were evaluated in their

study. They addressed two types of traffic densities in an eight-lane highway

scenario: high traffic density and sparse traffic density. In both density scenar-

ios, the velocities were chosen either randomly or deterministically from a set of

given velocities. Furthermore, they adopted a channel model characterized by

measurement-based BER and SNR parameters [55]. Yousefi et al. [183] studied
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the delivery ratio and delay of beacon messages with varying packet transmission

intervals and packet sizes. They addressed one-hop broadcast in a large highway

scenario with stationary vehicles and a fixed communication range of the vehi-

cles. According to their simulation results, packet delay was in the order of a

few milliseconds, which generally does not cause a bottleneck for safety appli-

cations. They also showed that the packet reception rate decreases significantly

by increasing the distance of the receiver from the transmitter, a phenomenon

previously observed in [55]. In their study, a deterministic channel model was

employed and the hidden node problem was identified as the primary cause of

performance degradations, particularly in long distances from the transmitter.

Similar traffic settings and channel model were used in [184] to investigate the

effective range of safety critical applications relying on one-hop broadcast.

Torrent-Moreno et al. [163; 164; 165] were the first to introduce the proba-

bilistic propagation models in the study of the one-hop broadcast scheme. They

introduced the notion of Packet Level In-coordination (PLI) to characterise the

hidden terminal interference. The failed receptions were separated into 4 cate-

gories with the hidden terminal problem being identified as the primary reason for

low reception rate, particularly at distances beyond 66% of the intended commu-

nication range [164; 165]. Using the findings from previous studies, they imple-

mented a distributed fair power adjustment mechanism to improve the reception

rate [163]. In their studies, they used Rayleigh and Nakagami radio propagation

models. For the simulation, they used a number of topologies ranging from a

wireless local area network (as in [164; 165]) to a multi-lane highway scenario in

a recent study [163].

The exploration of the key factors influencing the performance of safety mes-

sage communications was performed in [114], where Martinez et al. identified

the transmission range, radio propagation model, and traffic density as the major

factors determining the ultimate performance of warning message dissemination.

The performance metrics investigated in this work included notification time of

messages, percentage of blind vehicles (i.e. vehicles without reception), and the

number of packets received per vehicle. The authors suggested that a compound

metric obtained by combining the three identified metrics is sufficient for the

assessment of message dissemination performance in VANETs.
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2.4.3 Other Related Work

We also build our background on generic models of the IEEE 802.11 Distributed

Coordination Function (DCF) and its internal back-off process. Many analytical

models have been developed in the literature for the study of the performance of

IEEE 802.11 coordination function. For the most part, the proposed approaches

are variations of the Markov-based performance evaluation method presented

by Bianchi [28] and Cali et al. [37]; for instance, the implications of an error

prone channel were modelled in [127], while transmission retries and seizing phe-

nomenon were taken into account in [42] and [172], respectively. This framework

was extended to IEEE 802.11e QoS differentiation by Engelstad et al. [56], who

also investigated the channel and application layer performance indicators with

respect to non-saturation traffic. In [100], Lyakhov et al. studied the performance

of IEEE 802.11 networks operating in broadcast mode. They assumed Poisson

packet arrival and applied Markov chains to analytically express the mean noti-

fication time of broadcast packets. Ma et al. [103] studied the impact of backoff

counter freezing on IEEE 802.11 performance in a scenario termed Continuous

Freeze Process (CFP). In another study, Ma et al. [106] modelled the perfor-

mance of IEEE 802.11a as the initial MAC layer protocol proposed for vehicular

networks. Using two Markov chains, they analysed the broadcast performance

of event-driven and periodic safety messages. Arguably, they used a Poisson

distribution to model the arrival process of both types of safety messages.

2.4.4 Drawbacks of Previous Studies

A number of drawbacks can be identified in the above mentioned studies with

respect to the real world aspects of vehicular traffic and the propagation envi-

ronment. First and foremost, the traffic scenarios are limited to random and

uniform node distribution, which in the best case are only applicable to high-

way traffic. In spite of performance evaluation under various traffic densities, the

impacts of non-uniform and heterogeneous traffic densities attributed to urban

traffic systems were not addressed. Moreover, it is not clear how the traffic sce-

narios addressed in those studies relate to safety-critical conditions. Forced-flow

traffic states that frequently dominate urban traffic systems and intersections are
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examples of safety-critical scenarios that were not addressed in previous stud-

ies. Furthermore, the assumption of one-dimensional network topology adopted

in a major body of the studies does not apply to vehicular networks. The final

drawback of the previous studies relates to the radio propagation models em-

ployed either for analytical development or simulation purposes. Obviously, the

assumptions of perfect channel and unit disk graph applied in many studies are

not realistic. Also, the generic propagation models used in some studies do not

fully capture the uncontrolled environment factors in vehicular traffic systems,

and thus do not provide good accuracy for the study of vehicular communication

networks [81].

2.5 Implications of Host System Model for Com-

munication Aspects

The credibility of conclusions drawn in studies conducted on vehicular networks is

significantly driven by the way the host system is modelled and the assumptions

adopted in the studies. In that regard, the major components representing the

host system including the vehicular traffic model and the radio propagation model

have been shown to be highly influential. In the following sections, evidence is

reported from the literature which highlights the impacts of the choice of traffic

and radio propagation models on the results derived from studies on vehicular

communication networks. The evidence covers a broad range of vehicular network

aspects and is not limited only to reliability issues.

In the following sections, we frequently refer to traffic and radio propaga-

tion models. For the interested reader, Appendix B presents the theories and

modelling paradigms associated with vehicular traffic systems. The fundamen-

tal concepts and the various radio propagation models employed frequently in

the context of wireless communications can be found in [116; 120; 137]. [120] is

particularly focused on the radio propagation aspects of vehicular environments.

Hereafter, for the sake of distinction, we refer to those radio propagation models

not specifically developed for vehicular environments as “generic” or “simplistic”

models.
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2.5.1 Implications of Traffic Model

The impacts of the traffic model on the communication aspects of vehicular com-

munications were addressed in a number of studies. In [41], the authors empha-

sized that, in routing protocols proposed for vehicular networks, the performance

indicators such as the PDR are significantly influenced by the degree of realism

incorporated in the traffic model. The authors suggested that if simplistic traffic

models are used for the evaluation of VANETs, the results significantly deviate

from those obtained in the case of realistic models. Bai et al. [18; 19] studied

the effects of mobility on the topological aspects of ad-hoc networks and verified

the high dependence of connectivity behaviour on the mobility model. Mahajan

et al. [110] showed that the packet delivery ratio and latency are significantly

impacted in the presence of intersections causing vehicular clusters. Their study

involved the development of several mobility models to capture the motion pat-

tern of vehicles in urban traffic systems. Choffnes et al. [45] developed STreet

RAndom Waypoint (STRAW), an integrated mobility model based on car fol-

lowing. They compared the routing performance of the vehicular networks using

the STRAW model and a classic random waypoint model. They showed that the

performance of wireless network protocols in urban environments is significantly

different under the two mobility models. The results of this study suggest that

both the mobility model and the topological aspects of a traffic network must be

realistic in order to reflect the actual performance of the communication network.

Fiore et al. [60] evaluated the impacts of various mobility models on link dura-

tion, node degree, and node cluster sizes. They showed that the choice of mobility

model significantly impacts the topological properties of a vehicular network. In

particular, they suggested that various models exhibit different clustering and

link-level features. This motivates the use of realistic traffic models instead of

inaccurate, generic models. In [157], the authors employed various vehicular mo-

bility models ranging from realistic to random models to investigate the impacts

of the traffic model on the topological features of the network. The results of this

study confirm those conclusions drawn in the Fiore et al. study [60].
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2.5.2 Implications of Radio Propagation Model

The generic radio propagation models do not fully capture the environmental

factors in vehicular traffic systems, and thus do not provide good accuracy for

VANET scenarios [81]. These models are mainly developed for cellular networks

and may well adapt to the properties of such networks. However, as highlighted

in [116; 120], VANET environments have several unique characteristics, hindering

the direct application of the generic propagation models. There are several in-

trinsic differences between propagation environments of the vehicular and cellular

networks. These include the relative elevation of the transmitter and the receiver,

the motion patterns, and the frequency band used in the two technologies [120].

A recent campaign investigating the radio propagation aspects in VANET

environments was notably triggered by the limited capacity of the existing generic

radio models. In the following, we review a number of these studies.

Gozalvez et al. [64] revealed that the results obtained in a study of safety and

data applications in VANETs change dramatically with respect to the choice of

the radio propagation model. They showed that ignoring any component of a

realistic radio propagation model including path loss, multi-path fading, shadow-

ing, and shadowing correlation significantly changes the results of the study. In

their study, two applications representing safety and data services in VANETs

were addressed: a traffic safety application operating in an urban intersection

scenario without visibility, and data routing protocols in a Manhattan-like urban

scenario. The results obtained for the intersection scenario and using a simplis-

tic path loss model shows that, with a given transmission power, there is a high

probability that safety messages are received successfully. On the other hand, if a

realistic propagation model is used, the communication channel is not as reliable

as in the case of the simple path loss model. Their results for the data routing

scenario indicate a noticeable performance degradation under realistic models

compared to the simple path loss model. In a similar work, Martinez et al. [113]

compared the performance of warning message dissemination in various scenar-

ios distinguished by the degree of realism incorporated in the radio propagation

model. They investigated three performance metrics, namely, message notifica-

tion time, percentage of blind vehicles, and the number of message receptions per
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vehicle, and revealed that such metrics significantly deteriorate when the attenu-

ation due to obstruction by surrounding buildings is taken into consideration in

the propagation model. [21] is another study on the propagation properties in

vehicular traffic environments. This study was conducted by means of field mea-

surements using off-the-shelf DSRC radios. In this study, a very rich set of traffic

scenarios including urban, suburban, and rural traffic were addressed, and the

impacts of uncontrollable (e.g., node mobility) and controllable (e.g., transmis-

sion power) factors on the packet delivery ratio and also the link level reliability

were investigated. According to their results, the perfect reception zone does

not exist in vehicular networks. Instead, intermediate reception regions prevail

throughout the entire communication range of a target transmitter. The authors

in [148] and [27] identified street intersections and tunnels as the highly impor-

tant environmental elements requiring dedicated characterization in the radio

propagation model. They suggest that the traditional classification of vehicular

environment into urban/suburban/rural should be extended to cover these new

elements. Studies in [33; 117] revealed that Line Of Sight (LOS) obstruction

caused by moving vehicles is frequently observed in urban traffic settings, and

the obstructing vehicles impose significant attenuation and packet loss. Signal

attenuation in urban intersections is studied in [111]. Also in [111], field exper-

iments using DRSC radios were conducted and a path loss model for Non Line

Of Sight (NLOS) situations was developed. In another work, Mangel et al. [112]

highlighted the NLOS at intersections as a key factor affecting the performance of

DSRC applications targeted to intersection scenarios. They argue that, despite

the similarity of some intersections, not all of them have similar signal propa-

gation characteristics. Furthermore, due to the non-negligible cost involved in

field measurements, it is of vital demand to enforce abstraction and clustering

of intersections and conduct field tests only on few representative intersections

within each cluster. To this aim, Mangel et al. proposed a clustering mechanism

based on the key intersection parameters including the distance of intersection

center from the building, intersection type (e.g. 3 and 4 legs), and the spanning

length of buildings at the corners of the intersection. In [150], the authors stressed

that unrealistic assumptions about the fading issues leads to wrong conclusions

on the reliability of safety applications at intersections. In [29], the necessity of
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distinguishing between the LOS and NLOS shadowing cases in traffic simulators

is emphasized.

Sommer et al. [156] identified physical obstacles (e.g. buildings) as the major

cause of signal attenuation, and developed a computationally efficient channel

fading model to deterministically calculate the amount of attenuation. The pro-

posed model distinguishes between various obstacles in terms of the material

used and also the fraction of the line of sight of two communicating nodes be-

ing obstructed by a given obstacle. Another channel simulation model termed

UM-CRT was proposed in [84] for vehicular communications. UM-CRT is a semi-

deterministic channel model and is claimed to achieve the accuracy of ray-tracing

and the computational efficiency of stochastic models [34].

In a recent class of developments, scientific channel sounding equipment was

used to characterize signal propagation in vehicular network environments. The

main objective of such studies was the development of new radio propagation

models adapted to vehicular environments. One such study is found in [8], where

Abbas et al. developed a shadow fading model using measurements conducted

in urban and highway scenarios. The details of this radio propagation model

including the path loss functions developed for LOS, NLOS and Obstructed LOS

(OLOS) situations appear in Chapter 5.

2.5.3 Implications for Our Work

An important aspect of the studies on VANETs is the demand for a traffic model

reflecting the real behaviour of vehicular traffic. On one hand, the accuracy of

studies on DSRC/WAVE protocols and safety applications are highly related to

the accuracy of the traffic model used in the studies. On the other hand, the inher-

ent difficulties in conducting large-scale and comprehensive field experiments of

traffic mobility, leaves simulation the sole choice for validation purposes. Conse-

quently, the accuracy of a study highly depends on the extent of realism captured

in the traffic model used in the simulation. In analytical studies, on the other

hand, a common practice is to simplify the traffic model as much as possible to

make it tractable for the underlying analytical development. Consequently, the

achievable accuracy and generalization of such simplified models depend foremost
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on the extent of adherence to the key traffic features. The evidence reported above

stresses that the choice of traffic model, including the traffic network topology,

significantly impacts the results to be derived. This evidence indicates that real-

istic traffic models need to be applied for the validation of the studies throughout

this thesis. Furthermore, care should be taken to base the analytical models on

valid assumptions about traffic features. Thus, in the present study, wherever

necessary, the traffic models are developed in compliance with Car Following

(CF) [142] and Cellular Automaton (CA) [161] modelling paradigms, which have

been proven to efficiently describe traffic behaviour in various scenarios.

Similar implications arise regarding the choice of the radio propagation model.

As highlighted above, the recent studies on the aspects of radio propagation in

vehicular environments reveal that the application of generic radio models for

VANET studies is not a wise choice. Instead, it is highly recommended that

models exclusively developed for vehicular environments should be used. An ex-

ample of such radio propagation models is proposed by Abbas et al. [8]. To our

best knowledge, this model is the most comprehensive in terms of the various

shadowing conditions taken into account, including LOS, obstruction by vehicles

(OLOS), and obstruction by static objects such as buildings (NLOS), all inte-

grated in a number of simple path loss functions. Due to the comprehensiveness

and the relative simplicity of this model compared to other models, we use this

model in our analytical study of hidden terminal interference in Chapter 5.

2.6 Summary

There are many controlled and uncontrolled factors affecting the reliability of

safety applications. Among those factors, the interference is highly influenced by

the characteristics of the host system, that is, the radio propagation environment

and the traffic system. Although many important aspects of reliability are ad-

dressed in the literature, previous studies stopped short of realistically addressing

the interference issues in relation to the host system. More specifically, the un-

realistic assumptions on radio propagation and also the extreme simplification

of the underlying traffic models compromise the accuracy of the results derived

from previous studies.
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Chapter 3

A Traffic Density Model for

Radio Overlapping Analysis in

Urban Vehicular Ad hoc

Networks

3.1 Introduction

Viewing vehicles asmoving radios with potential overlapping in time and space di-

mensions is key to understand the dynamic of communication interference, which

by itself is known as a primary cause of performance degradation of wireless com-

munications. From the perspective of vehicular communications, traffic density is

a major factor influencing the behaviour of radio overlapping. As such, it deter-

mines the channel load dynamics and hence the performance of data and safety

message communications. Consequently, an accurate characterization of the per-

formance of applications demands a thorough understanding of the traffic density

dynamics. In this chapter, we propose a novel traffic density model for urban traf-

fic systems and employ this model for the purpose of spatial-temporal analysis

of radio overlapping. To model traffic density, we consider a signalized intersec-

tion and the road segments connected to the intersection as the basic building

blocks of urban traffic systems. The density model is used as a framework to
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describe the trends and the critical regions of radio overlapping corresponding

to the road segments of the intersection. We apply the radio overlapping model

derived from the traffic density to study the channel load associated with pe-

riodic beaconing, a fundamental mechanism for safety message communication

in VANETs. Considering the fact that radio overlapping is a predictor for in-

terference behaviour, this study also provides a generic analytical framework to

investigate other performance aspects of data and safety message communication

influenced by interference issues.

The remainder of this chapter is organized as follows. In Section 3.2, the

assumptions adopted throughout this study are presented. In Section 3.3, we

introduce the approach used in the development of the traffic density model.

Section 3.4 describes the proposed traffic density model. Using this model, an

analytical framework is presented in Section 3.5 to characterize radio overlap in

spatial and temporal dimensions. In Section 3.6, we characterize the channel load

imposed by periodic beaconing. Numerical evaluation is presented in Section 3.7.

Finally, Section 3.8 summarises the chapter.

3.2 Assumptions

A traffic density model is designed to capture the basic characteristics of an urban

traffic system. More specifically, a signalized intersection and road segments

linked to that intersection are considered as the basic components comprising

an urban traffic system (Figure 3.1). Such a traffic density model is expected

to express traffic density as a function of position x (along the road segment

LE) and time t during a traffic light cycle at the intersection. For simplicity, we

assume traffic is unidirectional with flow q vehicles/hour/lane approaching the

intersection from a l-lane road segment LE. The maximum velocity of the road

segment is limited to V meters/second, in line with regulations imposed on urban

transportation systems. The intersection is signalized and operates with fixed

timing consisting of red and green phases denoted by tred and tgr, respectively. We

assume the amber phase is equally shared between the red and green phases of the

traffic light. Accordingly, the duration of a traffic light cycle denoted by tcycle is

equal to tcycle = tred+ tgr. We assume the intersection operates in near-saturation
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or so-called perfect mode, i.e. the queue forming during a red phase entirely

discharges during the green phase of the same traffic light cycle and no overflow

queue emerges in a cycle. With this setting, traffic densities corresponding to

under-saturation and over-saturation scenarios can be numerically compared to

the near-saturation scenario.

LN

LW

LS Buidling

q

lj ld lf
LE

Figure 3.1: Signalized intersection scenario

3.3 Modelling Approach

There are numerous studies in the literature investigating different aspects of

traffic in the presence of signalized intersections. Queuing behaviour at signal-

ized intersections has been widely studied and many models have been proposed

[12; 160; 173]. However, few works address global traffic behaviour throughout

an urban road segment. By global traffic model, we mean a model capable of

describing traffic characteristics, e.g. traffic density, throughout a road segment

or a large traffic system formed by a network of connected road segments. Local

traffic models, on the other hand, are only capable of estimating traffic behaviour

in an immediate vicinity of a vehicle or a position along a road segment. An

example of models predicting local traffic density is a model proposed by Pipes

[135] and used by Artimy et al. [14] for dynamic assignment of the transmission
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range in VANETs. In this model, instant velocity of a vehicle and a sensitivity

factor were used to estimate local density around vehicles. We argue that the

existing queue models or local traffic density models cannot adequately capture

the general behaviour of traffic throughout an entire road segment. Instead, a

global traffic density model is needed to describe the traffic behaviour at any

given position throughout the road segment under investigation.

3.4 Traffic Density Model

Our proposed traffic density model is inspired by observations from 100 simulation

runs conducted with single- and multi-lane scenarios implemented in Paramics [1],

a traffic simulator compliant with car-following traffic model [142]. Our findings

of traffic characteristics on a road segment (LE in Figure 3.2), are summarized in

the following main points:

(a) During a red phase, three regions with different traffic densities coexist along

the road segment: (i) a jam traffic density caused by vehicles building up a

queue, (ii) a growing traffic density caused by vehicles decelerating as they

approach a queue ahead, and (iii) an almost constant light traffic density

caused by vehicles driving in free or stable flow traffic state. The regions

with the three different densities are denoted by lj, ld, and lf , respectively

(Figures 3.1 and 3.2).

(b) During a green phase, a fourth region associated with a different traffic den-

sity emerges as vehicles in front of the previously formed queue gradually

discharge the queue. This region is denoted by la in Figure 3.2.

(c) The shape and dynamics of the three density regions formed during a red

phase and partly during a green phase are analogous to the shape and dy-

namic of a logistic curve [79].

Due to significant differences between the traffic dynamics associated with red

and green phases of a traffic light cycle, we address traffic density corresponding

to each phase separately. According to observation (c) above, traffic density can
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be expressed by a simplified logistic curve defined as follows:

K(x, t) = A+
Kj − A

1 + exp (B(x−M))
(3.1)

where:

A is the lower bound traffic density associated with stable/free flow traffic state;

Kj is the upper bound traffic density associated with jam traffic density (if A = 0

then Kj is called the carrying capacity);

B is the growth rate of traffic density from lower bound (A) to upper bound (Kj);

M is the inflection point of the logistic curve;

K(x, t) is the traffic density at position x at time instant t during a traffic light

cycle.
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Figure 3.2: Traffic density defined as the number of vehicles in 40 m intervals on
a 3-lane road segment linked to a signalized intersection (cycle length=100 s)

To model traffic density using Equation 3.1, the above mentioned parame-

ters must be determined. We start with A, defined as the lower bound of traffic

density, which is equivalent to traffic density in stable and/or free flow traffic

state (region lf in Figure 3.2). Assuming a deterministic traffic arrival q vehi-

cles/hour/lane and road speed limit V , the inter-arrival time of vehicles is 3600
q

measured in seconds and the headway distance is 3600 V
q

measured in meters. In

a stable flow traffic state, a following vehicle must keep a safe headway distance

from a leading vehicle to avoid rear end collision. According to car-following

properties [142], the safe headway distance, also known as the braking distance,
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is proportional to the distance that the following vehicle with velocity V and

average deceleration Rd should maintain in order to be able to make a full stop

when the leading vehicle brakes suddenly. Consequently, the braking distance can

be expressed as db =
V 2

2Rd
. Taking the braking distance and vehicles’ inter-arrival

time into consideration, the headway distance in free and stable flow traffic states

can be expressed as HD = max
(

V 2

2Rd
, 3600 V

q

)
and traffic density can be expressed

as follows:

A =
l

HD
(3.2)

In Equation 3.2, A is measured in vehicles/meter and l is the number of lanes.

For traffic arrivals with other distribution functions such as Poisson, q in the

definition of HD and hence in Equation 3.2 is replaced with the expected traffic

arrival E(q).

To obtain Kj in Equation 3.1, we use the fact that Kj is the traffic density

associated with vehicles queued up at the intersection (region lj in Figure 3.2)

and is inversely related to jam headway distance lhj, i.e.,

Kj =
l

lhj
(3.3)

where lhj is the average jam headway distance and is a known parameter.

To calculate parameters B, we use the properties of deceleration region ld

in Figure 3.2. By definition, the length of this region is equal to the braking

distance, which was obtained as db = V 2

2Rd
. Also, the logistic function K(x, t)

can be rewritten with respect to x as x = 1
B
ln
(

Kj−K

K−A

)
+ M (we substitute

K(x, t) by K for brevity). Define x1 and x2 as the start and end positions of the

braking region and K1 and K2 as the traffic densities corresponding to x1 and

x2, respectively. The difference between x1 and x2 must be equal to db (braking

distance), and, hence, db = x1− x2 =
1
B

(
ln
(

Kj−K1

K1−A

)
− ln

(
Kj−K2

K2−A

))
. Solving for

B, we obtain

B =
2Rd

V 2

(
ln

(
Kj −K1

K1 − A

)
− ln

(
Kj −K2

K2 − A

))
(3.4)
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The last parameter to be determined is M , which is the inflection point of the

logistic curve. Assuming that the logistic curve is symmetric in the deceleration

region, M is equal to the queue length at the current time instant t plus half the

braking distance db. Thus, we obtain M as follows:

M = q t lhj +
db
2

(3.5)

where term q t lhj represents the queue length (in meters), which is a function

of the average traffic arrival rate (q), current time instance (t), and the headway

distance corresponding to jam traffic.

Finally, the calculated parameters are consolidated into the logistic function

described by Equation 3.1 to obtain the following expression:

K(x, t) =





A+
Kj−A

1+exp (B(x−M))
where :

A = l
HD

, Kj =
l

lhj
, M = q.t.lhj +

db
2

B = 2Rd

V 2

(
ln
(

Kj−K1

K1−A

)
− ln

(
Kj−K2

K2−A

)) (3.6)

where x is measured relative to the intersection position. M and B in Equation

3.6 are scenario dependent and can be used to fine tune the mobility behaviour.

However, they do not greatly impact the general model.

During a red phase, K(x, t) defined by Equation 3.6 measures traffic density

at any given time instant for any position x within the road segment. However,

during a green phase, due to the presence of a queue discharge region (denoted by

la in Figure 3.2), the density function will be different from the red phase. The

approach to model density during a green phase is to decrement from Equation

3.6 the rate of density reduction (Drate) due to the queue discharge, that is:

K(x, t) = A+
Kj − A

1 + exp (B (x−M))
−Drate (3.7)

where Drate is a function of vehicles’ average acceleration a and drivers’ average

reaction time tr.

To obtain Drate, we utilize a snapshot of vehicles’ trajectory shown in Figure

3.3. Assume v1, v2, v3, · · · , vn are currently queued up at a junction. At the
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beginning of a green phase, these vehicles are located at positions x = 0, lhj, 2lhj,

· · · , (n− 1)lhj, respectively (Figure 3.3a), where lhj is the jam headway distance.

We define t′ = t − tred, the time elapsed since the start of the green phase. v1

starts moving after t′ = tr (Figure 3.3b), v2 starts moving after t′ = 2tr (Figure

3.3c), v3 starts moving after t′ = 3tr, etc. At a time t′ such that tr < t′ ≤ 2tr,

vehicle v1 has travelled the distance 1
2
a (t′ − tr)

2 and the positions of v2, v3, · · · ,
vn are unchanged. At time t′ where 2tr < t′ ≤ 3tr, vehicles v1 and v2 have

travelled distance 1
2
a (t′− tr)

2 and 1
2
a (t′− 2tr)

2, respectively and the positions of

v3, · · · , vn are unchanged. This process can be similarly continued for subsequent

time instants and for the remaining vehicles in the queue. Generally, at time t′

such that (i + 1) tr < t′ ≤ (i + 2) tr the locations of vehicles i and i + 1 are

i lhj − 1
2
a (t′− itr)

2 and (i+1) lhj − 1
2
a (t′− (i+1) tr)

2, and the distance between

the two vehicles is lhj +
1
2
a tr (2t

′− (2i+1) tr). Consequently, the initial distance

lhj of the two vehicles i and i+1, queued up during a red phase, increases at time

instant t′ during a green phase where t′ > i tr, and the increase rate is obtained

as a (t′− i tr) tr. It is straightforward to generalize the rate increase by describing

the vehicle number (i.e. i) as a function of its position (i.e. x), namely i = ⌈ x
lhj
⌉.

Bearing this in mind, and noting that the initial density of queued vehicles is l
lhj

, the density at position x at time t′ in a l lane scenario becomes l
lhj+a (t′−⌈ x

lhj
⌉ tr) tr

and the rate of density reduction (Drate) can be expressed as follows:

Drate =





l a

(
t′−⌈ x

lhj
⌉ tr
)

tr

lhj

(
lhj+a

(
t′−⌈ x

lhj
⌉ tr
)

tr

) x <
lhj t′

tr

0 o.w

(3.8)

Having Drate obtained by Equation 3.8, and considering that the lower bound

traffic density is A, Equation 3.7 can be rewritten as follows:

K(x, t) =





max
(
A,A+

Kj−A

1+exp(B(x−M))
−Drate

)
x <

lhj (t−tred)

tr

A+
Kj−A

1+exp(B(x−M))
o.w

(3.9)
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tr 2tr itr (i+1)tr ntr
x0=0 lhj (i-1)lhj i lhj (n-1)lhj

v1 v2 vi vnvi+1

2tr itr (i+1)tr ntr
lhj (i-1)lhj i lhj (n-1)lhj

v1 v2 vi vnvi+1

itr (i+1)tr ntr
(i-1)lhj i lhj (n-1)lhj

a(t′-tr)2/2

a(t′-2tr)2/2a(t′-tr)2/2

(a) 0 < t′ ≤ tr

(b) tr < t′ ≤ 2tr

(c) 2tr < t′ ≤ 3tr

Figure 3.3: Evolution of traffic discharge from a queue

3.5 Radio Overlapping

To address radio overlapping, we define the Radio Overlapping Number (RON)

at position xv along the road segment LE as the number of unit disks covering

a vehicle positioned at xv, where each unit disk corresponds to a vehicle on the

road segment. In our analysis, we assume that the radius of all unit disks is

equivalent to the nominal transmission range R of vehicles. Accordingly, RON is

simply translated into the number of nodes situated in the transmission range of

a vehicle located at position xv, and is determined by calculating the integral over

the density function K(x, t) described by Equations 3.6 and 3.9, corresponding

to red and green phases of the traffic light cycle. Incorporating the temporal

dimension into the definition of RON , it can be expressed as follows:

RON t
xv

=

∫ xe

xs

K(x, t) dx (3.10)

where xs = max(xmin, xv − R) , xe = min(xmax, xv + R), and xmin and xmax

are the coordinates of the start and end positions of the road segment under

consideration. In an unbounded road segment, the bounds of the above integral
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will simply become [xv −R, xv +R]. Depending on whether or not the radios of

vehicles situated on the two perpendicular road segments (denoted by LE and LS

in Figure 3.1) overlap, two extreme cases can be identified: full overlapping and

non-overlapping segments. Full overlapping is attributed to the situation where

the area surrounding the two road segments (shadowed area in Figure 3.1) is an

open space and no obstacles are present within this area. Hence, radios belonging

to vehicles on one road segment can potentially overlap with those on the other

road segment. The non-overlapping segments scenario, on the other hand, is

attributed to a situation where the entire surrounding area is covered by obstacles

(e.g., buildings). Therefore, vehicles on segment LS do not contribute to RON

of vehicles located on segment LE. Other scenarios of segment overlapping, e.g.

partial overlapping, fall within these two extreme scenarios. Hereafter, we focus

on road segment LE as the main road segment and derive RON corresponding

to the positions on this road segment. In deriving RON , we address the two

aforementioned overlapping scenarios separately.

Non-overlapping segments: Due to different descriptions of density functions

corresponding to red and green phases, we derive RON in each phase separately.

At any given time instant t during a red phase (0 ≤ t ≤ tred) and for any position

xv on road segment LE, substituting K(x, t) in Equation 3.10 with the density

function expressed by Equation 3.6 determines RON as follows:

RON t
xv ,LE

=

[(
Kx+

ln(1 + 1
eB(M−x) )(A−K)

B

)
− IDrate

]∣∣∣∣∣

xs

xe

(3.11)

Likewise the description of RON for a red phase, substitutingK(x, t) in Equation

3.10 with the density function described by Equation 3.9, determines RON at

position xv at a given time instant t during a green phase (i.e. tred < t ≤ tcycle)

where x is bounded as in Equation 3.8. We define xb as the upper bound of x in

Equation 3.8, i.e. xb =
lhj (t−tred)

tr
. Depending on the relative values of xv and xb,

different expressions for RON are derived as follows.

Case 1: xv +R < xb

RON t
xv ,LE

=

[(
Kx+

ln
(
1 + 1

eB(M−x)

)
(A−K)

B

)
− IDrate

]∣∣∣∣∣

xe

xs

(3.12)
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where IDrate
is the integral of Drate defined by Equation 3.8, i.e. IDrate

= l x
lhj

+
l lhj ln(a t2r x−a (t−tred) tr lhj−l2

hj
)

a t2r
.

Case 2: xv −R ≤ xb ≤ xv +R

RON t
xv ,LE

=

[(
Kx+

ln
(
1+ 1

eB(M−x)

)
(A−K)

B

)
− IDrate

]∣∣∣∣
xb

xs

+

(
ln
(
1+ 1

eB(M−x)

)
(A−K)+K x B

B

)∣∣∣∣
xe

xb

(3.13)

Case 3: xb ≤ xv −R

RON t
xv ,LE

=

[(
ln
(
1 + 1

eB(M−x)

)
(A−K) +K x B

B

)]∣∣∣∣∣

xe

xs

(3.14)

Full overlapping segments: The radio of a vehicle at position xv on road segment

LE overlaps with radios of vehicles on road segment LS if xv < R. If this condition

is satisfied, the length of the overlapping sub-segment on LS will be
√

R2 − (xv)2.

With this in mind, the total radio overlapping experienced by a vehicle in posi-

tion xv on road segment LE is equivalent to radio overlapping attributed to the

vehicles on this road segment plus the number of vehicles currently existing on

the overlapping part of road segment LS, i.e.,

RON t
xv

= RON t
xv ,LE

+ I t
′

LS
(3.15)

where RON t
xv ,LE

is determined using Equation 3.11 for 0 ≤ t ≤ tred (red phase)

and Equations 3.12-3.14 for tred < t ≤ tcycle (green phase). I t
′

LS
is the number of

vehicles driving at time t′ (with respect to traffic light timing of road segment

LS) on the
[
0,
√
R2 − (xv)2

]
region of road segment LS. Calculation of I t

′

LS
will

be straightforward when the symmetry property of traffic light timing for road

segments LE and LS is taken into consideration. By timing symmetry, we mean

that if the traffic light at time instance t is in red phase for road segment LE, at

the same time it is green for road segment LS, and an equal time duration has

elapsed since the beginning of red and green phases as perceived by the two road
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3.6 Channel Load Imposed by Periodic Beaconing

segments. As a result, Equation 3.15 can be rewritten as follows:

RON t
xv

=

{
RON t

xv ,LE
+ I t+tred

LS
0 ≤ t ≤ tred

RON t
xv ,LE

+ I t−tred
LS

tred < t ≤ tcycle
(3.16)

I t+tred
LS

is determined by calculating Equation 3.10 with xs = 0, xe =
√

R2 − (xv)2

and obtaining K(x, t) from Equation 3.9, replacing the traffic parameters of road

segment LE with those of LS. In a similar manner, I t−tred
LS

is determined using

K(x, t) by using Equation 3.7 with the parameters corresponding to road segment

LS. It is straightforward to extend the full overlapping scenario to as many road

segments linked to the intersection (e.g., LS in Figure 3.1).

It is insightful to compare the radio overlapping calculated using our pro-

posed density model with that obtained using uniform traffic density, as adopted

widely in the literature. Assume traffic is uniformly distributed with density µ

vehicles/meter on road segments LE and LS. Following the same approach as

above, the radio overlapping corresponding to non-overlapping and full overlap-

ping scenarios for a uniform traffic density model can be obtained as follows:

Non-overlapping segments:

RONxv
=

{
2µ R xv ≥ R

(xv +R) µ o.w
(3.17)

Full overlapping segments:

RONxv
=

{
µ
(
(xv +R) +

√
R2 − (xv)2

)
xv < R

2µ R xv ≥ R
(3.18)

3.6 Channel Load Imposed by Periodic Beacon-

ing

The notion of RON , introduced in Section 3.5, can be readily employed to de-

termine channel load in vehicular ad hoc networks. Obviously, channel load is

dependent on the characteristics of the safety or data application. In this section,

we focus on channel load associated with beaconing, a basic mechanism for safety
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message dissemination in VANETs. The channel load of periodic beaconing per-

ceived by a vehicle at position xv is the total data rate generated by vehicles

within radio transmission range (R) of this vehicle. To determine the channel

load, two parameters must be known a priori : the beacon arrival rate per vehicle

(λ beacons/second), and the number of vehicles existing on a stretch of road seg-

ment LE with radius R centered at position xv (i.e. RON t
xv ,LE

). Bearing this in

mind, it is easy to show that the channel load of beaconing (denoted by Ct
xv ,LE

)

perceived at position xv during time instant t can be obtained as follows:

Ct
xv ,LE

= RON t
xv ,LE

λ B (3.19)

where B is size of a beacon message and λ is the beacon arrival rate. Note

that in the definition of channel load, it is assumed that the channel is ideal,

beacon transmissions are scheduled and thus collision-free, and retransmissions

are disabled. In this sense, Ct
xv ,LE

can be thought of as a channel load lower

bound under real channel conditions.

Given that λ and B are fixed parameters, the maximum possible channel load

is obtained when RON t
xv ,LE

has its maximum, which in turn occurs when the

entire segment of size 2R centred at xv is in jam traffic condition, e.g. occupied

by a long queue. In this case, the maximum channel load can be determined as

follows:

Cmax =
2R l λ B

lhj
(3.20)

3.7 Numerical Results

To verify the traffic density model derived in Section 3.4, we conduct a set of

experiments using the Paramics traffic simulator. The parameters and values

corresponding to the traffic scenarios are shown in Table 3.1. The road segment

chosen for verification purpose is LE (Figure 3.1). The verification is performed

with three different lane configurations of segment LE. In all scenarios, the num-

ber of lanes in segment LW are identical to the number of lanes in segment LE.

Traffic flow associated with each lane configuration is set to near saturation flow

and determined according to the capacity of the junction. These traffic flow
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3.7 Numerical Results

settings correspond to perfect operation of the signalized junction. As a typi-

cal setting for major roads in urban environments, we set traffic light timing to

tred = tgreen = 50 seconds, speed limit V = 20 meters/second, average driver

reaction time tr = 1 second. The length of the main road segment (i.e., LE) is

set to 1000 meters with an extra 100 meters dedicated to a traffic zone where

vehicles enter the road segment. The lengths of other road segments are shown

in Table 3.1.

For each lane configuration scenario, the experiments are conducted with 10

different seeds. With a given seed, the experiment run consists of 2 hours of

simulation time. The traces corresponding to the last 20 minutes of each run are

extracted for verification purpose. This translates to 12 light cycles per seed. All

in all, the verification of a scenario with respect to a lane configuration involves

120 cycles of the traffic light.

The verification metrics used are mean error and mean cross correlation of

traffic density, calculated by our model and the traffic density measured in the

Paramics. The mean error is obtained using the errors corresponding to the

individual traffic light cycles for a given lane configuration scenario. In a traffic

light cycle, the errors are calculated in spatial dimension with the granularity

of 1 meter. Similarly, the average cross correlation is calculated based on the

individual light cycles.

Our results are shown in Table 3.2. According to the table, the mean error

of the model is around 14%. Observe that in road segments with higher number

of lanes, the mean error increases slightly and the confidence interval widens.

This can be attributed to a high probability of takeovers and traffic perturbation

in road segments with large number of lanes. However, except for very wide

highways with a large number of lanes, the proposed model can be used for most

of urban traffic scenarios. As mentioned previously, by fine tuning M and B to

the specific scenario, the accuracy can also be slightly improved.

According to the table, the average cross correlation between the model and

the traces is around 96% with a 95% confidence interval of around 3.3%. Figure

3.4 depicts the fitting of the model and the traces for a 3-lane scenario. The

cross correlation results demonstrate a high capability of the proposed model to

reproduce and mimic the traffic behaviour. Therefore, the model can be safely
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Table 3.1: Parameters and configuration values

Group Parameter Value

Network dimensions

length of main segment (LE) 1000 meters
length of segment LS 1000 meters
length of segment LW 300 meters
length of segment LN 300 meters
number of lanes 1, 2, 3

Traffic flow
1-lane 850 vehicles/hour
2-lane 1800 vehicles/hour
3-lane 2740 vehicles/hour

Traffic light timing
tred 50 seconds
tgreen 50 seconds
tc 100 seconds

Others
speed limit (V) 20 meters/second
driver reaction time (tr) 1 second
transmission range (R) 150 meters

Table 3.2: Verification of traffic density model

1-lane 2-lane 3-lane

Mean error 12% 13.4% 15.5%
95% Confidence Interval (CI) 6.9% 7.4% 8.5%

Average Cross Correlation (CC) 97.5% 95.6% 95.4%
95% Confidence Interval (CI) 2.3% 3.7% 3.7%

employed for the investigation of potentially many cases related to traffic be-

haviour. This includes the study of radio overlapping behaviour as follows.

3.7.1 Radio Overlapping

We investigate the radio overlapping behaviour using our model for a 3-lane

scenario. The road segment under investigation is LE. The transmission range

(R) is set to 150 m. Figures 3.5a and 3.5b show the RON corresponding to

the non-overlapping and full overlapping scenarios, respectively. In the scenarios,

without loss of generality, we only consider the impacts of the external segment
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Figure 3.4: Spatial-temporal traffic densities of the main road segment LE

obtained by the model and simulation traces (3-lane scenario)

LS on the radio overlap induced in the main segment LE. The number of lanes

on the two segments LE and LS is assumed identical.

According to Figure 3.5a, RON uniformly increases as new vehicles arrive

and join the queue formed at the junction. The maximum RON with magnitude

114 is observed at time t=59 s and in position x=151 m. This can be attributed

to the fact that in the beginning of a green phase, up to a time when the queue

discharge rate exceeds the traffic arrival rate, the queue length continues to grow

in accordance with an extension of the red phase. After 1 second (= reaction time)

from the beginning of the green phase, the queue starts to discharge, causing lower

RONs in the front region of the queue. As time passes in the green phase, the

length of this region increases, leaving more positions with low RONs. Moreover,

the region with large RONs are shifted away from the junction towards farther

positions on the road segment. This phenomenon is explained by a further queue

forming during the green phase as a result of non-zero reaction time and lack of

acceleration of all vehicles queued up during the red phase. Specifically, maximum

RON with magnitude 114 is shifted from position 151 m to position 219 m at time

75 s and with magnitude 107. Following this shifting process, the maximum RON

at the end of the green phase is observed at position 348 m with magnitude 83.

It is also important to note that in spite of the queue discharge during the green

phase, the number of positions with high RONs is larger compared to the red

phase. In the remaining road segment with a flat shape, the average magnitude
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of RON is 11, and this region is dominated by free/stable flow traffic with no

impact from the junction. Compared with the non-overlapping scenario, the full

overlapping scenario (Figure 3.5b) shows similar behaviour for the major part of

the road segment except for positions with x < R, which show high RONs at all

times during a cycle. The fluctuations of RONs in this region are attributed to

the dynamics of traffic density on the second road segment (i.e. LS) described

by Equations 3.12–3.14. In addition to the global maximum RON produced in

region x < R during a green phase, a local maximum RON also emerges as a

result of queue shifting in a similar way to the non-overlapping scenario.

(a) Non-overlapping segments (obstruction by building)

(b) Overlapping segments (existence of Line of Sight)

Figure 3.5: Radio overlapping
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3.7.2 Channel Load

To study the channel load of beaconing in VANETs, we conduct a different set

of experiments with various transmission ranges and traffic flows. Transmission

ranges are selected from those specified in DSRC and cover the required ranges

of short, medium, and long range safety applications [17; 43]. Traffic flows are

set in a way that they cover a range of flows from 50% below to 50% above

saturation flow to reflect different classes of traffic, ranging from sparse to dense

conditions. Again, we use a 3-lane scenario, a base saturation flow of 2740 vehi-

cle/hour, and various flows with respect to this base flow. Beaconing parameters

B and λ are set to 500 bytes and 10 beacons/second. Figure 3.6a and 3.6b show

maximum channel load observed in non-overlapping and full overlapping scenar-

ios, respectively. According to Figure 3.6a, in the non-overlapping scenario, the

maximum channel load corresponding to 150 m transmission range grows linearly

from 2.25 Mbps associated with traffic flow 1370 to 5.37 Mbps associated with

traffic flow 3425. From this point up to higher flows, the channel load approaches

its maximum corresponding to a jam traffic condition (described by Equation

3.20). Therefore, the channel load curve becomes flat with only slight change

observed. As the transmission range exceeds 150 m, a larger contribution of the

overlap comes from vehicles in free flow state. This explains why for transmission

ranges larger than 150 m, the growth in channel load is linear within the entire

range [1370,4110] of traffic flows. In the full overlapping scenario (Figure 3.6b),

due to contribution from vehicles on segment LS, the maximum possible channel

load on segment LE is reached for longer transmission ranges compared to the

non-overlapping scenario (i.e. for 300 m). Observe that for long transmission

ranges, e.g. 1000 m, channel load can be as high as 17 Mbps in dense traffic

conditions.

3.8 Summary

In this chapter, we proposed a traffic density model for urban traffic systems that

takes into account the different phases of vehicle movement between signalized

intersections. We have established that the number of overlapping radios behave

55



3.8 Summary

1370 2055 2740 3425 4110
0

2

4

6

8

10

Flow (veh/h)

C
h

an
n

el
 O

cc
u

p
at

io
n

 (
M

b
p

s)

 

 

R=150m

R=300m

R=500m

R=750m

R=1000m

(a) Non-overlapping segments (obstruction by building)

1370 2055 2740 3425 4110
0

2

4

6

8

10

12

14

16

1818

Flow (veh/h)

C
h

an
n

el
 L

o
ad

 (
M

b
p

s)

 

 

R=150m

R=300m

R=500m

R=750m

R=1000m

(b) Overlapping segments (existence of Line of Sight)

Figure 3.6: Channel load

in a highly dynamic manner, which cannot be adequately captured by the widely

used uniform density model. Based on our density model, we investigated radio

overlapping and channel load of safety beacon messages. As a result of traffic

heterogeneity, a single data rate and/or transmission power cannot be assigned

to all vehicles at all times.

Our evaluation of the RON model has been based on a unit disk coverage

without retransmissions. This is a rather conservative approach. Using a more

realistic propagation model with channel errors would indeed further increase the

channel occupancy due to retransmissions. Furthermore, traffic on two-way road

segments contributes to higher channel load compared to the one-way scenario
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investigated in this chapter. Considering the nominal range of data rates specified

for VANETs operation in the DSRC standard (3-27 Mbps), it becomes clear that

the use of data rates in the lower part of that range is questionable in urban

areas when the wireless transmission range is large. The problem is exacerbated

when other types of safety messages, in addition to periodic beaconing, are taken

into consideration. The scarcity of the radio resource underscores the need for

careful design of applications and protocols in urban VANETs in order to mitigate

channel load in dense traffic regions, based on vehicles’ estimations of their local

traffic density or traffic information provided by roadside infrastructure. The

design of an adaptive and robust mechanism to adjust transmission power and

assign proper data rates based on perceived radio overlapping is a subject of our

future work.
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Chapter 4

Reliability of Safety Message

Broadcast in Urban Vehicular Ad

hoc Networks

4.1 Introduction

The reliability of message broadcasts in a safety application is key to its cred-

ibility and ultimate acceptance by drivers as the end users. Depending on the

type and purpose of a safety message, a subset of parameters describes the reli-

ability of the safety application. For event driven messages, the reliability of the

safety application is determined by the successful packet reception probability

or, alternatively, the successful packet transmission probability. The former is a

receiver-centric reliability indicator, whereas the latter is sender-centric. On the

other hand, in case of periodic messages, inter reception time (IRT) of messages

is a good candidate metric for describing the application reliability [55]. The IRT

metric integrates the variability of message reception time and packet reception

probability into a single parameter. Intuitively, from a recipient vehicle perspec-

tive, a high probability of message reception from neighbour vehicles leads to

high overall awareness by the recipient about its neighbourhood. Furthermore,

the reception of messages with high frequency enhances the information freshness

a recipient maintains at any time instant, and, in turn, promotes timely reaction
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to undesired events as they occur. Correspondingly, from a sender point of view,

the higher the chance that the neighbour vehicles receive its message successfully

and timely, the better the achieved safety level will be.

A key factor impacting the reliability metrics mentioned above is traffic den-

sity. In static wireless networks, due to the deterministic distribution of nodes

throughout the network area, it is straightforward to characterize the traffic be-

haviour and thus reliability metrics. On the other hand, in vehicular ad hoc

networks (as in mobile ad hoc networks in general), characterizing reliability

involves taking into account dynamic topology changes due to vehicles’ mobil-

ity, which in turn is affected by microscopic and macroscopic traffic parameters

[60; 61; 67; 136]. These parameters include, but are not limited to, traffic reg-

ulations on intersections and road segments, driver behaviour, traffic flow, road

capacity, etc. In vehicular networks, the analysis of the reliability of a safety ap-

plication is even more complicated than in other mobile ad hoc networks, due to

the impact of unexpected drivers’ behaviour and variable traffic flow on vehicles’

mobility [67]. Moreover, it is also expected that the reliability varies significantly

between highway and urban traffic scenarios. This is partly due to the fact that

traffic density is homogeneous under free and stable traffic flow regimes, which

dominate highways, whereas a mixture of different traffic densities can be ob-

served simultaneously in an urban scenario as simple as a road segment linked to

a signalized intersection. Moreover, an urban traffic network must be seen as a 2-

dimensional network, compared to a 1-dimensional highway network. This makes

the dynamics of traffic density more complicated in urban scenarios, resulting in

more complex reliability behaviour, especially near intersection.

The traffic model we proposed in Chapter 3 describes the dynamics of traf-

fic density in a simple urban scenario comprised of an intersection and the road

segments connected to that intersection. The noticeably high cross-correlation of

∼ 95% between the model and the synthetic traffic traces, as shown in Chapter

3, indicates a high capability of the model in conducting a behavioural study

of reliability in an urban traffic scenario. In this chapter, we take advantage of

such property and apply the proposed traffic density model to analytically de-

scribe the spatial-temporal reliability behaviour of safety message dissemination

in an urban road segment. In the proposed analytical model, the probability of
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successful message transmission associated with both periodic and warning mes-

sages contending for a shared channel are calculated. Additionally, we determine

the distribution function corresponding to the IRT of periodic beacon messages.

In this study, we are not interested in the per message channel access delay, as

it is in the order of a few milliseconds, hence, it is not a key factor impacting

the requirements of a safety application [55]. Transmission failures, on the other

hand, are of high importance because, in the case of periodic messages, a single

transmission failure causes the reception time to exceed a beacon interval as large

as 100 ms [55; 183].

Our work differs from the previous studies (described in 2) in several ways:

(i) instead of solely adopting a simulation approach, we develop an analytical

model to generalize the analysis of safety messages’ reliability; (ii) we take into

consideration the mutual impact of both types of safety messages, that is, event

driven and periodic; (iii) we study the reliability of safety massage dissemination

in an urban traffic scenario with heterogeneous and dynamic traffic density.

The remainder of this chapter is organized as follows. In Section 4.2, the

assumptions adopted throughout this study are clarified. In Section 4.3, we de-

velop a general Markovian analytical framework to characterize the reliability

metrics of safety message broadcast, and apply it with the urban traffic density

model proposed in Chapter 3. A numerical evaluation of the model is presented

in Section 4.4, and finally, Section 4.5 summarises the chapter.

4.2 Assumptions

We adopt the following assumptions when addressing IEEE 802.11p one hop

broadcast communications: (i) the virtual carrier sense mechanism realized by

request-to-send and clear-to-send (RTS/CTS) handshaking is disabled, and (ii)

ACKs are not transmitted after successful reception. Consequently, no retrans-

missions are performed and the backoff window size is not adjusted based on the

existing load on the channel. Moreover, according to the DSRC/WAVE specifi-

cations, it is mandatory that vehicles transmit periodic beacons and event-driven

emergency messages on the same channel (channel 178) [2]. Thus, a message can

potentially collide with a message of its own type or another type if they are
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transmitted simultaneously by more than one vehicle.

We assume that the backoff window of event-driven messages, denoted by We,

is smaller than that of the periodic beacon messages denoted by Wb. This is in

agreement with IEEE 802.11p standard and implies that event driven messages

are of higher priority than periodic beacons. Additionally, we assume that nodes

experience a non-saturated arrival of event-driven messages as a Poisson arrival

process with rate λ. Beacon messages, on the other hand, arrive on a periodic

basis with inter-arrival time of α time slots. Arrival of a new beacon message

cancels out old beacons, since a new beacon is assumed to always contain the

most updated vehicle state. As a result, the impact of queuing delay on beacon

messages is eliminated.

Our work in this chapter is focused on urban traffic systems. We use the traffic

density model proposed in Chapter 3 to characterise the reliability behaviour on

a road segment (i.e., LE in Figure 4.1) connected to a signalized intersection.

The intersection is centred at coordinate x = 0, and x increases to the right on

segment LE. For further details of the traffic density model see Chapter 3.

LN

LW

LS Buidling

q

lj ld lf
LE

Figure 4.1: Urban traffic scenario
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4.3 Analytical Model

To study the aforementioned reliability metrics, in the first step, we need to

calculate the probability that a vehicle attempts a transmission in a generic time

slot. To this aim, we propose a Markov-chain model for the backoff process

corresponding to a combination of periodic beacons and event driven messages.

f , 0 f , 1 f , 2 f , 糠-2 f , 糠-1

b, 0 b , 1 b , 2 b , wb-2 b , wb-1

1/Wb

1-pb 1-pb 1-pb

pb
pb pb pb

1-pb 1-pb

11 1 11

Figure 4.2: Markov chain model of backoff process for periodic beaconing safety
messages

f , 0 f , 1 f , 2 f , we-2 f , we-1

e , 0 e , 1 e , 2 e , we-2 e , we-1

ρ

1-ρ

ρ*(1-pb)

(1-ρ)/We

ρ/We

1-pb 1-pb 1-pb

pb

1-pb 1-pb

(1-ρ*)(1-pb)(1-ρ*)(1-pb) (1-ρ*)(1-pb)
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Figure 4.3: Markov chain model of backoff process for event-driven safety
messages

We adopt the Markov chain model proposed in [101] as the base model for

beaconing process. However, to account for the periodic nature of beacon trans-
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missions, it is required to extend the base model. The extended chain, shown in

Figure 4.2, consists of a combination of deterministic post backoff (upper stage)

and stochastic backoff processes (lower stage). Whenever a vehicle completes its

current channel contention and transmission attempt, it enters the post backoff

stage of length equal to beaconing period α = ⌈ Ib
σ
⌉, where Ib and σ are the beacon

period and time slot duration, respectively. With probability 1
Wb

, a backoff state

(b, k) is selected and channel contention starts. The probability of a transmis-

sion attempt is equivalent to the probability that the backoff process enters state

(b, 0).

To this end, we solve the Markov chain shown in Figure 4.2 to calculate the

probability that a vehicle transmits a beacon in a generic time slot, denoted by

τb. It is straightforward to verify that the steady-state transition of the chain and

the normalization conditions result in:

sb,k =
Wb − k

Wb

sb,0 k ∈ (0,Wb − 1) (4.1)

sf,k = sb,0 k ∈ (0,Wb − 1) (4.2)

Wb−1∑

k=0

sb,k +
α−1∑

k=0

sf,k = 1 (4.3)

and solving for sb,0 (equivalent to the probability of transmission attempt τb), we

obtain:

τb = sb,0 =
2

Wb + 1 + 2α
(4.4)

The Markov chain corresponding to the backoff process of event-driven messages

is shown in Figure 4.3. This chain is obtained by customizing Engelstad et al.

model [56] to account for broadcast transmission mode. Here, (f, k) are post

backoff states during which the queue is empty and the node has to wait for

a new message to arrive. (e, k) represent backoff states where there exists a

message for transmission. In this case, with probability ρ, the backoff process is
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immediately invoked by entering one of the backoff states (e, k) chosen randomly.

With probability 1 − ρ the node enters a post backoff stage. While being in a

state (f, k), if a new message arrives with probability ρ∗ (different from ρ) and the

channel is sensed idle, the contention process is immediately triggered by directly

entering the state (e, k − 1) in the backoff stage. If the channel is sensed busy

(with probability pb), the countdown process is blocked, otherwise a transition to

state (f, k − 1) takes place.

Applying steady-state conditions recursively through the chain, it is straight-

forward to show that:

sf,k =
1− ρ

We

1− (1− ρ∗)We−k

1− pb

se,0
ρ∗

k ∈ (1,We − 1) (4.5)

sf,0 =
1− ρ

We

1− (1− ρ∗)We

(ρ∗)2
se,0 k = 0 (4.6)

se,k =
(We − k)

We(1− pb)
se,0 +

(We − k)ρ∗pb
We(1− pb)

sf,k − sf,k k ∈ (0,We − 1) (4.7)

and the normalization condition implies that:

We−1∑

k=0

(se,k + sf,k) = 1 (4.8)

Using Equations 4.5 - 4.8, be,0 and thus the probability of event-driven message

transmission (τe) in a generic time slot is obtained as follows:

1

τe
= 1 +

We − 1

4(1− pb)
+

pb
(1− pb)2

1− ρ

W 2
e

(ρ∗)2We(We − 1) + (1− ρ∗)We(2ρ∗We − 2ρ∗ + 2) + 2(ρ∗ − 1))

(ρ∗)2

+
1− ρ

We

1− (1− ρ∗)We

(ρ∗)2
(4.9)
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4.3.1 Probability of Busy Channel (pb)

The probability of the event that the channel is sensed busy is equivalent to the

probability that at least one vehicle is transmitting a message, either a beacon or

an event-driven message. This probability can be expressed as:

pb = 1− ((1− τb)(1− τe))
Nr (4.10)

where τb and τe are the probabilities of transmission attempts corresponding to

beacon and event-driven messages, described by Equations 4.4 and 4.9, respec-

tively. Nr is the number of vehicles in the transmission range (R) of the vehicle

under investigation. For uniform traffic distribution, e.g. highway scenario, with

density β vehicles/meter, Nr = 2βR. For non-uniform traffic distribution corre-

sponding to urban scenario, we later give an expression for calculating Nr using

the density functions proposed in Chapter 3.

4.3.2 Probability of Successful Transmission (ps)

Without loss of generality, we address the probability of successful transmission

separately for beacon and event-driven messages while the mutual impacts are

taken into consideration. Denote by pbs and pes, the probability of successful

transmission of beacon and event-driven messages, respectively. To obtain these

probabilities, we account for simultaneous transmissions in the transmission range

of a vehicle and transmission(s) from hidden nodes within the hidden area of the

sender vehicle. Intuitively, pbs and pes are equivalent to the probabilities that

exactly one node attempts transmission and no hidden node transmits a message

which overlaps in time with the transmission performed by the sender vehicle.

This leads us to derive pbs and pes as follows:

pbs = τb (1− τb − τe)

(
Nr−1+Ñh

Tb
h

pbT
b
s+(1−pb)σ

)

(4.11)

pes = τe (1− τb − τe)

(
Nr−1+Ñh

Te
h

pbT
e
s +(1−pb)σ

)

(4.12)
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In Equations 4.11 and 4.12, Ñh is the average per-vehicle number of hidden ter-

minals for vehicles within the transmission range of a sender vehicle. For uniform

traffic distribution with density β, and adopting unit disk graph as the radio

propagation model, we have Ñh = βR. For non-uniform traffic distribution, the

hidden terminal nodes fall within the ranges (xv−2R, xv−R) and (xv+R, xv+2R)

on the left and right side of a candidate sender vehicle positioned at xv; we de-

scribe the calculation of Ñh in greater detail in Section 4.3.5.

Th in Equations 4.11 and 4.12 is the period during which a transmission from

a vehicle may overlap with the transmission from a hidden node; hence, T r
h = 2T b

s

and T e
h = 2T e

s , where T b
s and T e

s are packet transmission time corresponding to

beacon and event-driven messages, respectively. The subscript s in T b
s and T e

s is

introduced to distinguish between duration of a successful message transmission

and the duration of a message collision. The ratios
T b
h

pbT b
s+(1−pb)σ

and
T e
h

pbT e
s+(1−pb)σ

in Equations 4.11 and 4.12 are introduced to account for the fact that if a node

in the hidden area of the sender vehicle starts transmission, the channel will be

sensed busy by the remaining vehicles in the hidden area who thus remain silent.

4.3.3 Calculating ρ∗ and ρ

In the proposed Markov model for event-driven messages, ρ∗ is the conditional

probability for a new event-driven message to arrive in the queue within a generic

slot time, given that at the beginning of the slot the queue was empty. Note that

a generic slot can have different lengths due to blocking of the backoff process in

reaction to busy channel. If the channel is idle (with probability 1− pb), the slot

length is σ (nominal slot duration). If a successful beacon or event-driven message

transmission occurs on the channel with probability P b
s and P e

s , the corresponding

generic slot time will be of length T b
s and T e

s , respectively. Otherwise, with

probability pb − P b
s − P e

s , the slot duration is Tc (collision duration). Therefore,

for a Poisson arrival process with rate λ, ρ∗ can be expressed as:

ρ∗ = 1−
(
(1− pb)e

−λσ + P b
s e

−λT b
s + P e

s e
−λT e

s + (pb − P b
s − P e

s )e
−λTc

)

(4.13)
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Note that P b
s and P e

s are different from pbs and pes described by Equations 4.11

and 4.12. More specifically, P b
s (P e

s ) is the probability of the event that a suc-

cessful beacon (event-driven) message transmission occurs, taking into account

all vehicles within the transmission range of a vehicle, but neglecting the impact

of hidden vehicles, since the transmitting vehicle does not have any knowledge

about its hidden peers. Accordingly, we eliminate the effect of hidden terminals

to obtain P b
s and P e

s as follows:

P b
s =

Nrp
b
s

(1− τb − τe)
ÑhTb

h

pbT
b
s+(1−pb)σ

(4.14)

P e
s =

Nrp
e
s

(1− τb − τe)
ÑhTe

h
pbT

e
s +(1−pb)σ

(4.15)

To calculate ρ, we need to determine the channel service time, which is the time it

takes a head-of-line message to access the channel and complete its transmission,

either successfully or with collision. Assume Pe and He are the payload and

header length (in number of bits) of an event-driven message, and Rd is data rate

in bits/second. To obtain ρ, we follow the approach proposed in [56] to derive

the Z-transform of the Markov chain in Figure 4.3:

D(z) =
z

Pe+He
σRd

We

k=We−1∑

k=0

Hk
state(z)

=
z

Pe+He
σRd

We

1− (Hstate(z))
We

1−Hstate(z)
(4.16)

where Hstate(z) is the Z-transform of each state, expressed as follows:

Hstate(z) = (1− pb)z + P b
s z

Tb
s
σ + P e

s z
Te
s
σ

+
(
pb − P b

s − P e
s

)
z

Tc
σ (4.17)

The average service time of an event driven message can be obtained by calcu-

lating the derivative of Equation 4.16 in z = 1 (denoted by D′(1) and measured
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in number of slots). Correspondingly, ρ is obtained as:

ρ = 1− e−λσD′(1) (4.18)

Expressions 4.9, 4.10, 4.11, 4.12, 4.13, and 4.18 are considered as a system of

equations to be solved numerically in order to obtain the values of τe, pb, p
b
s, p

e
s,

ρ∗, and ρ.

4.3.4 Distribution of IRT

Define pI(γ) as the complementary cumulative probability of the inter-reception

time of beacon messages, that is, the probability that the inter-reception time

I of messages from a specific sender is greater than γ. Recalling that Ib is the

beacon interval, this is equivalent to the probability that at least ⌊ γ
Ib
⌋ consecutive

messages transmissions end in failure, i.e.,

pI(γ) =
∞∑

I=γ

(1− pbs)
⌊ I
Ib

⌋
=

(1− pbs)
γ
Ib

1− (1− pbs)
1
Ib

(4.19)

It is also informative to calculate the probability of an event that at least one

beacon is received by a vehicle from a sender within a duration γ. Denote by

pn(γ) the probability of such an event. We obtain

pn(γ) =

⌊ γ
Tb

⌋∑

n=1

(1− pbs)
⌊ γ
Tb

⌋−n
(pbs)

n

=
pbs

(
(1− pbs)

⌊ γ
Tb

⌋ − (pbs)
⌊ γ
Tb

⌋
)

1− 2pbs
(4.20)

4.3.5 Number of Nodes in Transmission Range (Nr) and

Average Number of Hidden Nodes (Ñh)

Using the traffic density model proposed in Chapter 3, we obtain the number of

vehicles within the transmission range of a vehicle at position xv at time instant

t during the light cycle of the intersection. To this aim, we calculate the integral
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over the density function K(x, t) described by Equations 3.6 and 3.9 in Chapter

3, corresponding to the red and green phases of the traffic light cycle, i.e.,

Nr =

∫ min(Lmax,xv+R)

max(Lmin,xv−R)

K(x, t)dx (4.21)

where Lmin and Lmax are the coordinates of the start and end positions of the

road segment under consideration, and xv is the position of the vehicle.

To determine Ñh, we consider the fact that, due to the non-uniform traffic

distribution, the average per-vehicle number of hidden nodes affecting packet

reception is no longer simply half the total number of hidden nodes in the hidden

terminal region, as it is the case in uniform traffic density. To that end, focusing

on the transmission range of the sender vehicle, denote by xr
m the median position

such that half of the total number of vehicles to the right of the sender within its

transmission range is located to each side of xr
m; similarly, define xl

m to be the

median point of vehicles to the left of the sender. In other words, if xv is the

position of the sender vehicle, then, xm is the point on the road segment that

minimizes the following objective function:

x(r,l)
m = argminx

(
Nx

N
− 1

2

)
s.t. |x− xv| ≤ R (4.22)

where Nx =
∫ min(Lmax,xv+x)

xv
K(x, t)dx and N =

∫ min(Lmax,xv+R)

xv
K(x, t)dx are

in effect when calculating xr
m, while Nx =

∫ xv

max(Lmin,xv−x)
K(x, t)dx and N =∫ xv

max(Lmin,xv−R)
K(x, t)dx are used for the calculation of xl

m.

To calculate x
(r,l)
m described by Equation 4.22, in the first step, x

(r,l)
m is decom-

posed to right-side and left-side median positions, that is, xr
m and xl

m, respectively.

The median positions are then calculated using a simple procedure illustrated by

Algorithm 4.1. In Algorithm 4.1, ǫ is an arbitrary small value, and the expres-

sions in parentheses correspond to xl
m.

Correspondingly, the average per-vehicle number of hidden nodes in the right and

left directions of the sender are determined as follows:

Ñ r
h =

∫ min(Lmax,xv+R+xr
m)

min(Lmax,xv+R)

K(x, t)dx (4.23)
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Algorithm 4.1 - finding median position to the right (left) of a sender

Require: K(x, t), xv, Lmin, Lmax, R
1: ∆x← δ(≤ 1)
2: xr

m ← xv (xl
m ← xv)

3: Nright ←
∫ min(Lmax,xv+R)

xv
K(x, t)dx

(
Nleft ←

∫ xv

max(Lmin,xv−R)
K(x, t)dx

)

4: repeat
5: xr

m ← xr
m +∆x (xl

m ← xl
m −∆x)

6: Nxr
m
←
∫ min(Lmax,xv+xr

m)

xv
K(x, t)dx

(
Nxl

m
←
∫ xv

max(Lmin,xv−xl
m)

K(x, t)dx
)

7: until
∣∣∣ Nxrm

Nright
− 1

2

∣∣∣ ≤ ǫ
(∣∣∣

N
xlm

Nleft
− 1

2

∣∣∣ ≤ ǫ
)

8: return xr
m (xl

m)

Ñ l
h =

∫ max(Lmin,xv−R)

max(Lmin,xv−R−xl
m)

K(x, t)dx (4.24)

where Ñ r
h and Ñ l

h are the average number of hidden terminals in the right and

left directions of the sender, respectively.

Using Ñ r
h and Ñ l

h, the average per vehicle hidden nodes can be expressed as

follows:

Ñh = βÑ r
h + (1− β)Ñ l

h (4.25)

where 0 ≤ β ≤ 1 is a weighting factor and can be determined based on the di-

rection relative to the sender where the reception probability of safety message

broadcast is considered. In a forward collision warning application (FCW), mes-

sage reception is not important for vehicles driving ahead of a sender vehicle,

thus β = 0. On the other hand, in the case of a lane changing or an overtaking

vehicle, reception in both directions are deemed to be equally important, and

thus β = 0.5.

4.4 Numerical Results

We numerically study the reliability model derived in Section 4.3 within two direc-

tions. First, the numerical results of the model are derived for an 8–lane highway

scenario and are validated using the results of Elbatt et al. [55] simulation work.
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Second, the results of the model are derived for a 3–lane urban intersection sce-

nario illustrated in Figure 4.1. Traffic and network parameters corresponding to

these scenarios are specified in Table 4.1. Traffic flow associated with the urban

scenario is set to a near-saturation level and determined according to the capacity

of the intersection; as explained in Chapter 3, this traffic flow setting corresponds

to an ideal signalized intersection, and facilitates predictions for under-saturated

and over-saturated traffic conditions near a signalized intersection.

4.4.1 Model Validation

As the scenario simulated in [55] only considers periodic beacons, we set the prob-

ability of transmission of event driven messages to zero to align our model with

this scenario. In the scenario, the number of vehicles within the transmission

range (i.e. Nr) of a candidate sender in high and low density cases are obtained

358 and 38, respectively. The average per-vehicle number of hidden nodes (Ñh)

calculated using Equation 4.25 with β = 0.5 are 179 and 18 for high and low

densities. As the traffic is uniformly distributed, Ñh is simply half the number

of vehicles in the entire hidden terminal area of a node. The numerical results

corresponding to Elbatt et al. scenarios are shown in Figure 4.4. According to

Figure 4.4a, the probability of successful reception in the dense traffic case de-

creases with increasing distance from the sender. This can be justified by the

fact that for nodes farther from the sender, the number of hidden terminals in-

creases, leading to a higher number of collisions. The mean reception probability

achieved by our model and the simulations of Elbatt et al. are 0.65 and 0.72,

respectively, and the mean difference between the model and simulation results

is 7% with standard deviation 4%. The results corresponding to the probability

of successful reception in the low density case are depicted in Figure 4.4b. Due

to the light traffic density, the impacts of simultaneous transmissions and hidden

terminal nodes are negligible. The mean reception probability achieved by the

model and simulations are 0.96 and 0.98, respectively, and the mean difference is

2% with standard deviation 0.9%.

We applied the mean probabilities of successful reception measured by Elbatt

et al. and calculated by the model to measure the distribution of IRT in high and
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low density scenarios. Figure 4.4c demonstrates the complementary cumulative

probability as a function of IRT. The results show that, in the low density case,

a message is almost always received in less than 200 ms. On the other hand, in

the high density case, this increases to 400 ms for some messages. Furthermore,

in the low density case, the probability that the inter-reception time be above

100 ms is significantly small. This means that the vast majority of messages

arrive in time. The mean difference between results achieved by the model and

simulations in high and low density scenarios are 1% and 0.02%, respectively. It

is therefore concluded that the proposed model fits very well with the simulation

results of Elbatt et al. as the benchmark for scenarios characterized by uniform

traffic distribution.

Table 4.1: Simulation parameters and configuration values

Traffic

Elbatt et al. Scenario High density: 1920 vehicles/mile
Low density: 208 vehicles/mile

Urban Scenario Road length =1 km
Duration of red phase =50 s
Traffic flow =2740 vehicles/hour
Speed limit =20 m/s
Jam headway distance = 6 m

DSRC/WAVE

Transmission range R =150 m
Packet length =100 bytes
Signal bandwidth = 10 MHz
Channel Data Rate = 6 Mbit/s
Slot time (σ)=13 µs
Propagation delay = 1 µs
Preamble length = 40 µs
Contention window size Wb = 32
Contention window size We = 16
Arrival rate λ = 1 message/s (event driven msg.)
Beacon period (Ib)=100 ms

4.4.2 Urban Intersection Scenario

Our results for the urban scenario characterised by heterogeneous traffic distri-

bution are shown in Figures 4.5 and 4.6. Figure 4.5a shows traffic density in
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(b) Probability of successful reception in low traffic density
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Figure 4.4: Comparison of the model and Elbatt et al. highway scenario [55]

vehicles/meter along the road segment under investigation during a red phase,

and Figure 4.5b depicts the average per-vehicle number of hidden nodes poten-
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tially affecting a vehicle on the road segment. Figure 4.5c shows the probability

of successful transmission in spatial and temporal dimensions. Observe that, by

increasing the queue length at the intersection, the average per vehicle hidden

terminals increases at positions behind the queue. A maximum number of hidden

nodes is observed at positions 301–334 m with magnitude 37 at time 50 seconds

(end of the red phase). In addition to the increase of hidden terminals with time,

the area with high number of hidden terminals also widens and expands to dis-

tances farther from the intersection. As the queue length grows larger than R

(the nominal transmission range), the average per vehicle hidden terminals also

increases in positions close to the intersection. This is shown by the rising curve

near the intersection from time instant 40 sec to 50 sec.

It follows from Figure 4.5c that the probability of successful transmission of

a vehicle is significantly dependent on the average per vehicle number of hid-

den nodes. Comparing Figures 4.5b and 4.5c reveals that, in areas with large

number of hidden nodes, the probability of successful transmission is low. In po-

sitions 301–334 m and at time instant 50 sec, for instance, the average successful

transmission probability is 0.86, which is the lowest among all positions at the

same time instant. In addition, we observe that the density of vehicles within

the transmission range of a sender has a very small impact on the probability of

successful transmission. At time instance 50 sec, the highest number of vehicles

within transmission range of a sender is 104, which is observed at position 150

m. The number of hidden nodes seen at this position is a small number 3. Cor-

respondingly, the probability of successful transmission is 0.95 at this position,

which highlights a fact that the hidden terminal effect is the predominant driving

factor determining the achievable successful transmission rate.

We continue the numerical study with the distribution of IRT shown in Figure

4.6. For three IRT values 100 ms, 300 ms, and 1 sec, we calculated the probability

of inter-reception time using Equation 4.19 and depicted the results in Figure

4.6a, 4.6b, and 4.6c, respectively. Again, the worst-case IRT probabilities occur at

positions 301–334 m with average magnitudes 0.13, 0.002, and 10−9 corresponding

to 100 ms, 300 ms, and 1 sec, respectively.

Our results above were given for the red phase of a traffic light. During the

green phase, in the first few seconds of the phase, the probability of unsuccessful
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(a) Traffic density

(b) Average per-vehicle hidden terminal nodes

(c) Probability of successful transmission

Figure 4.5: Urban intersection scenario

transmission and probability of high inter-reception time were observed to ex-

acerbate due to a slow initial discharge rate of the queue, indicating that more

75



4.4 Numerical Results

positions will experience a high average per-vehicle hidden terminals. Afterwards,

with increasing velocity, the queue discharges faster and the reliability metrics

improve.

(a) Probability IRT ≥ 100 ms

(b) Probability IRT ≥ 300 ms

(c) Probability IRT ≥ 1 s

Figure 4.6: IRT distribution
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4.4.3 Discussion

The impact of the hidden terminal effect on VANETs has previously been studied

in several works including [55; 183]. The studies were carried out by simulating

free-flow, uniformly distributed vehicular traffic and capturing the packet delivery

characteristics. In the validation of our model in Section 4.4.1, we verified and

corroborated these results. In our study of the reliability performance in the

urban scenario, based on a realistic vehicular mobility model around a signalized

intersection, we find strong evidence that these results can be generalized to

cover urban settings as well. One would intuitively suspect that the setting of a

signalized intersection, characterized by high variations of traffic density, will lead

to poor packet delivery performance due to increased overlapping of transmitters.

However, our results show that this impact is less significant than the hidden node

problem, which is dominant in the urban non-uniform scenario as well. Moreover,

we observe that the worst case results take place far from the traffic light queue,

where the traffic is either in free-flow or decelerating from high speed. It is

notable that, from a traffic safety point of view, these positions are arguably the

most important for timely alerting of dangerous traffic conditions, and their lower

reliability may correspondingly lead to an increased risk of serious incidents.

Our experiments were carried out at near-saturation traffic conditions, using

DSRC communication with moderate (100 bytes) payload length. Increasing the

traffic load further, or increasing the packet size, will result in lower performance

but generally will not change the negative impact dominance of the hidden nodes.

It is possible to mitigate the impact of vehicular density by selecting appropriate

radio data rates, but the hidden node problem will still remain a serious issue

using the current IEEE 802.11p specifications. In this chapter, we adopted unit

disk graph as the radio propagation model. In Chapter 5, we aim to reveal some

other aspects of hidden terminal problem using realistic radio propagation models

and focusing on safety-critical traffic scenarios, where the reliability requirements

are highly stringent. Such analysis is expected to reveal the worst-case reliability

from the standpoint of traffic safety.
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4.5 Summary

It is paramount to safety applications that the underlying communication net-

work provides stringent reliability characteristics. Previous work in this area has

focused on investigating the reliability of communication networks in free-flow

traffic scenarios, where vehicles are uniformly distributed or traffic is in steady

state. This does not hold true in urban settings, where traffic is regulated by sig-

nalized intersections. In this chapter, we addressed the urban case by studying

the reliability of safety messages using a realistic vehicular mobility model which

captures the heterogeneous node densities at and around signalized intersections.

In line with previous work, we constructed Markov models for capturing the deliv-

ery probability for event-driven warning messages and the packet inter-reception

time for periodic beacons. Combining the Markov models with the urban ve-

hicular density model, for the first time, we are able to accurately capture the

resulting performance characteristics in a non-uniform density setting. Through

a numerical evaluation, we demonstrated that the major impact of the hidden

node problem on the reliability performance of safety messages extends to the

urban case as well. Importantly, we found that the impact is most significant in

the same road sections where the vehicle velocities are the highest. These find-

ings call for further work on mechanisms to mitigate the effect of hidden nodes

in order to ensure the viability of DSRC/WAVE safety applications.
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Chapter 5

Hidden Terminal Interference in

Vehicular Ad Hoc Networks with

Forced-Flow Traffic Conditions

5.1 Introduction

In the DSRC/WAVE standard [2; 121], the recommended paradigm for dissem-

ination of safety messages is one-hop broadcast, even though multi-hop dissem-

ination is also an option for the event-driven warning messages. In broadcast

communications, with one-hop as a special case, the virtual carrier sense real-

ized by Request-To-Send (RTS) and Clear-To-Send (CTS) handshaking which

is a point to point mechanism does not work and the applications rely solely on

physical carrier sense. While the adoption of this approach may benefit the safety

applications in the form of latency reduction, the extent to which it affects their

performance and reliability is of prominent concern. An immediate consequence

of eliminating the virtual carrier sense is to give rise to hidden terminal interfer-

ence due to the expansion of the hidden terminal region [105]. This concern is

indeed recognized in the literature and earlier work addressed the problem in the

context of broadcast communications [22; 78; 106; 164; 165; 178]. An extensive

background and related work can be found in Chapter 2.

The conventional approach of characterising hidden terminal problem is based
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mainly on the presence or absence of hidden nodes in a so-called hidden termi-

nal region of a target transmitter. The enumerated hidden nodes account for an

interference number, which is then applied to the MAC layer functionalities to

calculate the impacts on some performance metrics, e.g., packet delivery ratio.

The major drawback of this widely used approach is that all interferers are treated

uniformly, no matter where they are located relative to the position of an intended

receiver of the target transmitter. In a more advanced approach [164; 165], the in-

terference is characterized by its power, where the power magnitude is determined

by a radio propagation model accounting for relative positions of nodes, among

other factors [146]. The accuracy of the latter approach is highly dependent on

the degree of realism incorporated into the radio propagation and the vehicular

traffic models, collectively representing the host system. As an example, suppose

there are two choices of radio propagation models for a study on hidden terminal

effects. Model A assumes Line of Sight (LOS) always exists, whereas model B

is able to detect and capture LOS obstruction. With the model A in use, extra

signal attenuation due to signal obstruction is not taken into account in the re-

ceived signal, whereas with model B it is considered. In effect, with model A, the

likelihood of coordinated transmission is larger than with model B. Considering

the fact that hidden terminal problem stems from uncoordinated transmissions,

the severity of hidden terminal problem is optimistically less in the case of model

A compared to the more realistic model B.

The above example and many others also stress that the hidden terminal

problem has an uncontrolled nature because its behaviour is foremost driven by

uncontrolled elements of the host system such as unpredicted obstructions caused

by the static and moving objects. Hence, the accuracy of interference character-

ization is significantly dependent on the radio propagation model employed to

capture the various causes of signal attenuation. It also depends on the degree of

realism captured by the traffic model used for describing the relative arrangement

of nodes.

In another dimension, the investigation of hidden terminal problem for the

case of forced-flow vehicular traffic, in general, and the case of safety-critical

scenarios, in particular, is highly demanded. In these scenarios, the safety ap-

plications are expected to have the most stringent reliability requirements. By
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analogy, the study of interference and reliability in safety-critical scenarios re-

sembles the classic test of industrial systems under stress. The difference is that

in the former case, the subject of stress is the safety level required by the drivers,

whereas in the latter case the stress relates to some form of load assigned to the

system.

In line with the aforementioned arguments, in this chapter, we aim to advance

the state of the art in the investigation of reliability issues of safety applications

by means of the following contributions:

• An analytical framework is developed to investigate the severity of hidden

terminal interference under forced-flow traffic scenarios dominating urban

traffic systems which is less addressed in the literature, while it is predicted

to represent a suitable example of severe interference.

• A state-of-the-art radio propagation model targeted to VANET environ-

ment is employed to analytically derive the aggregate interference power

induced by hidden nodes.

• Focusing on forced flow traffic, two major safety-critical traffic scenarios are

identified. In an urban road stretch operating in capacity state, the upper

bound interference power induced by hidden nodes and the lower bound

reachable distance of the safety messages are obtained for various veloci-

ties and lanes of the road stretch. In a signalized intersection, as another

safety-critical scenario, the upper bound interference power is obtained for

the intersection with various lanes of the road segments connected to the

intersection and also various timings of the traffic light in the intersection.

To the best our knowledge, the case of studying reliability issues in safety-critical

conditions, and also the degree of realism captured in the host system represen-

tation within an analytical framework is unique to this work.

The remainder of this chapter is organised as follows. In Section 5.2, the

radio propagation model employed throughout this work is introduced. Sec-

tion 5.3 presents the definition of hidden node interference adopted in this study,

and presents a theoretical methodology for the calculation of hidden node in-

terference power using the radio propagation model. In Section 5.4, a practical
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approach is described for the identification of the effective Carrier Sense (CS) dis-

tance and hidden terminal range, taking into account the traffic properties and

the desired transmission range of various safety applications. Section 5.5 presents

an overview of the traffic scenarios addressed in our study. Sections 5.6 and 5.7

present the analytical models developed for the characterization of hidden ter-

minal interference corresponding to the road stretch and intersection scenarios,

respectively. The experimental results are presented in Section 5.8, and finally

Section 5.9 summarizes and concludes the chapter. In the remainder of this chap-

ter, we use the term “single broadcast” instead of “on-hop broadcast” in order

to avoid confusion with the notion of “hop” in the context of vehicular traffic.

For the sake of convenience and readability, the notations used frequently in

this chapter are introduced in Table 5.1 .

5.2 Channel Model Overview

We apply a shadow-fading path loss model proposed in [8] to determine the

magnitude of the received and interference powers in a node. The channel model

was designed by means of extensive field measurements in urban areas and using

vehicles as transceivers. The structure and behaviour of urban traffic and also

vehicle dimensions are incorporated into the channel model by considering three

separate scenarios based on shadowing states. These include Line of Sight (LOS),

Obstructed Line of Sight (OLOS), and Non Line of Sight (NLOS). LOS is self-

explanatory. OLOS is a shadowing state caused by a vehicle driving in between

a transmitter and a receiver node. NLOS is caused by buildings and mainly

emerges in intersections where communicating vehicles travel on two cross-road

segments of the intersection. The path loss corresponding to the LOS and OLOS

is described by a dual slope function expressed as follows:

PL(d) =





PL0 + 10n1 log10

(
d
d0

)
+Xσ if d0 ≤ d ≤ db

PL0 + 10n1 log10

(
db
d0

)
+ if d > db

10n2 log10

(
d
db

)
+Xσ

(5.1)
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Table 5.1: Notations

Symbol Description
PL Path Loss
CA Cellular Automata
∆ length of a cell in CA (meters)
Γ width of a cell in CA (meters)
HD Headway Distance (meters)
HT Headway Time (seconds)
Hj Jam spacing (meters)
Tc cycle duration of a traffic light (seconds)
Tg green phase duration of a traffic light (seconds)
Tred red phase duration of a traffic light (seconds)
tr average reaction time of a driver (seconds)

L̂s length of a small vehicle (meters)

L̂m length of a medium vehicle (meters)

L̂l length of a large vehicle (meters)
ps population of small size vehicles in the system
pm population of medium size vehicles in the system
pl population of large size vehicles in the system
Wl width of a lane (meters)
SINR Signal to Interference plus Noise Ratio (dB)
SINRth SINR threshold (dB)
CSth Carrier Sense power threshold (dBm)
CSD Carrier Sense Distance (meters)
NSD Noise Signal Distance (meters)
LOS Line Of Sight
OLOS Obstructed Line Of Sight
NLOS Non Line Of Sight
P Transmission Power (dBm)
Pn Noise power (dBm)
Pif Aggregate Interference Power (dBm)
Tx A target transmitter node
Rx An intended recipient node

where d is the distance between Tx and Rx. PL0 is the free-space path loss plus

the accumulative antenna gain (PL0 = PLf +Ga) at a reference distance d0. n1

and n2 are path loss exponents, db is the breakpoint distance (or slop point), and

Xσ is a zero-mean Gaussian distributed random variable with standard deviation
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σ. Except for d0 and db, all parameters have different values for LOS and OLOS

cases. PL0 is 10 dBm larger in OLOS compared to the LOS case which implies

higher attenuation if the signal is obstructed by a vehicle located in between

Tx and Rx. To distinguish between LOS and OLOS, appropriate notations are

provided wherever necessary throughout this work.

For the NLOS situation, the path loss model is described as follows:

PL(dr; dt;wr; xt; is) = 3.75 + is 2.94

+





10 log10

((
d0.957t

(xtwr)0.81
4πdr
λ

)nNLOS
)
+Xσ if d ≤ db

10 log10

((
d0.957t

(xtwr)0.81
4πd2r
λdb

)nNLOS
)
+Xσ if d > db

(5.2)

where dr (dt) is the distance of Tx (Rx) to intersection center, wr is the width of

the street where Rx is located, xt is distance of Tx to the wall (e.g., building),

and is is parameter to distinguish suburban and urban environments; that is,

is = 1 and is = 0 for suburban and urban cases, respectively. nNLOS is a path

loss exponent and Xσ is a zero-mean Gaussian distributed random variable with

standard deviation σ and describes the path loss variation.

It is worth mentioning that in the path loss model described by Equation 5.1,

only one obstruction instance is taken into account if the signal is obstructed by

more than one vehicle. Also, in the path loss model described by Equation 5.2,

only the obstruction caused by obstacles other than vehicles are considered.

5.3 Hidden Node Interference

Suppose Tx is a target transmitter and Rx is an intended recipient of Tx. A node

f from a set of potential interferers I contributes as a hidden node of Tx to the

interference power in Rx if: (i) Rx can hear the transmission of Tx, (ii) f cannot

hear the transmission of Tx , and (iii) a transmission from f can be received (not

necessarily decoded) in Rx. This definition, from the perspective of signal power,

translates to the following terms: (i) the power of the received signal from Tx

in the Rx is larger than or equal to a Carrier Sense threshold (CSth), (ii) the
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power of Tx signal at the location of f is less than CSth, and (iii) a potential

transmission from f will have a signal power greater than or equal to a Noise

threshold (Pn) as perceived in the location of Rx, assuming that any signal with

power greater than or equal to Pn can be received in a node. The above definition

is based on the assumption that Pn < CSth.

The probabilistic radio propagation model, described by Equations 5.1 and

5.2, implies that the hidden terminal problem has a probabilistic nature. Denote

by HC the event that f as a hidden terminal of Tx contributes to the interference

power in Rx. Also, denote by PGNf the event that a signal propagated from

node f is received in Rx with a power greater than Pn. Furthermore, let H(rx,tx)

and NH(f,tx) be the events corresponding to the conditions (i) and (ii) mentioned

above. The probability of HC can be expressed as follows:

Pr(HC) = Pr
(
H(rx,tx) ∧NH(f,tx) ∧ PGNf

)
(5.3)

The event PGNf is determined by the distance between f and Rx (d(f,rx)) and their

shadowing state, i.e., whether they are in LOS, OLOS, or NLOS situation. This

event is independent from events H(rx,tx) and NH(f,tx). On the other hand, events

H(rx,tx) and NH(f,tx) are correlated and potentially dependent. These arguments

imply that Equation 5.3 should be rewritten as follows:

Pr(HC) = Pr
(
H(rx,tx) ∧NH(f,tx)

)
Pr (PGNf ) (5.4)

To obtain Pr(HC) using the path loss function, the distances and the shadowing

state of each pair of nodes should be given a priori. We describe the received

power in various situations corresponding to the relative distance of a pair of

nodes compared to the breaking point distance db, and the shadowing state of the

pair of nodes by a set of random variables. Without loss of generality we assume

all nodes are located on a road stretch where only LOS and OLOS situations

occur. The arguments for the NLOS case are straightforward. Starting by the

event H(rx,tx) and given the distance between the two nodes denoted by d(tx,rx),

the random variables corresponding to the received power in Rx from the Tx are

shown in Tables 5.2 and 5.3. Table 5.2 describes the random variables for LOS
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situation and Table 5.3 shows the random variables for the OLOS case.

Table 5.2: Random variables for LOS situation

d(tx,rx) < d0 X0 = Ptx − IL
d0 ≤ d(tx,rx) ≤ db X1 ∼ N

(
µLOS(d(tx,rx)), σLOS

)
, where

µLOS(d(tx,rx)) = Ptx − PL0LOS − IL −
10n1,LOS log10

(
d(tx,rx)

d0

)

d(tx,rx) > db X2 ∼ N
(
µLOS(d(tx,rx)), σLOS

)
, where

µLOS(d(tx,rx)) = Ptx − PL0LOS −
IL − 10n1,LOS log10

(
db
d0

)
−

10n2,LOS log10

(
d(tx,rx)

db

)

Table 5.3: Random variables for OLOS situation

d(tx,rx) < d0 X0 = Ptx − IL
d0 ≤ d(tx,rx) ≤ db X3 ∼ N

(
µOLOS(d(tx,rx)), σOLOS

)
, where

µOLOS(d(tx,rx)) = Ptx − PL0OLOS − IL −
10n1,OLOS log10

(
d(tx,rx)

d0

)

d(tx,rx) > db X4 ∼ N
(
µOLOS(d(tx,rx)), σOLOS

)
, where

µOLOS(d(tx,rx)) = Ptx − PL0OLOS −
IL − 10n1,OLOS log10

(
db
d0

)
−

10n2,OLOS log10

(
d(tx,rx)

db

)

In Tables 5.2 and 5.3, N(µ, σ) is a normal distribution function with mean

µ and standard deviation σ, Ptx is the transmission power of Tx measured in

dBm, and IL is a constant value representing the implementation loss [8]. In

the two tables, the original parameters n1 and n2 are subscripted by LOS and

OLOS terms in order to distinguish the shadowing state of the node pairs. X0

has a constant value determined by free-space path loss and the implementation

loss. X1, X2, X3, and X4 are random variables representing the received power

in Rx if the distance from Tx is greater than or equal to d0. The Probability

Density Functions (PDF) of the random variables are represented by fX1 , fX2 ,

fX3 , and fX4 , respectively. In a similar way to pair Tx/Rx, we identify the
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random variables and the PDFs corresponding to the received power in node f

from Tx. Let Y1, Y2, Y3, and Y4 be such random variables and fY1 , fY2 , fY3 ,

and fY4 represent the corresponding PDFs. Similar to X0, Y0 is a constant value

representing the received power when the distance between pair Tx/f (i.e., d(tx,f))

is less than d0.

Once the individual random variables corresponding to events H(rx,tx) and

NH(f,tx) are determined as above, a set of bivariate normal density functions

f(Xi,Yj) for i , j ∈ {1, 2, 3, 4} can be identified, where f(Xi,Yj) is expressed as

follows:

f(Xi,Yj) =

1

2πσXi
σYi

√
1−ρ2ij

exp

(
− 1

2(1−ρ2ij)

[
(Xi−µXi

)2

σ2
Xi

+
(Yi−µYj

)2

σ2
Yj

− 2ρij(Xi−µXi
)(Yj−µYj

)

σXi
σYj

])

(5.5)

where ρij is the correlation coefficient of Xi and Yj. Let F(xi,yj) be the Cumulative

Density Function (CDF) of joint variables (Xi, Yj). It follows that:

Pr
(
H(rx,tx) ∧NH(f,tx)

)
= FYj

(CSth)− F(Xi,Yj) (CSth, CSth) (5.6)

A closed form expression for F(Xi,Yj) (CSth, CSth) does not exist; however, there

are a number of algorithms that estimate it numerically [176].

To that end, it remains to derive the expressions for Pr( PGNf) in order to

obtain Pr(HC) in Equation 5.4. Following the same line of arguments applied to

events H(rx,tx) and NH(f,tx), we identify random variables Zi, and PDFs fZi
for

i ∈ {1, 2, 3, 4} describing the received (interference) power in Rx from node f .

Note that Z0 is analogous to X0 and Y0 and has a constant value Z0 = Pf − IL,

where Pf is the transmission power of node f . Given the distance between the

pair of nodes f and Rx (denoted by d(f,rx)) and recalling the definition of the
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event PGNf, it follows that:

Pr(GNf ) =





1 if d(f,rx) < d0 ∧ Pf − IL ≥ Pn

0 if d(f,rx) < d0 ∧ Pf − IL < Pn

1− FZ1(Pn) if d0 ≤ d(f,rx) ≤ db ∧ LOS

1− FZ2(Pn) if d(f,rx) > db ∧ LOS

1− FZ3(Pn) if d0 ≤ d(f,rx) ≤ db ∧OLOS

1− FZ4(Pn) if d(f,rx) > db ∧OLOS

(5.7)

where FZi
is the CDF of the random variable Zi.

At this point, the event HC is fully characterized and its probability can

be obtained. The next step is to determine the interference power induced by

the node f . The event HC, if occurs for node f , implies that the interference

power induced by f must be greater than or equal to the noise power. Thus, we

define truncated normal random variables Ẑi derived from Zi. The domain of Ẑi

(measured in dBm) is (Pn,∞) and the corresponding density function is obtained

as follows:

fẐi
=

fZi

1−FZi
(Pn)

(5.8)

Assuming that a message is being received in Rx from Tx, the expected interfer-

ence power (due to node f) induced in a time slot of the message can be expressed

as follows:

PI(f,rx) = Pr (HC)Pr (fovp)E

(
10

(
Ẑi
10

))
(5.9)

where E (.) is statistical expectation. PI(f,rx) is the expected interference power

measured in mW . Pr (fovp) is the probability that a transmission from f overlaps

with a time slot of the message being received in Rx from Tx. The aggregate

interference power in Rx induced by all hidden nodes is the sum of interference

contributions of all nodes in the set I:

PI(rx) =
∑

f∈I
PI(f,rx) (5.10)
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Accordingly, the expected SINR of a message received in Rx from Tx is as follow:

SINR(rx) =
E

(
10(

Xi
10 )

)

Pn+PI(rx)

(5.11)

Recall that Xi is the i
th random variable from the set of random variables repre-

senting the power of Tx’s signal received in Rx.

It remains to obtain Pr(fovp), the probability that a potential interferer f

transmits a message and overlaps with a time slot of the Tx’s message being

received in the Rx. The decider module of a device or a simulator usually as-

sesses the interference power within a sequence of time slots of the message time.

For simplification, we fix the length of the decision sequence to 1 slot. With

this setting, the interference power experienced in a slot time represents the in-

terference power imposed on the entire message. A key MAC layer parameter

determining Pr(fovp) is the probability of message transmission in a time slot. In

Chapter 4, the steady state transmission probabilities were derived for periodic

and event-driven messages. The transmission probabilities are denoted by τb and

τe, corresponding to periodic and event-driven messages, respectively. Let PE be

the event that a periodic message of node f overlaps with a time slot of the mes-

sage transmitted by Tx. Likewise, denote by EV the event that an event-driven

message of the node f overlaps with a time slot of the message transmitted by

Tx. It follows that:

Pr (fovp) = Pr (PE) + Pr (EV )− Pr (PE ∧ EV ) (5.12)

Pr(PE ∧EV ) = 0, because a node is allowed to transmit one message at a time.

The required parameters to determine the Pr(PE) and Pr(EV ) are the data rate

(R), the size of periodic message Mb, the size of event-driven message (Me), and

the slot duration (σ). The message time is obtained as Tb = Mb/R and Te =

Me/R, respectively for periodic and event-driven messages. The total number

of slots occupied by periodic and event-driven messages are Nb = ⌈Tb/σ⌉ and
Ne = ⌈Te/σ⌉ respectively. It follows that Pr (PE) = Nbτb and Pr (EV ) = Neτe.

Albeit, the resultant probabilities are bounded to 1.
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5.4 Effective Carrier Sense and Hidden Node

Range

In Section 5.3, a theoretical framework was proposed to obtain the expected

interference power of a hidden node (Equation 5.9) and the aggregate interference

power of all hidden nodes (Equation 5.10). Revisiting Equation 5.9 reveals that

potentially all nodes in the network will have some interference contribution in

the intended recipients of Tx. This arises from the fact that Pr(HC) is non-zero

for all nodes. Therefore, all nodes in the network are potentially hidden from the

transmitter Tx. This hinders the development of an implementable and tractable

analytical model characterizing the interference power of hidden nodes. For this

reason, we relax the channel model by eliminating the non-deterministic element

Xσ. Under this relaxation, the analysis is reduced to average path loss and thus

average interference power.

By adopting the relaxed channel model, the probabilistic event HC is elimi-

nated. Instead, it is required to deterministically identify the carrier sense dis-

tance (CSD) of Tx where the potential intended recipients are located. Similarly,

the range of hidden terminals (HTR) of Tx is identified deterministically. We

identify the ranges under question separately for LOS/OLOS and NLOS condi-

tions. Figure 5.1 depicts the carrier sense distance and the hidden terminal range

of Tx on the horizontal road RW-RE and vertical road segment RN. For read-

ability, suffixes H and V are used to distinguish the ranges on the horizontal

and vertical roads.

Finding the carrier sense distance from the path loss model proposed for LOS

and OLOS situations (Equation 5.1) is not straightforward; depending on the

shadowing state (LOS or OLOS) and whether CSD H is greater or equal to the

breaking point distance db, several options emerge. In the following line of argu-

ment, we eliminate the unlikely options using the notion of Desired Transmission

Range (DTR) in single broadcast. DTR is the distance from the Tx where the

received signal has a power greater than a threshold (RCth) and, in the absence of

interference, the Signal to Noise Ratio (SNR) is large enough to decode the signal.

The DTR for medium range safety applications is around 300 m [17; 43]. Long

range safety applications may require single broadcast ranges up to 1 km [43].
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Figure 5.1: Carrier sense and hidden node interference regions

With DTR = 300 m as the presumed minimum DTR, the options corresponding

to CSD H < d0 and d0 ≤ CSD H ≤ db are eliminated from the set of options

because otherwise, given that according to [8] d0 = 10 m and db = 104 m, the re-

sultant transmission range will be far shorter than the minimum DTR. With such

a short transmission range, a number of safety applications are not supported.

This leaves two options corresponding to the case CSD H > db and branching

from the two shadowing states LOS and OLOS, that is,

PL(CSD H) =





PL0LOS + 10n1,LOS log10

(
db
d0

)
+ 10n2,LOS log10

(
CSD H

db

)

PL0OLOS + 10n1,OLOS log10

(
db
d0

)
+ 10n2,OLOS log10

(
CSD H

db

)

(5.13)

Considering the fact that this work is focused on forced-flow traffic, we conjecture

that OLOS assumption is a practical assumption in the calculation of the ranges

under question. In support of this claim, an empirical study reported in [10]

indicates that in the capacity traffic state, the average headway distance on a

freeway segment does not exceed 42.5 m. On a multi-lane highway, the distance

hardly reaches 38 m. In urban streets, the capacity headway distance is less than
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35 m. Assuming that vehicles tend to drive in the middle of the lanes in which

they are situated, the above figures imply that the LOS distance on a lane, that

is, the distance to which LOS is not obstructed, is far shorter than the DTR of

even short range safety applications.

For completeness of the argumentation, we perform a simple numerical study

to investigate the LOS distance of a Tx node as a function of mean headway

time (HT). We obtain the headway distances (HD) corresponding to a range of

prevalent velocities in urban traffic systems using the relationship HD = HT×V ,

where V stands for velocity. A road segment with 5 lanes in each direction is

used for the study. A transmitter Tx and an intended receiver Rx are located on

a lane with another vehicle being in the middle (vehicle B in Figure 5.2). The

LOS distance from the standpoint of Tx is then calculated assuming that the

following vehicle B is located at a distance from Tx equal to the given headway

distance, and B is the only source of LOS obstruction. Assuming that vehicles

drive in the middle of the lanes in which they are situated, it follows that the

LOS distance on the Tx’s lane is equal to HD. To determine the LOS distance

on a neighbouring lane (i.e., the upper lane in Figure 5.2), it is sufficient to

obtain the length of segment s2. Given the lane width (Wl), vehicle width (Wv),

and vehicle length (Lv), it follows that s1 = HD − Lv/2 and tan (α) = 2s1
Wv

=
2(HD−Lv/2)

Wv
. The LOS distance on the neighbouring lane is equal to s2 and is

obtained as: s2 = Wl

(
2(HD−Lv/2)

Wv

)
. It is straightforward to extend this argument

to any lane in the network. Assume the lane index of Tx is ltx and the index of

the lane under investigation for LOS distance is ln. It follows that for lane ln,

s2 = |ltx − ln|Wl

(
2(HD−Lv/2)

Wv

)
.

Tx B Rx

w
l

w
v g 

s1

s2

Figure 5.2: The projected LOS distance of Tx on a neighbouring lane

Figure 5.3 depicts the numerical results. The results shown in Figure 5.3a
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(a) LOS distance in normal traffic density (headway time =
2.5 seconds)
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(b) LOS distance in traffic situation near capacity (headway
time = 1 second)

Figure 5.3: LOS distance in urban traffic settings

correspond to a forced-flow traffic condition with a relatively large headway time

of 2.5 seconds. The results in Figure 5.3b are obtained for HT = 1 second,

corresponding to near capacity traffic conditions. In our study, we use passenger

vehicles as the dominant vehicle type in urban areas. Accordingly, the width and

length of vehicles are set to Wv = 1.6 m and Lv = 4 m, corresponding to the size

of a typical passenger car, according to Paramics traffic simulator [49]. The lane

width is set to Wl = 3.7 m, representing the width of a typical urban major road.

According to Figure 5.3a, the obstruction occurs almost certainly in distances

beyond 300 m on all lanes. In near capacity traffic conditions, as our main focus
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in this work, the largest LOS distance drops to 120 m. Recall that, in the above

analysis, only the effect of a following vehicle of Tx is accounted for as the source

of obstruction. In practice, due to obstruction by vehicles driving on lanes other

than Tx’s lane, the LOS distance in farther lanes are predicted to be significantly

smaller than the results shown in Figures 5.3a and 5.3b.

The above evidence implies that the LOS distance in forced-flow traffic is

shorter than the minimum DTR required for medium range applications. Given

that the transmission power is tuned in such a way that the minimum DTR is

reached and given that DTR ≤ CSD H, it follows that the OLOS assumption

in the calculation of CSD H is a rational and practical assumption. With OLOS

assumption and using the path loss parameters for the OLOS situation, the carrier

sense distance for the horizontal road stretch in Figure 5.1 is expressed as follows:

CSD H = db10




P−CSth−PL0OLOS−IL−10n1,OLOS log10

(
db
d0

)

10n2.OLOS


 (5.14)

We discarded the subscript of transmission power (P ), assuming that all nodes

transmit with the same power.

A further step towards the identification of hidden terminal range is to deter-

mine the distance from Rx where an interferer can induce an interference power

greater than or equal to the noise threshold (Pn). Denoting such distance on the

horizontal road by NSD H, it is evident that NSD H > CSD H. Therefore, the

OLOS assumption is also applied in the calculation of NSD H. Using the path

loss parameters for OLOS situation, NSD H can be expressed as follows:

NSD H = db10




P−Pn−PL0OLOS−IL−10n1,OLOS log10

(
db
d0

)

10n2,OLOS


 (5.15)

Given that CSD H and NSD H are determined as above for the horizontal road,

we set the hidden terminal range of Tx with respect to Rx to HTR H = [CSD H

, NSD H].

In the NLOS case, the regions under investigation are located on the cross

roads linked to the intersection (e.g., segment RN in Figure 5.1). Consider a

typical case where Tx and Rx are positioned on segment RW in such a way that
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5.4 Effective Carrier Sense and Hidden Node Range

NLOS is certain to occur between them and the nodes on segment RN. The road

parameters required for calculating CSD V and NSD V are shown in Figure 5.1.

Wl is the lane width, and Wrw and Wrn are the width of horizontal and vertical

streets, respectively. Drw (Drn) is the gap between RW (RN) street and the

wall to the top (left). Let dj,tx be the distance from the intersection center to

Tx. Further assume that the lanes of road RW are indexed in increasing order

from top to bottom, and from left to right on road RN. Let ltx be the index of

the lane where Tx is located. It follows that the distance of Tx to the wall is

xtx = (ltx − 1)Wl +
Wl

2
+Drw. It then follows that the CSD V of Tx, projected

to any lane on segment RN, is either

CSD V = λ(xtxWrn)
0.81

4π(dj,tx)
0.957 10

(
P−CSth−3.75
10 nNLOS

)
(5.16)

or

CSD V =

(
λdb(xtxWrn)

0.81

4π(dj,tx)
0.957 10

(
P−CSth−3.75
10 nNLOS

)) 1
2

(5.17)

Applying Equation 5.16 to calculate CSD V must yield CSD V ≤ db, whereas

by Equation 5.17 CSD V > db. These two cases are not satisfied simultaneously.

Thus, the valid CSD V is unique.

In contrast with CSD V, the NSD V on the vertical road RN will have different

values for different lanes. The projection of NSD V on a lane ln is expressed as

follows:

NSD V (n) =





(
λ(xnWrw)0.81

4πdj,rx
10

(
P−Pn−3.75
10 nNLOS

)) 1
0.957

if dj,rx ≤ db
(

λdb(xnWrw)0.81

4π(dj,rx)
2 10

(
P−Pn−3.75
10 nNLOS

)) 1
0.957

if dj,rx > db

(5.18)

where xn is the distance to the left wall of road segment RN from the middle

of the lane ln. This distance is xn = (ln − 1)Wl +
Wl

2
+ Drn, where dj,rx is the

distance between Rx and the intersection center.
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5.5 Traffic Scenarios

Two major building blocks of urban traffic networks are addressed in this work:

an isolated stretch of road and a signalised intersection. The road stretch scenario

represents an isolated arterial or transit road or part of a road connected to an in-

tersection, but does not include the region of the intersection where the queueing

and traffic discharge take place. In this scenario, a safety-critical traffic state is

identified and modelled using cellular automata (CA) [47], proven to capture the

traffic behaviour in various scenarios effectively [48; 141; 161]. The traffic model

is used in a simple procedure to determine an upper bound interference power at

any intended message recipient of a leading vehicle, and a lower bound reachable

distance of safety messages transmitted by the vehicle. In the intersection sce-

nario, a probabilistic CA model is proposed to model the traffic scenario, and a

procedure is designed to determine an upper bound interference power for the en-

tire intersection. The intersection scenario is generally considered a safety-critical

scenario, according to the statistics of road crash investigations [80].

5.6 Road Stretch Scenario

5.6.1 Characterizing a Safety-Critical Traffic State

Traffic safety relates to vehicle velocity and the headway distance preserved by

drivers. Given a road segment with speed limit V and assuming that drivers

do not violate the speed limit, we characterize a safety-critical state with two

conditions met simultaneously: (i) vehicles drive with velocity V , and (ii) vehicles

preserve a minimum safe distance. The occurrence of both conditions corresponds

to the situation where a road segment operates at its capacity [142]. Capacity is

measured in vehicles/hour and is described by the maximum traffic flow that can

be accommodated in a single lane of a road segment. The most frequently used

expression for capacity is [142]:

C = 1000
V

S
(5.19)

96



5.6 Road Stretch Scenario

where C is capacity, and S is the average headway distance measured in meters

and is expressed by the following equation [142]:

S = α + βV + γV 2 (5.20)

where α is the effective length of a vehicle, β is the driver reaction time also de-

noted by tr, and γ is inversely proportional to the deceleration of a following vehi-

cle [142]. Given the average maximum deceleration rates of a leading and a follow-

ing vehicle denoted by al and af , an expression for γ is γ = 0.5
(

1
af
− 1

al

)
[142].

For simplification, we assume vehicles have similar braking performance. This

translates to γ = 0 and the minimum safe distance is expressed as follows [189]:

Smin = α + βV (5.21)

From the perspective of safety applications envisioned for VANETs, in a traffic

network operating at its capacity, vehicles require greater communication relia-

bility and a longer message reachable distance compared to under-capacity traffic

states. Failure to fulfil any of these conditions leads to weak driver awareness,

and thus affects the reliability of safety applications. Hidden terminal interfer-

ence is one of the issues which affects the reachable distance of safety messages

and thus the reliability of the communication network [163; 164]. In a capacity

traffic state, it is deemed that the impact of hidden node interference on the

reachable distance of safety messages is non-negligible. This arises from the fact

that, in this traffic state, the number of interferers is larger and the distance from

interferers to the location of an intended message recipient is smaller compared

to under-capacity traffic states. This leads to larger aggregate interference power

in a receiver.

The capacity of a road segment is a theoretical upper bound on traffic flow.

Despite the efforts of the designers of transportation systems, the capacity is not

reached in practice and thus traffic networks operates in under-capacity states.

In terms of hidden node interference, we propose that the hidden terminal inter-

ference in the theoretic capacity state is an upper bound to the resulting actual

capacity. In the following section, the traffic model and the required mechanisms
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are designed to characterize the hidden node interference for theoretic capacity.

5.6.2 Traffic Model

According to the path loss model introduced in Section 5.2, characterization of

interference power in a node requires that the positions of the intended receivers

and the potential interferers and also the obstruction information are known. In

a real traffic network, vehicle position is a continuous quantity. While using a

continuous quantity leads to accurate modelling of traffic, it imposes a side effect

on the tractability of the mechanisms used to characterize the interference. To

relax the position continuum in favour of model’s tractability, the traffic network

is discretized by means of cellular automata.

The traffic scenario consists of a bidirectional road stretch operating in ca-

pacity state. The number of lanes in each direction is unconstrained. In the CA

model, each lane of a road segment is divided into equal size cells (Figure 5.4). In

the conventional CA models, a cell is assumed to have a square shape, whereas

in this work due to the dependence of shadowing on the length and the width of

vehicles, a rectangular cell shape is assumed. The length and width of the cell

are denoted by ∆ and Γ, and are related to the size of vehicles. With the variety

of vehicle sizes, the configuration of ∆ and Γ is driven by the objectives pursued

in this study. A generic approach is to set the parameter values to the average

length and width of vehicles in the network; however, this approach may compro-

mise the accuracy of the study in its entirety. In the current work, the location

of antenna installed on top of a vehicle is seen as an important factor influencing

the signal strength. The variation of latitudinal dimension of antenna location is

limited to the vehicle’s width which at most is equal to the lane width, whereas in

longitudinal dimension the variation is driven by the length of the longest vehicle,

which can be significant. Therefore, for the sake of fine granularity in the longi-

tudinal dimension, ∆ is set to the length of the smallest vehicle in the network.

Γ is set to the average width of vehicles in the network. Another assumption

applied to the CA model is that the longitudinal axis of vehicles coincides with

the middle line of the lane they are situated in, corresponding to the situation

where vehicles drive in the middle of their current lanes.
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The state of a cell (i.e., whether or not it is occupied by a vehicle) is assigned

by a set of rules designed to maintain the compliance of the CA model with the

traffic parameters and regulations governing the road stretch. The cell state takes

a value from a domain {−1, 0, 1} and determined by a rule set Λ consisting of the

following rule items:

1. occupation: if a cell is occupied by a vehicle, the cell state is set to either 1

or −1, otherwise the cell state is set to 0.

2. antenna location: this rule is enforced to distinguish between the front cell

of a vehicle where the antenna is installed and the trailer cells. If a cell is

occupied by the front part of a vehicle, the cell state is set to 1 and for the

trailer parts the corresponding cell states are set to −1.

3. driving direction: if a vehicle occupies more than a cell, the precedence

of cell states 1 and −1 corresponding to the vehicle is determined by the

driving direction. The state of the first cell in the driving direction is 1 and

the states of the remaining cells are −1.

4. vehicle length: according to this rule, if the state of a cell is 1, a number of

cells equal to Lvc−1 must be set to −1 where Lvc is vehicle length measured

in number of cells. The precedence of the trailer cells (i.e., whether they

are before or after the current cell) is determined by the driving direction

rule.

5. headway preserving: in each lane, if the state of a cell is 1, the next cell with

state 1 is HDc + 1 cells away from the current cell. HDc is the headway

distance measured in number of cells.

The implementation of the CA model requires that the real values of the

headway distance and vehicle length are transformed to the number of cells.

To this aim, we set HDc = ⌊Smin

∆
⌋ and Lvc = ⌊ L̂v

∆
⌋, where Smin and L̂v are the

minimum safe headway distance and the average size of vehicles, respectively. The

floor operator ensures that the transformed headway distance does not exceed the

actual minimum headway distance. To determine L̂v, without loss of generality,

we assume there are three categories of vehicles in the network: small, medium,
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Figure 5.4: Road stretch scenario

and large vehicles. The real lengths of the three categories are denoted by L̂s,

L̂m, and L̂l, and the vehicles’ populations (%) are represented by ps, pm, and pl,

respectively. It follows that

L̂v = psL̂s + pmL̂m + plL̂l (5.22)

Similarly, the width of the CA cell is obtained as follows:

Γ = psŴs + pmŴm + plŴl (5.23)

where Ŵs, Ŵm and Ŵl are the real width of the three types of vehicles.

5.6.3 Maximum Aggregate Interference Power

Suppose a transmitter Tx and a number of intended recipients termed “hops”

are located on a lane of the road stretch (His in Figure 5.4). Lanes are indexed

in increasing order from the top lane to the bottom one. Assume the intended

recipient under investigation is the hop H2. Initially, Tx and H2 are indexed with

respect to their relative cell positions on the road stretch. The index of Tx is

set to 1 and the index of H2 is h. The rest of cells on all lanes are indexed in

increasing order to the right of Tx. The cells on the same column have identical

indices.

In the next step, the parameters CSD and NSD 1 are obtained using Equa-

1For readability, the suffix H corresponding to horizontal road stretch is eliminated.
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tions 5.14 and 5.15. Denote by CSDc and NSDc the data structures used to

maintain, for all lanes, the indices of the boundary cells corresponding to CSD

and NSD. On a lane Ln, the index of the cell located on the boundary of CSD

is CSDc,n = ⌊
√

CSD2−(|Ln−Lh|Wl)
2

∆
⌋ + 1, where Lh is the lane number of the hop.

Likewise, the index of the cell located on the boundary of NSD with respect to

the cell position of the hop is NSDc,n = ⌈
√

NSD2−(|Ln−Lh|Wl)
2

∆
⌉+ h. The flooring

and ceiling operators are carefully chosen for larger interference contribution.

The aggregate interference power experienced in the hop situated on cell h is

driven by the arrangement of nodes in the region [h,NSDc] of the road stretch.

Given that there are many possible arrangements, we propose a procedure to

find the arrangement that yields the maximum aggregate interference power in

the hop (Algorithm 5.1).

In Algorithm 5.1, RS is the road stretch represented by the CA model with the

initially empty cells. PARdsrc and PARch are DSRC and channel model parame-

ters, respectively. Λ is the set of CA rules. UL and HL are the projections of the

road segment corresponding to the upper lanes and the hop’s lane, respectively.

The upper lanes are identified with respect to the hop’s lane. The indices of the

boundary cells in the hidden terminal region are maintained in HTRc. Ω is a

data structure used to maintain, for all lanes, the indices of occupied cells with

state 1 located in the hidden terminal region, and are obstructed from the hop’s

LOS. D maintains the distance between such cells and the hop. Ψ is the set of all

possible arrangements of nodes on the upper lanes, each conforming to the CA

rules. j is the index of the first cell among the cells occupied by the vehicle fol-

lowing the hop, and located on the same lane as the hop (e.g., H3 in Figure 5.4).

The parameters ∆ and Γ are implicit to the procedure and are retrieved wherever

required.

Algorithm 5.1 calculates the maximum aggregate interference power Pif,max

induced by the hidden nodes situated on the upper lanes UL of the hop and also

the nodes located on the hop’s lane (Lh). A similar procedure is applied to the

lower lanes with the exception that the interference from the hidden nodes on

the hop’s lane is excluded in order to be accounted for only once. The ultimate

interference power is the sum of the powers reported by the two procedures.

With an assumption of non-curved road stretch, separating the upper and lower
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Algorithm 5.1 Maximum aggregate hidden terminal interference power in a hop

Require: road stretch RS, HDc, hop lane Lh, hop index h, CSDc, NSDc,
PARdsrc, PARch

Require: vehicle length LVc, CA rule set Λ
1: Pif,max ← 0
2: HTRc ← [CSDc, NSDc]
3: UL← RS (1 : Lh − 1)
4: HL← singleLaneNodeArrange (RS(Lh), h,Λ)
5: j ← getFollowingV ehIndex(h)
6: isObstHTR← checkObst(UL,HL, h, j,HTRc)
7: if isObstHTR then
8: UL← leastDistArrange(UL,HTRc,Λ)
9: Ω← getObstCellIndices (UL,HL, h,HTRc)

10: D ← getDistanceMap(UL,HL, h,HTRc)
11: Pif,max ← calcAggPow (Ω, D, PARdsrc, PARch)
12: else
13: Ψ← getAllArrangements(UL, h,Λ)
14: n← 0
15: while n ≤ size(Ψ) do
16: UL← Ψ(n)
17: Ω← getObstCellIndices (UL,HL, h,HTRc)
18: D ← getDistanceMap(UL,HL, h,HTRc)
19: Pif ← calcAggPow (Ω, D, PARdsrc, PARch)
20: if Pif ≥ Pif,max then
21: Pif,max ← Pif

22: end if
23: n← n+ 1
24: end while
25: end if
26: return Pif,max

lanes does not change the outcome, because the vehicles on the upper lanes do

not impact the shadowing status between the hop and the vehicles on the lower

lanes, and vice versa. Furthermore, this strategy improves the time complexity

of the procedure by eliminating unnecessary computations related to shadowing.

In the following paragraph, the core functionalities are briefly described.

The hidden terminal region HTRc is initialized with the boundary cells in

CSDc and NSDc (line 2). The projection of RS corresponding to the upper lanes
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and the hop lane are stored in UL and HL, respectively (line 3 and 4). Also in

line 4 an arrangement of nodes is implemented on the hop lane, given the hop

index h and the rule set Λ. The index of the first occupied cell of an immediately

following vehicle is found (line 5) and checked if this vehicle obstructs the LOS

of the hop and the entire HTR region (line 6). If so, the procedure enters a

simple phase where the maximum interference is only determined by the distance

between the vehicles in HTR and the hop (lines 8–11). This node arrangement

is implemented in line 8 and the obstruction and distance map are constructed

in lines 9 and 10, respectively. If there is at least one cell in HTR whose LOS

with hop is not obstructed, the procedure implements all possible arrangements

of nodes on the upper lanes and iterates through each arrangement case to find

the arrangement yielding the maximum aggregate interference power (lines 12–

25).

a) Generation of node arrangements

In a general CA framework, the number of node arrangements grows exponentially

with the number of lanes and the number of cells on each lane. Thus, finding a

node arrangement yielding the maximum interference is possibly a NP-hard or

NP-complete problem. We reduce the size of the problem by enforcing a number

of strategies. The first strategy, as mentioned above, is to divide the problem into

sub-problems corresponding to the upper and lower lanes. The second strategy

is to restrict the problem only to the cells situated between the hop cell (h) and

the boundary cells in NSDc for all lanes. This strategy is valid because such

cells are the only ones affecting shadowing and the aggregate interference power

induced in the hop. With the first and second strategies being implemented, the

third strategy is to assess the LOS obstruction caused by the following vehicle

of the hop (H3 in Figure 5.4) on the upper lanes (similarly for lower lanes) prior

to the generation of node arrangements. Under certain conditions, as we address

later, this strategy leads to the generation of only one arrangement of nodes, and

the maximum interference power corresponds to such a node arrangement. This

strategy is implemented in lines 4–11 of Algorithm 5.1.

The last and the most promising strategy is to resort to the traffic parame-

ters in order to reduce the size of each sub-problem. Headway distance (HDc)

is a promising parameter as its application can yield a significant reduction in

103



5.6 Road Stretch Scenario

the problem size. The implementation of this strategy on the sub-problem cor-

responding to upper lanes is as follows. Initially, given the index of the hop cell

(i.e.,h), the remainder of nodes are arranged on the hop’s lane using the headway

preserving rule in the rule set Λ. This step is implemented by function single-

LaneNodeArrange (line 4, Algorithm 5.1). The headway preserving rule is used

again to arrange the nodes on the other upper lanes (and similarly for lower

lanes). This rule implies that exactly one node must be located at the cell range

[h, h+HDc − 1] on any upper lane (similarly on lower lanes). This node will be

the first one appearing on an upper lane with respect to the hop cell. Using the

headway preserving rule, the rest of the nodes are arranged on the upper lane up

to the boundary cell in NSDc corresponding to this lane. The total number of

choices corresponding to the location of the first node on a lane is HDc − 1.

The core task of arrangement generation implemented by function getAllAr-

rangements (line 13, Algorithm 5.1) is to generate all possible arrangement of

nodes for the upper lanes. Note that the arrangement of nodes on the hop’s lane

remains fixed in all arrangements. Once the set of all arrangements is known,

Algorithm 5.1 iterates through the arrangements (lines 15–24). For each ar-

rangement, functions getObstCellIndices, getDistanceMap, and calcAggPow are

invoked to build or update Ω and D, and calculate the aggregate interference

power corresponding to the iterated arrangement. Finally, the maximum aggre-

gate interference power is reported at line 26.

The obstruction map Ω plays a key role in the procedure. The obstruction

caused by the first following vehicle and also the vehicles on all other lanes are

taken into account to build Ω corresponding to a node arrangement. We address

the two obstruction cases separately.

b) LOS obstruction by the vehicle following the hop

A projection of the cells from Figure 5.4 located on the hop’s lane and also on

an upper lane is shown in Figure 5.5. The right triangle ULTr (in Figure 5.4)

represents the area on the upper lane with the most of its cells not being ob-

structed by the vehicle following the hop (i.e., H3), though some cells located to

the rightmost side of the triangle may be obstructed. To find the index of the last

non-obstructed cell, we identify three line segments s1, s2, and s3 on the triangle.
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s1 is a segment starting from the middle of the hop’s cell and ending at the upper

left corner of the cell occupied by H3. The length of s1 is (2HDc−1)∆
2

, where HDc

is the headway distance. The tangent of the angle α corresponding to the lower

vertex of ULTr can be obtained from s1 as follows:

tan(α) = 2s1
Γ

= (2HDc−1)∆
Γ

(5.24)

s2 is a segment starting from the middle of the cell h on the upper lane and

ending at the point where the hypotenuse of the triangle intersects the side of a

cell on the upper lane. The length of s2 is
(
Wl − Γ

2

)
tan(α), where Wl is the lane

width. A generalized expression for s2 on any upper or lower lane Ln is

s2 =
(
|Ln − Lh|Wl − Γ

2

)
(2HDc−1)∆

Γ
(5.25)

s3 starts from the center of the cell h on the upper lane. It ends at the intersection

point of the hypotenuse and the middle line on the upper lane. It follows that

s3 = tan(α)Wl =
(2HDc−1)∆

Γ
Wl. For any upper/lower lane Ln, s3 is expressed as

follows:

s3 = |Ln − Lh| (2HDc−1)∆
Γ

Wl (5.26)

Using line segment s2, the minimum index of the first obstructed cell on the upper

H2 H3

w
l

w
v g 
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s3

Hidden Terminal Range of Tx wrt. H2

O1 O2

Figure 5.5: Obstruction caused by H3 as the direct follower of hop H2

lane is determined (cell o1 in Figure 5.5). The index of such cell is identified as

follows. Define s′ = s2 − ∆
2
and s′′ = s′ − ⌊ s′

∆
⌋∆. If s′′ ≥ ∆

2
, the index of o1 is

⌈ s′
∆
⌉ + h otherwise it is ⌊ s′

∆
⌋ + h. Using line segment s3 and following the same

arguments, the maximum index of the first obstructed cell (cell o2 in Figure 5.5)
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is determined. Applying the above arguments to any lane within the upper-lanes

or lower-lanes sub-problems yields a pair of indices o1 and o2 corresponding to

that lane. For the convenience of the following arguments, notations o1,n and

o2,n correspond to the minimum and maximum indices of obstructed cells on a

lane Ln.

Cell indices o1 and o2 serve two purposes. Before the implementation of

node arrangements, where only the indices of the hop and the following vehicle

are known, o2 will determine whether or not the obstruction from the follow-

ing vehicle of the hop advances into the hidden node region. For a given lane

Ln, such decision is made by comparing o2,n and the boundary cell CSDc,n on

the hidden terminal region. In the upper-lanes sub-problem, if for any lane Ln,

o2,n < CSDc,n, then the procedure of implementing all possible node arrange-

ments reduces to a single arrangement whose cells in the hidden terminal region

overlapping with the upper lanes are obstructed. For this node arrangement,

which is produced by function leastDistArrange in Algorithm 5.1, the outcome

interference power is only determined by the distances of hidden nodes from the

hop. In this situation, the maximum aggregate interference power corresponds

to the case where the closest cells to the hop on the hidden terminal region are

occupied by vehicles (i.e., cells CSDc,n + 1 for all lanes Ln). Given the location

of the first interferer on a lane, the locations of other occupied cells on that lane

are determined using the CA rules.

In the case that o1,n or o2,n indicates an advancement into the hidden node

region on a lane Ln, then all possible arrangements of nodes are generated to

find the arrangement yielding the maximum aggregate interference power. Given

a particular node arrangement, the exact index of the first obstructed cell on

lane Ln is found by iterating from cell index o1,n to o2,n and checking the cells in

between. The index of the first cell with state 1 or −1 (occupied by a vehicle)

determines the first obstructed cell on the lane Ln. Denote the index of this cell

by on. The set of the obstructed occupied cells on the lane Ln represented by Ωn

is updated by adding the cell indices in range [on, NSDc,n] on condition that the

cell state is 1, implying the obstruction of the front part of the vehicle where the

antenna is installed. The cells on the lane Lh and beyond the location of H3 are

all considered as obstructed cells. The indices of those cells with state 1 are then
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added to the hth row of Ω (i.e., Ωh).

The above arguments are similarly applied to the lanes in the lower-lanes sub-

problem. It remains to address the case of obstruction caused by occupied cells

other than the vehicle following the hop.

c) LOS obstruction by vehicles on other lanes

We investigate the obstruction caused by vehicles situated on lanes different from

the hop’s lane. Figures 5.6 and 5.7 illustrate projections of Figure 5.4 corre-

sponding to the obstruction caused by a vehicle located on a lane different from

the hop’s lane. For the sake of generalization, we consider an obstructing vehicle

occupying more than a cell, with cell NLB-H representing the header cell and

NLB-T the trailer of the vehicle. In the following, we identify the cells on various

lanes being obstructed by this vehicle. Assume the indices of NLB-H and NLB-T

are j and k, respectively. Further, assume the lane of the obstructing vehicle is

Lo. On a lane Ln, we determine the indices of the start and end cells obstructed

by this vehicle. The geometry required to find the index of the starting obstructed

cell is illustrated in Figure 5.6. For convenience, the cell indices are shown above

the cells. All triangles in the figure are right angled triangles. β is the angle

of the upper vertex of the largest triangle. The length of the line segment s1 is

obtained as s1 = (j − h)∆ − ∆
2
. Accordingly, the tangent of β is expressed as

follows:

tan(β) = s1
|Lo−Lh|Wl+

Γ
2

=
(j−h)∆−∆

2

|Lo−Lh|Wl+
Γ
2

(5.27)

s2, as shown in Figure 5.6, is a line segment starting from the cell with index h

on lane Ln and ending at the intersection point of the triangle’s hypotenuse with

the side of a cell on lane Ln (the upper side of cell (e)). The length of s2 can be

obtained as follows:

s2 =
(
|Ln − Lh|Wl +

Γ
2

)
tan(β) =

(
|Ln − Lh|Wl +

Γ
2

) (j−h)∆−∆
2

|Lo−Lh|Wl+
Γ
2

(5.28)

The line segment s2 determines the index of cell (e), which in turn helps de-

termine the start cell of the sequence of the obstructed cells on lane Ln. Whether

the cell (e) itself is the starting obstructed cell depends on how far the intersection
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Figure 5.7: The index of the last cell on a lane Ln obstructed by a vehicle on a
lane Lo

point of the large triangle’s hypotenuse and the cell (e) is from the middle of the

cell (e). To determine this, define s′ = s2 − ∆
2
. The projection of the hypotenuse

on the side of cell (e) is s′′ = s′ − ⌊ s′
∆
⌋∆. In the next step, we build another two

smaller triangles. A triangle is built with a side (p1) starting from the upper left

corner of cell (e) and intersecting the large triangle’s hypotenuse, and the second

side is s′′. Likewise the largest triangle, the upper angle of this triangle is also

equal to β. It follows p1 =
s′′

tan(β)
. The third triangle is build with a side (s3) equal

to ∆
2
and originating from the center of the cell (e). Another side of the triangle
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denoted by p2 is the extension of p1 to the middle of the left side of the cell (e).

The upper angle of this triangle is denoted by φ. It follows that p2 = p1 +
Γ
2
and

φ = arctan
(

∆
2p2

)
. The index of the first obstructed cell on lane Ln denoted by

b1 (Ln) is decided based on the angles β and φ; if β ≥ φ then b1,n = ⌈ s′
∆
⌉+ h+ 1,

otherwise b1,n = ⌈ s′
∆
⌉+ h.

We use the geometry depicted in Figure 5.7 to find the index of the last

obstructed cell. By a similar approach used to find the starting obstructed cell,

the length of segments s1 and s2 (shown in Figure 5.7) are obtained. It follows

that s1 = (k − h)∆ + ∆
2
. Accordingly, tan (θ) is expressed as follows:

tan(θ) = s1
|Lo−Lh|Wl−Γ

2

=
(k−h)∆−∆

2

|Lo−Lh|Wl−Γ
2

(5.29)

And the length of s2 is obtained as follows:

s2 =
(
|Ln − Lh|Wl − Γ

2

)
tan(θ) =

(
|Ln − Lh|Wl − Γ

2

) (k−h)∆+∆
2

|Lo−Lh|Wl−Γ
2

(5.30)

Finding the index of the last obstructed cell on a lane Ln is straightforward and

is similar to the approach applied to find the start cell. Denote the index of

the last obstructed cell by b2,n. Once b1,n and b2,n are known, the nth row of

the obstruction map (i.e., Ωn) is updated by adding the indices of those cells

in range [b1,n, b2,n] which satisfy the following conditions: (i) they are located

on the hidden terminal region, and (ii) the cell state is 1, implying for the oc-

cupation of the cell by the front part of the vehicle where the antenna is installed.

d) Construction of distance map

For each generated node arrangement, the data structure D maintains the dis-

tance between the hop and the occupied cells (with state 1) which are situated

in the hidden terminal region of the Tx. The construction of distance map D

is implemented in function getDistanceMap and is invoked in lines 10 and 18

of Algorithm 5.1. For ease of computation, cells are separated with respect to

the lanes in which they are located. An entry dc,n in D stands for the distance

between the hop and a cell with index c situated on a lane with index (Ln). It
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follows that

dc,n =
√

[(c− h)∆]2 + [|Ln − Lh|Wl]
2 (5.31)

e) Interference power corresponding to a node arrangement instance

The aggregate interference power imposed by hidden nodes and experienced in

the hop is implemented in function calcAggPow and invoked in lines 11 and 19 of

Algorithm 5.1. Given the DSRC and channel model parameters, the obstruction

and distance maps Ω and D provide sufficient information for the calculation

of the aggregate interference power in the hop. To this aim, Algorithm 5.2 is

proposed to calculate the aggregate interference power corresponding to a given

node arrangement. This algorithm implements the function calcAggPow in Al-

gorithm 5.1. It iterates through the entries in D. For each entry, the cell index

and the distance from the hop are fetched. The cell index is then found in the

obstruction map Ω to determine the obstruction status of the cell. The distance d

of a cell determines which component of the path loss model described by Equa-

tion 5.1 should be applied. The obstruction status of the cell determines which of

the two parameter settings corresponding to LOS and OLOS should be applied.

5.6.4 Reachable Distance of a Safety Message

The distance to which a safety message can reach in single broadcast is determined

by the SINR value of the signal at that distance and a predetermined SINR

threshold (SINRth). In an intended Rx, the SINR value is determined by the

received signal from the transmitter Tx and the interference power experienced

in Rx plus a constant noise power Pn. With some abuse of notations, let h and

k represent the hth and kth vehicles among the sequence of vehicles on a lane

with transmitter Tx being the leading vehicle. We term such vehicles hops h

and k. Let SINRh and SINRk be the SINR values at hops h and k, respectively.

The reachable distance on a lane is equal to the distance of a hop h from the

Tx such that SINRh ≤ SINRth, and for any other hop k such that k ≤ h, the

condition SINRk ≥ SINRh is satisfied. In the following, we prove that under

certain assumptions the reachable distance obtained by the model is a lower

bound to the real system. Note that the following proposition and lemmas do not

negate the general lower bound property of the model; however, developing proofs
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Algorithm 5.2 Implementation of function calcAggPow in Algorithm 5.1

Require: D, Ω
Require: (db, IL, n1,LOS, n2,LOS, PL0LOS, n1,OLOS, n2,OLOS, PL0OLOS) ∈ PARch

Require: transmission power P
Require: overlapping probability Provp ∈ PARdsrc

1: Pif ← 0
2: L← lane indices in D
3: n← 1
4: while n ≤ size(L) do
5: C ← all cells in Dn

6: for c ∈ C do
7: d← Dc,n

8: if c ∈ Ωn then
9: n1 ← n1,OLOS, n2 ← n2,OLOS

10: PL0← PL0OLOS

11: else
12: n1 ← n1,LOS, n2 ← n2,LOS

13: PL0← PL0LOS

14: end if
15: if d ≤ db then

16: Ploss ← PL0 + IL+ 10n1 log10

(
d
d0

)

17: else
18: Ploss ← PL0 + IL+ 10n1 log10

(
db
d0

)
+ 10n2 log10

(
d
db

)

19: end if
20: Pif ← Pif + Provp 10

P−Ploss
10

21: end for
22: n← n+ 1
23: end while
24: return Pif

for the general cases is extremely difficult. For the general case of lower bound

and upper bound properties of the model, we rely on our extensive experiments

presented in Section 5.8.

Assumptions:

(i) for any hop h, the aggregate interference power obtained by the Algo-

rithm 5.1 is an upper bound for the equivalent hop in the real system.

(ii) any vehicle in the real system drives in the middle of the lane in which it is
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situated.

(iii) if the distance between a hop h and the Tx in the real system is d̂h, its

distance in the CA model is set to dh = ⌈ d̂h
∆
⌉∆.

Given the above assumptions, Lemma 5.6.1 states that the SINR obtained

by the model for any given hop h is a lower bound to the real system with the

condition that the hop h and the Tx are situated on the same lane. This case is

referred to as similar-lane scenario.

Lemma 5.6.1. Assume that a transmitter vehicle Tx and an intended recipient

vehicle identified by hop number h are situated on a lane and the distance of h

from the Tx in the real system is d̂h. The SINR obtained by the model for the hop

h is, at most, as large as the SINR for the hop h in the real system.

Proof. By assumption (i), the aggregate interference power at h obtained by the

model is at least as large as in the real system. It remains to show that the

received power in h from the Tx obtained by the model is, at most, as large as

in the real system. Denote Pm
h the received power obtained by the model and

Ps
h the power measured in the real system. Let dh be the distance of hop h from

the Tx calculated in the CA model. The assumption (iii) implies that dh ≥ d̂h.

Assumption (ii) implies that in a similar-lane scenario any hop h beyond the first

one is obstructed from the LOS of the Tx. By applying the assumption (iii)

again, it follows that the likeliness of LOS obstruction between hop h and the Tx

in the model is at least as high as in the real system. This result along with the

previous one, i.e., dh ≥ d̂h, imply that Pm
h ≤ Ps

h.

The lower bound property of the model for reachable distance in a similar-lane

scenario follows from Lemma 5.6.1.

If Tx and Rx are located on different lanes, the proof of lower bound property

is not straightforward due to a complex obstruction behaviour. However, under

certain conditions stated in Proposition 5.6.1 and Lemma 5.6.2, it can be proved

that the reachable distance obtained by the model for a similar-lane scenario is a

lower bound for the reachable distance obtained for a different-lane scenario. This

implies that it is only necessary to find the reachable distance in a similar-lane

scenario and consider it as a lower bound to the real system for both scenarios.
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Proposition 5.6.1. In a different-lane scenario, the likeliness of LOS obstruction

between Tx and a hop h beyond the first hop is, at most, as high as in a similar-

lane scenario.

Proof. By assumption (ii), all hops but the first one are obstructed in a similar-

lane scenario. In a different-lane scenario, on the other hand, the LOS obstruction

occurs if at least one vehicle is present in the region between the hop h and Tx,

and such vehicle obstructs the LOS of the hop h and the Tx. The chance that

this occurs is less compared to the certain obstruction in a similar-lane scenario.

Hence, for the same hop h > 1, the obstruction is less likely in a different-lane

compared to a similar-lane scenario.

Lemma 5.6.2. Suppose Tx and its hop h > 1 (i.e., beyond the first hop) are

situated on different lanes. Let δL be the absolute difference of the lane numbers

of the Tx and its hop h. Also, let Wl, and HD be the lane width and headway

distance, respectively. If δL <
√
3HD
2Wl

, the SINR of the hop h in a similar-lane

scenario is a lower bound on the SINR of the equivalent hop in a different-lane

scenario.

Proof. In a different-lane scenario, the average relative position of the hop h with

respect to the Tx position is h HD
2

. Thus, the average distance between the Tx

and hop h is d =

√
(h HD)2

4
+ (δL Wl)

2. Substituting δL =
√
3HD
2Wl

in the expression

of d yields d′ = HD
2

√
h2 + 3. Using the fact that

√
h2+3
2
≤ h ∀h ≥ 1, it follows

d < d′ ≤ h HD. The right side of the inequality is the distance between the Tx

and the hop h in a similar-lane scenario. It follows that the distance of the Tx

and the hop h in a different-lane scenario is on average less than the distance in a

similar-lane scenario. Given the shorter distance and less severe LOS obstruction

according to the Proposition 5.6.1, it follows that the received power in the hop

h > 1 from the TX in a different-lane scenario is on average greater than in a

similar-lane scenario.

It remains to show that the maximum interference power in hop h in a

different-lane scenario is smaller compared to a similar-lane scenario. This can

be inferred from the fact that on average, the distance between the hop h and

interferers in the hidden terminal region is greater in a different-lane compared
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to the equivalent hop in a similar-lane scenario, because, as stated above, the

hop is closer to the Tx in a different-lane compared to a similar-lane scenario.

Also, with an increase in the distance of the hop from the hidden terminal region,

the LOS obstruction between the hop and interferers increases, implying smaller

interference power in the hop. It follows that in a different-lane scenario, on av-

erage, a hop h experiences less interference compared to a similar-lane scenario.

The less severe LOS obstruction and the closer distance between the hop h and

Tx in different-lane lead to greater SINR in h in a different-lane compared to a

similar-lane scenario.

5.7 Signalized Intersection Scenario

The hidden terminal effect is expected to demonstrate a highly complex behaviour

in a traffic scenario with the presence of an intersection. An accurate study of such

behaviour requires a traffic model to be in place for the characterization of the

traffic behaviour at time instants during the red and green phases of a signalized

intersection. Unfortunately, in spite of several decades having passed since the

first studies were published on traffic behaviour at signalized intersections, to date

there is no universal model capable of accurate describing the traffic parameters

such as headway distance. Those models proposed so far mainly address the

average delay and queue size during a red phase of the traffic light cycle [75]. The

studies on the traffic behaviour in the green phase are confined to few parameters

including saturation flow rate and the traffic indicators at the time of passing

the stop line of an intersection [11]. In particular, there is no universal model

capable of describing the headway distance parameter at any given time instant

during a cycle of the traffic light. In the absence of appropriate models, the

study of interference and the reachable distance of safety messages in spatial-

temporal dimensions is extremely difficult. Consequently, our aim is to use an

existing traffic model suitable for the investigation of interference in extreme case.

Accordingly, we limit our study of hidden terminal interference to an upper bound

interference for the system rather than for any given hop, as we addressed in the

road stretch scenario.

The upper bound interference relates to the interference power experienced in
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some node assumed to be located on the boundary of the carrier sense distance

of an anonymous target transmitter. Considering the highly dynamic traffic be-

haviour and the presence of heterogeneous traffic states in an intersection, the

problem of finding upper bound interference involves the exploration of the in-

terference power in potentially many nodes and in potentially many traffic con-

ditions. We aim to reduce the extremely large size of the problem by identifying

a scenario which exhibits the highest node concentration with respect to the in-

tersection center. A probabilistic CA is proposed to model the identified traffic

scenario and a simple procedure is proposed to find the upper bound interference

power.

5.7.1 Assumptions

The intersection is assumed “drive through” without right and left turns. As

shown in Figure 5.8, the intersection is comprised of a horizontal and a vertical

bidirectional streets. The horizontal street, denoted by RW-RE, is comprised of

two segments RW and RE situated to the right and left side of the intersection.

Similarly, the vertical street, denoted by RN-RS, is comprised of two segments

RN and RS above and below the intersection.

The intersection is assumed to be signalised with fixed timing of the traffic

light. The total cycle is Tc and the green time for a given street is Tg. We assume

the amber time is equally shared between the red and the green time. This implies

that the red time of the given street is Tred = Tc−Tg. The intersection is assumed

to be operating in perfect mode, i.e. the traffic queued up during a light cycle is

discharged in the same cycle and over-saturation queue does not emerge.

The model is generally independent from the number of lanes in a road seg-

ment. The arguments hereafter are presented for a typical lane situated on a

given road segment. The arguments can be easily extended to other lanes on the

same road segment provided that the traffic direction and the timing of the traffic

light are identical for those lanes.

115



5.7 Signalized Intersection Scenario

5.7.2 Traffic Model

In Section 5.6, the CA model was deterministic in the sense that a cell was either

occupied or empty. Such model is suitable for predictable traffic behaviour, where

the traffic network is mainly dominated by a single traffic state. By contrast, in

an intersection scenario multiple traffic states coexist with frequent transitions

from one state to another [23]. Consequently, the application of a deterministic

CA may not represent well the traffic behaviour in an intersection scenario. For

this reason, we opt to model the traffic using a probabilistic CA, where the cell

occupation is expressed probabilistically.

The base parameter used in the following arguments is headway distance. Two

notions of headway distance are applied, each suitable for certain traffic states.

Rear bumper to front bumper headway distance mainly suits jammed traffic

states where the vehicle spacing is potentially smaller than the vehicle length.

For other cases, rear bumper to rear bumper headway distance is applicable. In

the following paragraphs, these two cases are addressed in the calculation of the

probability of cell occupation.

Suppose the rear bumper to front bumper headway distance is HDrf and mea-

sured in number of cells. Like the road stretch scenario, assume that three types

of vehicles with different lengths exist in the network, even though it is possible

to consider more types in the model. The notations related to size and popu-

lation of vehicle classes are borrowed from Section 5.6. Denote the probability

of cell occupation by Proc. To calculate Proc, we introduce the notion of basic

blocks corresponding to different vehicle types. A basic block is a group of cells

associated with a vehicle, and includes the cells accommodated in the headway

distance and the cells occupied by the vehicle. Define bs, bm, and bl as the block

sizes corresponding to small, medium, and large vehicles respectively. It follows

that
bs = Ls +HDrf

bm = Lm +HDrf

bl = Ll +HDrf

(5.32)

where Ls, Lm, and Ll are the the lengths of vehicles in number of cells.

The average size of a basic block, termed generic block size, is obtained as
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follows:

b = psbs + pmbm + plbl (5.33)

It follows that the probability of cell occupation is

Proc =
psLs + pmLm + plLl

b
(5.34)

The probability that a cell contains the front part of a vehicle where the antenna

is installed is obtained as:

Prof = Pr(OF |OC)Pr(OC) =

(
ps
Ls

+
pm
Lm

+
pl
Ll

)
Proc (5.35)

where OF and OC are the events representing occupation by the front cell of a

vehicle and the occupation by a vehicle, respectively.

If the rear bumper to rear bumper headway is given, we apply the following

method. Let HDrr be the headway distance measured in number of cells. In this

case, only one basic block with size HDrr is considered, since the vehicle length

is included in HDrr. Thus, in Equation 5.34 the denominator b is replaced with

HDrr. Accordingly, Prof is recalculated by Equation 5.35 and using the modified

Proc.

The probability of cell occupation expressed by Equation 5.34 facilitates the

calculation of LOS and OLOS probabilities for any pair of nodes. Suppose the

cell indices h and i correspond to the cell locations of an intended recipient Rx

and a potentially interfering node f . Denote by LOSh,i and OLOSh,i, the LOS

and OLOS events corresponding to these nodes. Initially, the set Ωh,i of cells ob-

structing the LOS between cell h and i are constructed using a similar approach

to that described in Section 5.6. It should be noted that, in a probabilistic CA,

obstruction by a single cell does not imply full obstruction, since cells are occu-

pied probabilistically. Also, the obstructing cells may have different occupation

probabilities due to the presence of different traffic states in the network. There-

fore, in a second step, the obstructing cells are classified based on the similarity

of occupation probability. Denote by S the union of the subsets of Ωh,i with

distinct occupation probabilities. A member s ∈ S is the subset of cells with

identical occupation probabilities. It follows that the probability of events LOSh,i
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and OLOSh,i can be obtained as follows:

Pr(LOSh,i) =
∏
s∈S

(
1− Pr(oc,s)

)‖s‖

Pr(OLOSh,i) = 1− Pr(LOSh,i)
(5.36)

where Pr(oc , s) and ‖s‖ are the occupation probability and the number of cells in

a given subset s ∈ S, respectively.

5.7.2.1 Discretization Error and the Error Compensation Mechanism

Using cellular automata for the modelling of the traffic network introduces some

error due to the discretization. In the proposed CA model, the discretization

error is caused by two sources: transforming the actual headway distance, and

the actual vehicle size, to discrete quantities measured in numbers of cells. Except

for the small vehicles with the length equal to the base cell length (i.e., ∆), the

discretization of the medium and large vehicles imposes some error with respect to

the actual vehicle size. In the following, a simple error compensation mechanism

is proposed, assuming that the discrete quantities are determined by upward

rounding, i.e., HD = ⌈ ĤD
∆
⌉, Lm = ⌈ L̂m

∆
⌉, and Ll = ⌈ L̂l

∆
⌉.

Denote by ĤD the actual headway distance. Also denote by L̂m and L̂l the

actual sizes of medium and large vehicles, respectively. A medium size vehicle

contributes an error em = Lm∆ − L̂m. Similarly, a large vehicle contributes

el = Ll∆− L̂l. Given the populations of the medium and large vehicles denoted

by pm and pl, the total error incurred due to vehicle size is as follows:

ev = pmem + plel (5.37)

Transforming the headway distance into number of cells incurs an error of ehd =

HD ∆ − ĤD. It follows that the total error in a basic block described by

Equation 5.33 is

eb = ev + ehd (5.38)

If two cells with indices i and j are situated on the same street, the distance
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between the cells, with the error taken into account, is obtained as follows:

d̂ij =

√(
|j − i|∆− |j−i|

b
eb

)2
+ (δL Wl)

2 (5.39)

where δL is the lane difference of the cells, assuming the lanes are indexed by

their ordering on the road segment (e.g., from top to bottom in horizontal street,

and left to right in vertical street).

If the two cells are situated on different streets, the error compensation is

performed with respect to the intersection center.

5.7.3 Traffic Discharge in a Green Phase of the Traffic

Light

As highlighted previously, there is no model capable of describing the full course

of traffic discharge in a green phase of the traffic light cycle. However, there

are some well-established models proposed for describing the characteristics of

discharging traffic at the stop line of a signalized intersection. One such model is

proposed by Akcelik et al. [11]. Using extensive field experiments, they derived

the following expressions for the queue discharge speed, flow rate, and headway

as a function of the time since the start of green phase [11]:

vs(t) = Vn

[
1− e−mv(t−tr)

]

qs(t) = Qn

[
1− e−mq(t−tr)

]

hs(t) = Hn

[1−e−mq(t−tr)]

(5.40)

The definitions of the above parameters are as follows [11]:

t: time elapsed in green phase (seconds),

tr: average driver reaction time corresponding to the first vehicle in the queue

(seconds),

vs(t): discharge speed of the queue at time instant t (km/h),

Vn: maximum discharge speed of the queue (km/h),

mv: a model parameter,

qs(t): discharge flow rate of the queue at time instant t (veh/h/lane),
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Qn: maximum discharge flow rate of the queue (veh/h/lane),

mq: a model parameter,

hs(t): discharge headway of the queue at time instant t and at the stop-line

(seconds),

Hn: minimum discharge headway of the queue (seconds)

Akcelik et al. calibrated the parameters mv, mq, Vn, Qn, and Hn by conducting

measurements in various intersection sites including isolated, closely spaced, and

right turn sites [11].

driving direction
RE

RS

RN

RW

d
ri
v
in

g
 d

ir
e
c
ti
o
n

Rx

Rx

Rx

Rx

driving direction

driving directiondriving direction

d
riv

in
g
 d

ire
c
tio

n

HDf

HDd HDf

HDd

H
D

f

H
D

f
H

D
d

H
D

d

Hj

Hj

Figure 5.8: Signalized intersection scenario

5.7.4 An Extreme Node Concentration Scenario

We conjecture that the upper bound interference power in an intersection relates

to an extreme node concentration from the perspective of a node Rx situated
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on the intersection. In this situation, the node density is high and the distance

of the (interfering) nodes from the Rx is small. This suggests that, in general,

the interference is the most severe when the traffic is jammed, because the node

concentration in this state reaches its maximum. While this is true, the outcome

interference power will not be a tight upper bound, especially when the normal

traffic conditions are considered. In the following, we identify an extreme node

concentration scenario which on one hand complies with the assumption of per-

fect operation and, on the other hand, it is expected to exhibit the maximum

interference power in the intersection.

According to our results presented in Chapter 3, in a red phase, three traffic

states can be identified on a road segment connected to the signalised intersection:

a jammed traffic formed by queuing vehicles, transitional traffic joining the queue,

and a free- or forced-flow traffic occupying the rest of the road segment. Our

previous results also suggest that the maximum queue length on a road segment

occurs sometime near Tred+ tr, where Tred is the duration of a red phase and tr is

the reaction time of the first vehicle in the queue. At the time the queue reaches

its maximum length on one road segment, the discharging vehicles on the other

cross-road segments are still in the vicinity of the intersection. Depending on the

traffic intensity on the different road segments, an extreme node concentration

with respect to the intersection center corresponds to a situation where some road

segments sharing the same phase of the traffic light reach their maximum queue

length, while others have just discharged their queues. Therefore, to characterize

the extreme node concentration, it is necessary to characterise the queue and the

discharge traffic parameters.

The length of the queue relates to the input traffic flow of the road segment

under investigation. To fulfil the perfect operation of the intersection, the input

traffic flow should be determined based on a known saturation flow (Qn) associ-

ated with the signalised intersection [11]. Given qin for a lane on the road segment

and the speed limit Vf of the road segment, the headway distance corresponding

to the free- or forced-flow traffic state is obtained as follows:

ĤDf =
Vf

qin/3600
(5.41)
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ĤDf is then used to obtain the probability of cell occupation Proc,f corresponding

to the part of the road segment operating in the free- or forced-flow traffic state.

The index of the starting cell with this traffic state is determined by the queue

length Nmax as we describe below. The last cell is located at the extreme end of

the segment.

The probability of cell occupation Proc,j corresponding to the cells within

the queue region is determined by applying Equation 5.34 and using the jam

space Hj as a rear bumper to front bumper headway distance. By ignoring the

transitional traffic (for the sake of simplicity), the process of queue formation can

be interpreted as the growth of cell occupation from Proc,f to Proc,j with rate qin.

This allows us to obtain the maximum number of cells on a lane occupied by a

queue at time instant Tred + tr as follows:

Nmax = ⌈
qin
3600

(Tred+tr)

Proc,j−Proc,f
⌉ (5.42)

Nmax is identical for all lanes on the road segment with similar traffic direction.

In a green phase, we use the Akcelik model to find the discharge headway

distance corresponding to the region of the road occupied by discharging traffic.

It follows that at any time instant t after the start of the green phase, the discharge

headway distance at the stop line is HDd(t) =
vs(t)hs(t)

3.6
. Accordingly, occupation

probability Proc,d corresponding to the traffic discharged at time instant t is

derived by applying HDd(t) to Equation 5.34. To find the number and the

range of cells occupied by the discharged traffic up to a time instant, we need

to know the evolution of the headway distance of the traffic after it discharges

the queue. Such information can not be derived from the Akcelik model because

it only describes the headway distance for the current time instant and only

for the stop line. To obtain the headway distance of the previously discharged

traffic, we enforce two assumptions in favour of an extreme node concentration.

First, we assume that the discharging traffic travel in the form of a platoon with

equal headway distance between consecutive vehicles in the platoon. Second, the

headway distance of the previously discharged traffic is assumed to be equal to

the current headway distance at the stop line. With these assumptions in effect,

the number of cells corresponding to the maximum platoon size at the end of a
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green phase is obtained as follows:

Nd = ⌈NmaxProc,j
Proc,d

⌉ (5.43)

The initial position of the platoon discharged at the current green phase is a

cell on the stop line and the end of the platoon on the lanes of the other road

segment connected to the road segment under investigation is determined by Nd.

The starting location of a platoon discharged during the previous light cycle can

be obtained as ⌊ (Tc−tr)vs(Tg)/3.6

∆
⌋, where Tc is the cycle duration and vs(Tg) is

the velocity of the platoon at the end of a green phase with duration Tg, and

determined by the the Akcelik model. This can be applied to as many previous

cycles as appropriate with the condition that the length of the road segment

where the platoon is situated is not exceeded.

5.7.5 Maximum Aggregate Interference Power

We obtain the maximum interference power in the intersection using a procedure

comprised of three phases as follows:

Phase 1: Assignment of occupation probabilities

Initially, the road segments are categorized based on the traffic light phase they

share. Assuming that the traffic light is scheduled in two phases, this, for the

intersection depicted in Figure 5.8, leads to two categories with road segments

RW and RE falling in one category, and RS and RN in the other. Denote the cat-

egories by CA and CB, respectively. Arbitrarily, the red phase is assigned to CA.

For each road segment in CA, the maximum queue length is obtained by Equa-

tion 5.42. The size(s) and the region(s) occupied by the previously discharged

platoons up to a given number of cycles are obtained using Equation 5.43. The

probabilities of cell occupation corresponding to each traffic state are obtained

using Equation 5.34. In the meantime, the green phase is assigned to CB and

the traffic parameters and occupation probabilities corresponding to the current

and previous discharged platoons are determined for each road segment in the

category.

Phase 2: Calculation of aggregate interference power per lane
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In the next phase, given a road segment and a lane on this road segment, a cell is

selected on this lane as the initial location of the Rx. The initial cell location is

chosen in such a way that its distance from the center of the intersection is at least

NSD H meters. By an iterative procedure, Rx is advanced towards the center of

the intersection. In each iteration, the cells located in the region between Rx up

to the boundary cells determined by NSD H and NSD V corresponding to the

horizontal and vertical roads are considered as the locations of interferers. The

NSD H and NSD V are obtained for all road segments using Equations 5.15 and

5.18. Next, the obstruction and distance maps are constructed using a similar

approach to that described in Section 5.6. Using these information, the proba-

bility of LOS obstruction between the Rx and each interferer is calculated using

Equation 5.36. At this point, the distance and the obstruction probabilities are

known, and thus the aggregate interference power in Rx can be obtained.

Phase 3: Obtaining aggregate interference for the intersection

By iteration through the above procedure, for each lane, the maximum of the

aggregate power values corresponding to all cell locations of Rx is recorded. For

a given road segment, the aggregate interference power is the maximum of the

values corresponding to all lanes on the segment. Accordingly, the maximum

of the values corresponding to all segments will represent the interference power

of the intersection under the current phase assignment. The above procedure is

repeated for as many phase assignments. The upper bound interference power of

the intersection is the largest outcome interference corresponding to the various

phase assignments.

In a real traffic scenario with continuous vehicle position, it is possible that

the instant position of a vehicle v driving on a road (e.g., RW-RE) coincides

with a position in the range between two neighbouring lanes on the other road

(e.g., RN-RS). If this occurs and if the width of vehicles are smaller than the lane

width, vehicle v will have a full LOS with the vehicles on the two neighbouring

lanes on the road RN-RS. Similarly, the instant position of v can fall between

the intersection walls and a lane of the road RN-RS neighbouring the wall. If the

distance to wall from the neighbouring lane on RN-RS is non-zero or vehicles’

width are smaller than the lane width, vehicle v will have LOS with all vehicles
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situated on the lane of RN-RS neighbouring the wall. The two mentioned cases,

if they occur, are predicted to exhibit a relatively large interference power in v.

Therefore, these two cases are incorporated into the aforementioned procedure

by enforcing a strategy that if the Rx cell is situated on the center area of the

intersection, the Rx either has full LOS with the vehicle on the lane of cross-

road neighbouring the wall or with any two neighbouring lanes on the cross-

road, whichever yields the largest interference. The last assumption is that a

discharging vehicle currently located on the intersection region will have LOS

with the first vehicles queued on the cross-road. This assumption is applied in

order to capture the fact that vehicles ahead of the queues are inclined to stop

as close as possible to the stop line, thus having LOS with the crossing vehicles.

5.8 Experimental Results

Paramics [49] is used to construct the traffic networks corresponding to the urban

road stretch and signalized intersection scenarios. We present the experimental

results separately for the two scenarios. A set of parameters and the correspond-

ing values used in both scenarios are shown in Table 5.4 with the exception

that NLOS parameters are used only in the intersection scenario. The chan-

nel model parameters and the corresponding values are specified in [8] and are

repeated in Table 5.4. Carrier sense power threshold (CSth), noise power Pn,

and SINR threshold (SINRth) are configured according to Torrent Moreno et.

al. [163]. The value 16.535 dBm for transmission power (P) is chosen based on

a desired transmission range of 300 m. With this power and in the absence of

interference, an intended receiver located 300 m away from the transmitter can

receive the signal with a power equal to a reception threshold (RCth) and with

a sufficiently large Signal to Noise Ratio (SNR). The value of parameter RCth

depends on the device sensitivity, modulation technique, FEC coding rate, and

the data rate of the packet. A range of values from -85 to -94 dBm are used in

the literature [76; 163]. We set the RCth to -89 dBm, representing an average

sensitivity for data rate 3 Mbps and modulation BPSK. For robustness, the data

rate R is set to 3 Mbps [163]. In both scenarios, without loss of generality, only

periodic messages are considered and the case of event-driven messages is not
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Table 5.4: Physical, DSRC, and traffic model parameters and configuration
values

Group Parameter Value

Path Loss (global)
Implementation Loss (IL) 6.8 dBm
Breakpoint Distance (db) 104 m
Reference Distance (d0) 10 m

Path Loss (LOS)
Free Space Path Loss (PL0) 56.5 dBm
n1 1.81
n2 2.85

Path Loss (OLOS)
Free Space Path Loss (PL0) 66.5 dBm
n1 1.93
n2 2.74

Path Loss (NLOS)

Constant Path Loss 3.75 dBm
Wave Length (λ) 0.0508
is 0
nNLOS 2.69

Other Physical

Frequency 5.9 GHz
Carrier Sense Threshold (CSth) -96 dBm
Noise Power (Pn) -99 dBm
SINR Threshold (SINRth) 5 dB
Transmission Power (P) 16.535 dBm
Reception Threshold (RCth) -89 dBm
Data Rate (R) 3 Mbps
Slot Time (σ) 16 µs

DSRC
Periodic Message Rate (λr) 10 Hz
Periodic Message Length (Mb) 500 bytes

Traffic Model

Cell Length (∆) 4 m
Cell Width (Γ) 1.6 m
Lane Width (Wl) 3.7 m
Reaction Time (tr) 1 s

covered. This conservative decision is justified by the fact that the generation

rate of event-driven messages is not specified in the reference DSRC standard.

Proprietary setting of the generation rate for the event-driven case is potentially

misleading and affects the validity of conclusions. For periodic messages, on the
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other hand, the standard highlights 1–10 Hz as the recommended message gen-

eration rate. For the sake of high interference, as the main focus of the current

work, the message generation rate is set to λr = 10 Hz, which is equivalent to

a periodicity of 100 ms. Regarding the message length, a 200-byte message can

accommodate the basic safety information. However, if the overhead imposed

by security and privacy information is included, the resulting total message size

amounts to values in the range 284 to 791 bytes [138]. We set the periodic mes-

sage length Mb = 500 bytes as the multiple of 100 bytes that is closest to the

average value in the range [284, 791]. The slot duration σ is set to 16 µs. With

these settings, the steady state probability of periodic message transmission in

a time slot is obtained using the expression proposed in Chapter 4 for τb. The

steady state τb is used for the experiments, both in the model and in the traces.

Thus, the random MAC behaviour is not considered. Instead, the experiments

are focused on the effects of the vehicular traffic.

While the investigation of the impacts of vehicle size on the interference be-

haviour merits its own dedicated experiment plan, without loss of the generality

of the analytical models proposed in this chapter, we restrict the experiments to

the case of a single type of vehicle. In that regard, passenger cars are used in our

experiments. This choice is in agreement with the statistics on car populations in

urban traffic systems [4], indicating the presence of a significantly large popula-

tion of passenger vehicles (> 80%) in Australia. We set L̂s = 4 m and Ŵs = 1.6 m

as the typical length and width of a passenger car. Also, the population of this

car is set to ps = 1. Accordingly, the length and width of a cell in the CA model

are configured to ∆ = L̂s = 4 m and Γ = Ŵs = 1.6 m respectively.

Regarding the mean driver reaction time (tr), a relatively wide range of values

have been addressed in the literature. In the literature of traffic science, the mean

driver reaction time is assumed 1 second with values in range [0.5, 2] seconds [9;

72; 168]. In Paramics, as our choice of traffic simulator, the recommended mean

driver reaction time is also 1 second. We also use tr = 1 second throughout the

experiments. Finally, the lane width is set to Wl = 3.7 m, representing the width

of a lane in an urban major road.
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5.8.1 Road Stretch Scenario

In this experiment, the main objective is to cover the most prevalent urban traffic

settings in terms of speed limits and the number of lanes accommodated by a

road stretch. To this end, twelve bidirectional road stretches are implemented,

each with an equal number of lanes in both directions. The scenarios include 4

velocities and 3 lane configurations per velocity setting. The selected velocities

are 40, 50, 65, and 80 kph and the lane settings are 2, 4, and 6 lanes. The length

of the road stretch in all scenarios is set to 8 km, with two traffic zones situated

at the start and the end of the road stretch. The length of each zone is set to

500–800 m. To prevent the impact of traffic scarcity on the traffic dynamic and

hence avoiding the potential biases in the measurements, traffic flows are set to

a significantly large value of 3600 vehicles/hour/lane. With such traffic flow, the

two zones are saturated in all scenarios. To force the simulator to reproduce –

as much as possible – the capacity traffic state, a parameter in the simulator

termed “target headway factor” is set to a value smaller than the reaction time.

We set this parameter to 0.85 as the recommended minimum target headway

factor for urban traffic. In each scenario characterized by a velocity and a lane

configuration, the simulation time is set to one hour with the initial 20 minutes

dedicated to warm-up period. In the remaining 40 minutes, 480 time instants

are selected with a step of 5 seconds and the associated traces are extracted from

the total recorded traces. At each time instant, the transmitter vehicles (i.e.,

Txs) are selected from different lanes. Given the lane, location, and identity of

a Tx, the associated hops of the Tx are identified on various lanes. The hops

information are then used for the measurement of the parameters of interest.

In the initial experiments, we address the similar-lane scenario, i.e., the Tx and

its hops are situated on the same lane, followed by the different-lane scenario. Two

scenarios corresponding to the minimum and maximum velocities (i.e., 40 kph and

80 kph) are selected to demonstrate a high level comparison between the model

and the traffic traces. The SINR values, and the received and interference powers

corresponding to the various lane configurations for the two velocities are shown

in Figures 5.9 and 5.10, respectively.

A number of conclusions can be drawn from the results. First, the strong
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Figure 5.9: 40 kph scenarios (“L” stands for lane)

similarity between the curves corresponding to the model and the traces indicates

that the model has a high correlation with the traces. Second, the interference

power increases with the increase in the number of lanes. Conversely, SINR

decreases with the number of lanes increasing. In 2-lane scenarios, sharp increases

(decreases) of interference power (SINR) can be observed for both velocities. At

40 kph, it starts from the 27th hop (Figure 5.9a), whereas it starts from the 12th

hop in the 80 kph scenario (Figure 5.10a). A reasonable explanation for this

phenomenon is the existence of LOS between the interferers and the hops close

to the location of interferers. This, in turn, gives rise to the interference power

experienced in those hops near the interferers. Observe that this phenomenon
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Figure 5.10: 80 kph scenarios (“L” stands for lane)

rarely occurs in 4-lane and 6-lane scenarios, because with an increase in the

number of lanes, the LOS obstruction increases irrespective of how close a hop is

to the interferers. Comparing the 2-lane scenarios corresponding to 40 kph and

80 kph velocity scenarios (Figures 5.9a, 5.9b, 5.10a, and 5.10b ) reveals that in the

80 kph scenario, the sharp increase in interference power (SINR decrease) starts

when the receiver is at a shorter distance from the transmitter compared to the

40 kph scenario. A likely explanation is that the lower vehicle density in 80 kph

scenario compared to 40 kph causes less LOS obstruction between a hop and the

interferers, resulting in larger interference power. Another important conclusion is

drawn from a global comparison of the interference power (and SINR) in 40 kph
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Table 5.5: Actual and theoretical headway distances in capacity traffic state

Velocity (kph) Traces (m) Theoretic (m) δ(%)

40 16.34 15.11 7.53
50 20.29 17.88 11.88
65 26.37 22.05 16.38
80 31.72 26.22 17.34

and 80 kph scenarios. We observe that, compared to 80 kph, in the 40 kph

scenario the interference power and SINR curves corresponding to the model fit

better to the curves pertaining to the traces. The reason is that at the 80 kph

velocity (or generally at higher velocities), drivers tend to be more conservative

and maintain excessively larger headway distances compared to the theoretical

headway distance corresponding to the capacity traffic state. This phenomenon

is explained in Table 5.5, which highlights the non-uniform difference between the

theoretical and the actual headway distances corresponding to various velocities.

Column 4 (δ) in Table 5.5 shows the percentage difference between the actual

and theoretical headway distances. According to the table, in all velocities, the

mean headway distances measured from the traces are larger than the theoretical

headway distances corresponding to the capacity state. This confirms that in

real traffic situations, the capacity state is rarely reached, and thus it remains as

a theoretical lower bound in terms of headway distance. Also, observe that the

percentage difference between the actual and the theoretical headway distances

increases from low to high velocities. This also verifies that the percentage dif-

ference is non-uniform in various velocities. For convenience, Figure 5.11 also

presents a graphical demonstration of the actual and the theoretical headway

distances.

Given the above observations and considering the fact that for all velocities,

the headway distances calculated by the model are less than or equal to the

theoretical headway distances corresponding to capacity traffic state, the model

is expected to be an upper bound for the traces in terms of interference power and

lower bound in terms of SINR (and reachable distance). These properties of the

model are demonstrated in Table 5.6. The results in Table 5.6 are derived from
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Figure 5.11: Actual and theoretical headway distances in capacity traffic state

the measured interference powers and the SINR data presented in Appendix C.

Table 5.6: Lower bound and upper bound properties of the model in terms of
SINR and interference power

Velocity (kph) Lanes LB SINR (%) UB INTF (%)

2 90.91 93.94
40 4 91.43 91.43

6 95.24 96.19

Scenario mean 92.52 93.85

2 92.59 100
50 4 85 88.33

6 96.67 97.78

Scenario mean 91.42 95.37

2 95 95
65 4 95.83 97.92

6 97.22 97.22

Scenario mean 96 96.71

2 94.12 100
80 4 95 95

6 100 100

Scenario mean 96.37 98.33

Mean (all scenarios) 94.08 96.07
Standard deviation 3.8 3.6
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Column 3 (LB SINR) and column 4 (UB INTF) in Table 5.6 show the per-

centage of time that the SINR and interference power obtained from the model

is below and above the 95% confidence interval of the SINR and interference

powers measured from the traces, respectively. According to the results, on av-

erage, 96.07% of the time the interference powers obtained from the model are

upper bounds to the traces. The upper bound becomes stronger as the velocity

increases. This phenomenon is again explained by the observations shown in Fig-

ure 5.11. In case of SINR, on average, 94.08% of the time the SINRs obtained

from the model are lower bounds to the traces. The lower bound property of the

model in terms of reachable distance is similar to the case of SINR.

The tightness of the lower bound reachable distance is demonstrated in Ta-

ble 5.7. RDT and RDM represent the average reachable distances measured from

the traces and obtained from the model, respectively. δ is the difference between

the reachable distances, i.e., δ = RDT − RDM . α is the tightness of the lower

bound defined as α = 100 δ
RDT

. According to the table, δ is 21.5 m on average,

and does not exceed 29 m in any scenario. α is 8.11% on average, and does not

exceed 11% in any scenario. A close observation of Table 5.7 reveals that in the

traces, in 10 out of 12 (≈ 83%) scenarios, the desired transmission range 300 m is

not reached, whereas according to the model, in 100% of the time the reachable

distances fall below 300 m. These results indicate a high potential of reliability

degradation in some safety applications requiring medium to high coverage, e.g.,

Stop/Slow Vehicle Ahead (SVA) Advisor [17]. Applications with short coverage

requirements (≤ 150 m), such as Emergency Electronic Brake Light (EEBL) Ad-

visor and Lane Change (& Blind Spot) Advisor (LCA), are less vulnerable to

interference issues.

For the convenience of comparison, Figure 5.12 demonstrates the reachable

distances described in Table 5.7. The outer and inner bars correspond to the

traces and the model, respectively. According to the figure, in all scenarios the

reachable distance obtained from the model is less than the average measured

reachable distance. Also, observe that the reachable distance decreases from

high to low velocities. Furthermore, in a given velocity, the reachable distance

decreases with an increase in the number of lanes.

Table 5.8 demonstrates the decline of reachable distance as the result of hidden
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Table 5.7: Tightness of lower bound reachable distance

Velocity (kph) Lanes RDT (m) RDM (m) δ (m) α(%)

2 280.21 260 20.21 7.21
40 4 248.54 228 20.54 8.26

6 230.31 208 22.31 9.69

Scenario mean 21.02 8.39

2 291.43 276 15.43 5.29
50 4 259.58 240 19.58 7.54

6 241.31 220 21.31 8.83

Scenario mean 18.77 7.22

2 303.41 284 19.41 6.40
65 4 269.71 252 17.71 6.57

6 252.09 225 27.09 10.75

Scenario mean 21.40 7.90

2 312.84 292 20.84 6.66
80 4 273.32 248 25.32 9.26

6 260.26 232 28.26 10.86

Scenario mean 24.81 8.93

Mean (all scenarios) 21.5 8.11
Standard deviation 3.75 1.79

terminal interference. The values in the table are obtained by subtracting a

reference reachable distance RDref from RDT and RDM entries in Table 5.7

respectively for the traces and the model. RDref is calculated in the absence of

interference and with the same transmission power as in the Table 5.4 and with

a SNR threshold of 5 dB. With these settings, the reference distance is obtained

as RDref = 456.67 m. Also, recall that RDMs and RDTs in Table 5.4 were

obtained using a SINR threshold of 5 dB. According to Table 5.8, the decline

of the reachable distance increases with the number of lanes and decreases with

velocity. In particular, the decline is most severe at velocity 40 kph. Also, the

model shows more severe decline compared to the traces.

In this last experiment, we show that the SINRs in similar-lane scenarios are
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Figure 5.12: The impact of interference on reachable distance

Table 5.8: The decline of reachable distance due to hidden terminal interference.
The reference reachable distance in the absence of interference is 456.67m.

Lanes

Velocity (kph) 2L 4L 6L

Traces

40 176.46 208.13 226.36
50 165.24 197.09 215.36
65 153.26 186.96 204.58
80 143.83 183.35 196.41

Model

40 196.67 228.67 248.67
50 180.67 216.67 236.67
65 172.67 204.67 231.67
80 164.67 208.67 224.67

also lower bounds for different-lane scenarios. By applying the Lemma 5.6.2 in

Section 5.6.4, we aim at extending the lower bound SINR results of the similar-

lane scenarios to the different-lane conditions. According to the lemma, the σL

(difference between lane numbers of the hop and Tx) must be less than
√
3HD
2Wl

in

order to enforce such an extension. Given the lane width and also the theoretical

headway distances pertaining to the different velocities, this leads to σL values

3, 4, 5, and 6 corresponding to 40, 50, 65, and 80 kph, respectively. The resul-
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tant lane differences are deemed to be sufficiently large to maintain the driver

awareness required by the safety applications.

In Figure 5.13, a comparison between the per-hop SINRs in the different-lane

and similar-lane situations is shown. The SINR values pertain to 6-lane scenarios

with various velocities. According to the figure, from the second hop up to the

fifth one, the SINR values in the similar-lane scenario fall far below those of the

different lane scenario. The reason behind this is two-fold: first, as stated in the

proof of Lemma 5.6.2, the average distance of a hop from the Tx in different-lane

scenario is less than the distance of the equivalent hop in the similar-lane scenario.

Second, in the different-lane scenario, the existence of LOS between a few hops

beyond the first hop and the Tx is very likely, leading to a large received power in

the hops from the Tx. In the similar-lane scenario, on the other hand, the LOS

exists only for the first hop. This results in smaller received power in the hops

beyond the first one. In the remaining hops, the SINR in the two scenarios are

very close, although the similar-lane scenario still remains as a lower bound due to

larger average distance from the Tx. In the 6-lane scenario with velocity 40 kph,

98.7% of the time, the SINR of the hops in the similar-lane scenario is smaller

than the SINR of the equivalent hops in different-lane case. At other velocities

(i.e., 50, 65, and 80 kph), on average 96.2%, 95.0%, and 94.4% of the time the

lower bound occurs. In other lane scenarios, the percentages are slightly larger

than for the 6-lane scenarios, implying a higher certainty of the lower bounds.

In conclusion, we propose the SINR of a hop in the similar-lane scenario to be

considered as a lower bound to SINR of the equivalent hop in the different-lane

case.

5.8.2 Signalized Intersection Scenario

The intersection under investigation is as shown in Figure 5.8. The horizontal and

vertical streets are identical in terms of the number of lanes, bidirectional traffic,

and the number of lanes in each direction. Furthermore, they are symmetric in

terms of traffic light timing. The experiment scenarios and parameters are shown

in Table 5.9. Three different lane settings and three different configurations of

the traffic light timing account for nine experiment scenarios. Jam spacing is
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Figure 5.13: SINR comparison between similar-lane and different-lane scenarios

set to Hj = 2 m as the minimum recommended distance between vehicles in the

queue, according to the Paramics simulator. The traffic parameters related to

traffic discharge are configured similar to the isolated intersection scenario in the

Akcelik model [11]. Given the saturation flow Qn = 2086 vehicles/hour/lane and

a reference speed limit Vf = 69 kph suggested in the Akcelik model, the input

traffic flow is obtained as qin = 1043 vehicles/hour/lane. Flows greater than

this value result in frequent over-saturation of the intersection, a condition that

violates the perfect operation of the intersection. Note that with speed limits

other than 69 kph, the input flow and some other parameters in the discharge

model must be re-calibrated. Covering all speed limits and parameter calibration

is out of the scope of this work. The lane width and cell dimensions of the cellular

automata is similar to the road segment scenario (i.e. Wl = 3.7 m, ∆ = 4 m and

Γ = 1.6 m).

The warm-up and measurement durations are set to 20 and 40 minutes, re-

spectively. After recording all traffic traces for a scenario, those traces belonging

to the same light cycle are tagged. From the tagged traces corresponding to a

cycle, the traces are extracted at each 0.5 second time step. In the resultant
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Table 5.9: Intersection scenarios, parameters, and configuration values

Group Parameter Value

Scenarios

Lane (RW-RE Street) 2, 4, 6

Lane (RN-RS Street) 2, 4, 6

Traffic Light Timing Tc = 60 s , Tg = 30 s
Tc = 100 s , Tg = 50 s
Tc = 150 s , Tg = 75 s

Input Flow (qin) 1043 vehicles/hour/lane
Speed Limit (Vf) 69 kph
RN-RS Length 8 km
RW-RE Length 8 km
Junction Coordinates (4000 m , 4000 m)
Distance to Wall (xt) 4 m
Jam Spacing (Hj) 2 m

Traffic Discharge Model

Qn 2086 vehicles/hour/lane
Vn 45.1 kph
Hn 1.725 s
Other mq = 0.369, mv = 0.118

traces, the interference power experienced by all vehicles within a circle of radius

1 km centred at the intersection are measured. The maximum interference power

measured in all time steps during the cycle is recorded as the interference power

corresponding to that cycle. Due to the symmetry of the intersection and the

traffic light timing, the measurement is performed only for one road segment.

To verify that the interference power obtained by the model is an upper bound

to the powers measured in the traces, a per-cycle comparison is performed for

all individual light cycles and for all scenarios. Tables 5.10 and 5.11 show the

maximum interference power measured from the traces for every individual cycle

within the experiment duration. Table 5.12 shows the interference power obtained

in a cycle by the model. The comparison of the results reveals that only in one

cycle does the maximum interference power observed in the traces exceed the

power obtained by the model (cycle 17 in Table 5.10). In this case, the surplus

power is of the order of 10−9 mW, and thus negligible.

In Figure 5.14, the results obtained by the model are compared with the
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Table 5.10: Per-cycle interference power (dBm) measured from traces. Tc is the
duration of the traffic light cycle (seconds). “L” stands for lane.

Tc = 60s Tc = 100s Tc = 150s

cycle 2L 4L 6L 2L 4L 6L 2L 4L 6L

1 -57.39 -55.31 -54.15 -56.53 -54.59 -51.82 -55.83 -54.50 -51.84
2 -56.84 -54.87 -52.39 -55.88 -54.77 -53.35 -56.43 -55.03 -54.07
3 -56.97 -55.68 -54.07 -55.85 -54.05 -51.94 -56.36 -54.65 -54.08
4 -56.65 -55.06 -54.08 -56.49 -55.09 -53.85 -56.26 -54.03 -51.87
5 -57.37 -54.76 -54.57 -56.97 -54.81 -52.82 -56.38 -54.60 -53.73
6 -57.12 -55.33 -54.92 -56.61 -54.01 -53.24 -55.64 -54.61 -53.89
7 -56.98 -55.15 -54.07 -56.37 -54.94 -53.43 -56.88 -54.08 -53.44
8 -57.06 -55.27 -54.06 -56.48 -54.47 -53.86 -55.99 -54.54 -53.88
9 -57.25 -53.45 -53.25 -56.78 -53.97 -52.88 -56.23 -54.72 -52.75
10 -56.91 -55.11 -54.08 -56.54 -54.43 -53.82 -56.05 -54.44 -54.10
11 -55.75 -55.16 -54.67 -56.29 -53.20 -53.72 -56.34 -54.65 -53.69
12 -55.91 -54.50 -54.37 -55.74 -54.96 -53.96 -56.52 -54.19 -52.03
13 -56.83 -55.12 -53.94 -56.46 -55.33 -54.50 -56.65 -54.23 -54.19
14 -57.07 -55.31 -53.86 -56.92 -55.34 -54.15 -55.76 -54.47 -53.78
15 -57.12 -55.13 -54.33 -56.61 -54.41 -54.10 -56.27 -54.23 -53.74
16 -57.05 -54.90 -54.34 -56.36 -53.76 -53.69 -56.42 -54.98 -53.88
17 -57.23 -54.43 -54.49 -56.26 -52.73 -54.13 - - -
18 -57.22 -54.92 -54.41 -57.09 -54.97 -54.03 - - -
19 -56.87 -54.86 -54.07 -56.69 -54.86 -53.90 - - -
20 -56.07 -54.79 -53.49 -56.72 -53.95 -51.91 - - -

median of the interference power measured from the traces. A number of key

conclusions can be derived by observing Figure 5.14. First, the interference power

obtained by the model is an absolute upper bound to the median interference

power in the traces. Second, the interference power significantly increases with

the number of lanes. The power also increases with respect to the duration of the

traffic light cycle, although the change is very small and in some cases negligible.

Given the fact that the queue length increases with cycle duration, the negligible

change of power with respect to the cycle length seems counter-intuitive. An

explanation for this phenomenon is that although the queue length and node

concentration around the intersection increase with the length of the light cycle,

the distance between the intersection center and the new nodes joining the queue
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Table 5.11: Per-cycle interference power (dBm) measured from traces. Tc is the
duration of the traffic light cycle (seconds). “L” stands for lane. (continuing

from Table 5.10).

Tc = 60s Tc = 100s Tc = 150s

cycle 2L 4L 6L 2L 4L 6L 2L 4L 6L

21 -56.81 -55.19 -54.88 -56.59 -54.54 -54.27 - - -
22 -56.38 -55.20 -55.00 -56.27 -54.76 -53.71 - - -
23 -56.49 -55.06 -53.86 -57.14 -53.56 -54.37 - - -
24 -57.23 -54.95 -54.46 -56.62 -54.33 -53.82 - - -
25 -57.06 -55.20 -54.21 - - - - - -
26 -57.28 -55.76 -54.10 - - - - - -
27 -56.39 -55.03 -53.78 - - - - - -
28 -56.82 -55.17 -54.21 - - - - - -
29 -56.71 -55.04 -54.57 - - - - - -
30 -56.95 -55.27 -54.58 - - - - - -
31 -57.09 -55.78 -54.03 - - - - - -
32 -56.89 -55.14 -53.73 - - - - - -
33 -56.74 -54.22 -51.94 - - - - - -
34 -56.80 -54.80 -53.79 - - - - - -
35 -56.93 -54.78 -54.90 - - - - - -
36 -56.58 -53.96 -51.70 - - - - - -
37 -56.44 -55.32 -54.29 - - - - - -
38 -56.47 -54.09 -52.26 - - - - - -
39 -56.98 -54.03 -54.06 - - - - - -
40 -56.83 -55.00 -54.26 - - - - - -

increases too. Also, with queue length growing, the LOS obstruction between

the nodes at the tail of the queue and other nodes at or around the intersection

increases. Consequently, the nodes at the tail of a long queue do not significantly

impact the interference power experienced at the intersection. In fact, the most

severe interference power is induced by the closest interferers to the intersection

center, which in the meantime are not obstructed from the LOS of a receiver at

the intersection.

The tightness analysis of the upper bound is performed using the results shown

in Tables (5.13) and (5.14), corresponding to the tightness with respect to the

median and mean interference powers measured from the traces, respectively. The
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Table 5.12: Interference power (dBm) obtained by the model

Tc = 60s Tc = 100s Tc = 150s

2L -54.39 -54.32 -54.28
4L -52.80 -52.75 -52.72
6L -51.56 -51.52 -51.50
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Figure 5.14: Comparison of interference power for all scenarios

left column in the tables corresponds to the three lane configurations. The second

row shows the three traffic light settings. Columns α and β describe for each lane

configuration the tightness of the upper bound interference power obtained by

the model with respect to the median and mean powers measured in the traces,

respectively. The tightness indicators α and β are defined as the percentage by

which the power obtained by the model is above the median and mean of the

traces.

According to the tables, in all lane configurations and traffic light timings,

the interference power obtained by the model is above the median and mean

interference power in the traces. Also, the tightness corresponding to the median

and mean cases are on average 3.9% and 3.7%, respectively.

Another interesting finding is that the 14 largest interference powers measured

in all cycles and in all scenarios occur on the intersection region. Also, in the

model, the largest power is obtained in a cell located on the intersection region. In

the traces, around 95% of the largest interference powers measured in all scenarios
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Table 5.13: The tightness of the upper bound interference obtained by the
model w.r.t median power in traces (powers are in dBm)

Traces Model α(%)

60s 100s 150s 60s 100s 150s

2L -56.9 -56.5 -56.3 -54.4 -54.3 -54.3 3.9
4L -55.1 -54.5 -54.5 -52.8 -52.7 -52.7 3.5
6L -54.1 -53.8 -53.7 -51.5 -51.5 -51.4 4.3

ᾱ=3.9

Table 5.14: The tightness of the upper bound interference obtained by the
model w.r.t the mean power in traces (powers are in dBm)

Traces Model β(%)

60s 100s 150s 60s 100s 150s

2L -56.8 -56.5 -56.2 -54.4 -54.3 -54.3 3.9
4L -54.9 -54.4 -54.5 -52.8 -52.7 -52.7 3.3
6L -53.9 -53.5 -53.4 -51.5 -51.5 -51.4 3.8

β̄=3.7

are observed within 200 m of the intersection.

To gain more insight into the severity of interference in the intersection sce-

nario, a comparison with the equivalent road stretch scenario operating in capac-

ity state is performed and the results are shown in Figure 5.15. In the experiment,

we selected the intersection scenario corresponding to Tc = 100 seconds and with

three lane configurations. The speed limit parameter in the road stretch and the

intersection scenarios is set to 69 kph. For comparability, in the road stretch

scenario, we consider the interference power corresponding to the last hop (far-

thest from the Tx). Our experiment results show that in an intersection scenario

the median interference power (in mW) can be as much as 56 times the median

interference power in an equivalent road stretch scenario.

The above observations indicate the likeliness of the degradation in reliability

of safety applications targeted to intersection scenarios. This include, but are

not limited to, Cooperative Intersection Collision Avoidance System-Violation

142



5.9 Summary

(CICAS-V), Intersection Movement Assist (IMA), and Do Not Pass Warning

(DNPW) [5].
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Figure 5.15: Comparison of interference powers measured in intersection and
road segment scenarios (Tc = 100s, Vf = 69 kph)

5.9 Summary

In this chapter, a systematic approach was adopted to investigate the severity of

hidden terminal interference as a primary cause of the degradation in reliability

of broadcast communication in vehicular networks. With focus on the forced-flow

traffic state dominating urban traffic systems, two major safety-critical traffic sce-

narios were identified and modelled using a well-established Cellular Automata

(CA) traffic modelling paradigm. In an urban road stretch operating in capac-

ity traffic state, a deterministic CA was designed to model the various traffic

scenarios characterized by speed limit and lane configuration. Using a state-of-

the-art radio propagation model targeted for vehicular environments, an analyt-

ical framework was designed to obtain the upper bound interference power and

the lower bound reachable distance of broadcast safety messages. In a signalised

intersection scenario, as the second safety-critical traffic scenario, a probabilis-

tic CA was designed to model the traffic and the radio propagation model was

employed to obtain an upper bound interference power for the entire intersec-

tion. Our extensive experiments with various velocities and lane configurations

showed that in the road stretch scenario the interference power obtained by the

model is an upper bound 96% of the time. The obtained reachable distance is a
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lower bound more than 94% of the time and exhibits a tightness of less than 9%.

For the intersection scenario, the upper bound property of the model in terms

of interference power was shown almost certain. Also, our experiments showed

that the hidden terminal interference causes a significant decline in the reachable

distance of broadcast messages, which in several cases drop to distances shorter

than the minimum required coverage of medium range safety applications. In the

intersection scenario, it was shown that the interference power of hidden nodes in

the vicinity of the intersection region can be significantly large and may amount

to values several times larger than the induced interference power in an equiva-

lent road stretch scenario. The results demonstrate that the proposed analytical

framework has the capability to be used as a benchmark for the assessment of

the reliability risks of safety applications under safety-critical traffic scenarios.
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Chapter 6

Information Dissemination:

Background and Related Work

This chapter presents approaches and techniques of information dissemination

in the general case of Delay Tolerant Networks (DTNs), and in Vehicular Ad

hoc Networks (VANETs) as a particular example. The chapter begins with a

definition of information dissemination and the classification of dissemination

techniques (Section 6.1). The related work is presented in three sections: Section

6.2 surveys the related work in the context of VANETs; Section 6.3 addresses

information dissemination in the context of general DTNs; and in Section 6.4, a

new approach termed popularity-based content dissemination is introduced, which

has received little attention in the contexts of VANETs and DTNs, but equally

applicable to both. In Section 6.5, the related work is evaluated with a critical

view. This section also builds the foundation of our contributions presented in

Chapter 7. Finally, the chapter is summarised in Section 6.6.

6.1 Definition and Techniques

Information dissemination is the process of carrying information to a set of users

potentially interested in the information. The set of target users can be limited

to a single user, a certain number of users, or whoever interested in the informa-

tion. As an extreme case, information flooding is a special type of information
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dissemination.

Dissemination of information is realized through a number of methods outlined

as follows [65]:

• Opportunistic: a mobile node fetches information objects from other peer

nodes or infrastructure once they are encountered [92].

• Cooperative: a node downloads a part(s) of a content and relies on other

peer nodes to access the missing parts of the entire content [65]. This

scheme is efficient when the size of the content is relatively large and the

downloading time exceeds the contact duration of nodes.

• Assisted by mobile nodes: the information objects fetched by a mobile node

during previous meetings are carried and delivered either to the fixed in-

frastructure units or to other nodes at the time of a meeting. The mobility

pattern of nodes plays a key role in the performance outcome of this type

of dissemination [65].

6.2 Information Dissemination in Vehicular Net-

works

6.2.1 Information Types

In the context of vehicular networks, the various types of information subject to

dissemination are categorized as follows [65; 92]:

• Safety and traffic information: the objective of the dissemination of safety

information is to promote the drivers’ awareness of the hazardous events

on a road. Traffic information, on the other hand, is used for traffic control

and management purposes. It is also used to support the drivers to plan

new routes in response to the traffic congestion in major urban roads.

• Content: the main difference between this type of information and the

previous one is the relatively large size of a content object compared to

other information types [65]. Therefore, the access to a content object is
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generally longer compared to other information types. Due to the intrinsic

differences, the techniques applicable to the dissemination of content objects

differ from those applied to the dissemination of light-weight information.

Chunk-based dissemination [50] is an example of an approach mainly used

for content dissemination.

6.2.2 Literature Review

The dissemination process can be triggered by an information source/producer or

a consumer. The former case is referred to as “push-based” dissemination, while

the latter is termed “pull-based” content delivery [94].

6.2.2.1 Push-based information dissemination

Push-based dissemination allows applications to publish information to be served

by multiple vehicles at the same time, e.g., information that concerns many vehi-

cles such as traffic information, public service locations, city-wide events, etc. [94].

A well-known example in this class is AdTorrent [125] for the dissemination of

commercial advertisements. Another example is a vehicle-assisted mechanism

proposed in [187] for the extension of infrastructure coverage. In [132], an ap-

plication framework was proposed for the distribution of videos with emergency

nature. A content downloading framework relying on the cooperation of mobile

nodes was proposed in [59]. [188] proposed an application framework with the

objective of disseminating small-size information objects to vehicles situated in

certain regions.

6.2.2.2 Pull-based information access

Lee et al. [87; 89] have identified a number of VANET services and applications

relying on pull-based information retrieval. Examples of these applications are

V3 [66], CarTorrent [86], MobEyes [90], and SPAWN [124].
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6.3 Information Dissemination in DTNs

6.3.1 Literature Review

The main subject of dissemination proposals in the context of DTN is content.

DTNs consist of mobile devices communicating in a “store-carry-forward” fash-

ion, without any assumption on the presence of infrastructure [133]. Sporadic

connectivity and the lack of permanent end-to-end paths in these kinds of net-

works hinder their applicability in delay sensitive applications; however, their

potential utilization as a low cost network technology for delay tolerant content

dissemination has attracted significant attention from the research community

[35; 115; 129; 133; 181]. Content dissemination in DTNs is interpreted as a mech-

anism for carrying content to any node with interest in the content. Such a mecha-

nism is typically realized in two different ways: routing and the subscribe/publish

paradigm. In traditional routing, a consumer node demands a content object and

the producer node(s) responds with the object carried through a pre-established

route to the consumer. In the subscribe/publish paradigm [58], on the other

hand, nodes advertise their interests or demands and a group of nodes acting as

forwarding brokers are responsible for carrying the information of interest to the

target consumer(s).

6.3.1.1 Routing

Routing as a message forwarding mechanism is addressed in [91; 99; 115; 158],

to mention but a few studies. These works attempt to deliver content oppor-

tunistically, selecting next-hop nodes as carriers based mainly on their mobility

and collocation information. In [99], a probabilistic routing algorithm is pro-

posed, which relies on the period of collocation between nodes. [91] investigates

methods to disseminate content to different target groups in an urban setting.

[158] proposes a class of multi-copy protocols, termed Spray routing, to reach a

trade-off between delay and the number of transmission attempts. In another

study, Spyropoulos et al. [159] proposes a controlled replication scheme termed

Spray and Wait to reduce the number of copies of a given message, and hence

the number of transmissions per message, to L, with the flexibility to tune L in
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response to a delay requirement. Routing based on knowledge oracles is proposed

in [71]. The authors considered various knowledge oracles to provide information

about future contacts of nodes, available bandwidth, future traffic demand of the

nodes, and the queue size at each node. Other routing schemes propose different

forms of flooding control [186].

6.3.1.2 Publish/Subscribe scheme

The publish/subscribe paradigm was originally applied to Internet-based scenar-

ios [58]. The authors in [51] introduced this paradigm to the context of mobile

networks by establishing mobile publishers and subscribers and a set of back-

bone nodes responsible for content dissemination. In [134], a tree-based sub-

scriber/publisher was proposed for relatively stable wireless environments. [181]

proposed a broker-based content dissemination scheme targeted to dynamic wire-

less environments. Brokers are elected from mobile nodes based on an election

mechanism which relies on knowledge of the community structure of the underly-

ing network. The structure of the network in terms of the existing communities

is identified and a broker(s) is selected from each community to disseminate con-

tent. The Haggle project released implementations of data and content-centric

networks [129]. In Haggle, a node description represents a vector of interest

attributes with weights assigned to the vector elements. The weights are then

used for matching of the data attributes [31]. Content dissemination in Haggle

is performed within two layers. The first layer involves ranked searches; that is,

matching of nodes’ individual interest vectors with the data in the cache. Ranked

searches identify and prioritize data to be transmitted during a node contact. The

second layer involves traditional forwarding among nodes to identify delegate for-

warders, that is, nodes that are not interested in the data but are likely to deliver

it. Bloom filters are used to avoid duplicate transmission of data that the other

node already has; nodes exchange the Bloom filter instead of a long list with data

in the caches. In [35], the authors suggest that each mobile node acts as a broker,

arguing that building and maintaining the broker overlay is cost inefficient. In

both [129] and [35], an autonomous community detection mechanism is used to

identify communities and a weight is assigned to each cached object at the time
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of exchange to decide whether or not to fetch and forward that object, taking

into account the current community of the node. In an attempt to minimise

the computation and communication load imposed on intermediary nodes and in

the meantime to achieve a high delivery ratio, Mashhadi et al. [115] proposed a

mechanism termed Habit for content dissemination in Mobile Ad hoc Networks

(MANETs).

6.4 Popularity-Based Information Dissemination

Popularity-based information dissemination aims at achieving network-wide per-

formance of information delivery rather than individual node-based performance.

The decision on which information to disseminate in a meeting incident is made

based on the popularity of that information, which may or may not match per-

fectly with the individual interest of an encountered node. It departs from other

dissemination approaches in several ways. First, the dissemination is not limited

to a single recipient, i.e., the target of dissemination can be potentially many

nodes with similar interests. Second, it relies only on one-hop forwarding as

opposed to broadcast and multi-hop forwarding/routing where the information

consumer is known in advance and the sender is able to route the content to its

destination. Third, it is not necessarily bounded to a geographical area as in

geocast-based services, although location-aware property can be presumed. Last,

the dissemination trigger can be hybrid, that is, a combination of push and pull

triggering mechanisms may be used. While content dissemination is the main

task of a popularity-based system, it also can be employed as an information

recommendation system that helps users discover new information. An example

is a system that disseminates information about a special event (e.g., a concert)

to users. The system decides to recommend the event to a user based on the

popularity of the event and the user preferences.

While the idea of popularity-based dissemination appears highly promising in

DTNs and particularly in VANETs, its potential merits and capabilities have not

been explored well, except in few studies [94; 185]. CodeOn [94] is an informa-

tion distribution framework designed for vehicular networks. CodeOn relies on

proactive broadcast of contents from infrastructure units to vehicles in a region
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of interest. Also, it relies on dynamic selection of nodes to cooperatively relay the

content. Roadcast [185] is a popularity-based content dissemination architecture

proposed for vehicular networks. The motivation behind Roadcast is to avoid un-

necessary delays of content access by disseminating popular contents first. This

notion is in contrast with the conventional approaches of content dissemination

in DTN, which emphasize on the delivery of the rare contents first. Zhang et al.

[185] recommends the popularity-based content dissemination for vehicular appli-

cations, arguing that other approaches including the publish/subscribe paradigm

may not suit the unique mobility and contact patterns of vehicles as they do for

other DTNs.

6.5 Evaluation of Previous Studies

A major step towards fulfilling an efficient information-centric application is to

fully understand the various tasks involved in the realization of the application.

To achieve this aim, a reference framework describing the essential tasks and the

involved inter-relations is highly demanded. The main criticism applied to the

previous work in its entirety is the lack of such a framework. While the individual

studies address some certain tasks, they stop short of addressing other possibly

important ones and also the inter-play of the tasks. An example of missing

functionalities in previous studies is an interaction model with the objective of

describing the impacts of resource constraints and the state of the meeting nodes

involved in information exchange.

Other criticisms are applied to the approaches employed in the implementation

of functionalities. They are outlined as follows:

• In most previous work, content is seen as a black box without consider-

ing the content topic(s) or so-called content attribute(s). Furthermore, the

approaches considering the content attributes rely only on atomic contents

with a single attribute. Thus, these approaches are not applicable to com-

pound contents with multiple attributes. This, in turn, overshadows the

efficiency of the application due to the lack of discovery, matching and dis-

semination techniques appropriate for the case of compound contents.
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• The above criticism is also applied to the way user interest(s) is modelled.

In almost all existing approaches (except for Haggle), a user is assumed to

have a single interest at a time. Furthermore, the user interest is expressed

by the name of the information or content object. Thus, the notion of com-

pound interests is missing in such approaches. This ultimately affects the

user experience of the application due to the lack of appropriate discovery,

matching and dissemination functionalities tailored to compound interests.

• Another criticism applied to the previous studies is the lack of adaptation

to the shift in users’ interests. Such a shortcoming is mainly seen in push-

based approaches with inappropriate assumption of static interests. In these

approaches, either the functionality of discovery is not implemented or they

rely on predetermined user interests. With such assumption in effect, the

users receive information objects matching with their past interests and not

the ones related to their current interests.

• A criticism applied to the publish/subscribe scheme as the dominant ap-

proach in the context of DTNs relates to the reliance on a certain number

of broker nodes taking the burden of content dissemination. This leads to

several drawbacks. First, dependency on broker nodes turns into a system

bottleneck because such nodes may leave the network or they are deacti-

vated due to resource depletion (energy, buffer, etc). The selection of new

brokers does not scale well, especially in highly dynamic environments such

as vehicular networks. Second, it is not fair due to extreme resource usage

of some nodes (i.e., brokers) while leaving the resources of others intact.

A promising alternative scheme is to let each node participate in content

distribution, but govern the degree of participation by the node’s state

and constraints. This approach avoids the drawbacks of publish/subscribe

scheme; however, it requires a sophisticated interaction model accounting

for various nodes’ constraints and behaviours.

• While individual-oriented information dissemination strategies have been

the mainstream focus of the previous studies, the capacity of social-oriented

and also mixed dissemination strategies is not explored sufficiently. Central
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to the latter strategies is a popularity-based interest discovery and informa-

tion dissemination mechanism. The promising efficiency of these strategies

merits a focused study.

• The proposed solutions to content dissemination are restricted to a single

technology and do not address the requirements for adaptation to various

technologies under the broad class of DTNs. Ideally, an application frame-

work targeted to various technologies contributes to significant saving of

effort and cost, and in the meantime expands the information domain to a

vast number of producers and consumers of information.

6.6 Summary

This chapter presented a survey of the solutions and approaches to information

dissemination in the context of DTNs and VANETs. The drawbacks of existing

approaches were identified and described, including the lack of a reference frame-

work facilitating a full understanding of the various functionalities involved in

the realization of information-centric applications.
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Chapter 7

A Generic Application

Framework for Information

Dissemination in Delay Tolerant

Networks

7.1 Introduction

As our main contribution in this chapter, we present a generic framework for

describing the characteristics of content exchange among participating nodes in

a Delay Tolerant Network (DTN). Among several components comprising the

framework, we propose a distributed information popularity measurement and a

pairwise node interaction formulated as a game theoretic problem. The frame-

work is generally intended as a capstone for the investigation of information and

content dissemination tasks, properties and various content exchange strategies

in a DTN.

The main motivation of this study is to address the gaps and the drawbacks

of the previous solutions to content dissemination, as we identified in Chapter

6. We aim to address those gaps by means of the following functionalities and

properties incorporated in a generic framework:

(a) The proposed framework covers the missing functionalities in the previous
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solutions. As described in Chapter 6, one such functionality is the pairwise

nodes’ interaction on meeting incidents, which is deemed to influence the

outcome of the content dissemination process in its entirety. The nodes’

interaction is modelled as a game theoretic problem which takes into account

the available network resource(s) and the current state of the meeting nodes

to describe the pairwise content exchange process. The main objectives of

the interaction model are the fair split of the network resource(s) and the

maximization of nodes’ utility.

(b) In contrast to the assumption of atomic content and the black-box content

representation, we consider a content object as a compound object with mul-

tiple attributes (or topics). Accordingly, the associated functionalities includ-

ing content popularity measurement and content ranking are adapted to the

representation of compound contents.

(c) We propose a generic user model to represent users with compound inter-

ests, that is, multiple topics in the interest list of a user. The underlying

functionalities are also adapted to this novel user representation model.

(d) Two realistic features of user interests are considered in the envisioned frame-

work. First, user interests are not static. Second, the users’ interests are not

given a priori. To take these features into effect, the appropriate functional-

ities are incorporated in the framework to facilitate the learning of dynamic

user interests.

(e) A popularity-based solution to information dissemination is developed which

relies on the user interests learned in a distributed fashion.

(f) Instead of forcing a certain set of nodes, like brokers or central nodes as in

the existing publish/subscribe proposals, to take the burden of content dis-

semination, we relax this limitation and let each node participate in content

distribution; however, the degree of participation is governed by the current

state and constraints of the node.

(g) Some essential guidelines are presented to facilitate the adaptation to various

technologies under the broad class of DTNs.
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The remainder of this chapter is organised as follows. In Section 7.2, the

components and the associated tasks of the framework is briefly introduced. The

user model component is presented in Section 7.3. In Section 7.4, we present

the mechanisms designed in a mobile node for the measurement of information

popularity from a network-wide standpoint. In Section 7.5, a game theoretic

framework is proposed to model the interaction of nodes at the time of meeting

and aiming at mutual content exchange. A similarity measurement mechanism

is proposed in Section 7.6 which quantifies the degree of matching between the

social view in a node with the cached contents in the node’s buffer and also

with the information interests of an encountered node. Section 7.7 presents the

guidelines for the adaptation to various technologies. Section 7.8 presents the

numerical study and finally, Section 7.9 summarises the chapter.

7.2 Model Component and Function Overview

The proposed framework consolidates all tasks required for the realization of in-

formation dissemination into a node model (Figure 7.1), which describes node

behaviour in a DTN as it meets and exchanges information with peers. A user

model, as a component of the node model, captures the information interests of

individual nodes and assigns a weight to each information type the node is in-

terested in. A second component termed social popularity measurement model

collects peers’ interest vectors on meeting incidents and constructs a pair of in-

terest type and weight vectors representing the collective information interest of

the network (i.e., social interests). We incorporate two fundamental features into

the measurement mechanism: shift in information interests of nodes, and the

formation of local communities. The former is a behavioural element while the

latter is a structural element. We apply the measured information popularity

to assign forwarding priorities to the content objects currently maintained in a

node’s cache. When it comes to the exchange of content objects, the measured

information popularity is coupled with the interaction model of meeting nodes,

taking into account the state and constraints of the nodes participating in an

information exchange session. Figure 7.1 illustrates the essential components

required to describe the behaviour of a node participating in information dissem-
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ination process. The internal functionalities associated with the components of

the framework are described in the following sections.
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Figure 7.1: Model of a participant node in information dissemination process

7.3 User Model

We denote a consumer of information a “user”, regardless if the consumer is a

person or a machine. The user model describes a node’s preferences or valuation

of existing information attributes. It encompasses two major tasks: first, it uses

a predefined internal process to identify the types of information the user is

currently interested in. In practice, this can be implemented using direct feedback

from a user or by implementing a background process which monitors the user’s
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activities and usage pattern of various information types. The second task is to

represent the user interests and the associated valuation in order to enable other

peers to collect the information interests of the user.

In this work, we assume a background user model is present and generates

a ranked list of information attributes, sorted in descending order of attribute

ranks. In Figure 7.1 this implies that attributes a1 and am have the highest and

lowest ranks, respectively. Such a ranked list determines the relative importance

of information attributes rather than a quantified absolute significance of a given

attribute in the list. To quantify the absolute significance, a weight is assigned to

each attribute representing, e.g. the fraction of time a user spends on consuming

information with the given attribute. The exact meaning of attribute significance

can be defined for each type of information and also for various applications of

the DTN.

We do not consider the implementation details of the actual user model. Thus,

without loss of generality, we assign to each attribute a weight value generated

by a distribution function. Among the candidate distribution functions, Zipf has

proved to be a good representative model for many real life complex systems.

The application of Zipf has also been introduced to the context of Internet and

social networks [40]. We apply the Zipf distribution to obtain attribute weights

according to the following expression:

f(k, α,m) =

1

kα

∑m
i=1

(
1

iα

) (7.1)

where m is the total number of attributes in the interest list of a node, k is the

attribute rank, and α is an exponent.

To this end, the proposed user model is represented by a ranked attribute list

termed Individual Interest Vector (IIV) and a weight vector termed Individual

Weight Vector (IWV) (Figure 7.1). Given a list of ranked attributes in a node’s

IIV, the Zipf distribution determines the usage frequency for each attribute. Fig-

ure 7.2 demonstrates an example of Zipf’s generated frequencies corresponding

to attributes contained in IIVs with different sizes. The frequency values gener-
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ated by Zipf distribution are then assigned to the elements of the node’s IWV.

Thus, a weight element in the IWV represents the valuation or significance of a

corresponding attribute in the IIV.
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Figure 7.2: Zipf’s probability mass function representing frequency distribution
of ranked attributes contained in IIVs with different sizes. The exponent

α = 0.5 in all scenarios.

7.4 Measurement of Information Social Popu-

larity

In the proposed node model, a vector termed Social Interest Vector (SIV) main-

tains in a node the information attributes advertised by other nodes as their infor-

mation interests. A second vector termed Social Weight Vector (SWV) maintains

for each attribute the social popularity (i.e., significance) of the attribute. Thus,

an element in the SWV is a weight value representing the social significance of

a corresponding attribute in the SIV. The SIV is a subset {ai|ai ∈ Ω} of infor-
mation attributes, where Ω is the set of all possible information attributes in the

system. The cardinality of Ω is assumed N . SIV is built and maintained contin-

uously and incrementally by a node as it meets peers. More specifically, during a

meeting incident, nodes exchange their individual interests and the valuation of

those interests maintained in their IIVs and IWVs, respectively. In a node, the

new attributes in the IIV of the peer node are added to the SIV and the attribute

weights are adjusted accordingly and maintained in the SWV.
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Our proposed model for information popularity measurement relies on two

major social components: a behavioural component and a social structural com-

ponent. The behavioural element reflects the transient nature of individual inter-

ests, that is, the shift in user’s information interest over time. This implies that

the model should not rely on one-time collected interest vectors corresponding to

the peers encountered in the past. Instead, whenever a node is encountered, the

SIV and SWV in a node are updated to reflect the possible changes of the infor-

mation interests of the encountered node. This process guarantees that the model

adapts to emerging events at all times during its life cycle. The social structural

element involves the formation of local communities, among other structural en-

tities representing the real world interactions of nodes. A local community from

the standpoint of a given node is a set of nodes encountered frequently and re-

cently compared to other peers in the network. It is not necessary for a node

to have similar interests (i.e. IIV) to its local community. The notion of a local

community implies that the social information popularity measured in a node

will have a significant component induced by the local community compared to

the component(s) induced by occasionally encountered peers. From a content

exchange perspective, if the content in a node’s cache is ordered with respect to

the social interests measured in the node and represented by pair (SIV SWV),

this leads to a state where a node with tight connection to its local community

will prefer the dissemination of contents of interest to its own community to those

interested by the rest of the network. This argument holds true if the information

interests of the nodes comprising the local community of a node are not scattered.

Therefore, we prefer to use the term logical community to be distinguished from

physical community emerging based only on the contact patters of nodes. More-

over, nodes with balanced membership to several communities will act as bridges,

muling content objects between those communities.

To this end, an adaptive information popularity measurement model is pro-

posed, taking into account the properties described above. The popularity mea-

surement process is described by Algorithm 7.1. In the following, we describe the

process in more details.

When a node – termed target node for clarification – meets a peer node, it

collects the peer’s IIV and IWV. For each new attribute a detected in the peer’s
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Algorithm 7.1 Popularity Measurement of Information Attributes

Require: (SIV, SWV ) , (IIV, IWV ) , δ, T
1: i← 1
2: while i ≤ size(IIV ) do
3: j ← indexOf (SIV, IIV (i))
4: if j ≤ 0 then
5: j ← createAttEntry(SIV )
6: createWeightEntry(SWV )
7: bpi ← assignBuffer(SWV (j))
8: appendAtt(SIV (j), IIV (i))
9: k ← appendWeight(bpi , IWV (i))

10: else
11: k ← findNearestNeighbour(bpi , IWV (i)
12: if distance(bpi (k), IWV (i)) ≤ δ OR isFull(bpi ) then
13: bpi (k)← aggregate(bpi (k), IWV (i))
14: else
15: k ← appendWeight(bpi , IWV (i))
16: end if
17: end if
18: ηi(k)← updateFrequncy(bpi (k), ηi(k), T )
19: (bpi , ηi)← aggregateClusters(bpi , ηi)
20: SWV (j)← updateSocialWeight(bpi , ηi)
21: end while
22: SWV ← normalize(SWV )
23: (SIV, SWV )← sortDescend(SIV, SWV )

IIV, an entry is created in the SIV of the target node. The weight value of

attribute a, denoted by wa, is fetched from the peer’s IWV and is considered as

the current social weight of a from the standpoint of the target node. Accordingly,

a new entry in the target node’s SWV is created which maintains the collected

weight value. Obviously, the wa reported by a peer node is not the only valuation

of a in the network. Thus, it will not remain as the sole valuation of a contributing

to the social weight of attribute a measured in the target node because, in future

meetings, other nodes will report possibly different weight values for attribute

a. This implies that a weight aggregation mechanism should be designed with

the objective of producing a single value as the current designated social weight

of the attribute. Such an aggregation mechanism requires that the reported
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weight values to be maintained in the target node, which in turn necessitates

the allocation of a buffer space to the weight values of the attribute reported

by various nodes in the previous meetings. However, if not handled properly,

the size of the buffer will grow proportional to the number of encountered peers,

which in turn raises scalability issues. To tackle this, a limited buffer space is

assigned to the weight values of the attribute and a weight clustering scheme

is designed for aggregation purpose. Denote by bpa a buffer with a fixed size

P assigned to attribute a to maintain the weight clusters corresponding to this

attribute. We denote this buffer production buffer. As shown in Figure 7.1, the

following information entities are maintained in the bpa for each weight cluster: (i)

cai represents the weight value of the cluster i in bpa, (ii) t is the last time cai was

updated, and (iii) ηai represents the frequency at which the cluster i was selected

as the nearest neighbour of the newly collected attribute weights. In other words,

ηai is the update frequency of weight cluster cai . We normalize ηai over a given time

duration T in order to decay the old valuations of the attribute. To classify the

newly collected attribute weight wa, we determine the nearest neighbour based on

|wa− cai | and a parameter δ; if |wa− cai | ≤ δ and |wa− cai | = min(|wa− caj |) ∀j ∈
[1, P ] ∧ j 6= i, wa is classified to cai and a new aggregated weight is obtained and

assigned to cai . If no cluster exists that satisfies |wa − cai | ≤ δ, but there exists

an unused cluster entry among the P available clusters, wa is assigned as the

initial weight of a new cluster, otherwise a forced classification and aggregation

is applied. Finally, ηai is incremented in order to account for this last update of

the cluster weight cai .

The aggregation procedure of a chosen weight cluster denoted by caold
1 and a

recently collected attribute weight wa is defined as follows2:

canew = (1− α(∆t)) caold + α(∆t)wa (7.2)

where canew is the weight cluster after aggregation. ∆t indicates the time difference

between the collection time of wa and the last time the chosen weight cluster was

updated. α(.) ∈ [0, 1] is a monotonically increasing function of time difference

1to highlight the fact that the weight of this cluster is old and subject to change
2for simplicity, the index i is eliminated from the cluster name
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∆t. We apply α(.) in order to grant a larger contribution to the new attribute

weight (i.e., wa) compared to the old weight cluster. This ensures that a recently

collected attribute weight will have a larger contribution in the new weight cluster

and thus decays the stale attribute weights.

In the aftermath of an aggregation event, the new weight cluster may become

the neighbour of an existing cluster. Thus, in step (19) of the algorithm, the

entire production buffer is evaluated to find and apply potential aggregations.

The aggregation of two weight clusters is slightly different from the aggregation

of a weight cluster and a single attribute weight as described by Equation 7.2.

In the former case the update frequencies of the two weight clusters should also

be aggregated to obtain a single frequency. Denote by η1 and η2 the update

frequencies of weight clusters c1 and c2. We define the aggregate update frequency

η12 of the two weight clusters as η12 = min(η1+η2, 1). This implies that the update

frequency of the resultant weight cluster is the accumulated update frequencies

of the two neighbour weight clusters. The aggregation of the two weight clusters

is expressed as follows:

cag =

{
(1− α(∆t))ca1 + α(∆t)ca2 s.t. t2 ≥ t1

(1− α(∆t))ca2 + α(∆t)ca1 otherwise
(7.3)

where cag is the aggregate weight corresponding to attribute a. Also, ∆t = |t2−t1|
where t1 and t2 are the last update (or aggregation) times of ca1 and ca2, respec-

tively.

The aggregation mechanism described by Equation 7.3 ensures that a weight

cluster with more recent update will have a larger contribution in the ultimate

social weight of the attribute.

Two complementary tasks are performed in a node before exchanging content

objects with a peer: first, using the various weight clusters corresponding to an

attribute, the aggregate weight value is obtained for that attribute. Second, the

social weight vector is normalized to obtain the relative popularity of different

attributes currently maintained in the SWV. These tasks are implemented to

facilitate the ranking of the various content objects maintained in the node’s

cache. Also, they facilitate the measurement of similarity between a node’s view
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of information social popularity and the individual interest of an encountered

peer (Section 7.5). The first task is indicated in line (20) of the Algorithm 7.1.

The aggregate weight of attribute a is calculated as the normalized weighted sum

of the cluster weights associated with that attribute, that is,

w̄a =

∑|ca|
j=1 c

a
jη

a
j∑|ca|

j=1 η
a
j

(7.4)

where |ca| ≤ P is the effective (i.e., used) number of cluster weights corresponding

to the attribute a. The second task is indicated in step (22). In this case, the

aggregate weights of all attributes calculated by the first task are normalized

with respect to the attribute with the highest update frequency. A ranked list of

attributes is then created in step (23). The resultant weight of each attribute is

considered as the social weight of that attribute (ws in Figure 7.1). Note that the

social weights are temporary and are subject to change in the next meeting(s).

The information popularity measured in a node and represented by the pair

(SIV, SWV ) is used to evaluate the relevance of content objects cached in a node

with respect to the aggregate information interests of all peers in the network

encountered so far. The evaluation process involves two steps: (i) weights are

assigned to the attributes contained in a content object. We assume weights are

generated using Zipf distribution in similar way to user representation described

in Section 7.3, (ii) a disjoint vector comparison (as described in Section 7.6) is

applied to evaluate the similarity between the attributes of a content object and

the social attributes maintained in vector SIV.

On a meeting incident with a limited contact time, the evaluated relevance

of content objects, in addition to other factors, is used to choose a subset of

available content objects in a node to exchange with a peer. The object exchange

decision is also influenced by the interaction features of the meeting nodes, which

we detail next.
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7.5 Interaction Model of Meeting Nodes

When two nodes carrying a number of content objects meet, each node tends to

pursue a content exchange strategy which produces the highest possible payoff,

where payoff is the difference between the profit and the cost involved in the

enforcement of a strategy. Considering the content exchange as the main subject

of interaction, each node, as its strategy, aim at establishing a balance between

amounts of content it receives and transmits from/to the encountered party so

that the content exchange will maximize the node’s payoff. In a more general

form, given a limited contact duration d during which nodes are able to exchange

content objects, nodes seek a balance between the fractions of time d consumed

for reception and transmission. The time fractions identified by a node as its

strategy of choice can be different from those identified by the other party and,

in some cases, the mutual strategies may conflict due to the selfish behaviour of

nodes. In this sense, the behaviour of the meeting nodes can be captured using a

two-player bargaining problem. The main step towards characterizing the bargain

problem is to design the utility function describing the node’s payoff. To this end,

a generic utility function of a node i can be expressed as:

ui(qi, qj, Si) = f i(qj, Si) + hi(qi, Si) s.t. qi + qj ≤ d (7.5)

qi and qj are the individual strategies chosen by nodes i and j, respectively. More

specifically, qi is the fraction of the total transmission opportunity d which node

i desires to acquire for the transmission of its cached contents. Similarly, qj is

the desired transmission opportunity of node j. Si represents the current state

of node i. f i is the payoff accrued by node i if node j plays strategy qj. hi is

the payoff accrued by player i if it chooses strategy qi. hi can have a negative

value corresponding to the net cost involved in data transmission, e.g., due to

fast depletion of energy resource. Conversely, a buffer discharge in a node with

limited buffer space is a representative example where hi admits a positive value.

The constraint in Equation 7.5 ensures that the total transmission opportunities

of the two meeting nodes do not exceed the contact duration d. We assume the

meeting nodes have an identical estimate of the contact duration. The utility
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function of node j denoted by uj is symmetric to ui.

To characterize the generic utility function expressed by Equation 7.5, the

utility parameters associated with nodes’ interaction must be identified. The

utility parameters impact the strategy played by a node, and are classified in

two categories. The first category includes parameters describing the state of the

node at the time of a meeting. In order to keep the model parsimonious, we

restrict these parameters to a minimal set including the fraction of buffer space

occupied in the node (denoted by b), the fraction of total energy consumed in the

node (denoted by ξ), and the current satisfaction level of the node (denoted by

ν). The satisfaction parameter ν ∈ [0, 1] is determined by the meeting history

of the node and increases accumulatively as the node receives content objects

matching its interest list. The model can be easily extended to incorporate ad-

ditional parameters corresponding to more specific cases. The second parameter

category is not directly related to a node’s state; these parameters rather provide

complementary information about the encountered party, hence impact the strat-

egy selected by the node. The parameter r defined as the similarity between the

social interest vector (i.e. SIV) maintained in a node and the individual interest

vector (i.e. IIV) of an encountered node is an example of parameters belonging

to this category. In our bargaining problem formulation, we apply parameters r

and ν to describe the willingness of a node to receive content objects from the

other party. The aforementioned interaction parameters corresponding to a pair

of meeting nodes i and j are shown in Figure 7.3. To demonstrate the effect of the

above mentioned parameters on the players’ strategies, without loss of generality,

we instantiate the generic utility function described by Equation 7.5 with a more

practical and concrete function defined as follows:

ui(qi, qj, Si) = rji(1− νi)qj + bi(qi − qj)− ξiqi

s.t. qi + qj ≤ d
(7.6)

Rearranging the Equation 7.6 with respect to the transmission opportunities qi

and qj leads to a more straightforward expression as follows:

ui(qi, qj, Si) = (rji(1− νi)− bi) qj + (bi − ξi) qi

s.t. qi + qj ≤ d
(7.7)
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Figure 7.3: Interaction parameters of two meeting nodes

By analogy between Equations 7.5 and 7.7, f i = (rji(1− νi)− bi) qj and hi =

(bi − ξi) qi.

The definitions of f i and hi in Equation 7.7 are intuitive; a node i tends to

choose a large fraction of time for transmission (i.e. qi) if a significant fraction of

its buffer space is occupied (represented by bi) and/or the fraction of its energy

consumed is low enough to permit the node to transmit more content objects. On

the other hand, node i is willing to accept content objects from node j if: (i) node

i has enough buffer space, (ii) node i realizes that the other party has interesting

content objects, and/or (iii) node i is currently starving, e.g. due to not being

satisfied during the previous interactions with other nodes. It is emphasized

that the utility function described by Equation 7.7 is a representative example of

potentially many alternatives. Therefore, it can be redefined with respect to the

characteristics of the application under investigation.

A further step towards full characterization of the proposed game theoretic

framework described by Equation 7.7 is to address scenarios emerging with respect

to selfish and cooperative behaviours of meeting nodes.

7.5.1 Non-Cooperative Game Scenario

To identify the Nash equilibria of the game described by Equation 7.7, we obtain

the mutual best response strategies of the nodes. Fixing the strategy of node j at
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any qj, the best response strategy qi of node i is only dependent on hi. Thus, the

best response strategy can be found by maximizing hi while taking into account

the constraint qi + qj ≤ d. This leads to the following setting for qi:

qi =

{
0 βi < αi

d′ ≤ d o.w
(7.8)

where αi = rji(1− νi)− bi and βi = bi− ξi. Applying the same argument to node

j, the best response qj is obtained as follows:

qj =

{
0 βj < αj

d′′ ≤ d o.w
(7.9)

where αj = rij(1 − νj) − bj and βj = bj − ξj. Combining Equations 7.8 and

7.9, the set of equilibria existing in the game are obtained as (q∗
i ,q

∗
j ) = {(0, 0),

(d′, 0), (0, d′′), (d′, d′′)}. If d′ + d′′ > d, the last equilibrium (i.e., (d′, d′′)) is not

feasible since it violates the game constraint on the total transmission opportunity

d. In fact, this equilibrium is the only case when an actual contention between

nodes takes place. However, due to the infeasibility of the equilibrium, none of

nodes benefits from the competition. We tackle this situation in the context of a

cooperative bargaining problem as detailed in the next section.

7.5.2 Cooperative Bargaining Scenario

In cooperative games, players (in this case, meeting nodes) aim to reach an agree-

ment on the splitting of a resource that yields mutual advantage. In this case,

the resource is the amount of time available for transmission, that is, the con-

tact duration d. A player i has its own utility function ui(qi, qj, Si) which is

determined by the allocated resource and its current state. Player i also has a

minimum desired utility (ui
0(qi, qj, Si)) termed disagreement point which corre-

sponds to the minimum utility that the player expects to accrue by participating

in a game without cooperation. In a cooperative bargaining, it is guaranteed that

each player at least gains the minimum desired utility. Let U = {(ui, uj)} ⊂ R2

be the feasible utility set assumed to be convex, non-empty, closed, and bounded.
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Also, let U0 =
{(

ui
0, u

j
0

)}
⊂ R2 be the disagreement points of the meeting nodes.

The pair (U,U0) together describes the bargaining problem. The solution of the

bargaining problem is reduced to finding a Pareto optimal point in the set U . A

Pareto optimal point is a point such that it is impossible to discover other points

resulting in strictly larger advantage for the two players, simultaneously.

Definition 1. Pareto Optimality: in a two-player game with players i and j and

a utility pair (ui, uj) ⊂ R2 corresponding to a resource allocation pair (qi, qj), if

for each (ūi, ūj) ∈ U , (ūi, ūj) ≥ (ui, uj) implies (ūi, ūj) = (ui, uj).

Definition 1 implies that there may exist an infinite number of Pareto opti-

mal points in the game. Hence, selection criteria are needed for the bargaining

solution in order to identify a Pareto optimal point which is in the best interest

of both players. Different bargaining solutions provides different criteria in terms

of optimality and fairness for different bargaining problems. Nash Bargaining

Solution (NBS) [126] and Kalai-Smorodinsky Bargaining Solution (KSBS) [74]

are the most popular approaches used in the literature for different application

domains. KSBS differs from NBS in that it replaces the axiom of irrelevant al-

ternatives with the axiom of individual monotonicity [131]. The KSBS does not

impose strict requirements on the convexity of feasible utility set, while the con-

vexity is a strict condition in Nash bargaining solution. Moreover, various types

of fairness can be realized by KSBS as opposed to the Nash bargaining solution

[131]. As we avoid to be bounded to a specific utility function and utility set and

also due to the potential fairness requirements, we opt for KSBS as our choice of

bargaining solution in this work.

To find the Pareto optimal point of the bargaining problem, we determine the

bargaining set B consisting of the Pareto frontier points. In the game problem

described by Equation 7.7 for node i (and a symmetric equation for the other

node j), a Pareto frontier point is the pair (ui, uj) of utilities corresponding to a

feasible resource allocation (qi, qj) such that qi + qj = d. We solve Equation 7.7

for qi and qj as functions of u
i and uj and obtain the bargaining set B as follows:

B = {(ui, uj) |qi (ui, uj) + qj (u
i, uj) = d s.t ui and uj > 0} (7.10)

Assuming that each node is aware of its desired utility, the KSB solution must
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satisfy the following equation [139]:

u∗ = u0 + k∗ (umax − u0) (7.11)

where u∗ = ((ui)∗, (uj)∗) is the KSB solution, k∗ is the maximum value of k such

that u∗ ∈ U , and umax = (ui
max, u

j
max) ≥ u0 specifies the best alternative (or

the desired utility pairs) in U for each player. From Equation 7.11 and recalling

that u0 = (0, 0), it can easily be verified that ui

ui
max

=
uj

uj
max

. The KSBS is the

intersection of bargaining set B described by Equation 7.10 and the line S defined

as follows:

S =

{(
ui, uj

)∣∣ ui

ui
max

=
uj

uj
max

s.t ui and uj > 0

}
(7.12)

Setting ui = kui
max, u

j = kuj
max, and substituting in Equation 7.10 determines k,

and hence u∗ = ((ui)∗, (uj)∗). Correspondingly, qi and qj are obtained by applying

(ui)∗ and (uj)∗ to Equation 7.7. Figure 7.4 shows a graphical illustration of the

bargaining solution determined by the KSBS approach described above.

u 
j

u
i

U

S

umax 

u
i
max 

u 
j
max 

B

u0 = (0 , 0)

u
*

KSBS

Figure 7.4: An illustration of KSBS with two players

It is worth mentioning that KSBS determines the share of transmission oppor-

tunities in such a way that the fairness in terms of utilities accrued by the meeting

nodes is guaranteed. The fairness criterion for the meeting nodes should also be

fulfilled during the exchange of each content object. Considering the stochastic

nature of the communication channel which may cause some disruptions during

the content exchange, a scheduling mechanism similar to Weighted Fair Queuing
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(WFQ) must be employed to maintain fairness at all time during the content

exchange.

7.6 Similarity of Individual and Social Informa-

tion Interests

Parameter rij (and similarly rji) in Equation 7.7 plays an important role in the

proposed game theoretic model of node interaction, since it determines the degree

of a node’s willingness for cooperation. Recall that we defined rji (rij) as the

amount of similarity between node j’s (i’s) SIV and node i’s (j’s) IIV. Also recall

that content objects in a node are weighted and ranked for forwarding according

to SIV and the corresponding weight vector SWV measured by the node. It

follows that a large rji can be interpreted as a high probability that node j is

carrying a number of objects in top positions of its buffer that are likely to be of

interest to node i, thus giving node i enough motivation to receive those objects.

To calculate rji, we assume that node i shares its pair (IIV , IWV) with node

j during the meeting incident before the game starts. Then node j measures

the similarity between node i’s IIV ranked with respect to IWV and its own SIV

ranked using SWV. Thus, the entire process can be reduced to the similarity

measure of two ranked vectors. As per similarity measurement techniques [39;

175], the vectors subject to comparison here are generally disjoint and of different

sizes. Furthermore, the top rank positions of the two vectors are expected to

exhibit larger contributions to the overall similarity of vectors. Such unique

measurement requirements prevent direct application of the existing similarity

measure techniques. Most relevant to our case is [175], where an indicator termed

Ranked-Biased Overlapping (RBO) is calculated as the similarity measure of two

infinite size vectors. RBO of two vectors S and T is defined as [175]:

RBO(S, T, p) = (1− p)
∞∑

d=1

pd−1Ad (7.13)

where Ad is the degree of overlapping at depth d of the vectors and 0 < p < 1

is a constant devised to assign an overlapping contribution proportional to the
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position in the vectors where overlapping occurs. In this sense, RBO is classified

as a top-weighted technique. On the other hand, RBO is classified as an equal-

size similarity measure, since the sizes of both vectors are assumed to be infinite.

The latter characteristic of RBO hinders its direct applicability to our case. The

main reason is that the overlap weights in Equation 7.13 (i.e. (1− p)pd−1) form

a geometric series with their sum converging to 1 as the depth d approaches ∞.

However, in our case, we deal with finite size vectors, thus the weighting scheme in

Equation 7.13 cannot be applied. Furthermore, in our case the vector sizes are not

equal, which necessitates the design of a proprietary similarity measure. In the

following, we propose a new similarity measure which copes with the drawbacks

of RBO while preserving its top-weighted feature.

Assume that the lengths of node j’s SIV (and SWV) and node i’s IIV (and

IWV) are denoted by m and n, respectively. It follows that m ≥ n. This is sup-

ported by the fact that the nodes exchange their IIVs on a meeting incident and

update their previous SIVs with respect to the received IIV from the other party.

Thus, the size of the updated SIV in a node is at least as large as the other party’s

IIV. We are also aware of the facts that IWV in a node i determines the relative

importance of attributes contained in the node’s IIV and that the sum of weight

elements in IWV is 1 (due to normalization). Likewise, the relative importance

of attributes in SIV is determined by weight elements in SWV and the sum of

weight elements of SWV is 1. These features imply that the attribute weight

elements maintained in node i’s IWV and node j’s SWV are good candidates for

position-based weighting in the envisioned similarity measure. In other words,

using the weight elements in IWV and SWV enables the similarity measure with

top-weightedness property. Taking all these into consideration, we propose the

following expression to calculate rji:

rji = argmaxk

(
pk
∑n

d=1

(
IWVd + SWVk+d

2

)
A (IIV1:d, SIVk:k+d)

)

s.t. 0 ≤ k ≤ m− n
(7.14)

where k is the number of positional shifts applied to the smaller vector, IWVd

and SWVk+d are the weight elements of IIV and SWV at positions d and k + d,

respectively. IIV1:d and SIVk:k+d are the subset of attributes located at positions 1
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to d of IIV, and k to k+d of SIV, respectively. We apply the arithmetic average of

IWV and SWV as the overlapping weight. It is straightforward to show that 0 ≤∑n
d=1

(
IWVd+SWVk+d

2

)
≤ 1, thus the similarity measure is normalized. Generally,

any normalized combination of IWV and SWV provided that it preserves the

top-weighted property can be used in Equation 7.14. Figure 7.5 demonstrates

a physical interpretation of the proposed similarity measure with p = 0.7. In

the example depicted in the figure, the maximum similarity is obtained after one

shift and the relevance factor is obtained as rji = 0.1715. In Figure 7.6, we

illustrate how the similarity measure preserves the top-weighted property. Two

vectors IIV1 and IIV2 only differ with respect to the ranks of attributes a and

b. The vector with higher overlapping in the top positions (i.e. IIV1) exhibits a

larger similarity to the SIV . In both figures, the weight values of attributes are

generated using Zipf distribution.

fedcba

febdIIV

SIV

sliding direction

iteration 1: k = 0, (p=0.7)
0 
, rji = 0.1641

0.17960.20730.25390.3591

 0.11220.12290.13740.15860.19430.2747

IWV

SWV

fedcba

febd

0.17960.20730.25390.3591

 0.11220.12290.13740.15860.19430.2747

fedcba

febd

0.17960.20730.25390.3591

 0.11220.12290.13740.15860.19430.2747

node i

node j

iteration 2: k = 1, (p=0.7)
1 
, rji = 0.1715

iteration 3: k = 2, (p=0.7)
2 
, rji = 0.1153

Figure 7.5: Similarity measure of individual and social interests. With p = 0.7,
the maximum relevance rji = 0.1715 is obtained after a single shift (i.e., k = 1).

The similarity measurement described by Equation 7.14 is also employed as a

generic similarity measure of disjoint vectors to calculate the matching between

the topics of the content objects in a node’s cache and the social information

view of the node maintained in vectors (SIV SWV). The measured similarity is
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Figure 7.6: Top-weighted property of the proposed similarity measure. (a)
A = [1, 1, 1, 1], r = 1, and (b) A = [0, 1, 1, 1], r = 0.6408

then used for the purpose of ranking and sorting of the cached contents in the

node with respect to the social interests of the network. This further enables the

prioritized forwarding of contents based on their relative social significance.

7.7 Adaptation to Different Technologies

The generic game theoretic framework described above can be further customized

based on the target technology in use and also the user preferences. In a 3G/4G

network with memory rich user devices, buffer space is presumably large and thus

the energy parameter will act as the major driving factor influencing the strategy

of a node. On the other hand, with technologies lacking the energy constraint,

e.g., VANETs, the available energy reserve is large most of the time and a node’s

transmission is restricted mainly by the amount of content objects available in

its cache and the contact duration d. To enable the model with this flexibility,

we define threshold parameters bth and ξth and redefine b and ξ as follows:

b̂ =

{
b
bth

b < bth

1 o.w
(7.15)

ξ̂i =

{
ξ
ξth

ξ < ξth

1 o.w
(7.16)

In devices with strict buffer or energy constraints, bth and ξth admit small values.

These settings will also enable nodes to become generous or conservative in con-

tent dissemination process depending on their current state and the values of the

threshold parameters.
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Another parameter influencing the outcome information dissemination is the

contact duration d. The contact duration depends on the type of the communi-

cation platform. While in 3G/4G networks the contact duration is in the order of

several minutes, in highly dynamic networks such as VANETs, it is in the order of

few seconds. Furthermore, in 3G/4G networks, users are free to remain in contact

until the contents of interest are exchanged completely, whereas in VANETs such

freedom does not exist due to the external restrictions and the transportation

specific regulations. The awareness about contact duration, as it is assumed in

our proposed framework, can be viewed as a strong advantage compared to the

counterpart approaches. In particular, the proposed interaction model has the

capability to adapt to the available contact duration in order to enforce optimal

exchange of cached contents in the meeting nodes.

7.8 Experimental Results

Numerical studies are carried out to validate that the model behaves correctly

according to basic elements of a content dissemination network. We focus on

structural and behavioural elements to validate the proposed model. To validate

the structural element, the impacts of the size of node communities with similar

interests and the meeting pattern of nodes on the outcome content dissemination

behaviour are addressed. To perform validation with respect to the behavioural

element, we address the impacts of strategies chosen by nodes as well as the shift

in nodes’ interests on the dissemination process. Performance aspects are left for

the evaluation of such specific extensions in content dissemination strategies. For

this reason, our studies are independent of performance considerations such as

mobility rates and patterns, probabilities of successful transmissions etc.

We implemented a discrete event simulator in MATLAB to simulate meetings.

Nodes are divided into separate groups, where nodes in a group are assigned a

subset of similar content attributes at the top of their interest vectors and the

rest of the nodes’ content attributes are chosen randomly and assigned to random

positions in the interest vector. Different groups have different sets of attributes

at the top of their nodes’ interest vectors. The grouping scheme further allows

us to achieve high level of flexibility in representing various network conditions
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Table 7.1: Configuration of global simulation parameters

Ω d(sconds) p T (hours) δ bth ξth
6 1.2 0.8 5 10−2 0.7 0.2

by defining custom meeting patterns inside and between nodes’ groups. Similar

to the node grouping, we also group the content objects with respect to the con-

tained topics (i.e. attributes). The objects’ attributes are assigned in a similar

way to nodes’ attributes. Each object group is targeted to a node group. De-

pending on the objectives of a simulation scenario, different numbers of groups

are used. Throughout the simulations we assume the total number of unique

content attributes (Ω) in the network is 6 attributes indexed by a1, a2, · · · , a6 .

Using larger number of attributes only complicates our discussions hereafter, and

does not affect the validity of the model in general. The object buffer in each

node is set to a size of 1000 objects, and the attribute weight clusters used for

popularity measurement in a node has a size of 4. Packet time and energy usage

per packet are fixed to 0.3 second and 10−3 unit of energy, respectively. The sat-

isfaction parameter ν is set to 0, meaning that nodes are always willing to receive

contents as long as other constraints allow to do so. However, in field experiments

with real users, the satisfaction parameter should be adapted with respect to the

implicit or explicit user feedback after each meeting incident. Table 7.1 shows

the configuration of the remaining simulation parameters.

Figures 7.7 and 7.8 demonstrate the behaviour of the model in response to

difference in the size of node groups involving in object forwarding. The meet-

ing rates of all nodes are identical. Practically, this setting results in different

distributions of object popularity among node groups. The x-axis represents the

number of iterations and can be interpreted as the number of hours, days, or

other meaningful units. The y-axis represents the penetration rate of objects of

different types targeted to different node groups. Figure 7.7 addresses a scenario

where a weak majority exists in the network. Two groups of nodes are defined

with sizes of 51 and 49 nodes. The nodes in the former group are mainly in-

terested in attributes a1 and a2 while the nodes in the latter group are mostly

interested in attributes a3 and a4. Two groups of content objects of equal size

100 are shared among two source nodes, each chosen from a group of nodes. Each
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Figure 7.7: Weak majority: group 2 objects are slightly less popular than group
1 objects (0.49 vs. 0.51)

group of objects are of interest to a group of nodes; i.e. at the top of the nodes’

attribute vectors, group 1 have attributes a1 and a2 and group 2 have attributes

a3 and a4.

As shown in Figure 7.7, the content of interest to the majority group (with

size 51) is disseminated faster than the content targeted to the minority (with

size 49). This scenario verifies that the popularity measurement and object for-

warding model is capable of majority oriented dissemination even in the presence

of a weak majority. Figure 7.8a demonstrates a strong majority scenario. Three

groups of nodes with sizes of 30, 10, and 10 are defined and the interest vectors

of the nodes in these three groups consist of attribute pairs (a1 , a2), (a3 , a4),

and (a5 , a6), respectively. 540 objects from three different types are initially

shared by three sources selected from these groups. As expected, the group with

a larger population dominates the community and receives its objects of interest

faster. As the remaining two minority groups have identical sizes, they receive

their objects of interest at identical rate as expected. In Figure 7.8b, the three

groups have equal sizes. Since the meeting rates of the three groups are also

identical, no single group has an advantage and thus the content dissemination is

performed uniformly. Figure 7.8c is an extension of the scenario demonstrated by

7.8a. In this scenario, the group sizes are set to 30, 20, and 10 nodes. The result

of this scenario leads us to conclude that in case of identical meeting rates, the
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(a) Group 1: high, Group 2 & 3: medium popularity
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Figure 7.8: Impact of content popularity distribution on the outcome
dissemination behaviour
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dissemination priority of contents targeted to different node groups is identified

based on the size of groups with similar interests. It is worth mentioning that

the interpretation of the network structure with respect to its physical and logi-

cal elements yields different number of communities in the above scenarios. The

similar contact patterns of nodes implies for the presence of only a single commu-

nity in all scenarios, whereas the content popularity distribution in the network

implies for 2, 3, and 3 communities in scenarios (a), (b), and (c), respectively.

The conclusion to be drawn here is that given a uniform physical network struc-

ture (i.e, uniform contact rates), the dissemination behaviour is driven by the

logical structure formed based on content popularity distribution. Accordingly,

the network tends to serve majority communities with high priority.

Following this, we study scenarios where the contact patterns of nodes play

a key role in the outcome behaviour of content dissemination. Two scenarios

of this kind are selected as demonstrated in Figure 7.9. In these scenarios the

node groups are of identical sizes. We assign a larger intra-group meeting rate to

nodes in one of the groups, whereas the meeting rates for the remaining groups

and the inter-group meetings are kept smaller but identical. This setting only

holds for a warm-up period where nodes build their view of information social

popularity. In the content dissemination phase, we assign identical contact rates

to all groups. This approach enables us to evaluate the function of the social

popularity measurement component of the model. It is observed in Figure 7.9a

that the content dissemination behaviour in this scenario is comparable to the

scenario depicted in 7.8a. This leads us to conclude that contact patterns also

contribute to the formation of a majority, thus forcing others to dedicate more

resources to disseminate the content of interest to the majority. In the second

scenario in this experiment, we introduced a degree of isolation in one of the two

groups; i.e. a subset of nodes in a group never visits the others in the same group.

As in the previous scenario, we defined this setting only for a warm-up period.

As shown in Figure 7.9b, the content of interest to the isolated group (group B)

is disseminated at a lower rate compared to the tighter group A. The intuition

behind this phenomenon is that the nodes in an isolated community will have a

weaker belief in their social interests compared to the communities with strong

internal bonds. This motivates the isolated nodes to join the non-isolated ones,
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forming a local community and contributing to the dissemination of the content

they favour.
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Figure 7.9: Impact of non-uniform contact patterns on the content
dissemination behaviour

We investigate the impacts of social and individual-oriented dissemination

strategies on the outcome content dissemination behaviour in Figure 7.10. The

solid curves show the penetration of object groups when the ordering of informa-

tion objects are determined based on the individual interests of the encountered

party and the dotted curves demonstrate the social-oriented object dissemina-

tion. As in the scenario in Figure 7.8c, three groups of nodes of sizes 30, 20,
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and 10 with identical meeting rates are configured. According to Figure 7.10,

an individual-oriented strategy causes the dominance of majorities on the con-

tent ordering to be reduced in favour of minorities, and to be only proportional

to the size of node groups. This leads to less inclination of nodes towards the

dissemination of network-wide popular contents.

Finally, we address the impact of nodes’ shifting interests on the content dis-

semination behaviour. Two groups of nodes with sizes 12 and 10 and identical

contact rates are established. The nodes in each group have identical interests

with nodes in the same group. A number of 2000 content objects are initially

shared by two sources selected from the two groups. After 10 iterations, 2 nodes

from the larger group change their interests and become members of the smaller

group. According to Figure 7.11, in the first 10 iterations, the first group be-

comes dominant and their targeted contents gain higher penetration. After the

shift in interest, the second group becomes dominant and the dissemination pri-

ority changes as a result. The relatively higher fluctuations of the curves in 7.11

(compared to previous scenarios) are attributed to the elimination of the warm-up

period, which in turn introduce some degree of randomness in the popularity mea-

surement model. However, this result confirms that the integration of warm-up

and dissemination phases is possible in the proposed model.

As a general observation of all simulation scenarios, the pace of content dis-

semination decreases when the content density in the network increases. Such a

finding is in agreement with other similar findings in the context of DTN.

7.9 Summary

We proposed a generic framework intended as a capstone architecture incorporat-

ing various content dissemination functionalities and properties. This framework,

while being independent from the underlying network architecture and the mo-

bility and meeting patterns among nodes, enables a typical node to dynamically

build its view of the information interests of other participating nodes. Such

capability coupled with the interaction model of meeting nodes facilitate the re-

alization of various content dissemination strategies while fulfilling the individual

nodes’ constraints in terms of buffer space, energy, etc. We numerically validated
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Figure 7.10: Comparison of social and individual-oriented content dissemination
strategies
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Figure 7.11: The impact of shift in nodes’ interests

the model with respect to structural and behavioural elements of content dis-

semination network, where we showed that the model well captures the essential

network properties such as dynamic composition of nodes’ communities, and in

the meantime reacts quickly to the shift in information interests of nodes. We

further showed that, opposed to the widely accepted assumption that the physi-

cal structure of the network is the main factor driving the outcome behaviour of

the dissemination task, the logical structure formed by the contact and interest

patterns of the participant nodes is the key influential factor.
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Chapter 8

Conclusions and Future
Directions

Through a number of contributions, this thesis has advanced the state of the art

in safety applications of vehicular communication networks in terms of reliability

issues. Also, the generic information dissemination framework proposed for the

case of non-safety applications provides a reference architecture for accurate char-

acterization of diverse tasks and factors affecting the efficiency of applications.

The main contributions of this thesis were presented in four chapters. In this

chapter, we summarise the conclusions and directions for future work on a chapter

by chapter basis.

8.1 Traffic Density Model (Chapter 3)

8.1.1 Conclusions

In Chapter 3, we proposed a traffic density model for urban traffic systems with

heterogeneous traffic phases. It was shown that the model captures well the

traffic dynamics of road segments connected to signalised intersections. Using

the traffic density model, we showed that the overlapping radios behave in a

highly dynamic manner, which cannot be adequately captured by the widely

used uniform density models with steady-state traffic assumption. Based on the

proposed density model, we also investigated the radio overlap and channel load
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of safety beacon messages. We showed that, in an intersection scenario with 3-

lane road segments and applying the nominal settings of DSRC parameters (500

byte messages, 10 Hz beaconing, and 1000 m transmission range), the channel

load can be as high as 18 Mbps, indicating that the use of data rates in the lower

part of the DSRC’s range is highly questionable, especially in congested traffic

scenarios.

8.1.2 Future Directions

Extension of the radio overlapping model

While our emphasis in Chapter 3 was to capture the realism in one component of

the host system, this is the vehicular traffic model, for tractability of the analytical

model we relaxed the evaluation of the radio overlap by adopting a unit disk model

to represent the other component, i.e., radio propagation. This is a conservative

approach, and using a more realistic propagation model with channel errors would

indeed further increase the channel occupancy due to excessive uncoordinated

transmissions.

Extension to bidirectional traffic

The traffic density model was developed with the assumption of one-way traffic,

and the evaluation of radio overlap and channel load were also performed based

on one-way traffic. Although it is expected that the radio overlap intensifies

and channel load increases in two-way traffic scenarios, accurate understanding

of such factors calls for extension of the model to a two-way traffic scenario in

road segments connected to signalised intersections. Unfortunately, traffic models

for two-way scenarios in signalised road segments do not exist in the literature.

Therefore, a dedicated research is demanded for the development of new traffic

models.

Our proposed traffic density model was based on a bivariate logistic function,

that is, time and position variables. The extension of this model to a bidirectional

road segment involves the convolution of two bivariate functions or designing
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an integrated multivariate logistic function. The development of the theoretical

framework for such a problem is an interesting research direction.

Extension to cascaded intersections

The proposed traffic model was developed based on the assumption that a road

segment is only connected to one intersection, or that the impact of other inter-

sections on the traffic flow in the road segment under investigation is negligible.

Incorporating more intersections into the model is extremely challenging due to

the filtering and platooning effects of a downstream intersection, which in turn

influence the outgoing traffic into the connected road segments. Full-feature mod-

els for cascaded intersections have not been developed by the research body in

the field of traffic science, which leaves the extension of our single intersection

model to multi-intersection scenarios an open problem. Similarly, the extension

of our model to non-signalised intersections (e.g., give way intersections) opens a

new direction for future research.

Our proposed density model has the capacity for such extensions. For ex-

tension to the cascaded case, instead of assuming a continuous traffic arrival

described by a mean traffic flow, one can employ on-off processes to model the

filtering and platooning effects of the upstream intersection(s). Accordingly, the

duration and the amount of traffic released during the on stage is determined by

the traffic light timing and the traffic intensity in the upstream intersection(s).

For extension to the second case, the assumption of fixed timing of the traffic light

must be replaced with adaptive timing. Correspondingly, the expected duration

of the red and green phases as perceived by a typical vehicle can be modelled by

a stochastic process.

Load balancing based on local traffic estimation

The scarcity of the radio resource underscores the need for careful design of

applications and protocols in urban VANETs in order to mitigate channel load in

dense traffic regions, based on vehicles’ estimations of their local traffic density

or traffic information provided by roadside infrastructure. To this aim, as the
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first step, the development of a robust mechanism for estimation of local traffic

is highly important. Second, the design of an adaptive and robust mechanism to

adjust transmission power and assign proper data rates based on the perceived

radio overlap opens a new direction for research.

8.2 Reliability of Safety Message Broadcast in

VANETs (Chapter 4)

8.2.1 Conclusions

In Chapter 4, it was stressed that previous studies on the reliability issues of

safety applications were focused on investigating the reliability of communication

networks in free-flow scenarios, where vehicles are uniformly distributed or traffic

is in steady state. We argued that this does not hold true in urban settings,

where traffic is regulated by signalized intersections and influenced by peculiar

driving behaviour. In Chapter 4, we addressed the urban case by studying the

performance of safety messages using a realistic vehicular mobility model which

captures the heterogeneous node densities at and around signalized intersections.

In line with previous work, we constructed Markov models for capturing the deliv-

ery probability for event-driven warning messages and the packet inter-reception

time for periodic beacons. By combining the Markov models with the urban

vehicular density model, for the first time we are able to accurately capture the

resulting performance characteristics in a non-uniform density setting. Through

a numerical evaluation, we demonstrated that the major impact of the hidden

node problem on the reliability performance of safety messages extends to the

urban case as well. Importantly, we found that the impact is most significant in

sections where the vehicle velocities are highest. Bearing in mind the relationship

between traffic safety and vehicle’s velocity, one can draw the conclusion that the

hidden terminal problem potentially overshadows the degree of improvement in

traffic safety expected to be achieved by means of safety applications.
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8.2.2 Future Directions

Extension of the reliability model

The reliability model should be revisited based on the extensions of the traffic

density and radio overlap model as mentioned in Section 8.1.

Reliability of applications targeted to intersection scenarios

Intersections have proven to be accident-prone regions [80]. This motivated the

standard bodies including VSC [5] to design safety applications specifically tar-

geted for intersection scenarios, including intersection collision warning, left or

right turn assistance and traffic light violation warning. An interesting direc-

tion for future research is to investigate the reliability of such applications. This,

firstly, demands accurate characterization of the traffic behaviour at intersections.

In the next phase, a risk model should be designed which maps the traffic param-

eters to the safety level of vehicles. Finally, the capacity of the safety application

in enhancing the safety level of drivers at the intersections should be explored.

The first case was addressed in this thesis (Chapter 3). However, the latter cases

call for future research.

Kinematic-aware countermeasures and control mechanisms

Our findings on reliability issues generally call for further work on mechanisms to

mitigate the effect of hidden nodes in order to ensure the viability of DSRC/WAVE-

based safety applications. Transmission power control and suppression of message

transmission rates are examples of countermeasures which will potentially lead

to mitigation of the hidden terminal problem. The idea of power or transmission

rate control is not new in itself; however, most of the the existing proposals rely

on channel sensing or some form of traffic density estimation. In the context of

vehicular networks, the traffic safety also should be taken into account, a factor

missing in the current approaches and proposals. In more concrete terms, the

control mechanisms should estimate the potential hazards incurred by vehicles

and apply the hazard information to the power or rate adaptation decisions. An
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example of a decision of this type would be the suppression of the beaconing rate

in less hazardous vehicles stopping in a queue, while increasing the power level

or transmission rate for vehicles joining the queue with potentially high velocity

and small headway distances. Enforcement of these types of control mechanisms

in a vehicle demands the monitoring of the kinematic status of the vehicle itself

and the kinematic information of other surrounding vehicles.

8.3 Severity of Hidden Terminal Interference in

VANETs (Chapter 5)

8.3.1 Conclusions

The degree of realism incorporated into the host system representation culmi-

nated in the work presented in Chapter 5. First of all, we represented urban traf-

fic scenarios characterised by a forced-flow traffic regime using a well-established

Cellular Automata (CA)-base traffic modelling paradigm, which has proven to

be highly efficient in describing various traffic scenarios [30; 123; 161]. Second, a

special-purpose shadow-fading radio propagation model [8] targeted for VANETs

was used to represent the radio propagation environment. Finally, two major

safety-critical traffic scenarios were identified with theoretical and empirical sup-

port from traffic science and evidence from car crash statistics. With realism

captured in these three dimensions, we addressed hidden terminal interference

as a primary cause of reliability degradation in broadcast communications. To

this aim, analytical models and geometric algorithms were developed to quantify

the severity of hidden terminal interference under safety-critical scenarios. For a

road stretch operating in a capacity traffic state and with various speed limits,

the upper bound interference power and the lower bound reachable distance of

safety messages were obtained. Our extensive experiments with various velocities

and lane configurations showed that, in a stretch of road, the interference power

obtained by the model is an upper bound 96% of the time. It was also shown

that the obtained reachable distance is a lower bound more than 94% of the time
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and exhibits a tightness of less than 9%. For the intersection scenario, the upper

bound property of the model in terms of interference power was shown to be

almost certain. Also, our experiments showed that the hidden terminal interfer-

ence causes a significant decline in the reachable distance of broadcast messages,

which in several cases drop to distances shorter than the minimum required cov-

erage of medium range safety applications. In the intersection scenario, it was

shown that the aggregate interference power of hidden nodes in the vicinity of the

intersection region can be significantly large and may amount to values several

times larger than the induced interference power in an equivalent road stretch

scenario. The results demonstrate that the proposed analytical framework has

the capability to be used as a benchmark for the assessment of the reliability risks

of safety applications under safety-critical traffic scenarios.

8.3.2 Future Directions

Extension to radio propagation with path loss variation

In the analytical framework developed in Chapter 5, the path loss variation was

discarded for the sake of model tractability. Hence, our analysis in that chapter

was restricted to average path loss. Consequently, the upper bound interference

and lower bound reachable distance were obtained on an average basis. Further

extension with the aim of absolute worst case analysis requires the path loss

variation to be taken into account. In a second dimension, investigating the

impacts of device sensitivity on the successful decoding of a signal in the presence

of interference is an interesting research direction.

Reachable distance in intersection scenarios

In the intersection scenario, we used a measurement-based traffic discharge model

[11] capable of describing the traffic properties at the stop line of the intersec-

tion. With the limitations of this model (and other similar models), it was only

possible to obtain the upper bound interference for the entire intersection. Such

discharge models are not adequate for obtaining the upper bound interference
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corresponding to any position of a road segment connected to the intersection.

An accurate spatial-temporal analysis of upper bound interference, and hence

worst case reliability, calls for the development of comprehensive traffic discharge

models for intersection scenarios. The traffic density model proposed in Chap-

ter 3 is a good starting point to serve this purpose; however, extra development

is needed to map from traffic density to the spatial distribution of vehicles.

Characterization of other safety-critical traffic scenarios

Identification of various safety-critical scenarios other than the two cases ad-

dressed in this thesis, and investigation of the reliability issues in such scenarios is

an interesting direction for future research. Particularly, more research is needed

to characterise traffic safety and to develop a traffic risk model. Incorporating

such a risk model in a framework intended for reliability analysis will facilitate

a better understanding of the bottlenecks of the DSRC/WAVE technology, espe-

cially in scenarios where safety is most needed.

Investigation of other reliability metrics

The reliability metric addressed in the proposed framework was reachable dis-

tance. Investigation of other reliability metrics, including network level metrics

such as packet delivery ratio, and application level metrics like message inter-

reception time and effective range, opens a new direction for future research.

Investigation of other factors affecting reliability

The analysis of reliability can be extended to account for other factors besides hid-

den terminal interference, which was our main focus in Chapter 5. The internal

interference caused by concurrent transmissions, the controlled factors includ-

ing transmission power and data rate, and MAC layer parameters are candidate

factors for investigation within a realistic host system.
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Development of a rich geometric calculus for vehicular traffic scenarios

Simple geometric algorithms were proposed to obtain the upper bound interfer-

ence and lower bound reachable distance for two safety-critical scenarios. Given

that there are many other traffic scenarios that are highly significant from the

perspective of communication reliability, a rich geometric computation framework

customized for vehicular traffic scenarios is demanded to describe such diverse

scenarios. The envisioned framework would facilitate the capture of the core

properties of complicated traffic scenarios and transform them to parsimonious

and analytically tractable procedures and algorithms. This, in turn, advocates

advanced studies of reliability and other performance aspects of vehicular net-

works.

8.4 Generic Framework for Information Dissem-

ination (Chapter 7)

8.4.1 Conclusions

We proposed a generic framework intended as a capstone architecture incorporat-

ing various content dissemination functionalities and properties. This framework,

while being independent from the underlying network architecture and the mo-

bility and meeting patterns among nodes, enables a typical node to dynamically

build its view of the information interests of other participating nodes. Such

capability, coupled with the interaction model of meeting nodes, facilitate the re-

alization of various content dissemination strategies while fulfilling the individual

nodes’ constraints in terms of buffer space, energy, etc. We numerically validated

the model with respect to structural and behavioural elements of the content dis-

semination network, where we showed that the model captures well the essential

network properties, such as dynamic composition of nodes’ communities, and in

the meantime reacts to the shift in information interests of nodes.
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8.4.2 Future Directions

Verification by field experiments and subjective tests

The efficiency of information-centric applications is substantially determined by

the user experience of the dissemination outcome. Knowing that users may have

diverse opinions on the quality of information they receive, the validation and

verification of the information dissemination framework should be performed us-

ing a diverse sets of users on a subjective basis. Furthermore, since the generic

framework is intended for users of various technologies, the verification mecha-

nisms should account for heterogeneous user constraints imposed by the target

technologies.

Extension to information recommendation system

The autonomous and distributed information popularity measurement designed

as part of the proposed framework is a generic functionality which can serve

several purposes with minimal changes. In Chapter 7, we highlighted its appli-

cation in social-oriented content exchange. Similarly, the information popularity

adaptively learned by mobile nodes or infrastructure units can be used in rec-

ommendation systems with the objective of enhancing automated information

discovery. In this use-case, a mobile node or infrastructure unit informs the

passing-by nodes about some popular information they are not aware of.

Extension to multi-player interaction model

Our proposed interaction model as a component of the generic framework cur-

rently describes the pairwise node interaction. Accordingly, the game theoretic

problem defined for the interaction model was a two-player game problem. How-

ever, in real situations it is likely that multiple nodes simultaneously come into

contact and desire to participate in content exchange. Therefore, a general in-

teraction model is needed to account for multiple nodes with potentially diverse

constraints and contact times.
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Mechanism design for the game theoretic interaction model

In the proposed interaction model, we assumed that the meeting nodes are coop-

erative. In a real system, incentive mechanisms are needed to enforce cooperative

behaviour. In view of that, some cooperation enforcement mechanisms including

incentive and reputation-based mechanisms are deemed to be highly advantageous

compared to other alternatives [128]. The design of such mechanisms to facilitate

cooperative content exchange by nodes with unique constraints and states opens

a new direction for future research.
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Appendix A

Vehicular Communication

Networks: Standards, Protocols

and Applications

This appendix presents an overview of DSRC/WAVE technology in Section A.1,

followed by a description of the applications envisioned for future deployment in

vehicular networks in Section A.2. In Section A.3, a number of existing added-

value applications and frameworks are introduced, emphasising the strong mo-

tivation of the research body in developing information and content-centric ap-

plications for vehicular communication networks. In Section A.4, we present the

current trend of vehicular network applications with some examples.

A.1 DSRC/WAVE

The DSRC/WAVE initiative [2; 121] addresses the communication services and

protocols required for the realization of vehicle to vehicle and infrastructure com-

munications. The initiative targets a broad range of services spanning from traf-

fic safety, management and control to location and facility discovery, content
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delivery, and many more [3; 5]. Provision of short and medium range data com-

munications with high data rate and low delay is the primary objective of the

initiative [96]. Data communications take place either directly between On-Board

Units (OBUs) installed in vehicles or between OBUs and infrastructure equip-

ment such as Road-Side Units (RSUs) [96; 153]. As part of the deployment plan

in the US, a spectrum with 75 MHz bandwidth in the 5.9 GHz band is dedicated

to vehicular communications [76]. The spectrum is divided into 7 channels. A

control channel is dedicated to life-related safety services and also for the ex-

changing of physical and link layer control information. The convenience and

commercial services must rely on the remaining six channels [76]. The physical

layer parameters such as transmission power, data rate, and modulation scheme

are regulated with respect to the type of application and the on-board unit in-

stalled in a vehicle [76; 96].

A.1.1 Standards and Protocols

DSRC/WAVE architecture is comprised of the IEEE802.11p protocol [7], the

IEEE 1609.x series of standards and protocols [5; 76], and the information models

specified by the Society of Automotive Engineers (SAE) J2735 [5; 6] (Figure

A.1). For further information about the WAVE physical (WAVE PHY) and

WAVE medium access control (WAVE MAC), the interested reader is referred

to [7; 76; 96].

A.2 Overview of Applications and Services

A large number of services and applications with various objectives have been

proposed by the Vehicle Safety Communication Project [3; 5] for future deploy-

ment in vehicular networks. Yet, more applications are predicted to be proposed

by research body in the near future. The benefit to the user from the various

applications and services are not the same; hence, a number of applications have

a high priority for deployment. Of the high priority applications, 16 applications

have been identified in [15] with safety services as the primary focus.
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Figure A.1: DSRC/WAVE protocol stack [5]

A.2.1 Application Types

VANET applications are classified into three main classes: safety, convenience,

and commercial applications [3; 15].

• Safety applications monitor actively the surrounding environment to keep

track of the kinematic state of the neighbouring vehicles and the road con-

ditions by means of inter-vehicle message communication. The information

received from the nearby environment enables the drivers to react to poten-

tially hazardous incidents. Two classes of safety applications are envisioned

for future deployment [15]. In the first class, the applications are aimed

to facilitate automatic actions such as automatic braking or slowing down

to prevent potential accidents. In the second class, the applications assist

drivers only if they activate the applications and grant them a permission for

assistance [15]. Examples of safety applications are Emergency Electronic

Brake Light (EEBL), and Lane Change Warning (LCW) [5].

• Convenience applications share traffic information, road conditions, and

various types of information associated with urban sensing among vehicles,

infrastructure entities, and centralized traffic monitoring and control sys-
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tems [15; 16]. These applications aim to enhance traffic flow, travel time,

pollution measurement and control, etc. Yet, another goal of these applica-

tions is to provide a convenience to drivers. Congested Road Notification

(CRN), and toll services (TOLL) [15] are examples of this type.

• Commercial applications facilitate access to a wide variety of content and

information services. Internet access and audio and video communications

are considered as two generic types of commercial services. Applications

with more specific objectives include, but are not limited to, Real-Time

Video Relay (RTVR) and Service Announcement (SA) [15].

A.2.2 Application Attributes and Scopes

Applications are further characterized by application and network specific at-

tributes [15; 147]. The application attributes describe the inherent properties

of the application, while network attributes mainly describe the communication

aspects of the application.

• Application Attributes: describe the internal properties of the applica-

tion. These attributes include, but are not limited to, region of interest,

trigger conditions, lifetime of events, and the entities enabling the applica-

tion [15].

• Network Attributes: specifies the communication features of an appli-

cation. These attributes include, but are not limited to, routing mech-

anism, channel attributes, and the dependency on infrastructure equip-

ment [15; 147].

A complete list of attributes have been identified for 16 high priority applications,

which can be found in [15]. According to [15], the applications relying on periodic

exchange of safety messages also rely mainly on single hop communication, while

for others who exploit event-based messaging, multi hop communication is an

alternative choice. Also, the periodic-based applications rely mainly on broad-

cast mode, whereas the event-based applications can use geocast dissemination.
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In convenience and commercial applications, on the other hand, the dominant

communication mode is unicast.

In a more recent study, Bai et al. [16] classified the VANET applications into

six categories. In this classification, one can find new application types such as

wide-area alert services, file sharing services, and interactive applications [16].

Using this classification, Bai et al. identified three key characteristics indicating

the scope over which the information subject to communication is relevant. These

scopes are temporal, spatial, and interest groups [16].

A study with a greater focus on broadcast safety applications can be found

in [43]. In this study, Chen et al. specified the latency and the desired commu-

nication range for a number of safety applications including intersection collision

avoidance, public safety, and traffic sign extension. According to Chen et al.,

most applications require a latency of ≤ 100 milliseconds and transmission range

of ≤ 300 meters. An example of a very strict application is Pre-Crash Sensing

(PCS) [43], which needs a latency of ≤ 20 milliseconds. Approaching Emergency

Vehicle Warning (AEVW) [43] is also considered a strict application, which re-

quires a transmission range up to 1000 meters. Bai et al. [17] investigated the

required transmission (or application) range and a factor termed tolerance time

window for a set of four popular safety applications. Tolerance time window is

a time duration within which the reception of at least one message is necessary

for a receiver vehicle to be able to predict and update the status of a neighbour

vehicle accurately [17]. The communication patterns of VANET applications are

studied in [147], which highlights that most safety applications must rely on one-

hop broadcast of safety messages. In cooperative forward collision avoidance,

for instance, vehicles are required to broadcast regularly the current kinematic

information to other neighbouring vehicles [3; 147]. In vehicle to infrastructure

applications such as curve speed warning, the RSU(s) must broadcast regularly

the information about road surface type, weather conditions and more to the

approaching vehicles [147].
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A.3 Added Value Applications and Service Frame-

works

Safety applications have been the primary focus of car to car communications.

However, viewing the information in an abstract form and considering the variety

of roles a vehicle can play in an information-centric framework, a vast number

of services with unique features can be envisioned. The roles of a vehicle can

be summarized into four categories including information consumer, information

producer, information consumer and producer, and intermediary [87]. With such

roles in mind and considering the fact that a vehicle can play the intermediary

role in almost all cases, the services can be classified into three broad classes as

we survey in the following sections.

A.3.1 Information Consumer Services

The information or content is produced by external infrastructure units. Vehicles

access the information from the external units using either a pull- or push-based

method. Opportunistic dissemination is then used to exchange the information

among vehicles beyond the coverage of the infrastructure units. Location- aware

advertisements and content dissemination account for two broad categories of

information consumer services [87]. AdTorrent [125] was designed to facilitate

the delivery of advertisements relevant to drivers’ interests. Mershad et al. [118]

proposed a data routing mechanism termed CAN DELIVER. This mechanism

relies on the cooperation of vehicles and road side units to route information

to vehicles far from the coverage of road side units. In [124], an application

framework was proposed to facilitate the dissemination of content.

A.3.2 Information Producer Services

Easy and low-cost equipment of vehicles with special purpose sensors and location

services empowered by navigation systems enables a series of added value urban

sensing services [87]. In [68], an application framework was proposed to facilitate
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the processing and resolution of queries of various topics. [57] addressed an

application which provides the drivers with information about road conditions,

and [90] proposed an enabling framework for a broad range of services targeted

to urban sensing.

A.3.3 Information Consumer and Producer Services

In this type of services, a vehicle can be viewed as a consumer and a source of

information, simultaneously. Example services are proactive reporting of traffic

conditions and incidents, voice and video over vehicular communications, and

peer to peer services [87]. In [88], the authors addressed a trading service over

vehicular communication platform. [66] proposed a framework to facilitate the

communication of live videos about incidents in a vehicular traffic system. [154]

proposed an application framework targeted to virtual mobile communities such

as chat groups. A proposal for traffic information system based on vehicle to

vehicle and infrastructure communications can be found in [144].

A.4 Trends of VANET Applications

The idea of using vehicular networks as a communication infrastructure to re-

alize sophisticated applications dates back to 2003 when Goel et al. proposed

“sensor-on-wheels” architecture [63] for the realization of traffic information sys-

tems. At the time this novel architecture was proposed, standards and protocols

dedicated for vehicular communications did not exist. This led the authors to

base their proposal on a generic IEEE 802.11-based short range communication

interface or wide-area communication links (cellular network or two-way paging

network) [63]. Since then, as highlighted in the previous sections, the research

has been focused on exploring new applications and versatile frameworks to facil-

itate the implementation and deployment of such applications. In particular, the

idea of Content Centric Networking (CCN) [69] in VANET has recently gained

significant momentum. The CCN framework was originally proposed for the fu-

ture Internet [130]; however, this framework has the capacity of being employed
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independent from the underlying communication technology. In CCN, a content

is referred to by a unique name instead of the address of the host device where

the content is stored [13]. The functionality of content distribution in CCN is

controlled by the information consumer(s). A consumer issues a content request

by advertising their interest through existing channels, that is, communication

interfaces. In the basic form, a single interest results in the retrieval of a single

content object [69]; however, the extension to the retrieval of multiple content

objects demands further modification of the basic architecture. A transparent im-

plementation of CCN requires that the underlying communication architecture

supports name-based content retrieval instead of traditional host-based routing.

IC NOW [16] and CRoWN [13] frameworks represent two major attempts for

realizing versatile application frameworks. The aim of IC NOW is to provide

a holistic and versatile framework for the development of information-centric

applications targeted to vehicular networks. The founders of IC NOW seek con-

sistent and flexible mechanisms enabling the development of various applications

with different natures (i.e., safety, convenience, etc.) and with different scopes

(i.e., spatial, temporal, and user interests) [16]. In the CRoWN framework, two

objectives are pursued: (i) conformance to 802.11p/WAVE standards, and (ii)

provision of content-centric vehicular communications relying on vehicles and

infrastructure as content providers. Both IC NOW and CRoWN frameworks

conform to the CCN architecture. Compared to IC NOW, CRoWN is more com-

patible with the DSRC/WAVE architecture for VANETs and also does not need

an overlay network as is required in IC NOW.

A.5 Summary

DSRC/WAVE initiative covers a wide variety of a services ranging from safety

to convenience, and commercial services. While safety services are the primary

focus of standard bodies, the research campaign continues to explore other added

value services and application frameworks. Such a campaign is motivated by

the easy and low-cost equipment of vehicles with various facilities ranging from

special purpose sensors to high power processors, and location services.
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Appendix B

Vehicular Traffic Models

In this appendix, we present an overview of traffic concepts and the traffic mod-

elling paradigms addressed frequently in the context of vehicular traffic networks.

B.1 What is a Traffic Model?

A traffic model is characterised by a network topology and vehicular mobility.

The network topology is described by a graph, where the graph vertices rep-

resent the intersections and the edges are the road segments connected to those

intersections. The topology is further described by the dimension of the road seg-

ments in terms of segment length, curvature, the number of lanes, and the lane

width. Traffic mobility is described by constraints and regulations governing the

motion of individual vehicles [67]. A wide variety of constraints can be found in

the constraint set, including those related to driving habits, velocity regulations,

vehicle kinematics, road topology, etc.

B.2 Factors Affecting the Vehicular Mobility

Mahajan [110] identified a number of key factors affecting the mobility behaviour.

These factors include:
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B.2 Factors Affecting the Vehicular Mobility

B.2.1 Streets Layout

The motion of vehicles is restricted by the predefined paths formed by streets and

roads. Streets are comprised of single or multiple lanes. Furthermore, they are

characterized by unidirectional or bidirectional traffic flow.

B.2.2 Size of Block

A block corresponds to an urban region surrounded by a number of streets con-

nected by intersections. The size of a block in urban centre is generally smaller

than in a suburb. The size of a block affects the motion of vehicles by affecting the

frequency of stopping. Traffic density is also influenced by the size of block [110].

B.2.3 Traffic Control Mechanisms

Stop signs along the streets and traffic lights at intersections account for the

major mechanisms deployed for the goal of traffic control or enforcement of traf-

fic regulations [110]. These control mechanisms significantly affect the motion

pattern of vehicles due to queuing and frequent accelerations and decelerations.

B.2.4 Mutual Dependency of Vehicular Mobility

Traffic safety implies maintaining safe distance between vehicles. To this aim,

the interaction between a vehicle and its neighbouring vehicles is inevitable for

preserving a safe distance.

B.2.5 Average Velocity

The frequency at which a vehicle changes its position is determined by its velocity.

The average velocity is influenced by the vehicles’ acceleration and deceleration

and also the topological aspects of the traffic network. In particular, the den-

sity of intersections highly affects the average velocity of vehicles in a region of

interest [110].
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B.3 Granularity of Traffic Mobility Model

Mobility models are generally categorized by the degree of details they describe

vehicular motion. In view of that, the granularity of a mobility model falls within

one of three categories as follows [62]:

B.3.1 Microscopic

Microscopic models aim to describe the motion details of individual vehicles ac-

curately. Hence, all features related to the dynamic interaction of a vehicle with

their surrounding vehicles, the transportation regulations, etc, are taken into

consideration in these models.

B.3.2 Macroscopic

These models describe the traffic behaviour by means of high level traffic param-

eters including density, flow, or average velocity. They do not emphasize on the

detailed motion of vehicles individually, but rather on traffic features correspond-

ing to a segment of a road or street.

B.3.3 Mesoscopic

The features of microscopic and macroscopic models are integrated into a meso-

scopic model. In this model, macroscopic parameters such as density, flow, or

average velocity are used to describe the individual motion behaviour of vehicles.

B.4 Theoretic Motion Models

Given the granularity of the mobility model as described above, the vehicular

mobility is realized, that is, motions are generated using one of the following

mathematical models.
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B.4.1 Stochastic Models

Stochastic models determine the movement of nodes within the network graph

using a random process. Motion elements include, but are not limited to, node

destination, pause time at destination, motion direction, and speed. All or a sub-

set of motion elements are determined randomly. Random Waypoint (RWP) [73]

is a well-known stochastic mobility model widely used in the simulation of ad hoc

networks. According to this model, a node stays in a location and waits for a

duration termed pause time. When this time ends, the waiting node selects ran-

domly a new location within a production area. Afterwards, it moves to the new

destination with a velocity chosen randomly from a predefined velocity range.

Random Walk [145] and Random Direction [143] mobility models also fall within

the class of stochastic models [38]; however, their applications in the context of

ad hoc networks is rare. RWP as an abstract model has been used mainly in the

context of Mobile Ad hoc NETworks (MANETs). Recently, some mobility mod-

els derived from RWP have been applied to vehicular networks. City Section (CS)

mobility model [52] and Constant Speed Motion (CSM) [52] are typical examples

of such models. Freeway [18] and Manhattan [155] models are also considered as

stochastic models applied to vehicular networks in few studies.

B.4.2 Traffic Stream Models

In these models, the motion of a vehicle is modelled as a hydrodynamic phe-

nomenon characterized by some equations derived from the broad concept of fluid

dynamic [26]. Fluid Traffic Model (FTM) [152] is an example of traffic stream

models. According to this model, the velocity of a vehicle decreases proportional

to traffic density. When the traffic density reaches a threshold termed critical

density, the vehicles decelerate in order to preserve a minimum velocity known

as lower bound velocity [26]. The FTM is generally characterized by a velocity

update mechanism as follows [61]:

vn (t+∆t) = max
(
vmin, vmax

(
1− m/r

djam

))
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B.4 Theoretic Motion Models

m is the number of vehicles situated on the road where a vehicle n under inves-

tigation is situated, t is the current time instant, ∆t is a predefined time step

used for velocity update, r is the length of the road under investigation, and djam

is the vehicular density corresponding to jammed traffic state. The ratio m/r

indicates the instant traffic density. With m/r growing to jammed traffic density,

vehicles decelerates in order to preserve a predetermined minimum velocity. In

non-congested or less congested situations, vehicles increase their velocities to a

predetermined maximum velocity [61].

B.4.3 Car Following Models

Car Following [142] models are the basis for many synthetic traffic simulation

frameworks. Based on this traffic modelling scheme, the motion dynamic of

a given vehicle is determined with respect to the kinematic information of the

neighbouring vehicles. The kinematic information includes vehicle position, ve-

locity, acceleration rate, and driving direction [62]. An example of numerous

models derived from car following is Intelligent Driver Model (IDM) [62; 167]. In

this model, the motion dynamic of a given vehicle is determined by its kinematic

status and the kinematic information of a leading vehicle. Let n, xn, and vn be

the index, the position, and the velocity of a vehicle of interest at time t. Also,

let ln be the effective length of the vehicle n. The spacing of vehicle n with a

leading vehicle n − 1 is expressed as sn := xn−1 − xn − ln−1 and the relative

velocity of the two vehicles is defined as ∆vn := vn − vn−1. With these settings,

the motion dynamic of vehicle n is defined by a number of differential equations

as follows [62]:

ẋn = dxn

dt
= vn

v̇n = dvn
dt

= a

(
1−

(
vn
v0

)δ
−
(

s∗(vn,∆vn)
sn

)2)

s∗(vn,∆vn) = s0 + vn T + vn ∆vn
2
√
a b

v0 is the desired velocity, s0 is the minimum spacing, T is the desired headway

time, a is the acceleration rate, b is the comfortable deceleration rate, and σ is
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an exponent usually set to 4 [62].

IDM model was further extended to support motion dynamics at intersections

and also to lane changing maneuvers [62]. MOBIL [166] is another motion model

for lane changing. In this model, a lane change maneuver is considered as a game

theoretic problem characterized by appropriate utility functions.

B.4.4 Traffic Cellular Automaton Models

Traffic Cellular Automaton (TCA) [123] describes traffic motion using discrete

variables (i.e., integer or binary variables). In these models, a given road segment

is viewed as pieces of equal length ∆x termed cells and the time is fragmented

to slots of equal duration ∆t. In a deterministic TCA, the CA states including

velocity, position, or cell occupation are chosen from a predetermined set. In

stochastic CA models, on the other hand, the state variables (or a subset of them)

are determined probabilistically. In TCA, the dynamics of vehicular motion are

generally described by the following expressions for position and velocity update:

vn(t+ 1) = f (sn(t), vn(t), vn−1(t), . . .)

xn(t+ 1) = g (xn(t), vn(t+ 1))

where f is a function which implements the velocity update by means of a set

of rules governing the TCA model and a set of parameters. The key parameters

determining the node n’s velocity at time t+1 are the current spacing of vehicle n

(sn(t)), current velocity of vehicle n (vn(t)), and the current velocity of the front

vehicle (vn−1(t)). Function g determines the next position of vehicle n using the

information of the current position and the next velocity of n represented by xn(t)

and vn(t+ 1), respectively. In some CA models [161], g is simply the summation

of xn(t) and vn(t+ 1), that is, g (xn(t), vn(t+ 1)) = xn(t) + vn(t+ 1).

Examples of deterministic TCA models are Wolframs rule 184 (CA-184) [82]

and Biham-Middleton-Levine traffic model [30]. The former is a generic model

used for the description of many forms of particle systems, with the traffic system

as an example. Biham-Middleton-Levine model is a two-dimensional version of

Wolframs rule 184. A well-known example of stochastic TCA (STCA) is Nagel-
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Schreckenberg model (NaSch) [123]. This model is able to reproduce several

characteristics of real-life traffic features such as the spontaneous emergence of

jammed traffic. It explicitly includes a stochastic noise term in at least one of

its rules. The computational model in the NaSch is defined on a one dimensional

array of a number of known sites. Each site is either occupied or empty. Each

vehicle has an integer velocity with values in range [0, vmax]. With an arbitrary

configuration, the system update is realized by the following four steps performed

in parallel for all vehicles [123]:

1. Acceleration:

vn(t) < vmax ∧ sn(t) > vn(t) + 1 ⇒ vn(t+ 1)← vn(t) + 1

2. Braking:

sn(t) < vn(t+ 1) ∧ sn(t) > vn(t) + 1 ⇒ vn(t+ 1)← sn(t)− 1

3. Randomization:

ξ(t+ 1) < p ⇒ vn(t+ 1)← max (0, vn(t+ 1)− 1)

where ξ(t + 1) is a random number generated for the next update, p is

stochastic noise parameter or slow-down probability.

4. Movement:

xn(t+ 1) ← xn(t) + vn(t+ 1)

Extensions of NaSch for two dimensional streets can be found in [48] and [161].

Both models support traffic mobility at intersections with the difference that the

latter assigns different priorities to the turning and drive- through traffic at an

intersection.

As a final remark, it is worth mentioning that due to quantization in the

time or space domain, CA models are generally less accurate compared to car
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following models. However, these models are more efficient in terms of scalability

with network size and computation complexity [161].
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Appendix C

Interference Power and SINR

Results for Road Stretch

Scenario

C.1 Description

The interference power and SINR results corresponding to the road stretch sce-

nario (Chapter 5) are presented in the following tables. Due to the lack of space,

the hop numbers are not shown in the tables, however, they can be implicitly

realized from the row number of the tables. In the tables corresponding to the

interference power, the row numbers are equivalent to the hop numbers. Thus,

for example, the first row belongs to the first hop and the last row represents the

last hop in the carrier sense range of the transmitter. Similarly, in SINR tables,

the row numbers represent the hop numbers. The interference powers and SINRs

are measured in dBm and dB respectively. Some abbreviations used in the tables

are described as follows:

• “L”: stands for lane, e.g., 2L is equivalent to 2 lanes.
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C.1 Description

• “T mean”: represents the mean value of a quantity (either interference

power or SINR) measured from the traces.

• “T CI”: represents the 95% confidence interval of a quantity (either inter-

ference power or SINR) measured from the traces.

• “M”: stands for a quantity (either interference power or SINR) obtained

by the model.
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C.2 Interference Power and SINR Tables

C.2 Interference Power and SINR Tables

Table C.1: Interference power (velocity = 40kph)

2L 4L 6L

T mean T CI M T mean T CI M T mean T CI M

-103.05 0.06 -101.28 -100.06 0.06 -98.22 -98.31 0.05 -96.45
-102.40 0.06 -100.72 -99.42 0.07 -97.69 -97.68 0.06 -95.93
-101.80 0.06 -100.05 -98.84 0.07 -97.04 -97.07 0.07 -95.25
-101.23 0.06 -99.54 -98.25 0.09 -96.49 -96.49 0.07 -94.76
-100.66 0.06 -98.98 -97.71 0.09 -95.94 -95.93 0.08 -94.14
-100.12 0.06 -98.37 -97.18 0.09 -95.41 -95.38 0.09 -93.61
-99.58 0.06 -97.87 -96.64 0.10 -94.88 -94.84 0.09 -93.07
-99.04 0.06 -97.43 -96.12 0.10 -94.42 -94.31 0.10 -92.59
-98.51 0.06 -96.77 -95.60 0.11 -93.87 -93.78 0.10 -92.01
-97.97 0.06 -96.34 -95.08 0.11 -93.36 -93.25 0.10 -91.54
-97.43 0.06 -95.82 -94.56 0.12 -92.83 -92.71 0.11 -90.99
-96.89 0.07 -95.23 -94.02 0.13 -92.32 -92.14 0.12 -90.44
-96.31 0.07 -94.65 -93.48 0.13 -91.82 -91.58 0.13 -89.89
-95.74 0.07 -94.14 -92.94 0.14 -91.23 -91.00 0.14 -89.28
-95.15 0.07 -93.53 -92.36 0.15 -90.69 -90.42 0.15 -88.74
-94.53 0.08 -92.91 -91.78 0.16 -90.17 -89.79 0.16 -88.13
-93.91 0.08 -92.22 -91.15 0.18 -89.59 -89.15 0.18 -87.50
-93.24 0.09 -91.58 -90.45 0.21 -88.92 -88.45 0.20 -86.89
-92.55 0.10 -91.01 -89.76 0.23 -88.20 -87.71 0.23 -86.20
-91.79 0.11 -90.05 -89.02 0.25 -87.62 -86.97 0.25 -85.52
-90.98 0.12 -89.41 -88.22 0.27 -86.85 -86.14 0.28 -84.77
-90.13 0.13 -88.53 -87.24 0.33 -85.96 -85.22 0.32 -83.93
-89.15 0.15 -87.63 -86.16 0.39 -85.13 -84.23 0.36 -83.13
-88.06 0.19 -86.41 -84.86 0.49 -84.22 -83.14 0.41 -82.19
-86.78 0.22 -85.26 -83.86 0.52 -83.33 -81.94 0.47 -81.25
-85.31 0.27 -84.15 -82.89 0.55 -82.44 -80.75 0.51 -80.31
-83.28 0.36 -82.74 -82.02 0.55 -80.83 -79.39 0.58 -77.52
-80.49 0.48 -81.24 -80.99 0.52 -78.85 -78.30 0.60 -76.62
-77.10 0.55 -75.21 -79.48 0.55 -77.94 -77.05 0.63 -75.44
-73.74 0.62 -71.51 -77.84 0.57 -76.34 -75.59 0.66 -73.67
-70.76 0.71 -69.51 -75.53 0.65 -73.96 -73.84 0.68 -71.55
-69.78 0.90 -67.77 -73.33 0.65 -71.16 -71.67 0.71 -68.78
-68.63 1.26 -67.82 -69.96 0.68 -67.56 -69.47 0.67 -66.67
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Table C.2: SINR (velocity = 40kph)

2L 4L 6L

T mean T CI M T mean T CI M T mean T CI M

46.85 0.19 37.46 45.86 0.22 36.12 45.17 0.21 35.24
30.32 0.17 30.39 29.40 0.25 28.92 28.58 0.24 27.86
26.70 0.15 25.75 25.66 0.24 24.44 24.68 0.25 23.18
24.06 0.14 23.24 22.80 0.26 21.54 21.74 0.25 20.55
21.88 0.14 21.23 20.60 0.25 19.40 19.40 0.26 18.00
19.96 0.15 19.01 18.68 0.26 17.42 17.35 0.27 16.03
18.08 0.15 17.11 16.79 0.27 15.32 15.44 0.28 13.80
16.24 0.14 15.39 14.88 0.27 13.55 13.45 0.27 11.96
14.57 0.14 13.36 13.13 0.27 11.62 11.64 0.27 9.97
13.00 0.13 11.95 11.53 0.26 10.06 9.97 0.27 8.42
11.56 0.13 10.54 10.02 0.27 8.44 8.38 0.27 6.80
10.19 0.13 8.96 8.55 0.27 7.06 6.84 0.27 5.27
8.83 0.13 7.63 7.19 0.27 5.75 5.40 0.28 3.84
7.55 0.13 6.48 5.90 0.27 4.31 4.01 0.28 2.33
6.31 0.13 5.07 4.59 0.28 3.09 2.70 0.29 1.08
5.09 0.13 3.86 3.35 0.29 1.89 1.37 0.30 -0.24
3.91 0.14 2.48 2.09 0.30 0.70 0.09 0.31 -1.55
2.71 0.14 1.34 0.78 0.33 -0.64 -1.24 0.33 -2.75
1.53 0.15 0.25 -0.48 0.35 -1.99 -2.57 0.35 -4.05
0.27 0.16 -1.32 -1.75 0.36 -3.03 -3.85 0.37 -5.28
-0.99 0.17 -2.41 -3.06 0.38 -4.38 -5.20 0.39 -6.54
-2.28 0.18 -3.73 -4.55 0.43 -5.81 -6.61 0.43 -7.92
-3.69 0.20 -5.03 -6.10 0.50 -7.11 -8.06 0.47 -9.15
-5.20 0.23 -6.78 -7.83 0.59 -8.47 -9.59 0.51 -10.54
-6.88 0.26 -8.31 -9.19 0.62 -9.73 -11.18 0.56 -11.89
-8.72 0.31 -9.83 -10.51 0.63 -10.95 -12.74 0.61 -13.17
-11.13 0.40 -11.62 -11.69 0.62 -12.91 -14.44 0.67 -16.29
-14.27 0.52 -13.47 -13.03 0.58 -15.12 -15.81 0.67 -17.47
-17.97 0.58 -19.84 -14.85 0.62 -16.38 -17.34 0.70 -18.96
-21.58 0.65 -23.82 -16.78 0.63 -18.28 -19.06 0.72 -20.99
-24.75 0.75 -25.98 -19.37 0.71 -20.94 -21.07 0.74 -23.36
-25.80 0.95 -27.82 -21.80 0.70 -23.93 -23.47 0.76 -26.36
-27.01 1.32 -27.77 -25.42 0.72 -27.80 -25.86 0.71 -28.64
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Table C.3: Interference power (velocity = 50kph)

2L 4L 6L

T mean T CI M T mean T CI M T mean T CI M

-103.97 0.09 -102.44 -100.92 0.07 -99.34 -99.14 0.06 -97.56
-103.20 0.09 -101.67 -100.15 0.08 -98.51 -98.37 0.08 -96.71
-102.44 0.09 -100.91 -99.42 0.09 -97.85 -97.64 0.09 -96.07
-101.74 0.09 -100.31 -98.72 0.11 -97.22 -96.95 0.10 -95.36
-101.04 0.09 -99.44 -98.05 0.11 -96.47 -96.27 0.11 -94.71
-100.37 0.09 -98.90 -97.38 0.12 -95.84 -95.60 0.12 -94.02
-99.72 0.09 -98.33 -96.71 0.13 -95.24 -94.92 0.13 -93.38
-99.04 0.09 -97.48 -96.01 0.14 -94.50 -94.25 0.13 -92.71
-98.35 0.09 -96.94 -95.32 0.15 -93.84 -93.55 0.15 -92.04
-97.68 0.09 -96.19 -94.61 0.17 -93.17 -92.84 0.16 -91.35
-97.01 0.09 -95.47 -93.85 0.19 -92.44 -92.12 0.17 -90.69
-96.28 0.10 -94.87 -93.05 0.21 -91.71 -91.35 0.19 -89.93
-95.55 0.10 -94.24 -92.22 0.24 -91.02 -90.52 0.23 -89.25
-94.74 0.10 -93.21 -91.35 0.27 -90.23 -89.70 0.25 -88.45
-93.83 0.11 -92.42 -90.36 0.32 -89.40 -88.78 0.28 -87.62
-92.89 0.12 -91.48 -89.32 0.36 -88.59 -87.81 0.31 -86.77
-91.88 0.14 -90.36 -88.05 0.43 -87.61 -86.67 0.36 -85.90
-90.74 0.16 -89.42 -86.59 0.51 -86.59 -85.33 0.42 -84.47
-89.46 0.20 -88.19 -85.25 0.57 -85.59 -83.91 0.49 -83.34
-87.83 0.26 -86.49 -83.80 0.63 -82.61 -82.56 0.52 -81.03
-85.52 0.36 -85.07 -82.46 0.70 -81.77 -80.78 0.60 -78.98
-82.20 0.49 -81.38 -81.83 0.70 -80.29 -79.13 0.67 -77.35
-78.41 0.59 -74.75 -81.05 0.68 -79.06 -78.20 0.69 -76.34
-74.92 0.67 -72.49 -79.62 0.73 -77.68 -76.75 0.74 -74.26
-72.44 0.81 -70.39 -77.79 0.78 -75.73 -75.38 0.75 -72.62
-71.39 1.04 -69.63 -76.22 0.81 -72.84 -73.54 0.80 -70.64
-70.27 1.43 -68.19 -74.22 0.86 -70.95 -72.03 0.83 -68.59
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Table C.4: SINR (velocity = 50kph)

2L 4L 6L

T mean T CI M T mean T CI M T mean T CI M

45.39 0.21 36.47 44.68 0.27 35.45 43.84 0.28 34.55
28.88 0.18 29.16 27.99 0.28 27.34 27.16 0.30 26.06
25.06 0.17 24.37 24.08 0.28 22.98 23.12 0.31 21.87
22.34 0.16 21.83 21.16 0.31 20.28 20.17 0.31 18.92
19.93 0.18 19.12 18.77 0.32 17.75 17.65 0.32 16.60
17.68 0.18 16.89 16.52 0.33 15.08 15.33 0.33 13.68
15.58 0.17 14.88 14.27 0.33 12.97 13.00 0.33 11.47
13.64 0.16 12.63 12.16 0.34 10.78 10.88 0.33 9.36
11.82 0.16 11.04 10.25 0.34 8.86 8.90 0.33 7.35
10.22 0.15 9.18 8.43 0.35 7.07 7.04 0.34 5.53
8.71 0.15 7.63 6.68 0.36 5.33 5.30 0.35 3.90
7.20 0.15 6.24 4.96 0.38 3.66 3.60 0.36 2.15
5.77 0.15 4.90 3.33 0.40 2.21 1.91 0.38 0.67
4.30 0.16 3.12 1.73 0.43 0.67 0.34 0.40 -0.94
2.74 0.16 1.58 0.05 0.47 -0.89 -1.32 0.42 -2.52
1.21 0.17 0.07 -1.64 0.50 -2.34 -2.96 0.44 -4.04
-0.34 0.19 -1.70 -3.52 0.57 -3.94 -4.73 0.49 -5.50
-2.00 0.21 -3.16 -5.55 0.64 -5.53 -6.66 0.54 -7.56
-3.76 0.25 -4.86 -7.36 0.70 -7.03 -8.61 0.61 -9.22
-5.87 0.30 -7.15 -9.25 0.74 -10.44 -10.42 0.63 -11.92
-8.65 0.40 -9.04 -10.94 0.81 -11.61 -12.66 0.70 -14.49
-12.41 0.53 -13.15 -11.83 0.80 -13.32 -14.69 0.78 -16.46
-16.56 0.63 -20.20 -12.87 0.77 -14.80 -15.86 0.78 -17.72
-20.33 0.71 -22.74 -14.60 0.81 -16.55 -17.60 0.83 -20.10
-23.01 0.85 -25.03 -16.73 0.86 -18.78 -19.21 0.83 -21.97
-24.15 1.09 -25.86 -18.55 0.89 -21.92 -21.31 0.88 -24.17
-25.35 1.49 -27.40 -20.77 0.93 -24.04 -23.01 0.90 -26.45
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C.2 Interference Power and SINR Tables

Table C.5: Interference power (velocity = 65kph)

2L 4L 6L

T mean T CI M T mean T CI M T mean T CI M

-104.96 0.11 -103.07 -101.90 0.10 -99.92 -100.09 0.09 -98.12
-103.97 0.11 -102.14 -100.93 0.11 -99.04 -99.12 0.11 -97.29
-103.02 0.11 -101.18 -99.98 0.13 -98.11 -98.18 0.13 -96.27
-102.13 0.10 -100.42 -99.08 0.15 -97.28 -97.32 0.15 -95.52
-101.26 0.10 -99.41 -98.17 0.17 -96.36 -96.43 0.16 -94.38
-100.37 0.10 -98.63 -97.28 0.19 -95.57 -95.54 0.19 -93.62
-99.44 0.10 -97.77 -96.34 0.22 -94.65 -94.58 0.23 -92.78
-98.53 0.11 -96.83 -95.35 0.26 -93.74 -93.63 0.25 -91.37
-97.58 0.12 -96.03 -94.34 0.28 -92.92 -92.55 0.30 -90.56
-96.57 0.12 -94.87 -93.30 0.31 -92.00 -91.44 0.34 -89.77
-95.49 0.14 -93.86 -92.01 0.38 -90.26 -90.12 0.39 -87.88
-94.27 0.16 -92.49 -90.74 0.42 -89.38 -88.59 0.46 -87.03
-92.88 0.19 -91.34 -89.25 0.49 -88.41 -87.10 0.53 -85.92
-91.33 0.24 -89.71 -87.72 0.55 -86.21 -85.72 0.58 -83.67
-89.01 0.35 -87.92 -85.82 0.64 -84.35 -84.14 0.63 -81.87
-85.76 0.47 -86.01 -84.23 0.68 -82.35 -82.40 0.68 -80.01
-81.61 0.59 -78.14 -82.30 0.77 -80.63 -80.21 0.77 -77.53
-77.39 0.68 -74.25 -80.94 0.83 -79.08 -78.65 0.82 -75.97
-74.60 0.80 -71.74 -79.95 0.87 -77.65 -77.30 0.88 -74.02
-73.16 1.22 -70.82 -78.48 0.91 -75.24 -75.35 0.99 -72.15
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C.2 Interference Power and SINR Tables

Table C.6: SINR (velocity = 65kph)

2L 4L 6L

T mean T CI M T mean T CI M T mean T CI M

43.59 0.26 33.88 43.13 0.33 32.89 42.43 0.35 32.12
26.82 0.23 26.40 26.28 0.35 25.13 25.47 0.37 24.43
22.96 0.21 22.29 22.10 0.37 20.89 21.20 0.39 19.64
19.88 0.21 19.23 18.94 0.39 17.63 18.04 0.41 16.79
17.12 0.20 16.09 16.09 0.42 14.38 15.14 0.42 13.11
14.51 0.19 13.54 13.37 0.42 11.84 12.33 0.43 10.46
12.16 0.18 11.29 10.85 0.43 9.22 9.71 0.45 7.96
10.11 0.17 9.14 8.51 0.45 6.98 7.33 0.46 5.19
8.16 0.18 7.25 6.31 0.47 5.05 4.97 0.50 3.01
6.28 0.18 5.21 4.29 0.48 3.13 2.76 0.52 1.19
4.42 0.19 3.16 2.05 0.54 0.47 0.43 0.56 -1.73
2.48 0.21 1.07 0.02 0.57 -1.28 -2.01 0.63 -3.56
0.44 0.24 -0.84 -2.20 0.64 -2.99 -4.25 0.69 -5.44
-1.73 0.29 -3.15 -4.36 0.69 -5.77 -6.27 0.73 -8.29
-4.62 0.40 -5.59 -6.85 0.77 -8.22 -8.43 0.77 -10.65
-8.43 0.52 -8.14 -8.90 0.81 -10.69 -10.70 0.82 -13.07
-13.08 0.63 -16.43 -11.27 0.89 -12.83 -13.39 0.90 -16.07
-17.69 0.72 -20.79 -12.94 0.95 -14.74 -15.29 0.95 -17.99
-20.75 0.84 -23.58 -14.19 0.97 -16.41 -16.93 1.00 -20.20
-22.32 1.28 -24.60 -15.92 1.01 -19.12 -19.20 1.11 -22.37
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C.2 Interference Power and SINR Tables

Table C.7: Interference power (velocity = 80kph)

2L 4L 6L

T mean T CI M T mean T CI M T mean T CI M

-105.75 0.13 -103.61 -102.57 0.12 -100.43 -100.77 0.09 -98.34
-104.61 0.13 -102.38 -101.37 0.17 -99.29 -99.54 0.12 -97.25
-103.46 0.13 -101.53 -100.30 0.18 -98.36 -98.45 0.14 -96.22
-102.31 0.12 -100.23 -99.15 0.22 -97.19 -97.36 0.16 -94.94
-101.20 0.12 -99.34 -98.01 0.25 -96.18 -96.24 0.19 -93.86
-100.09 0.12 -98.02 -96.82 0.32 -95.20 -95.04 0.23 -92.93
-98.93 0.13 -97.07 -95.61 0.36 -94.14 -93.73 0.28 -91.06
-97.64 0.15 -95.70 -94.19 0.43 -92.44 -92.33 0.34 -90.14
-96.25 0.16 -94.48 -92.72 0.49 -91.51 -90.50 0.44 -88.83
-94.60 0.20 -92.70 -91.21 0.54 -90.48 -88.61 0.52 -85.92
-92.60 0.28 -91.30 -89.68 0.59 -87.16 -86.67 0.58 -84.02
-89.35 0.44 -88.74 -87.67 0.66 -85.65 -84.70 0.65 -82.06
-85.29 0.56 -81.28 -85.66 0.73 -83.03 -82.57 0.70 -79.81
-80.48 0.69 -76.91 -83.85 0.77 -81.59 -80.52 0.75 -77.38
-77.11 0.78 -74.10 -81.75 0.85 -79.34 -78.05 0.83 -74.43
-75.23 0.99 -72.02 -79.83 0.92 -76.54 -76.12 0.91 -72.24
-73.36 1.24 -69.97 -77.83 1.07 -74.16 -74.63 1.08 -71.15
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C.2 Interference Power and SINR Tables

Table C.8: SINR (velocity = 80kph)

2L 4L 6L

T mean T CI M T mean T CI M T mean T CI M

42.23 0.28 33.23 41.88 0.37 31.48 41.10 0.36 30.70
25.43 0.24 24.91 24.77 0.42 23.70 23.86 0.39 22.39
21.31 0.23 21.01 20.56 0.43 19.56 19.38 0.41 17.87
17.66 0.23 16.89 16.97 0.47 15.28 15.85 0.43 13.78
14.53 0.22 13.66 13.74 0.50 11.97 12.46 0.44 10.17
11.88 0.20 10.71 10.79 0.55 9.28 9.33 0.46 7.38
9.46 0.20 8.30 8.15 0.57 6.78 6.44 0.50 3.90
7.13 0.22 5.93 5.43 0.62 3.92 3.72 0.53 1.63
4.76 0.22 3.47 2.91 0.67 1.88 0.70 0.62 -0.91
2.30 0.25 0.81 0.47 0.71 -0.08 -2.20 0.70 -4.81
-0.41 0.33 -1.37 -1.81 0.74 -4.09 -4.98 0.74 -7.52
-4.33 0.48 -4.71 -4.54 0.80 -6.35 -7.68 0.80 -10.28
-8.99 0.61 -12.71 -7.16 0.87 -9.62 -10.43 0.84 -13.15
-14.36 0.73 -17.77 -9.45 0.90 -11.54 -13.01 0.88 -16.11
-18.04 0.82 -20.95 -12.01 0.97 -14.27 -15.98 0.95 -19.58
-20.13 1.04 -23.30 -14.29 1.04 -17.47 -18.26 1.04 -22.15
-22.12 1.31 -25.52 -16.59 1.20 -20.20 -20.00 1.21 -23.44
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[84] Jonathan Ledy, Hervé Boeglen, Anne-Marie Poussard, Benôıt
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