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 3D visualization plays an essential role in medical diagnosis and setting 

treatment plans especially for brain cancer. There have been many attempts 

for brain tumor reconstruction and visualization using various techniques. 

However, this problem is still considered unsolved as more accurate results 

are needed in this critical field. In this paper, a sequence of 2D slices of 
brain magnetic resonance Images was used to reconstruct a 3D model for the 

brain tumor. The images were automatically segmented using wavelet  

multi-resolution expectation maximization algorithm. Then, the inter-slice 

gaps were interpolated using the proposed modified shape-based 
interpolation method. The method involves three main steps; transferring the 

binary tumor images to distance images using a suitable distance function, 

interpolating the distance images using cubic spline interpolation and 

thresholding the interpolated values to get the reconstructed slices. The final 
tumor is then visualized as a 3D isosurface. We evaluated the proposed 

method by removing an original slice from the input images and 

interpolating it, the results outperform the original shape-based interpolation 

method by an average of 3% reaching 99% of accuracy for some slice 
images. 
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1. INTRODUCTION 

Brain cancer is one of the most life-threatening diseases to human beings. More than 22,000 people 

in the United States of America are diagnosed with brain tumors every year [1]. The treatment process 

involves one or more of surgical resection, radiotherapy, and chemotherapy. For the oncologist to decide a 

suitable treatment plan, there must be an accurate and reliable diagnosis of the pathology, location, shape, 

and size of the tumor. The diagnostic techniques are mainly divided into invasive techniques, e.g., biopsy, 

and non-invasive techniques such as medical imaging tools. 

Magnetic resonance imaging (MRI) is an important imaging tool for medical diagnosis especially 

for lesions. The images can show the lesion properties when injecting the patient with Gadolinium-based 

contrast agent [2]. However, the MRI yields a set of cross-sectional 2D images that need further 

interpretation from an expert radiologist to construct a 3D model of the tumor from these slices. This can 

result in an inaccurate diagnosis because the analysis depends on the experience of the radiologist [3]–[5]. 

Moreover, to avoid the slices from interference with each other (crosstalk artifacts), there must be an inter-

https://creativecommons.org/licenses/by-sa/4.0/
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slice spacing during the image acquisition [6] which causes loss of details in the gap spaces and extra effort 

from the radiologist to analyse the images. 

As a result, many attempts are being made to provide an automated visualization for brain tumors. 

We propose a modified shape-based interpolation technique to estimate the missing information in the gap 

slices then reconstruct a 3D model of the tumor that can be easily viewed and interpreted. First, the tumor is 

segmented from each MRI slice. Then the tumor images are converted to distance images which are used to 

interpolate the in-between missing slices. Finally, the tumor volume is rendered and displayed in a 3-D view. 

The rest of the paper is organized; section 2 reviews the most popular methods that are currently 

used for tumor 3D reconstruction. Section 3 explains the methods used for tumor segmentation and 

extraction. The proposed method is presented in section 4. Results are shown in section 5 and the conclusions 

are demonstrated in section 6. 

 

 

2. RELATED WORK 

3D reconstruction is implemented using various methods that are based on diverse concepts. In this 

section, we will discuss the most widely-used methods [3].  

 

2.1.  Delaunay and alpha-shapes 

Delaunay methods are mainly based on extracting tetrahedron surfaces from an initial point cloud. 

The concept of 3D reconstruction using alpha-shapes was first introduced by Edelsbrunner and Mucke [7]. 

Using a finite set of points S and the parameter alpha, the resulting alpha-shape of S is a polytope, which is a 

generalization in any number of dimensions, of the three-dimensional polyhedron that is not necessarily 

convex or connected. If the alpha value is large, the alpha shape of S is similar to its convex hull. By 

decreasing the value of alpha, the non-convex details of the shape are formed. Edelsbrunner and Mucke [7] 

modified the technique by forming a surrounding sphere smaller than alpha then removing all tetrahedrons 

that lie inside it. External triangles of the remaining tetrahedron form the final surface. Al-Tamimi et al. [8] 

used alpha-shape theory for 3D reconstruction of brain tumors using slices of MR images. Most  

delaunay-based methods have the advantage of accurately fitting the surface defined by the original point 

cloud. On the other hand, their performance is strongly affected with noise. 

 

2.2.  Zero-set methods 

Zero-set methods are also known as implicit reconstruction methods. They use a distance function 

for surface reconstruction. A polygonal representation of the object is formed by extracting a zero-set using a 

contour algorithm. Therefore, surface reconstruction from a point cloud is simplified to computing the 

suitable function f which equals zero for the sampled points and does not equal zero for the rest of the  

points [3]. The most popular zero-set method is the marching cubes algorithm which was proposed by 

Lorensen and Cline [9]. Guo et al. [10] introduced an improved marching cube algorithm by combining the 

seeded region growing and the standard Monte Carlo (MC) algorithm. Many other methods were proposed 

based on Zero-set methods such as Kazhdan and Hoppe [11] and Walder et al. [12] The drawback of these 

methods is the loss of geometrical accuracy in high-curvature areas such as corners and edges of the re-

constructed shape. 

 

2.3.  Point-based methods 

From the popular point-based methods is the voxel-grid filtering. It is based on the idea of reducing 

the number of points by sampling the input space using a grid of 3D voxels then a centroid is selected for 

each voxel to represent all the points [13], [14]. Angelopoulou et al. [15] used growing neural models to 

automatically landmark the target volume sections and construct a 3D model. The shortcoming of these 

methods is that it is impossible to determine the final number of points representing the surface. Methods that 

depend on deep learning and neural networks as in [16] and [15] were also proposed. Although that these 

methods produce highly efficient output, they have a drawback of finding the suitable training data especially 

with brain tumors that have various shapes, sizes, and consistencies. 

 

2.4.  Interpolation-based methods 

To avoid interfering of slices during MRI acquisition (crosstalk artifact), there must be a gap 

between the images. The interpolation-based methods idea is based on calculating the image values in the 

gap area to reconstruct the 3D model accurately. These methods can be divided into scene-based and  

object-based methods. The simplest scene-based method is the linear interpolation. More methods were then 

proposed such as cubic spline and other polynomials in interpolation of medical images [17]. The kriging 

method was also used to interpolate grey values of medical images [18]. The scene-based methods apply 



Int J Elec & Comp Eng  ISSN: 2088-8708  

 

Brain tumor visualization for magnetic resonance images using … (Dina Mohammed Sherif El-Torky) 

2555 

intensity averaging on the neighboring slices without considering the shape feature distortion. This causes 

blurriness to the object boundaries of the resulting interpolated slices. 

Several object-based interpolation methods were proposed to avoid the shortcomings of the  

scene-based methods. They considered object information in the given input slices to guide the interpolation 

procedure. An efficient type of object-based methods is the shape-based interpolation [19], this method uses 

distance transform functions to build distance images from the given slices. Then, instead of interpolating the 

intensity values, it interpolates the displacement preserving the geometric changes of the objects more 

accurately. The shape-based methods have become widely used due to their efficiency. Yet, they have the 

problem of disability to effectively deal with object having holes, large offsets, or heavy invagination. 

In [20], multi-resolution registration was used for image interpolation. Farias et al. [21] used 

interpolation techniques to generate intermediate slices of medical images. Ting et al. [2] applied surface 

reconstruction using Hermite surface interpolation for breast cancer. Our proposed method uses shape-based 

interpolation to estimate the intermediate gap slices of the brain tumor volume. 

 

 

3. PROPOSED METHOD 

Our system is based on two main processes: tumor segmentation of brain MR images and 

intermediate slices interpolation of binary tumor images. Various segmentation methods have been proposed 

throughout the past years. These methods could be very simple such as Thresholding, or region-based as 

region growing and watershed, or supervised classification as in artificial neural networks, or statistical-based 

such as expectation maximization and its modifications [22]–[26]. We used wavelet multi-resolution 

expectation maximization algorithm (WMEM) [27] proposed by Salem [28], [29] for tumor segmentation. 

Besides being an unsupervised method, WMEM showed very accurate segmentation results for the brain MR 

images. Figure 1 shows the process flow diagram of the proposed method.  

 

 

 
 

Figure 1. Process flow diagram of the proposed method 

 

 

3.1.  Multiresolution-based segmentation 

The WMEM is basically a modification of the classic expectation maximization (EM) algorithm. 

The EM consists of two major steps: expectation step (E-step) and maximization step (M-step). These two 

steps are repeated until convergence, i.e., the difference between the parameters in the previous and the 

current iterations decreases until it reaches a given threshold. The EM then uses a classifier that assigns a 

class membership to a pixel 𝑖 depending on its intensity 𝑥𝑖. The class to which the pixel is assigned is the one 

having a parameter vector that maximizes the Gaussian density function. The WMEM uses a Haar wavelet 

transform function that produces four outputs: image approximation, and vertical, horizontal and diagonal 

details of the image [30]–[32]. Two levels of approximations were produced to form a parent and a 
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grandparent of the original image. Since the edge details are lost during formation of the parent and 

grandparent images, these pixels are usually misclassified.  

To overcome this, a mask containing all the edges of the image is formed by adding the vertical, 

horizontal and diagonal details images resulted from the wavelet analysis. This mask is used to exclude the 

pixels laying on the edges of the image from multi-resolution segmentation. The original EM is applied on 

each of the original, parent and grandparent images. Each classification result is given a certain weight. Then, 

the final classification is calculated by combining the three weighted results as: 

 

𝐶(𝑥,𝑦) = 0.4 ∗ 𝐶0(𝑥,𝑦) + 0.35 ∗ 𝐶1(𝑥,𝑦) + 0.25 ∗ 𝐶2(𝑥,𝑦) 

 
where, 𝐶0, 𝐶1 and 𝐶2 are the results of the classification at pixel (𝑥, 𝑦) for the original, parent and 

grandparent images respectively. Figure 2 shows the segmentation results of the WMEM, Figure 2(a) the 

original tumor image, Figure 2(b) the original segmented image using EM, Figure 2(c) the segmented parent 

image, Figure 2(d) the segmented grandparent image, Figure 2(e) the final segmented image using WMEM, 

and Figure 2(f) the extracted tumor. 

 

 

   
(a) (b) (c) 

 

   
(d) (e) (f) 

 

Figure 2. Stages of tumor extraction: (a) the original tumor image, (b) the original segmented image using 

EM, (c) the segmented parent image, (d) the segmented grandparent image, (e) the final segmented image 

using WMEM, and (f) the extracted tumor 

 

 

3.2.  Tumor extraction 

Thresholding was used to separate the other segmented brain components (grey matter, white 

matter, and CSF) from the tumor. The thresholding produced images containing both tumor and skull 

because they almost have the same color intensity. So, the solidity feature was used to exclude the skull from 

the final image. Solidity is the proportion of the pixels in the convex hull that are also in the region. It is 

computed as Area/ConvexArea. It was found that tumors have higher solidity than the skull, so we selected 

the high solidity to get a binary image that only contains the tumor to be used in the reconstruction step [27]. 

 

3.3.  Intermediate slice estimation 

Our aim is to visualize the brain tumor given a series of MRI brain slices. Our method is a 

modification of the classic shape-based interpolation technique [33] which is based on interpolating the 

values of the 3D volume that lay in the gap areas during slices acquisition. Shape-based interpolation is 

performed in two main steps. The first step is transforming the binary tumor image into a distance image. The 

second step is interpolating the distance image using a suitable interpolation function. 

Every series of MRI image is described with some important information such as the slice thickness, 

inter-slice distance and the in-plane resolution. These properties vary according to the MRI scanner strength 

and acquisition process. Before starting the interpolation, the number of gap slices should be calculated using 

the provided dataset properties. We computed the gap area in pixels by: 
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𝑠𝑙𝑖𝑐𝑒 𝑠𝑝𝑎𝑐𝑖𝑛𝑔

𝑖𝑛 − 𝑝𝑙𝑎𝑛𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
 

 

where, slice spacing is the gap between every two consecutive slices in millimeters and the in-plane 

resolution is the area of each pixel in millimeters [34]. 

 

3.4.  Distance image transform 

The distance image represents the shortest distance from every pixel in the image to the nearest 

boundary pixel. Pixels inside the region of interest (tumor) are assigned with positive values, while pixels of 

the background are assigned with negative values. We calculated the distance transform by applying the 

following steps twice for each of the tumor and the background separately, then the two distance images are 

added to form the final distance image. 

Steps: 

Step 1: Create two distance images 𝐷 and 𝐷′for the tumor and the background respectively, then set all the 

pixels of 𝐷 and 𝐷′ to zero. 

Step 2: Create a counter 𝐼 that increments with every iteration. 

Step 3: Starting from the boundary pixels, perform an erosion operation to the image to remove a single pixel 

from the tumor boundaries then add the value of 𝐼 to the pixels of 𝐷 at the locations of the eroded 

pixels.  

Step 4: Repeat step 3 until all the pixels of 𝐷 are calculated. 

Step 5: Similarly, perform dilation to the tumor image by adding a single pixel starting from the boundary 

pixels and subtract the value of 𝐼 in each iteration and insert its value in 𝐷′ at the locations of the 

dilated pixels. 

Step 6: Repeat step 5 until all the values of 𝐷′ are calculated.  

Step 7: By adding 𝐷 to 𝐷′, the final distance image is formed. 

The previous steps are performed for every slice of the input volume. Figure 3 shows a sample of 

the distance image that results from applying the previous steps on one of our dataset images, the in-lined 

part represents the tumor area with positive values, while the outlined negative pixels represent the 

background and the zero pixels are for the tumor boundaries. 

 

 

 
 

Figure 3. A sample of the resulting distance image 

 

 

3.5.  Slice interpolation 

To reconstruct the final tumor volume, the gap area has to be interpolated using the given slices. 

Several interpolation methods have been used in medical imaging. Methods such as nearest neighbour and 

linear interpolation are fast and simple, yet they do not produce reliable results [35]. In our work, B-spline 

interpolation [36] was used on distance images as an input, and it proved to show accurate results.  

A separable spline model is chosen for interpolation. The p-dimensional spline function  

𝑠(𝑋), 𝑋 = (𝑥1, … , 𝑥𝑝) ∈ 𝑅𝑝 is represented by the expansion 

 

𝑠(𝑋) = ∑ 𝑐(𝑘)𝜑(𝑋 − 𝑘)𝑘∈𝑍𝑝  (1) 
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where, 𝑐(𝑘) are the B-spline coefficients. The basis functions in (1) are the integer shifts of the separable B-

spline 𝜑(𝑋), which is a tensor product of the univariate B-splines of degree n: 

 

𝜑(𝑋) = 𝛽𝑛(𝑥1) … 𝛽𝑛(𝑥𝑝) (2) 

 

From the fold convolution of the box function, we can obtain the univariate B-splines. Their closed form 

expression is: 

 

𝛽𝑛(𝑥) =
∆𝑛+1𝑥+

𝑛

𝑛!
 (3) 

 

where, 𝑥+
𝑛 = max {0, 𝑥}𝑛 is the one-sided power function and ∆𝑛+1 is the (𝑛 + 1) iteration of the central 

finite difference operator ∆𝑓(𝑥) = 𝑓 (𝑥 +
1

2
) − 𝑓(𝑥 −

1

2
). For a multidimensional image array 𝑓(𝑖), 𝑖 ∈ 𝑍𝑝, 

the basic interpolation problem is to determine the coefficients c(k) in (1) such that the spline 𝑆(𝑋) fits the 

pixel values exactly: 𝑆(𝑋)|𝑥=𝑖 = 𝑓(𝑖), 𝑖 ∈  𝑍𝑝. By applying this constraint and resampling (1) at the integers 

we get: 

 

𝑓(𝑖) = ∑ 𝑐(𝑘)𝜑(𝑖 − 𝑘).𝑘∈𝑍𝑝  (4) 

 

Since (4) has the form of discrete convolution, we can determine the 𝑐(𝑘) values by deconvolving the 

equation. In this study, experimental results showed that cubic spline interpolation proved to have higher 

accuracy than many interpolation methods such as linear, cubic and Hermite-splines. 

 

3.6.  Interpolated slice binarization 

After applying interpolation on the input distance images of the tumor slices, the resulting 

interpolated distance images must be converted to binary images so that the gap slices can be inserted 

accurately. That was simply done be assigning all the zero and positive values to one (representing the tumor 

area) and zero to all the negative values (representing the background). By analyzing the results of  

shape-based interpolation, it was found that the interpolated image is always smaller than the ground truth 

image (i.e., the majority of error is produced as false negative pixels). This happens due to assigning all the 

interpolated negative values as background pixels, even if their value is very small. To overcome this 

drawback, we added a thresholding step to approximate the negative values so that they are not considered as 

background. The threshold was selected upon experimental trials. This modification improved the accuracy 

of the original method for all the used dataset images. 

 

3.7.  Visualization  

After interpolating all the intermediate slices for the whole tumor images, the original and 

interpolated slices are stacked to form a 3D volume. Then, Isosurface is extracted and displayed in a  

3-dimensional view. Figure 4 shows the visualized brain tumor before slices interpolation, while Figure 5 

shows the visualized tumor using slices interpolation. It is noticed that the details of the tumor shape are 

displayed clearly after applying the proposed method. 

 

 

 
 

Figure 4. Displayed tumor volume without interpolation 
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Figure 5. The displayed interpolated tumor volume 

 

 

4. RESULTS AND DISCUSSION 

Data from the Internet brain segmentation repository (IBSR) was used in this study [37] which is 

provided by the Center for Morphometric Analysis at Massachusetts General Hospital. The data consists of 

multiple brain MRI scans for a patient with a tumor taken at roughly 6-month intervals over three and a half 

years. The algorithm was implemented using MATLAB® R2017b. Table 1 demonstrates the properties of 

the used MRI images series. 

As the provided data does not contain ground truth values, the system accuracy was calculated by 

removing an original slice from the MRI images, then interpolating it. The interpolated image was then 

compared with the original removed image and the percent error was computed as (5): 

 

𝛿 =
|𝑂𝐴−𝐼𝐴|

𝑂𝐴
× 100 (5) 

 

where, OA is the area of the object cross section in the removed slice and IA is the area of the object cross 

section in the interpolated slice. We compared our method with the original shape-based interpolation 

proposed by Raya and Udupa [33] and with Hermite interpolation used in [2]. 

The results are summarized in Tables 2 to 5. The results represent the accuracy percentage for each 

slice which is computed as 100 − 𝛿, where 𝛿 is the error percentage mentioned in (5). The first and last 

slices were excluded from the computations because for reliable interpolation results, the query points should 

lie in between the control points [33].  

 

 

Table 1. Properties of the used MRI images series 
Series no. No. of slices with tumor Slice Spacing (mm) In-plane Resolution 

126_10 17 3 1.015625 

126_13 16 2.5 1.015625 

126_21 17 2.5 0.937500 

126_26 17 0 0.937500 

 

 

Table 2. Accuracy percentage for each interpolated slice for series 126_10 of IBSR dataset 
Slice no. Original shape-based Hermite interp. Modified shape-based interp. 

2 83.8 88.2 92.1 

3 84.0 91.2 92.7 

4 85.8 86.6 91.6 

5 86.3 88.3 91.9 

6 90.0 92.4 95.0 

7 87.9 91.5 93.4 

8 90.8 92.2 94.6 

9 86.6 89.2 94.5 

10 88.1 91.1 93.9 

11 88.4 91.3 95.7 

12 88.2 89.6 94.8 

13 86.6 88.0 92.0 

14 85.5 90.4 93.6 

15 83.9 91.1 94.9 

16 83.5 92.7 95.2 
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Table 3. Accuracy percentage for each interpolated slice for series 126_13 of IBSR dataset 
Slice no. Original shape-based Hermite interp. Modified shape-based interp. 

2 79.2 81.4 86.7 

3 80.1 90.6 91.6 

4 81.3 88.0 92.3 

5 86.5 92.1 94.1 

6 87.0 92.1 94.3 

7 88.7 92.1 94.6 

8 88.8 94.9 96.0 

9 87.7 91.0 95.8 

10 88.7 95.0 96.1 

11 88.6 90.7 94.7 

12 89.7 94.8 96.8 

13 87.6 89.8 92.9 

14 81.4 83.2 90.0 

15 79.1 84.6 89.9 

mean ±variance 85.31±16.53 90.02±18.50 93.27±8.382 

 

 

Table 4. Accuracy percentage for each interpolated slice for series 126_21 of IBSR dataset 
Slice no. Original shape-based Hermite interp. Modified shape-based interp. 

2 83.3 87.6 92.4 

3 83.0 85.5 91.6 

4 84.7 87.6 92.1 

5 86.3 91.9 92.6 

6 92.3 94.5 96.0 

7 92.8 96.2 97.1 

8 90.9 93.9 96.2 

9 92.4 93.0 95.9 

10 89.6 90.5 93.8 

11 90.0 89.5 92.8 

12 91.7 95.6 97.4 

13 88.6 88.9 95.9 

14 92.1 95.9 97.0 

15 89.2 91.5 93.9 

16 81.7 85.8 89.7 

mean ±variance 88.57±14.556 91.19±13.19 94.29±5.629 

 

 

Table 5 Accuracy percentage for each interpolated slice for series 126_26 of IBSR dataset 
Slice no. Original shape-based Hermite interp. Modified shape-based interp. 

2 83.4 88.9 92.2 

3 89.4 90.7 93.9 

4 90.4 91.4 94.5 

5 91.3 92.0 95.6 

6 89.8 92.3 95.8 

7 89.6 93.7 95.6 

8 87.9 91.4 94.9 

9 92.9 94.2 97.1 

10 93.0 95.2 97.7 

11 92.2 93.8 96.7 

12 92.8 93.6 96.1 

13 90.5 93.4 95.8 

14 91.4 93.2 95.9 

15 90.6 93.1 96.3 

16 85.7 89.9 92.7 

mean ±variance 90.06±7.248 92.45±2.987 95.38±2.33 

 

 

The final accuracy of the interpolated tumor volume is expected to be higher than the accuracy of 

the previous results. As when removing an original slice, the distance between the given slices (i.e., control 

points) is doubled, which will eventually decrease the interpolation accuracy. It was also noticed in Figure 6 

that the error pixels are distributed evenly around the tumor boundary, Figure 6(a) the original tumor image, 

Figure 6(b) the interpolated tumor image, and Figure 6(c) the difference between A and B, green pixels 

represent the false positives and red pixels represent the false negatives. We used the structural similarity 

index (SSIM) to compare the interpolated and the original images. SSIM tells how much one image is 

structurally similar to the other [38], [39]. Values between 98% and 99% were gained. This shows that the 

interpolated tumor preserved its original shape and curvature areas, which will not affect the medical analysis 

of the system output. Since no automatic method has yet been proved to be reliable for usage as ground truth, 
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human expertise is still needed to confirm the efficiency of the automatic methods [40]. We contacted some 

experts in the Neurosurgical department of Ain Shams University, and they approved the reliability and 

efficiency of the reconstructed tumor images. 

 

 

   
(a) (b) (c) 

 

Figure 6. Difference between original and interpolated tumor images, (a) the original tumor image,  

(b) the interpolated tumor image, and (c) the difference between a and b, green pixels represent the false 

positives and red pixels represent the false negatives 

 

 

5. CONCLUSION 

Brain tumor visualization can efficiently help in treatment planning and resection assessment of 

brain cancer. Having accurate information about the shape and size of the tumor will increase the chances of 

total resection, which will eventually increase the mean survival period of the patient. Many attempts have 

been done for brain tumor visualization using different methods such as alpha-shapes, marching cubes, point-

based methods, and interpolation-based methods. 

In this paper, we presented a modified shape-based interpolation method for 3D reconstruction of 

brain tumors using a group of parallel MRI image slices. The tumor was first segmented from each brain 

slice using the WMEM algorithm, then the gap area was computed using our method. The final 3D shape of 

tumor was then displayed using isosurface function. The accuracy of the system was calculated by removing 

an original slice from the series and interpolating it, then comparing both images. An average accuracy of 

94.1% was gained when comparing the images pixel by pixel, while the average SSIM was 98.5% which 

reveals that the proposed method preserves the structural shape of the interpolated slices. 
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