
   

 

 

 

 

 

 

Experimental and Model-based Approaches to Directional Thalamic Deep Brain 

Stimulation 

 

 

 

 

A DISSERTATION 

SUBMITTED TO THE FACULTY OF  

UNIVERSITY OF MINNESOTA 

BY 

 

 

 

 

YiZi Xiao 

 

 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF  

Doctor of Philosophy 

 

 

 

Matthew D. Johnson 

 

 
 
 

September, 2016 

 

 

 

 

 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© YiZi Xiao 2016 

ALL RIGHTS RESERVED 



   i 

 

 

 

 

 

Acknowledgements 
 

 

I am grateful to all who have given me knowledge, confidence, opportunities and 

motivation.  

 

 



   ii 

 

 

 

 

 

Dedication 
 

 

To my wife, who shared a tiny apartment with me and picked me up after work every 

day.  

 



   iii 

 

 

 

 

 

Contents 

Acknowledgements .............................................................................................................. i 

Dedication ........................................................................................................................... ii 
List of Tables .................................................................................................................... vii 

List of Figures .................................................................................................................. viii 
List of Abbreviations .......................................................................................................... x 
Chapter 1 Introduction ........................................................................................................ 1 

1.1 Background ......................................................................................................... 2 
1.2 The Motor Thalamus its Connections with the Motor System ........................... 7 

1.2.1 Anatomy of the Motor Thalamus and its Nomenclature ................................ 7 

1.2.2 Cortical-Basal Ganglia-Thalamocortical Circuit ............................................ 8 
1.2.3 Thalamic Connections with the Cerebellum, Spinal Cord and Cortex ......... 13 

1.2.4 Thalamic Reticular Nucleus and Thalamic Interneurons.............................. 15 

1.2.5 Electrophysiological Properties of the Motor and Sensory thalamus ........... 17 

1.3 Mechanisms of DBS for Essential Tremor ....................................................... 18 
1.4 Challenges and Opportunities for Thalamic DBS ............................................ 21 

1.4.1 Lead Placement for Effective Therapy ......................................................... 21 
1.4.2 DBS Programming ........................................................................................ 22 
1.4.3 Validation of Computational Models of DBS .............................................. 24 

1.4.4 Opportunities and Emerging Technologies in DBS...................................... 24 
Chapter 2 Multimodal Imaging of Thalamic Nuclei......................................................... 28 

2.1 Overview ........................................................................................................... 28 
2.1.1 Objective ....................................................................................................... 28 
2.1.2 Approach ....................................................................................................... 29 
2.1.3 Main Results ................................................................................................. 29 

2.1.4 Significance................................................................................................... 29 
2.2 Background ....................................................................................................... 29 
2.3 Methods............................................................................................................. 31 

2.3.1 Data Acquisition ........................................................................................... 31 
2.3.2 Atlas Registration.......................................................................................... 33 
2.3.3 Diffusion Tensor Imaging ............................................................................. 35 
2.3.4 Evaluation of Atlas Warping and Diffusion Tensor Imaging ....................... 36 
2.3.4.1 Electrophysiological Mapping ...................................................................... 36 



   iv 

 

2.3.4.2 Blockface Tissue Sectioning ......................................................................... 37 
2.4 Results ............................................................................................................... 37 

2.4.1 Visualization of Thalamus using SWI at 7T ................................................. 37 

2.4.1.1 Hypointensity in the Medial and Posterior Thalamus ........................................... 37 
2.4.1.2 Age-Dependent Normalized Image Intensity ....................................................... 39 

2.4.2 Probabilistic Tractography of Ascending Tracts to Ventral Nuclei in 

Thalamus ................................................................................................................... 40 
2.4.3 Evaluation of Nuclei Reconstructions .......................................................... 42 

2.4.3.1 Electrophysiological Microelectrode Mapping of Ventral Nuclei in Thalamus

................................................................................................................................... 42 
2.4.3.2 Tissue Sectioning-Based Identification of Hypointense Thalamic Nuclei in 

SWI ........................................................................................................................... 44 

2.5 Discussion ......................................................................................................... 45 
2.5.1 Atlas-Based Reconstructions ........................................................................ 46 

2.5.2 Susceptibility-Weighted Imaging of Thalamus ............................................ 47 
2.5.3 Cross-Validation of the Computationally Segmented Thalamic Nuclei Derived 

from SWI ...................................................................................................................... 47 
2.5.4 Demarcation of the Ventral Nuclei using Probabilistic Tractography ................. 48 

2.5.5 Electrophysiological Cross-Validation ............................................................ 48 

2.5.6 Blockface Tissue Sectioning Cross-Validation ............................................... 48 
2.5.7 Limitations ....................................................................................................... 49 

2.5.8 Applications to DBS Targeting ........................................................................ 50 
2.6 Acknowledgements ........................................................................................... 50 

Chapter 3 Programming Algorithms for Deep Brain Stimulation Electrode Arrays ........ 51 

3.1 Overview ........................................................................................................... 51 

3.1.1 Objective ....................................................................................................... 51 
3.1.2 Approach ....................................................................................................... 52 
3.1.3 Main Results ................................................................................................. 52 

3.1.4 Significance................................................................................................... 52 
3.2 Background ....................................................................................................... 52 

3.3 Methods............................................................................................................. 56 
3.3.1 Algorithm Overview ..................................................................................... 56 

3.3.2 Reconstruction of Thalmic Nuclei ................................................................ 57 
3.3.3 Finite Element Model of Stimulation through the DBSA ............................ 59 
3.3.4 Discretization of Thalamic Volumes ............................................................ 59 
3.3.5 Activating Function Values and Construction of the Max Curve ................. 61 
3.3.6 Convex Optimization .................................................................................... 62 

3.3.7 Runtime and Sampling Robustness .............................................................. 64 
3.4 Results ............................................................................................................... 64 

3.4.1 Electrode Configurations .............................................................................. 64 
3.4.2 Activating Function Values .......................................................................... 65 
3.4.3 Optimization Results ..................................................................................... 66 
3.4.4 Runtime and Sampling Robustness .............................................................. 68 

3.5 Discussion ......................................................................................................... 70 



   v 

 

3.5.1 Predicting Neuronal Activation .................................................................... 70 
3.5.2 Algorithm and Performance .......................................................................... 72 
3.5.3 Study Limitations and Future Work ............................................................. 75 

3.6 Acknowledgements ........................................................................................... 77 
Chapter 4 Spherical Statistics to Characterize the Spatial Distribution of Deep Brain 

Stimulation Effects on Neuronal Activity......................................................................... 79 
4.1 Overview ........................................................................................................... 80 

4.1.1 Objective ....................................................................................................... 80 

4.1.2 Approach ....................................................................................................... 80 
4.1.3 Main Results ................................................................................................. 80 
4.1.4 Significance................................................................................................... 81 

4.2 Background ....................................................................................................... 81 

4.3 Methods............................................................................................................. 82 
4.3.1 Directionally-Segmented DBS Lead ............................................................. 82 

4.3.2 Tissue Conductance Model ........................................................................... 84 
4.3.3 Multi-Compartment Neuron Models ............................................................ 84 

4.3.4 Stimulation Configurations and Data Representation................................... 84 
4.3.5 Spherical Statistical Hypothesis Testing and Parameter Estimation ............ 85 
4.3.6 Application of Parametric Spherical Statistical Models to Analyze Changes 

in External Stimulus Parameters ............................................................................... 90 
4.4 Results ............................................................................................................... 90 

4.4.1 Graphical Interpretation of Data Distributions ............................................. 90 
4.4.2 Spherical Statistical Testing .......................................................................... 93 
4.4.3 Fitting Activation Data to Parametric Models .............................................. 94 

4.4.4 Effect of Stimulation Amplitude on Data Distributions ............................... 97 

4.4.5 Model Distribution along the Radial Direction ............................................ 98 
4.5 Discussion ....................................................................................................... 100 

4.5.1 Utility in Quantifying the Spatial Distribution of Neuronal Activation around 

a DBS Lead ............................................................................................................. 100 
4.5.2 Types of Spatial Distributions .................................................................... 102 

4.5.3 Empirical Analysis and Statistical Testing ................................................. 103 
4.5.4 Effect of Stimulation Settings on the Parametric Model Parameters ......... 104 

4.5.5 Limitations and Considerations .................................................................. 105 
4.5.6 Applications to other Neurophysiological Recording Modalities .............. 106 

4.6 Acknowledgements ......................................................................................... 107 
Chapter 5 Spatial characterization of stimulation-induced neuronal activity around a 

chronically implanted thalamic deep brain stimulation array ......................................... 108 

5.1 Overview ......................................................................................................... 108 
5.1.1 Objective ..................................................................................................... 108 

5.1.2 Approach ..................................................................................................... 109 
5.1.3 Main Results ............................................................................................... 109 
5.1.4 Significance................................................................................................. 109 

5.2 Background ..................................................................................................... 110 
5.3 Methods........................................................................................................... 114 



   vi 

 

5.3.1 Subject......................................................................................................... 114 
5.3.2 DBS Implant Procedure .............................................................................. 114 
5.3.3 DBS Protocols ............................................................................................. 115 

5.3.4 Extracellular Recordings ............................................................................. 116 
5.3.5 Firing Pattern and Rate Analysis ................................................................ 116 
5.3.6 Effective Pulse Fraction .............................................................................. 118 
5.3.7 Stimulus artifact size as a measurement of distance ................................... 120 

5.4 Results ............................................................................................................. 121 

5.4.1 Heterogeneity of Neuronal Responses to VPLo-DBS ................................ 121 
5.4.2 Neuronal Response as a Function of Distance ............................................ 122 
5.4.3 Neuronal Response as a Function of Stimulus Amplitude ......................... 123 
Data from groups nFPM and FPM are on the top and bottom rows, respectively. 

‘Slope 1’ and ‘slope 2’ are the ................................................................................ 126 
both Group nFPM and Group FPM, shown in Fig. 42. As ..................................... 127 

5.4.4 Effective Pulse Fraction during DBS .......................................................... 128 
5.5 Discussion ....................................................................................................... 128 

5.5.1 Heterogeneity of Neuronal Responses to VPLo-DBS ................................ 129 
5.5.2 Entropy-Based Method to Quantify Changes in PSTH .............................. 132 
5.5.3 Neuronal Response as a Function of Distance ............................................ 132 

5.5.4 Neuronal Response as a Function of Stimulus Amplitude ......................... 134 
5.5.5 Fidelity of Entrainment of Neuronal Activity During DBS........................ 135 

5.6 Acknowledgements ......................................................................................... 138 
Chapter 6 Conclusions and Future Directions ................................................................ 139 

6.1 Summary of Findings ...................................................................................... 139 

6.2 Future Directions ............................................................................................ 144 

6.2.1 Development of DBS Programming Algorithms and Their Translation to the 

Clinic 144 
6.2.2 Studying the Effects of Directional Stimulation ......................................... 146 

6.2.3 Development of Realistic Computational Models of DBS ......................... 147 
6.2.4 Development of a Tremor Model of VPLo DBS ........................................ 150 

References ....................................................................................................................... 152 
 

 



   vii 

 

 

 

 

 

List of Tables 
 

 

TABLE 1. COMPARISON OF NOMENCLATURE ON THE DIVISIONS OF THE MOTOR THALAMUS IN 

BOTH MONKEYS AND HUMANS FROM VARIOUS RESEARCHERS ..................................... 7 

TABLE 2. SUBJECT CHARACTERISTICS AND IMAGING PROTOCOLS ...................................... 32 

TABLE 3. AGE-RELATED INTENSITY CORRELATIONS .......................................................... 40 

TABLE 4. NORMALIZED SWI INTENSITY VALUES ............................................................... 40 

TABLE 5. VOLUME DISCRETIZATION DATA ......................................................................... 60 

TABLE 6. ACTIVATING FUNCTION VALUES ......................................................................... 62 

TABLE 7. PROBABILITY OF ALGORITHMS PERFORMING BETTER THAN RANDOMLY 

GENERATED RESULTS ................................................................................................. 67 

TABLE 8. SUMMARY OF MODEL INFORMATION ................................................................... 85 

TABLE 9. CATEGORIZATION OF PARAMETRIC DISTRIBUTIONS BASED ON NORMALIZED 

EIGENVALUES OF THE ORIENTATION MATRIX ............................................................. 88 

TABLE 10. HYPOTHESIS TESTING ON THE SHAPE OF MODEL DISTRIBUTIONS ....................... 93 

TABLE 11. KENT DISTRIBUTION PARAMETERS FOR MODELS 1,2 AND 2*............................. 95 

TABLE 12. THE PERCENTAGE DECREASE IN PSTH ENTROPY AS A FUNCTION OF STIMULUS 

AMPLITUDE WITHIN GROUP NFPM AND GROUP FPM .............................................. 124 

TABLE 13. MEAN AND STANDARD DEVIATION OF THE AVERAGE RATE OF INCREASE IN PSTH 

BETWEEN STIMULATION AMPLITUDES ...................................................................... 128 

 



   viii 

 

 

 

 

 

List of Figures 
 

 
FIGURE 1. SCHEMATIC OF AN IMPLANTABLE DBS SYSTEM .............................................................................. 4 
FIGURE 2. THE MOTOR AND SENSORY THALAMUS AND SURROUNDING STRUCTURES ....................................... 9 
FIGURE 3. FUNCTIONAL CONNECTIVITY IN THE CORTICO-BASAL GANGLIA-THALAMOCOTRICAL NETWORK .. 11 
FIGURE 4. THE MOTOR AND SENSORY THALAMUS AND THEIR AFFERENT AND EFFERENT CONNECTIONS ........ 14 
FIGURE 5. THE RETICULAR NUCLEUS OF THALAMUS AND ITS AFFERENT AND EFFERENT PROJECTIONS .......... 16 
FIGURE 6. BRAIN ATLAS REGISTRATION AND WARPING PROCESS TO SWI FROM SUBJECT 3 ........................... 33 
FIGURE 7. SWI OF CORONAL SLICES THROUGH THALAMUS IN SUBJECT 2 ...................................................... 38 
FIGURE 8. AGE-RELATED CHANGES IN THALAMIC IMAGE INTENSITY WITH SWI ............................................ 41 
FIGURE 9. ASCENDING FIBER TRACTOGRAPHY TO THE VENTRAL NUCLEI OF THALAMUS IN THREE SUBJECTS. 42 
FIGURE 10. SUPERPOSITION OF MICROELECTRODE RECORDINGS WITH RECONSTRUCTED THALAMIC NUCLEI 

AND PROBABILISTIC TRACTOGRAPHY (SUBJECT 4) ................................................................................ 43 
FIGURE 11. RELATIONSHIP BETWEEN HYPOINTENSITY IN THE IN VIVO SWI AND EX VIVO BLOCKFACE 

SECTIONED THALAMIC NUCLEI IN THE SAME NON-HUMAN PRIMATES (SUBJECTS 5 AND 6) ................... 44 
FIGURE 12. SUBJECT-SPECIFIC RECONSTRUCTIONS OF THALAMIC NUCLEI FOR DBS TARGETING ................... 45 
FIGURE 13. THREE-DIMENSIONAL THALAMIC NUCLEI RECONSTRUCTIONS ..................................................... 54 
FIGURE 14. PROCEDURAL FLOWCHART FOR OPTIMIZATION ALGORITHM ........................................................ 57 
FIGURE 15. DISCRETIZATION OF THALAMIC VOLUMES ................................................................................... 58 
FIGURE 16. ALGORITHM-GENERATED ELECTRODE CONFIGURATIONS FOR THE THALAMIC EFFERENT PATHWAY 

APPROXIMATIONS ................................................................................................................................. 66 
FIGURE 17. ALGORITHM-GENERATED ELECTRODE CONFIGURATIONS FOR THE THALAMIC AFFERENT PATHWAY 

APPROXIMATIONS ................................................................................................................................. 68 
FIGURE 18. COMPARISON OF MAX CURVE TO SOLUTIONS OBTAINED BY MD, QP, AND LP FOR EFFERENT AND 

AFFERENT DATA ................................................................................................................................... 69 
FIGURE 19. ACTIVATING FUNCTION VALUES RESULTING FROM DBSA STIMULATION USING ALGORITHM-

GENERATED ELECTRODE CONFIGURATIONS .......................................................................................... 71 
FIGURE 20. PERFORMANCE OF ALGORITHM GENERATED RESULTS AGAINST RANDOMLY GENERATED 

ELECTRODE CONFIGURATIONS .............................................................................................................. 73 
FIGURE 21. COMPARISON OF RUNTIME AND SAMPLING ROBUSTNESS FOR MD, QP, AND LP ALGORITHMS .... 76 
FIGURE 22. COMPUTATIONAL MODEL OF NEURONAL ACTIVATION BY STIMULATION THROUGH A 

DIRECTIONALLY-SEGMENTED DBS ELECTRODE ARRAY ....................................................................... 83 
FIGURE 23. SPHERICAL STATISTICS WORKFLOW............................................................................................. 86 
FIGURE 24. DATA REPRESENTATION IN 3D AND PROJECTION ONTO 2D .......................................................... 87 



   ix 

 

FIGURE 25. MODEL DATA REPRESENTATION IN 3D AND THEIR PROJECTIONS ONTO 2D .................................. 87 
FIGURE 26. CANONICAL DISTRIBUTIONS AND THE EMPIRICAL SHAPE PLOT .................................................... 92 
FIGURE 27. ANALYSIS OF BIMODAL DISTRIBUTION IN MODEL 3 ..................................................................... 94 
FIGURE 28. PROJECTION OF SOMAS OF ACTIVATED NEURONS IN MODELS 1 AND 2 ONTO THE UNIT SPHERE .... 95 
FIGURE 29. ANALYSIS OF THE GOODNESS OF FIT OF MODEL 2* TO THE WATSON GIRDLE DISTRIBUTION ....... 96 
FIGURE 30. ANALYSIS OF ACTIVATION PROFILES FROM SINGLE CONTACT MONOPOLAR CATHODIC 

STIMULATION USING THE KENT DISTRIBUTION ..................................................................................... 98 
FIGURE 31. ANALYSIS OF ACTIVATION PROFILES WITHIN CONCENTRIC SPHERICAL SHELLS USING THE KENT 

DISTRIBUTION ....................................................................................................................................... 99 
FIGURE 32. EQUIVALENT CIRCUIT MODEL OF THE AXON AND INJECTION OF TRANSMEMBRANE CURRENT ... 111 
FIGURE 33. VOLTAGE DISTANCE RELATIONSHIP FOR LARGE DIAMETER AXONS DURING DBS ...................... 112 
FIGURE 34. THE IN VIVO VTA ...................................................................................................................... 113 
FIGURE 35. ILLUSTRATION OF THE EXPERIMENTAL PROCEDURE .................................................................. 115 
FIGURE 36. EXAMPLES OF PSTH ENTROPY .................................................................................................. 119 
FIGURE 37. EXAMPLE PSTHS OF THE VARIOUS TYPES OF NEURONAL RESPONSES TO VPLO-DBS ............... 121 
FIGURE 38. THE PERCENTAGE COMPOSITION OF RECORDINGS BY TYPE OF RESPONSE .................................. 122 
FIGURE 39. CHANGE IN PSTH ENTROPY VS. STIMULUS ARTIFACT................................................................ 123 
FIGURE 40. SPATIAL DISTRIBUTION OF RECORDINGS GROUPED BY THEIR RESPONSE TO DBS ...................... 125 
FIGURE 41. THE PERCENTAGE DECREASE IN PSTH ENTROPY AS A FUNCTION OF STIMULUS AMPLITUDE 

WITHIN GROUP FPM AND GROUP NFPM ............................................................................................ 126 
FIGURE 42. THE RATE OF INCREASE IN THE AVERAGE CHANGE IN PSTH ENTROPY AS A FUNCTION OF THE 

CHANGE IN STIMULUS AMPLITUDE ...................................................................................................... 126 
FIGURE 43. AVERAGE RATE OF CHANGE IN PSTH ENTROPY AS A FUNCTION OF STIMULATION AMPLITUDE . 129 
FIGURE 44. LIKELIHOOD OF FIRING PATTERN MODULATION AT VARIOUS STIMULATION AMPLITUDES ......... 130 
FIGURE 45. EXCITATORY EFFECTIVE PULSE FRACTION (EEPF) IN RELATION TO STRENGTH OF MODULATION 

UNDER DBS AND DISTANCE AWAY FROM THE STIMULATING ELECTRODE .......................................... 131 
FIGURE 46. EXAMPLES OF ACTIVATING FUNCTION MAPS ............................................................................. 136 
 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/Filippo/Desktop/Lab_Local/Dissertation/Dissertation_Full/JX_Dissertation_v3.9.doc%23_Toc457843297


   x 

 

 

 

 

 

List of Abbreviations 
 

 

AC                     Anterior commissure 

AChE                Acetylocholinesterase 

AF       Activating function 

ANN       Artificial neural network 

ANOVA      Analysis of variance 

APul       Anterior pulvinar 

ATP       Adenosine triphosphate  

Bsc       Brachium of the superior colliculus 

CL                  Central lateral nucleus of thalamus  

CM                  Centre median nucleus of thalamus  

COM     Center of mass 

CT      Corticothalamic 

CTC      Cerebellothalamocortical  

CTT      Cerebellothalamic tract 

DBS      Deep brain stimulation  

DBSA      Directionally segmented DBS array 

DTI      Diffusion tensor imaging 

DWI      Diffusion-weighted imaging 

EAP      Equal-area projection 

eEPF      Excitatory effective pulse fraction 

EPF      Effective pulse fraction 

ET      Essential tremor 

FEM      Finite-element model 

FOV      Field of view 

FPM      Firing pattern modulation 

FRM      Firing rate modulation 

GABA     Gamma-Aminobutyric acid 

GOF      Goodness of fit 

GP      Globus pallidus 

GPe      Globus pallidus externa 

GPi      Globus pallidus interna 



   xi 

 

H      Entropy 

IC      Internal capsule  

iEPF      Inhibitory effective pulse fraction  

ION      Inferior olivary nucleus 

IPG      Implantable pulse generator 

LP      Linear programming 

Lpo      Nucleus lateropolaris of thalamus  

MD      Maximum deviation 

MGN      Medial geniculate nucleus 

ML      Medial lemniscus 

MLS      Moving-least-squares 

MPTP      1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

MR      Magnetic resonance 

MRI      Magnetic resonance imaging  

M1      Primary motor cortex 

NHP      Non-human primate 

PBS      Phosphate buffered saline 

PC      Posterior commissure 

PD      Parkinson’s disease 

PF      Pallidofugal 

PO      Nucleus posterior oralis of thalamus  

PPN      Pedunculopontine nucleus 

PSA      Posterior subthalamic area 

PSO      Particle swarm optimization 

PSTH      Peri-stimulus time histogram 

QP      Quadratic programming 

rDBSA     Radially-segmented DBS array 

RF     Radio frequency 

SCP      Superior cerebellar peduncle 

SMA      Supplementary motor area 

SNr      Substantia nigra pars reticulata 

STN      Subthalamic nucleus  

SWI      Susceptibility-weighted imaging 

TC      Thalamocortical 

TCT      Thalamocortical tract 

TIN      Thalamic interneuron 

TRN      Thalamic reticular nucleus 

VA      Nucleus ventralis anterior of thalamus  

Vce      Nucleus ventralis caudalis externus of thalamus  

Vim      Ventral intermediate nucleus of thalamus 

VL      Nucleus ventralis lateralis of thalamus  

VLc      Nucleus ventralis lateralis pars caudalis of thalamus 

VLo      Nucleus ventralis lateralis pars oralis of thalamus 



   xii 

 

VLps      Nucleus ventralis lateralis pars postrema of 

thalamus 

Vo      Nucleus ventrooralis of thalamus 

Vop      Nucleus ventralis oralis posterior of thalamus 

VPI      Nucleus ventroposterior inferior of thalamus 

VPL      Ventral posterolateral nucleus of thalamus 

VPLc      Caudal ventral posterior lateral nucleus of thalamus 

VPLo      Oral ventral posterior lateral nucleus of thalamus 

VTA      Volume of tissue activated 



   1 

 

 

 

 

 

Chapter 1  

 

Introduction  
 

 

 Chapter 1 introduces the background and goals pursued in this thesis.  

 

 Chapter 2 describes a multimodal imaging approach to locate thalamic targets for 

deep brain stimulation.  

 Chapter 3 describes an efficient computational algorithm to program high-density 

deep brain stimulation electrode arrays.  

 Chapter 4 introduces a spherical statistical framework to quantify the spatial 

profile of neurons activated by deep brain stimulation.  

 Chapter 5 discusses the spatial characterization of stimulation-induced neuronal 

activity around chronically implanted thalamic deep brain stimulation electrode 

arrays. 

 Chapter 6 presents a final discussion of the analyses presented in the thesis.  
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1.1  Background  

1.1.1 History of Essential Tremor  

Essential tremor (ET) is the most prevalent adult movement disorder [1] and one of the 

most common adult neurological disorders [2], [3], [4], as much as 20 times more 

prevalent than Parksinson’s Disease (PD) [5]. The disorder affects 4% of all adults over 

the age of 40 [6], and to a lesser extent children and young adults [7].  The tremor 

manifests as involuntary movements in the 4 – 12Hz range, which decreases in frequency 

but increases in amplitude over time [8].  The location and amplitude of tremor is 

variable among ET patients: kinetic and/or postural tremor is found predominantly in the 

upper extremities (90% of all cases), followed by the head (30%), voice (20%), jaw/face 

(10%) and lower extremities (10%) [9]. At least 50% of patients also have tandem 

abnormalities in gait [10]. These symptoms of ET compromises the quality of life of 

affected patients and affect their capability to work [11]. ET is also associated with a 

higher incidence (compared to healthy controls) of ‘non-motor’ symptoms that include 

mild cognitive changes, depression, anxiety, etc [12]. First-degree relatives of ET patients 

are five times more likely to develop ET compared to control subjects [13]. A family 

history of ET also appears to be correlated with younger reported age of tremor onset 

[14].  

  The exact pathogenesis of ET currently remains unresolved. Evidence supports the 

cerebellar involvement in ET including the discovery of axonal swellings (‘torpedoes’) in 

the Purkinje cells of some patients [15]. There is also evidence of greater loss of Purkinje 

cells in the cerebellum of ET patients compared to healthy controls [16]. Lesions in the 

Guillian-Mollaret Triangle (dentate, globose and emboliform nuclei, contralateral red 

nucleus, contralateral inferior olive, and their interconnecting fiber tracts) are known to 

cause a variety of action tremors [17].  In particular, the inferior olivary nucleus (ION) in 

conjunction with the cerebellum are hypothesized to produce ET. The ION and the 
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cerebellum have reciprocal connections. Climbing fibers originating from the ION make 

excitatory synapses onto the dendritic trees of Purkinje cells in the contralateral 

cerebellum [18]. The dentate and interposed nuclei of the cerebellum also project to the 

contralateral ION via two pathways: 1) direct inhibitory (gamma-Aminobutyric acid, 

GABAergic) projections that synapse close to the gap junctions between the dendrites of 

olivary neurons, and 2) indirect excitatory (glutamatergic) projections through midbrain 

nuclei (including parvocellular red nucleus) [19]. The olivary neurons oscillate between 

0.5 – 12Hz and induces rhythmic activation of cerebellar Purkinje cells and nuclear cells 

[20]. Synchronous olivary activity is facilitated by gap junctions between olivary 

neurons, which is in turn mirrored in the cerebellum. Olivocerebellar oscillation is 

normally limited spatially and temporally [20], [21]. However, patients with ET have 

enhanced synchronization and 4 – 12Hz neuronal rhythmicity in their inferior olives [22]. 

This could be due to a variety of mechanisms [23], [24]: 1) altered olivary network 

properties (e.g. increased gap junctions), 2) altered excitatory/inhibitory modulation of 

the olivary network, 3) abnormal enhancement of the membrane conductances mediating 

oscillations, or a combination of these mechanisms [25], [26] [27]. This synchronous 

activity in the inferior olive may lead to widespread and sustained oscillations in the 

olivocerebellar network and produce tremor, as occurs with administration of serotonin 

precursors or harmaline [22]. Activation of inhibitory synapses from the cerebellum can 

decrease the coupling between olivary neurons and thereby reduce oscillation within the 

nucleus [19]. However, studies using ethanol and diazepam to suppress harmaline-

induced tremor have found that tremor suppression was far more pronounced than 

suppression of olivary rhythmicity [28], [29]. This finding suggests the primary 

mechanism of tremor suppression is decoupling of  the ION and its oscillatory activities 

from the rest of the motor network [30]. More importantly, the extrapolated lesson is that 

the target for effective therapy need not be the origin of tremor activity. This concept laid 

the foundation for effective treatment of ET through deep brain stimulation (DBS, Fig. 

1), a therapy that will be the focus of this dissertation.  

  As progression of ET leads to interference with daily living, pharmacological treatment 

is the first line treatment option. This treatment will not cure the disease but may alleviate  
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Figure 1. Schematic of an implantable DBS system 

The system is consisted of: 1) electrode lead, 2) wire extensions connecting the lead with the implantable 

pulse generator (IPG), 3) the IPG and 4) the patient programmer. (Figure adapted from [31]) 

 

tremor [32]. Only two medications, propranolol and primidone, have substantial evidence 

to support their efficacy in reducing symptoms [33], [34], [35]. Propranolol is a 

nonselective beta-adrenergic receptor antagonist commonly used for treatment of 

hypertension. It is the only FDA-approved medication for the treatment of ET. Primidone 

is an anticonvulsant that has been shown to reduce tremor by approximately 50% [35].  

Despite the benefits provided by these medications, approximately 30% of patients will 

not respond to either of these agents [8]. Surgical intervention is the next line treatment 

option for medication-refractory ET patients. The ventral intermediate nucleus (Vim) of 

the thalamus has been identified as a target for radio frequency (RF) lesion procedures 

(thalamotomy) in order to suppress tremor in PD, ET and cerebellar tremor [36], [37]. 

The thalamus is a relay hub with projections from the cerebellum [38] and basal ganglia 

[39], as well as extensive reciprocal and non-reciprocal connections with the cortex [40]. 

The anatomy of the thalamus and the role it plays as a target for the treatment of ET will 

be discussed in detail later in the chapter. Studies have reported that thalamotomies can 
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reduce tremor symptoms by 80% – 90% compared to baseline [41], [42], [43]. However, 

side effects caused by the procedure can occur in as many as 14% – 47% of patients, 

which include dysarthria (difficulty with speech), verbal/cognitive deficits, confusion, 

weakness, drowsiness and paralysis. These events may resolve over time, but it was 

shown in one study that hemiparesis and speech difficulties persisted in 16% of patients 

[44]. Due to the risk of adverse side effects and the irreversible nature of the procedure, 

bilateral thalamotomy is no longer used to treat ET. The surgical procedure of choice for 

treatment of ET is now DBS [45]. The advantage of DBS over thalamotomy is that it is 

reversible. Instead of doing permanent damage to the tissue, DBS delivers high frequency 

electrical stimulation via an implanted electrode array within a target region to arrest 

tremor. Parameters such as stimulation amplitude, frequency and pulse width can be 

adjusted for continued management of tremor. DBS has proven to be an effective 

treatment option for ET and other motor disorders, but challenges remain and so are 

opportunities for advancing the technology.  

 

1.1.2 History of Deep Brain Stimulation  

DBS and its efficacy in tremor suppression was first discovered during RF lesion 

surgeries [46]. Single pulses of high frequency electrical stimulation were used to 

identify the target for lesion and resulted in temporary and reversible therapeutic effects 

[47]. This observation led to the increasing adoption of electrical stimulation as a viable 

therapy for treatment of neurological disorders. For example, in 1960, stimulation 

electrodes were chronically implanted in the amygdaloid nucleus to treat schizophrenia 

[48]. In 1973, chronic stimulation of the thalamus was performed to control facial pain by 

inducing paresthesias [49]. In 1975, Bechtereva implanted 26-40 chronic stimulation 

electrodes in various brain structures and delivered bursts of 50Hz stimulation to treat 

hyperkinesia as well as phantom limb syndrome [50]. In 1987, Benabid and Siegfried 

were the first to report chronic stimulation in the Vim nucleus specifically for the 

treatment of movement disorders [51], [52] and found the procedure to produce similar 

therapeutic effects as thalamotomy [53], with the added advantage of being reversible 
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and adjustable. Subsequently, Benabid collaborated with medical devices manufacturer 

Medtronic to develop DBS as a technology for the treatment of severe, intractable tremor 

which culminated in a multicenter clinical trial and regulatory approval for the therapy 

[31]. The advent of the Medtronic Itrel I and Itrel II implantable pulse generators made 

continuous, chronic stimulation possible outside of the OR and clinic (Fig. 1). DBS of the 

globus pallidus interna (GPi) [54] and the subthalamic nucleus (STN) [55] were reported 

to improve multiple symptoms of PD. Regulatory approvals were granted for these two 

indications of PD after clinical studies in North American and Europe [56], [57]. DBS 

was also explored to treat other movement disorders such as dystonia [58], [59] and 

Tourette syndrome [60], [61], psychiatric disorders such as Obsessive Compulsive 

Disorder [62] and refractory depression [63], [64], as well as epilepsy [65], [66].   

 

1.1.3 Targets of DBS for Essential Tremor  

The Vim nucleus has traditionally been the preferred target for stereotactic thalamotomy 

and the gold standard in DBS for the treatment of ET [67]. Stimulation of the posterior 

subthalamic area (PSA, includes the cerebellothalamic tract (CTT), zona incerta, Forel 

field H2 and the prelemniscal radiation) [68] [69], [70] have also shown promise in 

treating ET. Recent studies using postoperative magnetic resonance imaging (MRI) to 

correlate electrode location with clinical effects have pointed to the PSA as the more 

effective and efficient site for stimulation [71], [72] compared to the Vim nucleus. 

However, the ‘optimal target’ for DBS to treat ET is variable among patients and not well 

established [72]. First, there are no randomized studies comparing the efficacy of 

stimulation in the Vim and PSA. Furthermore, factors including the quality of MRI, 

electrode localization using surgical atlases, variations in anatomy and heterogeneity in 

essential tremor as a clinical entity may also confound the results [72]. However, 

diffusion tractography has shown that effective DBS sites (albeit wide-ranging spatial 

coordinates) all share strong connections with the cerebellum and the ventral-lateral 

thalamus-motor cortex loop [71]. This is supported by another study which suggests that 

the dentate-thalamic fibers play a prominent role in mediating the beneficial effects of  
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Table 1. Comparison of nomenclature on the divisions of the motor thalamus in both monkeys and 

humans from various researchers 

(Table adopted from [73]) 

 

stimulation in the PSA for the treatment of ET [68]. There is considerable evidence 

implicating the cerebellothalamocortical (CTC) motor pathway in tremorgenesis [74], 

making it the focus of study in this dissertation. It is therefore important to understand the 

CTC pathway, the thalamus as the relay hub within this pathway, as well as its 

connections to the rest of the motor system.  

1.2 The Motor Thalamus its Connections with the Motor 

System 

1.2.1 Anatomy of the Motor Thalamus and its Nomenclature 

The foundation of modern parcellation of the thalamus was laid down by Hasseler, who 

based his classification scheme on cytoarchitectonic and myeloarchitectonic criteria [75]. 

Since then, a multitude of researchers have performed independent studies in both 

monkeys [76], [77], [78], [79], [80], [81] and humans [82] [83], [84], [85] and developed 

their own sometimes overlapping classification systems. Macchi et al. [73] produced a 

comprehensive summary of these systems (Table 1) and pointed the path to a common 

system of terminology whereby subdivisions of the thalamus are based on distribution of 

the major afferent fiber pathways. However, the same study did not put forth a common 
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system of terminology, and therefore the issue remains of the use of a particular 

classification scheme. We have decided to the use the Olszewski system [77] and the 

Walker system [82] to describe the thalamus in monkeys and humans respectively, 

keeping in line with terminology traditionally employed by this laboratory. The motor 

thalamus receives three major motor-related afferent pathways with separate regions of 

termination, which forms the basis for its tripartite division [73] (Fig 2). The anterior 

region receives primarily inhibitory (GABAergic) afferent fibers from the substantia 

nigra pars reticulata (SNr), possibly with some overlap with pallidal afferents [86], [87], 

[88]. In the monkey, this region consists of Olszewski’s nucleus ventralis anterior (which 

is subdivided into the parvocellular part VA and the magnocellular part VAmc) as well as 

the medial part of the nucleus ventralis lateralis (VL) – VLm. The human counterpart in 

the thalamus is Walker’s nucleus lateropolaris (Lpo). The middle region receives afferent 

inhibitory (GABAergic) fibers from the GPi [89], [80], [90], [91]. In Olszewski’s 

terminology, this corresponds to the anterior or oral sub-nucleus of the VL – pars oralis 

(VLo). The counterpart in Walker’s terminology is the nucleus ventrooralis (Vo) in the 

human. The posterior region receives afferent fibers from the cerebellar nuclei [38], [86], 

[88], [92]. This region lies in the posterior portion Olszewski’s VL, which includes an 

anteromedial sub-nucleus (Area X), a dorsal-caudal sub-nucleus (pars caudalis [VLc]), an 

extreme posterodorsal sub-nucleus (pars postrema [VLps]), and an oral ventral posterior 

lateral nucleus (VPLo). In Walker’s terminology, this area includes the Vo as well as the 

Vim. Further posterior to the cerebellar receiving area of thalamus lies a ‘non-motor’ 

region. It consists of an anterodorsal shell and a large central core which receives 

proprioceptive and cutaneous lemniscal afferents, respectively [38], [91]. This division 

however was not distinguished by either Olszewski or Walker. The entire region was 

termed caudal ventral posterior lateral nucleus (VPLc) by Olszewski and nucleus 

ventralis caudalis externus (Vce) by Walker.  

1.2.2 Cortical-Basal Ganglia-Thalamocortical Circuit 

Stimulation of Vim nucleus can often result in electrical current spreading to adjacent 

nuclei, including the Vo. This is because implantation of the DBS lead often targets the  
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Figure 2. The motor and sensory thalamus and surrounding structures 

Abbreviations are listed at the end. (A) Nissl-stained coronal section of the Rhesus Macaque monkey 

(Macaca Mulatta) brain focused on the thalamic area, with delineations of motor and sensory thalamic 

nuclei. Inset shows the entire brain slice. Boxed region in the inset is the enlarged region. Boxed region in 

the main image is magnified in B. (Figure adapted from [93]) (B) Magnified image of the boxed region in 

the main image in A. Arrows point to examples of stained neurons. (C) Nissl-stained sagittal section of the 

Rhesus Macaque monkey (Macaca Mulatta) brain focused on the thalamic area with delineations of motor 

and sensory thalamic nuclei. Inset shows the entire brain slice. (Figure adapted from [93]) Abbreviations: 

Cd – caudate nucleus, CL – central lateral nucleus of thalamus, CM – centromedian nucleus of thalamus, 

GPe – globus pallidus externa, GPi – globus pallidus interna, IC – internal capsule, MD – mediodorsal 

nucleus of thalamus, MGmc – magnocellular part of the medial geniculate nucleus, Pf – parafascicular 

nucleus of thalamus, Pla – anterior nucleus of pulvinar, Plim – medial division of the inferior nucleus of 

pulvinar, Plm – medial nucleus of pulvinar, Po – posterior nucleus of thalamus, RN – reticular nucleus of 

thalamus, STN – subthalamic nucleus, VA – nucleus ventralis anterior of thalamus, VLc – nucleus ventralis 
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lateralis pars caudalis of thalamus, VLo – nucleus ventralis lateralis pars oralis of thalamus, VLps – nucleus 

ventralis lateralis pars postrema of thalamus, VPI – nucleus ventroposterior inferior of thalamus, VPLo – 

oral ventral posterior lateral nucleus of thalamus, VPLc – caudal ventral posterior lateral nucleus of 

thalamus, VPM – ventral posterior medial nucleus of thalamus, ZI – zona incerta.  

 

border between Vim and nucleus ventralis oralis posterior (Vop, part of Walker’s Vo, 

homologue of VLo in monkeys) in order to avoid stimulating the sensory thalamus to the 

posterior [94]. Therefore it is important to understand the connections between the 

anterior portions of the motor thalamus with the rest of the motor network, which has 

been the subject of much research. The thalamus serves as a nexus between frontal 

cortical regions and the basal ganglia. Information flows from the cortex through basal 

ganglia structures to the thalamus, and back to the cortex [95]. Cortical inputs are 

received by the striatum (caudate and putamen) and then projected to the output 

structures of the GP and SNr, which is then relayed to the thalamus via two pathways: 1) 

the Direct Pathway, from the striatum to the GPi, from the GPi to the SNr and then to the 

thalamus, and 2) the Indirect Pathway, from the globus pallidus externa (GPe) to the 

STN, from the STN to the GPi, and from the GPi to the thalamus [96]. The regions of 

termination of these two pathways in the thalamus were discussed in the previous section. 

Striatal projections to both pathways are GABAergic and inhibitory. GPi/SNr projections 

to the thalamus are also GABAergic and inhibitory. The result is that activation of the 

Direct Pathway (via two inhibitory synapses) results in disinhibition of thalamic output to 

the cortex. The STN projection to the GPi is excitatory, therefore activation of the 

Indirect Pathway inhibits thalamic output to the cortex. The role of the Direct Pathway is 

to reinforce cortically driven behavior via positive feedback. The Indirect Pathway on the 

other hand modifies this behavior by inhibiting this positive feedback. It is important to 

note that the functional topography of the frontal cortex is maintained throughout the 

cortical-basal ganglia-thalamocortical loop [39] (Fig. 3A). The motor areas of the cortex 

(primary, supplementary, premotor, and cingulate motor areas) facilitate different  
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Figure 3. Functional connectivity in the cortico-basal ganglia-thalamocotrical network 

(A) Schematic illustrating the preservation of functional topology within the cortico-basal ganglia-

thalamocotrical network. Each color represents a functional region. GP – globus pallidus, SNR – substantia 

nigra pars reticulate. (Figure adopted from Figure 3 in [39]) (B) Schematic illustrating information transfer 

between cortical areas via thalamic relay nuclei. For instance, cortical area A has reciprocal connections 

with thalamic relay nucleus A, but also has non-reciprocal connections with thalamic relay nucleus B. In 

this way, cortical area A can also influence cortical area B via thalamic relay nucleus B. (Figure adopted 

from Figure 4 in [39])  

 

aspects of motor control, such as movement execution, motor learning and sensorimotor 

integration [97], [98], [99]. These motor areas of the cortex project to the dorsolateral 

striatum, which includes the dorsal/postcommissural putamen and the dorsolateral head 

of the caudate [100], [101]. The dorsal lateral prefrontal association areas of the cortex 

are involved in executive functions such as working memory and switching between 

cognitive states [102], [103]. This area mainly projects to the head and body of the 

caudate and rostral putamen [104]. The orbital and medial prefronal cortex is involved in 

different aspects of reward and emotional response [105], [106]. This area projects 

mainly to ventral and medial striatum [107]. Studies in the monkey [108], [109], [86], 

[92] have revealed that the pallidothalamic projection consists of two parallel streams. 

The stream involved in the ‘motor circuit’ has its origins in the motor areas of the cortex, 
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which projects via the putamen to the lateral portions of the GPe and GPi, then travels 

through the ansa lenticularis and terminates in the anterior portion of VLo (Walker’s Vo). 

The other stream involved in the ‘associative circuit’ originates in the dorsal lateral 

prefrontal association areas in cortex, which projects via the caudate to the medial 

portions of the GPe and GPi, then travels through the fasciculus lenticularis and 

terminates in the posterior region of the VA [73]. In this way, the functional topography 

is maintained from the cortex to the thalamus [39]. Furthermore, this functional 

topography is also present in the return path from the thalamus to cortex via 

thalamocortical (TC) projections. The VLo (Walker’s Vo) projections primarily to the 

caudal cortical motor areas, which are closely involved in movement execution [92]. The 

VA projects primarily to the rostral motor areas, which mainly facilitate 'cognitive' 

aspects of motor control, including motor learning [110], [111]. Corticothalamic (CT) 

connections have both reciprocal and nonreciprocal components. The reciprocal 

component involves cortical areas receiving thalamic inputs projecting back to those 

same areas in the thalamus. The nonreciprocal component involves cortical areas that do 

not receive input from certain thalamic areas but projecting to those same areas in the 

thalamus [112], [113]. The reciprocal projections primarily arise from small cells in layer 

VI for the cortex, whereas the nonreciprocal projections primarily arise from large, 

rapidly conducing cells in layer V of cortex  [114], [115]. The ventral lateral thalamic 

areas (VLo, VLc, area x in monkeys, Vo in humans) has reciprocal connections mainly 

with the caudal motor cortical areas, but also receive nonreciprocal projections from 

more rostral cortical motor areas [92], [116], [111]. The VA is reciprocally connected 

with the rostral motor cortical areas and dorsolateral prefrontal areas, but also receives 

nonreciprocal projections from lateral orbitofrontal areas [117] [39]. In this way, the 

information relayed from the thalamus to the cortex is not only derived from the parallel 

pathways through the basal ganglia, but is also modified by other cortical areas through 

the nonreciprocal CT projections. This also allows for information to flow across 

different functional regions of the cortex via the thalamus (Fig. 3B). Finally, the thalamus 

also projects directly to the striatum. This is most associated with midline and 

intralaminar thalamic nuclei [118], [119], but was also found to be true of thalamic relay 
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nuclei, which constitutes much of the thalamic afferent to the dorsal striatum. In 

particular, the VLo projects primarily to the dorsolateral postcommissural putamen, while 

the VAmc projects primarily to the dorsal head of the caudate nucleus [120]. Taken 

together, the thalamus plays a dual role in the cortical-basal ganglia-thalamocortical 

network: 1) Integrating basal ganglia output with cortical input and 2) directly 

modulating the activity of the striatum.  

1.2.3 Thalamic Connections with the Cerebellum, Spinal Cord and Cortex  

The thalamus is also a nexus between the cerebellum and the cortex (Fig. 4A). The 

cerebellum projects to the thalamus via the CTT, which originates in the dentate, 

interposed and fastigial cerebellar nuclei. The CTT ascends and becomes the superior 

cerebellar peduncle, decussates and passes anteriorly through and around the red nucleus 

into the thalamus [121]. The CTT terminates primarily in the ventral lateral thalamic 

complex, which includes Olszewski’s Area X, VLc, VLps and VPLo (Walker’s Vo and 

Vim) [73]. Injections of tracers and lesions in the three deep cerebellar nuclei have 

mapped out the thalamic termination zones for the afferent fibers [38]. The majority of 

the efferent fibers from the dentate nucleus terminate in the contralateral thalamus. The 

main fiber termination zones were found in the VPLo, VLc, Area X, some were also 

found in the VLps, the zone adjacent to the VLo as well as the central lateral nucleus 

(CL) of the intralaminar thalamic complex. Efferent fibers form the interposed nucleus 

terminated in the same areas as those for the dentate nucleus, although the amount of 

labeled fiber terminals were less for the interposed nucleus [38]. The foci of the fiber 

termination within those superimposable thalamic areas were segregated [122]. The 

efferent fibers from the fastigial nucleus were found in the VPLo, VLc and CL nuclei in 

both the contralateral and ipsolateral thalamus. However, the amount of fiber 

terminations were much smaller in the contralateral thalamus compared to those found 

for the dentate and interposed nuclei. The amount of fiber terminations in the ipsilateral 

thalamus was even sparser. A topographical trend exists in which the posterior parts of 

the cerebellar nuclei project to the anteromedial regions of the VL complex (area X) and 

anterior parts project to the posterolateral regions (VPLo, VLc) [38]. Studies using  
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Figure 4. The motor and sensory thalamus and their afferent and efferent connections 

Abbreviations are listed at the end. (A) Schematic in the prasagittal plane illustrating the afferent pathways 

to the motor and sensory thalamic nuclei, and the thalamocortical projections from the motor thalamus to 

the motor cortex (area 4). (Figure adapted from [38]) (B) Schematic of the various projections to and from 

the thalamocortical relay neuron. (Figure adapted from [123]). Abbreviations: CER – cerebellum, CTx – 

cortex, Li – limitans nucleus, RN – reticular nucleus of thalamus, RNmc – magnocellular part of the red 

nucleus, RNpc – parvocellular part of the red nucleus, SCP – superior cerebellar peduncle, SNc – substantia 

nigra pars compacta, SNr – substantia nigra pars reticulate, Sg – suprageniculate nucleus, TC – 

thalamocortical relay neuron, TIN – thalamic interneuron.  

 

anterograde and retrograde labeling techniques have defined the cortical projections from 

the cerebellar receiving areas of thalamus. The VPLo, VLc and VLps project mainly to 

the primary motor cortex (M1) [124], [125], [126], but also have additional projections to 

the premotor areas [124], [125], [126] as well as the supplementary motor area (SMA) 

[124], [125], [126], [127], and even the prefrontal cortex [128]. The anteromedial region 

of Area X projects mainly to the premotor areas and SMA [124], [125], [126], [128], 

[129], [130] , with additional projections to M1 [124], [125], [126]. Injections of 

anterograde tracers in M1 have also revealed reciprocal projections back to the VPLo and 

through the extent of VLc [40].  

  The gracile and cuneate nuclei of the dorsal column of the spinal cord project via the 

lemniscal fibers (carrying proprioceptive and cutaneous information) into the dorsal 

thalamic mass through the posterior complex [131] and Olszewski’s nucleus 

ventroposterior inferior (VPI). These fibers ascend along the posterior margin of VPLc 

and then mostly terminate within that nucleus [38]. The spinothalamic fibers carrying 
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sensory information from the periphery travel through the brainstem and project posterior 

to the medial lemniscus, entering the thalamus bilaterally.  

   

Spinothalamic tract terminations were found within the posterior, lateral and dorsal 

aspects of the VPLc and VPLo, although contralateral fibers were found to be much 

sparser compared to the ipsilateral fibers [38]. Anterograde and retrograde tracing studies 

have found the VPLc to have extensive reciprocal connections with the primary 

somatosensory cortex (areas 1, 2 and 3), even directly linking CT fibers to spinothalamic 

fibers [40]. Taken together, the thalamus relays afferent information from the cerebellum, 

dorsal column nuclei and spinal cord to the various cortical areas and also receives 

feedback from those same cortical areas.  

1.2.4 Thalamic Reticular Nucleus and Thalamic Interneurons   

  It is not possible to leave out the thalamic reticular nucleus (TRN) when discussing 

projections between the thalamus and the cortex (Fig. 4B). The TRN envelops the 

anterior and lateral parts of the thalamus, as well as some of its dorsal and ventral parts 

[132]. The nucleus lies at the thalamus-white-matter interface, which is between the 

internal capsule (IC) and the external medullary lamina where the TC and CT tracts 

intersect [133] before reaching their respective destinations. Both tracts innervate the 

TRN and give off excitatory (glutamatergic) collaterals, and the TRN neurons send 

inhibitory (GABAergic) fibers back to the thalamus [134], [135] (Fig. 5A). Studies have 

also found strong evidence that synaptic interactions between TRN neurons are mainly 

inhibitory [136], [137]. At least seven sectors (auditory, gustatory, somatosensory, 

visceral, visual, motor and limbic) are found to occupy distinct regions of the TRN [138], 

[139]. The motor sector in particular was located to the rostral part of the TRN in rats 

[140], [141]. Each sector has its own somatotopic organization and receives inputs from 

distinct but functionally related thalamic nuclei and cortical areas [142]. The only source 

of CT inputs to the TRN is from layer VI [143], [144], while the TRN projects to nearly 

all the anterior, dorsal, intralaminar, posterior and ventral thalamic nuclei in a loosely 

parallel pattern [141], [145], [132]. It is important to note that CT fibers are  
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Figure 5. The reticular nucleus of thalamus and its afferent and efferent projections 

(A) The place of the reticular nucleus of thalamus (TRN) between the neocortex and the rest of thalamus. 

Arrows point in the direction of efferent projections. (B) Schematic illustrating the possible connections 

between the neurons of the reticular nucleus (TRN, in red) and thalamocortical replay neurons (TC, in 

black), as well as the excitatory/inhibitory mechanisms that can arise from these connections. Excitatory 

and inhibitory synaptic connections are drawn in black and red circles, respectively. For example, neuron 

TC1 is activated following an afferent discharge on a specific prethalamic input (black arrow). This cell 

projects to and excites cell TRN2, which then inhibits cell TC2 (lateral inhibition). The neuron TRN2 then 

inhibits cell TRN1 (via dendrodendritic GABAergic synapses), which then would disinhibit the neuron 

TC1 (feedback disinhibition). (Figures adapted from [146])  

 

approximately 10 times more numerous than TC fibers [147], [135], which means the 

number of CT synapses within the TRN are much greater compared to TC synapses. 

Layer VI neurons can also more effectively generate large excitatory synaptic 

conductances in TRN neurons than in TC neurons [148], pointing to the important role 

that the TRN plays in modulating the activities of TC neurons. Studies have shown that 

TC and TRN neurons form both closed-loop as well as open-loop connections, giving rise 

to possible complex mechanisms such as feedback inhibition, lateral inhibition, feed-

forward excitation and feedback dis-inhibition (Fig. 5B). These mechanisms facilitate 

‘cross-talk’ between different thalamic nuclei and the integration of information from 

various sources. There exists two distinct functional TRN cell types based on their firing 

pattern: ‘tonic’ and ‘burst’ mode [149]. The firing patterns of the two can be 

interchanged. Neurons in the ‘tonic’ mode are thought to be responsible for linear transfer 

of information from the thalamus to the cortex. While neurons in the ‘burst’ mode are 

considered to react to changes in input activity patterns. A change from the ‘burst’ mode 



   17 

 

to the ‘tonic’ mode facilitates transfer of the new stimuli to the cortex [142]. Taken 

together, the TRN is in a unique position to receive both inputs from the periphery as 

well as the cortex, and it is likely involved in both bottom-up and top-down information 

processing [146]. Thalamic interneurons (TINs) are GABAergic and reside in the midst 

of relay neurons, composing of between 20% – 30% of the total thalamic neuronal 

population [150]. The TINs receive excitatory inputs from the cortex as well as inhibitory 

inputs from the TRN [150]. Projections from the TINs are local to the thalamus, 

innervating relay neurons as well as other TINs, facilitating intrathalamic inhibition 

[135]. TINs play a key role in local thalamic circuitry and in controlling the flow of 

information to the cortex.   

1.2.5 Electrophysiological Properties of the Motor and Sensory thalamus  

Vitek et al. thoroughly studied the physiological properties and somatotopy [151] of the 

motor and sensory thalamus, as well as the response of subnuclei to microstimulation 

[152]. The firing rates of the neurons in the VLc, VLo, VA and Area X were 12 , 

13 , 15 , 12 Hz respectively. The VPLo and VPLc fired at higher frequencies of 

22  and 26 Hz respectively. The proportion of cells that responded to passive 

somatosensory examination (joint rotation, muscle palpation, tendon taps, cutaneous 

stimulation) across these nuclei decreased in the following order: VPLc (96%), VPLo 

(93%), VLc (77%), VLo (37%), Area X (22%) and VA (12%). The order in which 

neurons responded only to active movement (reaching/grasping) was somewhat reversed: 

VLo (44%), VA (45%), Area X (40%), VLc (11%), VPLo (3%) and VPLc (0%). VPLo 

(77%) neurons were the most responsive to applications of torque to the joints, followed 

by VLc (73%) and VLo (44%). The studies revealed a well-defined somatotopic 

organization in the VLo, VPLo and VPLc, and strongly implicated its existence in the 

VLc, but not for the VA or Area X. Within nuclei with this somatotopy, representation of 

body regions is organized in a laminar fashion like the layers of skin on an onion. The 

leg, trunk, arm and orofacial regions are represented in successively deeper lamellae. 

Microstimulation of the motor thalamus at less than 40  was able to evoke movement 

in the contralateral limb, trunk or face. Microexcitability of the motor thalamus (as 
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measured by the percentage of stimulated sites that induces movement) was found to be 

93% in VPLo, 21% in VLo, 11% in VLc, 1% in VA. Area X was not found to be 

microexcitable. 44% of stimulated sites within the VPLc were also found to be 

microexcitable, but this may have been a result of current spreading to the adjacent 

VPLo. Microexcitable responses within motor thalamic nuclei followed a somatotopic 

organization that was consistent with that found through somatosensory examination. 

Namely, evoked responses shifted from the leg, to the arm and then face as the 

stimulation sites moved progressively inward in each nucleus. Microexcitable zones 

ranging from 500 - 1500  exist within the VPLo, in which microstimulation evoked the 

same motor response. This finding suggests that the thalamus preserves the fundamental 

unit of motor organization (i.e. single muscle or joint) and may contribute the modular 

organization of the cortex. Knowledge of the electrophysiological and somatotopic 

organization of the motor thalamus is crucial for identifying both motor thalamic targets 

for DBS as well as sensory thalamic regions in which stimulation induces adverse side-

effects.  

1.3 Mechanisms of DBS for Essential Tremor  

Despite the effectiveness of DBS in treating ET (and other hypo/hyperkinetic disorders), 

its mechanisms of action are still under debate. The similarity in clinical outcomes 

between lesions and DBS led to early hypotheses that high-frequency DBS works 

through inhibition and reduced neuronal output near the stimulated site [153]. This was 

observed during both STN and GPi DBS [154], [155], [156] and hypothesized to be due 

to the activation of presynaptic inhibitory afferents to neurons near the site of stimulation. 

However, other studies [157], [158], [159], [160] have shown an increase in overall firing 

in nuclei downstream of where the stimulation was taking place, suggesting that output 

from the stimulated nucleus was actually increased. Modeling studies suggested that this 

paradox could be explained by the simultaneous direct activation of axons and 

suppression of cell bodies [161]. Supra-threshold stimulation initiated action potentials in 

the axon rather than the cell body, suppressing intrinsic firing in the soma while 

generating efferent output in the axon that was time-locked to the stimulus, leading to a 
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regularization of neuronal activity  [161], [157]. Studies have also shown that this 

regularization effect spreads downstream throughout the cortico-basal ganglia-

thalamocortical network. Examples include STN DBS regularizing activities in the 

pallidal- and cerebellar-receiving areas of the thalamus [162] and GPi DBS inducing 

firing pattern changes in the motor cortex [163]. These findings led to the hypothesis that 

an ‘informational lesion’ effect was taking place where pathological activities in the 

stimulated target and in downstream structures were replaced by (stimulation-induced) 

regularized neuronal activity [164]. This hypothesis is supported by computational 

modeling studies which showed that model neurons demonstrated frequency and 

amplitude dependent regularization of activity in response to stimulation [165]. This 

regularization of model neuron activity was also found to be strongly correlated with the 

therapeutic effects of DBS, including tremor reduction in ET patients [165] and 

alleviation of bradykinesia in PD patients [166]. The same correlation was observed in-

vivo in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) monkey model of 

Parkinson’s disease during STN DBS [167]. Effective high-frequency stimulation that 

reduced motor symptoms regularized neuronal firing patterns in the pallidum and motor 

thalamus, as indicated by decreases in firing pattern entropy. On the other hand, 

ineffective low-frequency stimulation actually increased firing pattern entropy, in effect 

creating more randomness in neuronal activity. The frequency dependent effects of DBS 

on neuronal firing patterns were further studied using computational models of thalamic 

nerve fiber stimulation [168]. The results indicated that at between 2 – 80Hz, stimulation 

increased the firing pattern entropy in the fibers (compared to no stimulation) by 

superimposing stimulus induced activity on top of intrinsic burst activity. Stimulation 

frequencies between 80 – 1000Hz reduced firing pattern entropy in the fibers to zero, 

effectively masking the intrinsic activity with regularized firing. Stimulation above 

1000Hz induced irregular firing patterns (increasing firing pattern entropy) or conduction 

block in the majority of fibers. These results aligned with previous reports of frequency 

ranges in which DBS was found to be effective [53], again in support of the 

‘informational lesion’ hypothesis – effective DBS masks the intrinsic activity of 

stimulated neurons and replaces it with regularized firing. This lesion of information in 



   20 

 

the neural circuitry was also observed experimentally, although the effect was shown to 

be incomplete [169]. In a set of experiments, repetitive joint articulations were performed 

in monkeys while unit spike activity was recorded in the sensorimotor GP and VLo 

before, during and after GP-DBS. The results showed that despite highly regularized 

firing patterns, cells in GP and VLo still responded to one or more aspects of joint 

movement during GP-DBS. Other studies have also shown that DBS may in fact improve 

information content in the network by enhancing information processing [170], [171]. 

Evidence of axonal or synaptic failure from high-frequency stimulation also prompted the 

proposal of a ‘functional lesion’ effect [172]. Regardless of the exact mechanism, 

therapeutic DBS acts through modulation of relevant pathways within the motor circuit. 

In the case of ET, DBS is thought to disrupt pathological activity in the CTT [68] and/or 

thalamocortical tract (TCT) [153]. Stimulation of fiber pathways adjacent to the 

stimulated site may also play an important role in the observed clinical effects. An 

example is STN DBS activating the CTT ventral and posterior to the STN and the 

reported beneficial effects on ET symptoms [173], [174]. Stimulation of the PSA has 

been demonstrated to produce good tremor control at lower stimulation intensities 

(compared to the Vim proper) [175]. This is presumably because the afferent CTT fibers 

are bundled together as they enter the ventrolateral thalamus and therefore stimulation is 

able to activate a larger proportion of these fibers. The larger intensities required to 

stimulate the Vim proper is supported by the finding of topographically organized 

‘tremor clusters’ within that nucleus [176]. Therefore it is possible that stimulation in the 

Vim involves a volumetric effect in which tremor suppression results from electrical 

current sufficiently capturing these tremor clusters via the mechanisms discussed 

previously. The theories discussed above have mostly focused on neuronal or network 

mechanisms of DBS. A study by Bekar et al. [177] have discovered that nonsynaptic 

release of adenosine triphosphate (ATP) during high-frequency DBS and the subsequent 

accumulation of its metabolic product – adenosine, is crucial for reduction of tremor as 

well as DBS-induced side-effects. The mechanism involves activation of adenosine A1 

receptors during high-frequency stimulation, which reversibly inhibits excitatory 

transmission in the thalamus. In summary, great inroads have been made in the effort to 
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understand the mechanisms of DBS at multiple levels, and continued research is needed 

to link these pieces together into a comprehensive picture. In the meantime, DBS remains 

a potent therapy with very present challenges that remain to be tackled.  

1.4 Challenges and Opportunities for Thalamic DBS 

1.4.1 Lead Placement for Effective Therapy 

Although DBS is an effective treatment for ET, a survey shows that approximately 10% 

of patients with DBS implants receive inadequate tremor control due to poorly placed 

leads [178]. The Vim nucleus of thalamus is the primary DBS target for the treatment of 

ET. Lead placement within the Vim nucleus is very important in order to avoid inducing 

adverse side-effects. The DBS lead is usually placed along Vim’s anterior border with the 

Vop in order to avoid current spreading posterior to the sensory thalamic nucleus of Vo 

[94], which can result in persistent paresthesias during stimulation [179]. Placing the lead 

too anterior will result in stimulation of the Vop, which will be less effective [180]. Leads 

placed too medial or too lateral will likely result in intraoral and leg paresthesias, 

respectively. Stimulation of the corticospinal tract that lies in the IC ventral and lateral of 

the Vim can result in tonic muscle contractions [181], [182]. Speech and swallowing 

problems can also result from thalamic DBS, however the exact mechanisms are 

unknown. The general assumption is that placing the lead within the head somatotopic 

region of the Vim (more medial) is more likely to evoke these side-effects. However, 

thalamic lesions studies have also pointed to damage in the pallidal afferent areas of the 

thalamus as a potential cause for dysarthria [183]. In addition, given the somatotopic 

organization of the thalamus [151], it is also important to direct stimulation in a focused 

manner in order to achieve the desired effect. For example, leg tremor can be difficult to 

suppress with thalamic DBS because the leg region is located in the lateral portion of the 

Vim near the IC. Clinical studies have also noted two different target regions for effective 

tremor suppression. One is within the Vim proper [53], [184], stimulation in which could 

be modulating the TCT from Vim to M1 [185], [186]. The other region is slightly ventral 

to the Vim [173], [175], [72], stimulation in which could be modulating CTT entering the 

Vim. Stimulation of the Vim proper usually requires a larger volume of activation [187], 
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[151], likely in order to encompass the somatotopic regions involved in tremor [188]. 

Stimulation of the region ventral to the Vim can achieve tremor suppression with lower 

stimulation amplitudes [173], [175], [72], but the target area is also harder to locate. The 

above analysis strongly suggests that there is little room for error in thalamic DBS in 

order to avoid adverse side-effects. Considering neurosurgical targeting error for DBS 

lead implantation has been estimated at 2mm from the intended target (with the combined 

use of MRI and intraoperative microelectrode recordings) [189], it is important to 

develop technologies that can 1) clearly visualize DBS target areas and 2) provide 

flexibility in terms of the directionality of stimulation and shaping the region of 

activation.  

1.4.2 DBS Programming  

Postoperative DBS programming is a process to determine the parameters of stimulation, 

which include electrode configuration/polarity, frequency of stimulation, pulse width and 

amplitude (current or voltage). The goals of DBS programming are to 1) maximize 

symptom suppression, 2) minimize side-effects and 3) maximize stimulator battery-life 

[190]. The basic programming algorithm is a ‘monopolar review’ performed under off-

drug conditions [190]. Stimulation should be set to, for example, 60  in pulse width and 

130Hz in frequency (for thalamic DBS) and kept constant for the remainder of the test. 

Monopolar stimulation is delivered through each electrode on the DBS lead at a stepwise 

increment of 0.2 – 0.5V (for voltage controlled stimulation) in order to determine the 

amplitude threshold for inducing a clinical response or side-effect. If the clinical response 

is observed without inducing side-effects, then the stimulation amplitude is further 

increased until the threshold for side-effects is reached. The goal is to find the electrode 

with the largest ‘therapeutic window’ (i.e. the difference in stimulation amplitude 

between therapeutic threshold and sustained side-effect threshold [191]) to use for 

chronic stimulation. In case of persistent side-effects, the results from the monopolar 

review can also provide a basis for adding adjacent electrodes to form bipolar or 

multipolar configurations that are more likely to yield good results [192]. DBS 

programming is usually performed by nurse-practitioners and is a time-consuming 
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process. It has been estimated that the mean time spent programming a DBS stimulator 

can range from 18 – 36.2 hours per patient [193], with some patients significantly more 

difficult to program than others. Programming sessions are usually limited to 1 – 3 hours 

each time due to patient fatigue, which means multiple visits are needed before 

programming can be completed [193]. This approach, although feasible (albeit time-

consuming) with traditional DBS leads which only have four cylindrical contacts (e.g. 

Medtronic model 3387 and 3389), will become more difficult to implement as the 

number of available electrodes increases. Additionally, the standard programming 

process relies on patient feedback and assessment of symptoms, which may not be 

feasible for disorders such as dystonia and Tourette’s syndrome, for example, in which 

the therapeutic effects may not appear for weeks or months after beginning stimulation 

[194], [195]. Experience and intuition with DBS programming as well as the amount of 

time allotted to each patient also play important roles in the outcome of the therapy [196]. 

Compounding the issue is the problem of habituation of therapy. Studies have shown that 

the therapeutic effects from Vim-DBS fades in at least 40% of ET patients after 1 – 2 

years, especially in the case of action tremor [197], [198]. A recent study [199]found that 

in a cohort of ET patients with Vim DBS implants, 73% reported waning benefits during 

a 56 months follow-up period, suggesting the prevalence of DBS habituation may be far 

higher than reported previously. Potential mechanisms may involve an increase in the 

volume of pathological thalamic tissue with disease progression or development of 

synaptic plasticity that impedes therapeutic electrical stimulation in or near the Vim. Case 

studies have shown patients who take 12-48 hours of ‘DBS-holiday’ every month can 

avoid developing tolerance to stimulation [200], [201]. Reprogramming DBS settings 

have also been shown to yield short-term (<10 weeks) improvements from unmanaged 

tremor due to habituation [199]. Taken together, there’s a strong need to simplify the 

DBS programming process, making it efficient and intuitive, yet still achieve the desired 

therapeutic results. Direct visualization of targets of interest as well as regions 

responsible for side-effects will be an important feature, as well as computational 

algorithms that can infer or back-calculate the stimulation parameters for optimal therapy. 

Furthermore, programming should be adaptive and able to react to the changing 
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therapeutic landscape, possibly by cycling through configurations that can target different 

pathways (e.g. CTT vs. TCT).  

1.4.3 Validation of Computational Models of DBS 

The development of computational models has been instrumental in understanding and 

replicating the way the nervous system is influenced by electrical stimulation [202], 

[203], [204]. Studies have reconstructed realistic model neurons [205] with dedicated 

software [206] to understand mechanisms of DBS [161], [207], [208]. Integrating 

imaging data has allowed for the development of subject-specific computational models 

of DBS, with targets including the STN [209], [210], GP [211], ventral striatum [212], 

pedunculopontine nucleus (PPN) [213], [214] and thalamus [215], [201]. Of particular 

importance is the concept of volume of tissue activated (VTA) (which will be elaborated 

in later chapters) [216], [217], which allows for direct visualization of the extent of 

modulation through DBS. As VTA-based technologies are increasingly making its way to 

guide programming in DBS [218], [219], it is important to validate model predictions 

based on neurophysiological outcome measures. Validation of model predicted results in 

humans has relied on indirect measures of motor and perceptual observations related to 

side-effects of stimulation. Examples include calibrating model predicted DBS activation 

of the IC with electromyogram recordings of distal muscle groups [210] or activation of 

the Vc with patient reports of sensory paresthesias [201]. However, there is an obvious 

disconnect in terms of the scale of analysis between the computational VTA (cellular 

level, based on activation profile of neuronal elements, e.g. axons or cell bodies) and the 

behavioral outcome measures (systems level). What is needed is characterization of in-

vivo activation profiles of tissue within target regions during DBS using 

electrophysiological recording techniques. These types of validation are logistically 

difficult to accomplish in humans and must therefore rely on animal models.  

1.4.4  Opportunities and Emerging Technologies in DBS  

The challenges facing DBS therapy also presents opportunities for the development and 

utilization of emerging technologies. The issue of accuracy of lead placement for 
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effective therapy can be addressed in two different directions: 1) develop the ability to 

clearly visualize the DBS target, and 2) develop the ability to directly stimulate and 

rescue therapy in cases of poorly targeted DBS leads. Traditionally, DBS implantation is 

guided by frame-based stereotaxy or frameless neuronavigational software, both of which 

require fusion of preoperative MRI and CT imaging to define the ‘stereotactic space’. 

This space is the reference space in which DBS implantation takes place and is assumed 

to remain immobile relative to the brain targets. A new advancement that shifts away 

from this paradigm is the use of interventional (or intraoperative) MRI to guide the 

placement of DBS leads [220], [221]. This technique uses a frameless MRI compatible 

aiming device in conjunction with real-time direct visualization of patient imaging data to 

verify implant location. This eliminates the need for preoperative acquisition of MRI and 

CT data and also reduces complexity of the procedure as well as errors that might be 

introduced in the process. Furthermore, patients no longer need to be awake for the 

implant surgery and can instead undergo general anesthesia. This is both desirable for 

most patients and can also speed up the overall process. The procedure is limited 

however by the availability of interventional MR machines as well as the field strength 

that it can provide, which is important for visualizing small anatomical targets or targets 

with low contrast. High-field MRI (  7T) can provide improved visualization of 

anatomical targets [222], [223], [224] and reveal fine anatomical details (e.g. sub-nuclei 

within thalamus) [225], [226] due to its superior signal-to-noise ratio. Image contrast can 

be improved with the combined use of novel imaging modalities such as susceptibility-

weighted imaging (SWI) [224], [227], [228]. In addition, high-field imaging can also 

assist in improving the fit of anatomical atlases to imaging data (to delineate sub-

structures) [229] by providing detailed landmarks. Finally, diffusion tensor imaging 

(DTI) combined with the use of probabilistic tractorgraphy has shown great promise in 

mapping and visualizing the white-matter pathways of the brain [230], [223], [231]. 

Together, these emerging technologies have the potential to delineate entire circuits 

within the brain (e.g. cerebellothalamocortical pathway) on a subject-specific basis and 

provide valuable anatomical information for both DBS neuronavigation and 

computational models.  
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  Rescue of therapy in the case of poorly targeted DBS leads is another area in which 

exciting research and development is taking place. The design of DBS leads has not 

changed since the 1970s, largely following the work of Hosobushi et al. [49]. The 

traditional design (e.g. Medtronic model 3387, 3389) consists of a linear stack of 

cylindrical electrodes along the length of the lead. This design is particularly sensitive to 

surgical targeting errors in the direction tangential to the length of the lead, because the 

cylindrical electrodes deliver electrical current axisymmetric to the lead shank. This 

makes it more difficult to stimulate small or oblong structures such as the PPN [213] or 

STN [232] as the large size of electrodes will like modulate a larger area than intended. 

These shortcomings motivated the development of radially-segmented DBS arrays 

(rDBSAs) [233], [191], which segments each cylindrical electrode into three or more 

smaller electrodes that face different directions around the lead body. This design allows 

for independent control of stimulation through each electrode and can therefore enable 

directional steering of electrical current around [232] and along [234] the lead. 

Computational models of rDBSAs have demonstrated their effectiveness in shifting the 

electric field as well as the VTA in the preferred direction [235], [232], [236], [215], 

[237]. Clinical studies have also demonstrated that directional stimulation through 

rDBSAs can increase the ‘therapeutic window’ [191], [238]. An added benefit to the 

rDBSA design is the finer spatial resolution of local-field potential recordings that can be 

achieved compared to cylindrical electrodes [233]. However, the increased number of 

electrodes on the rDBSAs further complicates the difficult task of manual DBS 

programming. Researchers are addressing this issue by coupling computational models of 

DBS with patient-specific imaging data to develop programming algorithms that allow 

for visualization and control of the extent of modulation [219], [239], [240]. A well-

developed approach is to pre-compute large amounts of VTAs from many different 

stimulation configurations and store them in a database, which serves as a look-up table 

[219], [218]. Researchers can then use surgical navigation software [241] to define target 

volumes for stimulation, prompting the algorithm to search through the VTA database 

and find the solution with the largest overlap with the target volume. A more recent 

approach was developed by Chaturvedi et al. that trained artificial neural networks 
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(ANNs) to predict the shape of VTAs resulting from stimulation, using a set of 4620 

unique stimulation configurations. This method benefits from the ability of the ANNs to 

generalize the complex relationship between stimulation parameters and the shape of the 

resulting VTA. However, it still required substantial pre-computation and the underlying 

concept of using pre-computed data for prediction is somewhat unchanged. Additionally, 

the VTA predictions have yet to be fully validated experimentally. 

  The goal of this dissertation is to utilize these emergent technologies and develop new 

tools and methodologies to engage the challenges facing DBS, as outlined in the previous 

sections. More specifically, we will 1) couple high-field SWI with DTI/tractography 

to segment DBS targets within thalamus (Chapter 2), 2) develop computational 

model-based programming algorithms for rDBSAs (Chapter 3), 3) apply statistical 

tools to quantify computational VTAs resulting from directional stimulation 

(Chapter 4) and 4) characterize in-vivo the DBS-induced spatial neuronal activation 

profiles adjacent to chronically implanted thalamic rDBSAs (Chapter 5).  
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Chapter 2  

 

Multimodal Imaging of Thalamic 

Nuclei  
 

This chapter was reprinted with permission from Frontiers Media.  

YiZi Xiao, Laura M. Zitella, Yuval Duchin, Bejamin Teplitzky, Daniel Kastl, Gregor 

Adriany, Essa Yacoub, Noam Harel, and Matthew D. Johnson, “Multimodal 7T imaging 

of thalamic nuclei for preclinical deep brain stimulation applications,” Front in Neurosci, 

10(2016): p.264.  

2.1 Overview 

2.1.1 Objective 

Precise neurosurgical targeting of electrode arrays within the brain is essential to the 

successful treatment of a range of brain disorders with deep brain stimulation (DBS) 

therapy. Here, we describe a set of computational tools to generate in vivo, subject-

specific atlases of individual thalamic nuclei thus improving the ability to visualize 

thalamic targets for preclinical DBS applications on a subject-specific basis.  



   29 

 

2.1.2 Approach 

A sequential nonlinear atlas warping technique and a Bayesian estimation technique for 

probabilistic crossing fiber tractography were applied to high-field (7T) susceptibility-

weighted and diffusion-weighted imaging (SWI, DWI), respectively, in seven rhesus 

macaques. Image contrast, including contrast within thalamus from the susceptibility-

weighted images, informed the atlas warping process and guided the seed point 

placement for fiber tractography. The thalamic substructure boundaries were validated 

through in vivo electrophysiological recordings and post-mortem blockface tissue 

sectioning.  

2.1.3 Main Results 

The SWI resulted in relative hyperintensity of the intralaminar nuclei and relative 

hypointensity in the medial dorsal nucleus, pulvinar, and the medial/ventral border of the 

ventral posterior nuclei, providing context to demarcate borders of the ventral nuclei of 

thalamus, which are often targeted for DBS applications. Additionally, ascending fiber 

tractography of the medial lemniscus (ML), superior cerebellar peduncle (SCP), and 

pallidofugal pathways into thalamus provided structural demarcation of the ventral nuclei 

of thalamus. 

2.1.4 Significance 

Together, these imaging tools for visualizing and segmenting thalamus have the potential 

to improve the neurosurgical targeting of DBS implants and enhance the selection of 

stimulation settings through more accurate computational models of DBS.  

2.2 Background 
 

Structural brain imaging has become a valuable tool to guide the implantation and 

programming of deep brain stimulation (DBS) systems for the treatment of many brain 

disorders [216], [242], [243]. Current clinical magnetic resonance imaging (MRI) (1.5-

3T) provides reasonable image contrast to identify, for example, the borders of the globus 

pallidus (GP) and to some extent the borders of the subthalamic nucleus [244] for 
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treatment of Parkinson’s disease. Such visualization abilities have enabled new 

opportunities for interventional MRI guided stereotactic neurosurgery [220]. However, 

clearly demarcating targets within the thalamus (another surgical target of DBS) at these 

field strengths remains a considerable challenge for both clinical [222, 245] and 

preclinical DBS studies. Improvement in structural imaging of intra-thalamic nuclei 

would have important implications given that interventional stereotactic procedures 

within thalamus have shown marked promise for the treatment of pain [246], essential 

tremor [53, 247], epilepsy [248, 249], Tourette syndrome [250], disorders of 

consciousness [251], as well as other brain disorder indications on the horizon, including 

schizophrenia [252, 253]. This is especially important because favorable behavioral 

outcomes with thalamic DBS hinge upon the accuracy of stimulating the desired thalamic 

pathway, while avoiding modulation of neuronal pathways implicated in the emergence 

of adverse side effects [44, 201, 215, 254, 255]. Thalamic nuclei can be difficult to 

visualize with traditional (1.5-3T) scanners, thus requiring the identification of fixed 

coordinates based on an internal reference, such as the anterior commissure (AC) and 

posterior commissure (PC) plane [256-260]. However, several imaging approaches have 

been used to demarcate various thalamic nuclei beyond typical clinical imaging 

protocols. These include functional imaging [261-264], high-field MRI [223, 265-267], 

parcellation utilizing corticothalamic DWI with probabilistic tractography [230, 268], and 

other signal processing techniques [269, 270]. Another approach to capture subtle 

thalamic anatomy is using histologically derived brain atlases [271] based on 

acetylocholinesterase (AChE) [272] and calcium-binding protein (e.g. parvalbumin) 

[273] labeling of thalamus [274] to match and overlay upon individual MR images [269, 

270]. However, inter-subject variability in thalamic anatomy has been widely 

demonstrated [275-277], and a ‘one-size-fits-all’ method for linear registration of 

histological brain atlases to structural imaging data has proven to be imprecise amongst 

subjects [244]. The need to identify anatomical information within individual MRI data 

has prompted the development of deformable digital atlases [278-291], numerous image 

processing techniques [229, 292-295], and intraoperative microelectrode mapping 

procedures to verify and expand upon the interpretation of the imaging data [296, 297].  
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  Here, we show that a multi-modal imaging approach using 7T in vivo MRI enables 

demarcation of intra-thalamic nuclei as confirmed with histology in two subjects. The 

acquired dataset enabled: 1) investigation of what contrast exists in the non-human 

primate (NHP) thalamus in high-field 7T SWI, 2) development of methods to identify 

structures not directly visible even with high-field MRI, 3) construction of afferent fibers 

to the thalamus via probabilistic fiber tractography, and 4) comparison of the constructed 

nuclei and fiber tract to post-mortem histology.  

2.3 Methods 

2.3.1 Data Acquisition  

High-field MRI (7T, Magnex Scientific) was performed on seven rhesus macaque 

primates (macaca mulatta, 6 female and 1 male, Table 2) at the University of 

Minnesota’s Center for Magnetic Resonance Research using a Siemens console and head 

gradient insert capable of 80 mT/m with a slew rate of 333 mT/m/s. A customized head 

coil was developed with 16-channel transmit and 16+6 receive channels, in which 4 coils 

mounted on top of each subject’s head and 2 ear-loop coils were added to enhance signal 

detection from subcortical structures [298]. All procedures were approved by the 

Institutional Animal Care and Use Committee of the University of Minnesota and 

complied with United States Public Health Service policy on the humane care and use of 

laboratory animals. Animals were anesthetized (isoflurane, 2.5%) during the imaging 

sessions and monitored continuously for depth of anesthesia. Animals were individually 

housed in a Primate Products Enhanced Environment Housing System (dark/light cycle 

of 12/12) in the University of Minnesota’s Research Animal Resources facility. The 

animals were given a range of environmental enrichment (e.g. toys, foraging baskets, 

mirrors, TV), provided with water ad libitum, and given a range of food options including 

fresh fruit and vegetables. All efforts were made to provide good care and alleviate 

unnecessary discomfort, and no adverse events occurred. At the conclusion of the study 

and in order to validate the MRI data, two animals were deeply anesthetized with sodium 

pentobarbital and perfused with phosphate buffered saline followed by a 4%  
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Subject Gender Age SWI Resolution DWI EM BFS Description 

1 F 22 0.4 mm iso     

2 F 22 0.4 mm iso     

3 F 14 0.33 mm iso     

4 F 13 0.4 mm iso « «  EM validation of SWI and DWI 

5 F 10 0.4 mm iso «  « BFS validation of SWI and DWI 

6 F 9 0.4 mm iso «  « BFS validation of SWI and DWI 

7 M 4 0.33 mm iso     

 

Table 2. Subject characteristics and imaging protocols 
(iso: isometric, EM: electrophysiological mapping, BFS: blockface sectioning) 

 

paraformaldehyde fixative solution, consistent with the recommendations of the Panel on 

Euthanasia of the American Veterinary Medical Association. 

  SWI was collected in all subjects (n=7) and consisted of a 3D flow-compensated 

gradient echo sequence using a field of view (FOV) of 128 x 96 x 48 mm3, matrix size of  

384 x 288 x 144 (0.3 - 0.4 mm isotropic resolution), TR/TE of 35/29 msec, flip angle of 

15°, BW of 120 Hz/pixel, and acceleration factor of 2 (GRAPPA) along the phase-

encoding direction. SWI is sensitive to a difference in magnetic susceptibility in tissues 

and can be used to measure iron content [299], in the form of ferritin and hemosiderin, 

found in oligodendrocytes [300-303] and regions of the basal ganglia and thalamus [304]. 

In this case, a local difference in iron concentration manifests in a difference in local 

magnetic susceptibility, causing a deviation in the induced magnetization, translating into 

a difference in phase [299]. Studies have shown that the phase shift is linearly correlated 

with iron concentration [305, 306]. Here, we used a T2*-weighted gradient echo 

sequence and combined the magnitude and phase information by multiplying a ‘phase 

mask’ to the magnitude image. Values in the phase image above zero were assigned to 1 

in the phase mask (i.e. negated), while those between 0 and –π were linearly scaled from 

1 to 0. The phase mask was then raised to a power of 4 and multiplied to the magnitude 

image. The choice of raising the phase mask to the power of 4 was based on optimizing 

the contrast-to-noise ratio of the SW image [299]. In this way, regions in the magnitude 

image with large phase shifts had their magnitudes severely attenuated and appeared 

hypointense in the SWI data [299]. Whole-brain SWI scans required approximately 30 

minutes per animal. 
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Figure 6. Brain atlas registration and warping process to SWI from Subject 3 

(A) Schematic of the methodological analysis process combining SWI and DWI data. (B) Coronal image 

with 94 manually selected control points in red (q points). (C) Overlay of MRI with the corresponding atlas 

plate after global alignment. (D) Atlas plate after global alignment with MRI. Matching control points in 

red (p points). (E) Warped atlas plate superimposed on top of the original MR image.  

 

 Additionally, DWI was collected and analyzed in a subset of subjects (n=3). DWI 

consisted of a single refocused 2D single-shot spin echo EPI sequence [307] using a FOV 

of 128 x 84 x 99 mm3, matrix size of 128 x 84 x 50 (1 mm isotropic resolution), TR/TE 

of 3500/53 msec, flip angle of 90°, BW of 1860 Hz/pixel, and an acceleration factor of 3 

(GRAPPA). Diffusion-weighted images (b-value = 1500 s/mm2) were collected with 

diffusion gradients applied along 55-143 uniformly distributed directions [308]. Fifteen 

additional non-diffusion-weighted images (b=0 s/mm2) were acquired for every 10 

diffusion-weighted images. We utilized TOPUP [309] in FSL to correct for geometric 

distortions in the EP images due to magnetic field inhomogeneities. This approach used 

multiple non-diffusion-weighted (b0) scans with bidirectional (posterior-anterior and 

anterior-posterior) phase-encoding directions to calculate and counteract the deformation 

field.  Whole-brain DWI scans required approximately 30 minutes per animal. 

2.3.2 Atlas Registration  

 

To assist with identification of thalamic nuclei, a rhesus macaque brain atlas [310] was 

registered and nonlinearly deformed to the MRI volumes of each of the seven subjects.  

In preparation, MRI volumes were aligned in AC-PC space (Analyze 11.0, 



   34 

 

AnalyzeDirect) and then resliced into serial coronal images. A set of 40 coronal images, 

spanning the entire thalamic region, was extracted from each subject’s imaging dataset. 

First, a non-uniform rational B-spline modeling program (Rhinoceros) was used to create 

a proportional grid system, as developed by Talairach [256] for the human brain, to 

identify equivalent slices between the MRI and brain atlas (n = 30 slices between AC and 

PC) [310]. The distance (variable over 7 subjects, average: 0.482mm, minimum: 

0.429mm, maximum: 0.517mm) between each slice was then used to generate 10 further 

images posterior to the PC. An initial global registration of the interpolated MR images to 

the brain atlas [310] was performed using both a global rigid transformation and a local 

affine transformation [311], such that the cortical outlines and the inter-hemispheric 

fissures in the atlas section were aligned with those on the MR image (Fig. 6B,C). To 

further warp the atlas to individual MR images, control points p and q were manually 

placed on each atlas section and the corresponding MR image, respectively, such that pi 

and qi represent the same spatial location. Common locations for control points were 

located on the boundaries of the cortex, major sulci, lateral and third ventricles, 

interpeduncular cistern, and the borders of thalamus [311, 312]. Spatial selection of 

control points across MR images with thalamus was consistent with those control points 

shown in Fig. 6B,D. We then used a nonlinear atlas warping approach that adapted a 

moving-least-squares (MLS) image deformation algorithm [313]. For each pixel v in the 

undeformed image, the algorithm solved for the best transformation function  that 

satisfied: 

  

 f produces a smooth deformation 

 if  f(v) = v 

and minimized 

,  

where   ( =2 was found to be suitable in this case).  

In other words, the handles pi should map directly to qi under deformation, and if the 

deformed handles qi are the same as pi, then f should be the identity function. Since the 
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weights  were dependent on the location of each pixel, the algorithm solved for a 

different  for each pixel.  in the most general case was an affine function of the 

form: , where and  were rotation and translation matrices, 

respectively. The affine transformation allowed for rotation, translation, anisotropic 

scaling, and anisotropic shearing in two-dimensions. For more conservative similarity 

and rigid deformations, restrictions were put on the rotational matrix  to ensure 

isotropic shearing and scaling. Closed-form solutions were derived for all three cases. In 

cases of large deformations, the sign of the Jacobian of  can change and the one-to-

one mapping of pixels may be violated, causing the image to fold back on itself. To 

eliminate such fold-backs, we implemented an approach by Tiddeman et al. to break up 

the entire warp into a series of smaller partial deformations, ensuring in each step the 

Jacobian of  does not change sign [314]. In each stage, the partially warped image 

serves as the starting point for a new round of deformation until all the control point 

restraints  are satisfied (Fig. 6D, E). 

2.3.3 Diffusion Tensor Imaging  

 

Fiber tractography was performed in FSL [315-317] for three subjects (M4, M5, and M7) 

to extract several fiber tract pathways projecting into thalamus. SW images were 

converted into NIfTI files (dcm2nii) and imported into the brain imaging analysis 

software platform, FSL (v5.0.2.1). The FSL automated brain extraction tool [318] was 

used to remove the skull in the images. A 7-DOF flirt [319-321] linear transformation in 

FSL was used to obtain registration between the SWI data and mean B0 DWI volume. 

The transformation was necessary because even with image distortion correction due to 

field inhomogeneity, slight image distortion can still exist. Since these two imaging 

modalities differ, inter-modal cost functions (correlation ratio or mutual information-

based options) were applied depending on which produced the best alignment as assessed 

visually. Before computation of tractography, the diffusion data was pre-processed using 

bedpostx to estimate the diffusion parameters. The bedpostx function was run with 3 

fibers per voxel (n=3) to model crossing fibers. All other parameters were by default: w 

=1, b = 1000, j = 1250, s = 25, model = monoexponential. Seed point and waypoint 
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masks, based upon the warped atlas, were defined in the SW images to extract the 

following white mater tracts: the medial lemniscus (ML) projecting into the ventralis 

posterior lateralis pars caudalis (VPLc) nucleus of thalamus, the superior cerebellar 

peduncle (SCP) projecting into ventralis posterior lateralis pars oralis (VPLo) nucleus of 

thalamus, and the pallidofugal (PF) tract projecting into ventralis lateralis pars oralis 

(VLo) and ventralis anterior (VA) nuclei of thalamus [322]. To estimate the ML tract, 

seed points were placed in the ML representation of the caudal pons, and a waypoint was 

introduced as the entire region of the thalamus anterior to the pulvinar. Similarly, the SCP 

tract was extracted by placing seed points in the posterior pons, with waypoints at the 

decussation of SCP, and the entire thalamus. Two subjects (M5 and M7) required an 

additional seed point in the red nucleus. The PF tract was reconstructed using masks over 

the entire globus pallidus interna (GPi) with a waypoint in the thalamus. These masks 

were transformed into DWI space using the previously calculated transformation and 

were used for computing the probabilistic tractography (probtrackx, number of samples: 

5000, curvature threshold: 0.2, number of steps: 2000). Once completed, the resulting 

tracts were inversely transformed back into SWI space for 3D visualization using the 

biomedical computer aided design software, Amira. 

2.3.4 Evaluation of Atlas Warping and Diffusion Tensor Imaging  

 

2.3.4.1 Electrophysiological Mapping 

Electrophysiological recordings in the thalamus were performed in subject 4, as described 

previously [169]. Briefly, a 19-mm diameter cranial window was made over the right 

hemisphere close to the midline, keeping the dura intact. A sagittal recording chamber 

(Crist Instruments) was attached over this cranial window to provide microelectrode 

access to the ventral nuclei of thalamus. Reconstructed volumes of VPLo and VPLc from 

the lofted atlas deformation process were imported into a surgical navigation software, 

Monkey Cicerone [241], to guide the electrophysiological mapping of the ventral nuclei 

of thalamus. A post-operative CT scan was co-registered manually to the MRI in Monkey 

Cicerone using linear translation and rotation so that microelectrode recording locations 
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could be viewed in the context of reconstructed thalamic nuclei. Single channel tungsten 

microelectrodes (145-250 µm/diameter) were acutely inserted through the ventral nuclei 

of thalamus in increments of 10 µm, and electrophysiological spike recordings were 

performed along each track (n=5 tracks). Neuronal responses to passive manipulation 

[169] and low-threshold microstimulation [323] were used to identify regions of VPLo, 

while responses to tactile brushing of the limbs were used to identify regions of VPLc. 

 

2.3.4.2 Blockface Tissue Sectioning 

At the conclusion of the study, subjects 5 and 6 were deeply anesthetized and euthanized 

(sodium pentobarbital, 100 mg/kg, i.v.). Transcardial perfusion of room temperature 

phosphate buffered saline (PBS, pH 7.4) occurred at 50 ml/min for 40 min followed by 

perfusion of 4% paraformaldehyde in PBS at 4°C at the same rate for 20 min. The brain 

was post-fixed in PFA for 4 hours at 4°C then placed in 15% sucrose in PBS at 4°C for 1-

3 days in order to cryoprotect. Sections, which were 50 µm thick, were cut in the coronal 

direction using a freezing microtome. During sectioning, serial images were acquired 

from a fixed distance using a Canon EOS Rebel T3i with EF-S 18-55mm IS II lens. Pitch 

(dorsal-ventral) and yaw (medial-lateral) angles from the AC-PC line were 17.59° and 

4.3° for subject 5 and 6.85° and 1.72° for subject 6. Image resolution was approximately 

62x62 m. 

2.4 Results 

2.4.1 Visualization of Thalamus using SWI at 7T  

2.4.1.1 Hypointensity in the Medial and Posterior Thalamus  

 
SWI intensity was normalized to the AC image intensity in each subject so as to mitigate 

potential variations in MRI scanner sensitivity amongst subjects (see section 3.1.2). 

Image intensity was then compared between and within the thalamic nuclei by 

superimposing the nonlinearly deformed atlas onto the corresponding susceptibility-

weighted images (Fig. 7). Using this method, several regions of thalamus, especially in  
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Figure 7. SWI of coronal slices through thalamus in Subject 2 

Distance demarcations are relative to the midline crossing of the anterior commissure. (APul: anterior 

pulvinar, bsc: brachium of the superior colliculus, Cd: caudate nucleus, CL: central lateral nucleus of 

thalamus, CM: centre médian nucleus of thalamus, f: fornix, GPe: globus pallidus externus, GPi: globus 

pallidus internus, IPul: inferior pulvinar, MGd: dorsal medial geniculate nucleus, MGv: ventral medial 

geniculate nucleus, MPul: medial pulvinar, LPul: lateral pulvinar, Pf: parafascicular nucleus, Pi: pineal 

gland, Po: posterior thalamic nuclear group, Put: putamen, RN: red nucleus, SPFP: parvocellular part of the 

sub-parafascicular nucleus, STN: subthalamic nucleus) 

 

the posterior portion of thalamus, were found to exhibit increased contrast relative to 

other regions of thalamus and regions external to thalamus. We tested for a significant 

difference in normalized SWI intensity between anterior and posterior thalamic nuclei. 

We grouped pixel values from VA and VLo together into one group and those from 
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pulvinar and medial geniculate nucleus (MGN) together into another group. We 

performed two-sample t-test between the normalized intensity values between the two 

groups and found that the difference was significant (p = 3.67 ). Posterior 

thalamic nuclei including the pulvinar and MGN exhibited hypointensity in the 

susceptibility-weighted images, which in some subjects showed further demarcations of 

subregions within each nucleus (Fig. 7, I-L). The dorsal and ventral aspects of the 

anterior pulvinar were visible as clustered bands of hypointense regions that extended 

along the dorsomedial to ventrolateral plane. The anterior pulvinar was bordered by the 

relatively hyperintense CL nucleus on its medial border, the VPLc nucleus on its lateral 

border, and the posterior oralis (PO) nucleus on its ventral border. The PO nucleus was 

further demarcated by the brachium of the superior colliculus (bsc), which bisects the 

pulvinar from the MGN (Fig. 7, K2). Regions within the MD nucleus also exhibited 

hypointense contrast relative to the centre median (CM) nucleus on its ventral border, the 

CL nucleus on its lateral border, and the paraventricular and habenular nuclei on the 

dorsal border (Fig. 7, E-I). Additionally, the putative medial (magnocellular) division of 

the MD nucleus exhibited greater hypointensity than the lateral division, with the latter 

exhibiting finger-like projections extending into the CL nucleus. The ventral posterior 

nucleus, which lies ventrolateral to the CM nucleus, also exhibited hypointensity that 

spread medial into the ventral medial nucleus, lateral into the ventral posterior inferior 

nucleus, and dorsolateral between the CM nucleus and the VPLc (Fig. 7, F-H). However, 

there was relatively little contrast evident between the other ventral nuclei, albeit for a 

clear demarcation by the relatively hypointense internal capsule on the lateral border and 

the MD nucleus on the medial border. 

2.4.1.2 Age-Dependent Normalized Image Intensity  

The contours of pulvinar, medial geniculate nucleus (MGN), VPLc, VPLo, MD, VLo, 

and VA were segmented and the mean image intensity for each nucleus was calculated by 

averaging all pixels within relevant contours. The intensity values for seven thalamic 

nuclei were analyzed and compared amongst all seven subjects, with the images 

normalized by the subject-specific image intensity of the midline AC. The AC tract was  
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 VLo MD VPLo VPLc Pulvinar MGN LGN 

r -0.29 -0.59 -0.38 -0.8 -0.74 -0.92 -0.55 

p 0.5251 0.1677 0.3973 0.0324 0.0484 0.0035 0.1987 

Table 3. Age-related intensity correlations 
Pearson correlation coefficient / p-value (df = 5, p<0.05) 

 
 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 

Pulvinar 0.78/0.35 0.52/0.23 1.55/0.26 0.81/0.34 1.05/0.19 1.31/0.23 1.42/0.24 

MGN 0.65/0.23 0.57/0.19 1.11/0.17 0.76/0.24 1.09/0.17 1.14/0.28 1.28/0.28 

VPLc 1.08/0.22 0.82/0.14 1.30/0.19 1.07/0.14 1.14/0.09 1.22/0.22 1.38/0.18 

VPLo 1.29/0.16 0.98/0.11 1.70/0.16 1.32/0.15 1.21/0.11 1.21/0.28 1.45/0.19 

MD 1.26/0.32 0.74/0.23 1.68/0.24 1.12/0.29 1.22/0.15 1.31/0.29 1.54/0.21 

VLo 1.37/0.11 0.92/0.11 1.67/0.24 1.36/0.19 1.14/0.11 1.40/0.30 1.34/0.24 

VA 1.34/0.14 0.90/0.12 1.65/0.20 1.36/0.15 1.10/0.13 1.44/0.25 1.35/0.26 

Table 4. Normalized SWI intensity values 
(Mean/Standard Deviation) 

 

chosen for normalization since its intensity did not correlate with age (linear regression 

analysis, r2 = 0.0456, slope = 0.4477, p = 0.64567). AC intensity was calculated from the 

widest coronal strip of the AC in each subject (Fig. 8A). Several nuclei exhibited trends 

of increased hypointensity level with age. Correlation analysis (Pearson correlation, df = 

5, p<0.05) showed that the normalized mean intensity for nuclei in the posterior half of 

thalamus had a statistically significant dependence on age (VPLc: r = 0.8, Pulvinar: r = 

0.74, and MGN: r = 0.92) (Fig. 8B, Table 3). However, this was not the case for the 

anterior portion of thalamus including the ventral nuclei and MD.  

 

2.4.2 Probabilistic Tractography of Ascending Tracts to Ventral Nuclei in 

Thalamus 

While most regions of thalamus exhibited contrast sufficient to segment manually or to 

guide the placement of markers for the nonlinear atlas deformation algorithm, the internal 

borders of the ventral nuclei were not clearly distinguishable from the SWI. In this case, 

fiber tractography was used to estimate the ventral nuclei demarcations based upon 

thalamic afferents coursing along the ML (to VPLc), SCP (to VPLo), and GP (to 

VLo/VA) in three subjects (subjects 4, 5, and 7). The resulting fiber tracts were spatially 

co-registered to the SWI data and the reconstructed thalamic nuclei. In the case of the ML 

and PF tracts, the fiber tractography was able to identify the ventral entry point to VPLc  
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Figure 8. Age-related changes in thalamic image intensity with SWI 

(A) Anterior commissure in each subject was used to normalize susceptibility-weighted image intensity for 

each subject. (B) Normalized mean intensity of thalamic nuclei (n=7 subjects). Green circles and red error 

bars mark the mean and standard deviation of normalized intensity for each subject. The mean and standard 

deviation values for each structure are arranged from left to right from oldest to youngest age. 

 

and VLo in all three subjects (Fig. 9). In the case of the SCP tract, the tractography 

reconstructions were found to project into or just ventrally adjacent to the VPLo. 
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Figure 9. Ascending fiber tractography to the ventral nuclei of thalamus in three subjects 

(A1-A3) Examples of seed point (red) and waypoint (yellow) masks used in the probabilistic tractography. 

(A1) Seed point mask in GPi and waypoint mask in thalamus for reconstruction of the PF tract. (A2) Seed 

point mask of SCP in brainstem and waypoint mask in thalamus for reconstruction of SCP. (A3) Seed point 

mask of ML in brainstem and waypoint mask in thalamus for reconstruction of ML. (B-D) Bilateral 

probabilistic fiber tractography reconstructions for the PF, SCP, and ML tracts and their corresponding 

thalamic nuclei. The nuclei of the oral (VPLo) and caudal (VPLc) parts of the ventral posterolateral nucleus 

are reconstructed from series of warped atlas plates. A: anterior, V: ventral, M: medial, D: dorsal, P: 

posterior. 

2.4.3 Evaluation of Nuclei Reconstructions  

2.4.3.1 Electrophysiological Microelectrode Mapping of Ventral Nuclei in 

Thalamus 

To validate borders between the ventral nuclei, microelectrode spike recordings were 

performed through a cranial chamber chronically implanted in subject 4.  
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Figure 10. Superposition of microelectrode recordings with reconstructed thalamic nuclei and 

probabilistic tractography (subject 4) 

Red and yellow spheres are the locations of VPLo (oral part of the ventral posterolateral nucleus of 

thalamus) and VPLc (caudal part of the ventral posterolateral nucleus of thalamus) cells, respectively. Red 

and yellow contours denote the boundaries of VPLo and VPLc, respectively, as defined by the warped 

brain atlas process. The resultant probabilistic tractography of ML (green) and SCP (blue) are also 

superimposed on each slice.  

 

Electrophysiologically identified VPLo and VPLc cells matched closely with the 

segmented contours and probabilistic tractography predictions across multiple sagittal 

planes (Fig. 10). Small discrepancies at the border regions were observed, possibly due to 

the spatial spread of the recorded electric fields or slight inaccuracies in the atlas 

deformation process.  
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Figure 11. Relationship between hypointensity in the in vivo SWI and ex vivo blockface sectioned 

thalamic nuclei in the same non-human primates (subjects 5 and 6) 

(A1-D1) Full brain coronal plane SWI with boxed region enlarged in A2-D2. (A2/C2) SWI of the thalamus 

in subjects 6 and 5 at 10.34mm and 10mm posterior to AC, respectively. (A3/C3) Blockface tissue sections 

aligned with the images shown in A2/C2. (B2/D2) SWI of the thalamus in subjects 6 and 5 at 15mm and 

15.51mm posterior to AC, respectively. (B3/D3) Blockface tissue sections aligned with images shown in 

B2/D2. The yellow and blue contours show the SWI-deformed atlas plates overlaid on top of the SWI and 

blockface tissue sections, respectively.  

 

2.4.3.2 Tissue Sectioning-Based Identification of Hypointense Thalamic 

Nuclei in SWI 

Post-mortem blockface tissue sectioning was performed on subjects 5 and 6 to further 

validate that the atlas-based warping algorithm results were consistent with anatomical 

features observed in the ex vivo sectioned brain tissue (Fig. 11). Two representative 

sections at the level of the MD/VPLo/VPLc and the Pulvinar/MGN were found in each 

subject. The MD (Fig. 11, A2, C2, A3, C3), pulvinar and MGN (Fig. 11, B2, D2, B3, D3) 

all appeared hypointense in both the susceptibility-weighted images as well as the tissue 

section images. Atlas plates were warped to the susceptibility-weighted images and the  
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Figure 12. Subject-specific reconstructions of thalamic nuclei for DBS targeting 

Scaled-down version of the clinical DBS lead shown in the context of thalamic nuclei reconstructed from 

the susceptibility-weighted images of Subject 4. (A) Sagittal view of reconstructed thalamic volumes, 

afferent fibers, and DBS lead for targeting VPLo to treat tremor disorders. (B–F) Large images show 

sagittal view of thalamic nuclei. Inset shows the coronal view of the same nucleus. Large and small scale 

bars are for sagittal and coronal images, respectively. D: dorsal, A: anterior, L: lateral.  

 

resulting deformed plates were then linearly scaled (maintaining aspect ratio), slightly 

rotated (less than 2  in either counterclockwise or clockwise directions) and overlaid onto 

the matching tissue section images. The deformed atlas plates were found to align well 

with their matching tissue sections, especially in the hypointense pulvinar, MGN, and 

medial nuclei of the MD (Fig. 11A3, B3, C3, D3). 

2.5 Discussion 

In vivo visualization and demarcation of individual thalamic nuclei is critical for many 

preclinical and clinical stereotactic neurosurgical procedures targeting thalamus, 

including implantation of DBS leads (Fig. 12). In this study, we show the utility of an in 
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vivo multimodal imaging approach using high field 7T SWI and DWI to segment and 

identify nuclei within the NHP thalamus. The results were subsequently validated using 

electrophysiological recordings and post-mortem tissue sectioning. 

2.5.1 Atlas-Based Reconstructions  

A rich array of 2D or 3D registration methods exist to deform a brain atlas to MR images 

to identify structures not clearly visible on MR images [292]. Most 3D methods work to 

deform a source surface to fit a target surface by either minimizing difference in distance 

or energy of the deformation [281, 324-329]. This can be achieved by extracting 

ventricular and cortical surfaces from MR images and matching them to corresponding 

surfaces on a 3D atlas. The computed deformation based on matching these surfaces is 

then propagated throughout the entire volume. Although such methods may be 

appropriate for matching cortical surfaces, they essentially relegate the deformation of 

deep structures such as the thalamus to be a by-product of cortical and ventricular 

deformation [324]. One 2D solution well suited for atlas-based localization of structures 

lacking contrast in MR images involves the MLS method embodying the idea of ‘as rigid 

as possible’ image deformation [330, 331] which minimizes the amount of local scaling 

and shearing once certain constraints are satisfied. This more conservative approach 

incorporates the most reliable anatomical information contained in the MRI for the 

deformation process, and does not require defining features of an image and guessing for 

model parameters [327, 332]. Instead, the process requires setting a set of identical 

control points between the atlas and MR image to guide the deformation process. When 

coupled with high field imaging approaches with higher spatial resolution [223], the user 

can simply crop out all but the region of interest (e.g. thalamus) and perform a very local 

deformation. This approach is computationally efficient on top of an already fast and 

easy-to-implement algorithm. The result of the deformation is smooth and more realistic 

than the popular thin-plate spline approach [313, 333]. For these reasons we implemented 

the MLS method to take advantage of the increased contrast within thalamus at 7T to 

help further demarcate borders between thalamic nuclei.  
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2.5.2 Susceptibility-Weighted Imaging of Thalamus  

Analysis of the SWI data across the seven subjects showed: (1) relative hypointensity in 

internal capsule compared with the ventral nuclei of thalamus, (2) thalamic regions of 

hypointensity were most notably in the posterior half of thalamus and in the medial dorsal 

nucleus, and (3) positive correlations of image hypointensity in the posterior half of 

thalamus with age. SWI is sensitive to a difference in magnetic susceptibility in tissues 

and can be used to measure iron content [299].  Regions with higher iron content exhibit 

larger, linearly correlated phase shifts and will appear hypointense in the SWI data [305, 

306]. Iron in the form of ferritin and hemosiderin is stored in oligodendrocytes [300-303, 

334] and has been found in relatively rich deposits in certain brain regions [304]. 

Consistent with our results in the posterior half of thalamus, brain iron has been shown to 

accumulate with age [335], and an elevation in iron concentration in certain regions is 

known to occur in neurodegenerative diseases, including for example the substantia nigra 

and GP in Parkinson’s disease [336-339] and hippocampus in Alzheimer’s disease and 

Parkinson’s disease [340, 341]. In order to detect potential outliers in our data, we 

calculated Cook’s distance [342] for each nuclei using the age of the seven subjects as the 

independent variable and the average normalized SWI intensity values as the explanatory 

variable. A data point is considered an outlier if its Cook’s distance value exceeded three 

times the average Cook’s distance across all seven subjects (for a given nucleus). This 

analysis indicated that subject 2 is an outlier in all nuclei except pulvinar and MGN. 

These two posterior also demonstrated statistical significance in correlation between 

normalized SWI intensity and age.  It should also be noted that SWI is not exclusive in its 

ability to demarcate nuclei within thalamus, and other approaches including low-field T1 

and T2-weighted imaging have also been used [269, 343]. 

2.5.3 Cross-Validation of the Computationally Segmented Thalamic Nuclei 

Derived from SWI 

In this study, we applied multiple tools to cross-validate the segmentation of thalamic 

nuclei based on 7T SWI data, including probabilistic fiber tractography, 
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electrophysiology, and ex vivo blockface tissue sectioning. This multi-modal approach 

was feasible given the animal model preparation used. 

2.5.4 Demarcation of the Ventral Nuclei using Probabilistic Tractography 

Previous studies have found considerable variability in the location of generic atlas-based 

target points in thalamic nuclei in relation to major neighboring fiber tracts in individual 

patients, suggesting the need for individualized methods that can target structures not 

directly visible on conventional MRI [344]. One approach to subject-specific mapping of 

thalamic nuclei includes probabilistic fiber tractography for reconstructing white matter 

pathways [345] into the thalamus, including those originating from GPi (PF tracts) [223] 

and cortex [230]. Here, we extend these studies showing nearly complete demarcation of 

the ventral nuclei utilizing ascending ML, SCP, and PF fiber tracts. This approach 

provided important data to verify the atlas plate to SWI slice alignment for the anterior 

portion of the thalamus. The trajectories of the fiber tracts projecting into the subject-

specific ventral nuclei reconstructions (i.e. VPLc, VPLo, and VLo/VA) were consistent 

across the three subjects. 

2.5.5 Electrophysiological Cross-Validation 

The accuracy of the warping process was also verified by in vivo electrophysiological 

recording in the ventral thalamic nuclei. Cells were categorized based on their 

responsiveness to proprioceptive and microstimulation excitable (VPLo) and tactile 

(VPLc) input. While the locations of these cell types aligned well with both the deformed 

atlas and fiber tractography results, there were small discrepancies at the border between 

the nuclei. In this case, additional deformation methods can be applied to further reduce 

these small discrepancies [346].  

2.5.6 Blockface Tissue Sectioning Cross-Validation 

To avoid deformation of the tissue during histological processing, we chose to take 

blockface photographs of the brain during sectioning. Two types of deformations may 

still occur during the preparation of brain sections: 3D deformation caused by extraction 
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of the brain from the skull and 2D deformation caused by the sectioning process [347]. 

The three-dimensional deformation stems from loss of cerebrospinal fluid and blood and 

subsequent mechanical effects from gravity. Two-dimensional deformation results from 

shearing and tearing during cutting of the brain tissue and shrinkage due to changes in 

tissue temperature and hydration. Natural shade differences of frozen brain tissue were 

found to be sufficient for identifying many of the major thalamic nuclei. Based on this 

analysis, the relative positions of the thalamic nuclei on the blockface photographs 

resulted in consistent registration, where only linear scaling (no change in aspect ratio) 

and slight rotations (less than 1 ) were needed when overlaying the SWI-warped atlas 

plates onto the blockface sections. This registration was most visible for MD, pulvinar, 

and MGN borders with their respective hypointense regions in the MR images. In 

addition, the borders of the thalamus in the medial/lateral and dorsal/ventral directions 

also aligned well. The tissue sectioning validation demonstrated that the image warping 

approach could in the future utilize contrast not only between gray/white matter 

boundaries, but also between different thalamic nuclei to guide accurate segmentation of 

nuclei within thalamus. 

2.5.7 Limitations 

There are several points to consider in the interpretation of the results. First, the dataset 

included six females and only one young male rhesus macaque. These subjects were 

selected in part because their cranial musculature was minimal allowing for the receiver 

coils to be placed closer to the brain [227]. Another limitation is the use of an atlas that is 

particular to one NHP, along with its own nomenclature and criteria of demarcation 

[348]. However, the approach itself is one that can be extended to other brain atlases 

based on cytoarchitectonic features. While the fiber tractography and warping 

methodology results aligned reasonably well with the histological blockface images and 

electrophysiological results, there was some degree of misalignment especially in the 

caudate and substantia nigra regions with the histological images.  This registration error 

likely stemmed in part from nonlinear deformations that occurred as part of the perfusion, 

fixation, and freezing processes.  Further, the histological coronal sections were sliced at 



   50 

 

a slight pitch and yaw from the AC-PC line.  Future studies that utilize 3D rendering of 

histology-based fiber tracts would be useful to further validate tractography and atlas 

warping methods. Lastly, we are limited by the relatively small sample size in the number 

of subjects with 7T SWI data. The analysis of correlation between normalized SWI 

intensity and subject age would benefit from a larger sample size. However, we are 

confident based on the outlier detection analysis that the posterior nuclei show significant 

correlation between average SWI intensity and age. 

2.5.8 Applications to DBS Targeting  

The multimodal imaging approaches shown here provided enhanced visualization of 

thalamic nuclei, which can be critical for preclinical and clinical stereotactic 

neurosurgery procedures [222] (Fig. 12).  Defining thalamic nuclei through non-invasive 

means is especially important given that most nuclei have been targets for deep brain 

stimulation therapies and the precise locations, shapes, and sizes of these nuclei vary 

amongst subjects. In this way, the combined use of imaging techniques described in this 

study can assist in neurosurgical navigation of DBS targets in a given subject [349-351]. 

Additionally, the segmented nuclei reconstructions can also aid in the development of 

more accurate computational models of DBS [161, 201, 213, 215] to retrospectively 

quantify the neural pathways modulated by thalamic DBS therapy [352] or prospectively 

predict the stimulation settings necessary to target those pathways on a subject-specific 

basis [353].  
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Chapter 3  

 

Programming Algorithms for Deep 

Brain Stimulation Electrode Arrays 
 

This chapter was reprinted with permission from IEEE.  

YiZi Xiao*, Edgar Peña* and Matthew D. Johnson, “Theoretical Optimization of 

Stimulation Strategies for a Directionally Segmented Deep Brain Stimulation Electrode 

Array,” IEEE Transactions on Biomedical Engineering, 63.2 (2016): p.359-371.  

3.1 Overview 

3.1.1 Objective 

Programming deep brain stimulation (DBS) systems currently involves a clinician 

manually sweeping through a range of stimulus parameter settings to identify the setting 

that delivers the most robust therapy for a patient. With the advent of DBS arrays with a 

higher number and density of electrode sites, this trial and error process will become 

unmanageable in a clinical setting. Here, we describe a computationally efficient, model-

based algorithm to identify an electrode configuration that will most strongly activate 

tissue within a volume of interest. 
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3.1.2 Approach 

The cerebellar-receiving area of motor thalamus, the target for treating essential tremor 

with DBS, was rendered from imaging data and discretized into grid points aligned in 

approximate afferent and efferent axonal pathway orientations. A finite-element model 

(FEM) was constructed to simulate the volumetric tissue voltage during DBS. We 

leveraged the principle of voltage superposition to formulate a convex optimization-based 

approach to maximize activating function (AF) values at each grid point (via three 

different criteria), hence increasing the overall probability of action potential initiation 

and neuronal entrainment within the target volume.  

3.1.3 Main Results 

The algorithm achieved global optima of AF values within several seconds both efferent 

and afferent pathways. The optimal electrode configuration and resulting AF values 

differed across each optimization criteria and between axonal orientations.  

3.1.4 Significance 

This approach only required a set of FEM simulations equal to the number of DBS array 

electrodes, and can readily accommodate anisotropic/inhomogeneous tissue conductances 

or other axonal orientations. Together, the algorithm enabled efficient, flexible 

determination of a computationally optimal electrode configuration for DBS electrode 

arrays.  

3.2 Background 

Deep brain stimulation (DBS) is an effective surgical procedure for the treatment of a 

number of neurological and neuropsychiatric disorders, including medication-refractory 

Parkinson’s disease (PD), essential tremor (ET), dystonia, and severe obsessive 

compulsive disorder [354]. The procedure involves the placement of a lead of electrodes 

into a precise brain region to modulate abnormal neuronal activity with various forms of 

pulsatile electrical stimulation. Successful treatment is characterized by both symptom 

suppression and lack of side-effects. Such success requires accurate lead placement as 
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well as spatially targeted stimulation settings to avoid activating regions that elicit, for 

example, adverse motor [355], sensory [178], and cognitive [356] side-effects for the 

patient. Traditional designs of the DBS lead implant (for example, the Medtronic model 

3387/3389) use four cylindrical electrodes to deliver current in an omnidirectional 

fashion around the lead. A major improvement to this existing design would be enabling 

one to direct or steer current both along and around the DBS lead. This feature would be 

especially useful in cases of off-target DBS implants [215], [357] and for small or 

complex-shaped brain targets, such as the pedunculopontine nucleus [358], [213] for 

treating freezing of gait in patients with PD.  

    Several designs for high-density directionally segmented DBS arrays (DBSAs) with 

circumferentially-segmented electrodes have been advanced in recent years through 

computational studies [215], [213], [359] and in-vivo studies in non-human primates 

(NHPs) [357] and humans [360], [238], [361]. Here, we modeled DBS leads with 32 oval 

shaped electrodes arranged in 8 rows of 4 electrodes each, radially separated by 90° 

[357], [215], [213]. The surface areas of the DBSA electrodes were a fraction of the size 

of cylindrical electrodes found on commercial leads and have potential for improving the 

spatial resolution of targeting modulation of neuronal activity within the brain to improve 

overall therapy. 

The safety and efficacy of current shaping technology has recently been investigated 

clinically using leads with annular [361] and circumferentially-segmented [360], [238] 

designs. In the latter case, therapeutic current thresholds were 43% lower with a radially 

directed stimulation scheme compared to the omnidirectional scheme [360]. Further, the 

‘therapeutic window’ (difference in current thresholds to produce a meaningful symptom 

suppression and to sustain a side-effect) was the widest when using radially directed 

stimulation [360], [238]. Current shaping along the length of the DBS lead in patients 

with ET has also been shown to better alleviate stimulation-induced dysarthria while 

preserving tremor control [361]. The challenge with such current shaping approaches, 

however, especially in the case of DBSAs, is the number of possible electrode 

configurations and size of the stimulation amplitude, frequency, and pulse width 

parameter space [215]. 



   54 

 

 

Figure 13. Three-dimensional thalamic nuclei reconstructions 

Three-dimensional thalamic nuclei reconstructions were generated from (A) NHP susceptibility-weighted 

imaging and (B) warped brain atlas overlays. (C) Sagittal and (D) coronal view of the reconstructed VPLo 

and VPLc with the implanted DBSA.  

 

    Optimal programming of a DBSA has potential to improve treatment benefit and 

expedite the programming process. The current framework for programming the 

stimulation settings of DBS leads with four annular electrodes typically begins with 

evaluation of each contact using monopolar stimulation at fixed frequencies and pulse 

widths [362], [363]. The setting that requires the lowest stimulation amplitude to 

maximize therapy and/or has the widest therapeutic window is set for chronic stimulation 

unless persistent adverse side-effects are observed, in which case bipolar or multipolar 

stimulation configurations may be explored by combining the chosen contact with 

adjacent contact(s). The programming process can be time consuming [193], especially in 

cases when low-threshold side-effects appear. Furthermore, relying on direct patient 
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feedback for programming may not be feasible for disorders in which the therapeutic 

benefits may not emerge for weeks to months after starting stimulation [194], [195]. The 

efficacy of this programming method is also influenced by other factors, such as the 

intuition and experience of the DBS programmer, as well as the time allotted to each 

patient [196]. To explore the vast parameter space of the DBSA using this manual 

method of programming would not be feasible, since each additional electrode would 

prolong programming time in a nonlinear fashion and also pose a steeper learning curve. 

In addition, this method of programming four-electrode leads may underutilize the full 

potential of the DBSA to deliver optimal stimulation through a combination of active 

electrodes [364], [234]. Alternative programming approaches have been proposed aimed 

at increasing the efficiency of the process. One such approach uses a probabilistic 

efficacy atlas derived from intraoperative microstimulation response data [365]. The atlas 

is nonlinearly warped onto the pre-operative magnetic resonance imaging (MRI) data 

(co-registered to post-operative CT) to guide programming. This approach requires 

substantial accumulation of intraoperative patient data which is not readily accessible to 

the larger neuromodulation community. In addition, individual brain anatomy can vary 

substantially [366] and an entirely empirical approach may not be adequate.  

  Another proposed method estimates the volume of tissue activated (VTA) [367], [368], 

[369] from a particular DBS setting by simulating an activating function [370] derived 

from a finite element model solution of the tissue voltages along the neuron membrane 

compartments during DBS. In this case, DBS lead positions within the nucleus or fiber 

tract are dictated by the co-registration of a patient’s pre-operative magnetic resonance 

(MR) brain imaging with post-operative MR imaging or computed tomography scan data. 

The benefit of this approach is that it provides direct visualization of the neuronal 

pathways that are modulated for a given stimulation setting [218].  

  The second spatial derivative of the extracellular voltage potential, or activating 

function (AF), generated through the DBS lead is the driving force behind action 

potential initiation in neuronal processes [370] and can be used to predict the VTAs 

[371]. However, AF thresholds for neuronal activation depend on axon orientation and 

distance from the stimulation source [372]. An alternative approach is to apply the AF to 
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compartment neuron models [373] in a target region, which can have detailed 

morphologies and biophysical parameters, and then find the stimulus amplitudes to 

initiate an action potential [371]. Such biophysical models, usually performed in the 

NEURON programming environment [374], can  provide additional information about 

neuronal activation that AF alone may not describe, but this process can be time 

consuming and computationally intensive. In order to obtain the patient-specific 

stimulation strategy solutions, thousands of such simulations using different electrode 

configurations, axon orientations and locations must be run ahead of time, and the VTA 

solutions must be precompiled and stored [218]. Due to the resource-intensive and time 

consuming nature of this approach, it may not be readily accessible to the broader 

research and clinical community.  

 In this study, we propose an algorithm that leverages the superposition of the 

activating function, thus requiring only a set number (equal to the number of electrodes) 

of anatomical FEM simulations to be run. By combining this with the principles of 

convex optimization, we formulate an approach that maximizes the AF values in the 

volume of interest. We consider three separate optimization criteria that may be used with 

this approach. Overall, the methods presented here bypass the need to run extensive 

simulations of neuronal activation, providing an automated, computationally efficient 

way to patient-specific programming of a DBSA implant.  

3.3 Methods 

3.3.1 Algorithm Overview 

We constructed a computational model of motor thalamic DBS using current-controlled 

stimulation using non-human primate MRI data (Fig. 13). High frequency stimulation of 

the ventral intermediate nucleus of thalamus (Vim) in humans can suppress tremor, while 

persistent paresthesias is thought to emerge from activation of the adjacent sensory 

thalamic nucleus (ventral posterolateral nucleus of thalamus/VPL) [53]. In the non-

human primate, the equivalent nuclei to Vim and VPL are the oral (VPLo) and caudal 

(VPLc) ventral posterior lateral nuclei of thalamus, respectively [348]. We reconstructed  
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Figure 14. Procedural flowchart for optimization algorithm 

Three different optimization criteria (MD, QP, LP) were considered separately. 

 

both VPLo and VPLc and modeled independent current-controlled stimulation through 

each DBSA electrode (n=32). Volumes were discretized into points arranged in a grid 

pattern, with anatomically realistic afferent and efferent fiber orientations. We show a 

theoretical maximum AF value for each grid point, which forms a theoretical maximum 

curve (Max Curve) that cannot be surpassed. We take advantage of the principle of 

voltage superposition to achieve AF values as close as possible to this Max Curve 

through the use of convex optimization algorithms (Fig. 14).  

3.3.2 Reconstruction of Thalmic Nuclei 

High field magnetic resonance imaging (7T, Magnex Scientific) was performed on a 

female rhesus macaque monkey (macaca mulatta) under isoflurane anesthesia at the 

University of Minnesota’s Center for Magnetic Resonance Research using a Siemens  
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Figure 15. Discretization of thalamic volumes 

The top row (A,B) shows the discretization process for the efferent direction while the bottom row (C,D) 

shows the process in the afferent direction. Both the VPLo and VPLc are shown in coronal orientation. In 

either case, the left image shows grid points arranged in serial layers spanning either volumes. The red 

arrow indicates the orientation of the neuronal processes. The right image shows only those grid points that 

fall within the volume (red points). The internodal distance between successive layers of grid points are 

shown. (A) and (C): VPLo. (B) and (D): VPLc.  

 

console. All procedures were approved by the University of Minnesota’s Institutional 

Animal Care and Use Committee and complied with United States Public Health Service 

policy on the humane care and use of laboratory animals. A customized head coil was 

developed with 16-channel transmit and 16+6 receive channels, in which 4 coils mounted 

on top of the subject’s head and 2 ear-loop coils were added to enhance signal detection 

from subcortical structures [298]. Susceptibility-weighed imaging (SWI) data was 

acquired with a 3D flow-compensated gradient echo sequence. SWI data was aligned to 

the anterior commissure (AC)-posterior commissure (PC) plane (Analyze 11.0, 

AnalyzeDirect) and resliced into serial coronal sections with 40 coronal images spanning 

the thalamus. Matching plates from a rhesus macaque brain atlas [310] were nonlinearly 
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deformed [313], [314] to the coronal MR images, and the contours of VPLo and VPLc 

within each were extracted. These contours were imported into a B-spline modeling 

program (Rhinoceros) and arranged serially at an interval of 0.4 mm (voxel size) along 

the anterior-posterior direction. The contours were then lofted into 3D surfaces.    

3.3.3 Finite Element Model of Stimulation through the DBSA 

The DBSA (NeuroNexus, Ann Arbor, Michigan) consisted of 8 rows of 4 elliptical 

electrodes (semi-major axis: 0.265 mm; semi-minor axis: 0.14 mm). The lead was 0.5 

mm in diameter and 40 mm in length. The angular distance between adjacent electrodes 

in the same row was 90° and  

the distance between two adjacent rows of electrodes was 0.75 mm. A 0.1 40 mm 

(thickness  height), 0.18 S/m homogeneous encapsulation layer and a 100 100 mm 

(diameter  height), 0.3 S/m cylinder of homogeneous bulk tissue surrounded the lead 

[375], [376], [377]. The DBSA electrodes and insulation were assigned conductance 

values of 106 S/m and 10-12 S/m, respectively. The electrode surfaces were designated as 

boundary current sources and the walls of the bulk tissue  

cylinder were set to ground. The voltage distributions resulting from electrical stimulus 

perturbations were calculated via the finite element method solving Poisson’s equation in 

COMSOL Multiphysics (v4.3b). Simulations of monopolar cathodic (-1 mA) stimulation 

were performed with each of the electrodes acting as the cathode (n=32).  

3.3.4 Discretization of Thalamic Volumes  

A 3D reconstruction of the DBSA geometry was created in Rhinoceros and placed 

within the VPLo close to its lateral border with VPLc such that the electrodes spanned 

the length of the VPLo. The trajectory of the lead was 77° above the horizontal plane and 

10° from the sagittal plane [184] (Fig. 13). The electrodes were assigned indices from 1 

to 32, such that the contacts facing posterior, medial, anterior, and lateral were labeled 1, 

2, 3 and 4, respectively. This order of labeling was maintained in every row, with indices 

increasing along the vertical direction. The lead, VPLo, and VPLc were then rotated 

together such that the center of the first row of electrodes was consistent with the FEM  
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Efferent Data 

 Total Grid Points Number of Grid Points in C matrix  

VPLo 17  27173 

VPLc 17  34059 

Afferent Data 

 Total Grid Points Number of Grid Points in C matrix 

VPLo 11  20836 

VPLc 14  25010 
Table 5. Volume discretization data 

 

model. The rotation matrix (TAF) was stored for this change in a coordinate system from 

AC-PC to FEM model coordinates.  

The afferent fiber orientations into VPLo and VPLc are about 45° from the 

intercommissural line in the coronal plane and 60° in the sagittal plane [322]. The 

efferent fiber orientation from VPLo and VPLc to cortex follows a ventral-medial to 

dorsal-lateral direction approximately 45° from the intercommissural plane in the coronal 

direction [378, 379]. At the scale of the grid spacing used in this study, the thalamus is 

generally considered to be an isotropic structure [377]. The surfaces of the DBSA, VPLo, 

and VPLc were generated in Rhinoceros and the vertices of these surfaces were imported 

into the Matlab programming environment (v2013b, MathWorks) using the AC-PC 

coordinate system. The vertices of thalamic volumes were rotated (rotation matrix ) 

such that either the afferent or efferent fiber directions were oriented in the z-direction. A 

3D rectangular grid consisting of multiple layers spanning the z-direction was 

constructed for each volume. Each layer spanned the maximal extent of the volume in the 

x and y directions and consisted of 10,000 points (100 x 100) in total. An additional layer 

was added to either side of the existing grid for calculating AF values. These grid points 

were arranged in this way to represent axonal node compartments. The distance between 

layers of grid points was 0.5 mm in both the efferent and afferent directions, consistent 

with internodal distances of myelinated axons used in previous studies [364]. The 

coordinates of these grid points were transformed into AC-PC space by multiplying  

(Fig. 15) and then were transformed into the FEM model space by multiplying TAF. Data 

regarding the discretization process are listed in Table 5.  
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3.3.5 Activating Function Values and Construction of the Max Curve  

Using each FEM model solution stored previously, the activating function values for each 

grid point along the fiber direction was calculated using the following formula:  

 

                                                                                        (3.1) 

where  is a position along the direction of fibers,  is the voltage value as a function of 

position, and  is the internodal distance. The AF values for grid points within the 

layers at either end cannot be calculated and these points are therefore discarded. Points 

that overlap spatially with the DBSA are also discarded. The AF values for the remaining 

 points can be stored in a 32 n matrix : 

                                                                                              (3.2) 

where the row contains the AF values resulting from stimulation through the  

electrode alone, delivering -1mA monopolar cathodic current. Poisson’s equation in 

electrostatics dictates that the tissue voltage distribution is related to the current by: 

                                                                                                                 (3.3) 

where  is the tissue conductance, and I is the current.  From (Eqn. 3.3) it is possible to 

derive that . Along with (Eqn. 3.1), it can be shown that the AF values resulting 

from multiple voltage sources can be linearly superimposed. To find the maximum 

possible AF value at a given grid point from any possible electrode con mentioned 

thought experiment.uration (subject to a 1 mA power constraint), we can consider the 

following thought experiment: suppose there are  different categories of items that can 

be manufactured, each with the same cost but different profit margins. For a given 

manufacturing budget, the highest profit achievable occurs when the entire budget goes 

into manufacturing the most profitable item. Likewise, it can be readily shown that the 

highest possible AF value achievable at each grid point is obtained when stimulating 

through a single electrode using the entire 1mA of current. Therefore the maximum value 

in each column (j) of the  matrix is the theoretical maximum AF value possible for grid  
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Efferent VPLo 

 Mean (V/mm2) Std (V/mm2) Max (V/mm2) Min (V/mm2) 

MD 7.763  0.022 0.445 -0.287 

QP 15  0.04 1.362 -1.172 

LP 22  0.091 3.573 -2.953 

Efferent VPLc 

 Mean (V/mm2) Std (V/mm2) Max (V/mm2) Min (V/mm2) 

MD -9.31  0.002 0.009 -0.046 

QP -8.867  0.007 0.049 -0.186 

LP -8.605  0.012 0.119 -0.381 

Afferent VPLo 

 Mean (V/mm2) Std (V/mm2) Max (V/mm2) Min (V/mm2) 

MD -15  0.027 0.576 -0.342 

QP 14  0.045 1.599 -0.809 

LP 39  0.069 3.912 -0.785 

Afferent VPLc 

 Mean (V/mm2) Std (V/mm2) Max (V/mm2) Min (V/mm2) 

MD -8.835  0.003 0.043 -0.022 

QP 2.174  0.001 0.012 -0.004 

LP 4.975  0.001 0.009 -0.003 

Table 6. Activating function values 

 

point j. The maximum AF values are sorted in ascending order and arranged into the Max 

Curve. Each grid point represents the center of a membrane compartment. Positive AF 

values are responsible for directly depolarizing the cell membrane and considered here as 

potential initiation sites for action potential generation [370]. Negative AF values 

represent direct hyperpolarization of the cell membrane and thus limit the likelihood of 

generating action potentials. The goal as defined in this study was to obtain the highest 

AF value possible at each grid point within VPLo. This corresponds to maximizing 

proximity to the Max Curve.  

3.3.6 Convex Optimization  

The volume activation problem can thus be framed conceptually as follows: “How do we 

bring as many of the grid points as close as possible to their corresponding maximum AF 
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values on the Max Curve?” To formulate this problem mathematically, we applied the 

principle of superposition to denote the AF values due to a given electrode configuration: 

                                                                                                                      (3.4) 

where  is the 32 1 vector of currents through each electrode, and  and  are the AF 

value and column of  corresponding to grid point j. Together, the AF values resulting 

from stimulation at each grid point can form another curve called the Actual Curve. At 

each grid point j, the difference between the maximum AF value and the actual AF value 

from stimulation with  is given by the following:  

                                                                                     (3.5) 

Using (Eqn. 3.5) as a measure of discrepancy between the Max Curve and the Actual 

Curve, we can set the objective to minimize discrepancy. Specifically, we considered 

three different optimization criteria using three different measures of discrepancy 

between the two curves.  For simplicity, we have used constraints in all three cases that 

the currents through any of the 32 electrodes be greater or equal to zero and that the sum 

of all currents through the electrodes be equal to 1mA. The latter constraint was 

arbitrarily defined and can be adjusted as necessary in the context of using total current 

amplitudes that do not express stimulation-evoked side effects.     Using only the 

difference between the Max Curve and Actual Curve as a measure, the problem can be 

solved by linear programming (LP) as follows: 

minimize:  

subject to:  and , for all  
 

Using the square of the difference between the two curves, the problem can be solved 

by quadratic programming (QP): 
 

minimize:  

subject to:  and , for all  
 

Finally, the maximum deviation (MD) between the two curves as a criterion to 

minimize is given by: 
 

minimize:  

subject to:  and , for all  
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For linear programming, quadratic programming, and maximum deviation minimization 

via convex optimization, the problem is well-posed and has a unique, global minimum. 

Here, we considered all three of these criteria separately (LP, QP, and MD), and 

implemented the optimization in MATLAB (v2013b) using the cvx package for solving 

convex optimization problems [380]. All computations and performance assessments 

were run on a PC with eight cores, 64-bit operating system, 24.0 GB RAM, and an Intel 

Core i7 processor at 3.40 GHz. To verify optima were reached, one million random 

electrode configurations were generated, and their corresponding discrepancy measures 

were obtained to construct noise histograms for each of the three methods. 

3.3.7 Runtime and Sampling Robustness 

We ran the algorithms on random subsets of grid points to assess (1) the algorithm’s 

runtime with respect to number of grid points used, and (2) the robustness of electrode 

configuration solutions with respect to sampling. Each of the three optimization criteria 

(MD, QP, LP) was used on random subsets of the efferent VPLo grid points. The random 

subsets consisted of eight sampling levels: 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, and 

1/256 of the total number of grid points within the volume. We obtained and ran 31 

random subsets of grid points for each sampling level. The resulting electrode 

configurations were assessed based on the average height and angle of the active 

electrodes. The runtime was also measured. This yielded 31 measurements of height, 

angle, and runtime for each sampling level. 

3.4 Results 

3.4.1 Electrode Configurations  

The optimal current output in the efferent and afferent cases is shown graphically in Figs. 

16 and 17, respectively. In both cases, MD had the most active contacts, while LP had the 

least (contacts delivering 1 A or more current were considered active). The distribution 

of current amongst the active contacts was fairly uniform in the MD criterion solutions 

and less so in the QP criterion solutions. In the efferent case, the mean current output was 
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0.067 0.037 mA per electrode (mean  std) for the MD solution and 0.091 0.104 mA 

per electrode for the QP solution. In the afferent case, the mean current output was 

0.072 0.043 mA per electrode for the MD solution and 0.2 0.147 mA per electrode for 

the QP solution. In the efferent case, the active electrode contacts faced the anterior or 

posterior directions primarily. In the afferent case, most active electrodes faced medially 

or laterally.  In the case of the LP solution, for both efferent and afferent cases, the entire 

1 mA current was applied through only one contact, as expected from the previously 

mentioned thought experiment. 

3.4.2 Activating Function Values 

The algorithm AF solutions were based on grid points in VPLo and were optimized to 

achieve proximity to the VPLo Max Curve. The resulting AF values for both VPLo and 

VPLc are summarized in Table 6 and shown graphically in Fig. 18. Not surprisingly, 

higher AF values were concentrated near the active electrodes. In both the efferent and 

afferent cases, the MD, QP and LP solutions produced successively tighter concentrations 

of larger AF values along the length of the thalamic nuclei. The MD solution AF values 

exhibited the least amount of spread both spatially and numerically. The LP solution, on 

the other hand, exhibited the most spread, the largest mean, and the largest maximum AF 

values, but also produced the lowest AF values within VPLo. Fig. 18 illustrates the 

proximity of the actual AF values to the Max Curve for VPLo grid points. The LP 

solution had many points that achieved their maximum value, though a relatively large 

variation in AF values was once again evident across grid points. In contrast, very few 

grid points from the MD and QP solutions achieved their maximum values, but there was 

relatively less variation in AF values compared to the results using the LP criterion. 



   66 

 

 

Figure 16. Algorithm-generated electrode configurations for the thalamic efferent pathway 

approximations 

The left, middle, and right columns show outcomes from the MD, QP and LP optimization criteria, 

respectively. Active contacts (> 1 ) in each case are shown in red (top row) with the precise amount of 

current calculated by the algorithm shown in indexed colors (second row). Axial views (third row) and 

oblique views (fourth row) of VPLo and VPLc are shown in the context of the DBSA with active contacts 

shown in red. 

3.4.3 Optimization Results 

Fig. 20 shows three different measures comparing the performances of the MD, QP, and 

LP solutions to one million random (chance) electrode configurations. Stimulating 

electrode configurations I (three separate criteria solutions and 1 million random  
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Efferent Data 

 Max Deviation Sum of Square of 

Differences 

Sum of Differences 

MD < 0.001 < 0.001 0.001 

QP 0.8348 < 0.001 < 0.001 

LP 0.8593 0.0037 < 0.001 

Afferent Data 

 Max Deviation Sum of Square of 

Differences 

Sum of Differences 

MD < 0.001 <0.001 0.0583 

QP 0.2758 < 0.001 < 0.001 

LP 0.2758 < 0.001 < 0.001 

Table 7. Probability of algorithms performing better than randomly generated results 

 

solutions) were used to calculate the model predicted actual AF values using (Eqn. 3.4). 

The results were arranged into the Actual Curve. The maximum deviation, sum of 

differences, and square of the sum of differences between the Actual Curve and the Max 

Curve were calculated. As expected, the MD solution achieved the lowest maximum 

deviation, the QP solution achieved lowest sum of square of deviations, and LP solution 

achieved the lowest sum of deviations. Furthermore, within each of these categories, the 

best-performing solution performed significantly better than chance. While no single 

optimization solution yielded better-than-chance results across all three measures, MD 

tended to perform better relative to chance in all categories. QP and LP showed better-

than-chance performance for all except the maximum deviation category. The p-values 

for each category are listed in Table 7. 
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Figure 17. Algorithm-generated electrode configurations for the thalamic afferent pathway 

approximations 

Labeling is identical to that described for Figure 16.  

3.4.4 Runtime and Sampling Robustness 

In terms of runtime (Fig. 21C,F,I), mean duration for 27,173 efferent VPLo grid points 

was 3.0 seconds for the MD solution, 3.4 seconds for the QP solution, and 0.2 seconds 

for the LP solution. Runtime scaled nonlinearly with respect to number of grid points, 

such that sampling half the grid points reduced runtime by more than half. Using subsets 

of the full grid points for the computation yielded active electrodes with similar mean  
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Figure 18. Comparison of Max Curve to solutions obtained by MD, QP, and LP for efferent and 

afferent data 

Grid points in the region of interest are sorted based on their maximum achievable values. For each 

optimization criterion, the actual value at each grid point is plotted underneath its maximum possible value.  

Therefore, the closeness of the grid points to the Max Curve is a measure of optimization performance. (A-

C) and (G-I): AF values at all grid points are presented in units of V/mm2. (D-F) and (J-L): Grid points 

with AF values less than -0.01 V/mm2 were omitted in these plots. The remaining AF values were made 

positive by adding 0.01 and the natural logarithm of the resulting values was computed. 

 

height (Fig. 21A, D, G) and mean angular direction (Fig. 21B, E, H).  However, smaller 

subsets yielded larger standard deviations of the active electrode heights and directions.  
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3.5 Discussion  

3.5.1 Predicting Neuronal Activation  

Several computational methods have been used to predict neuronal activation. The first 

spatial derivative along the neuronal process has been shown to be appropriate for 

modeling activation near the vicinity of the soma [381]. However, computational studies 

have also shown that the waveforms used in DBS applications are likely to elicit action 

potentials first in the axons [382], [161] based upon the second spatial derivative of the 

extracellular voltage along the axonal processes [370], [383]. Such calculations can be 

performed using spatially distributed multi-compartment neuron models [384] to obtain a 

VTA. However, this process is computationally intensive. A more efficient approach, as 

described in this study, is to use the AF values along the estimated direction of neuronal 

processes to predict the VTA. This method is widely used [357], [371], [385], [386] but 

still requires large amounts of simulations to be run and the results stored in order to 

account for different orientations and displacements of neuronal processes from the 

source(s) of stimulation [364]. Studies have pointed out the limitations to this approach 

[387] and a novel method for VTA prediction using artificial neural networks (ANN) has 

been proposed [388], although substantial amounts of simulations are still needed to 

generate different stimulation scenarios to train the ANN.  

  Our goal here was to increase the probability of neuronal activation instead of 

determining the exact activation profile using VTA prediction. We do this by maximizing 

AF values, taking advantage of well-established theories associating higher AF values 

with neuronal activation [370] [383]. It is not straightforward to set an exact threshold AF 

value due to the variation in reported values [357] [359], and the dependence on factors 

such as fiber orientation and distance of compartments to the active electrode(s) [372]. 

Nevertheless, the method presented here circumvents such limitations by determining a 

theoretical maximum AF value at each grid point (Max Curve) given a current input 

limit. These grid points represent neuronal compartments, each with the ability to initiate 

an action potential. The goal of our superposition and optimization-based framework is to 

achieve proximity between the stimulation-induced AF values and the Max Curve.  This  
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Figure 19. Activating function values resulting from DBSA stimulation using algorithm-generated 

electrode configurations 

(A-C): Efferent data, axial view of the AF values resulting from stimulation configurations generated using 

the MD, QP, and LP criteria, respectively. (D-F): Coronal view of the AF values shown in (a-c). (G-I): 

Afferent data, axial view of the AF values resulting from stimulation configurations generated using the 

MD, QP, and LP criteria, respectively. (J-L): Coronal view of the AF values shown in (j-l). For 

visualization purposes, all AF values greater than -0.01V/mm2 were made positive by adding 0.01 and the 

natural logarithm of the resulting values was computed. The logarithm values were used as indexed colors. 

The color bar in this figure ranges from -6 to -3 in logarithm values. Points with values outside of this range 

were directly assigned the values of -6 or -3. Points with AF values less than -0.01V/mm2 were assigned 

logarithm values of -6. Refer to Figure 13(D) for borders between VPLo and VPLc in the coronal view. 

Refer to Figure 16 or 17 for the border in the axial view.    
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ultimately aims to increase the probability for action potential initiation or other forms of 

sub-threshold modulation. 

  While we used the Max Curve, the algorithm can be readily adapted to activation 

thresholds, such as a constant AF threshold used in some studies [357], [359], [371] or a 

nonlinear AF threshold fall-off with respect to distance from the stimulating electrode 

[372]. Here we selected the Max Curve as the target criteria to compare each grid point 

against its own theoretical maximum AF value.  This avoids certain issues that constant 

AF thresholds may introduce, such as weighting the discrepancies due to grid points far 

from the electrodes too heavily. Furthermore, it is possible that certain AF values on the 

Max Curve are negative, which means that the hyperpolarizing effect would elicit an 

indirect depolarizing influence on the axons. These points can be omitted from the  

matrix so that the algorithm can focus on the remaining points with positive AF values on 

the Max Curve. Here, we chose to keep these points in this study. 

3.5.2 Algorithm and Performance  

Finding the optimal stimulation strategy for high-density electrode arrays remains a 

challenge in various electrical stimulation technologies. Manipulation of the amounts of 

current delivered through each electrode has been shown to shape the spatial distribution 

of voltage potentials, their gradients [389], and ultimately the VTA [390].  

  Algorithms for automatic generation of stimulating electrode configurations require 

well-defined neuronal response measures and an understanding of the underlying 

mechanisms of action. In cochlear implant studies, the goal is to minimize current spread 

from activating multiple electrodes so as to reduce the effects of interfering stimulation. 

Studies have proposed using psychophysical measurements to find the optimal electrode 

configuration in order to selectively activate a particular neural site [391], [392]. In DBS, 

the goal has been viewed as one to maximize modulation of neuronal spike activity 

within a target brain region, while avoiding activation of pathways implicated in the 

manifestation of side effects. In terms of the former, one of the established approaches is 

to search through pre-compiled solutions to find the settings that give the most overlap 

between the VTA and the target volume [216]. For DBS arrays, this approach would  
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Figure 20. Performance of algorithm generated results against randomly generated electrode 

configurations 

Performance comparison of MD, QP, and LP to one million random electrode configurations (gray 

normalized histogram), in efferent and afferent data. The three measures considered (Max Deviation, Sum 

of Squares, Sum) each indicate deviation from maximum possible activating function values. Thus, lower 

values correspond to better performance.  

 

require massively large computational resources to calculate this solution. The 

computational efficiency of our approach arises from circumventing VTA prediction, 

while maintaining simplicity in user inputs: the power constraint (1 mA in this study), the 

target volume, and fiber orientations (in order to discretize the volume into grid points 

aligned in that orientation).   

  From Table 6, the mean AF values differed depending on the orientation of the fibers. 

However, this difference was not significant. Within VPLo (Fig. 18/Table 6), the LP 

solution achieved the highest mean AF values, but also resulted in the largest spread of 

data (about 2.5-4 times larger than the MD solution, and 1.5-2.3 times larger than the QP 

solution). Meanwhile, the QP solution produced slightly larger mean AF values than the 
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MD solution in both efferent and afferent cases, and only had a slightly larger spread.   

Based on this analysis, the LP criterion would be selected if one was interested in 

optimizing for the average AF value in the region of interest. Indeed, the LP solution 

converges on a single electrode, which has the greatest influence on the AF mean value. 

The LP criterion is mathematically equivalent to maximizing the mean AF values across 

all grid points. As such, it is expected that some grid points from the LP solution will lie 

on the Max Curve (as shown in Fig. 18) since all the current is applied to a single 

electrode and thus certain grid points will achieve their maximum AF and lie on the Max 

Curve by definition. On the other hand, if one considers generating a more uniform 

activating function value of the region of interest, the QP and MD criteria would be more 

appropriate. It is important to note that each criterion is meant to be used independently. 

What remains is performing the electrophysiological investigation to ascertain which 

criterion yields the most robust therapeutic effect with DBS.  

There are other considerations to factor into this calculation. For one, charge density 

limits of stimulation at a given electrode may impact the LP approach more than the other 

two curve fitting approaches, since the LP solution converges on a single electrode. 

Additionally, the QP and MD criteria require multiple electrodes with independent 

current controlled stimulators that are not yet widespread clinically.  

The optimization approach with MD, QP, and LP criteria each outperformed one 

million random electrode configurations in their respective measures of proximity to the 

Max Curve (Fig. 20). However, no single criterion solution yielded better-than-chance 

performance for all three measures. Indeed, while the LP solution clearly achieved the 

best performance for sum of deviations, it also had the worst performance for the other 

two measures.  It is thus important to recognize that the efficiency and mathematical 

flexibility of these algorithms must be coupled with a clear goal of what are the desired 

criteria for the resulting AF values. These criteria may depend on patient-specific 

parameters (e.g. modulating a target uniformly or leveraging activation of a pathway that 

can have broad synaptic influence over the entire region [215].  

The algorithm runtime for each of the MD, QP, and LP criteria was on the order of 

several seconds for the number of grid points used here, making it feasible for on-site 
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patient-specific clinical use.  Runtime scaled nonlinearly with respect to number of grid 

points (i.e. halving the number of grid points reduced runtime by more than half). 

However, this nonlinear relation was not very strong. Randomly sampling half the grid 

points yielded a similar average height and angle of active electrodes, indicating that the 

algorithm is robust to changes in grid point resolution. However, very small samples 

(corresponding to low grid point resolutions) resulted in chance electrode configurations, 

since the spatial extent of the samples was sparse relative to the spatial features of the 

electric field. The algorithm presented here also allows for fast computation of multiple 

stimulating electrode configurations using the same DBSA to target different neuronal 

subpopulations within a target region, as in the case of coordinated reset stimulation 

[393], [394] to desynchronize pathological oscillations.  

3.5.3 Study Limitations and Future Work  

This study applied the optimization concept using relatively simplistic models to create a 

controlled environment. One important limitation to this study is the simplicity of the 

tissue model and its underlying neuron morphologies. For example, the volumes of VPLo 

and VPLc were discretized in two fixed directions, and the grid points were arranged in 

serial layers. A more realistic way to discretize the volumes would be to populate them 

with grid points that are more morphologically realistic [215], [161], [395], [396], [378]. 

Second, while the activating function was computed with potentials constrained to the 

approximate axonal trajectories within thalamus, the voltage distribution itself was 

obtained under the assumption of a homogeneous and isotropic tissue medium. This 

approximation is reasonable at the grid point spacing considered here [40], though a more 

realistic model would incorporate conductance inhomogeneity as well as anisotropy 

through diffusion tensor imaging [397]. The changes would take place in the initial 

construction of the FEM (e.g. extracting anisotropic and inhomogeneous tissue 

conductivities from diffusion tensor imaging data), but would not impact the overall 

efficiency of the algorithm. As such, this framework enables one to readily adapt the  
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Figure 21. Comparison of runtime and sampling robustness for MD, QP, and LP algorithms 

The original number of grid points for efferent data was 27,173. For each level of sampling (½, ¼, etc.) a 

random subset of the original points were selected. (A, D, G) Average height of active electrodes with 

respect to multiple sampled subsets. Standard deviation of height progressively increases as smaller subsets 

of original points are used.  (B, E, H) Average angular direction of active electrodes.  Similarly to average 

height, standard deviation increases toward random distribution.  (C, F, I)  Runtime and logarithm of 

runtime with respect to sampling. 

 

model with changing implant environments (e.g. to model edema in acute implants vs. 

encapsulation in chronic implants). Third, we did not model the voltage drop or 

capacitance of the electrode-electrolyte interface. Such considerations are important 
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[398], and the optimization algorithms developed in this study are amenable to the 

inclusion of such complexities as part of future iterations of the algorithm. Another 

important consideration is that the algorithm in its current form does not include 

minimization of the AF values in regions deemed to elicit side effects when stimulated, 

such as VPLc [215], [201], [399]. Such an algorithm, which optimizes both cathodic and 

anodic currents delivered through the DBSA, is part of a subsequent study.  

  Validation studies exploring these parameters are needed to clarify this relation between 

the AF criteria and both electrophysiological changes in the brain and behavioral 

outcomes in the subject. Studies in the fields of cochlear and retinal implants have 

demonstrated that current steering can create ‘virtual electrodes’ by differential 

distribution of current between physical electrodes to elicit percepts intermediate to those 

produced using monopolar configurations [400], [401]. In DBS, clinical validation 

studies have shown that stimulation strategies based on computational models can be 

superior to clinically derived strategies to limit cognitive deficiencies [367] and improve 

therapeutic outcomes [369]. Electrophysiological studies to validate the model 

predictions are important and have been limited to date. For one, it is important to 

consider the spatial distribution of the modulated neuronal firing patterns around the DBS 

lead [402] [156] and how this varies amongst algorithm-generated stimulus settings and 

the setting derived from a clinical exam. It is also important to validate the models at a 

circuit level [403] to compare the ability for a given set of settings to modulate neuronal 

activity throughout the affected network. Ultimately, it is important to directly measure 

behavioral outcomes, such as motor capsule side effects [216] and symptom reduction 

[360] [238], in a clinical setting to determine if the algorithm generated stimulation is 

more effective and efficient. 
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Chapter 4 

 

Spherical Statistics to Characterize the 

Spatial Distribution of Deep Brain 

Stimulation Effects on Neuronal 

Activity 

This chapter reprinted with permission from Elsevier.  

YiZi Xiao and Matthew D. Johnson, “Spherical statistics for characterizing the spatial 

distribution of deep brain stimulation effects on neuronal activity,” J Neurosci Methods, 

255(2015): p.52-65.  
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4.1 Overview 

4.1.1 Objective 

Computational models of deep brain stimulation (DBS) have played a key role in 

understanding the physiological mechanisms of DBS therapies. By estimating a volume 

of tissue directly modulated by DBS, one can relate the neuronal pathways within those 

volumes to the therapeutic efficacy of a particular DBS setting. With the advent of DBS 

electrode arrays that can facilitate higher resolution current steering and sculpting, there 

is a need for a more systematic method to quantify the directional component of the 

morphology of these modulated volumes. Here, we describe a spherical statistical 

framework to quantify such morphologies.  

4.1.2 Approach 

This framework was demonstrated using a 3D computational model of stimulation of 

thalamocortical neurons surrounding a radially-segmented DBS array. Visualization 

techniques and empirical shape analysis were used to determine the salient features in the 

model data as well as formal hypothesis testing to determine the shape of each model 

distribution.  

4.1.3 Main Results 

We show that neuronal population volumes modulated by different electrode 

configurations can be characterized by parametric distribution models, such as the Kent 

and Watson girdle models. In addition, distribution parameters change with stimulus 

settings, including amplitude and radial distance from the DBS array. Increasing 

stimulation amplitude through a single contact resulted in more diffuse activation of 

neurons as well as increased rotational symmetry about the mean direction of the 

activated population. When stimulation amplitude is held constant, the activated neuronal 

population is more concentrated in distribution the further they are away from the DBS 

array, but also more rotationally asymmetric. We also show how data representation (e.g. 
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stimulus-entrained cell body vs. axon node) can significantly alter model distribution 

shape. 

4.1.4 Significance  

This statistical framework provides a quantitative method to analyze the spatial 

morphologies of DBS-induced effects on neuronal activity. The application of spherical 

statistics to assess spatial distributions of neuronal activity has potential usefulness for 

numerous other recording, labeling, and stimulation modalities.  

4.2 Background 

Electrical stimulation within the brain is known to modulate the rate and pattern of 

neuronal spike activity around an active electrode [156, 404-407]. Such effects are thought 

to stem from directly modulating a range of afferent and efferent neuronal processes as 

well as directly modulating nearby axonal fibers of passage [161, 208, 209], which 

together create a sparsely activated volume that is highly dependent on electrode 

placement [408, 409]. Characterizing the spatial distribution of modulation around an 

active electrode has importance for better understanding the neurophysiological 

mechanisms of electrical stimulation [170, 410] and has clinical relevance in the design of 

patient-specific strategies to improve the selectivity of targeting individual pathways 

within the brain [367-369]. In particular, assessing the spatial distribution of modulation is 

important for field-shaping capabilities of high-density electrode arrays for application in 

deep brain stimulation (DBS) [215, 357, 364] as well as characterizing the spatial 

precision of modulation for visual [411, 412] and auditory [400] neuroprostheses.  

Currently, there does not exist a systematic and widely accepted method to quantify 

the spatial distribution of stimulus-induced changes in neuronal activity around an active 

electrode, be it from computational modeling [215] or experimental recordings using 

electrophysiological [409] or imaging-based [413] techniques. Commonly used metrics 

include: population center of mass (COM), total volume enclosing the population, or 

maximal radial extent of activation [390]. These metrics while useful do not provide a 

consistent way to account for important information about the underlying distribution of 
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the activated neuronal populations. As is the case with any data, it is important to use 

statistical approaches to analyze them and describe their distributions with parametric 

models.   

Spherical statistics [414] provides a framework to analyze the directional distribution 

of data in space. This branch of statistics focuses on the analysis of orientation of 

lines/vectors in space and has applications in diverse disciplines, including the Earth 

sciences [415], remote sensing [416], and auditory psychophysics [417]. Three-

dimensional data can be characterized into different distributions based solely on their 

directional components relative to a pre-specified origin. The radial component of the data 

generally does not play an important role and is normalized to the same value (e.g. unit 

radius). In cases in which radial distance needs to be taken into account, spherical statistics 

can then be applied to concentric shells of data, delineated by their radial distance from a 

pre-specified origin.  

In this study, we develop a framework for applying spherical statistics to analyze the 

spatial distribution of neuronal spike activity around one or more active electrodes. The 

method is motivated by a computational model of deep brain stimulation using a 

population of thalamocortical neurons distributed around a DBS lead with four columns of 

elliptical electrodes arranged around the circumference of the lead. We show the process 

for making hypotheses on the shapes of neuronal data distributions, testing the data for 

hypothesized shapes, examining the importance of analytical perspective on interpretation 

of the results, and analyzing the effects of stimulus amplitude and electrode-neuron 

distance on the distribution of neuronal modulation.  

4.3 Methods 

4.3.1 Directionally-Segmented DBS Lead 

A directionally-segmented DBS lead with 8 rows of 4 elliptical electrodes (semi-major 

axis: 0.265 mm; semi-minor axis: 0.14 mm) embedded on a 0.5 x 40 mm shaft (diameter 

x height) was generated in a finite-element model (FEM) (COMSOL Multiphysics, 

v4.3b) (Fig. 22A,B). The angular distance between adjacent contacts in the same row was  
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Figure 22. Computational model of neuronal activation by stimulation through a directionally-

segmented DBS electrode array 

(A) Volume conductor model with the DBS array in the center. (B) The blue spheres represent the cell 

bodies of 5000 thalamcortical relay neurons that were uniformly distributed about the center of bottom row 

of electrode contacts, in a sphere 5mm in radius. (C) Close up view of one of the neurons. The axon is 

oriented vertically and parallel to the shaft of the DBS array. (D)-(F) Cross sectional view of the voltage 

field in models 1,2 and 3. The dashed line represents the boundary of the encapsulation layer. (G)-(I) Top-

down view of the neuronal activation profiles in models 1,2 and 3. The red spheres represent the cell bodies 

of neurons activated by stimulation. 

 

45° and the distance between two rows of contacts was 0.75 mm. The lead was 

positioned such that the horizontal midline of the bottom row of electrodes was defined 

as the origin. 
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4.3.2 Tissue Conductance Model  

A simplified inhomogeneous tissue conductance model was developed to simulate the 

tissue potential distribution resulting from current-controlled stimulation through one or 

more electrodes on the DBS array. For the purposes of this theoretical example, a 0.1 x 

40 mm (thickness x height), 0.18 S/m homogeneous encapsulation layer and a 100 x 100 

mm (diameter x height), 0.3 S/m cylinder of homogeneous bulk tissue surrounds the lead 

[375, 418] (Fig. 22B). The lead electrodes and insulation were assigned conductance 

values of 106 S/m and 10-12 S/m, respectively. The electrode surfaces were designated as 

boundary current sources with uniform normal current density (A/m2). The walls of the 

bulk tissue cylinder were set to ground. The finite element model mesh contained 

1116911 tetrahedral elements with finer mesh resolution near each electrode. The voltage 

distributions resulting from electrical stimulation through the electrodes were calculated 

via the finite element method (Fig. 22C) by solving Poisson’s equation using the 

electrostatic solver. 

4.3.3 Multi-Compartment Neuron Models 

Multi-compartment thalamocortical (TC) relay neurons (n=5000) [161] were uniformly 

distributed within a 10 mm diameter sphere giving a spatial population density of 

approximately 10 neurons/mm3 around the DBS lead. Model neuron axonal efferents 

were oriented vertically (parallel to lead shaft) (Fig. 22B,C). Current-controlled 

stimulation was applied using a waveform (130Hz, 90µs cathodic phase, 400 µs 

interphase delay, 3ms anodic phase) scaled from a constant-current pulse generator [419]. 

The FEM solution was scaled with the waveform, and the resulting time-varying voltage 

distribution was used to estimate activation, defined as the stimulus pulse train eliciting 

action potential(s) 3 ms after each stimulus pulse for at least 8 of 10 stimulus pulses. 

4.3.4 Stimulation Configurations and Data Representation  

Three stimulation configurations were considered in this study using the bottom row of 

electrodes: one contact monopolar cathodic stimulation (Model 1), four contact 

monopolar cathodic stimulation (Model 2), and bipolar stimulation using two opposing  



   85 

 

 

 Model 1 Model 2 Model 2* Model 3 

Data Type Soma Soma Node of Ranvier Soma 

Origin Model origin Model origin Model origin Model origin 

 

0.09/0.13/0.78 0.19/0.24/0.57 0.18/0.38/0.44 0.16/0.27/0.57 

 

0.872 0.6679 0.0805 0.4858 

Hypothesized model Unimodal Unimodal Girdle Bimodal 

Table 8. Summary of model information 

 

contacts as cathode and anode (Model 3) (Fig. 22D-F). In Models 1 and 2, each contact 

delivered 0.25mA of current. In Model 3, each contact delivered ± 1mA. The locations of 

the somas relative to the center of the bottom row of contacts (FEM origin) in the models 

were used to represent activated neuronal soma locations in 3D. It is important to note 

that this is not the only way to represent the data. To demonstrate this, the locations of the 

axonal nodes of Ranvier that first elicited an action potential following a stimulus pulse 

were modeled for the stimulus configuration used in Model 2 relative the FEM origin 

(Model 2*). The details on data representation are listed in Table 8.  

4.3.5 Spherical Statistical Hypothesis Testing and Parameter Estimation  

In this study, the spherical statistical framework was used to quantify the directional 

distribution of neurons activated by each of the four model configurations. This 

framework followed a simplified version of the analysis put forth by Fisher et al. [414] 

(Fig. 23). Having identified the data points to use (i.e. soma/node locations), we next 

made initial hypotheses on the shape of their distributions. We first obtained the polar 

coordinates of colatitude ( ) and longitude ( ) [414] of the data points (Fig. 24) and then 

projected these points onto the unit sphere. Projection was performed by setting the 

Euclidean distance between each data point and the origin to 1 while maintaining the 

orientation ( ) of these points. For better visualization, we found the sample mean 

direction and rotated the data such that this direction pointed to the South Pole (Fig. 

25A). In this new coordinate system, we used the Lambert azimuthal equal-area 

projection (EAP) (Fig. 24B) (1) of each data point ( ) to obtain their projections 

( ) in the 2D plane (Fig. 25B). No two data points in 3D will have the same  
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Figure 23. Spherical statistics workflow 

Framework for hypothesis testing and parametric modeling of the spatial distribution of soma or axonal 

nodes affected by stimulation.  

 

coordinates in 2D when projected in this manner. Data points will project progressively 

inwards on the 2D circle as their colatitudes vary from the North Pole to the South Pole. 

( )=                                                                                              (4.1) 
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Figure 24. Data representation in 3D and projection onto 2D 

(A) Data were transformed into polar coordinates with colatitude and longitude variables. (B) Illustration of 

Lambert azimuthal equal-area projection.  

 

 
 
Figure 25. Model data representation in 3D and their projections onto 2D 

(A) Multi-compartment, thalamocortical neuron model simulations were conducted in the context of three 

different stimulation configurations: monopolar cathodic stimulation through one electrode at -0.25mA (left 

column), monopolar cathodic stimulation through all four electrodes along a single row at -0.25mA/contact 

(middle two columns), and bipolar stimulation with opposing electrodes on a single row at ±1mA/contact 

(right column). For neuron models in which stimulation elicited stimulus-locked spike activity, the location 

of either the cell body (Models 1-3) or the first-activated node of Ranvier (Model 2*) was projected onto a 

sphere. (B) The mean direction of the distribution was then aligned to the South Pole (as shown in part A, 

left column) and then projected down to an equal area projection map to provide a basis for estimating the 

spatial distribution of the neuronal processes modulated by stimulation. Color indicates the density of the 

modulated neuronal processes. 
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  The distribution of the projected data can be further visualized in terms of its density. A 

200x200 2D histogram was constructed spanning the maximum width and height of the 

projected distribution and smoothed [420]. The smoothed density values at data locations 

were normalized to the maximum density value, assigned indexed colors, and plotted in 

terms of density contours (Fig. 25B). The normalized eigenvalues ( ) of the 

orientation matrix (2) [421] were computed, and the two-axis logarithmic plot (empirical 

shape plot or ESP) was constructed by plotting  vs.  (Fig. 26 G,H).  

                                                                                   (4.2) 

According to Woodcock [421], points on the ESP that plot above, below the  line, 

and near the origin represent cluster, girdle (equatorial/small circle), and uniform types of 

distributions, respectively. In addition, the mean resultant length (  = , where  is 

the length of the resultant vector of all data point vectors on the unit sphere and  is the 

number of data points) and the relationship between the normalized eigenvalues can serve 

as further discriminators. Detailed information is listed in Table 9. Typically, uniform 

distributions tend to have , clusters tend to have , while 

girdle distributions tend to have . 

 

Relative magnitude of normalized eigenvalues  Type of distribution  

 

Uniform 

 

 
 

 

 

Unimodal 

Otherwise Bimodal 

 

 

Unimodal 

Otherwise  Bipolar 

 

 

Girdle 

 

Symmetric Girdle (about polar axis) 

Table 9. Categorization of parametric distributions based on normalized eigenvalues of the 

orientation matrix 
 

  The procedures described above provided the basis for hypotheses on the shape of each 

model distribution. Based on those results, we performed a series of formal statistical 

tests on the datasets to determine the fit of their hypothesized models. Data hypothesized 

to be unimodal in distribution were tested against the null hypothesis of uniformity ( : 
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uniformity, : unimodality) [422]. In the case of bimodal or multimodal distributions, 

the data were separated into modal groups, and each subpopulation was analyzed and 

tested separately. Unimodal distributions can be represented by the Kent distribution, 

which is very versatile because it is able to represent data with or without rotational 

symmetry about the sample mean direction. The Kent distribution can be characterized 

by 5 parameters: ξ1, ξ2, ξ3, κ and total volume enclosing the population. The first three are 

unit vectors that represent the mean direction, major axis, and minor axis of the 

distribution. κ is termed the concentration parameter, and it is indicative of the tightness 

of data distribution about ξ1. β is termed the ovalness parameter, and it is indicative of 

the amount of departure in the distribution profile from circular symmetry about ξ1 [423]. 

Data that tested significant for the Kent distribution were fitted with the 5 parameters 

above. Assuming the data was sampled from a larger population, a 95% confidence cone 

was constructed by calculating the semi-vertical angle [423].   

  Hypothesized girdle type distributions were tested against the null hypothesis of 

uniformity ( : uniformity, : girdle) [424]. Two types of girdle distributions can be 

distinguished based on symmetry properties. The first type is symmetry about the normal 

vector (polar axis) to the plane of the small circle/equator, which is characterized by the 

Watson girdle model [424]. The second type is symmetry about the plane of the small 

circle/equator itself, which is best characterized by the Bingham model [425, 426]. The 

first type of symmetry implies the second type, but not vice versa [414]. In this study, we 

focused on fitting girdle type data to the more generalized Watson girdle distribution. We 

performed both graphical and formal goodness of fit (GOF) tests [427] on the data fitted 

for the Watson girdle model to determine the adequacy of their representation. The 

Watson girdle distribution can be characterized by three parameters, κ, α, and β. (α, β) is 

the polar coordinate representation of the polar axis. κ is a concentration parameter that is 

negative in value. The larger the absolute value of κ, the more concentrated the data is 

about the polar axis. These parameters were determined for data distributions with 

sufficient symmetry about the polar axis as shown by the graphical and formal GOF tests.  
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4.3.6 Application of Parametric Spherical Statistical Models to Analyze 

Changes in External Stimulus Parameters  

We investigated the effects of stimulation amplitude as well as the distance of the 

neuronal process from the active electrode on the spatial distribution of the activated 

neuronal population. We used the FEM of Model 1 and simulated it in two ways: 1) 

increased the amplitude of stimulation from 0.1 mA to 5 mA in steps of 0.1 mA, and 2) 

kept the stimulation amplitude constant at 5mA. In the first case, we quantified the 

distribution of activated neurons at each stimulation amplitude using the appropriate 

parametric model and analyzed the change in model parameters with increased 

amplitude. In the second case, we divided the space around the active electrode into 

concentric spherical shells centered about the FEM origin. Each shell was the difference 

between two consecutive spheres of radius  and , where  = 0.25 mm. 

The distribution of the activated neurons within each shell was quantified using the 

appropriate parametric model and the change in model parameters with respect to radial 

distance was analyzed.  

4.4 Results 

4.4.1 Graphical Interpretation of Data Distributions  

All four models (using stimulation parameters described in Section 2.4) generated 

different distributions of activated neuronal processes (Fig. 25A). The colatitudes of most 

data points in Model 1 were concentrated in the  range, while the longitudes were 

centered about , which is the direction of the active electrode (positive y direction). 

Model 2 showed rather uniform distribution in the longitude of the data points, while the 

colatitudes were mostly concentrated in the in the  range. In the case of Model 3, 

the colatitudes of most data points were centered about the  and , or the axis of 

the active pair of electrodes. The longitudes of the data points in the hemisphere facing the 

cathode (positive y direction) were concentrated in the  range, while those for data 

points in the direction of the anode were distributed more uniformly in the range ]. 

The observations on these three models were consistent with our expectations. In all three 
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models, the data points were represented by the locations of somas, and the origin of the 

spherical system was the FEM origin. Since the neurons were oriented parallel to the lead 

with their somas at the bottom, the fact that most activated neurons had their somas 

located below and not above the plane of the active electrodes suggests that it was their 

axonal compartments that were activated directly. Model 2* can be used to validate this 

observation because the locations of the first nodes of Ranvier to be activated by 

stimulation were used as data points. As expected, the data points in Model 2* were 

concentrated around the equator of the sphere, indicating that the points of initiation for 

action potentials in neurons around the lead were located near the level of the plane of the 

active electrodes.  

The EAP plots (Fig. 25B) further assisted us in identifying the salient features in the 

data distributions. Both Models 1 and 2 showed up as clusters on their EAP plots. The 

cluster was larger in Model 2, and there was a distinct mode of high concentration near the 

South Pole. For Model 2*, the projected data formed a ring centered about a circle with a 

radius roughly half of the full 2D circle. This is the expected projection location for data 

points around the equator. In Model 3, the data was distinctly distributed in two groups, 

most likely representing neurons activated by either the cathode or the anode. We 

observed 2 modes of concentrated data points, albeit not completed separated. When 

compared to the spherical projection (Fig. 25A), we determined that the cathode (positive 

y direction) activated a population of neurons mostly concentrated below the plane of 

bottom row of electrodes. This was evident on the EAP plot as data points concentrated 

near the larger mode in the center. In contrast, the anode activated neurons in a more 

diffuse manner, as reflected by the uniformity in colatitudes. These data points appeared 

on the EAP plot in a large fan shape spanning half of the 2D circle. The data distribution 

from Model 3 suggested that the cathode most likely activated axon segments near the 

plane of the active electrode, while the anodal activation worked through a more 

distributed mechanism that may involve virtual cathodes.   
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Figure 26. Canonical distributions and the empirical shape plot 

(A) Uniform distribution (B) Unimodal distribution (C) Bimodal distribution (D) Bipolar distribution (E) 

Symmetrical girdle distribution (F) Unsymmetrical girdle distribution (G) Empirical shape plot showing 

the two-axis logarithmic eigenvalue ratio distributions for cluster, girdle, bimodal, and uniform 

distributions (adapted from Woodcock [421]). (H) Empirical shape plot for the thalamocortical neuron 

model data showing geometrical estimates for the distribution of each Model.  

 

  As described previously, the ESP can provide empirical guidelines on the shape of 

data distributions (Fig. 26G). Models 1, 2 and 3 all plotted above the line  (Fig. 

26H), which suggests that they are cluster type data distributions. Model 2* was situated 

below the line , which indicates that it represents a girdle type distribution. Model 3 

lied near the line , which suggests that it is in a transition zone between cluster and 

girdle type distributions. The normalized eigenvalues had the relationship of , 



   93 

 

 and , which implies that the distribution could be bimodal, consistent with 

previous observation (Fig. 25). Taken together, the evidence from spherical projections, 

EAP plots, ESPs, normalized eigenvalues, and mean resultant lengths allowed us to make 

the following hypotheses on the shapes of the model distributions: Model 1 – unimodal, 

Model 2 – unimodal, Model 2* – girdle and Model 3 – bimodal (also listed in Table 8). 

4.4.2 Spherical Statistical Testing 

Models 1, 2, and 2* all tested significant for their respective alternative distributions to 

the uniform distribution (p<0.05) (Table 10). Model 1 had a smaller test statistic 

compared to models 2, which suggests a more diffuse distribution. In the case of Model 

3, we dissected the data into two groups: data points in the hemisphere with positive y 

coordinates (facing cathode) were grouped into the +y cluster, while those with negative 

y coordinates (facing anode) were grouped into the –y cluster (Fig. 27A). The ESP (Fig. 

27B) and EAP (Fig. 27C) of the +y cluster suggested a unimodal distribution, and this 

hypothesis was confirmed through formal statistical testing against the null hypothesis of 

uniform distribution (p<0.05) (Table 10). The ESP (Fig. 27B) for the –y cluster suggested 

a girdle type distribution; however, the EAP (Fig. 27D) showed a small concentrated core 

of data points near the South Pole while the other data points were spread over the entire 

hemisphere. The eigenvalues ( = 0.1905, 0.3325, 0.4770) and mean resultant 

length (  = 0.5922) further indicated that the data was indicative of a non-symmetric 

girdle distribution. Statistical testing for the Watson girdle model failed to achieve 

significance (  = 0.05), indicating that there isn’t strong symmetry of the data about its 

polar axis. This is a logical conclusion considering the –y cluster only consists of data 

from one hemisphere. Further analysis beyond the scope of this study is needed to 

determine if the Bingham distribution would be a more appropriate fit for the data. 

 Model 1 Model 2 Model 2* Model 3 

Test against uniformity 

( : uniformity) 
( : unimodal) ( : unimodal) ( : girdle) 

+y cluster 

( :unimodal) 

-y cluster 

( :girdle) 

Test Statistic 1017.3436* 1985.8278* 0.1781* 1042.0512* 0.1905 

Table 10. Hypothesis testing on the shape of model distributions 

(* indicates test was significant at = 0.05) 
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Figure 27. Analysis of bimodal distribution in Model 3 

(A) Somas of neurons activated by bipolar stimulation in Model 3 projected onto the unit sphere. The red 

data points in the positive y hemisphere (facing the cathode) were grouped into the positive y coordinate 

cluster. The cyan data points in the negative y hemisphere (facing the anode) were grouped into the 

negative y coordinate cluster. Active electrode contacts are in yellow. (B) Empirical shape plot 

representation of all activated neurons, neurons in the positive y coordinate cluster and neurons in the 

negative y coordinate cluster. (C) Equal-area projection of data in the positive y coordinate cluster. (D) 

Equal-area projection of data in the negative y coordinate cluster.  

4.4.3 Fitting Activation Data to Parametric Models  

Models 1 and 2 both tested significant for the unimodal distribution, which can be well 

represented by the Kent distribution. The concentration and ovalness parameters κ and β 

are listed in Table 11. Model 1 was roughly 2.6 times more tightly concentrated about its 

mean direction compared to Model 2. Model 2 on the other hand was much more 

rotationally symmetrical about its mean direction, as indicated by the ovalness parameter 

β. These statistics were consistent with the fact that cathodic stimulation through one  
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 Model 1 Model 2 Model 2*  

κ 7.9582 3.0247 -2.3161  

β 0.5408 0.1020 ---  

Table 11. Kent distribution parameters for models 1,2 and 2* 
 

  
Figure 28. Projection of somas of activated neurons in models 1 and 2 onto the unit sphere 

The blue line is the population mean direction in each model. The blue circle represents the 95% 

confidence cone.  

 

contact confined activation to a smaller group of neurons compared to stimulation 

through four contacts. We have also illustrated that we can estimate 95% confidence 

cones [423] for these datasets, supposing that they represent samples from a larger, true 

population (Fig. 28).  

  Model 2* tested significant for the Watson girdle distribution. We performed both 

graphical and formal GOF tests to access the adequacy of using this parametric model. 

The graphical GOF test consists of the colatitude and longitude plots. The data was first 

arranged such that the polar axis was pointed to the North Pole and the corresponding 

colatitude and longitudes ( ) were found. One can imagine that an ideal small 

circle/equatorial distribution should have the colatitudes of its data points concentrated in 

a narrow band centered about the plane of the small circle/equator, with few outliers 

outside of that range. The longitudes should be uniformly distributed in the range ]. 

In the colatitude plot, the ordered values of  were plotted against the Chi-squared 

quantile, and a good fit was signified by an approximately linear line passing through the 

origin. In the longitude plot, the ordered values of  were plotted against the  
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Figure 29. Analysis of the goodness of fit of Model 2* to the Watson girdle distribution 

(A) Longitude plot graphically displaying the goodness of fit of Model 2* to the Watson girdle model. A 

good fit is signified by an approximately linear line, passing through the origin with a slope of 

approximately 1. (B) Colatitude goodness of fit plot. A good fit is signified by an approximately linear line 

passing through the origin. (C) Cell bodies of activated neurons in Model 2* projected onto the unit sphere. 

The cyan ring is the best-fit small circle for the data.  
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uniform quantile, and a good fit was signified by a line that was approximately linear, 

passing through the origin, with a slope of . For the data in model 2*, the longitude 

plot (Fig. 29A) showed an approximately linear line passing through the origin, the slope 

of which is 1.0131. This result indicated that longitudes of the data points are uniformly 

distributed in the range ]. The colatitude plot (Fig. 29B), on the other hand, 

revealed some deviation from a linear line, especially towards higher  values. This 

was due to the presence of data points scattered away from the equator, especially those 

near the North Pole (Fig. 29C). The colatitude plot therefore illustrated the limitations of 

the Watson girdle model to accommodate the larger spread in the colatitude of the data. 

The formal GOF test consisted of both the colatitude test and the longitude test, and it 

further confirmed the interpretation of the graphical method. The colatitude test was not 

significant (α = 0.05) to indicate a good fit for the Watson girdle model, while the 

longitude test did reach significance (p<0.05). We calculated the concentration parameter 

κ to be –2.3161 [424]. A best fit small circle was calculated [428] and it showed a slight 

tilt from the plane of the equator, which was most likely due to chance activation of axon 

nodes at lower colatitudes (Fig. 29C). 

4.4.4 Effect of Stimulation Amplitude on Data Distributions   

We studied the effects of stimulation amplitude on the distribution of activated neurons 

using the one contact monopolar cathodic stimulation model, by increasing the amplitude 

of stimulation from 0 to 5 mA in steps of 0.1 mA (Fig. 30C-D). The data points were 

represented using the locations of cell bodies of the activated neurons relative to the FEM 

origin. The number of activated neurons increased in a nonlinear fashion with stimulation 

amplitude until 1.6 mA, after which a step-like pattern of increase was observed (Fig. 

30E). As shown with Model 1, the Kent distribution was adequate to model the neuronal 

cell population activated under this stimulation scheme. We observed that both κ and β 

decreased nonlinearly and eventually leveled off at higher stimulation amplitudes (Fig. 

30F).  
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Figure 30. Analysis of activation profiles from single contact monopolar cathodic stimulation using 

the Kent distribution 

(A) Idealized illustration of change in Kent distribution with increased concentration parameter κ. (B) 

Idealized illustration of change in Kent distribution with increased ovalness parameter β. (C) Top-down 

view of the voltage fields from single contact monopolar cathodic stimulation at eight example amplitudes. 

(D) Top-down view of the distribution of cell bodies of the corresponding activated neurons. (E) Number 

of activated neurons vs. stimulation amplitude. Stimulation amplitudes ranged from 0.1 – 5 mA at 

increments of 0.1 mA. (F) The distributions of activated neurons were characterized using the Kent model. 

The plot shows the change in Kent model parameters (κ, β) with stimulation amplitude. (G) Change in 

sample mean colatitude and longitude with stimulation amplitude.  

4.4.5 Model Distribution along the Radial Direction  

We modeled monopolar cathodic stimulation through one contact at 5 mA and analyzed 

the activated neuronal populations within spherical shells separated by 0.25 mm (Fig. 

31A). The total number of cell bodies within each shell plateaued after the 6th shell (1.25 

– 1.5 mm). The number of activated neurons within each shell reached a maximum of 

257 in the 6th shell and then steadily decreased to 92 in the last shell (4.75mm – 5mm). 

The percent activation within each cell decreased from 100% in the first three shells to 

30.26% in the last shell (Fig. 31C). EAP plots of activated populations within each shell 

suggested that the shape of the activated neuronal population tended to be more erratic in  
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Figure 31. Analysis of activation profiles within concentric spherical shells using the Kent 

distribution 

(A) Illustration of the concentric spherical shells about the center of the bottom row of electrodes. The 

thickness of each shell is 0.25 mm. The red electrode contact delivered cathodic stimulation at 5 mA. (B) 

Equal area projection of the cell bodies of activated neurons within each spherical shell. (C) Number of 

activated neurons vs. radius of spherical shell. (D) Sample mean colatitude and longitude of activated 

neurons vs. radius of spherical shell. (E) The distribution of activated neurons in each spherical shell was 

characterized using the Kent model. The plot shows the change in Kent model parameters (κ, β) with radius 

of spherical shells.   

 

the first few shells close to the lead, which had fewer cells, and then gradually became 

more concentrated and rotationally symmetric (Fig. 31B). This was confirmed through 

analysis of the changes in mean colatitude and longitude along the radial dimension (Fig. 

31D). The mean longitude remained relatively stable about /2, which is the direction of 
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the active contact (Fig. 31A). Fluctuations in mean longitude were observed (shells 2, 3, 

10, 11) and these could be attributed to sampling issues (i.e. more model neurons are 

needed to populate the model). The mean colatitude steadily increased from /2 to  

within the first 10 shells and remained at approximately that value in shells further away 

(Fig. 31D). This suggested that as distance away from the lead increased, the majority of 

the cell bodies of activated neurons were below the plane of the active contact. Finally, 

we fitted the Kent distribution to the activated neuronal populations within each shell and 

estimated the parameters κ and β. Both parameters fluctuated initially near the lead, but 

then steadily increased along the radial dimension, suggesting more focal and 

symmetrical activation profiles further from the lead despite a reduced probability of 

activation. 

4.5 Discussion 

In this study, we present a spherical statistics framework for quantifying the spatial 

distribution of modulated neuronal processes around a DBS lead. The framework 

included visualization techniques, empirical shape analysis, hypothesis testing, and data 

parameterization. We have demonstrated that the directional distribution of neurons 

activated by stimulation can be characterized by parametric models, and the model 

selection and parameterization can depend on the data representation (e.g. soma vs. axon 

node as the modulated process). In addition, we analyzed the change in model parameters 

with respect to external parameters, such as stimulation amplitude and radial distance 

away from the FEM origin. 

4.5.1 Utility in Quantifying the Spatial Distribution of Neuronal Activation 

around a DBS Lead  

There is a clinical need for DBS electrode arrays with the capability to provide 

directional stimulation via steering and shifting of the output electric field [354], [364]. 

Such capability is important in cases of off-target DBS implants [215], [232] and in 

avoiding inducing adverse side-effects for the patient [429], [254], [355]. Consequently, 

much research has gone into the development [430], [431], modeling [215], [213], [359] 
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and evaluation [191], [238] of high-density DBS arrays with circumferentially-segmented 

electrodes and independent current controlled stimulators [432]. A challenge when 

studying the effects of directional stimulation is to develop quantitative metrics for 

assessing the spatial distribution of neuronal activation around a DBS lead. Currently, the 

most widely used metric is the volume of tissue activated (VTA) [216], which is the 

volume enclosed by activated neurons or axons. Parameters such as the center of mass, 

total volume and maximal vertical/radial extent of activation can then be used to further 

characterize the VTA [235]. However, these measures only provide a fragmented picture 

of the data distribution making it difficult to generalize to compare different DBS 

settings. The advantage of spherical statistics lies in its ability to enable the user to 

understand the fundamental characteristics of the shape of a spatial distribution (e.g. 

unimodal, bimodal, girdle, etc.). In the case of DBS, it provides a number of parametric 

models that can be used to quantitatively describe the spatial distribution of modulated 

neuronal processes around a DBS lead. For example, in a recent study [433], researchers 

were able to use engineering optimization principles to design electrodes that 

preferentially activated neuronal elements in one orientation versus those in another. 

Stimulating the same neuronal population using two different electrodes would give 

different activation profiles (subject to certain definition of origin and data representation, 

e.g. first axon node that was activated) in space, which could potentially be represented 

by parametric spherical statistical models. Consider a scenario in which the Kent 

distribution was adequate to characterize the distribution of axon nodes that were first 

activated by stimulation in a neuronal population. Examining the differences in model 

parameters ξ1, ξ2, ξ3, κ and β can provide the directions of most and least data density, the 

mean direction of activated nodes, as well as degree of symmetry about the sample mean 

direction. This information is much richer than simply knowing a percent activation level 

for each electrode. It can potentially give insight into inhomogeneities and anisotropies in 

tissue conductance (if modeled) as well as directional distributions of second spatial 

derivative of the extracellular voltage field. Researchers can also apply these parametric 

models to electrophysiological or optical recording data and study the spatial activation 

profiles of neurons under DBS in a quantitative manner. The results can then be used to 
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inform new DBS electrode array designs as well as programming algorithms. The results 

from such studies can also benefit clinicians by providing 1) quantitative data on the 

feasibility of radial directing of stimulation, 2) quantitative comparisons of neuronal 

activation profiles between different target brain structures, and 3) statistical description 

of their intuitions on shaping of the electric field.  

4.5.2 Types of Spatial Distributions  

We have demonstrated that spherical statistics is robust in quantifying spatial 

distributions of neurons activated by different stimulation configurations. Data 

representation (e.g. soma vs. axon node processes) is an important consideration and can 

significantly alter the shape of the resulting distribution. For instance, cathodic 

stimulation in all four directions (Model 2*) activated axon nodes in a ring-like formation 

concentrated about the equator of the unit sphere (Fig. 25), which can be characterized by 

the Watson girdle model. However, the distribution of cell bodies of activated neurons in 

the same model (Model 2) displayed a unimodal formation centered about the South Pole 

(Fig. 25) and could be characterized by the Kent model. This discrepancy is explained by 

the fact that action potentials are thought to initiate first in the axons and propagate 

antidromically towards the soma [161] with DBS waveforms. Since the cells are oriented 

such that their somas are located beneath their axons in this example, it is logical that 

most activated cells would have their somas in the southern hemisphere of the unit 

sphere, below the level of the active contacts. Cathodic stimulation in one direction 

(Model 1) also resulted in a unimodal distribution of activated cell bodies. Compared 

with stimulation in all four directions (Model 2), stimulation in one direction resulted in 

activation that was more focused in direction (larger κ) and more oval (less rotationally 

symmetric) in shape (larger β). In the case of bipolar stimulation (Model 3), a bimodal 

distribution emerged from the cell bodies of the activated neurons. In the projected view 

(Fig. 27A), data in the hemisphere facing cathodic stimulation (+ y cluster) was mostly 

concentrated near the South Pole, indicating that action potential initiation in these 

neurons most likely occurred near the level of the cathode. On the other hand, the soma 

locations of activated neurons in the hemisphere facing anodic stimulation (– y cluster) 
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displayed much more variation in colatitude (Fig. 27D). There was a small concentration 

of data points with high colatitude values near the South Pole, while the rest were 

diffusely distributed over the entire range. This could be explained by anodic stimulation 

creating virtual depolarization [434] at locations along the axon that were further away 

from the plane of the anode.  Together, the modeling results shown in this study (albeit 

using idealized model geometries) demonstrated that: 1) cathodic stimulation confined 

activation of axon nodes of Ranvier within a band centered about the plane of the active 

electrodes, which is suitable for focal activation; 2) anodic stimulation achieved broader 

activation in terms of direction and would be suitable for broadening activation of a given 

target; and 3) axonal projection morphologies play a critical role in determining the shape 

profile of the somatic population directly affected by the stimulation.  

4.5.3 Empirical Analysis and Statistical Testing  

Empirical analysis and statistical testing are complementary approaches that serve 

different functions. The ESP is able to provide a general outline of the data distribution 

and put it into perspective in a continuum of changing morphologies. Other empirical 

information listed in Table 9 allows for fast categorization of the shape of the data 

distribution and narrows the direction of further data analysis. However, formal statistical 

testing is needed to provide the confidence in confirming or rejecting a hypothesized 

shape. Ambiguities may arise in this process, when the shape of a distribution falls in a 

transition zone between two different categories (e.g. bimodal vs. girdle). In such a case, 

fitting the data to different parametric models and assessing the goodness of fit in each 

case becomes important. Discordancy tests are available to identify the outliers in the 

data that negatively affect the fit to a particular parametric model. These outliers can then 

be removed to achieve a better fit of the data. Once parametric models have been 

established for different stimulation settings, they can serve as quantitative metrics to 

describe and compare the spatial distributions of activated neuronal populations under 

these different settings.  
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4.5.4 Effect of Stimulation Settings on the Parametric Model Parameters  

The parameters of parametric models reflect the characteristics of the underlying 

distribution and can be used for quantitative analysis of the effects of directional 

stimulation. For example, the concentration parameter κ of the Kent distribution, when 

analyzed in the context of neuronal activation profile, is reflective of the degree of focus 

in stimulation. A higher κ value indicates that in directional terms, neuronal activation is 

more confined about a certain mean direction, which in turn reflects a more focused 

effect in stimulation. Similarly, the ovalness parameter β is a reflection of the uniformity 

of stimulation. A lower β value is associated with more rotational symmetry of the 

distribution and vice versa for higher β values. The differences in the amount of 

rotational symmetry can be further indicative of either asymmetry in the distribution of 

the underlying neuronal population or a difference in the mechanism of activation (e.g. 

cathodic vs. anodic stimulation).  

  Unidirectional cathodic stimulation at increasing amplitudes resulted in unimodal 

distributions of activated neurons (soma) that were well characterized by the Kent model 

(Fig. 30). The model parameters of κ and β decreased in a nonlinear fashion and 

eventually flattened out at higher amplitudes of stimulation. The implication is that at 

lower stimulation amplitudes, the activated neuronal population is more concentrated 

about its mean direction while less rotationally symmetric in shape. At higher stimulation 

amplitudes, a larger population was activated, which was more diffusely distributed about 

the mean direction but more rotationally symmetric in shape (Fig. 30C,D). The decrease 

in κ and β largely happened within 1 mA of stimulation, suggesting that the shape profile 

of the activated population became mostly stable above this threshold. This reinforced the 

observation that the mean colatitudes and longitudes of the activated populations also 

became relatively stable after 1 mA.  

  This approach of using the Kent distribution to model the activation profile of 

monopolar stimulation can be used to assess the viability of directional stimulation in a 

region of interest. As shown previously, nodal activation directionality may not reflect 

somatic activation directionality. It is expected that effective current steering via 

monopolar stimulation through one electrode would yield an activated cell body 
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population that forms a Kent distribution, with mean direction close to the direction of 

stimulation. Distributions not described by the Kent model or have mean directions that 

largely deviate from the direction of stimulation would suggest that axonal projections 

are such that they render directional stimulation ineffective.  

4.5.5 Limitations and Considerations  

In this study, we constructed a simplified and idealized computational model to 

demonstrate the application of spherical statistics. Additions of inhomogeneous and 

anisotropic tissue conductivities, non-uniformity current density distributions across the 

electrode surface as well as voltage drop and capacitance at the electrode-electrolyte 

interface would make for a more realistic model and likely affect the model fits [398]. 

FEM mesh density is an important consideration to ensure convergence of action 

potential thresholds [435]. We did not validate convergence of action potential thresholds 

in this study because this work was meant to be a proof-of-concept demonstration of the 

application of spherical statistical analysis to computational models of DBS. Ensuring 

convergence of action potential thresholds is very important, but does not play as 

significant of a role in this study (compared to for example other studies that aim to use 

computation modeling to elucidate mechanisms of action in DBS), because the same 

principles and methods can be applied to analyze data on neuronal activation profiles 

even if they deviated from the absolute truth (obtained using more mesh elements). The 

axonal projection patterns and uniform distribution of neurons around the DBS lead that 

were modeled in this study were grossly idealized scenarios. Diffusion tensor imaging 

with probabilistic tractography methods [436], [268] as well as neuroanatomical tracing 

studies [437] could be used to construct realistic fiber tract morphologies, and the same 

analysis techniques and processes demonstrated in this study would apply.  

  Data representation in spherical statistical analysis can impact results and their 

interpretation. In this regard, the selection of coordinate systems is an important 

consideration and will vary depending on the particular application. Another 

consideration in data representation is the potential for different spatial profiles in the 

distributions as one extends in space from the DBS array. In this study, we analyzed the 
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shape profile of activated neurons within concentric spherical shells. However, this 

approach could be modified by adopting amorphous shells that conform to layered 

structures such as the layers of the cortex or segments within deep brain structures.  

  There are many other useful methods within the field of spherical statistics not 

described here, such as analyzing properties of rotational symmetry about an axis [438] 

or testing for common mean direction between two distributions [439]. Additionally, 

there are other parametric models including the Wood distribution (for bimodal 

distributions with two modes of equal strength) [440], the Bingham distribution (for 

symmetric/asymmetric girdle or bipolar distributions) [425] [426], as well as the 

multipurpose General Fisher-Bingham distribution [441]. In these cases, there is a trade-

off between the complexity of a model and its range of applicability, which should be 

weighed by the user. In cases of multimodal distributions, as one would expect with 

neuronal populations activated by multipolar stimulation, clustering the data (e.g. using 

k-means clustering) into smaller unimodal or bimodal groups and analyzing them 

individually may be the most suitable and informative approach [414]. 

4.5.6 Applications to other Neurophysiological Recording Modalities   

Advances in two-photon imaging have enabled in-vivo real-time imaging of large 

neuronal populations (with single-cell resolution) [442] [443] as well as simultaneous 

monitoring of different brain regions [444]. The spherical statistical approach used in the 

context of DBS has potential to be of value in quantifying network dynamics of neurons 

and constructing spatiotemporal maps of their activities. Studies have shown that spiking 

activities in rat neocortex are heterogeneous over time, generated by a continually 

changing subpopulation of active neurons [443]. Furthermore, microstimulation of the cat 

cortex has shown that neuronal populations are sparsely activated by stimulation, and 

patterns of activation are highly dependent on electrode location and likely arise from 

direct activation of axons in the vicinity [445]. Similar to what we have described in this 

paper, spherical statistics can be applied in these studies by introducing a reference origin 

via the stereotactic reference system. The origin of the reference system may be placed at 

a point on the cortical surface, in which case all imaged cells would reside in the 
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hemisphere below the cortex. This framework could provide a unified view of the 

distribution of neuronal dynamics in all cortical layers. Alternatively, the origin may be 

placed at a point in a particular cortical layer in the middle of the imaged volume (e.g. 

layer III, which contains projections to other cortical layers [446]), and neuronal activity 

would be analyzed from the perspective of this locus. Spherical statistics can also be 

useful in assessing whether two cortical regions are correlated by determining the 

correlation coefficient between two random vectors [447]. These vectors could represent 

time ordered population mean directions from two cortical areas. Correlation could be 

established if shifting the mean direction of neuronal activity in one region through 

stimulation induced a shift in the other region as well.  
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Chapter 5  

 

Spatial characterization of 

stimulation-induced neuronal activity 

around a chronically implanted 

thalamic deep brain stimulation array 
 

5.1 Overview 

5.1.1 Objective 

The volume of tissue activated (VTA) is a key concept in computational models of DBS 

to measure the extent of modulation around the DBS lead. However, such models lack 

the morphological and network complexities that are present in the in-vivo brain. This 

study investigates the in-vivo VTA by examining spatial characteristics of stimulation-

induced neuronal activity around chronically implanted thalamic DBS arrays (DBSAs) in 

two non-human primates.  
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5.1.2 Approach 

In this study, two rhesus macaque monkeys were each implanted unilaterally with a 32-

contact (8 rows × 4 contacts/row) DBSA in the cerebellar receiving area of the thalamus 

(nucleus ventralis posterior lateralis oralis or VPLo). Biphasic, charge-balanced (100μs 

cathodic pulse, 20μs interphase delay followed by a 100μs anodic phase, 100Hz at 150, 

250, and 350μA) waveforms were delivered individually through each electrode from a 

particular row of electrodes on the DBSA. Single-unit microelectrode recordings were 

performed around the chronically implanted DBSA before, during and after DBS. 

Template subtraction was applied to remove the stimulus artifact, and unit-spikes were 

then sorted. Firing rates between the pre-DBS and DBS periods were compared for each 

neuron using the Mann-Whitney U test (p<0.01, 1s bins). Peri-stimulus time histograms 

(PSTHs) (100μs/bin) were generated for each cell. Entropies of the PSTHs during the 

pre-DBS and DBS-on periods were calculated and the difference between the two were 

assessed. Significant firing pattern modulation (FPM) was determined using a bootstrap 

statistical method.  

5.1.3 Main Results 

Neurons exhibiting firing pattern and/or rate modulation during VPLo-DBS were 

surprisingly sparse and distributed, and not confined to regions in the immediate 

proximity of the active electrode. The strengthening of modulatory effect with increased 

stimulation amplitude was only observed in a small group of cells. The majority of cells 

were not influenced by DBS in any way. For those that were modulated by DBS, their 

responses increasingly shifted from firing rate modulation (FRM) to FPM with increased 

stimulation amplitude. Interestingly, only 3.25% (±3.8%) of DBS pulses produced phase-

locked spikes in cells exhibiting significant excitatory FPM. DBS also suppressed 81% ± 

4.44% of phase-locked spikes in inhibitory FPM. 

5.1.4 Significance 

While computational models often predict uniform modulation of neuronal activity 

around a DBS lead, this study demonstrates that the in-vivo VTA consists of a small 
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fraction of neurons that are sparsely distributed within that volume. The response of these 

cells to DBS in terms of firing pattern and rate is amplitude dependent. Moreover, 

neuronal activity that is time-locked to DBS pulses does not follow the one-to-one pattern 

of entrainment often assumed in computational models. Instead, only a very small 

fraction of stimulus pulses actually result in phase-locked spike activity. Taken together, 

these findings outline the properties of neuronal response to DBS in-vivo, and highlight 

the need for computational models to incorporate realistic network connectivity and 

neuronal morphologies in order to reproduce these results.  

5.2 Background 

The VTA is a well-established computational metric to assess the extent of neuronal 

modulation via DBS [217], [216]. The second spatial derivative of the extracellular 

voltage potential along neuronal processes is also known as the Activating Function 

(AF). It is responsible for inducing transmembrane currents that result in direct 

depolarization of a neuron [448] (Fig. 32). In the case of unmyelinated axons:  

AF =                                                                                                                         (5.1) 

where  and  are positions and the extracellular voltage along the length of the axon, 

respectively. In the case of myelinated axons:  

AF= =                                                                                          (5.2)                                                                                                  

where  is the distance between two adjacent nodes of Ranvier, , ,  are 

the extracelluar voltages at adjacent nodes ,  and , respectively. This 

intermodal distance  scales linearly with the diameter of the axon.  
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Figure 32. Equivalent circuit model of the axon and injection of transmembrane current 

Unmyelinated as well as myelinated fibers are segmented into cylinders of length . In the case of 

myelinated axons,  represents the intermodal distance. Within one segment the membrane is active in the 

cross-hatched area of length L. For the myelinated axons, this area is the gap in the myelin sheath and L is 

the nodal gap width. For the unmyelinated axon, L = . (A) The membrane of every cylinder is simulated 

by an equivalent circuit. is the capacity of the ionic voltage source,  is the nonlinear membrane 

conductance,  is the conductance of the axoplasm between two segments.  and  are the external 

and internal potential at the th segment, respectively.  is the induced transmembrane current through 

the th segment. Adapted from [383].  

 

Utilizing this principle of axonal activation, finite-element volume conductor models are 

used to extract the voltage field generated from DBS. The resulting  map is then 

interpolated onto multi-compartment model neurons/axons that are distributed in some 

fashion around the DBS lead. The VTA at a certain stimulation amplitude (voltage 

controlled/current controlled stimulation) is comprised of the volume encompassed by all 

model neurons that generated stimulation induced action potentials. The VTA approach is 

great for visualizing the extent of modulation of a target of interest on a patient-specific 

basis [216], [398], [449] and helpful with guiding DBS programming [450], [451], [452], 

[453]. It is also an important research tool to investigate the current/field steering effects  
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Figure 33. Voltage distance relationship for large diameter axons during DBS 

Adapted from Figure 2 from [217]. The axons were positioned randomly in the model tissue medium and 

oriented parallel to the shaft of the DBS lead.  

 

of directionally segmented DBSAs [454], [235], [232], [364]. However, it must be noted 

that the VTA method often involves certain simplifying assumptions and does not fully 

represent the complexities of the in-vivo brain. Firstly, most VTA studies [455], [217], 

[456] use multi-compartment axon models because axonal elements are presumed to be 

the most excitable components of neurons around the DBS lead [203], [457], [458], 

[459]. This ignores the dynamics of the soma, whose responses to DBS can be markedly 

different from the axon [161].  Secondly, these model axons are often arranged in 

idealized grid patterns either parallel [217] or perpendicular [455] to the shaft of the DBS 

lead. Thirdly, the complex networks of excitatory and inhibitory neuronal populations in 

DBS target structures [112], [460] and their connections to other regions of the brain 

[461], [462], [463], [464], [465] were not modeled. With isotropic tissue conductivities, 

the VTA has been shown to be spheres that increase in size with increased stimulation 

amplitude [217] (Fig. 33). However, studies in the in-vivo brain have shown that the 

activation profile by electrical stimulation is much more complex [445], [156]. Using 

two-photon calcium imaging, Histed et al. [445] visualized cortical neuronal activation 

under microstimultion and found that the in-vivo VTA around the intracortical electrode 

was sparsely populated with activated neurons. Stimulation did not bias towards 

activating neurons near the tip of the electrode. Contrary to conventional wisdom that  
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Figure 34. The in vivo VTA 

Adapted from Figure 8B from [445], illustrating the change in the in vivo VTA with increased stimulation 

amplitude.   

 

10  of stimulation would only be capable of activating cell bodies within a radius of 

65  from the tip of the microelectrode [382], the researchers found that cells hundreds 

of microns away can be activated with as little as 4-9  of stimulation. This finding is 

corroborated by studies in the globus pallidus internus (GPi), where cells 250-600  

away from the microelectrode tip were found to be suppressed with 10  of stimulation 

[156]. Histed et al. [445] also found that increasing the amplitude of stimulation 

gradually fills in a large sphere of activated cells, instead of activating cells further away 

(Fig. 34). These findings suggest that the in-vivo VTA is more nuanced compared to the 

computational VTA. Better understanding of the properties of the in-vivo VTA will lead 

to the development of more accurate model VTAs. Here, we propose two main directions 

of investigation to understand the in-vivo VTA in the context of thalamic DBS: (1) 

characterize the spatial neuronal activation profile with varying stimulation amplitudes 

and (2) investigate the changes in the actual spike response of neurons within the VTA. 

Two non-human primates were chronically implanted with DBSAs in VPLo. 

Microelectrode recordings of thalamic neurons were made in a grid pattern around the 
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DBSA, before, during and after stimulation through the DBSA. Neuronal firing rate and 

pattern changes as a function of distance from the active contact and stimulation 

amplitude were analyzed using unit-spike data.  

5.3 Methods 

5.3.1 Subject  

Two female rhesus macaque monkeys (macaca mulatta, Monkey K and Monkey U) were 

used in this study. All procedures were approved by the Institutional Animal Care and 

Use Committee of the University of Minnesota and complied with United States Public 

Health Service policy on the humane care and use of laboratory animals. The animals 

were housed individually with environmental enrichment, provided with water ad 

libitum, and given a range of food options including fresh fruit and vegetables. All efforts 

were made to provide good care and alleviate any discomfort for the animals during the 

study. Pre-operative 7T MRI was acquired at the Center for Magnetic Resonance 

Research (CMRR) at the University of Minnesota using a passively shielded 7T magnet 

(Magnex Scientific) for both animals. During the imaging sessions, the animals were 

anesthetized with isoflurane (2.5%) and monitored for depth of anesthesia. Susceptibility-

weighted imaging was acquired with a 3D flow-compensated gradient echo sequence at 

0.4 mm isotropic resolution using a field of view (FOV) of 128 × 96 × 48 mm3. Under 

isoflurane anesthesia, each monkey was surgically implanted with a titanium headpost 

and cephalic chambers (Crist Instruments, Hagerstown, MD, USA) that were oriented in 

the sagittal plane in the same hemisphere [466] (Fig. 35). Following a 1–2 week recovery 

period, each animal received a computerized tomography scan to plan the DBSA 

implantation using Monkey Cicerone [241].  

5.3.2 DBS Implant Procedure 

Microelectrodes (25  diameter, 0.8-1.2MΩ, FHC, Bowdoin, ME, USA) were advanced 

through the cephalic chamber in each monkey under the guidance of Monkey Cicerone to 

map the boundaries of VPLo. A combination of unit-spike responses to passive joint 

manipulation and microstimulation-evoked movements at thresholds less than 50   
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Figure 35. Illustration of the experimental procedure 

Microelectrode recordings were performed in the cerebellar receiving area of thalamus (VPLo) while DBS 

was performed in the same nucleus.  

 

[152] were used to identify VPLo. For each monkey, the mapping track that yielded a 

long stretch of VPLo was chosen for chronic implantation of the DBSA. The depth of 

implantation was chosen so that multiple rows of the DBSA would span the extent of 

VPLo. A radially segmented DBSA with 32 ellipsoidal (360 × 470 ) 

macroelectrodes (8 rows × 4 columns) arranged around a 600  diameter shaft [233] 

was chronically implanted into the VPLo through the pre-planned track. The implantation 

procedure is described in a previous study [233]. Following DBSA implantation, a post-

operative CT scan was performed under Ketamine and Dexdomitor anesthesia to 

visualize the implantation trajectory and depth in Monkey Cicerone. The preoperative 

SWI was co-registered with the postoperative CT to determine the DBSA lead location in 

VPLo.  

5.3.3 DBS Protocols 

After implantation of the DBSA, current controlled stimulations (<350 ) was delivered 

through each electrode to assess the magnitude of the evoked motor responses. The row 
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of electrodes with the lowest threshold responses was chosen for stimulation throughout 

the rest of the experiments. This was the fourth row from the tip of the DBSA in Monkey 

K and the bottom-most row in Monkey U. For each recorded neuron adjacent to the 

DBSA, 60s trains of monopolar, biphasic, charge-balanced (100μs cathodic phase, 20μs 

interphase interval, 100μs anodic phase) stimulation at 100Hz were delivered through 

each of the four electrodes from the chosen row, at 150 , 250  and 350 . The order 

of the stimulation (selection of electrode) as well as the amplitude of stimulation were 

randomized.  

5.3.4 Extracellular Recordings 

Single-unit microelectrode recordings were performed using tungsten microelectrodes 

(25  diameter, 0.8-1.2MΩ, FHC, Bowdoin, ME, USA) around the chronically 

implanted DBSA before (30-60s), during (60s), and after DBS (30-60s). Wideband 

recordings were collected (Alpha Omega SNR) and digitized at 44 KHz. Resting state 

unit-spike data were acquired with a high-pass filter cut off at 9000Hz (in reference to the 

titanium headpost). Stimulation artifacts were removed using a previously described 

template subtraction procedure [467] [169], reducing the period of recording obscured by 

stimulation artifacts to a small blanked period (average ~0.5ms). To prevent biasing the 

data, similarly blanked regions were introduced in the pre- and post-DBS recording 

epochs using “virtual stimulation” timestamps at the same stimulation pulse frequency. 

Template-subtracted spike recordings were thresholded and sorted in Offline Sorter 

(Plexon) to identify spike activity. While most neuronal recordings were stable enough to 

record effects of DBS through each of the four electrodes at three different amplitudes 

(12 recordings in total), it was not possible to achieve this with every neuron (n = 

135/182 were recorded across all configurations in both animals).  

5.3.5  Firing Pattern and Rate Analysis  

Time-stamps of spike activity, stimulation pulses, and virtual stimulation pulses were 

imported into NeuroExplorer (NeuroExplorer, Littleton, MA, USA) to generate PSTHs 

(0.1ms bins) in the pre-DBS, DBS-on and post-DBS time periods to visualize the degree 
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of entrainment in spike activity to the stimulation (or virtual stimulation) pulses (Fig. 36). 

Previous studies have used either thresholding [468] or cumulative sum [469] methods to 

determine instances of significant FPM in PSTHs. However, these methods do not 

quantify the gradual and often subthreshold changes in the firing pattern behavior present 

in PSTHs. A new method is needed to capture these subthreshold effects, especially in 

the context of response to variable stimulation amplitudes. Therefore, a new entropy-

based method was developed to quantify the degree of change in PSTHs between the pre-

DBS and DBS states. The entropy (H) of a PSTH was computed using the following 

equation (based on the frequentist interpretation of H [470]):  

                                                                                           (5.3) 

Where  is the number of bins in the PSTH,  is the total number of spikes that fell in to 

PSTH bin  and  is the relative frequency that a spike falls in to PSTH bin . This 

formulation of PSTH entropy dictates that entropy will be high when spikes fall 

randomly within the inter-pulse period (i.e. a flat PSTH), and it will be lower when either 

excitatory or inhibitory entrainment (i.e. peaks or troughs in the PSTH) occurs. The bin 

size in equation (5.3) was chosen to be 0.5ms under the following consideration: by 

studying H as a function of bin size, it was found that the bin size for should correspond 

to the length of the shortest observed period of entrainment (i.e. period of peaks or 

troughs in the PSTH). A smaller bin size would deprive equation (5.3) of the power to 

capture a decrease in H. Bin sizes that are much larger could also dilute this 

distinguishing power. The first 0.5ms in each PSTH were excluded from analysis to 

avoid false positives related to the blanking period from the stimulus subtraction 

algorithm. Excitatory or inhibitory FPM during DBS manifested in a drop in the H of the 

PSTH compared to the pre-DBS period. This drop is computed as a percentage decrease 

as follows:  

                                                                                      (5.4) 

Significant FPM is determined using a statistical methodology: sample with replacement 

 (where  equals the total number of spikes in the DBS-on period) spikes from the pre-

DBS period, and calculate H using equation (5.3). Repeat this process 10,000 times to 
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generate a bootstrapped distribution of pre-DBS PSTH entropies: . Using all 

spikes from the DBS-on period, compute the DBS-on PSTH entropy: . 

Statistically significant FPM is reached when the probability of observing values in the 

bootstrapped  distribution that are lower than  is less than 5% (α = 0.05).  

Firing rates calculated before, during and after DBS were compared for each recorded 

cell. A statistically significant difference in firing rate was established using the Mann-

Whitney U test (1s bins,  < 0.01). A small fraction of recordings (<2%) were observed 

to have very sparse firing rates in either the pre-DBS or DBS-on periods, which led to 

inaccurate representations of the PSTH entropy. These recordings were excluded from 

further analysis. 

5.3.6 Effective Pulse Fraction  

The effective pulse fraction (EPF) was a concept developed by Agnesi et al. [468] to 

quantify how faithfully neurons are able to entrain to high frequency stimulation.  In the 

case of excitatory FPM, we define the excitatory EPF (eEPF) as the fraction of stimulus 

pulses that effectively produced a spike within an entrained phase of the inter-pulse 

interval. This pulse fraction was normalized by subtracting the equivalent measure 

calculated from the pre-DBS baseline data. This is more succinctly described in the 

following equation:  

                                                                                               (5.5) 

where  and  are the percentages of stimulus (or virtual stimulus) pulses 

followed by a spike in the entrained phase of the DBS-on period and the corresponding 

phase in the pre-DBS period, respectively. The entrained phase during DBS was 

determined as follows. First, we located the PSTH bin with the highest firing rate (call it 

bin_High), then sample with replacement spikes from the same period (  equals 

number of spikes in the DBS-on period) for 10,000 times to create 10,000 bootstrapped 

PSTHs. Next, we performed one-way analysis of variance (ANOVA) to test for a  
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Figure 36. Examples of PSTH entropy 

Examples peristimulus time histograms (PSTHs) from a recorded neuron before and during DBS at three 

different amplitudes.  is the percentage change in PSTH entropy between the pre-DBS and DBS-on 

states. The  value indicates the likelihood of the observed PSTH entropy during DBS to occur by chance.   

 

significant difference (p<0.05) in the average firing rate across all PSTH bins. If 

significance was reached, then we performed multiple comparison tests (pair-wise T test 

with Bonferroni correction, n =20 bins) to determine which bins do not have significantly 

different firing rates from bin_High. These bins, together with bin_High, form the 

entrained phase of the PSTH during DBS. An example PSTH is shown in Fig. 37(B), in 

which a neuron exhibited a higher probability of spiking between 1-1.5 ms from the onset 

of the DBS pulse. This entrained phase of the PSTH was used to calculate the eEPF. The 

inhibitory EPF (iEPF) is conceptually similar to the eEPF. It is defined as the fraction of 

pulses that effectively suppressed spike activity within an inter-pulse interval phase that 

probabilistically would have otherwise occurred with no stimulation present. This is 

described in the following equation:  
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iEPF=                                                                                                     (5.6) 

where  and  are the percentages of stimulus (or virtual stimulus) pulses 

followed by a spike in the inhibited phase of the DBS-on period and the corresponding 

phase in the pre-DBS period, respectively. The inhibited phase in the DBS-on period was 

determined as follows: locate the PSTH bin with the lowest firing rate (call it bin_Low), 

then sample with replacement spikes from the same period (  equals number of spikes 

in the DBS-on period) for 10,000 times to create 10,000 bootstrapped PSTHs. Perform 

one-way analysis of variance (ANOVA) to test for a significant difference (p<0.05) in the 

average firing rate across all PSTH bins. If significance is reached, then perform multiple 

comparison tests (pair-wise T test with Bonferroni correction, n =20 bins) to determine 

which bins do not have significantly different firing rates from bin_Low. These bins, 

together with bin_Low, form the inhibited phase of the PSTH during DBS. An example 

PSTH is shown in Fig. 37(C), in which a neuron exhibited inhibition of spiking between 

0.5 - 5ms from the onset of the DBS pulse. This inhibited phase of the PSTH was used to 

calculate the iEPF.  

5.3.7 Stimulus artifact size as a measurement of distance  

The size of the DBS stimulus artifact was used as a pseudo measure of distance in this 

study. Studies [471] [472] have shown that neurons will have to be within 50  of the 

recording electrode in order to be reliable separated out in the spike sorting process. The 

recorded neurons in this study have all been shown to have good isolation in the spike 

sorting process. Therefore, we have reason to be believe that the recordings were 

performed in close proximity (on the order of tens of microns) to the neurons and the 

sizes of the stimulus artifacts are true reflections of the relative distances between the 

recorded neurons and the active electrode. The stimulus artifacts were detected via 

thresholding on the anodic phase of the waveform. For each recording session, the 

artifacts from each stimulation amplitude (150 , 250 , or 350 ) were averaged and 

the peak value ( ) of the anodic phase of the waveform was used as the pseudo measure 

for distance.  
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Figure 37. Example PSTHs of the various types of neuronal responses to VPLo-DBS 

P: firing pattern modulation (FPM). R: firing rate modulation. ‘+’: excitatory entrainment or firing rate 

increase. ‘ ’: inhibition or firing rate decrease. N: no response.  

5.4 Results 

5.4.1 Heterogeneity of Neuronal Responses to VPLo-DBS 

The number of recorded neurons was 85 in Monkey K (21 recording tracks) and 97 in 

Monkey U (11 recording tracks). The neuronal responses to VPLo-DBS can be 

characterized by FPM and/or FRM. We have grouped these responses into 9 categories, 

shown in Fig. 37 FPM was  

 

represented by the letter ‘P’ and FRM by the letter ‘R’. Excitatory entrainment or rate 

increase were signified by ‘ ’, while inhibitory entrainment or rate decrease were 

signified by ‘ ’. No response to DBS was represented by the letter ‘N’. 12.94% (11/85) 

and 21.65% (21/97) of all recorded neurons in Monkey K and Monkey U, respectively, 

were exhibited FPM during DBS. The recordings were grouped by stimulation amplitude 

and divided into various types of responses (Fig. 38). In Monkey K, there were 273, 256 

and 254 recordings at 350 , 250  and 150 , respectively. Most recordings showed 

no response of any kind to DBS. The percentage of responsive recordings increased  
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Figure 38. The percentage composition of recordings by type of response 

Data from Monkey K and Monkey U are on the left and right side of the color legend, respectively. The top 

row of pie charts show the percentage makeup of different types of responses to DBS at 350 , 250 , 

and 150 . The bottom row of pie charts show the corresponding percentage makeup of response subtypes 

only for those recordings that were modulated in some way by DBS. P: firing pattern modulation (FPM). R: 

firing rate modulation. ‘+’: excitatory entrainment or firing rate increase. ‘ ’: inhibition or firing rate 

decrease. N: no response.  

 

slightly from 19% at 150  to 26% at 350 . Within the fraction of recordings that were 

responsive to DBS in some way, there was a shift from mostly FRM to a more nuanced 

collection of responses. More specifically, ‘R+’ and ‘R ’ responses accounted for 88%, 

84% and 56% of all responsive recordings at 150 , 250  and 350  respectively. The 

decrease in the number of recordings with FRM at 350  was accounted for with an 

increase in the number of recordings with FPM. In Monkey U, there were 290 recordings 

each at 350  and 250  and 292 recordings at 150 . Out of these recordings, 57%, 

58% and 54% of recordings were non-responsive to DBS. This represented a decrease 

compared to the corresponding percentages found in Monkey K. Similar to what was 

found in Monkey K, the composition of the responsive recordings showed a decrease in 

the proportion of FRM responses as the DBS amplitude increased: from 94% at 150  to 

80% at 350 . This decrease was balanced by an increase in the proportion of FPM 

responses.  

5.4.2 Neuronal Response as a Function of Distance  

A total of 783 and 872 recordings (each recording corresponds to DBS with a single 

amplitude) were available from Monkey K and Monkey U respectively. PSTHs were  
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Figure 39. Change in PSTH entropy vs. stimulus artifact 

The percentage decrease in PSTH entropy between the DBS-on and pre-DBS periods plotted against the 

peak amplitude of the recorded DBS artifact. Recordings that exhibited significant firing pattern 

modulation during DBS are labeled in red.  

 

created for each recording and  between the DBS-on and pre-DBS periods were 

calculated (see Methods section). The  between the DBS-on and pre-DBS periods 

were plotted against the peak amplitude of the DBS artifact (Fig. 39). Recordings 

exhibiting significant FPM during DBS are labeled in red. The results showed that 

significant FPM can be associated with large decreases in PSTH entropy (>10%), but this 

was not necessarily always the case. Many instances of significant FPM had relatively 

small changes in PSTH entropy, but the neuronal responses during DBS were 

nevertheless highly unlikely to occur by chance. Furthermore, instances of significant 

FPM and large  occurred over a wide range of ‘distances’, as measured by the size of 

the stimulus artifact. This range was found to be 4520  at the farthest and 31300  at 

the nearest, pointing to a sparse spatial activation profile. Using methods described 

previously, the recordings were also grouped by their response to DBS. Histograms 

illustrating the spatial distribution of each group are shown in Fig. 40. It is evident that 

the heterogeneous responses to DBS also occur over a wide range of distances.  

5.4.3 Neuronal Response as a Function of Stimulus Amplitude  

The degree of FPM as a function of stimulus amplitude was examined. Only those 

recording trials that have undergone DBS at all three amplitudes (150 , 250 , and  
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Monkey K 

Group nFPM Group FPM 

150  250  350  150  250  350  

-0.14 ± 1.47 % 0.08 ± 1.36 % 0.22 ± 1.47 % 1.43 ± 3.12 % 
6.08 ± 14.18 

% 

11.36 ± 14.03 

% 

Monkey U 

Group nFPM Group FPM 

150  250  350  150  250  350  

-0.27 ± 0.67 % -0.15 ± 1.23 % -0.15 ± 0.84 % 1.02 ± 2.19 % 3.53 ± 7.97 % 
7.21 ± 12.75 

% 

Table 12. The percentage decrease in PSTH entropy as a function of stimulus amplitude within 

Group nFPM and Group FPM 

 

350 ) were chosen for this analysis. This amounted to 245 trials in Monkey K and 283 

trials in Monkey U. The recording trials were grouped into two categories: 1) DBS failed 

to elicit FPM at any of the three stimulation amplitudes (Group nFPM), and 2) DBS 

elicited FPM with at least one stimulation amplitude (Group FPM). Monkey K had 21 

and 224 recording trials in Group FPM and Group nFPM, respectively. Monkey U had 32 

and 251 recording trials in Group FPM and Group nFPM, respectively.  as a 

function of stimulus amplitude within each group are shown in Fig. 41. The average  

under three stimulus amplitudes are listed in Table 12. Within each group, one-way 

ANOVA was performed to test for a significant difference (α = 0.05) in the average  

with stimulus amplitude as the explanatory variable. The analysis showed that for both 

Monkey K and Monkey U, there was no significant difference in the average  

between data recorded under the three DBS amplitudes (Monkey K: p = 0.276, Monkey 

U: p = 0.247). In contrast, a significant difference was found in Group FPM for both 

animals (Monkey K: p = 0.028, Monkey U: p = 0.021). Multiple-comparison tests (n=3, 

Mann-Whitney U test with Bonferroni correction, α=0.05/3=0.0167) were subsequently 

performed on the data in Group FPM.  In both animals, significant differences were 

found between the (150 , 350 ) groups and the (250 , 350 ) groups, but not 

between the (150 , 250 ) groups (Fig. 41). The rate of increase in the average PSTH 

H% as a function of the change in stimulus amplitude (i.e. slope) was calculated for  
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(5.7) 

 

P: firing pattern modulation 

(FPM). R: firing rate 

modulation. ‘+’: excitatory 

entrainment or firing rate 

increase. ‘ ’: inhibition or 

firing rate decrease. N: no 

response. The x-axis shows 

the peak amplitude of the 

recorded stimulus artifact 

( ), used as a measure of 

distance from the active 

electrode. The y-axis is a 

count of the number of 

recordings. The blue 

histogram in the background 

of each plot shows the 

distribution of recordings in 

the non-responsive group N. 

All recordings belonging to 

other groups are shown in red 

histograms.  

 

Figure 40. Spatial distribution 

of recordings grouped by their 

response to DBS 
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Figure 41. The percentage decrease in PSTH entropy as a function of stimulus amplitude within 

Group FPM and Group nFPM 

NS: no significant difference by multiple comparison test. *: significant difference by multiple comparison 

test.  

 

 
Figure 42. The rate of increase in the average change in PSTH entropy as a function of the change in 

stimulus amplitude 

Data from groups nFPM and FPM are on the top and bottom rows, respectively. ‘Slope 1’ and ‘slope 2’ are 

the average rate of increase in PSTH H% between (150 , 250 ) and (250 , 350 ), respectively. 

Note the different scalebars amongst the plots.  
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both Group nFPM and Group FPM, shown in Fig. 42. As an example, the rate of increase 

in the average PSTH H% between data recorded under 350  and 250  can be 

calculated in the following way:  

Slope =                                                                                              

The fractions in the denominator in Equation 5.7 were meant to normalize all stimulus 

amplitudes by the lowest amplitude of 150 . The average rate of increase in PSTH 

H% between (150 , 250 ) and (250 , 350 ) were designated ‘slope 1’ and ‘slope 

2’, respectively. The mean and standard deviation of the slopes are listed in Table 13. 

Two-way ANOVA with unbalanced sample sizes was performed on all the slope values 

(in each animal), using both response to DBS (i.e. Group FPM vs. Group nFPM) and 

slope segment (i.e. ‘slope 1’ vs. ‘slope 2’) as explanatory variables (α = 0.05). In both 

animals, a significant difference in the average slope of PSTH H% increase was only 

attributed to a difference in response to DBS (p = 0 in both animals), and not to slope 

segment, or the interaction of those two factors. Multiple-comparison tests (n=6, Mann-

Whitney U test with Bonferroni correction, α = 0.05/6 = 0.0083) were performed on the 

slope data in each animal (Fig. 45). For both animals, there was not a significant 

difference between slope 1 and slope 2 within the same response group (nFPM or FPM), 

but any comparison with a slope from another response group showed a significant 

difference (Fig. 43).  

  Lastly, pie charts were created to illustrate the likelihood of FPM to occur at different 

stimulus amplitudes (Fig. 44). The results showed that FPM was more likely to occur at 

higher stimulus amplitudes, 350  in particular, which accounted for 48% and 41% of all 

recordings with FPM in Monkey K and Monkey U, respectively. The likelihood of FPM 

at 350  and 250  were 24% in Monkey K and 25% in Monkey U. The likelihood of 

FPM occurring at all three stimulus amplitudes was still significant, accounting for 19% 

in Monkey K and 22% in Monkey U.  
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Monkey K Monkey U 

Group nFPM Group nFPM 

Slope 1 0.33 ± 2.43 Slope 1 0.18± 2.08 

Slope 2 0.21 ± 2.67   Slope 2 0.01± 2.26 

Group FPM Group FPM 

Slope 1 6.97 ± 17.66 Slope 1 3.76 ± 10.08 

Slope 2 7.92 ± 16.88 Slope 2 5.52± 10.79 

Table 13. Mean and standard deviation of the average rate of increase in PSTH between stimulation 

amplitudes 

Mean and standard deviation of the average rate of increase in PSTH H% between (150 , 250 ) and 

(250 , 350 ).  

5.4.4 Effective Pulse Fraction during DBS  

The eEPF was found to be 3.25% ± 3.8% in Monkey K (42 recordings) and 3.18% ± 

3.99% in Monkey U (45 recordings). This result indicates that on average, only about 3% 

of DBS pulses introduced entrained spikes that would not have otherwise occurred. The 

iEPF was found to be 81.01% ± 4.44% in Monkey K (3 recordings) and 76.3% ± 20.61% 

in Monkey U (7 recordings). This result indicates that on average, approximately four-

fifths of DBS pulses effectively suppressed spike activity within an interpulse interval 

phase that likely would have occurred with no stimulation present. The relationship of 

eEPF as a function of distance (from the active electrode) as well as PSTH H% were 

examined and shown in Fig. 45. The same was not done for iEPF due to the small sample 

size in both animals. The eEPF was shown to be positively correlated (Pearson’s 

correlation coefficient) with PSTH H% (Fig. 45A) in both Monkey K (  = 0.77, p = 

3.2 ) and Monkey U (  = 0.59, p = 1.9 ). Given this result, it was not 

surprising to notice the similarity in the shape of the data distribution when comparing 

eEPF vs. distance (Fig. 45B) and PSTH H% vs. distance (Fig. 39).  

5.5 Discussion 

This study aimed to experimentally characterize 1) the spatial activation profile around a 

chronically implant DBSA during VPLo-DBS and 2) the neuronal responses in relation to  
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Figure 43. Average rate of change in PSTH entropy as a function of stimulation amplitude 

Box whisker plots depicting the average rate of increase in PSTH H% between (150 , 250 ) (‘slope 

1’) and (250 , 350 ) (‘slope 2’). NS: no significant difference by multiple comparison test. *: 

significant difference by multiple comparison test.   

 

DBS amplitude. The results indicate that there is substantial heterogeneity in the neuronal 

response to DBS that included both FPM and FRM. Furthermore, the in-vivo VTA was 

sparsely populated and not confined to the immediate vicinity of the active electrode. 

Increasing the stimulation amplitude induced greater change in firing pattern only in a 

subset of recorded neurons.  In addition, only a small fraction of DBS pulses were able to 

introduce entrained spiking activity in modulated neurons.  

5.5.1 Heterogeneity of Neuronal Responses to VPLo-DBS 

Studies in the past have mostly characterized thalamic neuronal responses to short 

duration intrathalamic stimulation [473], [152], [474], [475], [476] that ranged from 

0.5ms [473] – 2s [474] in length. A longer stimulation duration of 10 – 60s was used in 

[477], [478]. The focus of these studies were to understand somatotopic organization of  
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Figure 44. Likelihood of firing pattern modulation at various stimulation amplitudes 

Likelihood of FPM to occur at different stimulus amplitudes or combination of stimulus amplitudes.  

 

the motor thalamus [152], the temporal patterns of response proceeding stimulation 

across different neuronal populations [473], [474], [475] and the neural origins of the 

stimulation-evoked potentials [477]. The study described in this chapter is different in 

that it is focused on understanding changes in neuronal firing behavior during longer (up 

to 60s) DBS-ON periods and quantifying the spatial profile of where these changes are 

taking place. The majority of recordings showed that neuronal activity was not influenced 

by DBS in any way (Fig. 38). The proportion of unaffected recordings ranged from 74% -

81% in Monkey K and 54%-58% in Monkey U. This is consistent with reports from 

previous studies, where 55% (330/600) [475] and 51% (51/100) [473] of recorded 

neurons in the motor thalamus were unaffected by stimulation. The higher percentage of 

non-responding recordings found in Monkey K could be due to tissue damage and 

microelectrode recordings farther from the active electrodes in comparison to previous 

studies. A previous study also noted that the proportion of non-responsive neurons varied 

appreciably from animal to animal [473]. Most responses to DBS were in the form of 

FRM, with rate decrease being the majority. This is supported by the observation in [479] 

that the major effect of thalamic stimulation is local depression of neuronal activity. That 

study found two types of cells that were inhibited following 0.5ms of stimulation with 

amplitudes ranging from 120-200 . The inhibitory behavior of these cells was 

characterized as a complete silencing of activity for periods of time at differing latencies 

following a single shock. The study estimated that 42% of all responsive neurons within a 

4mm radius sphere would be silenced by stimulation. This is generally consistent with  
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Figure 45. Excitatory effective pulse fraction (eEPF) in relation to strength of modulation under DBS 

and distance away from the stimulating electrode 

(A) Correlation between eEPF and .  is the Pearson’s correlation coefficient. (B) eEPF as a function of 

the peak amplitude of the recorded DBS artifact.  

 

our findings, where 37% - 56% (Monkey K) and 45% -55% (Monkey U) of responses 

were in the ‘r ’ category. However, it is important to note that in the absence of 

chronically applied DBS, it is possible that the inhibitory response described will differ 

from the ‘r ’ and ‘p ’ categories of responses in the current study.  Similarly, a ‘Class 

III’ group of cells was found by the same group [473] with a neuronal response 

characterized by an initial burst following a single shock. These cells accounted for 36% 

(36/100) of recorded neurons. This percentage is higher than the 5% -7% and 16% - 18% 

of ‘r ’ type responses found in Monkey K and Monkey U, respectively (Fig. 38, first 
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row). Again, it is difficult to predict the response of the ‘Class III’ neurons to prolonged 

stimulation ( ). FPM was rarer compared to FRM, making up 12% - 44% of all 

responsive recordings in Monkey K and 7% - 20% in Monkey U. Inhibitory FPM was 

especially rare, accounting for at maximum only 4% and 1% of all responses in Monkey 

K and Monkey U respectively. This is likely attributed to the preponderance of excitatory 

inputs relative to inhibitory inputs in the thalamus [480], [460].  Taken together, the 

results in this study provide a more refined classification of neuronal response to DBS 

based on both FPM and FRM.  

5.5.2 Entropy-Based Method to Quantify Changes in PSTH  

The entropy-based method developed in this study was effective at identifying instances 

of significant FPM and characterizing the graded changes in the PSTHs (Fig. 36). Visual 

inspection of all PSTHs with FPM have shown that there were no gross misclassifications 

(i.e. PSTHs that clearly did not exhibit FPM). Studies in the past have also used entropy 

as a quantitative measure of neuronal output. However, the focus of these methods were 

to either measure neuronal information from inter-spike intervals [481], [482], [483] or 

spike train data [484]. The method used in this study was tailored for characterizing 

changes in PSTHs, which only pertains to a cell’s firing behavior in relation to the onset 

of the stimulus pulses. This method is effective at capturing both excitatory and 

inhibitory FPM and provides a quantitative measure of the change in PSTH between the 

DBS-on and pre-DBS states. Moreover, the method presents a less biased approach to 

define statistical significance in PSTHs than the conventional approaches using a preset 

number of standard deviations above the mean [468], [169].  

5.5.3 Neuronal Response as a Function of Distance  

In the absence of histology to verify the exact location of the recorded neurons relative to 

the active electrode contacts, we have used the average peak amplitude of the stimulus 

artifact as a pseudo measure of the distance away from the stimulating electrode. The 

results revealed that instances of significant FPM occurred over a wide range of distances 

and were not confined to the immediate vicinity of the stimulating electrode (Fig. 39). In 
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a simplified scenario where DBS is produced by a point charge  on the surface of the 

stimulating electrode, the electrical potential  at a distance  from the point charge is 

given by , where  is Couloumb’s constant. The confounding factor of variable 

DBS amplitude (i.e. varying ) present in this study can be transformed into a scenario of 

constant  by varying the distance . For example, the size of the DBS artifact from 

350  of stimulation recorded at a distance of  is the same as the artifact resulting 

from 150  of stimulation, recorded at a distance of . Employing this concept, the 

relative distances between recording sites can be determined as . The ratio 

between the largest and smallest DBS artifact amplitudes at which significant FPM 

occurred was 4.34 ( ) in Monkey K and 5.64 

( ) in Monkey U. Therefore, effectively speaking, the furthest 

location of FPM occurrence was 4.34 and 5.64 times more distant than the nearest 

location in Monkey K and Monkey U, respectively. Inspecting the occurrences of all 

response subtypes also indicates that 1) activation was sparse (the majority of recordings 

did not show response to stimulation) and 2) the occurrences of modulation were 

distributed (Fig. 40) with no noticeable spatial bias. This sparse distribution of modulated 

neurons echoes observations from other studies. Schlag et al. [479] noted that during 

stimulation in the ventrolateral nucleus (VPLo homologue) in cats that non-responsive 

cells can be found everywhere, even very close ( ) to the stimulating electrode. 

Vitek et al. [152] have also reported on micoexcitable zones within the thalamus that 

ranged from 500 – 1500 , where the same response was observed at several adjacent 

stimulation sites within the zone. This sparse and distributed profile of the in-vivo VTA 

was also clearly demonstrated in the rodent and cat cortex using two-photon calcium 

imaging [445]. The same study demonstrated compelling evidence to suggest that direct 

activation of axons near the stimulating electrode (within tens of microns) coupled with 

local axonal projection patterns were the reasons for the sparse distribution of modulated 

cells (whose somas we recorded from [485], [472]). The variation in the H% observed 

amongst the modulated cells (Fig. 41) was reminiscent of the differences in fluorescence 

of activated cells observed in [445]. The strongly modulated cells likely had axons that 
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were directly modulated by stimulation, while the weakly modulated ones were possibly 

driven via postsynaptic activation, or had axons that were further away from the 

stimulating electrode [445]. It is interesting to note in Monkey K’s data, there appears to 

be a ‘hot spot’ for cells with large H% values, which is between 1.5 – 2  (Fig. 

39). This is likely due to the axonal projection patterns within the recorded region. This 

phenomenon was less pronounced in Monkey U.  

5.5.4 Neuronal Response as a Function of Stimulus Amplitude  

The majority of recordings showed that increase in stimulation amplitude did not 

influence neuronal activity (Fig. 38). However, within the fraction of data that did show 

modulation (Fig. 38, bottom row), a transition took place where FRM was gradually 

replaced with FPM as the stimulation amplitude increased. In Monkey K, FPM account 

for 12% of all modulated recordings at 150 , 16% at 250  and 44% at 350 . The 

rate of increase in the percentage of FPM recordings is 6% ( ) between 150  

and 250  and 42% (( )) between 250  and 350 . This change from FRM 

to FPM was less prominent in Monkey U, where FPM accounted for 7% of all responsive 

recordings at 150  and 20% at 350 . The rate of increase in the percentage of FPM 

recordings is 9% between 150  and 250  and 10.5% between 250  and 350 . The 

results also show that there is a propensity for FPM to occur at higher stimulation 

amplitudes (Fig. 44). This increase in the firing probability (FPM) with successive 

increase in stimulation amplitude is likely the result of a non-synaptic mechanism where 

direct current effects alters the membrane excitability of axons [486]. The implication for 

DBS is that at lower stimulation amplitudes, the mechanism of ‘de-rhythmication’ [478] 

is mainly through ‘masking’ of the rhythmic tremor activity [487] by creating 

randomness in spike activity via FRM. At higher amplitudes, the mechanism shifts to 

disruption via entrainment (FPM) of spike activity. Increasing stimulation amplitude 

exhibited a differential modulatory effect on a minority of cells (i.e. Group FPM, 12.94% 

and 21.65% in Monkey K and Monkey U, respectively). Within this group, a difference 
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in modulatory effect was found between 250  and 350  and not between 150  and 

250  (Fig. 43), suggesting a nonlinear effect. The average rate of change in modulatory 

effect ( H%) as a function of stimulus amplitude were both practically zero in Group 

nFPM (Fig. 43), and not found to be significantly different. In contrast, the rates of 

increase in Group FPM were significantly different from zero. Slope 2 was on average 

larger than slope 1. It should be noted that although the two slopes were found not to be 

significantly different in the context of a multiple comparisons test, the  values in both 

animals were very small (0.0096 in Monkey K and 0.0083 in Monkey U) and would have 

reached significance without Bonferroni correction. This again echoes the nonlinear 

effect that increasing stimulation amplitude has on the degree of FPM. The separation of 

all recorded neurons into two distinct groups, one that can be influenced by electrical 

stimulation, and another that altogether cannot, is a very interesting phenomenon. Taking 

the perspective that direct activation of axons is the main modulatory effect in DBS 

[445], and axonal activation is dependent on the AF at nodal compartments [448], it is 

likely that axonal projection patterns and the resulting relative orientation to the electric 

field plays an important role in a neuron’s response to stimulation. To illustrate this point, 

an example of AF maps surrounding a DBSA under three different stimulation 

configurations [353] is shown in Fig. 46. The AF maps can take on complex profiles, 

even under idealized axonal trajectories. Taken together, the results point to the need to 

further characterize network connectivity and axonal projection patterns of neuronal 

processes at a much more detailed level than currently available, and incorporate the 

findings into computational models.  

5.5.5 Fidelity of Entrainment of Neuronal Activity During DBS 

DBS has been shown to low-pass filter circuit-level entrainment during DBS in 

glutamatergic pathways [468], where entrained spike activity does not faithfully follow 

stimulus pulses in a one-to-one fashion. This is consistent with results from the current 

study, where only less than 4% of all DBS pulses produced spikes within the entrained 

phase of the interpulse interval. This is roughly half of the eEPF reported from motor 

cortex during VPLo DBS (7.5%) and from the 



   136 

 

 
Figure 46. Examples of activating function maps 

Adapted from Figure 7 in [353]. The figure illustrates the complex activating function map that resulted 

from stimulation through a DBS array under three different active electrode configurations.  

 

globus pallidus (GP) during subthalamic nucleus (STN) DBS (8.7%). This discrepancy is 

likely due to a difference in 1) the selection of recordings exhibiting significant FPM and 

2) calculation of entrained phases within the PSTH. Agnesi et al., [468] employed a 

thresholding method that’s more stringent than the one used in the current study to detect 

instances of significant FPM. It is more stringent because thresholding on the PSTH is an 

absolute measure on the strength of entrainment to DBS and would miss instances of 

weaker FPM that are nevertheless significant because they are highly unlikely to occur by 

chance. Therefore, selecting from the current study only the data with strong entrainment 

would likely have resulted in higher eEPF values. The iEPF data in the current study 

aligned closely with reported values from the STN (82%) and the pallidal-receiving area 

of thalamus (VLo) (86%) during GP DBS, indicating that DBS was effective at 

suppressing spike activity. Agnesi et al. computed the EPFs using data from structures 

downstream from the stimulated structure, whereas the current study stimulated and 
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recorded in the same structure. The similarity in eEPF results from the two studies 

suggests that the low-pass filtering effect on the glutamatergic transmission began within 

the stimulated structure (VPLo in this study). This is consistent with results from 100Hz 

stimulation in the cat ventrolateral nucleus of thalamus (VL) showing the response of VL 

neurons to DBS tended to drop off after the third pulse or often followed the pulses in a 

partial or alternating fashion [475]. Another study in motor thalamic brain slices showed 

that high frequency stimulation could only entrain antidromic activity within 

corticothalamic axons firing at less than 50Hz [488]. Similarly, the iEPF data suggests 

that the effective suppression of spiking activity also began in the stimulated structure. 

The specific mechanism behind these findings is unclear. Possible factors are discussed 

in detail in [468] and are not elaborated here. In addition, there’s strong statistical 

evidence to suggest that eEPF is correlated with the degree of FPM ( H%). In other 

words, strong modulation is correlated with higher rates of success of DBS pulses in 

inducing entrained spikes. Taken together, we have shown through EPF analysis that 

within VPLo, 1) DBS pulse have a high success rate in suppressing spiking activity (as 

indicated by high iEPF values, see definition of equation 5.6) and low success rate in 

inducing entrained spike activity (as indicated by low eEPF values, see definition of 

equation 5.5). 2) A higher success rate of DBS pulses in inducing entrained spike activity 

likely plays an important role in producing strong modulatory effects. More studies are 

needed to understand the mechanisms of this low-pass filtering effect on entrainment 

during DBS, and these mechanisms should be incorporated into the computational 

models of neuronal activation to make them more realistic.    

  The results from this study found that the majority of modulated neuronal responses to 

DBS happened in the form rate changes, especially at lower stimulation amplitudes (Fig. 

38). The implication for DBS treatment of ET is that when under low intensity 

stimulation, noise is introduced into the rhythmic discharge of ‘tremor’ cells in the 

thalamus [487] via random changes firing rate, masking their synchronized activities and 

thus producing a ‘de-rhythmication’ effect [478]. At higher amplitudes, a transition in 

neuronal response to DBS takes place from FRM to FPM, with excitatory entrainment of 

spike activity being the most prominent. This entrainment to the stimulus is in effect 
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regularizing neuronal activity, consistent with the ‘informational lesion’ [164] hypothesis 

on the mechanism of therapeutic DBS. However, the low eEPF values found in this study 

(also reported in [468]) suggests that this regularizing mechanism is not very effective. In 

other words, if an informational lesion effect is taking place, this effect would be 

incomplete. This interpretation is supported by a study from Agnesi et al. [169], which 

showed that despite losing kinematic tuning, cells in the GP and VLo still responded to 

one or more aspects of joint movement during GP-DBS. Furthermore, the data has shown 

significant positive correlation between stronger FPM and higher eEPF values (Fig. 45). 

This suggests that the more complete the informational lesion (associated with higher 

eEPF, as discussed above), the stronger the modulatory effects and hence better therapy. 

Finally, it has been suggested that effective DBS in ET works by disrupting pathological 

activity in the CTT [68] or TCT [153]. Stimulation of the PSA has been demonstrated to 

produce good tremor control at lower stimulation intensities (compared to the Vim 

proper) [175]. This is presumably because the afferent CTT fibers are bundled together as 

they enter the ventrolateral thalamus and therefore stimulation is able to activate a larger 

proportion of these fibers. The larger intensities required to stimulate the Vim proper is 

supported by the finding of topographically organized ‘tremor clusters’ within that 

nucleus [176]. Therefore it is possible that stimulation in the Vim involves a volumetric 

effect in which tremor suppression results from electrical current sufficiently capturing 

these tremor clusters via either the ‘informational lesion’ or ‘de-rhythmication’ 

mechanisms.  
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Chapter 6 

 

Conclusions and Future Directions 

 

This doctoral dissertation made the following contributions to advancing DBS technology 

for the treatment of ET: 1) Coupled high-field imaging data with image processing tools 

to generate subject-specific atlases of individual thalamic nuclei, thus improving the 

ability to visualize DBS targets. 2) Developed an efficient computational model-based 

algorithm to program high-density DBSAs. 3) Applied spherical statistical tools to 

quantify computational VTA models of DBS. (4) Characterized the stimulation-induced 

neuronal activity around chronically implanted thalamic DBSAs.  

6.1 Summary of Findings  

In Chapter 2, 7T SWI (n = 7) and DWI (n = 3) data from NHPs were used to create 

subject-specific atlases of the thalamus. The process involved the simultaneous use of a 

nonlinear image warping algorithm [313] and probabilitistic fiber tractography to 

segment individual thalamic nuclei and reconstruct the afferent fibers pathways. High-

field SWI revealed that several regions of the thalamus (especially in the posterior 

regions) exhibited increased contrast relative to other regions within and external to 

thalamus. These borders with a difference in image contrast can then be used to guide 

manual segmentation or help provide landmarks for image deformation algorithms. 

Posterior thalamic nuclei including VPLc, Pulvinar and MGN exhibited significant trends 

of image hypointensity with age. Various studies in the past have described the use of 
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atlas deformation techniques [332, 489] and probabilistic fiber tractography [230, 268] 

separately, but their combined use in a multimodal approach have not been reported. The 

accuracy of thalamic nuclei segmentation was validated using electrophysiological 

recording data, blockface tissue sections as well as reconstructed afferent fibers. The 

results from the in vivo recording data showed good alignment between the locations of 

recorded VPLo and VPLc cells with their respective segmented volumes. Similarly, 

tissue sections also registered well with corresponding deformed atlas images, both in 

terms of the alignment of the borders of thalamus as well as regions such as MD, pulvinar 

and MGN that displayed hypointensity in the MRI. Furthermore, afferent ML, SCP and 

PF tracts all reached their respective destinations in the VPLc, VPLo and VLo/Va. Thus 

we have demonstrated in this study the feasibility to reconstruct from multimodal high-

field imaging data both brain nuclei and their afferent fibers with good anatomical 

accuracy. This is important both for DBS target localization as well as building accurate 

subject-specific computational models. For example, it has been suggested that effective 

DBS therapy for ET acts through disruption of pathological activity in the CTT [68] or 

TCT [154] going to and from the Vim nucleus. The multimodal imaging approach 

described in this study is well-suited to locate the intersection of these fibers and the Vim, 

direct stimulation of which have been shown to achieve therapeutic effects with lower 

stimulation intensities [175] (as compared to stimulation of Vim proper).  

  In Chapter 3, we developed an efficient programming algorithm for DBSAs based on 

finite-element electric field models and the principles of convex optimization. The goal 

of the algorithm was to achieve optimal stimulation of a target volume by maximizing the 

AF values of axonal nodes of Ranvier within that volume. The conceptual innovation of 

the algorithm is that it breaks away from the traditional approach of pre-computing and 

storing numerous VTA solutions and searching through a database to find the solution 

that best captures a volume of interest [218, 219]. Instead, our approach only requires 

pre-computing as many finite-element simulations as there are electrodes on the DBSA (n 

= 32 for the study in Chapter 3) and storing the voltage field results. Given these results, 

the algorithm is able to deduce the maximum possible AF value at each axon node 

location within the volume of interest. Simultaneously achieving the highest possible AF 
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value for every node is not feasible because the second spatial difference of the 

extracellular voltage is dependent on the location and orientation of axons relative the 

voltage field. Therefore, the problem of maximization was further specified using three 

different objective function criteria: (1) linear programming (LP), (2) quadratic 

programing (QP) and (3) maximum deviation (MD). The algorithm was then able to 

leverage the principle of voltage superposition and forward compute the current output 

solutions that will satisfy each criterion in a matter of seconds. The results showed that 

the LP method produced the largest average AF values among the axon nodes, followed 

by the QP and then MD methods. However, the size of the spread of the AF values also 

followed in that order, with the LP method producing the most spread, and MD method 

the least. These characteristics of the three methods can be tailored to suit different needs, 

for example focal stimulation vs. broad excitation.  

  In Chapter 4, we modeled directional stimulation of 5000 thalamocortical relay neurons 

surrounding a 32 channel DBSA and utilized the tools of spherical statistics to 

quantitatively describe the profile of their activation. Spherical statistics has wide 

applications in analyzing directional data [415-417], but has not been introduced into the 

field of DBS to characterize the spatial effects of directional stimulation. The study 

described in detail the procedures from creation of a directional dataset (from 3D 

Cartesian data), to forming a hypothesis of a model to fit its shape, statistically testing 

that hypothesis and finally fitting the dataset to the appropriate parametric model. The 

study also demonstrated how parametric model parameters changed as a function of both 

stimulation amplitude and distance from the active electrode, using unidirectional 

stimulation as an example and fitting the distribution of activated neurons to the 

unimodal Kent Model. Interpretation of the change in model parameters indicated: 1) as 

stimulation amplitude increased, the shape of activated neurons became progressively 

more diffuse about the direction of stimulation and more symmetrical in shape. (2) More 

focal and symmetrical neuronal activation profiles were observed in concentric shells 

further away from the active electrode, despite reduced probabilities of activation. The 

approach and methods described in this study are well-suited to characterize the effects of 

directional stimulation and can be applied to data from a variety of modalities, including 
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computational modeling [213, 215], electrophysiological recording [407, 473] and optical 

imaging [442, 445].  

  In Chapter 5, we investigated the in vivo VTA by examining spatial characteristics of 

stimulation-induced neuronal activity around chronically implanted thalamic DBSAs in 

two NHPs. The study examined both neuronal firing rate and pattern changes as a 

function of stimulation amplitude and distance away from the source of stimulation. A 

novel entropy-based method was developed to quantify the degree and significance of 

firing pattern modulation based on PSTHs. The results showed that the majority of 

neurons were not modulated by stimulation, which is consistent with previous findings 

[473, 475]. The responses of the modulated neurons, on the other hand, were 

heterogeneous, ranging from firing rate increase and decrease to excitatory or inhibitory 

entrainment to the stimulus pulses, or a mixture of those responses. The majority of 

recordings showed that neurons were not influenced by increases in stimulation 

amplitude. However, within the fraction of data that did show modulation, a transition 

took place where FRM was gradually replaced with FPM as the stimulation amplitude 

increased. The results also showed that there was a propensity for FPM to occur at higher 

stimulation amplitudes. The implication for DBS is that at lower stimulation amplitudes, 

the mechanism of ‘de-rhythmication’ [478] is mainly through ‘masking’ of the rhythmic 

tremor activity [487] by creating randomness in spike activity via firing rate increasing, 

or raising the threshold for tremor burst propagation via firing rate decrease. At higher 

amplitudes, the mechanism shifts to disruption via entrainment (FPM) of spike activity. 

Increasing stimulation amplitude exhibited a differential modulatory effect only on a 

minority of cells. Within this group, a difference in modulatory effect was found between 

250  and 350  and not between 150  and 250 , suggesting a nonlinear effect. The 

data clearly showed that the recorded neurons can be divided into two groups: one that 

can be influenced by electrical stimulation, and another that altogether cannot at the 

stimulation levels tested. Taking the perspective that direct activation of axons is the 

main modulatory effect in DBS [445], and axonal activation is dependent on the AF at 

nodal compartments [448], it is likely that axonal projection patterns and the resulting 

relative orientation to the voltage field plays an important role in a neuron’s response to 
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stimulation. This finding points to the importance of continued research to characterize 

network connectivity and projection patterns of neuronal processes, and incorporating 

them into computational models. Contrary to the traditional belief that stimulation leads 

to a sphere of activated neurons around the electrode tip which increases in size with 

increasing current [408, 410, 490], the results in Chapter 5 indicated that neuronal 

activation occurs over a wide range of distances and is not confined to the immediate 

vicinity of the active electrode. This was true regardless of the type of neuronal response 

to DBS. This finding is consistent with reported results from two-photon calcium 

imaging of neuronal responses to stimulation in the rodent and cat cortex, which 

demonstrated compelling evidence to suggest it was direct activation of axons near the 

stimulating electrode (within tens of microns) coupled with local axonal projection 

patterns that were the reasons for the sparse distribution of modulated cells [445]. The 

eEPF and iEPF values computed from the data in Chapter 5 were in close agreement with 

those reported by Agnesi et al. [468]. The eEPF values were less than 4% in both NHPs, 

suggesting that there was a strong low-pass filtering effect on excitatory entrainment 

taking place in the stimulated nucleus. This low-pass filtering effect is not at all 

accounted for in the majority of computational models of DBS, where entrained neurons 

will fire in a one-to-one fashion to the stimulus pulse. In addition, there’s strong 

statistical evidence to suggest that eEPF is correlated with the degree of FPM ( H%), 

indicating that stronger modulation is due to higher rates of success of DBS pulses in 

inducing entrained spikes. Taken together, the findings described in Chapter 5 illustrate 

the reality and complexities of the in vivo VTA. The result of sparse and distributed 

neuronal activation is in strong agreement with previous findings [445] and likely reflects 

on local projection patterns of neuronal processes [445]. Understanding and 

reconstructing network connections of neurons near the site of stimulation will be 

important and necessary for the accurate modeling of the effects of DBS. Similarly, 

mechanisms of the low-pass filtering effect on excitatory entrainment should also be 

studied and incorporated into computational models.  

  The studies included in this dissertation developed computational tools and 

methodologies to address three challenges in the field of DBS: 1) accuracy of lead 
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placement, 2) complexity of DBS programming and 3) validation of computational 

models. The image processing tools developed in Chapter 2 and programming algorithms 

developed in Chapter 3 can have direct applications in DBS surgical planning and 

stimulator programming. The two areas can even be integrated into a single integrated 

package. The spherical statistics tools implemented in Chapter 4 can be applied directly 

to analyze the data from Chapter 5. Those tools can serve as a ‘common language’ to 

describe neuronal activation profiles resulting from directional stimulation. Finally, the 

results from Chapter 5 can serve as a reference for developing more accurate models of 

VTA during DBS and also highlights areas of model inaccuracies for further research.  

6.2 Future Directions  

6.2.1 Development of DBS Programming Algorithms and Their Translation 

to the Clinic 

The optimization algorithm developed in Chapter 3 is a good starting point for efficient 

and automated programming of DBSAs. The objective of that algorithm was to maximize 

activation of axons in a region of interest. However, it does not take into account 

avoiding stimulation of regions that might induce adverse side-effects, as well as 

minimization of power consumption. In addition, algorithm predicted axonal activation 

based on AF values should be tested against results from stimulation of biophysical 

neuron models. These features were incorporated into a new study (spearheaded by 

colleagues in our laboratory) that was recently submitted for publication. The study 

developed a particle swarm optimization (PSO) algorithm to program DBSAs using a 

swarm of individual particles representing electrode configurations and stimulation 

amplitudes. Using a finite-element model of motor thalamic DBS, we demonstrate how 

the PSO algorithm can efficiently optimize a multi-objective function that maximizes 

predictions of axonal activation in regions of interest (cerebellar-receiving area of motor 

thalamus), minimizes predictions of axonal activation in regions of avoidance 

(somatosensory thalamus), and minimizes power consumption.  
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  The infrastructure (including those developed in this dissertation) already exists for the 

subject-specific application of these programming algorithms in a clinical setting. Studies 

in the past have used motor and perceptual observations related to the side-effects of 

stimulation to validate model predicted effects of DBS. These include the use of EMG 

recordings of distal muscle groups to measure DBS activation of the internal capsule 

[210], as well as using patient reports sensory paresthesias to measure Vc activation 

[201]. Imaging modalities such as functional MRI [491] and positron emission 

tomography [492] can also be used to measure neuronal activation by DBS in target 

areas. A similar approach can be taken in a future study, in which both the target for 

stimulation (e.g. Vim or STN) and region of side-effects to avoid stimulation (e.g. Vc or 

IC) are defined and reconstructed with the multimodal imaging methods described in 

Chapter 2, using patient-specific high-field imaging data. These reconstructed nuclei and 

fiber pathways along with the finite-element models of the implanted DBS lead (e.g. 

Medtronic 3387 or 3389 models) are then input for the programming algorithms (convex 

optimization or PSO) to compute for the optimal stimulation setting. A test can then be 

performed in the following way: several experienced neurologists are shown the 

placement of the DBS lead relative to the reconstructed target nuclei/fiber pathways, and 

are asked to provide their programming solutions with the aim to achieve maximum 

therapy while minimizing adverse side-effects. The settings from the neurologists and the 

algorithms are then individually programmed into the patient’s stimulator device in a 

series of test sessions, and the level of therapy and side-effects are measured using the 

above described methodologies. In this way, the programming algorithms can be directly 

compared against the experience and intuition of clinical neurologists, and their 

effectiveness can be evaluated in an objective manner. This test can also be performed in 

a simulated setting as well, in which the metrics for comparison of performance are the 

percentage activation of model neurons within the region of interest as well as the region 

of side-effect.  

  Furthermore, the imaging methods (nuclei segmentation coupled with fiber 

tractography) described in Chapter 2 and the programming algorithms can be integrated 

into a single software package to provide real-time insights into potential DBS therapy 
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during the surgical planning stage. The software will have a storage of 1) pre-computed 

finite-element voltage field solutions (equaled to the number of available electrodes, as 

described in Chapter 3) from various clinically available DBSAs, and 2) reconstructed 

DBS target nuclei and fiber pathways from the patient’s high-field imaging data. Some 

development is needed to equip the software with the capability to populate target fiber 

tracts with ‘virtual axons’. In rudimentary terms, this may consist of parallel line 

representations of fiber bundles (complete with axonal node points distributed along their 

lengths) that conform to the trajectory of the reconstructed pathways. Clinicians can then 

choose their placement of the DBSA, and the software will run the programming 

algorithm and predict the outcome of activation. This will allow the clinicians to test and 

compare multiple implant trajectories based on their predicted modulatory effects and 

aide in their decision-making process.  

6.2.2 Studying the Effects of Directional Stimulation  

The study described in Chapter 5 performed directional DBS in the VPLo of two NHPs. 

The analysis was focused on the effect of DBS on neuronal activity as a function of 

stimulation amplitude and distance. However, the directional effects of stimulation were 

not evaluated at this point. The data from Chapter 5 illustrated that the in vivo VTA was 

sparsely populated with modulated neurons, which were arranged in a distributed fashion 

amongst other neurons that were unresponsive to stimulation. Similar observations were 

made during stimulation in the cortex [445]. The likely explanation for this phenomenon 

is that stimulation directly activated local neuronal processes which have complex 

patterns of projections to cell bodies located further away [445]. Given our understanding 

that axonal activation is driven by the AF at nodes of Ranvier (a quantity that is 

dependent on the relative orientation of the axons to the extracellular voltage field), it is 

likely that we will observe a difference in the activities of recorded neurons based on the 

direction of stimulation. A more implicit approach to analyzing the effects of directional 

stimulation is to ‘rank’ the directions in terms of the magnitude of the recorded DBS 

artifact. More specifically, for each recorded neuron that has undergone stimulation from 

each of the four active electrodes, sort the recorded DBS artifacts by magnitude such that 
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the stimulated electrode producing the largest artifact is considered to most closely face 

that neuron, while the one with the smallest artifact faces away from it. In this way, each 

recorded neuron is located at the center of this reference frame while the DBSA rotates 

relative to it. The direction of stimulation can now be used as an independent variable 

with four values, and the metrics of neuronal modulation developed in Chapter 5 can be 

evaluated as a function of direction. These metrics can include the percentage change in 

PSTH entropy and neuronal firing rate between DBS-off and DBS-on states as well as the 

eEPF or iEPF. This analysis will determine how much change in modulatory effects is 

produced via directional stimulation. Taking another perspective, we can view the DBSA 

as immobile with recorded neurons distributed around it in space. In this scenario, the 

spherical statistics tools described in Chapter 4 are well-suited to characterize the 

distribution of modulated neurons in 3D. More specifically, for each stimulating 

electrode, find all the neurons that were modulated by its stimulation at 350 , 250  

and 150 . The results from Chapter 4 demonstrated that unidirectional stimulation will 

activate neurons whose spatial distribution can be represented by the unimodal Kent 

Model. Increase in the stimulation amplitude was predicted to result in the decrease of 

both model parameters κ and , implying that the distribution will become more diffusely 

distributed about the population mean direction and more rotationally symmetric in 

shape. Results from the in vivo data can be directly compared against model predicted 

results and trends. If the conjecture that local axonal projections play an important role in 

shaping the in vivo VTA, then it is likely that spherical statistical characterization of that 

volume will deviate from a well-defined unimodal distribution. It is important to note that 

this process of reconstructing the 3D distribution of recorded neurons will require 

accurate localization of their positions relative to the DBSA and the active electrodes.  

6.2.3 Development of Realistic Computational Models of DBS  

Results from Chapter 5 pointed to two major discrepancies between the in vivo VTA and 

the computational model-predicted VTA. First, neurons modulated by DBS were sparsely 

distributed around the DBSA, and increasing stimulation amplitude was only able to 

differentially influence a minority group of neurons. This is in contrast to the model 
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predictions of a sphere of activation that increases in size with stimulation amplitude 

[217]. Secondly, the eEPF results indicated that entrainment of neuronal activity to DBS 

pulses does not occur in a one-to-one fashion, contrary to most computational model 

predictions. In fact the success rate of entrainment is very low, at less than 4%.  

  To bridge the first discrepancy, it is important that we have a realistic model of the 

connectivity patterns of neuronal processes in the target region. This can be done via 

tracing stained cells in tissue histology slices, as described in [205, 493]. In the Vim 

nucleus for example, the tracing effort should focus on studying as many relay neurons 

and interneurons as possible, and map on each cell the synaptic connections coming from 

the cerebellum, cortex, the reticular nucleus of thalamus, as well as other local 

interneurons. With this data we can ask a series of questions on connectivity patterns 

within the Vim. For example, how many interneurons on average are within a certain 

radius of a relay neuron? On average, how many afferent synapses does reach relay 

neuron receive from the cerebellum, cortex, reticular nucleus and other interneurons 

respectively and how are they distributed along the somatodendritic processes? What are 

those corresponding numbers for an interneuron? The answers to these questions will 

lead to the development of a set of general ‘rules’ for neuronal connectivity within the 

Vim, much like those employed in the network model in [494]. Integration of these rules 

with detailed morphological models of thalamic relay [205] and interneurons [493], as 

well as knowledge of broad projection trajectories of afferent [121, 378] and efferent 

[379] fibers to and from the Vim will form the foundations for the development of very 

realistic models of the Vim DBS. More specifically, it is conceivable to dynamically 

‘grow’ a model neuronal network using the information listed above. Using a simplified 

version of the cerebellothalamocortical network for example, researchers can segment out 

the Vim, reticular nucleus of thalamus and the motor cortex from MRI, and also 

reconstruct the CTT and TCT using fiber tractography. Neurons native to each area are 

placed in sufficient numbers, their axons project via the reconstructed pathways to their 

respective target areas. Once within the target regions, these axons will dynamically 

extend out collaterals and seek to make synaptic connections with the appropriate target 

cells, in a manner consistent with the ‘rules’ of connectivity discussed previously. 
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Hypothetically, the axon from a neuron in the reticular nucleus of thalamus would 

actively seek out and synapse with X number of thalamic relay neurons before stopping, 

X being the average number of distinct relay neurons that a reticular neuron will synapse 

on to. In this way, an entire network may grow and form realistic connections on its own, 

until each element in the network has satisfied a series of connectivity constraints. The 

complex network of excitatory and inhibitory connections within the in vivo thalamus 

might play an important role in the observed neuronal responses to DBS as well as the 

spatial profile of the VTA. Researchers have begun to employ models of neurons with 

network connectivities [123, 166, 494]. Kent et al. [123] reported the use of a network 

model of thalamocortical relay neurons and found the simulated DBS evoked compound 

action potentials were comparable with those measured in vivo, both in terms of the shape 

of the waveforms as well as the way they change with stimulation amplitude. In order to 

replicate neuronal responses to DBS, we must also reconstruct ever more accurate models 

of the underlying neuronal networks. The idea of ‘rule-based’ growth of neuronal 

networks could possibly be a step in that direction.  

  To bridge the second discrepancy, it is necessary that we understand the exact 

mechanisms producing the observed low-pass filtering effect on excitatory transmission 

in the thalamus. One possibility is due to the stochastic nature of axonal action potential 

generation [495] that not all axons projecting through the stimulated area will follow the 

stimuli faithfully. Other possible mechanisms include depolarization block [496], 

membrane hyperpolarization due to activation of calcium-dependent potassium channels 

from an accumulation of intracellular calcium [497], accumulation of extracellular 

potassium within the periaxonal space [498], difficulties for axonal branches to conduct 

action potentials at high frequencies [497, 499] and vesicle depletion in synaptic 

transmission at high frequencies of stimulation [500]. Reports have also shown that 

interneurons are better able to sustain higher firing rates [501] and are less prone to 

conduction failure [502] compared to glutamatergic neurons. Therefore inhibitory 

projections from the reticular nucleus of thalamus as well as from local interneurons onto 

thalamic relay neurons might play an important role in reducing the extent of spike 
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entrainment for a given thalamo-cortical cell. These complex network effects will likely 

only emerge when the underlying neuronal networks are replicated.  

  Taken together, building more realistic computational models of DBS will require 1) 

replication of complex neuronal network connections and 2) identification and 

incorporation of potential mechanisms of conduction failure.     

6.2.4 Development of a Tremor Model of VPLo DBS   

The experiments in Chapter 5 were performed in the naïve state and did not establish a 

relationship between the degree of neuronal modulation in VPLo and therapy. What is 

needed is the development of a tremor model of ET, which is most commonly induced 

via the administration of harmaline [22]. Accelerometers placed on the limbs of the NHP 

can be used to measure tremor and evaluate the effects of DBS, similar to the methods 

performed on human ET patients in [165]. The goal will be to understand the quantitative 

differences in neuronal response to stimulation between therapeutic DBS and ineffective 

DBS. It is conceivably best to perform VPLo stimulation through a single electrode for 

ease of comparison between results. It will be important to establish the threshold 

stimulation amplitude ( ) for therapy, which for example can be defined as the 

amplitude that results in 50% reduction in tremor magnitude. Once this value is 

established, a set of subthreshold stimulation values can also be defined to provide a 

gradient of intensities for ineffective DBS (e.g. 25% , 50%   and 75% ). The 

experimental protocol will be to perform microelectrode recordings of unit spike activity 

from neurons adjacent to the implanted DBSA, before, during and after DBS. For each 

recorded neuron, stimulate through the single electrode using the four amplitudes listed 

above (duration and wash-in/wash-out times similar to those in Chapter 5) in a 

randomized fashion. We can then compute the change in PSTH entropy between DBS-

off/DBS-on states ( , which is a measure of firing pattern regularity) as well as the 

eEPF, for every stimulation amplitude. Applying the ‘informational lesion’ hypothesis of 

DBS [164], we would expect to observe more regularized firing in more neurons during 

therapeutic DBS ( ) compared to during ineffective DBS (25% , 50%   and 

75% ). To see if this is true, we can ask the following questions: (1) what percentage of 
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cells shows significant FPM at each stimulation amplitude? (2) What is the average  

across all neurons with significant FPM at each stimulation amplitude? Is there a 

significant difference between them? (3) Is there a significant correlation between 

stimulation amplitude and the average  in cells with significant FPM? (4) What is 

the average eEPF across all neurons with significant FPM at each stimulation amplitude? 

Is there a significant difference between them?  (5) Is there a significant correlation 

between stimulation amplitude and the average eEPF of cells with significant FPM? The 

answers to these questions will give insights on the differences in the strength of neuronal 

modulation and successfulness of entrainment (or informational lesion) between 

therapeutic DBS and ineffective DBS. Furthermore, the experiment can be modified to 

keep the stimulation amplitude constant while varying the frequency, and the same 

questions can be asked only with respect to the frequency of stimulation.  

  Overall, many challenges and opportunities remain in the field of DBS. The 

tools/methodologies and findings discussed in this dissertation will hopefully inform and 

help others further our understanding of the mechanisms of DBS as well as making 

improvements in its application for helping individuals with tremor reclaim control over 

their motor function. 

 

 

 

 

 

 

 

 

 

 

 

 

 



   152 

 

References 

 

1. Louis, E.D., R. Ottman, and W. Allen Hauser, How common is the most common 

adult movement disorder? Estimates of the prevalence of essential tremor 

throughout the world. Movement Disorders, 1998. 13(1): p. 5-10. 

2. Kurtzke, J.F., The current neurologic burden of illness and injury in the United 

States. Neurology, 1982. 32(11): p. 1207-1207. 

3. Hubble, J.P., K.L. Busenbark, and W.C. Koller, Essential tremor. Clin 

Neuropharmacol, 1989. 12(6): p. 453-82. 

4. Louis, E.D., et al., Differences in the prevalence of essential tremor among 

elderly African Americans, whites, and Hispanics in northern Manhattan, NY. 

Arch Neurol, 1995. 52(12): p. 1201-5. 

5. Rautakorpi, I., et al., Essential tremor in a Finnish population. Acta Neurologica 

Scandinavica, 1982. 66(1): p. 58-67. 

6. Louis, E.D. and R. Ottman, Study of possible factors associated with age of onset 

in essential tremor. Mov Disord, 2006. 21(11): p. 1980-6. 

7. Louis, E.D., L.S.t. Dure, and S. Pullman, Essential tremor in childhood: a series 

of nineteen cases. Mov Disord, 2001. 16(5): p. 921-3. 

8. Zesiewicz, T.A., et al., Overview of essential tremor. Neuropsychiatr Dis Treat, 

2010. 6: p. 401-8. 

9. Whaley, N., et al., Essential tremor: phenotypic expression in a clinical cohort. 

Parkinsonism Relat Disord, 2007. 13(6): p. 333-339. 

10. Singer, C., J. Sanchez-Ramos, and W.J. Weiner, Gait abnormality in essential 

tremor. Mov Disord, 1994. 9(2): p. 193-6. 

11. Rautakorpi, I., Essential tremor: an epidemiological, clinical and genetic study. 

1978: I. Rautakorpi. 

12. Louis, E.D., Functional correlates of lower cognitive test scores in essential 

tremor. Mov Disord, 2010. 25(4): p. 481-5. 

13. Louis, E.D., et al., Risk of tremor and impairment from tremor in relatives of 

patients with essential tremor: a community-based family study. Ann Neurol, 

2001. 49(6): p. 761-9. 

14. Louis, E.D., Etiology of essential tremor: should we be searching for 

environmental causes? Mov Disord, 2001. 16(5): p. 822-9. 

15. Louis, E.D., et al., Torpedoes in Parkinson's disease, Alzheimer's disease, 

essential tremor, and control brains. Mov Disord, 2009. 24(11): p. 1600-5. 

16. Louis, E.D., et al., Neuropathological changes in essential tremor: 33 cases 

compared with 21 controls. Brain, 2007. 130(Pt 12): p. 3297-307. 

17. Guillain, G., The Syndrome of Synchronous and Rhythmic Palato-Pharyngo-

Laryngo-Oculo-Diaphragmatic Myoclonus: (Section of Neurology). Proc R Soc 

Med, 1938. 31(9): p. 1031-8. 



   153 

 

18. Eccles, J., R. Llinas, and K. Sasaki, Excitation of cerebellar Purkinje cells by the 

climbing fibres. 1964. 

19. Ruigrok, T.J. and J. Voogd, Cerebellar influence on olivary excitability in the cat. 

Eur J Neurosci, 1995. 7(4): p. 679-93. 

20. Llinas, R. and K. Sasaki, The Functional Organization of the Olivo-Cerebellar 

System as Examined by Multiple Purkinje Cell Recordings. Eur J Neurosci, 1989. 

1(6): p. 587-602. 

21. Llinas, R. and M. Muhlethaler, Electrophysiology of guinea-pig cerebellar 

nuclear cells in the in vitro brain stem-cerebellar preparation. J Physiol, 1988. 

404: p. 241-58. 

22. Elble, R.J., Animal models of action tremor. Mov Disord, 1998. 13 Suppl 3: p. 

35-9. 

23. Jankovic, J. and J.L. Noebels, Genetic mouse models of essential tremor: are they 

essential? The Journal of clinical investigation, 2005. 115(3): p. 584-586. 

24. Lorenz, D. and G. Deuschl, Update on pathogenesis and treatment of essential 

tremor. Curr Opin Neurol, 2007. 20(4): p. 447-52. 

25. Sugihara, I., E.J. Lang, and R. Llinas, Serotonin modulation of inferior olivary 

oscillations and synchronicity: a multiple-electrode study in the rat cerebellum. 

Eur J Neurosci, 1995. 7(4): p. 521-34. 

26. Wiklund, L., Serotonergic innervation of the inferior olive and tremor generated 

in the olivocerebellar climbing fiber system, in Serotonin, the Cerebellum, and 

Ataxia. 1993, Raven Press New York. p. 113-119. 

27. Shaikh, A.G., et al., Hypothetical membrane mechanisms in essential tremor. J 

Transl Med, 2008. 6: p. 68. 

28. Busby, L. and Y. Lamarre, Effect of diazepam on the neuronal rhythmic activity 

and tremor induced by harmaline. The Inferior Olivary Nucleus: Anatomy and 

Physiology, edited by J. Courville, C. DeMontigny, and Y. Lamarre. New York: 

Raven, 1980: p. 315-320. 

29. Sinclair, J.G., G.F. Lo, and D.P. Harris, Ethanol effects on the olivocerebellar 

system. Can J Physiol Pharmacol, 1982. 60(5): p. 610-4. 

30. Rappaport, M.S., et al., Ethanol effects on harmaline-induced tremor and increase 

of cerebellar cyclic GMP. Life Sci, 1984. 34(1): p. 49-56. 

31. Sarem-Aslani, A. and K. Mullett, Industrial perspective on deep brain 

stimulation: history, current state, and future developments. Front Integr 

Neurosci, 2011. 5: p. 46. 

32. Lyons, K.E. and R. Pahwa, Pharmacotherapy of essential tremor : an overview of 

existing and upcoming agents. CNS Drugs, 2008. 22(12): p. 1037-45. 

33. Cleeves, L. and L.J. Findley, Propranolol and propranolol-LA in essential 

tremor: a double blind comparative study. J Neurol Neurosurg Psychiatry, 1988. 

51(3): p. 379-84. 

34. Koller, W.C., Long-acting propranolol in essential tremor. Neurology, 1985. 

35(1): p. 108-10. 



   154 

 

35. Zesiewicz, T., et al., Practice parameter: therapies for essential tremor report of 

the quality standards subcommittee of the American Academy of Neurology. 

Neurology, 2005. 64(12): p. 2008-2020. 

36. Shahzadi, S., R.R. Tasker, and A. Lozano, Thalamotomy for essential and 

cerebellar tremor. Stereotact Funct Neurosurg, 1995. 65(1-4): p. 11-7. 

37. Jankovic, J., et al., Outcome after stereotactic thalamotomy for parkinsonian, 

essential, and other types of tremor. Neurosurgery, 1995. 37(4): p. 680-6; 

discussion 686-7. 

38. Asanuma, C., W.T. Thach, and E.G. Jones, Distribution of Cerebellar 

Terminations and Their Relation to Other Afferent Terminations in the Ventral 

Lateral Thalamic Region of the Monkey. Brain Research Reviews, 1983. 5(3): p. 

237-265. 

39. Haber, S. and N.R. McFarland, The place of the thalamus in frontal cortical-basal 

ganglia circuits. Neuroscientist, 2001. 7(4): p. 315-24. 

40. Jones, E.G., S.P. Wise, and J.D. Coulter, Differential thalamic relationships of 

sensory-motor and parietal cortical fields in monkeys. J Comp Neurol, 1979. 

183(4): p. 833-81. 

41. Schuurman, P.R., et al., A comparison of continuous thalamic stimulation and 

thalamotomy for suppression of severe tremor. N Engl J Med, 2000. 342(7): p. 

461-8. 

42. Nagaseki, Y., et al., Long-term follow-up results of selective VIM-thalamotomy. J 

Neurosurg, 1986. 65(3): p. 296-302. 

43. Zirh, A., et al., Stereotactic thalamotomy in the treatment of essential tremor of 

the upper extremity: reassessment including a blinded measure of outcome. J 

Neurol Neurosurg Psychiatry, 1999. 66(6): p. 772-5. 

44. Akbostanci, M.C., K.V. Slavin, and K.J. Burchiel, Stereotactic ventral 

intermedial thalamotomy for the treatment of essential tremor: results of a series 

of 37 patients. Stereotact Funct Neurosurg, 1999. 72(2-4): p. 174-7. 

45. Benabid, A.L., et al., Chronic VIM thalamic stimulation in Parkinson's disease, 

essential tremor and extra-pyramidal dyskinesias. Acta Neurochir Suppl (Wien), 

1993. 58: p. 39-44. 

46. Hassler, R., et al., Physiological observations in stereotaxic operations in 

extrapyramidal motor disturbances. Brain, 1960. 83: p. 337-50. 

47. Gildenberg, P.L., Evolution of neuromodulation. Stereotact Funct Neurosurg, 

2005. 83(2-3): p. 71-9. 

48. Heath, R.G. and W.A. Mickle, Evaluation of Seven Years< Experience with 

Depth Electrode Studies in Human Patients. 1960. 

49. Hosobuchi, Y., J.E. Adams, and B. Rutkin, Chronic thalamic stimulation for the 

control of facial anesthesia dolorosa. Arch Neurol, 1973. 29(3): p. 158-61. 

50. Bechtereva, N., et al., Method of electrostimulation of the deep brain structures in 

treatment of some chronic diseases. Stereotact Funct Neurosurg, 1975. 37(1-3): p. 

136-140. 



   155 

 

51. Benabid, A.L., et al., Combined (thalamotomy and stimulation) stereotactic 

surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl 

Neurophysiol, 1987. 50(1-6): p. 344-6. 

52. Siegfried, J. and J. Shulman, Deep brain stimulation. Pacing Clin Electrophysiol, 

1987. 10(1 Pt 2): p. 271-2. 

53. Benabid, A.L., et al., Long-term suppression of tremor by chronic stimulation of 

the ventral intermediate thalamic nucleus. Lancet, 1991. 337(8738): p. 403-6. 

54. Siegfried, J. and B. Lippitz, Chronic electrical stimulation of the VL-VPL complex 

and of the pallidum in the treatment of movement disorders: personal experience 

since 1982. Stereotact Funct Neurosurg, 1994. 62(1-4): p. 71-5. 

55. Limousin, P., et al., Effect of parkinsonian signs and symptoms of bilateral 

subthalamic nucleus stimulation. Lancet, 1995. 345(8942): p. 91-5. 

56. Limousin, P., et al., Multicentre European study of thalamic stimulation in 

parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry, 1999. 66(3): 

p. 289-96. 

57. The Deep-Brain Stimulation for Parkinson's Disease Study, G., Deep-brain 

stimulation of the subthalamic nucleus or the pars interna of the globus pallidus 

in Parkinson's disease.[comment]. New England Journal of Medicine., 2001. 

345(13): p. 956-63. 

58. Coubes, P., et al., Treatment of DYT1-generalised dystonia by stimulation of the 

internal globus pallidus. Lancet, 2000. 355(9222): p. 2220-1. 

59. Kupsch, A., et al., Pallidal deep-brain stimulation in primary generalized or 

segmental dystonia. N Engl J Med, 2006. 355(19): p. 1978-90. 

60. Temel, Y. and V. Visser-Vandewalle, Surgery in Tourette syndrome. Mov Disord, 

2004. 19(1): p. 3-14. 

61. Porta, M., et al., Thalamic deep brain stimulation for treatment-refractory 

Tourette syndrome Two-year outcome. Neurology, 2009. 73(17): p. 1375-1380. 

62. Nuttin, B., et al., Electrical stimulation in anterior limbs of internal capsules in 

patients with obsessive-compulsive disorder. Lancet, 1999. 354(9189): p. 1526. 

63. Malone, D.A., Jr., et al., Deep brain stimulation of the ventral capsule/ventral 

striatum for treatment-resistant depression. Biol Psychiatry, 2009. 65(4): p. 267-

75. 

64. Bewernick, B.H., et al., Nucleus accumbens deep brain stimulation decreases 

ratings of depression and anxiety in treatment-resistant depression. Biol 

Psychiatry, 2010. 67(2): p. 110-6. 

65. Velasco, F., et al., Electrical stimulation of the centromedian thalamic nucleus in 

the treatment of convulsive seizures: a preliminary report. Epilepsia, 1987. 28(4): 

p. 421-30. 

66. Hodaie, M., et al., Chronic anterior thalamus stimulation for intractable epilepsy. 

Epilepsia, 2002. 43(6): p. 603-8. 

67. Flora, E.D., et al., Deep brain stimulation for essential tremor: a systematic 

review. Mov Disord, 2010. 25(11): p. 1550-9. 

68. Groppa, S., et al., Physiological and anatomical decomposition of subthalamic 

neurostimulation effects in essential tremor. Brain, 2014. 137(Pt 1): p. 109-21. 



   156 

 

69. Plaha, P., N.K. Patel, and S.S. Gill, Stimulation of the subthalamic region for 

essential tremor. J Neurosurg, 2004. 101(1): p. 48-54. 

70. Blomstedt, P., U. Sandvik, and S. Tisch, Deep brain stimulation in the posterior 

subthalamic area in the treatment of essential tremor. Mov Disord, 2010. 25(10): 

p. 1350-6. 

71. Klein, J.C., et al., The tremor network targeted by successful VIM deep brain 

stimulation in humans. Neurology, 2012. 78(11): p. 787-95. 

72. Sandvik, U., et al., Thalamic and Subthalamic DBS for Essential Tremor: 

WhereIs the Optimal Target?[published online ahead of print Sep 27 2012] 

Neurosurgery 2011. 

73. Macchi, G. and E.G. Jones, Toward an agreement on terminology of nuclear and 

subnuclear divisions of the motor thalamus. J Neurosurg, 1997. 86(1): p. 77-92. 

74. Elble, R.J., Tremor disorders. Curr Opin Neurol, 2013. 26(4): p. 413-9. 

75. Hassler, R., Anatomy of the thalamus, in Introduction to Stereotaxis with an Atlas 

of the Human Brain, G. Schaltenbrand and P. Bailey, Editors. 1959, Thieme: 

Stuttgart. p. 230-290. 

76. Walker, A.E., The primate thalamus. 1938. 

77. Olszewski, J., The thalamus of the Macaca, mulatta. An atlas for use with the 

stereotaxic instrument. The thalamus of the Macaca, mulatta. An atlas for use 

with the stereotaxic instrument., 1952. 

78. Friedman, D.P. and E.G. Jones, Thalamic input to areas 3a and 2 in monkeys. J 

Neurophysiol, 1981. 45(1): p. 59-85. 

79. Jones, E.G. and D.P. Friedman, Projection pattern of functional components of 

thalamic ventrobasal complex on monkey somatosensory cortex. J Neurophysiol, 

1982. 48(2): p. 521-44. 

80. Ilinsky, I. and K. Kultas-Ilinsky, Sagittal cytoarchitectonic maps of the macaca 

mulatta thalamus with a revised nomenclature of the motor-related nuclei 

validated by observations on their connectivity. J.Comp.Neurol., 1987. 262: p. 

331-364. 

81. Percheron, G., C. François, and J. Yelnik, Relations entre les ganglions de la base 

et le thalamus du primate. Nouvelles données morphologiques. Nouvelles 

interprétations physiopathologiques. Rev. Neurol, 1986. 142: p. 337-353. 

82. Walker, A., Normal and pathological physiology of the human thalamus, in 

Stereotaxy of the Human Brain. Anatomical, Physiological and Clinical 

Applications, S. G and W. AE, Editors. 1982, Stuttgart: Thieme. p. 181–217. 

83. Hirai, T. and E.G. Jones, A new parcellation of the human thalamus on the basis 

of histochemical staining. Brain Res Brain Res Rev, 1989. 14(1): p. 1-34. 

84. Hirai, T. and E. Jones, Distribution of tachykinin-and enkephalin-immunoreactive 

fibers in the human thalamus. Brain Research Reviews, 1989. 14(1): p. 35-52. 

85. Ohye, C., Thalamus, in The Human Nervous System, P. G, Editor. 1990, 

Academic Press: San Diego. p. 439–468. 

86. Ilinsky, I. and K. Kultas‐Ilinsky, Sagittal cytoarchitectonic maps of the Macaca 

mulatta thalamus with a revised nomenclature of the motor‐related nuclei 



   157 

 

validated by observations on their connectivity. Journal of Comparative 

Neurology, 1987. 262(3): p. 331-364. 

87. Kultas-Ilinsky, K. and I.A. Ilinsky, Fine structure of the magnocellular 

subdivision of the ventral anterior thalamic nucleus (VAmc) of Macaca mulatta: 

II. Organization of nigrothalamic afferents as revealed with EM autoradiography. 

J Comp Neurol, 1990. 294(3): p. 479-89. 

88. Percheron, G., et al., The primate motor thalamus analysed with reference to 

subcortical afferent territories. Stereotact Funct Neurosurg, 1993. 60(1-3): p. 32-

41. 

89. DeVito, J.L. and M.E. Anderson, An autoradiographic study of efferent 

connections of the globus pallidus in Macaca mulatta. Exp Brain Res, 1982. 

46(1): p. 107-17. 

90. Schmahmann, J.D. and D.N. Pandya, Anatomical investigation of projections 

from thalamus to posterior parietal cortex in the rhesus monkey: a WGA-HRP 

and fluorescent tracer study. J Comp Neurol, 1990. 295(2): p. 299-326. 

91. Tracey, D.J., et al., Thalamic relay to motor cortex: afferent pathways from brain 

stem, cerebellum, and spinal cord in monkeys. J Neurophysiol, 1980. 44(3): p. 

532-54. 

92. Schell, G.R. and P.L. Strick, The origin of thalamic inputs to the arcuate 

premotor and supplementary motor areas. J Neurosci, 1984. 4(2): p. 539-60. 

93. Mikula, S., et al., Internet-enabled high-resolution brain mapping and virtual 

microscopy. Neuroimage, 2007. 35(1): p. 9-15. 

94. Benabid, A.L., et al., Deep brain stimulation for movement disorders, in Youmans 

Neurological Surgery, H.R. Winn, Editor. 2004, Saunders: Philadelphia. 

95. Alexander, G.E. and M.D. Crutcher, Functional architecture of basal ganglia 

circuits: neural substrates of parallel processing. Trends Neurosci, 1990. 13(7): 

p. 266-71. 

96. DeLong, M.R., Primate models of movement disorders of basal ganglia origin. 

Trends Neurosci, 1990. 13(7): p. 281-5. 

97. Kurata, K. and S.P. Wise, Premotor and supplementary motor cortex in rhesus 

monkeys: neuronal activity during externally- and internally-instructed motor 

tasks. Exp Brain Res, 1988. 72(2): p. 237-48. 

98. Mushiake, H., M. Inase, and J. Tanji, Neuronal activity in the primate premotor, 

supplementary, and precentral motor cortex during visually guided and internally 

determined sequential movements. J Neurophysiol, 1991. 66(3): p. 705-718. 

99. Kurata, K., Premotor cortex of monkeys: set- and movement-related activity 

reflecting amplitude and direction of wrist movements. ournal of 

Neurophysiology, 1993. 69: p. 187-200. 

100. Haber, S.N., E. Lynd-Balta, and W.P.J.M. Spooren, Integrative aspects of basal 

ganglia circuitry, in The Basal Ganglia IV.  New ideas and data on structure and 

function, G. Percheron, J.S. McKenzie, and J. Feger, Editors. 1994, Plenum Press: 

New York and London. p. 71-80. 



   158 

 

101. Parent, A. and L.N. Hazrati, Functional anatomy of the basal ganglia. I. The 

cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev, 1995. 

20(1): p. 91-127. 

102. Passingham, R.E., The frontal lobes and voluntary action. 1993: Oxford 

University Press. 

103. Levy, R. and P.S. Goldman-Rakic, Association of storage and processing 

functions in the dorsolateral prefrontal cortex of the nonhuman primate. J 

Neurosci, 1999. 19(12): p. 5149-58. 

104. Selemon, L.D. and P.S. Goldman-Rakic, Longitudinal topography and 

interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci, 

1985. 5(3): p. 776-94. 

105. Rolls, E.T., et al., Orbitofrontal cortex neurons: role in olfactory and visual 

association learning. J Neurophysiol, 1996. 75(5): p. 1970-81. 

106. Tremblay, L. and W. Schultz, Modifications of reward expectation-related 

neuronal activity during learning in primate orbitofrontal cortex. J Neurophys, 

2000. 83(4): p. 1877-1885. 

107. Haber, S.N., et al., The Orbital and Medial Prefrontal Circuit through the 

Primate Basal Ganglia. Journal of Neuroscience, 1995. 15(7): p. 4851-4867. 

108. Caracalos, A., E. Levita, and I. Cooper, A study of roentgeno-anatomic lesion 

location and results in cryosurgery of the basal ganglia. St. Barnabas Hospital 

Medical Bulletin, 1961. 1: p. 24-32. 

109. Carpenter, M.B. and G.R. Hanna, Effects of thalamic lesions upon cerebellar 

dyskinesia in the rhesus monkey. Journal of Comparative Neurology, 1962. 

119(2): p. 127-147. 

110. Wiesendanger, R. and M. Wiesendanger, The thalamic connections with medial 

area 6 (supplementary motor cortex) in the monkey (macaca fascicularis). Exp 

Brain Res, 1985. 59(1): p. 91-104. 

111. Matelli, M. and G. Luppino, Thalamic input to mesial and superior area 6 in the 

macaque monkey. J Comp Neurol, 1996. 372(1): p. 59-87. 

112. Sherman, S.M. and R.W. Guillery, Functional organization of thalamocortical 

relays. J Neurophysiol, 1996. 76(3): p. 1367-95. 

113. Deschenes, M., P. Veinante, and Z.W. Zhang, The organization of 

corticothalamic projections: reciprocity versus parity. Brain Res Brain Res Rev, 

1998. 28(3): p. 286-308. 

114. Jones, E.G. and S.P. Wise, Size, laminar and columnar distribution of efferent 

cells in the sensory-motor cortex of monkeys. J Comp Neurol, 1977. 175(4): p. 

391-438. 

115. Giguere, M. and P. Goldman‐Rakic, Mediodorsal nucleus: areal, laminar, and 

tangential distribution of afferents and efferents in the frontal lobe of rhesus 

monkeys. Journal of Comparative Neurology, 1988. 277(2): p. 195-213. 

116. Kurata, K., Site of origin of projections from the thalamus to dorsal versus ventral 

aspects of the premotor cortex of monkeys. Neurosci Res, 1994. 21(1): p. 71-6. 



   159 

 

117. Kunzle, H., An autoradiographic analysis of the efferent connections from 

premotor and adjacent prefrontal regions (areas 6 and 9) in macaca fascicularis. 

Brain Behav Evol, 1978. 15(3): p. 185-234. 

118. Fenelon, G., et al., Topographic distribution of the neurons of the central complex 

(centre median-parafascicular complex) and of other thalamic neurons projecting 

to the striatum in macaques. Neuroscience, 1991. 45(2): p. 495-510. 

119. Gimenez-Amaya, J.M., et al., Organization of thalamic projections to the ventral 

striatum in the primate. J Comp Neurol, 1995. 354(1): p. 127-49. 

120. McFarland, N.R. and S.N. Haber, Organization of thalamostriatal terminals from 

the ventral motor nuclei in the macaque. J Comp Neurol, 2001. 429(2): p. 321-36. 

121. Gallay, M.N., et al., Human pallidothalamic and cerebellothalamic tracts: 

anatomical basis for functional stereotactic neurosurgery. Brain Structure and 

Function, 2008. 212(6): p. 443-463. 

122. Asanuma, C., W.T. Thach, and E.G. Jones, Anatomical evidence for segregated 

focal grouping of efferent cells and their terminal ramifications in the 

cerebellothalamic pathway of the monkey. Brain Res.Rev., 1983. 5: p. 267-297. 

123. Kent, A.R. and W.M. Grill, Neural origin of evoked potentials during thalamic 

deep brain stimulation. J Neurophysiol, 2013. 110(4): p. 826-43. 

124. Darian-Smith, C., I. Darian-Smith, and S.S. Cheema, Thalamic projections to 

sensorimotor cortex in the macaque monkey: use of multiple retrograde 

fluorescent tracers. J Comp Neurol, 1990. 299(1): p. 17-46. 

125. Kievit, J. and H.G. Kuypers, Organization of the thalamo-cortical connexions to 

the frontal lobe in the rhesus monkey. Exp Brain Res, 1977. 29(3-4): p. 299-322. 

126. Matelli, M., et al., Thalamic input to inferior area 6 and area 4 in the macaque 

monkey. J Comp Neurol, 1989. 280(3): p. 468-88. 

127. Sakai, S.T., M. Inase, and J. Tanji, Comparison of cerebellothalamic and 

pallidothalamic projections in the monkey (Macaca fuscata): a double 

anterograde labeling study. J Comp Neurol, 1996. 368(2): p. 215-28. 

128. Middleton, F.A. and P.L. Strick, Anatomical evidence for cerebellar and basal 

ganglia involvement in higher cognitive function. Science, 1994. 266(5184): p. 

458-61. 

129. Nakano, K., et al., Cortical connections of the motor thalamic nuclei in the 

Japanese monkey, Macaca fuscata. Stereotact Funct Neurosurg, 1993. 60(1-3): p. 

42-61. 

130. Rouiller, E.M., et al., Cerebellothalamocortical and pallidothalamocortical 

projections to the primary and supplementary motor cortical areas: a multiple 

tracing study in macaque monkeys. J Comp Neurol, 1994. 345(2): p. 185-213. 

131. Burton, H. and E.G. Jones, The posterior thalamic region and its cortical 

projection in New World and Old World monkeys. J Comp Neurol, 1976. 168(2): 

p. 249-301. 

132. Jones, E., Some aspects of the organization of the thalamic reticular complex. 

Journal of Comparative Neurology, 1975. 162(3): p. 285-308. 



   160 

 

133. Guillery, R.W. and J.K. Harting, Structure and connections of the thalamic 

reticular nucleus: Advancing views over half a century. J Comp Neurol, 2003. 

463(4): p. 360-71. 

134. Ohara, P.T. and A. Lieberman, The thalamic reticular nucleus of the adult rat: 

experimental anatomical studies. Journal of Neurocytology, 1985. 14(3): p. 365-

411. 

135. Jones, E.G., The thalamus. 2012: Springer Science & Business Media. 

136. Ahlsen, G. and S. Lindstrom, Mutual Inhibition between Perigeniculate Neurons. 

Brain Research, 1982. 236(2): p. 482-486. 

137. SanchezVives, M.V., T. Bal, and D.A. McCormick, Inhibitory interactions 

between perigeniculate GABAergic neurons. Journal of Neuroscience, 1997. 

17(22): p. 8894-8908. 

138. Shosaku, A. and I. Sumitomo, Auditory neurons in the rat thalamic reticular 

nucleus. Exp Brain Res, 1983. 49(3): p. 432-42. 

139. Shosaku, A., Y. Kayama, and I. Sumitomo, Somatotopic organization in the rat 

thalamic reticular nucleus. Brain Res, 1984. 311(1): p. 57-63. 

140. Gonzalo-Ruiz, A. and A.R. Lieberman, GABAergic projections from the thalamic 

reticular nucleus to the anteroventral and anterodorsal thalamic nuclei of the rat. 

J Chem Neuroanat, 1995. 9(3): p. 165-74. 

141. Gonzalo-Ruiz, A. and A.R. Lieberman, Topographic organization of projections 

from the thalamic reticular nucleus to the anterior thalamic nuclei in the rat. 

Brain Res Bull, 1995. 37(1): p. 17-35. 

142. Guillery, R.W., S.L. Feig, and D.A. Lozsadi, Paying attention to the thalamic 

reticular nucleus. Trends Neurosci, 1998. 21(1): p. 28-32. 

143. Bourassa, J. and M. Deschenes, Corticothalamic Projections from the Primary 

Visual-Cortex in Rats - a Single-Fiber Study Using Biocytin as an Anterograde 

Tracer. Neuroscience, 1995. 66(2): p. 253-263. 

144. Fitzpatrick, D., et al., The sublaminar organization of corticogeniculate neurons 

in layer 6 of macaque striate cortex. Vis Neurosci, 1994. 11(2): p. 307-15. 

145. Hale, P.T., et al., Interrelations of the rat's thalamic reticular and dorsal lateral 

geniculate nuclei. Exp Brain Res, 1982. 45(1-2): p. 217-29. 

146. Pinault, D., The thalamic reticular nucleus: structure, function and concept. Brain 

Res Brain Res Rev, 2004. 46(1): p. 1-31. 

147. Guillery, R.W., Patterns of fiber degeneration in the dorsal lateral geniculate 

nucleus of the cat following lesions in the visual cortex. J Comp Neurol, 1967. 

130(3): p. 197-221. 

148. Golshani, P., X.B. Liu, and E.G. Jones, Differences in quantal amplitude reflect 

GluR4-subunit number at corticothalamic synapses on two populations of 

thalamic neurons. Proceedings of the National Academy of Sciences of the 

United States of America, 2001. 98(7): p. 4172-4177. 

149. Pinault, D. and M. Deschenes, Voltage-dependent 40-Hz oscillations in rat 

reticular thalamic neurons in vivo. Neuroscience, 1992. 51(2): p. 245-58. 



   161 

 

150. Ohara, P.T., G. Chazal, and H.J. Ralston, 3rd, Ultrastructural analysis of GABA-

immunoreactive elements in the monkey thalamic ventrobasal complex. J Comp 

Neurol, 1989. 283(4): p. 541-58. 

151. Vitek, J.L., et al., Physiologic properties and somatotopic organization of the 

primate motor thalamus. J Neurophysiol, 1994. 71(4): p. 1498-513. 

152. Vitek, J.L., et al., Microstimulation of primate motor thalamus: Somatotopic 

organization and differential distribution of evoked motor responses among 

subnuclei. J Neurophysiol, 1996. 75(6): p. 2486-2495. 

153. Miocinovic, S., et al., History, applications, and mechanisms of deep brain 

stimulation. JAMA Neurol, 2013. 70(2): p. 163-71. 

154. Benazzouz, A., et al., Effect of high-frequency stimulation of the subthalamic 

nucleus on the neuronal activities of the substantia nigra pars reticulata and 

ventrolateral nucleus of the thalamus in the rat. Neuroscience, 2000. 99(2): p. 

289-95. 

155. Welter, M.L., et al., Effects of high-frequency stimulation on subthalamic 

neuronal activity in parkinsonian patients. Arch Neurol, 2004. 61(1): p. 89-96. 

156. Dostrovsky, J.O., et al., Microstimulation-induced inhibition of neuronal firing in 

human globus pallidus. J Neurophysiol, 2000. 84(1): p. 570-4. 

157. Hashimoto, T., et al., Stimulation of the subthalamic nucleus changes the firing 

pattern of pallidal neurons. J Neurosci, 2003. 23(5): p. 1916-23. 

158. Anderson, M.E., N. Postupna, and M. Ruffo, Effects of high-frequency stimulation 

in the internal globus pallidus on the activity of thalamic neurons in the awake 

monkey. J Neurophysiol, 2003. 89(2): p. 1150-60. 

159. Montgomery, E.B., Jr., Effects of GPi stimulation on human thalamic neuronal 

activity. Clin Neurophysiol, 2006. 117(12): p. 2691-702. 

160. Vitek, J.L., et al., External pallidal stimulation improves parkinsonian motor 

signs and modulates neuronal activity throughout the basal ganglia thalamic 

network. Exp Neurol, 2012. 233(1): p. 581-6. 

161. McIntyre, C.C., et al., Cellular effects of deep brain stimulation: model-based 

analysis of activation and inhibition. J Neurophysiol, 2004. 91(4): p. 1457-69. 

162. Xu, W., et al., Subthalamic nucleus stimulation modulates thalamic neuronal 

activity. J Neurosci, 2008. 28(46): p. 11916-24. 

163. Johnson, M.D., J.L. Vitek, and C.C. McIntyre, Pallidal stimulation that improves 

parkinsonian motor symptoms also modulates neuronal firing patterns in primary 

motor cortex in the MPTP-treated monkey. Experimental Neurology, 2009. 

219(1): p. 359-362. 

164. Grill, W.M., A.N. Snyder, and S. Miocinovic, Deep brain stimulation creates an 

informational lesion of the stimulated nucleus. Neuroreport, 2004. 15(7): p. 1137-

40. 

165. Kuncel, A.M., et al., Amplitude- and frequency-dependent changes in neuronal 

regularity parallel changes in tremor With thalamic deep brain stimulation. IEEE 

Trans Neural Syst Rehabil Eng, 2007. 15(2): p. 190-7. 

166. Dorval, A.D., et al., Deep brain stimulation alleviates parkinsonian bradykinesia 

by regularizing pallidal activity. J Neurophysiol, 2010. 104(2): p. 911-21. 



   162 

 

167. Dorval, A.D., et al., Deep brain stimulation reduces neuronal entropy in the 

MPTP-primate model of Parkinson's disease. J Neurophysiol, 2008. 100(5): p. 

2807-18. 

168. Couto, J. and W.M. Grill, Kilohertz Frequency Deep Brain Stimulation Is 

Ineffective at Regularizing the Firing of Model Thalamic Neurons. Frontiers in 

Computational Neuroscience, 2016. 10. 

169. Agnesi, F., et al., Deep brain stimulation imposes complex informational lesions. 

PLoS One, 2013. 8(8): p. e74462. 

170. Johnson, M.D., et al., Mechanisms and targets of deep brain stimulation in 

movement disorders. Neurotherapeutics, 2008. 5(2): p. 294-308. 

171. Guo, Y., et al., Thalamocortical relay fidelity varies across subthalamic nucleus 

deep brain stimulation protocols in a data-driven computational model. J 

Neurophys, 2008. 99(3): p. 1477-1492. 

172. Zheng, F., et al., Axonal failure during high frequency stimulation of rat 

subthalamic nucleus. J Physiol, 2011. 589(Pt 11): p. 2781-93. 

173. Herzog, J., et al., Kinematic analysis of thalamic versus subthalamic 

neurostimulation in postural and intention tremor. Brain, 2007. 130(Pt 6): p. 

1608-25. 

174. Stover, N.P., et al., Stimulation of the subthalamic nucleus in a patient with 

Parkinson disease and essential tremor. Arch Neurol, 2005. 62(1): p. 141-3. 

175. Barbe, M.T., et al., Deep brain stimulation of the ventral intermediate nucleus in 

patients with essential tremor: stimulation below intercommissural line is more 

efficient but equally effective as stimulation above. Exp Neurol, 2011. 230(1): p. 

131-7. 

176. Pedrosa, D.J., et al., Essential tremor and tremor in Parkinson's disease are 

associated with distinct 'tremor clusters' in the ventral thalamus. Exp Neurol, 

2012. 237(2): p. 435-43. 

177. Bekar, L., et al., Adenosine is crucial for deep brain stimulation-mediated 

attenuation of tremor. Nature Medicine, 2008. 14(1): p. 75-80. 

178. Papavassiliou, E., et al., Thalamic deep brain stimulation for essential tremor: 

relation of lead location to outcome. Neurosurgery, 2004. 54(5): p. 1120-29; 

discussion 1129-30. 

179. Yu, H., et al., Confined stimulation using dual thalamic deep brain stimulation 

leads rescues refractory essential tremor: report of three cases. Stereotact Funct 

Neurosurg, 2009. 87(5): p. 309-313. 

180. Montgomery Jr, E.B., Deep brain stimulation programming: principles and 

practice. 2010: Oxford University Press. 

181. Vitek, J.L., et al., Microelectrode-guided pallidotomy: technical approach and its 

application in medically intractable Parkinson's disease. J Neurosurg, 1998. 

88(6): p. 1027-43. 

182. Ashby, P., et al., Immediate motor effects of stimulation through electrodes 

implanted in the human globus pallidus. Stereotact Funct Neurosurg, 1998. 70(1): 

p. 1-18. 



   163 

 

183. Ackermann, H., W. Ziegler, and D. Petersen, Dysarthria in bilateral thalamic 

infarction. A case study. J Neurol, 1993. 240(6): p. 357-62. 

184. Kobayashi, K., et al., Effects of electrode implantation angle on thalamic 

stimulation for treatment of tremor. Neuromodulation, 2010. 13(1): p. 31-6. 

185. Hoover, J.E. and P.L. Strick, The organization of cerebellar and basal ganglia 

outputs to primary motor cortex as revealed by retrograde transneuronal 

transport of herpes simplex virus type 1. J Neurosci, 1999. 19(4): p. 1446-63. 

186. Strick, P.L., How do the basal ganglia and cerebellum gain access to the cortical 

motor areas? Behav Brain Res, 1985. 18(2): p. 107-23. 

187. Foote, K.D. and M.S. Okun, Ventralis intermedius plus ventralis oralis anterior 

and posterior deep brain stimulation for posttraumatic Holmes tremor: two leads 

may be better than one: technical note. Neurosurgery, 2005. 56(2 Suppl): p. 

E445; discussion E445. 

188. Hirai, T., et al., The correlation between tremor characteristics and the predicted 

volume of effective lesions in stereotaxic nucleus ventralis intermedius 

thalamotomy. Brain, 1983. 106 ( Pt 4): p. 1001-18. 

189. McClelland, S., 3rd, et al., Subthalamic stimulation for Parkinson disease: 

determination of electrode location necessary for clinical efficacy. Neurosurg 

Focus, 2005. 19(5): p. E12. 

190. Volkmann, J., et al., Introduction to the programming of deep brain stimulators. 

Mov Disord, 2002. 17 Suppl 3: p. S181-7. 

191. Pollo, C., et al., Directional deep brain stimulation: an intraoperative double-

blind pilot study. Brain, 2014. 137(Pt 7): p. 2015-26. 

192. Kumar, R., Methods for programming and patient management with deep brain 

stimulation of the globus pallidus for the treatment of advanced Parkinson's 

disease and dystonia. Movement Disorders, 2002. 17(S3): p. S198-S207. 

193. Hunka, K., et al., Nursing time to program and assess deep brain stimulators in 

movement disorder patients. J Neurosci Nurs, 2005. 37(4): p. 204-10. 

194. Krauss, J.K., et al., Deep brain stimulation for dystonia. J Clin Neurophysiol, 

2004. 21(1): p. 18-30. 

195. Houeto, J.L., et al., Tourette's syndrome and deep brain stimulation. J Neurol 

Neurosurg Psychiatry, 2005. 76(7): p. 992-5. 

196. Moro, E., et al., Subthalamic nucleus stimulation: improvements in outcome with 

reprogramming. Arch Neurol, 2006. 63(9): p. 1266-72. 

197. Hariz, M.I., et al., Tolerance and tremor rebound following long-term chronic 

thalamic stimulation for Parkinsonian and essential tremor. Stereotact Funct 

Neurosurg, 1999. 72(2-4): p. 208-18. 

198. Kumar, R., et al., Long-term follow-up of thalamic deep brain stimulation for 

essential and parkinsonian tremor. Neurology, 2003. 61(11): p. 1601-4. 

199. Shih, L.C., et al., Loss of benefit in VIM thalamic deep brain stimulation (DBS) 

for essential tremor (ET): How prevalent is it? Parkinsonism Relat Disord, 2013. 

19(7): p. 676-679. 

200. Ruiz, P.J.G., et al., Deep brain stimulation holidays in essential tremor. Journal of 

Neurology, 2001. 248(8): p. 725-726. 



   164 

 

201. Kuncel, A.M., S.E. Cooper, and W.M. Grill, A method to estimate the spatial 

extent of activation in thalamic deep brain stimulation. Clin Neurophysiol, 2008. 

119(9): p. 2148-58. 

202. Rattay, F., The basic mechanism for the electrical stimulation of the nervous 

system. Neuroscience, 1999. 89(2): p. 335-46. 

203. McIntyre, C.C. and W.M. Grill, Excitation of central nervous system neurons by 

nonuniform electric fields. Biophys J, 1999. 76(2): p. 878-88. 

204. Grill, W.M. and C.C. Mclntyre, Extracellular excitation of central neurons: 

implications for the mechanisms of deep brain stimulation. Thalamus & Related 

Systems, 2001. 1(03): p. 269-277. 

205. Destexhe, A., et al., Dendritic low-threshold calcium currents in thalamic relay 

cells. J Neurosci, 1998. 18(10): p. 3574-88. 

206. Hines, M.L. and N.T. Carnevale, The NEURON simulation environment. Neural 

Computation, 1997. 9(6): p. 1179-1209. 

207. McIntyre, C.C., et al., Uncovering the mechanism(s) of action of deep brain 

stimulation: activation, inhibition, or both. Clin Neurophysiol, 2004. 115(6): p. 

1239-48. 

208. Johnson, M.D. and C.C. McIntyre, Quantifying the neural elements activated and 

inhibited by globus pallidus deep brain stimulation. J Neurophysiol, 2008. 100(5): 

p. 2549-63. 

209. Miocinovic, S., et al., Computational analysis of subthalamic nucleus and 

lenticular fasciculus activation during therapeutic deep brain stimulation. J 

Neurophysiol, 2006. 96(3): p. 1569-80. 

210. Butson, C.R., et al., Probabilistic analysis of activation volumes generated during 

deep brain stimulation. Neuroimage, 2011. 54(3): p. 2096-104. 

211. Johnson, M.D., et al., Neural targets for relieving parkinsonian rigidity and 

bradykinesia with pallidal deep brain stimulation. J Neurophysiol, 2012. 108(2): 

p. 567-77. 

212. Lujan, J.L., et al., Axonal pathways linked to therapeutic and nontherapeutic 

outcomes during psychiatric deep brain stimulation. Hum Brain Mapp, 2012. 

33(4): p. 958-68. 

213. Zitella, L.M., et al., Computational modeling of pedunculopontine nucleus deep 

brain stimulation. J Neural Eng, 2013. 10(4): p. 045005. 

214. Zitella, L.M., et al., Subject-specific computational modeling of DBS in the PPTg 

area. Front Comput Neurosci, 2015. 9: p. 93. 

215. Keane, M., et al., Improved spatial targeting with directionally segmented deep 

brain stimulation leads for treating essential tremor. J Neural Eng, 2012. 9(4): p. 

046005. 

216. Butson, C.R., et al., Patient-specific analysis of the volume of tissue activated 

during deep brain stimulation. Neuroimage, 2007. 34(2): p. 661-70. 

217. McIntyre, C.C., et al., Electric field and stimulating influence generated by deep 

brain stimulation of the subthalamic nucleus. Clin Neurophysiol, 2004. 115(3): p. 

589-95. 



   165 

 

218. Butson, C.R., et al., StimExplorer: deep brain stimulation parameter selection 

software system. Acta Neurochir Suppl, 2007. 97(Pt 2): p. 569-74. 

219. Frankemolle, A.M.M., et al., Reversing cognitive-motor impairments in 

Parkinson's disease patients using a computational modelling approach to deep 

brain stimulation programming. Brain, 2010. 133: p. 746-761. 

220. Larson, P.S., et al., An optimized system for interventional magnetic resonance 

imaging-guided stereotactic surgery: preliminary evaluation of targeting 

accuracy. Neurosurgery, 2012. 70(1 Suppl Operative): p. 95-103; discussion 103. 

221. Starr, P.A., et al., Subthalamic nucleus deep brain stimulator placement using 

high-field interventional magnetic resonance imaging and a skull-mounted aiming 

device: technique and application accuracy. J Neurosurg, 2010. 112(3): p. 479-

90. 

222. Abosch, A., et al., An assessment of current brain targets for deep brain 

stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery, 

2010. 67(6): p. 1745-56; discussion 1756. 

223. Lenglet, C., et al., Comprehensive in vivo mapping of the human basal ganglia 

and thalamic connectome in individuals using 7T MRI. PLoS One, 2012. 7(1): p. 

e29153. 

224. Kerl, H.U., et al., Imaging for deep brain stimulation: The zona incerta at 7 Tesla. 

World J Radiol, 2013. 5(1): p. 5-16. 

225. Kanowski, M., et al., Direct visualization of anatomic subfields within the 

superior aspect of the human lateral thalamus by MRI at 7T. AJNR Am J 

Neuroradiol, 2014. 35(9): p. 1721-7. 

226. Keuken, M.C., et al., Ultra-high 7T MRI of structural age-related changes of the 

subthalamic nucleus. J Neurosci, 2013. 33(11): p. 4896-900. 

227. Zitella, L.M., et al., In Vivo 7T MRI of the Non-Human Primate Brainstem. PLoS 

One, 2015. 10(5): p. e0127049. 

228. McEvoy, J., et al., Electrophysiological validation of STN-SNr boundary depicted 

by susceptibility-weighted MRI. Acta Neurochir (Wien), 2015. 157(12): p. 2129-

34. 

229. Wolberg, G., Image morphing: a survey. Visual Computer, 1998. 14(8-9): p. 360-

372. 

230. Behrens, T.E., et al., Non-invasive mapping of connections between human 

thalamus and cortex using diffusion imaging. Nat Neurosci, 2003. 6(7): p. 750-7. 

231. Wiegell, M.R., et al., Automatic segmentation of thalamic nuclei from diffusion 

tensor magnetic resonance imaging. Neuroimage, 2003. 19(2 Pt 1): p. 391-401. 

232. Martens, H.C.F., et al., Spatial steering of deep brain stimulation volumes using a 

novel lead design. Clinical Neurophysiology, 2011. 122(3): p. 558-566. 

233. Connolly, A.T., et al., A Novel Lead Design for Modulation and Sensing of Deep 

Brain Structures. IEEE Trans Biomed Eng, 2016. 63(1): p. 148-57. 

234. Chaturvedi, A., T.J. Foutz, and C.C. McIntyre, Current steering to activate 

targeted neural pathways during deep brain stimulation of the subthalamic 

region. Brain Stimul, 2012. 5(3): p. 369-77. 



   166 

 

235. Toader, E., M.M.J. Decre, and H.C.F. Martens, Steering deep brain stimulation 

fields using a high resolution electrode array. 2010 Annual International 

Conference of the Ieee Engineering in Medicine and Biology Society (Embc), 

2010: p. 2061-2064. 

236. Teplitzky, B.A., et al. Sculpting neural activation using deep brain stimulation 

leads with radially segmented contacts. in Neural Engineering (NER), 2013 6th 

International IEEE/EMBS Conference on. 2013. IEEE. 

237. Teplitzky, B.A., et al., Model-Based Comparison of Deep Brain Stimulation 

Array Functionality with Varying Number of Radial Electrodes and Machine 

Learning Feature Sets. Front Comput Neurosci, 2016. 10: p. 58. 

238. Contarino, M.F., et al., Directional steering: A novel approach to deep brain 

stimulation. Neurology, 2014. 83(13): p. 1163-9. 

239. McIntyre, C.C., et al., Customizing Deep Brain Stimulation to the Patient Using 

Computational Models. 2009 Annual International Conference of the Ieee 

Engineering in Medicine and Biology Society, Vols 1-20, 2009: p. 4228-4229. 

240. McIntyre, C.C., et al., Improving postural stability via computational modeling 

approach to deep brain stimulation programming. Conf Proc IEEE Eng Med Biol 

Soc, 2011. 2011: p. 675-6. 

241. Miocinovic, S., et al., Cicerone: stereotactic neurophysiological recording and 

deep brain stimulation electrode placement software system. Acta Neurochir 

Suppl, 2007. 97(Pt 2): p. 561-7. 

242. Lemaire, J.J., et al., Brain mapping in stereotactic surgery: a brief overview from 

the probabilistic targeting to the patient-based anatomic mapping. Neuroimage, 

2007. 37 Suppl 1: p. S109-15. 

243. Larson, P.S., et al., An optimized system for interventional MRI guided 

stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery, 

2012. 70(OPERATIVE): p. ons95. 

244. Starr, P.A., et al., Magnetic resonance imaging-based stereotactic localization of 

the globus pallidus and subthalamic nucleus. Neurosurgery, 1999. 44(2): p. 303-

13; discussion 313-4. 

245. Schlaier, J., et al., Reliability of atlas-derived coordinates in deep brain 

stimulation. Acta Neurochir (Wien), 2005. 147(11): p. 1175-80; discussion 1180. 

246. Levy, R.M., S. Lamb, and J.E. Adams, Treatment of chronic pain by deep brain 

stimulation: long term follow-up and review of the literature. Neurosurgery, 1987. 

21(6): p. 885-93. 

247. Lipsman, N., et al., MR-guided focused ultrasound thalamotomy for essential 

tremor: a proof-of-concept study. Lancet Neurol, 2013. 12(5): p. 462-8. 

248. Fisher, R., et al., Electrical stimulation of the anterior nucleus of thalamus for 

treatment of refractory epilepsy. Epilepsia, 2010. 51(5): p. 899-908. 

249. Takase, K., et al., Efficacy of mediodorsal thalamic nucleus stimulation in a rat 

model of cortical seizure. Fukuoka Igaku Zasshi, 2009. 100(8): p. 274-80. 

250. Visser-Vandewalle, V., et al., Chronic bilateral thalamic stimulation: a new 

therapeutic approach in intractable Tourette syndrome. Report of three cases. J 

Neurosurg, 2003. 99(6): p. 1094-100. 



   167 

 

251. Schiff, N.D., et al., Behavioural improvements with thalamic stimulation after 

severe traumatic brain injury. Nature, 2007. 448(7153): p. 600-3. 

252. Klein, J., et al., Mapping brain regions in which deep brain stimulation affects 

schizophrenia-like behavior in two rat models of schizophrenia. Brain Stimul, 

2013. 6(4): p. 490-9. 

253. Ewing, S.G., B. Porr, and J.A. Pratt, Deep brain stimulation of the mediodorsal 

thalamic nucleus yields increases in the expression of zif-268 but not c-fos in the 

frontal cortex. Journal of Chemical Neuroanatomy, 2013. 52: p. 20-24. 

254. Papavassiliou, E., et al., Thalamic deep brain stimulation for essential tremor: 

Relation of lead location to outcome. Neurosurgery, 2004. 54(5): p. 1120-1129. 

255. Yu, H., et al., Confined stimulation using dual thalamic deep brain stimulation 

leads rescues refractory essential tremor: report of three cases. Stereotact Funct 

Neurosurg, 2009. 87(5): p. 309-13. 

256. Talairach, J. and P. Tournoux, Coplanar Stereotaxic Atlas of the Human Brain. 

Thieme Medical Publishers. 1988, New York. 

257. Villemure, J.G., et al., Magnetic resonance imaging stereotaxy: recognition and 

utilization of the commissures. Appl Neurophysiol, 1987. 50(1-6): p. 57-62. 

258. Lunsford, L.D., Magnetic resonance imaging stereotactic thalamotomy: report of 

a case with comparison to computed tomography. Neurosurgery, 1988. 23(3): p. 

363-7. 

259. Kall, B.A., S.J. Goerss, and P.J. Kelly, A new multimodality correlative imaging 

technique for VOP/VIM (VL) thalamotomy procedures. Stereotact Funct 

Neurosurg, 1992. 58(1-4): p. 45-51. 

260. Schaltenbrand, G. and W. Wahren, Atlas for Stereotaxy of the Human Brain: 

Architectonic Organisation of the Thalamic Nuclei by Rolf Hassler, 1977, 

Thieme, Stuttgart. 

261. Baker, S.C., et al., Neural systems engaged by planning: a PET study of the 

Tower of London task. Neuropsychologia, 1996. 34(6): p. 515-26. 

262. Davis, K.D., et al., Functional MRI study of thalamic and cortical activations 

evoked by cutaneous heat, cold, and tactile stimuli. J Neurophysiol, 1998. 80(3): 

p. 1533-46. 

263. Krams, M., et al., The preparation, execution and suppression of copied 

movements in the human brain. Exp Brain Res, 1998. 120(3): p. 386-98. 

264. Samuel, M., et al., Evidence for lateral premotor and parietal overactivity in 

Parkinson's disease during sequential and bimanual movements:  A PET study. 

Brain, 1997. 120: p. 963-976. 

265. Calamante, F., et al., Super-resolution track-density imaging studies of mouse 

brain: comparison to histology. Neuroimage, 2012. 59(1): p. 286-96. 

266. Calamante, F., et al., Super-resolution track-density imaging of thalamic 

substructures: Comparison with high-resolution anatomical magnetic resonance 

imaging at 7.0T. Hum Brain Mapp, 2013. 34(10): p. 2538-2548. 

267. Tourdias, T., et al., Visualization of intra-thalamic nuclei with optimized white-

matter-nulled MPRAGE at 7T. Neuroimage, 2014. 84: p. 534-45. 



   168 

 

268. Johansen-Berg, H., et al., Functional-anatomical validation and individual 

variation of diffusion tractography-based segmentation of the human thalamus. 

Cereb Cortex, 2005. 15(1): p. 31-9. 

269. Deoni, S.C., et al., Visualization of thalamic nuclei on high resolution, 

multi‐averaged T1 and T2 maps acquired at 1.5 T. Human Brain Mapping, 2005. 

25(3): p. 353-359. 

270. Gringel, T., et al., Optimized High-Resolution Mapping of Magnetization Transfer 

(MT) at 3 Tesla for Direct Visualization of Substructures of the Human Thalamus 

in Clinically Feasible Measurement Time. Journal of Magnetic Resonance 

Imaging, 2009. 29(6): p. 1285-1292. 

271. Gee, J.C., et al. Evaluation of multiresolution elastic matching using MRI data. in 

Medical Imaging V: Image Processing. 1991. International Society for Optics and 

Photonics. 

272. Mesulam, M.-M., et al., Atlas of cholinergic neurons in the forebrain and upper 

brainstem of the macaque based on monoclonal choline actyltransferase 

immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience, 

1984. 12: p. 669-686. 

273. Lanciego, J.L. and A. Vazquez, The basal ganglia and thalamus of the long-tailed 

macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal 

and horizontal brain sections. Brain Struct Funct, 2012. 217(2): p. 613-66. 

274. Morel, A., M. Magnin, and D. Jeanmonod, Multiarchitectonic and stereotactic 

atlas of the human thalamus. J Comp Neurol, 1997. 387(4): p. 588-630. 

275. Eidelberg, D. and A.M. Galaburda, Symmetry and asymmetry in the human 

posterior thalamus. I. Cytoarchitectonic analysis in normal persons. Arch Neurol, 

1982. 39(6): p. 325-32. 

276. Galaburda, A.M., et al., Right-left asymmetrics in the brain. Science, 1978. 

199(4331): p. 852-6. 

277. Good, C.D., et al., Cerebral asymmetry and the effects of sex and handedness on 

brain structure: a voxel-based morphometric analysis of 465 normal adult human 

brains. Neuroimage, 2001. 14(3): p. 685-700. 

278. Bertrand, G., A. Oliver, and C.J. Thompson, The computerized brain atlas: its use 

in stereotaxic surgery. Trans Am Neurol Assoc, 1973. 98: p. 233. 

279. Evans, A.C., et al., Anatomical-functional correlation using an adjustable MRI-

based region of interest atlas with positron emission tomography. J Cereb Blood 

Flow Metab, 1988. 8(4): p. 513-30. 

280. Marrett, S., et al. A volume of interest (VOI) atlas for the analysis of 

neurophysiological image data. in 1989 Medical Imaging. 1989. International 

Society for Optics and Photonics. 

281. Ganser, K.A., et al., A deformable digital brain atlas system according to 

Talairach and Tournoux. Med Image Anal, 2004. 8(1): p. 3-22. 

282. Bohm, C., et al., Adjustable Computerized Stereotaxic Brain Atlas for 

Transmission and Emission Tomography. American Journal of Neuroradiology, 

1983. 4(3): p. 731-733. 



   169 

 

283. Dann, R., et al. Three-Dimensional Computerized Brain Atlas For Elastic 

Matching: Creation And Initial Evaluation. 1988. 

284. Dauguet, J., et al., Generation of a 3D atlas of the nuclear division of the 

thalamus based on histological sections of primate: Intra- and intersubject atlas-

to-MRI warping. Irbm, 2009. 30(5-6): p. 281-291. 

285. Greitz, T., et al., A computerized brain atlas: construction, anatomical content, 

and some applications. J Comput Assist Tomogr, 1991. 15(1): p. 26-38. 

286. Sadikot, A.F., et al., Creation of Computerized 3D MRI-Integrated Atlases of the 

Human Basal Ganglia and Thalamus. Front Syst Neurosci, 2011. 5: p. 71. 

287. Yelnik, J., et al., A three-dimensional, histological and deformable atlas of the 

human basal ganglia. I. Atlas construction based on immunohistochemical and 

MRI data. Neuroimage, 2007. 34(2): p. 618-38. 

288. Chakravarty, M.M., et al., The creation of a brain atlas for image guided 

neurosurgery using serial histological data. Neuroimage, 2006. 30(2): p. 359-76. 

289. Finnis, K.W., et al., Three-dimensional database of subcortical electrophysiology 

for image-guided stereotactic functional neurosurgery. IEEE Trans Med Imaging, 

2003. 22(1): p. 93-104. 

290. Nowinski, W.L., G.L. Yang, and T.T. Yeo, Computer-aided stereotactic 

functional neurosurgery enhanced by the use of the multiple brain atlas database. 

IEEE Trans Med Imaging, 2000. 19(1): p. 62-9. 

291. St-Jean, P., et al., Automated atlas integration and interactive three-dimensional 

visualization tools for planning and guidance in functional neurosurgery. IEEE 

Trans Med Imaging, 1998. 17(5): p. 672-80. 

292. Maintz, J. and M.A. Viergever, A survey of medical image registration. Medical 

Image Analysis, 1998. 2(1): p. 1-36. 

293. Pham, D.L., C. Xu, and J.L. Prince, Current methods in medical image 

segmentation. Annu Rev Biomed Eng, 2000. 2: p. 315-37. 

294. McInerney, T. and D. Terzopoulos, Deformable models in medical image 

analysis: a survey. Medical Image Analysis, 1996. 1(2): p. 91-108. 

295. Pitiot, A., et al., Piecewise affine registration of biological images for volume 

reconstruction. Med Image Anal, 2006. 10(3): p. 465-83. 

296. Gross, R.E., et al., Electrophysiological mapping for the implantation of deep 

brain stimulators for Parkinson's disease and tremor. Mov Disord, 2006. 21 

Suppl 14: p. S259-83. 

297. Hamani, C., et al., Correspondence of microelectrode mapping with magnetic 

resonance imaging for subthalamic nucleus procedures. Surg Neurol, 2005. 

63(3): p. 249-53; discussion 253. 

298. Adriany, G., et al., A 21 channel Transceiver Array for Non-human Primate 

Applications at 7 Tesla, in Proceedings of the 18th Annual Meeting of 

ISMRM2010: Stockholm, Sweden. 

299. Haacke, E.M., et al., Susceptibility-weighted imaging: technical aspects and 

clinical applications, part 1. AJNR Am J Neuroradiol, 2009. 30(1): p. 19-30. 

300. Schenck, J.F. and E.A. Zimmerman, High-field magnetic resonance imaging of 

brain iron: birth of a biomarker? NMR Biomed, 2004. 17(7): p. 433-45. 



   170 

 

301. LeVine, S.M. and W.B. Macklin, Iron-enriched oligodendrocytes: a 

reexamination of their spatial distribution. J Neurosci Res, 1990. 26(4): p. 508-

12. 

302. Dwork, A.J., E.A. Schon, and J. Herbert, Nonidentical distribution of transferrin 

and ferric iron in human brain. Neuroscience, 1988. 27(1): p. 333-45. 

303. Francois, C., J. Nguyen-Legros, and G. Percheron, Topographical and cytological 

localization of iron in rat and monkey brains. Brain Res, 1981. 215(1-2): p. 317-

22. 

304. Haacke, E.M., et al., Characterizing Iron Deposition in Multiple Sclerosis Lesions 

Using Susceptibility Weighted Imaging. Journal of Magnetic Resonance Imaging, 

2009. 29(3): p. 537-544. 

305. Ogg, R.J., et al., The correlation between phase shifts in gradient-echo MR 

images and regional brain iron concentration. Magn Reson Imaging, 1999. 17(8): 

p. 1141-8. 

306. Hopp, K., et al., Brain iron detected by SWI high pass filtered phase calibrated 

with synchrotron X-ray fluorescence. J Magn Reson Imaging, 2010. 31(6): p. 

1346-54. 

307. Stejskal, E.O. and J.E. Tanner, Spin Diffusion Measurements: Spin Echoes in the 

Presence of a Time‐Dependent Field Gradient. J. Chem. Phys., 1965. 42: p. 288-

292. 

308. Deriche, R., J. Calder, and M. Descoteaux, Optimal real-time Q-ball imaging 

using regularized Kalman filtering with incremental orientation sets. Medical 

image analysis, 2009. 13(4): p. 564-79. 

309. Andersson, J.L.R., S. Skare, and J. Ashburner, How to correct susceptibility 

distortions in spin-echo echo-planar images: application to diffusion tensor 

imaging. Neuroimage, 2003. 20(2): p. 870-888. 

310. Paxinos, G., X.F. Huang, and A.W. Toga, The rhesus monkey brain in stereotaxic 

coordinates. 2000, San Diego, CA: Academic Press. 163 p. 

311. Sorlie, C., et al., Matching of digitised brain atlas to magnetic resonance images. 

Med Biol Eng Comput, 1997. 35(3): p. 239-45. 

312. Castro, F.J.S., et al., Cross validation study of deep brain stimulation targeting: 

From experts to atlas-based, segmentation-based and automatic registration 

algorithms. IEEE Trans Med Imaging, 2006. 25(11): p. 1440-1450. 

313. Schaefer, S., T. McPhail, and J. Warren, Image deformation using moving least 

squares. Acm Transactions on Graphics, 2006. 25(3): p. 533-540. 

314. Tiddeman, B., N. Duffy, and G. Rabey, A general method for overlap control in 

image warping. Computers & Graphics-Uk, 2001. 25(1): p. 59-66. 

315. Jenkinson, M., et al., Fsl. Neuroimage, 2012. 62(2): p. 782-90. 

316. Woolrich, M.W., et al., Bayesian analysis of neuroimaging data in FSL. 

Neuroimage, 2009. 45(1 Suppl): p. S173-86. 

317. Smith, S.M., et al., Advances in functional and structural MR image analysis and 

implementation as FSL. Neuroimage, 2004. 23 Suppl 1: p. S208-19. 

318. Smith, S.M., Fast robust automated brain extraction. Hum Brain Mapp, 2002. 

17(3): p. 143-55. 



   171 

 

319. Jenkinson, M., et al., Improved optimization for the robust and accurate linear 

registration and motion correction of brain images. Neuroimage, 2002. 17(2): p. 

825-841. 

320. Jenkinson, M. and S. Smith, A global optimisation method for robust affine 

registration of brain images. Medical Image Analysis, 2001. 5(2): p. 143-156. 

321. Greve, D.N. and B. Fischl, Accurate and robust brain image alignment using 

boundary-based registration. Neuroimage, 2009. 48(1): p. 63-72. 

322. Gallay, M.N., et al., Human pallidothalamic and cerebellothalamic tracts: 

anatomical basis for functional stereotactic neurosurgery. Brain Struct Funct, 

2008. 212(6): p. 443-63. 

323. Vitek, J.L., et al., Microstimulation of primate motor thalamus: somatotopic 

organization and differential distribution of evoked motor responses among 

subnuclei. J Neurophysiol, 1996. 75(6): p. 2486-95. 

324. Sandor, S. and R. Leahy. Matching deformable atlas models to preprocessed 

magnetic resonance brain images. in Image Processing, 1994. Proceedings. 

ICIP-94., IEEE International Conference. 1994. IEEE. 

325. Davatzikos, C., Spatial transformation and registration of brain images using 

elastically deformable models. Computer Vision and Image Understanding, 1997. 

66(2): p. 207-222. 

326. Cuisenaire, O., et al., Automatic registration of 3D MR images with a 

computerized brain atlas. Medical imaging, 1996. 2710: p. 438-448. 

327. Bajcsy, R., R. Lieberson, and M. Reivich, A Computerized System for the Elastic 

Matching of Deformed Radiographic Images to Idealized Atlas Images. Journal of 

Computer Assisted Tomography, 1983. 7(4): p. 618-625. 

328. MacDonald, D., D. Avis, and A.C. Evans. Multiple surface identification and 

matching in magnetic resonance images. in Visualization in Biomedical 

Computing 1994. 1994. International Society for Optics and Photonics. 

329. Thompson, P. and A.W. Toga, A surface-based technique for warping three-

dimensional images of the brain. IEEE Trans Med Imaging, 1996. 15(4): p. 402-

17. 

330. Alexa, M., D. Cohen-Or, and D. Levin. As-rigid-as-possible shape interpolation. 

in Proceedings of the 27th annual conference on Computer graphics and 

interactive techniques. 2000. ACM Press/Addison-Wesley Publishing Co. 

331. Igarashi, T., T. Moscovich, and J.F. Hughes, As-rigid-as-possible shape 

manipulation. Acm Transactions on Graphics, 2005. 24(3): p. 1134-1141. 

332. Gee, J.C., M. Reivich, and R. Bajcsy, Elastically Deforming 3d Atlas to Match 

Anatomical Brain Images. Journal of Computer Assisted Tomography, 1993. 

17(2): p. 225-236. 

333. Bookstein, F.L., Principal Warps - Thin-Plate Splines and the Decomposition of 

Deformations. Ieee Transactions on Pattern Analysis and Machine Intelligence, 

1989. 11(6): p. 567-585. 

334. Connor, J.R. and S.L. Menzies, Relationship of iron to oligodendrocytes and 

myelination. Glia, 1996. 17(2): p. 83-93. 



   172 

 

335. Hallgren, B. and P. Sourander, The effect of age on the non-haemin iron in the 

human brain. J Neurochem, 1958. 3(1): p. 41-51. 

336. Chen, J.C., et al., MR of human postmortem brain tissue: correlative study 

between T2 and assays of iron and ferritin in Parkinson and Huntington disease. 

AJNR Am J Neuroradiol, 1993. 14(2): p. 275-81. 

337. Dexter, D.T., et al., Alterations in the Levels of Iron, Ferritin and Other Trace-

Metals in Parkinsons-Disease and Other Neurodegenerative Diseases Affecting 

the Basal Ganglia. Brain, 1991. 114: p. 1953-1975. 

338. Griffiths, P.D. and A.R. Crossman, Distribution of iron in the basal ganglia and 

neocortex in postmortem tissue in Parkinson's disease and Alzheimer's disease. 

Dementia, 1993. 4(2): p. 61-5. 

339. Loeffler, D.A., et al., Transferrin and iron in normal, Alzheimer's disease, and 

Parkinson's disease brain regions. J Neurochem, 1995. 65(2): p. 710-24. 

340. Small, S.A., et al., Differential regional dysfunction of the hippocampal formation 

among elderly with memory decline and Alzheimer's disease. Annals of 

Neurology, 1999. 45(4): p. 466-72. 

341. Small, S.A., et al., Evaluating the function of hippocampal subregions with high-

resolution MRI in Alzheimer's disease and aging. Microsc Res Tech, 2000. 51(1): 

p. 101-8. 

342. Cook, R.D., Detection of influential observation in linear regression. 

Technometrics, 1977. 19(1): p. 15-18. 

343. Deoni, S.C., et al., Visualization of thalamic nuclei on high resolution, multi-

averaged T1 and T2 maps acquired at 1.5 T. Hum Brain Mapp, 2005. 25(3): p. 

353-9. 

344. Anthofer, J., et al., The variability of atlas-based targets in relation to 

surrounding major fibre tracts in thalamic deep brain stimulation. Acta 

Neurochir (Wien), 2014. 

345. Zakszewski, E., et al., A diffusion-tensor-based white matter atlas for rhesus 

macaques. PLoS One, 2014. 9(9): p. e107398. 

346. Lujan, J.L., et al., Automated 3-dimensional brain atlas fitting to microelectrode 

recordings from deep brain stimulation surgeries. Stereotact Funct Neurosurg, 

2009. 87(4): p. 229-40. 

347. Dauguet, J., et al., Three-dimensional reconstruction of stained histological slices 

and 3D non-linear registration with in-vivo MRI for whole baboon brain. J 

Neurosci Methods, 2007. 164(1): p. 191-204. 

348. Macchi, G. and E.G. Jones, Toward an agreement on terminology of nuclear and 

subnuclear divisions of the motor thalamus. J Neurosurg, 1997. 86(4): p. 670-85. 

349. diPierro, C.G., et al., Optimizing accuracy in magnetic resonance imaging-guided 

stereotaxis: a technique with validation based on the anterior commissure-

posterior commissure line. J Neurosurg, 1999. 90(1): p. 94-100. 

350. Dormont, D., et al., Chronic thalamic stimulation with three-dimensional MR 

stereotactic guidance. AJNR Am J Neuroradiol, 1997. 18(6): p. 1093-107. 

351. Kamiryo, T. and E.R. Laws, Jr., Stereotactic frame-based error in magnetic-

resonance-guided stereotactic procedures: a method for measurement of error 



   173 

 

and standardization of technique. Stereotact Funct Neurosurg, 1996. 67(3-4): p. 

198-209. 

352. Xiao, Y. and M.D. Johnson, Spherical statistics for characterizing the spatial 

distribution of deep brain stimulation effects on neuronal activity. J Neurosci 

Methods, 2015. 255: p. 52-65. 

353. Xiao, Y., E. Pena, and M. Johnson, Theoretical Optimization of Stimulation 

Strategies for a Directionally Segmented Deep Brain Stimulation Electrode 

Array. IEEE Trans Biomed Eng, 2015. 

354. Johnson, M.D., et al., Neuromodulation for brain disorders: challenges and 

opportunities. IEEE Trans Biomed Eng, 2013. 60(3): p. 610-24. 

355. Tamma, F., et al., Anatomo-clinical correlation of intraoperative stimulation-

induced side-effects during HF-DBS of the subthalamic nucleus. Neurol Sci, 

2002. 23 Suppl 2: p. S109-10. 

356. Krack, P., et al., Postoperative management of subthalamic nucleus stimulation 

for Parkinson's disease. Movement Disorders., 2002. 17(Suppl 3): p. S188-97. 

357. Martens, H.C., et al., Spatial steering of deep brain stimulation volumes using a 

novel lead design. Clin Neurophysiol, 2011. 122(3): p. 558-66. 

358. Mazzone, P., et al., Implantation of human pedunculopontine nucleus: a safe and 

clinically relevant target in Parkinson's disease. Neuroreport, 2005. 16(17): p. 

1877-81. 

359. Buhlmann, J., et al., Modeling of a segmented electrode for desynchronizing deep 

brain stimulation. Front Neuroeng, 2011. 4: p. 15. 

360. Pollo, C., et al., Directional deep brain stimulation: an intraoperative double-

blind pilot study. Brain, 2014. 

361. Barbe, M.T., et al., Individualized current-shaping reduces DBS-induced 

dysarthria in patients with essential tremor. Neurology, 2014. 82(7): p. 614-9. 

362. Volkmann, J., et al., Introduction to the programming of deep brain stimulators. 

Movement Disorders, 2002. 17(S3): p. S181-S187. 

363. Kumar, R., Methods for programming and patient management with deep brain 

stimulation of the globus pallidus for the treatment of advanced Parkinson's 

disease and dystonia. Mov Disord, 2002. 17 Suppl 3: p. S198-207. 

364. Butson, C.R. and C.C. McIntyre, Current steering to control the volume of tissue 

activated during deep brain stimulation. Brain Stimul, 2008. 1(1): p. 7-15. 

365. Phibbs, F.T., et al., Use of efficacy probability maps for the post-operative 

programming of deep brain stimulation in essential tremor. Movement Disorders, 

2014. 29: p. S464-S464. 

366. Plaha, P., et al., Stimulation of the caudal zona incerta is superior to stimulation 

of the subthalamic nucleus in improving contralateral parkinsonism. Brain, 2006. 

129(Pt 7): p. 1732-47. 

367. Frankemolle, A.M., et al., Reversing cognitive-motor impairments in Parkinson's 

disease patients using a computational modelling approach to deep brain 

stimulation programming. Brain, 2010. 133(Pt 3): p. 746-61. 



   174 

 

368. McIntyre, C.C., et al. Customizing deep brain stimulation to the patient using 

computational models. in Engineering in Medicine and Biology Society, 2009. 

EMBC 2009. Annual International Conference of the IEEE. 2009. IEEE. 

369. McIntyre, C.C., et al. Improving postural stability via computational modeling 

approach to deep brain stimulation programming. in Engineering in Medicine 

and Biology Society, EMBC, 2011 Annual International Conference of the IEEE. 

2011. IEEE. 

370. Rattay, F., Analysis of models for external stimulation of axons. IEEE Trans 

Biomed Eng, 1986. 33(10): p. 974-7. 

371. McIntyre, C.C., et al., Electric field and stimulating influence generated by deep 

brain stimulation of the subthalamic nucleus. Clinical Neurophysiology, 2004. 

115(3): p. 589-595. 

372. Butson, C.R. and C.C. McIntyre, Role of electrode design on the volume of tissue 

activated during deep brain stimulation. J Neural Eng, 2006. 3(1): p. 1. 

373. McIntyre, C.C., A.G. Richardson, and W.M. Grill, Modeling the excitability of 

mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J 

Neurophysiol, 2002. 87(2): p. 995-1006. 

374. Hines, M.L. and N.T. Carnevale, The NEURON simulation environment. Neural 

Comput, 1997. 9(6): p. 1179-209. 

375. Ranck, J.B., Jr., Analysis of specific impedance of rabbit cerebral cortex. Exp 

Neurol, 1963. 7: p. 153-74. 

376. Stances, A.L., S. J., Impedance and Current Density Studies, in 

Electroanesthesia: Biomedical and Biophysical Studies, C.A. Caceres, Editor. 

1975, Academic Press: New York, New York. p. 114-147. 

377. Miocinovic, S., et al., Experimental and theoretical characterization of the 

voltage distribution generated by deep brain stimulation. Exp Neurol, 2009. 

216(1): p. 166-76. 

378. Kakei, S., J. Na, and Y. Shinoda, Thalamic terminal morphology and distribution 

of single corticothalamic axons originating from layers 5 and 6 of the cat motor 

cortex. J Comp Neurol, 2001. 437(2): p. 170-85. 

379. Crouch, R.L. and J.K. Thompson, The efferent fibers of the thalamus of Macacus 

rhesus. I. Lateral ventral nuclei. Journal of Comparative Neurology, 1938. 69(2): 

p. 255-271. 

380. Grant, M. and S. Boyd, CVX: Matlab software for disciplined convex 

programming. 

381. Whiten, D.M., Electro-anatomical models of the cochlear implant, 2007, 

Massachusetts Institute of Technology. 

382. Ranck, J.B., Jr., Which elements are excited in electrical stimulation of 

mammalian central nervous system: a review. Brain Res, 1975. 98(3): p. 417-40. 

383. Rattay, F., Analysis of models for extracellular fiber stimulation. IEEE Trans 

Biomed Eng, 1989. 36(7): p. 676-82. 

384. McNeal, D.R., Analysis of a model for excitation of myelinated nerve. IEEE Trans 

Biomed Eng, 1976. 23(4): p. 329-37. 



   175 

 

385. Yousif, N., et al., Evaluating the impact of the deep brain stimulation induced 

electric field on subthalamic neurons: a computational modelling study. J 

Neurosci Methods, 2010. 188(1): p. 105-12. 

386. Schmidt, C., et al., Influence of uncertainties in the material properties of brain 

tissue on the probabilistic volume of tissue activated. IEEE Trans Biomed Eng, 

2013. 60(5): p. 1378-87. 

387. Peterson, E.J., O. Izad, and D.J. Tyler, Predicting myelinated axon activation 

using spatial characteristics of the extracellular field. Journal of Neural 

Engineering, 2011. 8(4). 

388. Chaturvedi, A., J.L. Lujan, and C.C. McIntyre, Artificial neural network based 

characterization of the volume of tissue activated during deep brain stimulation. J 

Neural Eng, 2013. 10(5): p. 056023. 

389. Litvak, L.M., A.J. Spahr, and G. Emadi, Loudness growth observed under 

partially tripolar stimulation: model and data from cochlear implant listeners. J 

Acoust Soc Am, 2007. 122(2): p. 967-81. 

390. Toader, E., M.M. Decre, and H.C. Martens, Steering deep brain stimulation fields 

using a high resolution electrode array. Conf Proc IEEE Eng Med Biol Soc, 

2010. 2010: p. 2061-4. 

391. Townshend, B. and R.L. White, Reduction of electrical interaction in auditory 

prostheses. IEEE Trans Biomed Eng, 1987. 34(11): p. 891-7. 

392. Ross, R.C., Channel interaction cancellation within a multichannel neural 

stimulation system, 2006, Google Patents. 

393. Tass, P.A., A model of desynchronizing deep brain stimulation with a demand-

controlled coordinated reset of neural subpopulations. Biol Cybern, 2003. 89(2): 

p. 81-8. 

394. Tass, P., et al., Long-lasting desynchronization in rat hippocampal slice induced 

by coordinated reset stimulation. Physical Review E, 2009. 80(1): p. 011902. 

395. Darian‐Smith, C., A. Tan, and S. Edwards, Comparing thalamocortical and 

corticothalamic microstructure and spatial reciprocity in the macaque ventral 

posterolateral nucleus (VPLc) and medial pulvinar. Journal of Comparative 

Neurology, 1999. 410(2): p. 211-234. 

396. Kultas‐Ilinsky, K., E. Sivan‐Loukianova, and I.A. Ilinsky, Reevaluation of the 

primary motor cortex connections with the thalamus in primates. Journal of 

Comparative Neurology, 2003. 457(2): p. 133-158. 

397. Coenen, V.A., et al., Individual fiber anatomy of the subthalamic region revealed 

with diffusion tensor imaging: a concept to identify the deep brain stimulation 

target for tremor suppression. Neurosurgery, 2011. 68(4): p. 1069-75; discussion 

1075-6. 

398. Chaturvedi, A., et al., Patient-specific models of deep brain stimulation: influence 

of field model complexity on neural activation predictions. Brain Stimul, 2010. 

3(2): p. 65-7. 

399. Lenz, F.A., et al., Thermal and pain sensations evoked by microstimulation in the 

area of human ventrocaudal nucleus. J Neurophysiol, 1993. 70(1): p. 200-12. 



   176 

 

400. Bonham, B.H. and L.M. Litvak, Current focusing and steering: modeling, 

physiology, and psychophysics. Hear Res, 2008. 242(1-2): p. 141-53. 

401. Dumm, G., et al., Virtual Electrodes by Current Steering in Retinal Prostheses. 

Invest Ophthalmol Vis Sci, 2014. 

402. Schlag, J. and J. Villablanca, A quantitative study of temporal and spatial 

response patterns in a thalamic cell population electrically stimulated. Brain Res, 

1968. 8(2): p. 255-270. 

403. Johnson, L.A., et al., Modulation of motor cortex neuronal activity and motor 

behavior during subthalamic nucleus stimulation in the normal primate. J 

Neurophysiol, 2015: p. jn 00997 2014. 

404. Bar-Gad, I., et al., Complex locking rather than complete cessation of neuronal 

activity in the globus pallidus of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-

treated primate in response to pallidal microstimulation. J Neurosci, 2004. 

24(33): p. 7410-9. 

405. Boraud, T., et al., High frequency stimulation of the internal Globus Pallidus 

(GPi) simultaneously improves parkinsonian symptoms and reduces the firing 

frequency of GPi neurons in the MPTP-treated monkey. Neurosci Lett, 1996. 

215(1): p. 17-20. 

406. Filali, M., et al., Stimulation-induced inhibition of neuronal firing in human 

subthalamic nucleus. Exp Brain Res, 2004. 156(3): p. 274-81. 

407. Meissner, W., et al., Subthalamic high frequency stimulation resets subthalamic 

firing and reduces abnormal oscillations. Brain, 2005. 128(Pt 10): p. 2372-82. 

408. Tolias, A.S., et al., Mapping cortical activity elicited with electrical 

microstimulation using fMRI in the macaque. Neuron, 2005. 48(6): p. 901-911. 

409. Histed, M.H., V. Bonin, and R.C. Reid, Direct activation of sparse, distributed 

populations of cortical neurons by electrical microstimulation. Neuron, 2009. 

63(4): p. 508-22. 

410. Tehovnik, E.J., et al., Direct and indirect activation of cortical neurons by 

electrical microstimulation. J Neurophysiol, 2006. 96(2): p. 512-21. 

411. Matteucci, P.B., et al., Current steering in retinal stimulation via a 

quasimonopolar stimulation paradigm. Invest Ophthalmol Vis Sci, 2013. 54(6): 

p. 4307-20. 

412. Jepson, L.H., et al., Spatially patterned electrical stimulation to enhance 

resolution of retinal prostheses. J Neurosci, 2014. 34(14): p. 4871-81. 

413. Lim, D.H., et al., In vivo Large-Scale Cortical Mapping Using 

Channelrhodopsin-2 Stimulation in Transgenic Mice Reveals Asymmetric and 

Reciprocal Relationships between Cortical Areas. Front Neural Circuits, 2012. 6: 

p. 11. 

414. Fisher, N.I., Statistical analysis of spherical data. 1993: Cambridge University 

Press. 

415. Borradaile, G.J. and B. Henry, Tectonic applications of magnetic susceptibility 

and its anisotropy. Earth-Science Reviews, 1997. 42(1-2): p. 49-93. 



   177 

 

416. Allen, T.R. and J.A. Kupfer, Application of spherical statistics to change vector 

analysis of Landsat data: Southern Appalachian spruce-fir forests. Remote 

Sensing of Environment, 2000. 74(3): p. 482-493. 

417. Leong, P. and S. Carlile, Methods for spherical data analysis and visualization. J 

Neurosci Methods, 1998. 80(2): p. 191-200. 

418. Grill, W.M. and J.T. Mortimer, Electrical properties of implant encapsulation 

tissue. Ann Biomed Eng, 1994. 22(1): p. 23-33. 

419. Lempka, S.F., et al., Current-controlled deep brain stimulation reduces in vivo 

voltage fluctuations observed during voltage-controlled stimulation. Clin 

Neurophysiol, 2010. 121(12): p. 2128-33. 

420. Eilers, P.H.C. and J.J. Goeman, Enhancing scatterplots with smoothed densities. 

Bioinformatics, 2004. 20(5): p. 623-U82. 

421. Woodcock, N.H., Specification of Fabric Shapes Using an Eigenvalue Method. 

Geological Society of America Bulletin, 1977. 88(9): p. 1231-1236. 

422. Rayleigh, L., XXXI. On the problem of random vibrations, and of random flights 

in one, two, or three dimensions. The London, Edinburgh, and Dublin 

Philosophical Magazine and Journal of Science, 1919. 37(220): p. 321-347. 

423. Kent, J.T., The Fisher-Bingham Distribution on the Sphere. Journal of the Royal 

Statistical Society Series B-Methodological, 1982. 44(1): p. 71-80. 

424. Watson, G., Equatorial distributions on a sphere. Biometrika, 1965: p. 193-201. 

425. Bingham, C., Distributions on the sphere and on the projective plane. 1964: Yale 

University. 

426. Bingham, C., An antipodally symmetric distribution on the sphere. The Annals of 

Statistics, 1974: p. 1201-1225. 

427. Best, D. and N. Fisher, GOODNESS‐OF‐FIT AND DISCORDANCY TESTS FOR 

SAMPLES FROM THE WATSON DISTRIBUTION ON THE SPHERE. Australian 

Journal of Statistics, 1986. 28(1): p. 13-31. 

428. Mardia, K. and R. Gadsden, A small circle of best fit for spherical data and areas 

of vulcanism. Applied Statistics, 1977: p. 238-245. 

429. Krack, P., et al., Postoperative management of subthalamic nucleus stimulation 

for Parkinson's disease. Mov Disord, 2002. 17 Suppl 3: p. S188-97. 

430. Gijsbers, J.T.M., F.L.H. Gielen, and H.M. Knuth, High resolution brain 

stimulation lead and method of use, 1998, Google Patents. 

431. Hetke, J.F., et al., Modular multichannel microelectrode array and methods of 

making same, 2011, Google Patents. 

432. Lempka, S.F., et al., Current-controlled deep brain stimulation reduces in vivo 

voltage fluctuations observed during voltage-controlled stimulation. Clinical 

Neurophysiology, 2010. 121(12): p. 2128-33. 

433. Howell, B., B. Huynh, and W.M. Grill, Design and in vivo evaluation of more 

efficient and selective deep brain stimulation electrodes. J Neural Eng, 2015. 

12(4): p. 046030. 

434. Roth, B.J., Mechanisms for electrical stimulation of excitable tissue. Crit Rev 

Biomed Eng, 1994. 22(3-4): p. 253-305. 



   178 

 

435. Howell, B., S. Naik, and W.M. Grill, Influences of interpolation error, electrode 

geometry, and the electrode-tissue interface on models of electric fields produced 

by deep brain stimulation. IEEE Trans Biomed Eng, 2014. 61(2): p. 297-307. 

436. Behrens, T.E.J., et al., Non-invasive mapping of connections between human 

thalamus and cortex using diffusion imaging. Nature Neuroscience, 2003. 6(7): p. 

750-757. 

437. Hampel, S., et al., Drosophila Brainbow: a recombinase-based fluorescence 

labeling technique to subdivide neural expression patterns. Nat Methods, 2011. 

8(3): p. 253-9. 

438. Stephens, M.A., Edf Statistics for Goodness of Fit and Some Comparisons. 

Journal of the American Statistical Association, 1974. 69(347): p. 730-737. 

439. Watson, G.S., et al., Statistics on spheres. Vol. 6. 1983: Wiley New York. 

440. Wood, A., A Bimodal Distribution on the Sphere. Applied Statistics-Journal of the 

Royal Statistical Society Series C, 1982. 31(1): p. 52-58. 

441. Kent, J.T., The Fisher-Bingham distribution on the sphere. Journal of the Royal 

Statistical Society. Series B (Methodological), 1982: p. 71-80. 

442. Stosiek, C., et al., In vivo two-photon calcium imaging of neuronal networks. Proc 

Natl Acad Sci U S A, 2003. 100(12): p. 7319-24. 

443. Kerr, J.N., D. Greenberg, and F. Helmchen, Imaging input and output of 

neocortical networks in vivo. Proc Natl Acad Sci U S A, 2005. 102(39): p. 14063-

8. 

444. Lecoq, J., et al., Visualizing mammalian brain area interactions by dual-axis two-

photon calcium imaging. Nat Neurosci, 2014. 17(12): p. 1825-9. 

445. Histed, M.H., V. Bonin, and R.C. Reid, Direct activation of sparse, distributed 

populations of cortical neurons by electrical microstimulation. Neuron, 2009. 

63(4): p. 508-522. 

446. Burkhalter, A. and K.L. Bernardo, Organization of corticocortical connections in 

human visual cortex. Proc Natl Acad Sci U S A, 1989. 86(3): p. 1071-5. 

447. Jupp, P.E. and K.V. Mardia, A General Correlation-Coefficient for Directional-

Data and Related Regression Problems. Biometrika, 1980. 67(1): p. 163-173. 

448. Rattay, F., Analysis of models for external stimulation of axons. IEEE 

Transactions on Biomedical Engineering, 1986(10): p. 974-977. 

449. Yousif, N., et al., Evaluating the impact of the deep brain stimulation induced 

electric field on subthalamic neurons: A computational modelling study. J 

Neurosci Methods, 2010. 188(1): p. 105-112. 

450. Frankemolle, A.M., et al., Reversing cognitive–motor impairments in Parkinson’s 

disease patients using a computational modelling approach to deep brain 

stimulation programming. Brain, 2010. 133(3): p. 746-761. 

451. McIntyre, C.C., et al. Customizing deep brain stimulation to the patient using 

computational models. in 2009 Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society. 2009. IEEE. 

452. McIntyre, C.C., et al. Improving postural stability via computational modeling 

approach to deep brain stimulation programming. in 2011 Annual International 



   179 

 

Conference of the IEEE Engineering in Medicine and Biology Society. 2011. 

IEEE. 

453. Butson, C., et al., StimExplorer: deep brain stimulation parameter selection 

software system, in Operative Neuromodulation. 2007, Springer. p. 569-574. 

454. Chaturvedi, A., T.J. Foutz, and C.C. McIntyre, Current steering to activate 

targeted neural pathways during deep brain stimulation of the subthalamic 

region. Brain Stimul, 2012. 5(3): p. 369-377. 

455. Butson, C.R. and C.C. McIntyre, Role of electrode design on the volume of tissue 

activated during deep brain stimulation. J Neural Eng, 2006. 3(1): p. 1-8. 

456. Chaturvedi, A., J.L. Luján, and C.C. McIntyre, Artificial neural network based 

characterization of the volume of tissue activated during deep brain stimulation. J 

Neural Eng, 2013. 10(5): p. 056023. 

457. McIntyre, C.C. and W.M. Grill, Selective microstimulation of central nervous 

system neurons. Ann Biomed Eng, 2000. 28(3): p. 219-33. 

458. Nowak, L. and J. Bullier, Axons, but not cell bodies, are activated by electrical 

stimulation in cortical gray matter I. Evidence from chronaxie measurements. 

Experimental Brain Research, 1998. 118(4): p. 477-488. 

459. Nowak, L. and J. Bullier, Axons, but not cell bodies, are activated by electrical 

stimulation in cortical gray matter II. Evidence from selective inactivation of cell 

bodies and axon initial segments. Experimental Brain Research, 1998. 118(4): p. 

489-500. 

460. Jones, E.G., The Thalamus. 1985, New York: Plenum Press. 5-935. 

461. Asanuma, C., T. Thach, and E.G. Jones, Distribution of cerebellar terminations in 

the ventral lateral thalamic region of the monkey. Brain Res.Rev., 1983. 5: p. 

237-265. 

462. Friedman, D.P. and E.G. Jones, Thalamic input to areas 3a and 2 in monkeys. 

J.Neurophysiol., 1981. 45: p. 59-86. 

463. Jones, E.G. and D.P. Friedman, Projection pattern of functional components of 

thalamic ventrobasal complex on monkey somatosensory cortex. J.Neurophysiol., 

1982. 48(2): p. 521-543. 

464. Kievit, J. and H.G.J.M. Kuypers, Organization of the thalamo-cortical connexions 

to the frontal lobe in the rhesus monkey. Exp.Brain Res., 1977. 29: p. 299-322. 

465. Schell, G.R. and P.L. Strick, The origin of thalamic inputs to the arcuate 

premotor and supplementary motor areas. J.Neurosci., 1984. 4: p. 539-560. 

466. Elder, C.M., et al., Chronic implantation of deep brain stimulation leads in 

animal models of neurological disorders. J Neurosci Methods, 2005. 142(1): p. 

11-6. 

467. Hashimoto, T., C.M. Elder, and J.L. Vitek, A template subtraction method for 

stimulus artifact removal in high-frequency deep brain stimulation. J Neurosci 

Methods, 2002. 113(2): p. 181-6. 

468. Agnesi, F., et al., Fidelity of frequency and phase entrainment of circuit-level 

spike activity during DBS. J Neurophysiol, 2015. 114(2): p. 825-34. 

469. Dorrscheidt, G.H., The statistical significance of the peristimulus time histogram 

(PSTH). Brain Res, 1981. 220(2): p. 397-401. 



   180 

 

470. Shannon, C.E. and W. Weaver, The mathematical theory of communication. 2015: 

University of Illinois press. 

471. Harris, K.D., et al., Accuracy of tetrode spike separation as determined by 

simultaneous intracellular and extracellular measurements. Journal of 

Neurophysiology, 2000. 84(1): p. 401-414. 

472. Henze, D.A., et al., Intracellular features predicted by extracellular recordings in 

the hippocampus in vivo. J Neurophysiol, 2000. 84(1): p. 390-400. 

473. Schlag, J. and J. Villablanca, A quantitative study of temporal and spatial 

response patterns in a thalamic cell population electrically stimulated. Brain Res, 

1968. 8(2): p. 255-70. 

474. Birdno, M.J., et al., Response of human thalamic neurons to high-frequency 

stimulation. PLoS One, 2014. 9(5): p. e96026. 

475. Marco, L., T. Brown, and M. Rouse, Unitary responses in ventrolateral thalamus 

upon intranuclear stimulation. J Neurophys, 1967. 30(3): p. 482-493. 

476. Sakata, H., T. Ishijima, and Y. Toyoda, Single unit studies on ventrolateral 

nucleus of the thalamus in cat: its relation to the cerebellum, motor cortex and 

basal ganglia. Jpn J Physiol, 1966. 16(1): p. 42-60. 

477. Kent, A.R. and W.M. Grill, Neural origin of evoked potentials during thalamic 

deep brain stimulation. J Neurophys, 2013. 110(4): p. 826-843. 

478. Kiss, Z.H., et al., Neuronal response to local electrical stimulation in rat 

thalamus: physiological implications for mechanisms of deep brain stimulation. 

Neuroscience, 2002. 113(1): p. 137-43. 

479. Schlag, J. and J. Villablanca, Thalamic inhibition by thalamic stimulation. 

Psychonomic Science, 1967. 8(9): p. 373-374. 

480. Dostrovsky, J., et al. Microstimulation-induced effects on neurons in human 

globus pallidus and motor thalamus. in Soc. Neurosci. Abstr. 1999. 

481. Selinger, J.V., et al., Methods for characterizing interspike intervals and 

identifying bursts in neuronal activity. J Neurosci Methods, 2007. 162(1-2): p. 64-

71. 

482. Dorval, A.D., Probability distributions of the logarithm of inter-spike intervals 

yield accurate entropy estimates from small datasets. J Neurosci Methods, 2008. 

173(1): p. 129-39. 

483. Dorval, A.D., Estimating Neuronal Information: Logarithmic Binning of 

Neuronal Inter-Spike Intervals. Entropy (Basel), 2011. 13(2): p. 485-501. 

484. Strong, S.P., et al., Entropy and information in neural spike trains. Physical 

Review Letters, 1998. 80(1): p. 197-200. 

485. Johnston, D. and S.M.-S. Wu, Foundations of cellular neurophysiology. 1994: 

MIT press. 

486. Anderson, T., et al., Mechanisms of deep brain stimulation: an intracellular study 

in rat thalamus. J Physiol, 2004. 559(Pt 1): p. 301-13. 

487. Lenz, F.A., et al., Single unit analysis of the human ventral thalamic nuclear 

group. Tremor-related activity in functionally identified cells. Brain, 1994. 117 ( 

Pt 3): p. 531-43. 



   181 

 

488. Iremonger, K.J., et al., Cellular mechanisms preventing sustained activation of 

cortex during subcortical high-frequency stimulation. J Neurophysiol, 2006. 

96(2): p. 613-21. 

489. Evans, A.C., et al., Warping of a Computerized 3-D Atlas to Match Brain Image 

Volumes for Quantitative Neuroanatomical and Functional-Analysis. Medical 

Imaging V : Image Processing, 1991. 1445: p. 236-246. 

490. Murasugi, C.M., C.D. Salzman, and W.T. Newsome, Microstimulation in visual 

area MT: effects of varying pulse amplitude and frequency. J Neurosci, 1993. 

13(4): p. 1719-29. 

491. Min, H.K., et al., Deep brain stimulation induces BOLD activation in motor and 

non-motor networks: an fMRI comparison study of STN and EN/GPi DBS in large 

animals. Neuroimage, 2012. 63(3): p. 1408-20. 

492. Perlmutter, J.S., et al., Blood flow responses to deep brain stimulation of 

thalamus. Neurology, 2002. 58(9): p. 1388-94. 

493. Huguenard, J.R. and D.A. Prince, A novel T-type current underlies prolonged 

Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular 

nucleus. J Neurosci, 1992. 12(10): p. 3804-17. 

494. Santaniello, S., et al., Therapeutic mechanisms of high-frequency stimulation in 

Parkinson's disease and neural restoration via loop-based reinforcement. Proc 

Natl Acad Sci U S A, 2015. 112(6): p. E586-95. 

495. Segev, I. and E. Schneidman, Axons as computing devices: Basic insights gained 

from models. Journal of Physiology-Paris, 1999. 93(4): p. 263-270. 

496. Beurrier, C., et al., High-frequency stimulation produces a transient blockade of 

voltage-gated currents in subthalamic neurons. J Neurophysiol, 2001. 85(4): p. 

1351-6. 

497. Debanne, D., Information processing in the axon. Nat Rev Neurosci, 2004. 5(4): 

p. 304-16. 

498. Bellinger, S.C., G. Miyazawa, and P.N. Steinmetz, Submyelin potassium 

accumulation may functionally block subsets of local axons during deep brain 

stimulation: a modeling study. Journal of Neural Engineering, 2008. 5(3): p. 263-

274. 

499. Grill, W.M., M.B. Cantrell, and M.S. Robertson, Antidromic propagation of 

action potentials in branched axons: implications for the mechanisms of action of 

deep brain stimulation. J Comput Neurosci, 2008. 24(1): p. 81-93. 

500. Anderson, T.R., et al., Selective attenuation of afferent synaptic transmission as a 

mechanism of thalamic deep brain stimulation-induced tremor arrest. Journal of 

Neuroscience, 2006. 26(3): p. 841-850. 

501. Martina, M. and P. Jonas, Functional differences in Na+ channel gating between 

fast-spiking interneurones and principal neurones of rat hippocampus. Journal of 

Physiology-London, 1997. 505(3): p. 593-603. 

502. Meeks, J.P. and S. Mennerick, Selective effects of potassium elevations on 

glutamate signaling and action potential conduction in hippocampus. Journal of 

Neuroscience, 2004. 24(1): p. 197-206. 

 


