6 research outputs found

    De la neurochirurgie guidée par l'image,<br />au processus neurochirurgical assisté par la connaissance et l'information

    No full text
    La totalité des services français de neurochirurgie est aujourd'hui équipée de systèmes de neuronavigation. Ces systèmes de chirurgie guidée par l'image permettent le lien direct entre le patient, en salle d'opération, et ses images pré opératoires ; c'est-à-dire que le neurochirurgien, en salle d'opération et à tout instant, connaît, à partir d'un point désigné sur le patient par un outil, le point correspondant dans ses images d'IRM ou de Scanner X. Ceci est possible grâce à des localisateurs tridimensionnels et des logiciels de recalage d'images. Les bénéfices de tels systèmes pour le patient ont déjà été montrés. Ils rendent notamment la chirurgie plus sûre et moins invasive.Il est important de considérer le concept de chirurgie guidée par l'image comme un processus qui ne se réduit pas à la seule étape de réalisation du geste chirurgical. Depuis près d'une dizaine d'années, il existe un consensus sur l'importance de l'étape de préparation pour anticiper la réalisation du geste. Ce processus peut aussi inclure des étapes de choix de la stratégie chirurgicale, de simulation ou de répétition du geste et de suivi post opératoire du patient. Chaque étape de ce processus se fonde sur des observations liées au patient, comme ses images pré opératoires, sur des connaissances génériques explicites, comme des livres ou des atlas numériques d'anatomie, et sur des connaissances implicites résultant de l'expérience du chirurgien. Malgré cela, dans les systèmes actuels de chirurgie guidée par l'image, la seule information explicite utilisée est, le plus souvent, réduite à une simple imagerie anatomique. Alors que si l'on introduisait dans ces systèmes les images multimodales du patient, on prendrait mieux en compte la complexité anatomique, physiologique et métabolique des structures cérébrales. Sans compter que dans ces systèmes, la préparation de la procédure chirurgicale se réduit principalement à la définition de la cible et d'une trajectoire d'accès rectiligne. Si l'on considérait la procédure comme une succession d'étapes et d'actions, on permettrait au neurochirurgien de mieux préparer et, donc, de mieux réaliser son geste. Son savoir-faire implicite pourrait être explicité. Enfin, ces systèmes ne tiennent pas compte des déformations anatomiques intra opératoires dues, notamment, au geste chirurgical. Ainsi, les images pré opératoires du patient deviennent rapidement obsolètes et ne correspondent plus à la réalité anatomique du patient.Il existe donc un fossé entre la chirurgie telle qu'elle est vue par ces systèmes et la réalité chirurgicale. C'est ce fossé que je cherche à combler.Mes travaux de recherche se situent dans le domaine du génie biologique et médical. Ils incluent des aspects liés au traitement d'images et à l'informatique médicale. Le domaine d'application est la neurochirurgie. Les méthodes mises en oeuvre dans les travaux que je présenterai s'appuient sur un concept de coopération entre observations et connaissances. Ainsi, sur l'aspect observations, je présenterai l'introduction d'images multimodales du patient, dans le processus chirurgical, qu'elles soient pré ou intra opératoires. Sur l'aspect connaissances, je présenterai une démarche qui permet de formaliser certaines connaissances relatives à la neurochirurgie.La méthodologie de recherche que j'ai utilisée suit une approche itérative, où l'application clinique est centrale. A partir des connaissances médicales, les spécifications d'un nouveau projet sont définies. Ces spécifications entraînent le développement de nouvelles méthodes et leur implémentation par le biais d'un prototype d'application. Ce prototype permet, grâce àune utilisation pré clinique, d'évaluer ces méthodes. Cette implémentation et cette phase d'utilisation autorisent aussi un retour vers la méthode, pour vérifier la pertinence des choix réalisés et pour contribuer à son amélioration. Enfin, cette boucle permet une validation des connaissances initiales et un possible enrichissement de celles-ci. Les objectifs de mes recherches sont donc, à la fois, l'élaboration de nouveaux systèmes d'intérêt thérapeutique et la génération de nouvelles connaissances chirurgicales.Ce document aborde trois domaines principaux : la neurochirurgie guidée par l'image, la neurochirurgie guidée par l'information et la validation des outils de traitement d'images médicales en chirurgie guidée par l'image. Pour chacun de ces domaines, je présenterai le contexte et l'état de l'art, les contributions personnelles apportées au domaine et ses perspectives d'évolution.Dans le premier chapitre, je présenterai comment l'imagerie médicale peut assister la chirurgie. Pour cela, j'introduirai les méthodes de traitement d'images, plus particulièrement le recalage et la fusion d'images médicales. Ces dernières sont incontournables en neurochirurgie guidée par l'image, le principe même de ce type de chirurgie étant cette mise en correspondance géométrique entre repère des images et repère du patient. Puis, je présenterai le principe du processus chirurgical assisté par l'image, en décrivant les différentes étapes mises en jeu dans un tel processus. Je présenterai mes contributions : 1) l'introduction du concept de neuronavigation multimodale et multi informationnelle, et 2) l'introduction du concept de virtualité augmentée, en complément aux approches de réalité augmentée.Dans le deuxième chapitre, je présenterai le concept récent de chirurgie guidée par l'information, qui s'appuie sur une formalisation du processus chirurgical et des connaissances associées. Nous verrons que ce processus peut être étudié selon différents angles, chaque angle d'étude correspondant à un objectif applicatif précis. Je présenterai une méthodologie complète permettant supervision et apprentissage par : 1) la prise en compte, dans le processus de chirurgie guidée par l'image multimodale, de certaines connaissances implicites du chirurgien, notamment liées à son expertise chirurgicale, en les rendant explicites, et 2) la génération de connaissances sur la chirurgie.Les deux premiers chapitres démontrent comment il peut être intéressant de faire coopérer images et connaissances. Dans le troisième chapitre, nous proposerons d'appliquer ce concept de coopération entre observations et connaissances au contexte des déformations anatomiques intra opératoires. Nous montrerons la complexité de ce phénomène, et de ses causes, et les limites des méthodes présentées dans la littérature. Nous décrirons succinctement comment ce concept pourra être appliqué dans le cadre d'un projet de recherche qui débute.Dans le quatrième chapitre, j'insisterai sur l'importance de la validation des outils de traitement d'images en chirurgie guidée par l'image. J'introduirai la terminologie et la méthodologie liées à la validation principalement technique des outils de traitement d'images, en soulignant le besoin de standardisation. Je présenterai mes contributions au domaine : la définition d'une méthodologie standardisée pour la validation des méthodes de recalage d'images médicales, basée sur la comparaison avec une référence.Je terminerai, dans le cinquième chapitre, par une ébauche de description des évolutions à court et à long terme de la chirurgie, s'inspirant des réflexions et résultats des chapitres précédents

    Experimental and Model-based Approaches to Directional Thalamic Deep Brain Stimulation

    Get PDF
    University of Minnesota Ph.D. dissertation. September 2016. Major: Biomedical Engineering. Advisor: Matthew Johnson. 1 computer file (PDF); xii, 181 pages.Deep brain stimulation (DBS) is an effective surgical procedure for the treatment of several brain disorders. However, the clinical successes of DBS hinges on several factors. Here, we describe the development of tools and methodologies in the context of thalamic DBS for essential tremor (ET) to address three key challenges: 1) accurate localization of nuclei and fiber pathways for stimulation, 2) model-based programming of high-density DBS electrode arrays (DBSA) and 3) in vivo assessment of computational DBS model predictions. We approached the first challenge through a multimodal imaging approach, utilizing high-field (7T) susceptibility-weighted imaging and diffusion-weighted imaging data. A nonlinear image deformation algorithm was used in conjunction with probabilistic fiber tractography to segment individual thalamic sub-nuclei and reconstruct their afferent fiber pathways. We addressed the second challenge by developing subject-specific computational model-based algorithms built on maximizing population activating function values within a target region using convex optimization principles. The algorithms converged within seconds and only required as many finite-element simulations as the number of electrodes on the DBSA being modeled. For the third challenge, we recorded (in two non-human primates) unit-spike data from neurons in the vicinity of chronically implanted thalamic DBSAs before, during and after high-frequency stimulation. A novel entropy-based method was developed to quantify the degree and significance of stimulation-induced changes in neuronal firing pattern. Results indicated that neurons modulated by thalamic DBS were distributed and not confined to the immediate proximity of the active electrode. For those that were modulated by DBS, their responses increasingly shifted from firing rate modulation to firing pattern modulation with increased stimulation amplitude. Additionally, strong low-pass filtering effect was observed where <4% of DBS pulses produced phase-locked spikes in cells exhibiting significant excitatory firing pattern modulation. Finally, we quantified the spatial distribution of neurons modulated by DBS by developing a novel spherical statistical framework for analysis. Together, these tools and methodologies are poised to improve our understanding of DBS mechanisms and improve the efficacy and efficiency of DBS therapy
    corecore