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ABSTRACT 

 

Optical projection tomographic microscopy allows for a 3D analysis of individual 

cells, making it possible to study its morphology. The 3D imagining technique 

used in this thesis uses white light excitation to image stained cells, and is 

referred to as single-cell optical computed tomography (cell CT). 

Studies have shown that morphological characteristics of the cell and its 

nucleus are deterministic in cancer diagnoses. For a more complete and 

accurate analysis of these characteristics, a fully-automated analysis of the 

single-cell 3D tomographic images can be done. The first step is segmenting 

the image into the different cell components. To assess how accurate the 

segmentation is, there is a need to determine ground truth of the automated 

segmentation.  

This dissertation intends to expose a method of obtaining ground truth for 3D 

segmentation of single cells. This was achieved by developing a software in C-

Sharp. The software allows the user to input a visual segmentation of each 2D 

slice of a 3D volume by using a pen to trace the visually identified boundary of a 

cell component on a tablet. With this information, the software creates a 

segmentation of a 3D tomographic image that is a result of human visual 

segmentation. 

To increase the speed of this process, interpolation algorithms can be used. 

Since it is very time consuming to draw on every slice the user can skip slices. 

Interpolation algorithms are used to interpolate on the skipped slices.  

Five different interpolation algorithms were written: Linear Interpolation, 

Gaussian splat, Marching Cubes, Unorganized Points, and Delaunay 

Triangulation. To evaluate the performance of each interpolation algorithm the 

following evaluation metrics were used: Jaccard Similarity, Dice Coefficient, 

Specificity and Sensitivity. 

 



 x 
 

After evaluating each interpolation method we concluded that linear 

interpolation was the most accurate interpolation method, producing the best 

segmented volume for a faster ground truth determination method.  

 

Keywords: 3D segmentation, ground truth, computed tomography, cancer, 3D 

interpolation, software 
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RESUMO 

 

A tomografia óptica microscópica de projecção permite uma análise 3D de 

células individuais, tornando possível estudar a sua morfologia. A técnica de 

imagiologia 3D utilizada nesta tese utiliza excitação por luz branca para obter 

imagens de células pigmentadas, e é chamada de tomografia óptica 

computadorizada celular (cell CT).  

Estudos mostram que as características morfológicas da célula e do seu núcleo 

são determinísticas no diagnóstico do cancro. Para uma análise mais complete 

a precisa dessas características uma análise completamente automatizada 

pode ser feita das imagens 3D celulares tomográficas. O primeiro passo é 

segmentar a imagem nos diferentes componentes celulares. Para avaliar a 

precisão da segmentação é necessário estabelecer ground truth, ou a verdade 

absoluta, para a segmentação automatizada.  

Esta dissertação pretende expor um método de obter ground truth para 

segmentação 3D de células individuais. Isto foi conseguido através de um 

software desenvolvido em C-Sharp. O software permite ao utilizador introduzir 

a sua segmentação visual de cada fatia 2D de um volume 3D, utilizando uma 

caneta para delinear o limite de um componente celular num tablet. Com esta 

informação, o software cria a segmentação de uma imagem tomográfica 3D, 

que é o resultado de uma segmentação visual humana.   

Para aumentar a rapidez deste processo, algoritmos de interpolação podem ser 

utilizados. Dado que é demorado desenhar em todas as fatias, o utilizador pode 

saltar fatias. Algoritmos de interpolação são utilizados para interpolar nas fatias 

que foram saltadas.  

Cinco algoritmos diferentes foram estudados: Interpolação Linear, Kernel 

Gaussiano, Cubos Marchantes, Pontos Desorganizados, e Triangulação de 

Delaunay. Para avaliar o desempenho de cada algoritmo de interpolação as 

seguintes métricas de avaliação foram utilizadas: Índice de Jaccard, 

Coeficiente de Dice, Especificidade e Sensibilidade.  



 xii 
 

Após avaliar cada método de interpolação concluímos que a Interpolação 

Linear é o método de interpolação mais preciso, produzindo o melhor volume 

segmentado para um método de obtenção de ground truth mais rápido.   

Termos chave: segmentação 3D, ground truth, tomográfica computorizada, 

cancro, interpolação 3D, software  
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1. INTRODUCTION  

 

1.1 Motivation 

 

Cancer is a group of diseases characterized by abnormal, unregulated cell 

growth. Despite all the extensive research that has been undertaken to better 

understand and treat cancer, it is one of the leading causes of death worldwide. 

Over 1.6 million new cases, and half a million deaths were estimated in 2012 in 

the United States alone [1]. Cancer’s high mortality rate indicates that further 

research is needed.  

Cancer diagnosis is largely centered on recognizing the morphological 

manifestations of the disease, referred to as malignancy associated changes 

(MACs)[2]. There are morphological abnormalities that can be observed in the 

nuclear structure of cancer cells. Some of the structural differences cancer cells 

have when compared to normal cells include nuclear size and shape, number 

and size of nucleoli, and chromatin texture[3]. 

 These structures have been studied by growing tumor cells lines in monolayer 

tissue culture. Although monolayer culture is easy to work with, it does not 

adequately represent the structure of the cell’s nucleus in real tissue; monolayer 

culture deforms the nucleus, thus making it fundamental to study these 

characteristics using three-dimensional imaging systems[3]. A more accurate 

quantitative characterization of cell and nuclear morphology by 3D analysis of 

high contrast, high resolution 3D imagery with isotropic resolution facilitates the 

assessment of morphological changes associated with malignancy. 

Optical microscopy CT is a cellular imaging technique that generates 3D cell 

images with an isotropic resolution of 350nm by applying computed tomography 

principles and white light excitation[4], [5], as shown in figure 1.1.  This is done 

by the Cell-CTTM instrument (VisionGate), which generates each cell image by 

tomographic reconstruction from five hundred, equi-angular pseudo-projection 
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images acquired over a 360 degree rotation of a stained cell suspended in an 

index-matched optical gel (SmartGel, Nye Lubricants) within a glass capillary. A 

pseudo-projection image is generated by integrating widefield focal plane 

information over the cell volume using a 100x, 1.3 NA, oil immersion objective 

lens (UPlanFluor, Olympus). Acquired pseudo-projection images are denoised, 

registered and subjected to reconstruction algorithms to generate the volumetric 

cell image. The 3D imagining technique used in this research used white light 

excitation to image single stained cells and is referred to as single-cell optical 

computed tomography (cell CT).  

 

 

Figure 1.1 - 3D image of a cancer cell generated by the cell CT. Artificial color was added to the 
nucleus and its components. 

 

Research is being undertaken to precisely quantify three-dimensional cell and 

nuclear morphology from cell images generated by optical cell CT imagery and 

compute a morphological biosignature composed of the set of morphological 

parameters that can best distinguish two or more classes of cells with differing 

health states[6]–[8]as seen in figure 1.2. A modular, automated computational 

framework is being developed to perform high-throughput, 3D morphological 

analysis of volumetric images of Cell-CTTM[9], [10]. Custom 3D image 

processing methods are being studied to accurately delineate volumes of 
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interest in the volumetric images, and compute biologically relevant 

morphological and texture parameters from the segmented volumes of 

interest[10]. The efficacy of these segmentation techniques needs to be 

validated by comparison to ground truth. Since size, volume, surface area, and 

similar characteristics of a cell cannot be directly measured on the physical cell, 

this measurement has to be done using the information contained in 3D 

tomographic images. 

 

 

Figure 1.2 - Four cells imaged using the cell CT. On the top row the nucleus is colored in blue; on 
the bottom row the nucleus presents a transparency view of the nucleus to show its insides. The 
first cell is a healthy cell: the subsequent three cells show the progression of different stages of 
cancer. The progression in nuclear size and morphology, as well as on its components, can be 
observed. 

 

1.2  Research Goal 

 

Our goal was to develop a method of determining ground truth for 3D cell-CT 

image segmentation using interpolation. We present a tool that was developed 

in C# that takes advantage of the human ability to visually segment an image 

with high accuracy, and converts that information into digital data that can be 

used to compare and validate 3D automated segmentation. This research 

studied various interpolation methods to make ground truth establishment more 

efficient, and determined the interpolation algorithm that allowed for the optimal 

ground truth achievement.  
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1.3  Optical Cell – CT 

 

This section provides an overview of the optical projection tomographic 

microscopy technique that allowed for a real 3D analysis of individual cells. The 

3D imagining technique used in this research uses white light absorption to 

image single stained cells and is referred to as single-cell optical computed 

tomography (cell CT). 

Optical cell CT is a cellular-scale imaging technique that incorporates computed 

tomography principles into widefield optical microscopy to generate three-

dimensional single-cell images with sub-micron, isotropic spatial resolution[5], 

[11], [12]. The 3D cell image is generated by mathematical reconstruction from 

five hundred equiangular, 2D optical projection images of a stationary, stained 

cell suspended in an optical carrier gel within a glass capillary. Optical cell CT 

can be used in different widefield microscopy modalities, such as brightfield, 

darkfield, phase-contrast and epi fluorescence[13]. 

 

1.3.1 The cell CT Instrument  

 

The cell CT instrument was used in this research is the Cell-CTTM instrument 

commercialized by VisionGate, Inc (Phoenix, AZ). It consists of the following:  

 An inverted optical microscope (IX71, Olympus) fitted with a 100x, 

1.3NA, oil immersion objective lens (UPlanFluor, Olympus). 

 A 1400 x 1100 pixel, monochrome CCD camera (Prosillica 1650, 

Burnaby). 

 A motorized stage which permits injection and rotation control. This stage 

holds a portable cartridge which houses the tomographic imaging 

chamber.  

Inside the imaging cartridge, there is a microcapillary (inner diameter of 50 µm, 

outer diameter 150 µm) which allows viewing of cells radially around the full 
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360º of rotation. The microcapillary is connected to a syringe needle that 

permits coupling the Cell-CTTM instrument with a glass syringe. The glass 

syringe loaded with stained cells embedded in a carrier gel (Smart Gel, Nye 

Lubricants) is connected to the syringe needle of the Cell-CTTM, and an injection 

controller is connected to the other end of the glass syringe to carefully control 

the disbursement of the sample into the microcapillary. All the elements in the 

imaging chamber, including the capillary and the carrier gel, and the immersion 

oil for the objective lens are refractive index matched to minimize optical 

distortion.  

A LabView software suite is used to automate the image acquisition process.  

 

1.3.2 Projection Image Acquisition 

 

Once the glass syringe with the stained cells is mounted onto the Cell-CTTM, the 

cells are transported through the capillary by forward actuation of the syringe 

plunger. This pressurizes the carrier gel and causes it to flow. When a desired 

cell is in the field of view of the microscope, the pressure is released and the gel 

flow stops; making the cell immediately stationary. The user selects the cells to 

be imaged based on cell quality. If a cell is selected to be imaged, the capillary 

will rotate at constant speed, allowing the acquisition of 500 projection images 

at angular intervals of 0.72º around the cell. Each projection image is generated 

by sweeping the objective lens through the cell volume and integrating the 

resultant infinite focal plane information on the camera chip[12]. 

A 3D image is generated by aligning the projection image data, and subjecting it 

to mathematical reconstruction algorithms. To eliminate pattern noise, a 

background subtraction routine is performed. The alignment is done based on 

the center of intensity; the aligned projections are subject to filtered back 

projection reconstruction using a custom ramp filter to obtain the volumetric cell 

image. This image has an isotropic spatial resolution of ~350nm.  

Reconstructed volumes are stored as 2D image stacks at bitdepths of 8 and 

16bits. Intensities in the reconstructed image inversely correlate with 
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hematoxylin stain density, i.e. a darker stain implies a higher intensity in the 

image.  

 

1.4 Segmentation Algorithms 

 

Automated segmentation algorithms for medical images have been a subject of 

active research. Many techniques have been developed[14] and are being 

evaluated. In a collaborative effort, a fellow laboratory colleague developed a 

fully-automated segmentation algorithm to segment the cell CT images. The 

segmentation algorithms chosen to be used in his research were the ones 

considered to be the most adequate after analyzing the characteristics of the 

cell CT image[10]. For brevity, only the segmentation methods used in the cell 

CT research will be exposed. The ground truth that is produced from this project 

was used to validate these automated segmentation algorithms.  

1.4.1 Rosin’s threshold method 

 

Threshold segmentation algorithms segment an image based on its histogram. 

Different modal classes can be identified on a histogram; and the key to 

segmentation based on threshold is to identify the value, i.e. the threshold, that 

best separates the different modal classes.  

Rosin’s method[15] assumes that the image’s histogram is unimodal. This 

means that there is one dominant class that will result in one peak at the lower 

end of the histogram, and the secondary class will be more spread out in the 

higher end of the histogram.  
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Figure 1.3 – Rosin’s procedure for calculating the threshold value from intensity histogram 

  

A line,  , is drawn from the highest bin in the histogram to the first empty bin 

after the last filled bin. The threshold will be the value of the entry of the 

histogram that maximizes the length of the perpendicular line connecting that 

histogram entry to  . See Figure 1.1. 

 

1.4.2 Otsu’s method 

 

Otsu’s segmentation technique[16] selects the threshold that minimizes the 

intra-class variance, i.e., that maximizes the homogeneity of each class. This 

means that the method attempts to maximize the inter-class variance. 

Otsu’s method for a bimodal histogram will be explained, but it can be easily 

extended to multi-modal histograms.  

For a bi-modal image with 1 to L gray levels, one can calculate the normalized 

frequency of each gray level i from 1 to L as P(i).  Otsu’s method sets a 

threshold value and then tests the intra-class variance for each class.  The 

nomenclature herein defines background intensities as being below the 

threshold, and object intensities as being above the threshold.  Based on these 

definitions, one can calculate the weighted intra-class variance as follows 

  )()()()()( 222 ttqttqt bboow    (1.1) 
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where w refers to the weighted intra-class variance, t refers to the threshold 

value, o refers to the object class from the image, b refers to the background 

class from the image, σ is variance, and q is intra-class probabilities.  These 

intra-class probabilities are estimated as follows: 
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In addition, the class means are computed by the following: 
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Finally, the variance of the background and object classes can be computed as 

follows: 
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Simply, the threshold for every possible pixel value could be assigned to t, and 

a minimum σw could be selected from all of the possible computations.  

However, taking advantage of the fact that the total variance for the entire 

image σ is equal to the weighted intra-class variance σw and the weighted inter-
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class variance σB—which is merely a relationship between the weighted 

distances between the class means and the grand mean of the entire dataset 

μ—one can rewrite the equations above as follows. 

222 ])()[(])()[()(   ttqttqt bbooB  (1.8) 

and 

)()( 222 tt Bw    (1.9) 

Since the overall variance does not change for the dataset depending on the 

threshold, one can see that minimizing the intra-class variance is equivalent to 

maximizing the inter-class variance to arrive at an optimum threshold.   

 

1.4.3 K-means Clustering  

 

In order to cluster data in a way such to minimize an objective function, k-

means clustering methodologies can be used[17], [18]. In these methodologies, 

n observations can be broken into k partitions such that each observation 

belongs to the cluster with the nearest mean; in other words, the within-cluster 

sum of squares or the mean squared distance of each observation to the mean 

of the cluster in which it falls is minimized.   

In application to image analysis, this can be viewed as breaking the pixels of an 

image into two or more partitions based on the intensity of the pixels.  While 

computationally difficult, k-means clustering has proven very efficient when 

subjected to heuristic methods.  Primarily, the segmentation algorithm can be 

used to approximate this methodology by assuming the optimal center for a 

cluster of data falls at the centroid of that data cluster.  The mean-squared 

distance from each point to the mean of the cluster can be computed; then the 

various clusters’ final mean-squared distance computations can be summed.  A 

slightly different set of clusters is estimated from the dataset, and then the 

centroid for each cluster is recomputed along with the mean-squared distance 

from each point to the mean of each cluster.  The final summed mean-squared 
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distance computations for the new cluster set can be summed and compared to 

the previous iteration.  When the objective function—i.e., the sum of all of the 

within-cluster sum of squares—is minimized, then the optimal formulation of the 

clusters has been found to minimize intra-class variability. 

Given a set of observations (x1, x2, …, xn), where each observation is a d-

dimensional real vector, k-means clustering aims to partition the n observations 

into k sets (k ≤ n) S = {S1, S2, …, Sk} so as to minimize the within-cluster sum of 

squares (WCSS): 

              
 

     

 
    (1.10) 

where μi is the mean of points in Si. 

 

 

1.5 State of the Art 

 

With the increasing use of 3D imaging techniques in the medical field, it is 

crucial to understand and manipulate the data and vital information present in 

these images. Image segmentation is widely used in many imaging modalities 

in various different medical fields. A few software applications have been 

developed that allows for manual segmentation of a 3D medical image.  

TurtleSeg is a free 3D medical image segmentation tool developed by the 

Medical Image Analysis Lab at Simon Fraser University and the Biomedical 

Signal and Image Laboratory at the University of British Columbia[19].  

The software allows the user to manually segment a sparse number of slices. 

The software picks the slices that are crucial to be manually traced for the user 

to draw; and then calculates the volume by producing a dense set of parallel 

segmentation contours. 

TurtleSeg was developed to be used with a mouse. Since it is hard to trace a 

contour with a mouse, TurtleSeg uses a livewire. The user does not need to 
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trace the contour perfectly, instead the user clicks on relevant points and 

livewire connects the sequential cliked points.  

ITK–Snap is a free software application to segment 3D medical images 

developed by Paul Yushkevich, Ph.D., of the Penn Image Computing and 

Science Laboratory (PICSL) at the Department of Radiology at the University of 

Pennsylvania [20]. 

Unlike TurtleSeg, ITK-Snap allows the user to draw on all the slices, and have 

fully manual segmentation. This software application was also developed to be 

used with a mouse, so it also has a livewire where you can add as many points 

as needed to make the shape as close as possible to the desired contour. Once 

you are done with one slice and move to the next, the contour drawn on the 

previous slice will appear on top of the image. Since there is not much change 

between slices, the user can use that as a guide and only make small changes 

to the contour; making the process of tracing the contours faster.  

3D-Doctor is a 3D medical image processing tool used in many organizations 

working with medical images. Unlike the previous two, this tool is not free. 3D-

Doctor allows the user to manually segment all the slices of a 3D image by 

clicking the mouse around the desired boundary on each slice[21]. 

Studies have shown that manual segmentation using a pen and a tablet are 

easier, faster and more accurate[22]. Even though this technique has been 

used in several medical research fields[23], [24], we do not know of any freely 

available software developed to be used with a pen and tablet that does 3D fully 

manual segmentation. 

Our software will be innovative in that it is designed to be used with a pen and 

tablet, the user can pick what slices he/she intends to draw on, being able to 

draw on all slices or only draw on a few, and it uses interpolation to speed up 

the process of obtaining a volume.  

  

  

http://picsl.upenn.edu/
http://picsl.upenn.edu/
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2. METHODS 

 

2.1  Cell Sample Preparation 

 

The cells used for imaging were grown in culture. This research analyzed 

different kinds of cancer cells as well as healthy cells. After the cells were 

grown, they had to be prepared for imaging.  

The optical contrast must be proportional to the density of the biological 

material, since, like x-ray CT, the cell CT 3D image captures variations in the 

object’s density. To achieve this, the cell needs to be stained with an absorption 

dye. The dye used was hematoxylin, commonly used in clinical practices for this 

purpose[25]. Standard cytological protocols for staining were followed as 

outlined below.  

Staining Procedure:  

1. Cells are fixed for one hour with CytoLyt, and posteriorly smeared onto a 

clean microscope glass slice coated with a Poly-L-Lysine solution. 

2. Cells are stained for a few minutes (cell type dependent) in aqueous 

6.25% w/w Gill’s hematoxylin solution, followed by a bluing reagent 

(Fisher Scientific, Fair Lawn) for 30 seconds after washing thrice with 

filtered tap water. 

3. Cells are dehydrated by use of an ethanol series (50%, 95%, and 100%) 

and two washes of xylene.  

After the cells are stained they are embedded into the carrier gel and scraped 

off the glass slide to be introduced into the glass syringe.  

It is important to optimize the staining results, since the imaging quality is 

dependent on it. To accomplish this, various trials are needed to determine 

optimal concentration of reagents and the duration of protocol steps, since the 
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optimization of the results is so dependent on experimental conditions (including 

pH of the water used).  

The properly stained cells will have a bluish nucleus and a lighter cytoplasm. 

The staining is more predominant in the nucleus due to binding of the dye-metal 

to nuclear DNA.  

2.2 Ground Truth Evaluation Software  

 

To achieve the goal of determining ground truth for 3D automated segmentation 

of cells the Ground Truth Evaluation software was created. See Figure 2.1.     

 

 

Figure 2.1 - Ground Truth Evaluation software interface. The cell is displayed from all three 
orthogonal axes.  

 

The concept behind the software is to take advantage of the human ability to 

visually segment the cell. If we assume that the segmentation visually done by a 

person, i.e., the visual recognition of the boundaries of the different cell 

components in a cell image, is correct, we can assume that it is ground truth.  
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The real challenge is to convert the result from the visual segmentation into 

digital data that can be compared with the result of the automated 

segmentation. This is best performed by utilizing a tablet and a pen to draw on 

the images of the cell. In this way, a user of the Ground Truth Evaluation can 

input his/hers visual segmentation into the software by drawing a contour 

around the identified boundary.  

For this purpose, the tablet Cintiq 12wx (Wacom) was used. The Wacom Cintiq 

12wx is a 12.1" TFT wide-screen LCD in WXGA resolution of 1280 x 800 pixels. 

The goal was to have a 3D segmentation of the cell’s components, but we were 

limited to a 2D display and therefore limited to 2D images. For this reason, the 

3D image has to be divided into a series of slices; where each slice represents 

a 2D image. This is simple, if we consider that a 3D image is a stack of 2D 

images. The data of the 3D image is stored in a 3D matrix. A 3D matrix of the 

type        can be written as   matrices of the type     . So a 3D matrix can 

be decomposed into a series of 2D matrices. Each 2D matrix defines a 2D 

image that is one slice of the 3D image. 

The Ground Truth Evaluation will go through the stack of 2D images, and the 

user can then draw a contour on each slice. This contour will define the 

segmentation for that slice. After the user has defined the segmentation 

boundary of the desired object on every slice, the slices can be stacked back 

into a 3D volume. This will allow for a full 3D segmentation, since all the planes 

of the 3D volume were segmented.   

On each slice, the user will visually identify the desired boundary, and then 

trace it with the pen. A red line will appear on the screen representing the 

course of the pen. This line helps the user to verify if he/she is correctly tracing 

the boundary of the cell component. See figure 2.2. Once the user is done 

drawing the contour, the list of points that define that contour is saved to file. 

This list of points will determine the voxels in the resulting image which are 

considered to belong to the boundary of the volume.  
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Figure 2.2  - Ground Truth Evaluation software interface with a cell nucleus boundary traced in red. 

 

Once the boundary of the volume is defined on a slice, the section of volume on 

that slice can be determined with a flood fill algorithm. This algorithm 

determines all the pixels enclosed in a bounded area. In this way, all the pixels 

of that image that are contained in the volume are found. The total volume of 

the ground truth is the sum of all the voxels belonging to the volume in each 

slice.  

Even though this method of determining ground truth is reliable, there is one 

problem with it: it is too slow. To precisely draw one contour, it takes between 

30 seconds to 1 minute. A cell, depending on the size of the cell and along 

which axis the user chooses to draw, will require around 170 slices. This means 

it takes over two hours to draw the contours of just one of a cell’s components.  

So the next step in the development of this software becomes to create a way 

to make this process faster. This goal can be achieved through interpolation. 

This means that the user does not need to draw on every slice. Instead, the 

user can skip slices, and only draw on a selected number of slices. Using an 

interpolation algorithm, the software will interpolate the volume between the 
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slices that were skipped. In this way, it is possible to obtain the ground truth 

volume without needing to define its boundary on every slice, making it a much 

faster process. 

Different interpolation methods and algorithms will be discussed in the next 

section.  

After the ground truth volume is found, it is then possible to compare it with the 

volume resulting from automated segmentation algorithms. The Ground Truth 

Evaluation has a few evaluation metrics that can be applied to the volumes to 

compare and evaluate how close the automated segmentation came to the 

ground truth volume.  

These metrics will be presented in section 2.4. They will also be used to 

evaluate the interpolation methods.  

The software provides a full pathway for the evaluation, segmentation, and 

eventual rating of the cell and the automatic segmentation as shown in figure 

2.3. 
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Figure 2.3 - Software flow chart 

Some extra features that were added to the software include: 

 The ability to zoom – the user can zoom in and out in the image, making 

it easier to define the boundaries. 

 The ability to change the contrast – the user can adjust the contrast of 

the image optimizing the visualization of the cell and its components. 

 The ability to change the brightness – the user can adjust the brightness 

of the image optimizing the visualization of the cell and its components. 

 The user can select what cell component (Cell Wall, Nucleus, Nucleolus 

1, Nucleolus 2, etc…) he/she is drawing. The name of that component 

will be tied to all the contours belonging to it. In this way, it is only 

necessary to load the cell once to draw all the different cell components. 

All of the cell’s components for a given cell can be saved in one file. 

 When the cell is loaded, the user can see the cell from the perspective of 

all three axes. The user can move through the stack on each axis and 

choose which view he/she would like to work with. See Image 2.1. 

Evaluation of  Automated Segmentation 

The ground truth volume can be used to compare and evaluate the validity of other segmentatios. This can be done using different evalution 
metrics.   

Ground Truth Volume  

The ground truth volume is obtained. 

Interpolation 

The software will interpolate the volume between the slices that were drawn on. 

User draws contours 

The user will go through the stack of images drawing the contours on the slices that were not skipped.  

Load the Cell Image 

View from the 3 axis are shown. The user can scan through the cell 
stack and select the axis on which he/she desires to draw on. 

User defines number of slices to be skipped     
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 Setting the number of slices to be skipped – the user can predefine how 

many slices he/she desires to skip before starting to draw. In this way, 

every time the user selects the “Next Slice” button the software will 

automatically skip the desired number of slices, and display the 

corresponding slice image. 

 The possibility of drawing multiple contours on the same slice – this in an 

important feature. The cell components can have different cell shapes. In 

some cases, the shape can include variations like large dents in the 

surface. These dents can produce two parallel saliencies that project out 

in the same direction but do not touch each other. This will imply that 

when this object is divided into slices, there will be slices where it 

appears as two different objects. This is easy to picture if you consider 

slicing horizontally a U-shaped object. It becomes a problem to draw a 

contour around the surface of a cell component which in a given slice 

appears as two disjointed objects, even though both segments belong to 

the same object. To overcome this problem, the software allows the user 

to draw multiple contours for the same cell component on a given slice. 

When the user is satisfied with the first contour, he/she can select the 

“Add Contour” button to draw another contour. The finished contours will 

appear yellow, and the current contour being drawn will be red. See 

Figure 2.4. 

 Each contour has to be traced continuously. If the user dislikes the line 

traced all he/she has to do is take the pen off the screen and then 

proceed to restart tracing the surface. This will clear the image of the line 

of the previous attempt. Other contours drawn on that slice that are now 

yellow will not be cleared by this action. Only the current contour being 

drawn is cleared. To clear all contours, the user can select the “Clear All 

Contours” button. 

 The user can go back to previous slices that were drawn on. When 

he/she does so, he/she will be able to visualize the contour(s) drawn on 

that slice and can redraw them if wanted. 
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 When the user is done drawing all the contours on a cell, he/she can 

select the “Next Cell” button. By doing so, the contours of that cell are 

automatically saved in a file and the next cell is loaded. 

 The user can select a directory from which he/she desires to load cell 

images. The Ground Truth Evaluation will scan that directory and load a 

list of cells present in that directory. While selecting the cell files, the 

software will verify if a file containing the contours of that cell already 

exists. In the case where it does exist, the software will not include that 

cell in the list. This makes the process of selecting the cells more efficient 

and faster for the user. It also ensures that the user does not select a cell 

he/she has already drawn the contours for. 

 When the user starts his/hers session he/she may introduce his/her 

name, which will be saved in all the files saved during that session. This 

makes it easier to study the intra-user and the inter-user variability of the 

software.  

 

 

Figure 2.4 - Ground Truth Evaluation software interface. Image shows two contours drawn on the 
same slice. The yellow contour is the finished contour; the red contour is the active contour being 
drawn. 
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The software realization was achieved by programming in C#. C# is a 

programming language developed for .NET Framework[26].  

There were several aspects of the C# programming language that were 

attractive and are the reasoning to why it was chosen over other languages. 

Some of these aspects are listed below: 

 Allowing polymorphism in object-oriented programming. This means that 

methods can be implemented to work with groups of related objects in a 

uniform way. In other words, it is possible to present the same interface 

for different underlying data types. This made it possible to organize the 

data into classes and subclasses, and take advantage of inheritance, 

making the Ground Truth Evaluation more efficient. 

 3D Libraries – C# has an extensive library for 3D graphics, something 

that was vital for the Ground Truth Evaluation. 

 C# makes it easy to work with plug-ins. This makes it possible to work 

with the Ninject design pattern, which was used to make the drawing and 

lasso tools.  

 Easy to create and work with Graphical User Interface (GUI) – The 

Ground Truth Evaluation relies on the functionality of GUIs. 

 Reflection – the ability to inspect and determine the contents of an 

unknown assembly, object, type, and members. This is useful for 

determining dependencies of an assembly, testing and debugging.  

The Visualization Toolkit (VTK)[27] library was integrated into the Ground Truth 

Evaluation. VTK is an open-source C++ library used in 3D computer graphics, 

image processing and visualization. VTK is a very useful tool in computer 

graphics making it easier to perform complex tasks using an object-oriented 

approach. This software system is widely used due to its compatibility with other 

languages like Tcl/Tk, Java and Python. VTK was chosen over other 3D 

computer graphics libraries such as OpenGL and DirectX because of its 

modular, object-oriented and scalable proprieties. VTK is also geared more 

specifically for scientific use.  

The Ground Truth Evaluation is modular for reusability. This means that the 

code is organized into modules that can be easily used to add, delete or modify 
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functionalities to the code without much effort or coding. This makes it easy to 

integrate the software into other software and scripts. 

 

2.3  Interpolation Algorithms 

 

In this section, five different interpolation algorithms are presented to complete 

the volume between the slices that were drawn on.  

 

2.2.1 Linear Interpolation  

 

The concept behind Linear Interpolation is simple. All the slices of the 3D image 

are introduced into the algorithm. The algorithm will find the slices that contain 

at least one contour. For each point in a given contour (contour A) the nearest 

point to it in the next contour (contour B) is found. The straight line that 

connects the two points is calculated. That line will then intersect all the planes 

defined by the slices in between the drawn slices containing contours A and B. 

In this way, a point is defined on each intersected slice, see Figure 2.5. This 

process is repeated for all the points in contour A, creating a set of points on 

each intersected slice. The set of points on a given slice will define a new 

contour on that slice. A contour on all the slices that were skipped is created. 

The interpolated volume is then the result of all the contours.  
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Figure 2.5 - Linear Interpolation Illustration 

 

The mathematics behind this method is simple and does not require much 

computationally. It is a robust method that will work for any kind of complex cell 

shape.  

On the other hand, it is important to note that this method does not have any 

surface awareness. It does not recognize patterns in the shape of the volume 

and will not try to reproduce it. It also fails to produce curvature on the undrawn 

slices, something that is expected in the shape of cells. The Linear Interpolation 

will generate a volume that is smaller than that of the ground truth, since it will 

not recreate the curves of the cell, but only the flat lines between slices. This will 

also result in a volume with sharp edges.  

It is also important to take into account that the Linear Interpolation only 

interpolates between slices. It cannot interpolate before the first slice that was 

drawn on, or after the last slice that was drawn on. This means that the ends of 

the cell may be cut off. With this in mind, the user should always try to draw on 

the first slice where the cell is seen, as well as on the last one.  

To understand how this algorithm was implemented see pseudo-code in 

Appendix A.1. 
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2.2.2 Marching Cubes 

 

Marching Cubes is an algorithm used in computer graphics to construct and 

display 3D data. It creates a polygonal mesh from an isosurface within the 3D 

data[28].  

This method consists in defining a cube in between two consecutive slices, 

where the vertexes of the cube are adjacent pixels on the slices. Four vertexes 

will belong to slice k, and four to slice k+1. See Figure 2.6. 

 

 

Figure 2.6 - Marching Cubes Illustration 

 

The vertices can have two different states: being inside or on the surface, or 

being outside the surface. This will be decided according to the value of the 

corresponding pixel. Normally the user will define a threshold. Any pixel equal 

or superior to that value will be considered to be inside or on the surface. Any 

pixel that has a value inferior to the threshold will be considered to be outside 

the surface. In this way the vertices can be defined by a binary system. Each 

vertex will have an independent value of either 0 or 1.  

Considering what vertices are inside/on the surface and what vertices are 

outside the surface the algorithm will choose an adequate polygon to fill the 

cube. This polygon will be the definition of the surface in that space. So the 
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polygon has to ensure to include all the vertices that were labeled as inside the 

surface in the surface; as well as exclude from the surface all the vertices that 

were labeled as outside the surface.  

Given that there are 8 vertices in each cube, and each vertex of the cube can 

be characterized by two different states, there will be 256 different 

configurations possible for a cube (      ). Due to the symmetry proprieties 

of the cube it is possible to reduce that number to 14 basic polygon 

configurations. When all the vertices are either outside or are all inside the 

surface, the surface does not go through that cube. Therefore these two cases 

do not need to be considered since there is no polygon in these situations. The 

14 basic configurations can be seen in Figure 2.7. 

 

 

Figure 2.7 - Marching Cubes’ cubes configuration 

 

These 14 configurations are allocated in memory in a table to be queried.  

For every cube that is defined by eight pixels (four neighboring pixels in one 

slice and four neighboring pixels in the next slice) an eight bit index is ascribed. 

A standard numbering technique is defined to number the vertices of the cubes. 

So each vertex has a number and subsequently a bit associated to it. This 

means that each vertex contributes with one bit to the cube’s index. The value 

of that bit will depend on if the vertex is in inside or outside the surface. Once 

the cube’s index is assigned it is possible to search for that index in the table 
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that contains all possible polygon configurations. Each configuration will have a 

list of all possible indexes associated with that specific configuration.   

After the surface shape is found for a cube, the intersection of that surface with 

the edges of the cube is calculated. This calculation is done by linear 

interpolation using the vertex’s density value. Each cube defines the surface in 

that space, the total volume is the combination of all the surfaces enclosed in 

each cube.  

The final step is the calculation of the triangles’ in each cube normal. This is 

useful for rendering algorithms to produce shading in the surface.  

For interpolation purposes, not all slices are introduced into the Marching Cube 

algorithm. Only the slices with contours are introduced. The slices that were 

skipped are removed from the volume. The Marching Cubes algorithm is 

applied to the slices that contain a contour as if they defined the whole volume. 

Once the surface is created using the Marching Cubes algorithm the surface is 

stretched back out to the original volume size. This will elongate the polygons 

along the axis perpendicular to the slices. This elongation will result in less 

resolution along that axis compared to the other two axes.  This technique is the 

standard in computer graphics and is used for a wide range of applications. It is 

a robust method that works for different kinds of data. 

Like the Linear Interpolation, this method creates sharp edges. On both ends of 

the volume that are close to parallel to the planes of the slices, the Marching 

Cubes technique will generate a flat surface. This is due to the fact that to 

define these ends, the algorithm will interpolate between a slice with no contour 

and the first slice that was drawn on. The resulting cube will have the 

configuration in Figure 2.8. 

 

 

Figure 2.8 - Marching Cubes' configuration cube for when interpolating between a slice with 
contour and a slice without contour. 
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This will mean that the surface will be flat in those extremes.  

Marching Cubes is a computationally expensive algorythm since it requires a 

secondary interpolation and a large amount of memory needs to be allocated 

due to the fact that the vertices are not connected until the calculation is 

completed.  

To understand how this algorithm was implemented see Appendix A.2. 

 

2.2.3 Gaussian Splat 

 

Splatting techniques[29] use a splatting function to distribute the data value of 

each point over the surrounding region. This is done using a splatting kernel, or 

blur kernel. The kernel should be symmetric and gradually decrease to zero as 

you move away from the centre. In this way, the algorithm will blend all the 

volume points. It is important to assure that the kernel has an adequate size. A 

kernel that is either too big or too small can produce artifacts in the surface, 

such as blurring and loss of detail.  

The Gaussian Distribution Function can be used as a splatting function. The 

Gaussian function is the probability density function of the normal distribution, 

which in 3D is expressed as: 

 

       
 

      
  

        

     

 

where   is the standard deviation and µ the mean.    

The Gaussian Distribution Function can be used to distribute a point to its 

surrounding. This is done by creating a Gaussian distribution around each point, 

where the point is the mean, µ, of the distribution, or the “peak” of the Gaussian 
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curve. The Gaussian distribution for a given point will be the contribution of that 

point to the volume. In this way, each point will define a small volume in the 3D 

space. The sum of all the volumes defined by each point will be the final 

volume.  

The Gaussian Distribution Function, centered on a given point  , can be written 

as: 

 

                    
 

      
  

  
 
 
  

     (2.2) 

 

where   is the distance from   to  ,      , 

  is the radius of propagation of the splat, this value is expressed as a 

percentage of the length of the longest side of the sampling volume, 

and             is the scalar value of point  .  

This function is used in the Gaussian Splat interpolation technique. The function 

is applied to the list of points to be interpolated. Once the values have been 

blurred, an isosurface is extracted from the volume.  This interpolation 

technique will work for any kind of input contours and is very robust and fast. 

The Gaussian Splat will create a volume larger than the ground truth volume. 

Since the interpolation is calculated by expanding each point into its 

surroundings, it will expand the whole volume. Unlike Linear Interpolation and 

Marching Cubes, Gaussian Splat will not produce a volume with sharp edges. 

Instead, it will create a volume with large rounded edges.  It also will remove 

any trace of fine features. 

 

2.2.4 Delaunay Triangulation  
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Delaunay Triangulation[30] is used in computer graphics to create geometric 

surfaces from a list of points,                  . This is done by defining 

edges of triangles between points and, consequently, connecting all the points 

through triangles. The edges should never intersect each other. This method 

will produce a surface made up of various small triangles, where the vertices of 

these triangles are the points belonging to  .  

Every triangle resulting of the Delaunay Triangulation should satisfy the “empty 

circumcircle” condition. This condition states that the circumscribed circle of 

every triangle contains no other point     . This means that the algorithm 

ensures that no circumference of a circle contains four points of  . See Figure 

2.9. 

 

 

Figure 2.9 - Delaunay Triangulation's Circumcircle Triangles 

 

The Delaunay Triangulation algorithm begins by defining a triangle that is big 

enough to contain all the points of  . Then each point of the set   is added one 

by one into the algorithm. When a new point    is added, the triangle in which it 

falls has to be redefined to satisfy the “empty circumcircle” condition. This is 

done by deleting existing edges and creating new edges that include the   . It is 

important to consider that the triangle in which the point falls in is not the only 

triangle that has to be redefined; but all those triangles whose circumscribed 
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circle contains   . This procedure is repeated until all the points are successfully 

integrated into the Delaunay Triangulation. After all points are added, the edges 

that connect the points of the initial triangle created to contain all the points of   

can be eliminated. Figure 2.10 shows how this process is done.  

 

 

Figure 2.10 - Delaunay Triangulation Process 

 

Even though it was shown how the Delaunay Triangulation works in 2D, the 

concept still holds in 3D, where      , and the algorithm defines 3D simplexes 

and their corresponding circumscribed spheres.   

This method is widely used in computer graphics. It is a very efficient method to 

extract surfaces from a list of points. It works best for points that are spread out 

evenly in space, where the points are not agglomerated. If the set of points is 

too dense, the algorithm has difficulties in defining the simplexes. The ideal 

scenario for the Delaunay Triangulation is that where, for a set of points in a 
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plane, no three points lie on the same line and no four points lie on the same 

circle.  

The points to which the algorithm is applied in this case is the list of points that 

define the contours drawn by the user. A contour, theoretically, is defined by an 

infinite number of points. This list of points will be a string of consecutive points 

to describe a continuous line. The fact that there is no spacing between the 

points is a problem for the Delaunay algorithm. Even though the algorithm will 

exclude points that coincide or almost do so, it will still have to define edges 

between points that are too close together and their almost infinite 

circumscribing circles. It is very unlikely that the data obeys the condition for the 

ideal scenario mentioned on the previous paragraph.  

For this technique, the number of points introduced into the algorithm was 

reduced to improve its performance. No great improvement was noticed in its 

behavior.  

 

2.2.5 Unorganized Points  

 

Unorganized Points [31] is a very sophisticated surface reconstruction 

algorithm. Considering M as the unknown surface that we intend to calculate, 

function f  

 

       , (2.3) 

 

can be defined, where        is a region near the data. The function f 

estimates the signed geometric distance to M. The zero set      is the estimate 

for M. A contouring algorithm is then used to approximate      by a simplicial 

surface.  
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The first step consists of attributing an oriented tangent plane    to each data 

point      , where X is set of data points. These planes serve as a local linear 

approximation of the surface, and will be used to help calculate      for      .   

The singed distance of a point p to a surface M is the distance between p and 

the closest point    , multiplied by   . Multiplying it by    allows 

distinguishing points that are on different sides of the surface. Since M is not 

known the oriented tangent planes are used for this calculation. The distance of 

p to M is defined as the distance from p to the plane         which has the 

center    closest to p; that is, 

 

                          , (2.4) 

 

where     is a unit normal vector. 

Once the zero set      is found a contouring algorithm can be used to 

discretely sample the function f over a portion of a 3D grid near the data and 

reconstruct a continuous piecewise linear approximation to        The contour 

tracing algorithm used to extract the isosurface from the scalar function is the 

algorithm of Wyvill et al..  

 

2.4  Evaluation Metrics 

 

To evaluate the performance of each interpolation algorithm, we drew the 

contours of a cell nucleus on every slice. We then used those contours to 

generate a volume using each interpolation method. Ten iterations of this 

process were done; where, in each iteration, one more slice was skipped than 

in the previous iteration. That is, on the first iteration, all contours were used to 

obtain the volume; on the second, only every other contour was used, making 

the number of slices skipped 1; on the third, only every third contour was used, 
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making the number of slices skipped 2; and so on, until the number of slices 

skipped was 9. 

The evaluation metrics used to evaluate the interpolation methods were Jaccard 

Similarity[32], Dice Coefficient[33], Specificity and Sensitivity[34]. These metrics 

are the same metrics that the Ground Truth Evaluation software has built in to 

evaluate the fully-automated segmentation algorithms.  

For a better comprehension of the metrics, the following terminology will be 

used:  

 V  - all the voxels in the image; 

 GT (ground truth) – all the voxels classified as cell by the user; 

 I (interpolated volume) – all the voxels classified as cell by the 

interpolation method; 

 TP (True Positive) – all the voxels that were classified as cell by both the 

user and the interpolation method, i.e.,        ; 

 TN (True Negative) – all the voxels that were classified as non-cell by 

both the user and the interpolation method, i.e.,             ; 

 FP (False Positive) – all the voxels that were classified as non-cell by the 

user but were classified as cell by the interpolation method, i.e.,    

        ; 

 FN (False Negative) – all the voxels that were classified as cell by the 

user but were classified as non-cell by the interpolation method, 

i.e.,         . 
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Figure 2.11 - Representation of True Negative, False Positive, True Positive, and False Negative 
Areas 

 

2.4.1 Jaccard Similarity 

 

Jaccard Similarity is a metric used to compare how similar two sets are by 

measuring their overlap. It is defined as the ratio between the intersection of the 

two sets and their union: 

 

         
    

    
  

  

        
   (2.5) 

 

If the two sets are completely disjointed, the Jaccard Similarity Index will be 0.  

If the two sets are perfectly identical, the Jaccard Similarity Index will be 1. The 

greater the similarity between the two sets, i.e., the greater the number of 

elements that the sets have in common, the closer to 1 the Jaccard Similarity 

Index will be. This metric requires that the datasets are carefully aligned to 

avoid artifacts from alignment. 
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2.4.2 Dice’s Coefficient 

 

Dice’s Coefficient measures the agreement between two sets by dividing the 

intersection of the sets by the average of their sizes: 

 

              
      

 

 
      

  
  

 

 
             

  (2.6) 

 

This metric will vary from 0 to 1, where 0 indicates there is no agreement 

between the sets and 1 that there is total agreement. In the case of the 

interpolation methods, the closer to 1 the Dice’s Coefficient is, the closer the 

interpolated volume is to the ground truth volume.  

 

2.4.3 Specificity 

 

The specificity measures an interpolation method’s ability to characterize 

negative elements as negative, i.e., to exclude the negative elements from the 

desired set. This metric can be expressed as: 

 

              
  

     
  (2.7) 

 

For the interpolation methods this will mean the method’s ability to leave out of 

the interpolated cell volume the voxels that are non-cell voxels on the ground 

truth volume. If all the non-cell voxels are left out of the interpolated volume the 

method will have a specificity of 1. If all the non-cells voxels are included in the 

interpolated volume the method will have a specificity of 0. 
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2.4.4 Sensitivity 

 

Sensitivity measures the method’s ability to recognize positive elements, i.e., 

the ability to include in the desired set the positive elements. The greater the 

ability to correctly identify the positive elements, the closer to 1 the sensitivity 

will be. The metrics is written as: 

 

              
  

     
 (2.8) 

 

In the case of the interpolation methods this means the ability to include in the 

interpolated volume all the cell voxels.   
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3. RESULTS 

 

3.1 Inter–user variance 

 

To assess inter-user variance, three users delineated the contours of 14 cells 

and their nuclei. 7 of these cells were healthy cells, and 7 were cancerous cells.  

Tables 3.1 and 3.2 show the inter-user variance for the 14 nuclear volumes and 

the 14 cellular volumes respectively. 

Table 3.1 - Inter-user Standard Deviation for nucleus volume (   ) 

Cell 
Index User 1 User 2 User 3 Mean 

Standard 
Deviation  

1.0 689.8 627.0 646.3 654.3 32.2 

2.0 601.2 668.4 669.1 646.2 39.0 

3.0 472.5 491.5 451.7 471.9 19.9 

4.0 414.9 422.2 419.9 419.0 3.7 

5.0 465.8 558.2 546.4 523.5 50.3 

6.0 740.3 658.8 724.8 708.0 43.3 

7.0 330.0 353.5 357.9 347.1 15.0 

8.0 240.7 281.2 298.5 273.5 29.7 

9.0 321.7 313.2 313.9 316.3 4.8 

10.0 338.2 359.9 442.3 380.1 54.9 

11.0 266.1 249.3 263.9 259.8 9.1 

12.0 475.9 488.8 494.7 486.5 9.6 

13.0 633.9 638.6 643.2 638.6 4.7 

14.0 308.2 321.1 324.3 317.9 8.5 
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Table 3.2 - Inter-user Standard Deviation for cell volume (   ) 

Cell 
Index User 1 User 2 User 3 Mean 

Standard 
Deviation  

1 2228.8 1499.8 2296.9 2008.5 441.9 

2 2413.8 2385.9 2201.6 2333.8 115.3 

3 1933.7 1372.1 1528.3 1611.3 289.9 

4 1540.0 1041.3 1300.0 1293.8 249.4 

5 2883.4 2285.9 2516.2 2561.8 301.3 

6 2706.1 2119.4 2330.6 2385.4 297.1 

7 1119.3 887.7 1077.7 1028.2 123.5 

8 892.0 876.8 900.1 889.6 11.8 

9 1572.2 1067.0 1243.0 1294.1 256.5 

10 1566.7 1441.0 1623.8 1543.8 93.5 

11 815.0 630.0 656.2 700.4 100.1 

12 1123.8 1107.8 1110.4 1114.0 8.6 

13 1408.1 1361.4 1584.2 1451.3 117.5 

14 844.3 729.9 848.0 807.4 67.1 

 

 

3.2  Interpolated Volumes 

 

3.2.1 Linear Interpolation 

 

Linear Interpolation produced volumes that were able to follow the intricate 

shape of the nucleus, remaining true to its lobes and lumps. It did, on the other 

hand, produce rugged volumes, with sharp edges and flat surfaces. It is easy to 

identify the axis on which the user drew, since the drawn slices result on 

pronounced ridgeson the resultant volumes produced by this method. As can be 

seen in Figure 3.1, the greater the number of slices skipped, the more prevalent 

these characteristics became. The ends of the volume are more affected by the 

increase of skipped slices. This method fails to create curvature on the axis of 

segmentation on the skipped slices. 
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Figure 3.1 - Nucleus volumes obtained using Linear Interpolation. Top-left volume obtained with no 
slices skipped. Top-right volume obtained with 3 slices skipped. Bottom-left volume obtained  with 
6 slices skipped. Bottom-right volume obtained  with 9 slices skipped. 
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3.2.2 Marching Cubes 

 

Marching Cube produced good volumes when the number of skipped slices was 

low, but it quickly deteriorated with the increase in the number of slices skipped. 

There is a tendency to create a square wave or aliasing pattern along the 

segmented axis that becomes more evident as the number of slices skipped 

increases. See Figure 3.2. 

 

 

Figure 3.2 - Nucleus volumes obtained using Marching Cubes. Top-left volume obtained with no 
slices skipped. Top-right volume obtained with 3 slices skipped. Bottom-left volume obtained  with 
6 slices skipped. Bottom-right volume obtained  with 9 slices skipped. 
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3.2.3 Gaussian Splat 

 

The Gaussian Splat produced bulgy, enlarged volumes, where the whole 

nucleus is inflated. A lot of the detail and small creases, folds and lumps 

disappear. There is not a great difference on the volumes obtained as the 

number of slices skipped increased. See Figure 3.3 

 

 

Figure 3.3 - Nucleus volumes obtained using Gaussian Splat. Top-left volume obtained with no 
slices skipped. Top-right volume obtained with 3 slices skipped. Bottom-left volume obtained  with 
6 slices skipped. Bottom-right volume obtained  with 9 slices skipped. 
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3.2.4 Delaunay Triangulation  

 

The Delaunay’s produced volume where its constituent triangles are very 

evident, and created surfaces with holes.  It did not remain true to the nucleus’s 

uneven surface, or pay attention to small detail. As can be noted in figure 3.4, 

no significant visible difference can be seen on the volume as the number of 

slices skipped increases.  

 

Figure 3.4 - Nucleus volumes obtained using Delaunay Triangulation. Top-left volume obtained 
with no slices skipped. Top-right volume obtained with 3 slices skipped. Bottom-left volume 
obtained  with 6 slices skipped. Bottom-right volume obtained  with 9 slices skipped. 
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3.2.5 Unorganized Points 

 

Unorganized Points produced volumes that were sensitive to the nucleus’s 

uneven surface. It created equally smooth surfaces along all three axis. With 

the increase of slices skipped, the volumes became more even. This means a 

loss of detail, and small lumps and dents on the surface. See Figure 3.5 

 

 

Figure 3.5 - Nucleus volumes obtained using Delaunay Triangulation. Top-left volume obtained 
with no slices skipped. Top-right volume obtained with 3 slices skipped. Bottom-left volume 

obtained  with 6 slices skipped. Bottom-right volume obtained  with 9 slices skipped. 
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4. DISCUSSION 

 

4.1 Software’s Inter-user variability 

  

This technique of ground truth establishment has a high inter-user variance. 

There are several parameters that can influence this. The users all had the 

freedom to adjust the brightness and contrast to their liking. This can affect the 

way the user observes less well defined boundaries. The users could also pick 

the slices on which they drew or skipped, and the interpolation method was 

used to define the contour on the skipped slices. Depending on how differently 

the chosen slices were, the final volumes could reflect these choices. The users 

also experiences fatigue, which makes the user more prone to error. Poor 

judgment and human error must be considered as well. There might not always 

be agreement on where the boundary is. Having trained experts trace the 

volume could minimize these problems.  

The inter-user variability for the cell was considerably greater than for the 

nucleus. This could be explained by the higher contrast imparted by the 

hematoxylin to the nucleus. 

 

4.2  Interpolation Algorithms 

 

To evaluate the performance of each interpolation algorithms we will use the 

metrics described in section 2.4. 
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- Jaccard Similarity 

 

 

Figure 4.1 - Jaccard Similarity Index Graph for all five interpolation algorithms 

 

As can be seen in Figure 4.1, for the Linear Interpolation, the Marching Cubes 

and the Unorganized Points, there is a tendency for the Jaccard Similarity Index 

to decrease as the number of slices skipped increases. This was expected 

since the accuracy of the results of the interpolation algorithms should decrease 

as the number of slices (i.e., information from the ground truth volume) 

introduced in the algorithm decreases. Even though the Linear Interpolation had 

a better result than the Unorganized Points for all 10 trials, Unorganized Points’ 

performance did not degrade as much with the increase of the number of slices 

skipped. This is due to the fact that Linear Interpolation’s performance is highly 

tied to the proximity of the consecutive contours, as it only mimics the two 

closest contours. The Unorganized Points, on the other hand, takes into 

account the three-dimensional region around each point and tries to understand 

its pattern. Marching Cube’s performance is the most affected because of its 

rigid cube structure that is strictly enforced to a certain resolution. Also, both 

Linear Interpolation and Marching Cubes are unable to create curvature, 

producing sharp edges. This characteristic becomes a more predominant as 

more slices are skipped, since the flat surface produced by these algorithms 

between two consecutive contours is extended over a greater distance. 
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Unorganized Points does not have this problem, seeing as it describes the 

surface more organically, generating a smooth descriptive surface.  

The Gaussian Splat and the Delaunay did not show the same tendency as the 

other three methods. For the Gaussian Splat, the Jaccard Similarity Index 

actually increases as the number of slices skipped increases. This can be 

explained by the fact that the Gaussian Splat enlarges the volume of the cell. It 

computes the volume creating a Gaussian distribution around each point that is 

inputted into the algorithm, enlarging the volume of that point. The more points 

that are introduced into the algorithm the greater the effect of that enlargement 

will be. So the Gaussian Splat actually creates a volume closer to the size of the 

ground truth volume when there is less slices introduced into the algorithm. 

As for the Delaunay, it seems that the Jaccard Similarity Index remains 

constant. This is because the Delaunay failed to create full surfaces, creating 

volumes with holes. These holes were constant throughout all the volumes, 

regardless of the number of slices skipped.  Delaunay’s poor performance is 

tied to the nature of our data and its highly uneven concentration of points.  

For the Linear Interpolation, the Jaccard Similarity Index is 1 when the number 

of slices skipped is zero. The reason for this is that this method only computes 

the missing slices. When no slices are skipped, it just outputs exactly the same 

information that was inputted into the algorithm. In the case of zero slices 

skipped, the information that is introduced into the interpolation methods is the 

ground truth volume; therefore the Linear Interpolation outputs the ground truth 

volume.  
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- DICE Coefficient  

 

 

Figure 4.2 – Dice Coefficient Graph for all five interpolation algorithms 

In figure 3 we can see that this metric has similar results to the Jaccard 

Similarity Index. For the same reasons as previously discussed for the Jaccard 

Similarity here the Linear Interpolation has the best results, followed by the 

Unorganized Points, Marching Cubes, then the Gaussian Splat, and lastly the 

Delaunay. 

It is interesting to note that, despite the fact that the shape of Dice Coefficient’s 

graph is very similar to Jaccard Similarity’s graph, all the methods have a higher 

score for the Dice Coefficient. This is due to the fact that the Jaccard Similarity 

Index is more sensitive to the number of elements that do not agree, since it 

takes into account the size of the union, and not the average size of both sets. 

In this way, if we compare how much lower a method scored in Jaccard 

Similarity in regards to how it scored in the Dice Coefficient, we can conclude 

how large the set of elements defined by               )  is. The greater 

the difference between the scores, the greater this set will be. Ideally, this set 

should be empty. 
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Doing this analyzes, we can see that the Delaunay had a greater difference 

between its score in the two metrics, followed by the Gaussian Splat. It can also 

be seen that the difference between the two metrics for the Linear Interpolation 

and Marching Cubes increases as the number of slices skipped increases. This 

is not as noticeable for the Unorganized Points. This shows, once again, that 

the increase of the number of slices skipped is more detrimental to the 

performance of the Linear Interpolation and of the Marching Cubes than it is to 

the Unorganized Point’s performance.  

 

- Specificity 

 

 

Figure 4.3 - Specificity Index Graph for all five interpolation algorithms 

 

As can be seen in figure 4, there is not a great variation on the specificity value 

for each interpolation method as the number of slices skipped increases. For all 

the methods the specificity was high. This is due to the large volume of the 

reconstruction space, that is to say, the cell (and consequently its nucleus) 

occupies a small portion of the total image. The True Negative value is a really 

large number compared to False Positive; therefore False Positive exerts a 

reduced impact in the quotient TN/(TN + FP).     
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The Gaussian Splat has the worst score for this metric, as it enlarges the cell’s 

volume, having a greater False Negative than any other method.  

The specificity metric only measures the method’s ability to identify the negative 

elements. This implies that if the method had classified all the elements as 

negative it would have had a specificity of 1. In the case of the interpolation 

methods, this would mean that if the algorithm had failed altogether and there 

was no volume created it would still have a perfect specificity of 1. For this 

reason this metric should always be used with its complementary metric: 

Sensitivity. 

  

- Sensitivity  

 

 

Figure 4.4 - Sensitivity Graph 

In figure 5 it is evident that once again Delaunay is the method that performs 

the worst. This is due to the holes in the volume created by this method, where 

the interpolated volume is almost half the ground truth volume.  

The Gaussian Splat approaches the results of the Linear, Marching Cube and 

Unorganized Points methods on this metric. This is due to the inflated volume 
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that the Gaussian Splat produces. Consequently, not many cell voxels are left 

out of the Gaussian interpolated volume. As the sensitivity metric only takes into 

account the ability to recognize positive elements, the Gaussian Splat’s score is 

not hurt by including non-cell voxels within its interpolated volume. For this 

reason, the sensitivity metric should also only be used with the specificity 

metric.  

The Linear Interpolation was the most sensitive method, followed by 

Unorganized Points, the Gaussian Splat and the Marching Cubes. All these 

methods had close values of sensitivity.  

For all four metrics, the Linear Interpolation produced the best results. This can 

be explained by the fact that due to its simplicity, it will have a stable 

performance with various types of intricate data. It can be noted that, visually, 

Unorganized Points produced a better volume as it generates smoother 

surfaces, as opposed to the sharper edges and the flatter surfaces created by 

the Linear Interpolation. 

It is also interesting to note that the variance produced by Linear  

Interpolation, Marching Cubes, and Unorganized Points, was not as significant 

as the inter-user variance. In this way, the interpolation method minimizes the 

human error. 
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5. CONCLUSION 

 

We successfully designed a software program, the Ground Truth Evaluation, 

which permits establishment of volumetric ground truth for segmentation of cell 

CT images using interpolation. The interactive software interface allows the 

user to record and archive tracings of cell components drawn with a stylus on a 

tablet display showing an image of the cell, making it possible to convert the 

results from human visual segmentation to a digital form. 

Due to the fact that tracing the contour of desired cell components on all the 

slices derived from the cell CT 3D image was very time consuming and tedious, 

error was introduced to the manual tracing process from user fatigue. To speed 

up the process and reduce the uncertainty and error introduced into the process 

from this fatigue, the authors developed a software code to implement the use 

of interpolation algorithms to reduce the number of slices that needed to be 

traced manually. We investigated five different interpolation algorithms to 

identify the one that produces the optimally segmented volume. The 

interpolation algorithms studied included the following: Linear Interpolation, 

Marching Cubes, Gaussian Splat, Delaunay Triangulation, and Unorganized 

Points. 

Results from the study showed that the Gaussian splat interpolation technique 

tends to enlarge the volume. The Delaunay algorithm had trouble creating full 

surfaces given the uneven density of the measured data. The Unorganized 

Points algorithm produced good results, but it was both less sensitive and less 

specific than the Linear Interpolation. Although the Marching Cubes algorithm 

and the Linear Interpolation both showed a tendency to create sharper edges 

than existed in the actual volume, this effect was more accentuated for the 

Marching Cube algorithm. 

To evaluate the performance of each interpolation algorithm the following 

statistical metrics were used: Jaccard Similarity, Dice Coefficient, Specificity 

and Sensitivity.  After analyzing the results of each metric applied to the results 
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from each interpolation method independently, we concluded that Linear 

Interpolation was the most accurate interpolation method, having had the most 

optimal value compared to the actual volume for all four metrics. 

Using Linear Interpolation, it is possible to speed up ground truth determination, 

making the process of ground truth determination more 

efficient. Our work provides a method to obtain ground truth for 3D cellular 

image segmentation as well as many other medical segmentation problems. 

With ground truth achieved, it is possible to validate 3D segmentation 

algorithms. This is crucial to provide a documented methodology for future 

research to improve and advance the field of quantitative 3D image analysis for 

precise 3D cytopathological assessment of cells. 

This method of ground truth establishment can also be used for other types of 

medical images. Volumes with a more uniform surface, e.g. a bone, may benefit 

even more from interpolation methods.  

There are several aspects of the software that could be further explored and 

improved in future work. Techniques to minimize human error could be studied 

and developed, which include the combining of tracings from many people, intra 

and inter user variability could be further studied, semi-automatic contour 

generation, intelligent thresholding and other related research. For that purpose, 

a digital phantom could be used to study the error associated with tracing and to 

optimize tracing techniques. Other interpolation algorithms could also be 

explored, as well as the possibility of combining and optimizing current 

algorithms.   
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APPENDIX A:  

PSEUDO CODE FOR THE LINEAR INTERPOLATION AND 

MARCHING CUBES ALGORITHMS 
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Appendix A.1: Psuedo code for the Linear Interpolation algorithm 

The sections of code in italic font are comments to the code. “/*” denotes the 

beginning of a comment section, and “*/” denotes the end of a comment 

section. 

Function Linear Interpolation 

/* The first part of this function consist of going through all the slices and 

finding the slices that contain contours, i.e., only the slices that were 

drawn on. Once these slices are found, the function will loop through all 

of them. The current slice is defined as FirstSlice and the next slice with 

a contour is defined as SecondSlice until the end of the loop is reached. 

Each slice can hold multiple contours. The contour(s) of the FirstSlice will 

be defined as FirstContour, and the contour(s) of the SecondSlice will be 

defined as SecondContour. Once the procedure reaches the end of the 

loop, it will return to the beginning of the loop, and move to the following 

slice. In this way, the slice that was SecondSlice is now FirstSlice. 

SecondSlice will now be the next slice containing a contour. This is 

repeated until the loop has gone through all the slices with contours. 

Note that the last slice with a contour will not define FirstSlice for a cycle 

of the loop. This is due to the fact that Linear Interpolation can only 

interpolate between two slices with contours.*/ 

 

/*FirstContour and SecondContour are a list of points that define the 

corresponding contour(s).*/ 

 

/*Here the pseudo code inside this loop is shown.*/ 

 

for j from 1 to number of points in FirstContour do 

/* This section of the code finds the closest point in the SecondContour to 

point j of the FirstContour.*/  
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/* Define the variable minDistance, which will define the minimum 

distance found between point j and a point in the SecondContour, 

as the distance between point j and the first point of the 

SecondContour. This distance is calculated using the formula: 

                           */ 

minDistance = sqrt((FirstContour[j].X - SecondContour[0].X) * 

(FirstContour[j].X - SecondContour[0].X) + (FirstContour[j].Y - 

SecondContour[0].Y) * (FirstContour[j].Y - SecondContour[0].Y)) 

 

/* Define the variable closestPoint, which will contain the point in 

the SecondContour whose distance to point j is minimum, as the 

first point of SecondContour.*/ 

closestPoint = SecondContour[0] 

 

/*Loop through all the points of the SecondContour */ 

for k  from 1 to the length of SecondContour do 

 

/* Calculate the distance of the current point in Second 

Contour to point j */ 

currentDistance =sqrt((FirstContour[j].X - 

SecondContour[k].X) * (FirstContour[j].X - 

SecondContour[k].X) + (FirstContour[j].Y - 

SecondContour[k].Y) * (FirstContour[j].Y - 

SecondContour[k].Y))  

 

/*Check if the distance of current point k is smaller than the 

minDistance. If it is update the variable minDistance with 

the value currentDistance, and the variable closestPoint to 

be point k.*/ 

if the currentDistance is smaller than minDistance do 

minDistance = currentDistance 

closestPoint = SecondContour[k] 

   end if 
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end for 

/* This section of the code interpolates through all the slices.*/ 

/*Loop through the slices between the FirstSlice and the 

SecondSlice*/ 

for k from 1 to the number of slices between FirstSlice and 

SecondSlice do 

 

/*Define variable that defines the distance between the 

current slice and FirstSlice*/ 

u = k / (number of slices between FirstSlice and 

SecondSlice + 1) 

 

/*Calculate interpolated point considering a straight line 

between point j and closestPoint. Variable u will define were 

in that line the current slice intersects.*/ 

interpolated.X = (closestPoint.X - FirstContour[j].X) * u + 

FirstContour[j].X) 

interpolated.Y = (closestPoint.Y - FirstContour[j].Y) * u + 

FirstContour[j].Y) 

InterpolatedPoint in slice k = interpolate.X, interpolated.Y 

end for 

/*All the interpolated points for each slice are saved. Those points 

will define the interpolated contour on that slice.*/ 

 end for 

End Function                           
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Appendix A.2: Psuedo code for the Marching Cubes algorithm 

The sections of code in italic font are comments to the code. “/*” denotes the 

beginning of a comment section, and “*/” denotes the end of a comment 

section. 

 

Marching Cubes Function 

/*The slices with contours are loaded into the Marching Cubes in a 3D 

Matrix. The function will return the triangles that define the surface.*/ 

 

/*Create a list of Triangles */ 

ListOfTriangles 

 

/*Loop through the cells of the matrix to create cubes*/ 

        for  i from 1 to the number of rows of Matrix -1 

                    for  j from 1 to the number of columns of Matrix -1 

       for k to the number of slices in the Matrix -1 

 

/*Create cube, a variable that holds 8 vertices and their 

corresponding X, Y and Z coordinates, as well as each vertex’s 

value*/ 

Create cube and define all 8 vertices by their location and the 

matrix value at that point 

 

/*Define each vertex of the cube*/ 

                         cubeVertex[0].X = i 

                         cubeVertex[0].Y = j 

                         cubeVertex[0].Z = k 

cubeVertexValue[0] = Matrix[i, j, k] 

             /*repeat the above for each corner of the cube */ 
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/*Once a cube is created it is possible to calculate the triangular facets 

required to represent the isosurface in the cube. */ 

 

/*Define variable cubeindex, which tells us which vertices are inside of 

the surface, as zero. This index will determine the triangle(s) that 

characterize the surface inside the corresponding cube */ 

            cubeindex = 0 

 

 /* Determine the value of cubeindex for this cube taking into account the 

isolevel defined by the user. */ 

if cubeVertexValue[0] < isolevel then do  

assign the first bit of cubeindex to 1 

            if cubeVertexValue[1] < isolevel then do 

assign the second bit of cubeindex to 1 

            if cubeVertexValue[2] < isolevel then do 

  assign the third bit of cubeindex to 1 

            if cubeVertexValue[3] < isolevel then do 

assign the forth bit of cubeindex to 1 

            if cubeVertexValue[4] < isolevel then do 

 assign the fifth bit of cubeindex to 1 

            if cubeVertexValue[5] < isolevel then do 

assign the sixth bit of cubeindex to 1 

            if cubeVertexValue[6] < isolevel then do 

assign the seventh bit of cubeindex to 1 

            if cubeVertexValue[7] < isolevel then do 

assign the eighth bit of cubeindex to 1 

 

/* Cube is entirely in/out of the surface, which means there will be no 

triangles inside it */ 

           if all of cubeindex’s bits are 0 end cycle for this cube 

                 

           /* Find the vertices where the surface intersects the cube */ 

/* This is done with the help of the functions VertexInterp and edgeTable. 

VertexInterp linearly interpolates the position where an isosurface cuts an 
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edge between two vertices, each with their own scalar value. edgeTable 

takes a cube’s cubeindex, and uses it to consult a table to find the 

corresponding value that defines which edges of the cube are intersected 

by the surface. */ 

             

/*Create an array for the vertices*/ 

Create vertList by using cubeIndex to select the correct vertexs from 

edgeTable 

 

/* This is done with the help of triTable. triTrable is a function that  will 

determine the configuration of the triangles inside the cube. This is done 

by consulting a predefined table with all possible configurations of 

triangles inside a cube. These configurations are sorted by cubeindex 

possibilities for each configuration. */ 

 

             for i from 1 until the triTable no longer returns a triangle’s vertex do 

Create Triangle 

/*Find the Triangle’s 3 connecting vertexes from vertlist*/ 

                 Triangle.vertex[0] = vertlist[triTable[cubeindex, i]] 

Triangle.vertex[1] = vertlist[triTable[cubeindex, i + 1]] 

                 Triangle.vertex[2] = vertlist[triTable[cubeindex, i + 2]] 

                 Add Triangle to ListOfTriangles 

 endfor 

 

      endfor 

   endfor 

endfor 

 

endfunction   
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