1,717 research outputs found

    Transparent Dynamic reconfiguration for CORBA

    Get PDF
    Distributed systems with high availability requirements have to support some form of dynamic reconfiguration. This means that they must provide the ability to be maintained or upgraded without being taken off-line. Building a distributed system that allows dynamic reconfiguration is very intrusive to the overall design of the system, and generally requires special skills from both the client and server side application developers. There is an opportunity to provide support for dynamic reconfiguration at the object middleware level of distributed systems, and create a dynamic reconfiguration transparency to application developers. We propose a Dynamic Reconfiguration Service for CORBA that allows the reconfiguration of a running system with maximum transparency for both client and server side developers. We describe the architecture, a prototype implementation, and some preliminary test result

    Adaptive online deployment for resource constrained mobile smart clients

    Get PDF
    Nowadays mobile devices are more and more used as a platform for applications. Contrary to prior generation handheld devices configured with a predefined set of applications, today leading edge devices provide a platform for flexible and customized application deployment. However, these applications have to deal with the limitations (e.g. CPU speed, memory) of these mobile devices and thus cannot handle complex tasks. In order to cope with the handheld limitations and the ever changing device context (e.g. network connections, remaining battery time, etc.) we present a middleware solution that dynamically offloads parts of the software to the most appropriate server. Without a priori knowledge of the application, the optimal deployment is calculated, that lowers the cpu usage at the mobile client, whilst keeping the used bandwidth minimal. The information needed to calculate this optimum is gathered on the fly from runtime information. Experimental results show that the proposed solution enables effective execution of complex applications in a constrained environment. Moreover, we demonstrate that the overhead from the middleware components is below 2%

    ETS (Efficient, Transparent, and Secured) Self-healing Service for Pervasive Computing Applications

    Get PDF
    To ensure smooth functioning of numerous handheld devices anywhere anytime, the importance of self-healing mechanism cannot be overlooked. Incorporation of efficient fault detection and recovery in device itself is the quest for long but there is no existing self-healing scheme for devices running in pervasive computing environments that can be claimed as the ultimate solution. Moreover, the highest degree of transparency, security and privacy attainability should also be maintained. ETS Self-healing service, an integral part of our developing middleware named MARKS (Middleware Adaptability for Resource discovery, Knowledge usability, and Self-healing), holds promise for offering all of those functionalities

    Flexible programmable networking: A reflective, component-based approach

    Get PDF
    The need for programmability and adaptability in networking systems is becoming increasingly important. More specifically, the challenge is in the ability to add services rapidly, and be able to deploy, configure and reconfigure them as easily as possible. Such demand is creating a considerable shift in the way networks are expected to operate in the future. This is the main aim of programmable networking research community, and in our project we are investigating a component-based approach to the structuring of programmable networking software. Our intention is to apply the notion of components, component frameworks and reflection ubiquitously, thus accommodating all the different elements that comprise a programmable networking system

    Generic Distribution Support for Programming Systems

    Get PDF
    This dissertation provides constructive proof, through the implementation of a middleware, that distribution transparency is practical, generic, and extensible. Fault tolerant distributed services can be developed by using the failure detection abilities of the middleware. By generic we mean that the middleware can be used for many different programming languages and paradigms. Distribution for each kind of language entity is done in terms of consistency protocols, which guarantee that the semantics of the entities are preserved in a distributed setting. The middleware allows new consistency protocols to be added easily. The efficiency of the middleware and the ease of integration are shown by coupling the middleware to a programming system, which encompasses the object oriented, the functional, and the concurrent-declarative programming paradigms. Our measurements show that the distribution middleware is competitive with the most popular distributed programming systems (JavaRMI, .NET, IBM CORBA)

    Design of a middleware for QoS-aware distribution transparent content delivery

    Get PDF
    Developers of distributed multimedia applications face a diversity of multimedia formats, streaming platforms and streaming protocols. Furthermore, support for end-to-end quality-of-service (QoS) is a crucial factor for the development of future distributed multimedia systems. This paper discusses the architecture, design and implementation of a QoS-aware middleware platform for content delivery. The platform supports the development of distributed multimedia applications and can deliver content with QoS guarantees. QoS support is offered by means of an agent infrastructure for QoS negotiation and enforcement. Properties of content are represented using a generic content representation model described using the OMG Meta Object Facility (MOF) model. A content delivery framework manages stream paths for content delivery despite differences in streaming protocols and content encoding. The integration of the QoS support, content representation and content delivery framework results in a QoS-aware middleware that enables representation transparent and location transparent delivery of content

    Designing Distributed, Component-Based Systems for Industrial Robotic Applications

    Get PDF
    none3noneM. Amoretti; S. Caselli; M. ReggianiM., Amoretti; S., Caselli; Reggiani, Monic

    Cluster Computing with Single Thread Space

    Get PDF
    postprin
    • …
    corecore