
Title Cluster Computing with Single Thread Space

Author(s) Lau, FCM; Ma, MJM; Wang, CL; Cheung, B

Citation
International Conference on Advances in Infrastructure for
Electronic Business, Science, and Education on the Internet
(SSGRR 2000), L'Aquila, Italy, 31 July - 6 August 2000

Issued Date 2000

URL http://hdl.handle.net/10722/93280

Rights

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37920765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 Abstract—To achieve single system image (SSI) for cluster
computing is a challenging task since SSI is a form of complete
transparency that requires the integration and unification of
all types of resources in a cluster . In this paper, we propose a
new Java computing platform with the concept of Single
Thread Space, which is a true parallel computing environment
for per forming a multi-threaded Java application on a cluster
environment. Threads running within this space would share
all the resources that each thread has created or allocated and
they view the underlying cluster as a single computing system.
We realize the single thread space based on a middleware
developed at a vir tual machine level, which allows application
program to create as many threads as needed. The middleware
can automatically distr ibute the executing threads across the
cluster to exploit the maximal parallelism and to optimize the
overall resource utilization. The implementation is compatible
with the standard JVM and does not need any low-level or
platform-specific supports. Thus it is por table across different
hardware platforms.

 Index terms—Cluster computing, single system image,
dynamic load balancing, thread migration, Java Vir tual
Machine, JESSICA.

I. INTRODUCTION

 A cluster of computers is a federation of computers linked
by an interconnection network where the computers run
integration software to support collaborative computations
[2,4,9,13]. The integration software provides an abstraction
layer that hides the physical boundaries between machines
and makes the cluster appear as a single computer to
applications - a single system image (SSI).
 SSI represents a complete form of transparency which is
to encapsulate system resources distributed across the
cluster in a layer of abstraction, such that components above
the layer wil l see the encapsulated resources as a single,
unified entity. By integrating distributed cluster resources
and providing a unified naming scheme, the single system
illusion can be achieved for different types of cluster
applications.
 For example, there are various job dispatch systems for
cluster. Using a global job scheduler, a user job can be
submitted from any node to request any number of host
nodes to execute it. Concurrent job scheduling is possible

 The authors are with the Department of Computer Science and
Information Systems, the University of Hong Kong, Hong Kong.
E-mail: { fcmlau+jmma+clwang+wlcheung} @csis.hku.hk. This
paper is an extended version of [18].

either in batch, interactive, or parallel modes. The SSI can
also be achieved in the access of I/O devices in the cluster
[15]. A uniform device naming can be adopted so that user
applications at different machines is able to view and access
all the devices connected to the cluster as they access the
local devices, even the devices are physically attached to a
node different from the one on which the application is
running. Several distributed operating systems support the
concept of a global process space where all processes
created in the cluster share a uniform process identification
scheme. A process on any node can be created on (e.g.,
through a Unix fork) or communicate with any other
processes (e.g., through signals, pipes, etc.) on any remote
nodes.
 In this paper, we propose establishing a single-system-
image illusion over a cluster as a means to bridge cluster
computing and Java's multi-threaded programming model.
The SSI il lusion is realized through the provision of a single
thread space, which is a global execution environment for
running threads that extends across the entire cluster. It
supports parallel execution of multi-threaded applications.
A multi-threaded Java application on any node can create
threads to run at difference nodes. All the threads share a
uniform thread identification scheme. In addition, threads
running within this space could freely move between
machines during its execution. They see the underlying
cluster as a single computing system with multiple
processors, a single memory space for object allocations,
and location-transparent system resources.
 The single thread space illusion is established at the
middleware level in the form of a distributed Java Virtual
Machine (JVM). This approach does not require any
modification to the underlying operating system or to the
Java applications running on top. It guarantees portabil ity
over various popular operating systems and compatibility
with existing Java applications.
 The concept of single thread space was realized in our
JESSICA system. JESSICA stands for “Java-Enabled
Single-System-Image Computing Architecture". It is a
middleware that hides the distributed nature of a cluster and
provides multi-threaded Java applications with the il lusion
of a single multi-processor computer. With the single thread
space support, application programmers can create as many
threads as needed as in a single execution environment, and
rely on JESSICA to automatically redistribute them across
the cluster to exploit the maximal parallelism and to
optimize the overall resource util ization. JESSICA supports
preemptive thread migration which allows a thread to freely
move between machines during its execution, and global

Cluster Computing with Single Thread Space

Francis Lau, Matchy Ma, Cho-Li Wang, and Benny Cheung

object sharing through the help of a distributed shared-
memory subsystem. JESSICA implements location-
transparency through a message-redirection mechanism.
The result is a parallel execution environment where threads
are automatically redistributed across the cluster for
achieving the maximal possible parallelism. A JESSICA
prototype that runs on a Linux cluster has been implemented
and considerable speedups have been obtained for all the
experimental applications tested.
 The rest of the paper is organized as follows. Section 2
presents the concept of single thread space. Section 3
discusses the design and implementation of the single thread
space. Section 4 evaluates the performance of our proto-
type. Section 5 surveys other works related to our work. We
conclude by summarizing our experiences in Section 6.

II . SINGLE THREAD SPACE

 In recent years, the multi-threaded programming model
has grown increasingly popular because of the availabil ity
of SMPs and the wide spreading of the Web-based
applications such as the Web browsers and Web servers [6].
However, due to the limited scalability of SMP architecture,
it hinders the development of a large-scale application that
need scalable computing power. An ideal solution is to use
the cluster as an new execution environment for the multi-
threaded application, where the application program can
create as many threads as possible and these threads are
able to map to different processors in the cluster for true
parallel execution. In addition, threads could freely move
between machines during its execution to achieve fault
tolerance or load balancing.
 We define the single thread space as a cluster computing
environment for performing multi-threaded application that
can extend its execution across the entire cluster. Threads
running within this space would share all the resources that
each thread has created or allocated and they see the
underlying cluster as a single computing system with
multiple processors – single system image. Figure 1 shows
the concept of single thread space that provides a single
system illusion among all the threads created by a process.

Fig. 1. Single thread space provides an SSI illusion over a cluster.

In order to move a thread to a different processor, it is
necessary for the transferred thread to correctly access all
related resources and let all the threads share a uniform
thread identification scheme. Data local to the thread (i.e.,
stack and thread local heap) may be copied to the
destination. However, since the addresses on the target
machine may be different from the original addresses,
internal data references may no longer be valid. A system
with thread migration requires integration solution that
allows all threads to share all the resources (such as files,
communication channels, data objects, etc.) as if they are
not migrated. In addition, a thread may access data shared
by multiple threads such as synchronization objects. After
the migration, it is necessary for all the threads to locate the
object and provide synchronization mechanism (e.g.,
signals, semaphores) to allow correct access.

A. Our Design

 In our design, the single thread space il lusion is
established at the user level in the form of a middleware that
enables the execution of multiple Java threads among
cluster nodes. A single global thread space is constructed
through the services of three important subsystems (1) the
Delta Execution subsystem for supporting preemptive
thread migration, (2) the Master-Slave Redirection
subsystem for supporting location-transparent operations,
and (3) a distributed shared-memory (DSM) subsystem that
creates a global object space for supporting remote object
access. Figure 2 shows an overview of the design of the
single thread space architecture.
 We classify a cluster node as either a console or a worker
node. The console node of an application is the node in
which the application is first instantiated, i.e., the
application's home. Worker nodes are the other nodes that
house one or more migrated threads created by the
application.

Fig. 2. Single thread space is supported by three subsystems that
are provided by a set of cooperative JVMs.

� ������������� 	 	�

����������		��������� � �

�� �

� ���� � ������� � � ���!!�"" � ��##�$$%��'&&�##�((���

))�**�++ ,.-,.-.//�00 1 1 � �������

���32�
2�
���������� ���� ��

���

4 4 � � � �����

�������4 4 � � � �����

�������

))�**�++ ,.-,.-.//
576 8576 8 + + - - 9 9 6 :�;6 :�;

))�**�++ ,.-,.-.//7<�+<�+ ,.-,.- 9 9 6 :6 :�;;

))�**�++ ,.-,.-.//�00

� �����== � �
�������>>

����== � �
� �����== � �
�������>>

����== � � ? ? � @� @

�� �? ? � @� @

�� �

� ���� A�	A�	����@@ � �� ���� A�	A�	����@@ � �

� ��

�BBC�� 4 ���4 ������

�� �� ��

�BBC�� 4 ���4 ������

�� �

))�**�++ ,.-,.-.//
576 8576 8 + + - - 9 9 6 :�;6 :�;

� �����BDBBDBD��	��	��� � �����== � � � ��		
� ��������	�		�	�

�@@ � �

� ��� ��BDBBDBD��	��	��� � �����== � � � ��		
� ��������	�		�	�

�@@ � �

� ������������� 	 	�

����������		��������� � �

�� �

� ���� � ������� � � ���!!�"" � ��##�$$%��'&&�##�((���

))�**�++ ,.-,.-.//�00 1 1 � �������

���32�
2�
���������� ���� ��

���

4 4 � � � �����

�������4 4 � � � �����

�������

))�**�++ ,.-,.-.//
576 8576 8 + + - - 9 9 6 :�;6 :�;

))�**�++ ,.-,.-.//7<�+<�+ ,.-,.- 9 9 6 :6 :�;;

))�**�++ ,.-,.-.//�00

� �����== � �
�������>>

����== � �
� �����== � �
�������>>

����== � � ? ? � @� @

�� �? ? � @� @

�� �

� ���� A�	A�	����@@ � �� ���� A�	A�	����@@ � �

� ��

�BBC�� 4 ���4 ������

�� �� ��

�BBC�� 4 ���4 ������

�� �

))�**�++ ,.-,.-.//
576 8576 8 + + - - 9 9 6 :�;6 :�;

� �����BDBBDBD��	��	��� � �����== � � � ��		
� ��������	�		�	�

�@@ � �

� ��� ��BDBBDBD��	��	��� � �����== � � � ��		
� ��������	�		�	�

�@@ � �

Global
Object Space

Single Thread Space

Console Worker WorkerWorker

Cluster Network

Modified JVM

Hardware

OS

Java Thread

Modified JVM

Hardware

OS

Modified JVM

Hardware

OS

Modified JVM

Hardware

OS

Distributed Shared Memory
Transparent
Redirection

Thread
Migration

Global
Object Space

Single Thread Space

Console Worker WorkerWorker

Cluster Network

Modified JVM

Hardware

OS

Modified JVM

Hardware

OS

Java Thread

Modified JVM

Hardware

OS

Modified JVM

Hardware

OS

Modified JVM

Hardware

OS

Modified JVM

Hardware

OS

Modified JVM

Hardware

OS

Modified JVM

Hardware

OS

Distributed Shared Memory
Transparent
Redirection

Thread
Migration

 These worker nodes play a subordinate role to the console
node by serving requests directed from the console. The
core design of single thread space is based on a master-
slave approach for thread migration, where the cooperation
between the master thread running on the console node and
the slave thread running on the worker node together
produce the required transparency. With this master-slave
design we are able to implement transparent network
communication and file operations, distributed thread
synchronization and remote exception.
 The single thread space extends the parallelism of a JVM
that spans over a cluster without changing the semantics of
runtime interactions between objects, therefore making all
existing multi-threaded Java programs able to run on the
cluster. Three main subsystems to support single thread
space are discussed in the following sections.

B. Thread Migration: Delta Execution

 Thread migration is usually established as a mechanism
for achieving dynamic load sharing. However, such a fine-
grain migration (as compared with process migration) has
not been used due to the high thread and messaging
overheads [7].
 Delta execution [5] is a preemptive thread migration
mechanism for supporting transparent thread-to-processor
mapping within the single thread space. Delta execution
aims at providing a high-level and portable implementation
for Java thread migration that completely hides all the low-
level or system-dependent details. Because the whole
mechanism is implemented within the virtual machine level,
migration is therefore transparent to Java applications and
no migration-specific code needs to be added to the
applications.
 In general, the execution context of a Java thread consists
of both machine-independent and machine-dependent sub-
contexts. Machine-independent sub-context refers to the
migratable state information that can be expressed in terms
of the high-level execution state of a JVM, such as data
stored in the virtual machine's registers. Machine-dependent
sub-context is the non-migratable state information that is
part of the low-level execution state of a JVM
implementation, such as the hardware return address stored
in the execution stack of an internal function invoked that
implements the iadd bytecode instruction. As illustrated in
figure 3, a thread's execution context consists of sets of
machine-independent sub-contexts, also known as delta sets,
which interleave with the sets of machine-dependent sub-
contexts. In our design, migration granularity is per-
bytecode-instruction where a thread can be preempted and
migrated once execution of the current bytecode is
completed. The delta execution mechanism identifies and
separates the machine-dependent sub-contexts from the
machine-independent sub-contexts in the execution context
of a migrating thread.

Fig. 3. Delta Execution in action.

 In delta execution, when a thread running on the console
node migrates, it does not actually pack up itself and move
to the destination worker node. Instead, it is spli t into two
cooperating entities, with one running at the original
console node, called the master; and the other running at the
destination node, called the slave. The slave thread is in
fact created at the destination node anew and acts as the
migrated image to continue the execution of the original
thread. The master thread remaining at the console node is
actually the original migrating thread, which is now reduced
and be responsible to perform any location dependent
operations like I/O on behalf of the slave thread, plus other
message forwarding between the slave and the rest of the
system. The master and slave pair is responsible to carry
out the interactions between the console and the worker
nodes in order to maintain migration transparency. Active
execution of the migrated thread is seen as a sequence of
executions, using the machine-dependent and the machine-
independent sub-contexts, which switch back and forth
between the console and the worker node.
 As il lustrated in figure 3, since the migrated thread only
incrementally advances its execution by a delta amount
every time when control is switched to it, we therefore call
this mechanism delta execution. Because of the master-slave
design, the mechanism provides an opportunity for the
implementation to isolate machine-dependent contexts from
machine-independent contexts and process them in a
manageable way. With the support of delta execution in a
single thread space, it is possible to dynamically relocate the
threads in order to achieve dynamic load balancing. After
migrating a thread from the console node to a worker node,
it is possible for the migrated thread to move to yet another
worker node or to retreat back to the console node.
 When a migrated thread running in a worker node is
required to further migrate, it wil l first retreat back to the
console. Another worker node wil l be selected to migrate
the thread to. The reason for this approach, as opposed to
one that migrates the thread to the new worker node
directly, is because if a migrated thread is allowed to
directly migrate to another worker node without first
retreating back to the console, residue dependency required

T0 M1 D1 M0 D0

Console Worker
The execution context of a migrating thread
at the console is represented as a sequence
of delta sets D0, D1 interleaved with sets of
machine-dependent sub-contexts M0, M1

The first delta set D0 is moved to the
worker node for execution

After the execution of D0 has finished,
active execution is returned back
to the console node and M0 is executed

After the execution of M0, the next delta
set D1 is migrated to the worker node
and be executed there

After the execution of D1, the last set of
machine-dependent sub-context is executed
at the console. When the execution is done,
the thread completed its execution also.

T1

T2

T3

T4

D0

M1 D1 M0

D1M1

M1

M1 D1 M0

Action

Set under execution Mi Set of machine-dependent
sub-context

Machine-independent
delta setDi

T0 M1 D1 M0 D0

Console Worker
The execution context of a migrating thread
at the console is represented as a sequence
of delta sets D0, D1 interleaved with sets of
machine-dependent sub-contexts M0, M1

The first delta set D0 is moved to the
worker node for execution

After the execution of D0 has finished,
active execution is returned back
to the console node and M0 is executed

After the execution of M0, the next delta
set D1 is migrated to the worker node
and be executed there

After the execution of D1, the last set of
machine-dependent sub-context is executed
at the console. When the execution is done,
the thread completed its execution also.

T1

T2

T3

T4

D0

M1 D1 M0

D1M1

M1

M1 D1 M0

Action

Set under execution Mi Set of machine-dependent
sub-context

Machine-independent
delta setDi

for maintaining migration transparency wil l be left there
with the first worker. Messages forwarded from the console
will have to go through this first worker node before they
can reach the new home of the migrated thread. This would
result in one more level of redirection. If further migrations
are made, there will be more levels of redirection through
residue dependencies left behind in many worker nodes the
thread has ever visited. Such a chain of residue
dependencies would be difficult to manage. We therefore
opted for the approach of first migrating the thread back to
the console before performing another migration, and
because of that, residue dependency in the first worker node
will be removed together with the leaving thread.

C. Global Object Space

 After thread migration, the migrated thread should be
accessible by the same name and mechanisms as if
migration never occurred. The same applies to all resources
used by the Java threads created in a program, such as the
shared objects. The global object space (GOS) provides
location-independent object access. It is yet an SSI layer
created for all distributed threads to view a single and
unified shared object space to ease the implementation of
the single thread space.
 In each node of the cluster there is a distributed object
manager (DOM) responsible for managing the local
memory resources as well as cooperating with DOMs
running on other nodes to create a globally accessible object
space. This is achieved by implementing the DOMs on top
of a distributed shared-memory (DSM) subsystem. With the
help of the DSM subsystem, discrete memory regions
belonging to various cluster nodes are unified to form a
single and contiguous memory space for global object
sharing. As a result, objects remain to be accessible by a
thread even after the thread has migrated to another node in
the cluster. The location where an object resides is
transparent to a thread.
 The global object space is for the containment of all Java
objects only. Other internal state of a JVM runtime is stored
locally in the corresponding UNIX process’ stack and local-
heap memory. Contents of objects that are located in a
remote node are cached by the DSM subsystem, and GOS
relies on the cache coherent protocol provided by the DSM
subsystem to maintain the consistency of the cached data.
 The global object space is established by allocating a
large chunk of shared memory from the DSM. GOS
employs a decentralized approach for memory management,
where the DOM running on each node is responsible for
managing its own share of the global shared memory.
Object allocation requests made by the threads in a node are
always satisfied locally — the DOM wil l allocate the
required space from its share, instead of forwarding the
request back to console. Because it is possible to have two
or more nodes updating the same object at the same time,
the mutual exclusion control primitives provided by the
DSM subsystem are used to ensure object consistency.

Distributed garbage collection is buil t on top of the DSM
layer to locate all the unused objects and to reclaim their
space. In current GOS, a distributed mark-and-sweep
garbage collection mechanism is installed [3].

D. Transparent Redirection

 In this section, we discuss various redirection
mechanisms developed in the single thread space to support
post-migration services, including the cooperative
semaphore, remote thread signaling, remote exception, and
location-transparent I/O.
 The distinctive feature of multi-threaded Java computing
is that threads can share resources and execute concurrently
in order to multiplex computations, or even
communications. In such a multi-threaded runtime
environment, a mechanism for providing mutual exclusion
is necessary for ensuring coordinated access to the shared
resources. The Java programming language uses
semaphores at the virtual machine level to implement
mutual exclusion control. A semaphore is associated with
every shared object so that application programs can avoid
any race condition by waiting on the associated semaphore
before updating a shared object. In the single thread space,
to achieve eff icient thread synchronization and data
integrity, a distributed semaphore and remote thread
signaling should be supported. Besides, we need to support
location-transparent I/O so that all opened files and
network communication channels following a migration will
remain functional.
 We adopted a master-slave approach to achieve the above
functions. After a thread has been migrated, the master
thread remaining at the console represents the original
thread. All the thread-level synchronization interactions,
such as wait()/notify() and mutex lock()/unlock()
between the slave and other threads will go through the
master. Redirections of service requests and responses make
the master appear to other threads as the only thread they
are interacting with. On the slave side, all I/O and thread
synchronization operations are redirected back to the
console. With this design, we are able to create a global
thread space that has the same semantics and maintains the
same relationships between objects in the execution
environment as the case without thread migration.
Consequently, such an execution environment as observed
by a running thread is the same as that of a standard JVM.
 A decentralized approach is used to implement
distributed semaphore. In each cluster node, a Thread
Manager (TM) is created and it is responsible for thread
creation, scheduling, and termination. TMs support
distributed synchronization of migrated threads by having
the runtime system to forward semaphore operations back to
the console TM. All the semaphore operations are
performed in the console node by the master thread, and so
the same semaphore semantics is enforced as if there is no
migration. We called this cooperative semaphore.

 Java threads rely on simple wait-notify signals for inter-
thread communications. By a design similar to that for
cooperative semaphores, we have designed a remote thread
signaling mechanism where the master is responsible for
transparently forwarding any wait and notify signals
between its slave and the other threads running in the
console node. With the cooperative semaphore and the
remote signaling mechanisms installed, we are able to
implement the distributed thread synchronization
mechanism in a decentralized manner.
 The Java programming language supports a language
exception construct where a method can include a block of
code, called the catch block, for handling any specified
exceptions that may be generated as the method executes.
The idea of language exception is that when the current
method execution has generated an anticipated error, the
execution can be aborted and the context be rewind back to
a point where the program has pre-defined a specific catch
block to deal with the error. As a result, to implement
language exception, the method invocation sequence of a
thread’s execution context is scanned from the tail towards
the head to locate the nearest called method which has
implemented the corresponding catch block to handle the
exception. When this method is located, the execution
context of the current thread is rewind up to this method so
that execution can continue from the catch block.
 Notice that when a thread is migrated, only the tail -most
delta set is sent to the worker node for the slave thread to
execute. Now if this slave thread generates a remote
exception, it is possible that the worker node is unable to
locate the catch block from the delta set that can handle the
remote exception. This is because the method that contains
the catch block for this remote exception is still located at
the console node. Hence, instead of generating an uncaught
exception error at the worker node, the system wil l discard
the slave thread and forward the exception back to the
master thread at the console, where the searching for the
right catch block to handle the exception will continue.
Once the catch block has been located, the corresponding
delta set that contains this catch block wil l be sent to the
worker node and a new slave thread can be instantiated to
continue execution of the catch block to handle the remote
exception.
 In our design, location-transparent I/O support is also
achieved by redirecting I/O operations back to the console
node and letting the master there to perform the operations
on behalf of the slave. The redirection code is implemented
within the java.io and the java.net class libraries for file
and socket I/O redirection respectively. Their interface
definitions are kept unchanged so that other classes relying
on them do not need to be modified. Implementation details
are discussed in Section III .D. The object-oriented nature of
our design has helped simplify the implementation of I/O
redirection, since class hierarchies of both the java.io and
the java.net libraries are sufficiently well organized. There
are base classes located towards the top of the hierarchies
that are responsible for performing the raw I/O operations
through the underlying operating system. All of their child

classes that specialize in I/O operations for specific data
types inherit the functionality directly from the base classes.
These specialized classes therefore can simply invoke the
inherited methods to access the raw I/O channels. As a
result, when the base classes in the hierarchies are extended
to support the required I/O redirection, the rest of the child
classes can inherit the feature immediately without any
further modification.

II I. SYSTEM ARCHITECTURE AND IMPLEMENTATION

 We have realized the single thread space in the JESSICA
system which was running on a Linux PC cluster. The
experimental platform consists of 8 Linux PCs connected to
a 100Mbps Fast Ethernet switch. Each PC is equipped with
a 300MHz Intel Celeron processor and 128MB main
memory, and is running Linux Kernel 2.2.1.

A. The Building Components

 The implementation of the JESSICA system is in the form
of a distributed virtual machine and there will be a JVM
daemon process running on each node of the cluster. These
daemon processes execute as user-level processes on top of
the UNIX operating system. A JESSICA daemon is
composed of the following four components:

• Bytecode Execution Engine (BEE): It is responsible for
binding an active thread and executing its method code.
Parallel execution of a multi-threaded application is
realized by having multiple BEEs running on multiple
machines to execute multiple threads simultaneously.

• Distributed Object Manager (DOM): It is responsible
for managing the memory resources in its local node
and to cooperate with other DOMs on the other nodes
to create a global object space. The physical locations
of objects are transparent to the threads within the
global object space.

• Thread Manager (TM): It is responsible for thread
creation, scheduling, and termination in the local node.
During the course of migration, it coordinates with
TMs on the other nodes to marshal, ship, and
demarshal the execution contexts of migrating threads.
TMs support distributed synchronization of migrated
threads by forwarding semaphore operations back to
the console TM.

• Migration Manager (MM): It is responsible for
collecting load information of the local node and
exchanging those information with MMs running in
other nodes in order to implement a migration policy.

Fig. 4. Interaction between system components in JESSICA

 Figure 4 il lustrates the interactions between the four
system components of a JESSICA daemon. When the code
which BEE is executing needs to create a new active thread,
BEE requests DOM to allocate a new thread object from the
global object space, after which BEE will execute the
constructor code to instantiate the new object. Next, BEE
sends a request to TM to activate the thread. TM will bind
the thread to a new execution context and insert it into the
thread scheduling subsystem. Later on when the thread is
scheduled to run, TM binds it to BEE for executing the
thread's start() method. During it's execution, BEE can
create new objects and wil l make sure that objects are
updated consistently in the global object space through the
new() and DSM mutual exclusion control primitives
provided by DOM. It can also let the thread communicate or
synchronize with other threads by using the thread
wait()/notify() and mutex lock()/unlock() primitives
provided by TM. Whenever necessary, DOM wil l perform
garbage collection to reclaim unused objects. It asks TM to
provide the runtime stacks of all the active threads and starts
tracing from these stacks to locate any unreferenced objects.
 The current implementation of JESSICA is based on
version 0.9.1 of the Kaffe virtual machine [8] and uses
version 1.0.3.2 of the TreadMarks DSM package [1]. We
had to make some major modifications to the Kaffe
implementation in order to support the SSI features. For
example, in order to facilitate the extraction of a thread's
execution context, the method invocation mechanism in
Kaffe's BEE was changed so that it would allocate the
method stack from the local heap instead of from the
process runtime stack. The set of bytecode instructions that
are responsible for method invocation were also adjusted in
order to support the delta execution mechanism. In addition,
DOM has been incorporated into the memory management
subsystem for creating the global object space. All the
bytecode instructions that access the global object space
have been augmented to use the mutual exclusion control
primitives provided by the DSM whenever necessary.
Moreover, the thread subsystem has been extended to
become the TM for supporting thread migration,
cooperative semaphore, and the remote signaling
mechanism. Finally, MM responsible for enforcing a load
balancing policy has also been incorporated into the system.
MM obtains load information from the process file system
</proc> of each node and interacts with other MMs of other
cluster nodes to make migration decision. All
communications between the JESSICA daemons are

through the BSD socket interface provided by the Linux
operating system.

B. Preemptive Thread Migration

 The steps below are taken when the current thread
running on the console tries to migrate to another worker
node:

1) TM at the console node freezes the migrating thread
and extracts the execution context in the form of a
sequence of machine dependent and independent sub-
contexts from the local BEE.

2) MM then identifies a destination worker node for the
thread to migrate to, and to notify the corresponding
MM at the destination node to prepare for the
migration.

3) After receiving the migration notification, the
destination MM requests the local TM to create a new
thread instance to represent the migrated thread. This
newly created thread instance is known as the slave
thread.

4) The original thread at the console detaches itself from
the local BEE and obtains its execution context. It is
now known as the master thread which is responsible to
control the execution of the slave thread that is created
at the destination worker node.

5) After the instantiation, the slave thread at the
destination creates a dedicated communication channel
with the master at the console. This dedicated channel
is used for sending control information and message
redirection between the master and the slave.

6) Finally the slave thread at the destination node sends a
ready message to the master to signify that it is ready to
resume execution. The master thread at the console
then sends the first delta set to the slave for execution.

7) The slave thread resumes its execution by using the
delta set that it received. After finishing execution of
the given delta set, it sends a ‘more’ signal to the
master and ask for the next delta set to execute. The
master thread at the console after receiving this ‘more’
signal, will complete the execution of the following
machine-dependent sub-context that is not migratable,
and send the slave the next delta set to execute.

8) The last step is repeated until the whole sequence of
machine-dependent and independent execution sub-
contexts is exhausted. This also implies the original
thread has completed the execution of its primary
java.lang.Thread.start()method or the equivalent.
At this point, the master will notify the slave with an
‘end’ signal signifying that the execution has been
completed, so that both threads will eventually
terminate themselves.

 Note that the 7th step of the above scheme is the critical
step for the system to maintain migration transparency, it is
in this step where redirections take place. While the slave
thread is executing the delta set at the destination node, the

Semaphore acquire/release
Thread wait/notify

Thread activation request
Java.lang.Thread.start

Request thread’s method stack data
(garbage collection)

DSM mutex
lock/unlock

New object
allocation

Thread migration
request

Thread
Manager

(TM)

Bytecode
Execution

Engine
(BEE)

Migration
Manager

(MM)

Distributed
Object

Manager
(DOM)

master thread is also responsible to monitor the
communication channel and see if there are any messages of
redirection requests sent from the slave thread. These
messages can be network channel read/write operations or
mutex lock()/unlock() operations where the master has to
perform on behalf of the slave back at the console node, so
as to maintain the network and location transparency. In
addition, the master is also responsible to redirect any
asynchronous signals sending from other running threads on
the console node, so that the original thread appears to other
threads as if it was still running on the console node and the
migration has never took place.

C. Dynamic Load Balancing

 The current implementation relies on MMs running in all
the worker nodes to provide load information across the
cluster for making migration decision. Load information is
obtained from the process file system </proc> of each node.
MM at the console node queries its counterparts running in
each worker node for load information every second. The
percentage of time that a node spends in user mode between
successive queries is the primary load information used in
migration decision. If MM at the console discovers that the
percentage of time that a node is spending in user mode
between successive queries is one-fifth or less of that of the
console, it will go through the list of actively running
threads to select a non-daemon thread to migrate to this
underloaded node. Priority will be given to a running thread
whose execution state does not contain any machine-
dependent sub-context. The MM may also trigger a
redistribution of migrated threads if it comes across a
worker node that is heavily loaded. A worker node is
considered heavily loaded if the percentage of its user-mode
time is more than double that of the console. When this
happens, MM will send a message to the identified worker
node which wil l then select one of its actively running slave
threads to retreat back to the console. If an underloaded
node is found later on, the retreated thread could be
migrated again.

D. Transparent Redirection

 The I/O redirection code is implemented within the
java.io and the java.net class libraries for file and socket
I/O redirection respectively. Their interface definitions are
kept unchanged so that other classes relying on them do not
need to be modified. To improve performance, a buffer
cache allocated from the DSM is used to buffer I/O data for
each opened file or socket. When a slave thread performs a
read() operation on an opened file, it checks whether the
requested data has been loaded into the shared buffer
already. If so, the data is retrieved from the buffer directly.
Otherwise, the slave thread redirects the operation back to
the console. The master thread will issue a read() operation
to the underlying operating system to fill up the buffer.

Eventually, the slave thread is notified and the requested
data can then be obtained from the shared buffer.
 The implementation of cooperative semaphores ties
closely to TM for handling blocking and resuming of active
threads. A cooperative semaphore is created the first time a
mutex lock() is applied to the object. If the lock operation
is initiated by a slave thread, the corresponding cooperative
semaphore wil l be created by its master thread at the
console. A cooperative semaphore maintains a count and a
queue of blocking threads that try to perform a mutex
lock() on the corresponding Java object. If the count is
zero, a thread can immediately lock the object and
increment the count; otherwise the thread is scheduled out
by TM and appended to the queue. A thread unlocking the
object later wil l decrement the count. When the count
reaches zero, the first blocked thread from the queue will be
scheduled to run by TM. Note that the mechanism just
described applies to master threads as well as normal
threads that have not been migrated; for a migrated slave
threads, the mutex lock() and unlock() operations are
redirected back to the console as described below.
 A running thread will be blocked and forced to leave the
ready queue if

– it tries to lock a semaphore which is currently held by
another thread,

– it tries to perform an I/O operation in blocking mode
and the I/O channel is not ready, or

– it explicitly performs a wait() operation on a given
object O .

 A blocked thread t wil l be rescheduled back to the ready
queue when

– the semaphore that t has previously requested is
unlocked by another thread and it is now t 's turn to
lock the semaphore,

– the I/O channel that t previously tried to operate on is
now ready, or

– another thread has issued a notify operation on an
object which t has previously waited upon.

 We take advantage of the property that a thread will block
when trying to read from an I/O channel where data have
not yet arrived. When a slave thread tries to lock a
semaphore s, instead of directly operating on s, it sends a
message to its master, asking the master to lock s on its
behalf. After that the slave thread will be blocked waiting
for the master's reply. At the console node, when the master
thread receives the semaphore lock request for s from its
slave, it will try to lock the semaphore s. When eventually
the master has successfully locked the semaphore s, it wil l
then send a success message back to its slave so that the
slave can continue its execution, as if the slave has
successfully locked the semaphore itself. Similarly, when
the slave thread later tries to unlock s, it again sends a
message to the master asking it to unlock s on its behalf.
After the master has received the message and unlocked the
semaphore, TM at the console can then reschedule some

other thread that has previously issued a lock request for the
semaphore.

IV. PERFORMANCE EVALUATION

 In this section, we report performance results of the
JESSICA system through the tests of various programs. We
focus on the analyses of overheads incurred in basic
operations, such as remote object access, cooperative
semaphore, migration latency, and the cost of delta
execution. Details related to the performance results of
various applications can be found in [18].

A. Remote Object Access Overhead

 We evaluate the eff iciency of the global object space
layer by analyzing the overheads that are incurred in remote
object accesses and distributed thread synchronization. In
general, there are three types of memory access in
JESSICA:

• Local stack data access: The variable involved is local
to a method or a block of code. It is allocated from the
Java method stack rather than from the global object
space and accessed through the DSM.

• Local object data access: The variable involved is a
field of a local object. The field variable is allocated
from the DSM and the data concerned resides in the
same machine as the thread that is making the access.
The bytecode execution engine uses the GETFIELD
and the PUTFIELD instructions to access the object
field. This kind of access is indirect as the memory
location of the data field has to be computed first by the
bytecode execution engine.

• Remote object data access: This is similar to local
object data access except the thread that is making the
access is located in a node different from where the
object data is stored.

 To study the performance differences of various types of
memory access, we have performed a series of experiments
to measure the time required to update some selected
elements of a very large array that spans 4096 shared
memory pages with different stride distance. The ratio of
access overhead is found to be:

remote object data local object data local stack
data
access time : access time : access time

= 2322 : 23 : 1

 In other words, the overhead of remote object access is
about 100 times that of local access. The difference is due
to the transmission of DSM pages from remote nodes
through the network. Note that this is a worst-case result as
the update will cause the whole 4KB page of data to be
moved or the page diff to be calculated and shifted in the
subsequent remote object accesses. The 23 times difference

between the access time for local object access and that for
local method stack access is because of the overhead
produced by the DSM-lock and unlock operations, as
performed by the iastore instruction, although no diffs
will be received in this local case. Note that it is possible to
have two or more threads to update the same object at the
same time, the DSM's lock and unlock primitives are used
for data consistency control.

B. Cooperative Semaphore Overhead

 We compare the time for a migrated thread to perform
cooperative semaphore operations with one without
migration. Consider when a slave thread tries to acquire a
cooperative semaphore, it sends a semaphore acquire
message to its master which spends T0 time. The message
will trigger a SIGIO signal when it arrives at the console.
With the help of a SIGIO handler, JESSICA will then notify
the TM that some data is ready for the master thread to
read. As a result, the master thread is rescheduled back to
the ready queue. Notice that the master thread may not be
able to resume execution immediately because there may be
other threads currently waiting in the ready queue in front of
it.
 Assume that after T1 time, it is the master's turn to
execute, and the master acquires the semaphore which
spends T2 time. After the semaphore is acquired, the master
sends a success message to the slave, prompting the slave
thread to resume (all together T3 + T4) its execution. T3 is
the time to send the message to the slave, and T4 is the
delay until the slave thread is rescheduled after the message
has arrived. It can be estimated that the total time for a slave
thread to acquire a cooperative semaphore is equal to T0 +
T1 + T2 + T3 + T4, while that for a local thread to acquire a
semaphore is simply T2. In other words, the extra overhead
in this case is T0 + T1 + T3 + T4.
 We have conducted a series of experiments to measure
the time taken for a migrated thread to acquire a free
cooperative semaphore remotely and the time taken for a
local thread to acquire a free semaphore locally. A free
semaphore is a semaphore that is not currently held by
anyone and so a thread can acquire it immediately. In this
case, the value for T2 will be the smallest. By our design,
both the master and the slave thread are the only active
threads running in their respective nodes; therefore the time
to wait before resuming execution, i.e., T1 and T4, would
be zero. It is found that the time it took to acquire a remote
cooperative semaphore for a slave thread this way is about
261 microseconds. For the case of a local, non-migrated
thread, the time is approximately 7.78 microseconds.
Hence, the ratio of the time required to acquire a free
semaphore remotely to that for the local case is about 34:1.
By similar arrangement, we were able to determine the time
for releasing a semaphore both remotely and locally. The
result shows the times are about the same: it took about 258
microseconds to remotely release a cooperative semaphore
and 7.81 microseconds to release a local one.

 It can be seen that a major portion of the cooperative
semaphore overhead comes from the need to send control
messages between nodes and from the operating system
invoking the SIGIO handler. A point to note is that the
overheads measured here are minimum values. In general, it
will take some time for a thread to resume execution after it
is rescheduled since there could be other threads, with either
the same or higher scheduling priorities, already running in
the same node. Moreover, a semaphore may not always be
available immediately when a thread tries to acquire it.
Hence, T1 and T2 could be larger.

C. Migration Latency

 The migration latency is the time between the moment the
migrating thread is frozen by the console and the moment it
is restarted later as a slave thread at the worker node. The
migration latencies, i.e., T0 + T1, for different sizes of the
delta sets are measured, where:

• T0 is the time taken to notify the destination node and
to have the destination node prepare itself for the
migration. The value of T0 is relatively constant.

• T1 is the time taken to marshal a delta set at the console
node, to send the marshaled data across the network,
and eventually to de-marshal the received data at the
destination node. The value of T1 is therefore
proportional to the size of the transferring delta set.

 When the size of the delta set is zero, the migration
latency is about 27.91 milliseconds. T0 includes the time
taken to execute the java.lang.Object.clone() method in
the worker node as well as the time for sending handshake
messages between the console and the worker node. The
purpose of the clone() method is to create an image of the
migrating thread at the destination node, which will then
become the slave thread. The default implementation of the
clone() method in JESSICA is to perform a memcpy() to
duplicate the thread object byte-by-byte.
 A further breakdown of this T0 value reveals that the time
required to invoke the clone() method is about 6.76
milliseconds. This includes the time to set up a TCP
connection between the master and the migrated slave
thread and that for sending the handshake messages. Now
consider the case when a thread is migrated just before it
starts executing the first instruction; the size of the smallest
possible delta set, which contains no local variable or stack
data, is 208 bytes. The minimum migration latency is
measured to be about 29.79 milliseconds. Further analyses
of the delta execution overhead were studied in the next
section.

D. Cost of Delta Execution

 We have devised a test program based on a DeltaE class
to study the effect of machine-dependent code on thread
migration and the cost of delta execution. There are two

methods f() and g() defined in class DeltaE. The native
method f() would print the level of recursion to stdout
before returning. The function autoMigrate() is a special
native function which will cause the Migration Manager to
migrate the current thread to a worker node.
 When an instance of DeltaE is instantiated, the thread
will recursively invoke method g() and method f() until i
reaches zero, where i represents the number of recursion.
autoMigrate() will then cause the DetalE thread to be
migrated to a worker node. At this point the execution
context of the thread should contain a chain of delta sets
interleaved by sets of machine-dependent sub-contexts. By
the time the migrated thread resumes its execution at the
worker node, it will continue from the point of return of
autoMigrate(), which is also the point of return of method
g(). From this point onwards, the effect of delta execution
will cause the execution control to bounce back and forth
between the console and the worker node. At the console
node the current level of recursion will be printed to stdout
as a set of machine-dependent sub-context is executed,
while at the worker node the control will complete the
execution of method g() as the next delta set is shipped
there.
 In our experiment the number of recursion was set to 100
and it took 2037 milliseconds to execute the test program.
The time spent was mainly on the shipping of delta sets as
well as the bouncing of execution control between the
console and the worker node for 100 times. In the case
where migration was disabled, the time spent to execute the
test program was found to be 18 milliseconds. Hence, the
round-trip overhead for each bouncing of control between
the console and the worker node due to delta execution is
about 20.19 milliseconds, which is considerably efficient.

V. RELATED WORKS

 In this section, we shall briefly discuss some other works
related to thread migration, and the realization of a single
system image.
 cJVM [11] is a cluster-enabled implementation of a Java
Virtual Machine that provides a single-system image of a
traditional JVM while executing on a cluster. cJVM
supports distributed access to objects using a master-proxy
model. The node where an object is created contains the
master copy, while proxies are used to other nodes to access
the object. Smart-proxy is employed to allow multiple proxy
implementations for a given class while using the most
efficient implementation on a per instance basis. A single
system image is maintained in some degree that applications
are unable to distinguish between accessing the master of an
object or its proxy. This is achieved by the use of a
distributed heap, which also gives the application an illusion
that the system is using a monolithic heap like traditional
JVM does. Instead of thread migration like JESSICA,
remote objects are accessed transparently through the
method shipping technique, in which the proxy redirects the
flow of execution to the node where the master copy of the

object is located. Load balancing can be achieved in cJVM
through remote thread creation, which distributes newly
created threads according to a pluggable load balancing
routine. It determines the best node on which the new
instance of the runnable class is created. Because of the
method shipping technique, load distribution across the
cluster is therefore largely dependent on the placement of
distributed objects across the cluster.
 JavaParty [14] is built on top of Java RMI which extends
Java as minimally and transparently as possible with a pre-
processor and a run-time system for distributed parallel
programming in heterogeneous environment. JavaParty
provides a single system image by using a shared address
space to support location-transparent remote access. Since
JavaParty regards threads as objects of a thread class,
remote threads can be created as objects of a remote thread
class and migration of threads is also possible. Therefore,
programmers need not deal with the mapping of remote
objects or threads to specific nodes of the network. In object
migration, if a remote object that implements an instance
part is moving to a different host, a proxy is left behind. If a
method call arrives at the proxy, a MovedException is
thrown back to the caller. With the exception, the caller is
informed about the new location of the moved object. The
JavaParty compiler and run-time system deals with the
locality and communication optimization. The runtime
system offers distribution strategies, which are used when
new objects are created. It can also schedule object
migration by moving an object to the position of the caller
or to the location of a different remote object. JavaParty
introduces the new class identifier remote for parallel
execution of Java threads. Program code modifications are
needed to turn a multi-threaded Java program into a
distributed JavaParty program by identifying the classes and
threads that should be spread across the distributed
environment.
 Solaris MC [12] provides the same ABI/API as Solaris,
running Solaris applications without modifications. Solaris
MC provides a global process space for global process
management, so that the location of a process is transparent
to the user. Processes living within this global process space
can be uniquely identified and have their physical locations
hidden. The global process space supports remote creation
of processes and operating-system-related messages are
transparently redirected to the node where the processes
reside. This global process space is analogous to the single
thread space of JESSICA. While threads living in the single
thread space of JESSICA can freely migrate node to node
within the cluster, processes in the global process space of
Solaris MC cannot. Process migration in Solaris MC is
intended only for planned shutdown of nodes to achieve
high fault-tolerance. Both Solaris MC and JESSICA
provide migration transparency by redirecting location-
dependent operations and messages.
 The objective of Java/DSM [10] is to support
heterogeneous parallel computing that hides users from the
difference in architecture and data format for different
machines. The use of the DSM system transparently

handles message passing details such as data replication,
remote interface design and reference marshalling.
Java/DSM allows a multithreaded Java program written for
a single machine to run on a parallel platform with fewer
changes than a system using Java RMI. Java/DSM provides
a shared memory space for object allocation which is
similar to the global object space in JESSICA. However, the
single-system-image offered by Java/DSM is incomplete, as
a thread's location is not transparent to the programmer, and
thread migration is not supported.

VI. CONCLUSIONS

 To achieve SSI for cluster computing is a challenging
task since SSI is a form of complete transparency that
requires the integration and unification of all types of
resources in a cluster.
 The single thread space approach is our solution to
achieve single system image. With the support of single
thread space, the whole cluster is encapsulated into a single
computing system from the view of a multi-threaded Java
application. All Java threads created in a user program can
be executed at any node in the cluster and the threads need
not be aware of their physical location. With the support of
preemptive thread migration (delta execution), a Java thread
can be preempted and migrated to another node at any time
during its execution. Based on this thread migration
technique, parallel execution of a Java application can be
achieved by simply creating as many threads as needed.
Threads are automatically redistributed across the cluster to
exploit real parallelism. The global object space provides
location-independent object access. The proposed
redirection mechanism allows any location-dependent
resources to be transparently accessible by a migrated
thread. Although it is true that the master-slave design for
supporting migration transparency can make the console
node a potential bottleneck, the centralized design allows
control state to be maintained at a single location which
reduces implementation complexity.
 The implementation of JESSICA is at the middleware
level and is compatible with the standard JVM. The
implementation does not need any low-level or platform-
specific supports. Thus it is portable across different
hardware platforms. Our experiments have shown that the
major overheads had come from remote object accesses
made by the migrated threads as well as distributed thread
synchronization. Work is underway to replace the current
DSM by a more efficient DSM which adapts better to the
access patterns [16].
 Overall, establishing an SSI illusion using the middleware
approach to support parallel execution of multi-threaded
Java programs in a cluster environment is feasible and
beneficial. The single thread space approach has proved to
be a simple, flexible, and portable solution for realizing the
goal of single system image. In our future work [19], we
plan to port the W3C’s Jigsaw Web server on JESSICA,
where a cluster of four 4-way SMP servers with Gigabit

Ethernet network [20] wil l be employed to support the
execution. Additional SSI features such as the idea of a
global network subsystem and more efficient network data
redirection as supported in Solaris MC can be employed to
let JESSICA achieve the ultimate goal of SSI – complete
transparency.

VII. ACKNOWLEDGEMENTS

This research was supported in part by Hong Kong RGC
grants (HKU 7032/98E and HKU 7025/97E).

VIII . REFERENCES

[1] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu,

R. Rajamony, W. Yu, and W. Zwaenepoel,
“TreadMarks: Shared Memory Computing on
Networks of Workstations", IEEE Computer, Vol. 29,
No. 2, pp. 18-28, Feb 1996.

[2] R. Buyya (ed.), High Performance Cluster Computing:
Programming and Applications, Vol. 2, Prentice-Hall,
1999.

[3] D. Plainfosse and M. Shapiro, “A Survey of
Distributed Garbage Collection Techniques", Proc. of
1995 International Workshop on Memory
Management, Sep 1995.

[4] K. Hwang and X. Xu, "Scalable Parallel Computing:
Technology, architecture, Programming", McGraw-
Hill Book Company, Feb. 1998.

[5] M.J.M. Ma, C.L. Wang, and F.C.M. Lau, “Delta
Execution: A Preemptive Java Thread Migration
Mechanism", Cluster Computing, to appear.

[6] Jigsaw - The W3C's Web Server,
http://www.w3.org/Jigsaw/

[7] T. Lindholm and F. Yell in, The Java Virtual Machine
Specification, Addison Wesley, 1996.

[8] Transvirtual Technologies Inc., Kaffe Open VM,
http://www.transvirtual.com.

[9] W.T.C. Kramer et al., “Clustered Workstations and
Their Potential Role as High Speed Compute

Processors,” RNS-94-003, NASA Ames Research
Center, 1994.

[10] W. Yu and A.L. Cox, “Java/DSM: A Platform for
Heterogeneous Computing", Proc. Of ACM 1997
Workshop on Java for Science and Engineering
Computation, Jun 1997.

[11] Y. Aridor, M. Factor, and A. Teperman, “cJVM: a
Single System Image of a JVM on a Cluster", Proc. of
1999 International Conference on Parallel
Processing, Sep 1999.

[12] Y.A. Khalidi, J.M. Bernadbeu, V. Matena, K. Shirrif,
and M. Thadani, “Solaris MC: A Multi-Computer
OS", Proc. of 1996 USENIX Annual Technical
Conference, pp. 191-294.

[13] G. Pfister. In Search of Clusters: The Coming Battle
in Lowly Parallel Computing. Prentice-Hall, 1995.

[14] JavaParty project, University of Karlsruhe,
http://wwwipd.ira.uka.de/JavaParty/

[15] K. Hwang, H. Jin, E. Chow, C.L. Wang, and Z. Xu;
``Designing SSI Clusters with Hierarchical
Checkpointing and Single I/O Space,’’ IEEE
Concurrency Magazine, Vol. 7, No. 1, pp. 60-69, Jan-
Mar., 1999.

[16] B. Cheung, C.L. Wang, Kai Hwang; ``JUMP-DP: A
Software DSM System with Low-Latency
Communication Support,’ ’ the 2000 International
Workshop on Cluster Computing - Technologies,
Environments, and Applications (CC-TEA'2000) June
26 – 29, 2000, Las Vegas, Nevada, USA.

[17] B. Alpern et. al., “The Jalapeño Virtual Machine,”
IBM System Journal, Vol. 39, No. 1, February 2000.

[18] M.J.M. Ma, C.L. Wang, F.C.M. Lau, ``JESSICA:
Java-Enabled Single-System-Image Computing
Architecture,’’ to appear in Journal of Parallel and
Distributed Computing.

[19] The JESSICA 2 Project, The System Research Group,
The University of Hong Kong,
http://www.srg.csis.hku.hk/jessica.htm

[20] Wenzhang Zhu, David Lee, and C.L. Wang, “High
Performance Communication Subsystem for
Clustering Standard High-Volume Servers using
Gigabit Ethernet” , HPC Asia 2000, May, 2000,
Beij ing, China.

