1,499 research outputs found

    A Survey on 3D Ultrasound Reconstruction Techniques

    Get PDF
    This book chapter aims to discuss the 3D ultrasound reconstruction and visualization. First, the various types of 3D ultrasound system are reviewed, such as mechanical, 2D array, position tracking-based freehand, and untracked-based freehand. Second, the 3D ultrasound reconstruction technique or pipeline used by the current existing system, which includes the data acquisition, data preprocessing, reconstruction method and 3D visualization, is discussed. The reconstruction method and 3D visualization will be emphasized. The reconstruction method includes the pixel-based method, volume-based method, and function-based method, accompanied with their benefits and drawbacks. In the 3D visualization, methods such as multiplanar reformatting, volume rendering, and surface rendering are presented. Lastly, its application in the medical field is reviewed as well

    A Comprehensive Survey of Isocontouring Methods: Applications, Limitations and Perspectives

    Get PDF
    This paper provides a comprehensive overview of approaches to the determination of isocontours and isosurfaces from given data sets. Different algorithms are reported in the literature for this purpose, which originate from various application areas, such as computer graphics or medical imaging procedures. In all these applications, the challenge is to extract surfaces with a specific isovalue from a given characteristic, so called isosurfaces. These different application areas have given rise to solution approaches that all solve the problem of isocontouring in their own way. Based on the literature, the following four dominant methods can be identified: the marching cubes algorithms, the tessellation-based algorithms, the surface nets algorithms and the ray tracing algorithms. With regard to their application, it can be seen that the methods are mainly used in the fields of medical imaging, computer graphics and the visualization of simulation results. In our work, we provide a broad and compact overview of the common methods that are currently used in terms of isocontouring with respect to certain criteria and their individual limitations. In this context, we discuss the individual methods and identify possible future research directions in the field of isocontouring

    Static methods for object reconstruction overview: for medical diagnosis

    Get PDF
    This article presents the overview of static methods exploited for object reconstruction from point cloud or the special case which are the sets of parallel contours gathered from the medical scanners. It includes a brief description of each method and a comparison of their performance in respect to the achieved object appearance, an impact of noisy data, possible types of object reconstruction and time consumption. The aim of this comparison is to find which of the presented methods are promising for object reconstruction needed for medical diagnosis

    Static methods for object reconstruction overview: for medical diagnosis

    Get PDF
    This article presents the overview of static methods exploited for object reconstruction from point cloud or the special case which are the sets of parallel contours gathered from the medical scanners. It includes a brief description of each method and a comparison of their performance in respect to the achieved object appearance, an impact of noisy data, possible types of object reconstruction and time consumption. The aim of this comparison is to find which of the presented methods are promising for object reconstruction needed for medical diagnosis

    Aquatics reconstruction software: the design of a diagnostic tool based on computer vision algorithms

    Get PDF
    Computer vision methods can be applied to a variety of medical and surgical applications, and many techniques and algorithms are available that can be used to recover 3D shapes and information from images range and volume data. Complex practical applications, however, are rarely approachable with a single technique, and require detailed analysis on how they can be subdivided in subtasks that are computationally treatable and that, at the same time, allow for the appropriate level of user-interaction. In this paper we show an example of a complex application where, following criteria of efficiency, reliability and user friendliness, several computer vision techniques have been selected and customized to build a system able to support diagnosis and endovascular treatment of Abdominal Aortic Aneurysms. The system reconstructs the geometrical representation of four different structures related to the aorta (vessel lumen, thrombus, calcifications and skeleton) from CT angiography data. In this way it supports the three dimensional measurements required for a careful geometrical evaluation of the vessel, that is fundamental to decide if the treatment is necessary and to perform, in this case, its planning. The system has been realized within the European trial AQUATICS (IST-1999-20226 EUTIST-M WP 12), and it has been widely tested on clinical data

    Brain tumor visualization for magnetic resonance images using modified shape-based interpolation method

    Get PDF
    3D visualization plays an essential role in medical diagnosis and setting treatment plans especially for brain cancer. There have been many attempts for brain tumor reconstruction and visualization using various techniques. However, this problem is still considered unsolved as more accurate results are needed in this critical field. In this paper, a sequence of 2D slices of brain magnetic resonance Images was used to reconstruct a 3D model for the brain tumor. The images were automatically segmented using a wavelet multi-resolution expectation maximization algorithm. Then, the inter-slice gaps were interpolated using the proposed modified shape-based interpolation method. The method involves three main steps; transferring the binary tumor images to distance images using a suitable distance function, interpolating the distance images using cubic spline interpolation and thresholding the interpolated values to get the reconstructed slices. The final tumor is then visualized as a 3D isosurface. We evaluated the proposed method by removing an original slice from the input images and interpolating it, the results outperform the original shape-based interpolation method by an average of 3% reaching 99% of accuracy for some slice images

    Ground truth determination for segmentation of tomographic volumes using interpolation

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia BiomédicaOptical projection tomographic microscopy allows for a 3D analysis of individual cells, making it possible to study its morphology. The 3D imagining technique used in this thesis uses white light excitation to image stained cells, and is referred to as single-cell optical computed tomography (cell CT). Studies have shown that morphological characteristics of the cell and its nucleus are deterministic in cancer diagnoses. For a more complete and accurate analysis of these characteristics, a fully-automated analysis of the single-cell 3D tomographic images can be done. The first step is segmenting the image into the different cell components. To assess how accurate the segmentation is, there is a need to determine ground truth of the automated segmentation. This dissertation intends to expose a method of obtaining ground truth for 3D segmentation of single cells. This was achieved by developing a software in CSharp. The software allows the user to input a visual segmentation of each 2D slice of a 3D volume by using a pen to trace the visually identified boundary of a cell component on a tablet. With this information, the software creates a segmentation of a 3D tomographic image that is a result of human visual segmentation. To increase the speed of this process, interpolation algorithms can be used. Since it is very time consuming to draw on every slice the user can skip slices. Interpolation algorithms are used to interpolate on the skipped slices. Five different interpolation algorithms were written: Linear Interpolation, Gaussian splat, Marching Cubes, Unorganized Points, and Delaunay Triangulation. To evaluate the performance of each interpolation algorithm the following evaluation metrics were used: Jaccard Similarity, Dice Coefficient, Specificity and Sensitivity.After evaluating each interpolation method we concluded that linear interpolation was the most accurate interpolation method, producing the best segmented volume for a faster ground truth determination method
    corecore