
Title Cluster Computing with Single Thread Space

Author(s) Lau, FCM; Ma, MJM; Wang, CL; Cheung, B

Citation
International Conference on Advances in Infrastructure for
Electronic Business, Science, and Education on the Internet
(SSGRR 2000), L'Aquila, Italy, 31 July - 6 August 2000

Issued Date 2000

URL http://hdl.handle.net/10722/93280

Rights

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37920765?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Abstract—To achieve single system image (SSI) for cluster 
computing is a challenging task since SSI is a form of complete 
transparency that requires the integration and unification of 
all types of resources in a cluster . In this paper, we propose a 
new Java computing platform with the concept of Single 
Thread Space, which is a true parallel computing environment 
for per forming a multi-threaded Java application on a cluster 
environment. Threads running within this space would share 
all the resources that each thread has created or allocated and 
they view the underlying cluster as a single computing system. 
We realize the single thread space based on a middleware 
developed at a vir tual machine level, which allows application 
program to create as many threads as needed. The middleware 
can automatically distr ibute the executing threads across the 
cluster to exploit the maximal parallelism and to optimize the 
overall resource utilization. The implementation is compatible 
with the standard JVM and does not need any low-level or 
platform-specific supports. Thus it is por table across different 
hardware platforms.   
 
 Index terms—Cluster computing, single system image, 
dynamic load balancing, thread migration, Java Vir tual 
Machine, JESSICA.   
 

I. INTRODUCTION 

 
 A cluster of computers is a federation of computers linked 
by an interconnection network where the computers run 
integration software to support collaborative computations 
[2,4,9,13]. The integration software provides an abstraction 
layer that hides the physical boundaries between machines 
and makes the cluster appear as a single computer to 
applications - a single system image (SSI).  
 SSI represents a complete form of transparency which is 
to encapsulate system resources distributed across the 
cluster in a layer of abstraction, such that components above 
the layer wil l see the encapsulated resources as a single, 
unified entity. By integrating distributed cluster resources 
and providing a unified naming scheme, the single system 
illusion can be achieved for different types of cluster 
applications.  
 For example, there are various job dispatch systems for 
cluster. Using a global job scheduler, a user job can be 
submitted from any node to request any number of host 
nodes to execute it. Concurrent job scheduling is possible 
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either in batch, interactive, or parallel modes. The SSI can 
also be achieved in the access of I/O devices in the cluster 
[15]. A uniform device naming can be adopted so that user 
applications at different machines is able to view and access 
all the devices connected to the cluster as they access the 
local devices, even the devices are physically attached to a 
node different from the one on which the application is 
running. Several distributed operating systems support the 
concept of a global process space where all processes 
created in the cluster share a uniform process identification 
scheme. A process on any node can be created on (e.g., 
through a Unix fork) or communicate with any other 
processes (e.g., through signals, pipes, etc.) on any remote 
nodes.  
 In this paper, we propose establishing a single-system-
image illusion over a cluster as a means to bridge cluster 
computing and Java's multi-threaded programming model. 
The SSI il lusion is realized through the provision of a single 
thread space, which is a global execution environment for 
running threads that extends across the entire cluster. It 
supports parallel execution of multi-threaded applications. 
A multi-threaded Java application on any node can create 
threads to run at difference nodes. All the threads share a 
uniform thread identification scheme. In addition, threads 
running within this space could freely move between 
machines during its execution. They see the underlying 
cluster as a single computing system with multiple 
processors, a single memory space for object allocations, 
and location-transparent system resources.  
 The single thread space illusion is established at the 
middleware level in the form of a distributed Java Virtual 
Machine (JVM). This approach does not require any 
modification to the underlying operating system or to the 
Java applications running on top. It guarantees portabil ity 
over various popular operating systems and compatibility 
with existing Java applications. 
 The concept of single thread space was realized in our 
JESSICA system. JESSICA stands for “Java-Enabled 
Single-System-Image Computing Architecture". It is a 
middleware that hides the distributed nature of a cluster and 
provides multi-threaded Java applications with the il lusion 
of a single multi-processor computer. With the single thread 
space support, application programmers can create as many 
threads as needed as in a single execution environment, and 
rely on JESSICA to automatically redistribute them across 
the cluster to exploit the maximal parallelism and to 
optimize the overall resource util ization. JESSICA supports 
preemptive thread migration which allows a thread to freely 
move between machines during its execution, and global 
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object sharing through the help of a distributed shared-
memory subsystem. JESSICA implements location-
transparency through a message-redirection mechanism. 
The result is a parallel execution environment where threads 
are automatically redistributed across the cluster for 
achieving the maximal possible parallelism. A JESSICA 
prototype that runs on a Linux cluster has been implemented 
and considerable speedups have been obtained for all the 
experimental applications tested. 
 The rest of the paper is organized as follows. Section 2 
presents the concept of single thread space. Section 3 
discusses the design and implementation of the single thread 
space. Section 4 evaluates the performance of our proto-
type. Section 5 surveys other works related to our work. We 
conclude by summarizing our experiences in Section 6. 

 

II . SINGLE THREAD SPACE 

 
 In recent years, the multi-threaded programming model 
has grown increasingly popular because of the availabil ity 
of SMPs and the wide spreading of the Web-based 
applications such as the Web browsers and Web servers [6]. 
However, due to the limited scalability of SMP architecture, 
it hinders the development of a large-scale application that 
need scalable computing power. An ideal solution is to use 
the cluster as an new execution environment for the multi-
threaded application, where the application program can 
create as many threads as possible and these threads are 
able to map to different processors in the cluster for true 
parallel execution. In addition, threads could freely move 
between machines during its execution to achieve fault 
tolerance or load balancing.  
 We define the single thread space as a cluster computing 
environment for performing multi-threaded application that 
can extend its execution across the entire cluster. Threads 
running within this space would share all the resources that 
each thread has created or allocated and they see the 
underlying cluster as a single computing system with 
multiple processors – single system image. Figure 1 shows 
the concept of single thread space that provides a single 
system illusion among all the threads created by a process.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Single thread space provides an SSI illusion over a cluster. 
  

In order to move a thread to a different processor, it is 
necessary for the transferred thread to correctly access all 
related resources and let all the threads share a uniform 
thread identification scheme. Data local to the thread (i.e., 
stack and thread local heap) may be copied to the 
destination. However, since the addresses on the target 
machine may be different from the original addresses, 
internal data references may no longer be valid. A system 
with thread migration requires integration solution that 
allows all threads to share all the resources (such as files, 
communication channels, data objects, etc.) as if they are 
not migrated. In addition, a thread may access data shared 
by multiple threads such as synchronization objects. After 
the migration, it is necessary for all the threads to locate the 
object and provide synchronization mechanism (e.g., 
signals, semaphores) to allow correct access.  
 

A. Our Design 

 
 In our design, the single thread space il lusion is 
established at the user level in the form of a middleware that 
enables the execution of multiple Java threads among 
cluster nodes. A single global thread space is constructed 
through the services of three important subsystems (1) the 
Delta Execution subsystem for supporting preemptive 
thread migration, (2) the Master-Slave Redirection 
subsystem for supporting location-transparent operations, 
and (3) a distributed shared-memory (DSM) subsystem that 
creates a global object space for supporting remote object 
access. Figure 2 shows an overview of the design of the 
single thread space architecture.  
 We classify a cluster node as either a console or a worker 
node. The console node of an application is the node in 
which the application is first instantiated, i.e., the 
application's home. Worker nodes are the other nodes that 
house one or more migrated threads created by the 
application. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Single thread space is supported by three subsystems that 
are provided by a set of cooperative JVMs. 
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 These worker nodes play a subordinate role to the console 
node by serving requests directed from the console. The 
core design of single thread space is based on a master-
slave approach for thread migration, where the cooperation 
between the master thread running on the console node and 
the slave thread running on the worker node together 
produce the required transparency.  With this master-slave 
design we are able to implement transparent network 
communication and file operations, distributed thread 
synchronization and remote exception.  
 The single thread space extends the parallelism of a JVM 
that spans over a cluster without changing the semantics of 
runtime interactions between objects, therefore making all 
existing multi-threaded Java programs able to run on the 
cluster. Three main subsystems to support single thread 
space are discussed in the following sections.   

B. Thread Migration: Delta Execution 

 Thread migration is usually established as a mechanism 
for achieving dynamic load sharing. However, such a fine-
grain migration (as compared with process migration) has 
not been used due to the high thread and messaging 
overheads [7].  
 Delta execution [5] is a preemptive thread migration 
mechanism for supporting transparent thread-to-processor 
mapping within the single thread space. Delta execution 
aims at providing a high-level and portable implementation 
for Java thread migration that completely hides all the low-
level or system-dependent details. Because the whole 
mechanism is implemented within the virtual machine level, 
migration is therefore transparent to Java applications and 
no migration-specific code needs to be added to the 
applications.  
 In general, the execution context of a Java thread consists 
of both machine-independent and machine-dependent sub-
contexts. Machine-independent sub-context refers to the 
migratable state information that can be expressed in terms 
of the high-level execution state of a JVM, such as data 
stored in the virtual machine's registers. Machine-dependent 
sub-context is the non-migratable state information that is 
part of the low-level execution state of a JVM 
implementation, such as the hardware return address stored 
in the execution stack of an internal function invoked that 
implements the iadd bytecode instruction. As illustrated in 
figure 3, a thread's execution context consists of sets of 
machine-independent sub-contexts, also known as delta sets, 
which interleave with the sets of machine-dependent sub-
contexts. In our design, migration granularity is per-
bytecode-instruction where a thread can be preempted and 
migrated once execution of the current bytecode is 
completed. The delta execution mechanism identifies and 
separates the machine-dependent sub-contexts from the 
machine-independent sub-contexts in the execution context 
of a migrating thread.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Delta Execution in action. 
 
 In delta execution, when a thread running on the console 
node migrates, it does not actually pack up itself and move 
to the destination worker node.  Instead, it is spli t into two 
cooperating entities, with one running at the original 
console node, called the master; and the other running at the 
destination node, called the slave.  The slave thread is in 
fact created at the destination node anew and acts as the 
migrated image to continue the execution of the original 
thread.  The master thread remaining at the console node is 
actually the original migrating thread, which is now reduced 
and be responsible to perform any location dependent 
operations like I/O on behalf of the slave thread, plus other 
message forwarding between the slave and the rest of the 
system.  The master and slave pair is responsible to carry 
out the interactions between the console and the worker 
nodes in order to maintain migration transparency. Active 
execution of the migrated thread is seen as a sequence of 
executions, using the machine-dependent and the machine-
independent sub-contexts, which switch back and forth 
between the console and the worker node. 
 As il lustrated in figure 3, since the migrated thread only 
incrementally advances its execution by a delta amount 
every time when control is switched to it, we therefore call 
this mechanism delta execution. Because of the master-slave 
design, the mechanism provides an opportunity for the 
implementation to isolate machine-dependent contexts from 
machine-independent contexts and process them in a 
manageable way. With the support of delta execution in a 
single thread space, it is possible to dynamically relocate the 
threads in order to achieve dynamic load balancing. After 
migrating a thread from the console node to a worker node, 
it is possible for the migrated thread to move to yet another 
worker node or to retreat back to the console node. 
 When a migrated thread running in a worker node is 
required to further migrate, it wil l first retreat back to the 
console. Another worker node wil l be selected to migrate 
the thread to. The reason for this approach, as opposed to 
one that migrates the thread to the new worker node 
directly, is because if a migrated thread is allowed to 
directly migrate to another worker node without first 
retreating back to the console, residue dependency required 
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for maintaining migration transparency wil l be left there 
with the first worker. Messages forwarded from the console 
will have to go through this first worker node before they 
can reach the new home of the migrated thread. This would 
result in one more level of redirection. If further migrations 
are made, there will be more levels of redirection through 
residue dependencies left behind in many worker nodes the 
thread has ever visited. Such a chain of residue 
dependencies would be difficult to manage. We therefore 
opted for the approach of first migrating the thread back to 
the console before performing another migration, and 
because of that, residue dependency in the first worker node 
will be removed together with the leaving thread. 
 

C. Global Object Space 

 
 After thread migration, the migrated thread should be 
accessible by the same name and mechanisms as if 
migration never occurred. The same applies to all resources 
used by the Java threads created in a program, such as the 
shared objects. The global object space (GOS) provides 
location-independent object access. It is yet an SSI layer 
created for all distributed threads to view a single and 
unified shared object space to ease the implementation of 
the single thread space. 
 In each node of the cluster there is a distributed object 
manager (DOM) responsible for managing the local 
memory resources as well as cooperating with DOMs 
running on other nodes to create a globally accessible object 
space. This is achieved by implementing the DOMs on top 
of a distributed shared-memory (DSM) subsystem. With the 
help of the DSM subsystem, discrete memory regions 
belonging to various cluster nodes are unified to form a 
single and contiguous memory space for global object 
sharing. As a result, objects remain to be accessible by a 
thread even after the thread has migrated to another node in 
the cluster. The location where an object resides is 
transparent to a thread. 
 The global object space is for the containment of all Java 
objects only. Other internal state of a JVM runtime is stored 
locally in the corresponding UNIX process’ stack and local-
heap memory. Contents of objects that are located in a 
remote node are cached by the DSM subsystem, and GOS 
relies on the cache coherent protocol provided by the DSM 
subsystem to maintain the consistency of the cached data.  
 The global object space is established by allocating a 
large chunk of shared memory from the DSM. GOS 
employs a decentralized approach for memory management, 
where the DOM running on each node is responsible for 
managing its own share of the global shared memory. 
Object allocation requests made by the threads in a node are 
always satisfied locally — the DOM wil l allocate the 
required space from its share, instead of forwarding the 
request back to console. Because it is possible to have two 
or more nodes updating the same object at the same time, 
the mutual exclusion control primitives provided by the 
DSM subsystem are used to ensure object consistency. 

Distributed garbage collection is buil t on top of the DSM 
layer to locate all the unused objects and to reclaim their 
space. In current GOS, a distributed mark-and-sweep 
garbage collection mechanism is installed [3].  
 

D. Transparent Redirection 

 
 In this section, we discuss various redirection 
mechanisms developed in the single thread space to support 
post-migration services, including the cooperative 
semaphore, remote thread signaling, remote exception, and 
location-transparent I/O.  
 The distinctive feature of multi-threaded Java computing 
is that threads can share resources and execute concurrently 
in order to multiplex computations, or even 
communications. In such a multi-threaded runtime 
environment, a mechanism for providing mutual exclusion 
is necessary for ensuring coordinated access to the shared 
resources. The Java programming language uses 
semaphores at the virtual machine level to implement 
mutual exclusion control. A semaphore is associated with 
every shared object so that application programs can avoid 
any race condition by waiting on the associated semaphore 
before updating a shared object. In the single thread space, 
to achieve eff icient thread synchronization and data 
integrity, a distributed semaphore and remote thread 
signaling should be supported. Besides, we need to support 
location-transparent I/O so that all opened files and 
network communication channels following a migration will 
remain functional. 
 We adopted a master-slave approach to achieve the above 
functions. After a thread has been migrated, the master 
thread remaining at the console represents the original 
thread. All the thread-level synchronization interactions, 
such as wait()/notify() and mutex lock()/unlock() 
between the slave and other threads will go through the 
master. Redirections of service requests and responses make 
the master appear to other threads as the only thread they 
are interacting with. On the slave side, all I/O and thread 
synchronization operations are redirected back to the 
console. With this design, we are able to create a global 
thread space that has the same semantics and maintains the 
same relationships between objects in the execution 
environment as the case without thread migration. 
Consequently, such an execution environment as observed 
by a running thread is the same as that of a standard JVM. 
 A decentralized approach is used to implement 
distributed semaphore. In each cluster node, a Thread 
Manager (TM) is created and it is responsible for thread 
creation, scheduling, and termination. TMs support 
distributed synchronization of migrated threads by having 
the runtime system to forward semaphore operations back to 
the console TM. All the semaphore operations are 
performed in the console node by the master thread, and so 
the same semaphore semantics is enforced as if there is no 
migration.  We called this cooperative semaphore. 



 Java threads rely on simple wait-notify signals for inter-
thread communications. By a design similar to that for 
cooperative semaphores, we have designed a remote thread 
signaling mechanism where the master is responsible for 
transparently forwarding any wait and notify signals 
between its slave and the other threads running in the 
console node. With the cooperative semaphore and the 
remote signaling mechanisms installed, we are able to 
implement the distributed thread synchronization 
mechanism in a decentralized manner. 
 The Java programming language supports a language 
exception construct where a method can include a block of 
code, called the catch block, for handling any specified 
exceptions that may be generated as the method executes. 
The idea of language exception is that when the current 
method execution has generated an anticipated error, the 
execution can be aborted and the context be rewind back to 
a point where the program has pre-defined a specific catch 
block to deal with the error.  As a result, to implement 
language exception, the method invocation sequence of a 
thread’s execution context is scanned from the tail towards 
the head to locate the nearest called method which has 
implemented the corresponding catch block to handle the 
exception.  When this method is located, the execution 
context of the current thread is rewind up to this method so 
that execution can continue from the catch block.  
 Notice that when a thread is migrated, only the tail -most 
delta set is sent to the worker node for the slave thread to 
execute.  Now if this slave thread generates a remote 
exception, it is possible that the worker node is unable to 
locate the catch block from the delta set that can handle the 
remote exception.  This is because the method that contains 
the catch block for this remote exception is still located at 
the console node.  Hence, instead of generating an uncaught 
exception error at the worker node, the system wil l discard 
the slave thread and forward the exception back to the 
master thread at the console, where the searching for the 
right catch block to handle the exception will continue.  
Once the catch block has been located, the corresponding 
delta set that contains this catch block wil l be sent to the 
worker node and a new slave thread can be instantiated to 
continue execution of the catch block to handle the remote 
exception. 
 In our design, location-transparent I/O support is also 
achieved by redirecting I/O operations back to the console 
node and letting the master there to perform the operations 
on behalf of the slave. The redirection code is implemented 
within the java.io and the java.net class libraries for file 
and socket I/O redirection respectively. Their interface 
definitions are kept unchanged so that other classes relying 
on them do not need to be modified. Implementation details 
are discussed in Section III .D. The object-oriented nature of 
our design has helped simplify the implementation of I/O 
redirection, since class hierarchies of both the java.io and 
the java.net libraries are sufficiently well organized. There 
are base classes located towards the top of the hierarchies 
that are responsible for performing the raw I/O operations 
through the underlying operating system. All of their child 

classes that specialize in I/O operations for specific data 
types inherit the functionality directly from the base classes. 
These specialized classes therefore can simply invoke the 
inherited methods to access the raw I/O channels. As a 
result, when the base classes in the hierarchies are extended 
to support the required I/O redirection, the rest of the child 
classes can inherit the feature immediately without any 
further modification. 
 

II I. SYSTEM ARCHITECTURE AND IMPLEMENTATION 

 
 We have realized the single thread space in the JESSICA 
system which was running on a Linux PC cluster. The 
experimental platform consists of 8 Linux PCs connected to 
a 100Mbps Fast Ethernet switch. Each PC is equipped with 
a 300MHz Intel Celeron processor and 128MB main 
memory, and is running Linux Kernel 2.2.1. 
 

A. The Building Components 

 
 The implementation of the JESSICA system is in the form 
of a distributed virtual machine and there will be a JVM 
daemon process running on each node of the cluster. These 
daemon processes execute as user-level processes on top of 
the UNIX operating system. A JESSICA daemon is 
composed of the following four components: 

• Bytecode Execution Engine (BEE): It is responsible for 
binding an active thread and executing its method code. 
Parallel execution of a multi-threaded application is 
realized by having multiple BEEs running on multiple 
machines to execute multiple threads simultaneously. 

• Distributed Object Manager (DOM): It is responsible 
for managing the memory resources in its local node 
and to cooperate with other DOMs on the other nodes 
to create a global object space. The physical locations 
of objects are transparent to the threads within the 
global object space. 

• Thread Manager (TM): It is responsible for thread 
creation, scheduling, and termination in the local node. 
During the course of migration, it coordinates with 
TMs on the other nodes to marshal, ship, and 
demarshal the execution contexts of migrating threads. 
TMs support distributed synchronization of migrated 
threads by forwarding semaphore operations back to 
the console TM. 

• Migration Manager (MM): It is responsible for 
collecting load information of the local node and 
exchanging those information with MMs running in 
other nodes in order to implement a migration policy. 

 
 
 
 
 
 



 
Fig. 4. Interaction between system components in JESSICA 
 
 Figure 4 il lustrates the interactions between the four 
system components of a JESSICA daemon. When the code 
which BEE is executing needs to create a new active thread, 
BEE requests DOM to allocate a new thread object from the 
global object space, after which BEE will execute the 
constructor code to instantiate the new object. Next, BEE 
sends a request to TM to activate the thread. TM will bind 
the thread to a new execution context and insert it into the 
thread scheduling subsystem. Later on when the thread is 
scheduled to run, TM binds it to BEE for executing the 
thread's start() method. During it's execution, BEE can 
create new objects and wil l make sure that objects are 
updated consistently in the global object space through the 
new() and DSM mutual exclusion control primitives 
provided by DOM. It can also let the thread communicate or 
synchronize with other threads by using the thread 
wait()/notify() and mutex lock()/unlock() primitives 
provided by TM. Whenever necessary, DOM wil l perform 
garbage collection to reclaim unused objects. It asks TM to 
provide the runtime stacks of all the active threads and starts 
tracing from these stacks to locate any unreferenced objects.  
 The current implementation of JESSICA is based on 
version 0.9.1 of the Kaffe virtual machine [8] and uses 
version 1.0.3.2 of the TreadMarks DSM package [1]. We 
had to make some major modifications to the Kaffe 
implementation in order to support the SSI features. For 
example, in order to facilitate the extraction of a thread's 
execution context, the method invocation mechanism in 
Kaffe's BEE was changed so that it would allocate the 
method stack from the local heap instead of from the 
process runtime stack. The set of bytecode instructions that 
are responsible for method invocation were also adjusted in 
order to support the delta execution mechanism. In addition, 
DOM has been incorporated into the memory management 
subsystem for creating the global object space. All the 
bytecode instructions that access the global object space 
have been augmented to use the mutual exclusion control 
primitives provided by the DSM whenever necessary. 
Moreover, the thread subsystem has been extended to 
become the TM for supporting thread migration, 
cooperative semaphore, and the remote signaling 
mechanism. Finally, MM responsible for enforcing a load 
balancing policy has also been incorporated into the system. 
MM obtains load information from the process file system 
</proc> of each node and interacts with other MMs of other 
cluster nodes to make migration decision. All 
communications between the JESSICA daemons are 

through the BSD socket interface provided by the Linux 
operating system. 
 

B. Preemptive Thread Migration 

 
 The steps below are taken when the current thread 
running on the console tries to migrate to another worker 
node: 

1) TM at the console node freezes the migrating thread 
and extracts the execution context in the form of a 
sequence of machine dependent and independent sub-
contexts from the local BEE.   

2) MM then identifies a destination worker node for the 
thread to migrate to, and to notify the corresponding 
MM at the destination node to prepare for the 
migration. 

3) After receiving the migration notification, the 
destination MM requests the local TM to create a new 
thread instance to represent the migrated thread.  This 
newly created thread instance is known as the slave 
thread. 

4) The original thread at the console detaches itself from 
the local BEE and obtains its execution context.  It is 
now known as the master thread which is responsible to 
control the execution of the slave thread that is created 
at the destination worker node. 

5) After the instantiation, the slave thread at the 
destination creates a dedicated communication channel 
with the master at the console.  This dedicated channel 
is used for sending control information and message 
redirection between the master and the slave.   

6) Finally the slave thread at the destination node sends a 
ready message to the master to signify that it is ready to 
resume execution.  The master thread at the console 
then sends the first delta set to the slave for execution. 

7) The slave thread resumes its execution by using the 
delta set that it received.  After finishing execution of 
the given delta set, it sends a ‘more’ signal to the 
master and ask for the next delta set to execute.  The 
master thread at the console after receiving this ‘more’ 
signal, will complete the execution of the following 
machine-dependent sub-context that is not migratable, 
and send the slave the next delta set to execute.   

8) The last step is repeated until the whole sequence of 
machine-dependent and independent execution sub-
contexts is exhausted. This also implies the original 
thread has completed the execution of its primary 
java.lang.Thread.start()method or the equivalent.  
At this point, the master will notify the slave with an 
‘end’ signal signifying that the execution has been 
completed, so that both threads will eventually 
terminate themselves. 

 Note that the 7th step of the above scheme is the critical 
step for the system to maintain migration transparency, it is 
in this step where redirections take place.  While the slave 
thread is executing the delta set at the destination node, the 

Semaphore acquire/release
Thread wait/notify

Thread activation request
Java.lang.Thread.start

Request thread’s method stack data 
(garbage collection)

DSM mutex 
lock/unlock

New object 
allocation

Thread  migration 
request

Thread
Manager

(TM)

Bytecode
Execution

Engine
(BEE)

Migration
Manager

(MM)

Distributed 
Object

Manager
(DOM)



master thread is also responsible to monitor the 
communication channel and see if there are any messages of 
redirection requests sent from the slave thread.  These 
messages can be network channel read/write operations or 
mutex lock()/unlock() operations where the master has to 
perform on behalf of the slave back at the console node, so 
as to maintain the network and location transparency.  In 
addition, the master is also responsible to redirect any 
asynchronous signals sending from other running threads on 
the console node, so that the original thread appears to other 
threads as if it was still running on the console node and the 
migration has never took place. 
 

C. Dynamic Load Balancing 

 
 The current implementation relies on MMs running in all 
the worker nodes to provide load information across the 
cluster for making migration decision. Load information is 
obtained from the process file system </proc> of each node. 
MM at the console node queries its counterparts running in 
each worker node for load information every second. The 
percentage of time that a node spends in user mode between 
successive queries is the primary load information used in 
migration decision. If MM at the console discovers that the 
percentage of time that a node is spending in user mode 
between successive queries is one-fifth or less of that of the 
console, it will go through the list of actively running 
threads to select a non-daemon thread to migrate to this 
underloaded node. Priority will be given to a running thread 
whose execution state does not contain any machine-
dependent sub-context. The MM may also trigger a 
redistribution of migrated threads if it comes across a 
worker node that is heavily loaded. A worker node is 
considered heavily loaded if the percentage of its user-mode 
time is more than double that of the console. When this 
happens, MM will send a message to the identified worker 
node which wil l then select one of its actively running slave 
threads to retreat back to the console. If an underloaded 
node is found later on, the retreated thread could be 
migrated again. 
 

D. Transparent Redirection 

 
 The I/O redirection code is implemented within the 
java.io and the java.net class libraries for file and socket 
I/O redirection respectively. Their interface definitions are 
kept unchanged so that other classes relying on them do not 
need to be modified. To improve performance, a buffer 
cache allocated from the DSM is used to buffer I/O data for 
each opened file or socket. When a slave thread performs a 
read() operation on an opened file, it checks whether the 
requested data has been loaded into the shared buffer 
already. If so, the data is retrieved from the buffer directly. 
Otherwise, the slave thread redirects the operation back to 
the console. The master thread will issue a read() operation 
to the underlying operating system to fill up the buffer. 

Eventually, the slave thread is notified and the requested 
data can then be obtained from the shared buffer. 
 The implementation of cooperative semaphores ties 
closely to TM for handling blocking and resuming of active 
threads. A cooperative semaphore is created the first time a 
mutex lock() is applied to the object. If the lock operation 
is initiated by a slave thread, the corresponding cooperative 
semaphore wil l be created by its master thread at the 
console. A cooperative semaphore maintains a count and a 
queue of blocking threads that try to perform a mutex 
lock() on the corresponding Java object. If the count is 
zero, a thread can immediately lock the object and 
increment the count; otherwise the thread is scheduled out 
by TM and appended to the queue. A thread unlocking the 
object later wil l decrement the count. When the count 
reaches zero, the first blocked thread from the queue will be 
scheduled to run by TM. Note that the mechanism just 
described applies to master threads as well as normal 
threads that have not been migrated; for a migrated slave 
threads, the mutex lock() and unlock() operations are 
redirected back to the console as described below. 
 A running thread will be blocked and forced to leave the 
ready queue if  

– it tries to lock a semaphore which is currently held by 
another thread,   

– it tries to perform an I/O operation in blocking mode 
and the I/O channel is not ready, or   

– it explicitly performs a wait() operation on a given 
object O .  

 A blocked thread t wil l be rescheduled back to the ready 
queue when 

– the semaphore that t has previously requested is 
unlocked by another thread and it is now t 's turn to 
lock the semaphore,  

– the I/O channel that t previously tried to operate on is 
now ready, or  

– another thread has issued a notify operation on an 
object which t has previously waited upon. 

 We take advantage of the property that a thread will block 
when trying to read from an I/O channel where data have 
not yet arrived. When a slave thread tries to lock a 
semaphore s, instead of directly operating on s, it sends a 
message to its master, asking the master to lock s on its 
behalf. After that the slave thread will be blocked waiting 
for the master's reply. At the console node, when the master 
thread receives the semaphore lock request for s from its 
slave, it will try to lock the semaphore s. When eventually 
the master has successfully locked the semaphore s, it wil l 
then send a success message back to its slave so that the 
slave can continue its execution, as if the slave has 
successfully locked the semaphore itself. Similarly, when 
the slave thread later tries to unlock s, it again sends a 
message to the master asking it to unlock s on its behalf. 
After the master has received the message and unlocked the 
semaphore, TM at the console can then reschedule some 



other thread that has previously issued a lock request for the 
semaphore. 
 

IV. PERFORMANCE EVALUATION 

 
 In this section, we report performance results of the 
JESSICA system through the tests of various programs. We 
focus on the analyses of overheads incurred in basic 
operations, such as remote object access, cooperative 
semaphore, migration latency, and the cost of delta 
execution. Details related to the performance results of 
various applications can be found in [18]. 

A. Remote Object Access Overhead 

 
 We evaluate the eff iciency of the global object space 
layer by analyzing the overheads that are incurred in remote 
object accesses and distributed thread synchronization. In 
general, there are three types of memory access in 
JESSICA: 

• Local stack data access: The variable involved is local 
to a method or a block of code. It is allocated from the 
Java method stack rather than from the global object 
space and accessed through the DSM. 

• Local object data access: The variable involved is a 
field of a local object. The field variable is allocated 
from the DSM and the data concerned resides in the 
same machine as the thread that is making the access. 
The bytecode execution engine uses the GETFIELD 
and the PUTFIELD instructions to access the object 
field. This kind of access is indirect as the memory 
location of the data field has to be computed first by the 
bytecode execution engine. 

• Remote object data access: This is similar to local 
object data access except the thread that is making the 
access is located in a node different from where the 
object data is stored. 

 To study the performance differences of various types of 
memory access, we have performed a series of experiments 
to measure the time required to update some selected 
elements of a very large array that spans 4096 shared 
memory pages with different stride distance. The ratio of 
access overhead is found to be: 

remote object data  local object data  local stack 
data 
access time :  access time :  access time  

=  2322 : 23 : 1 

 In other words, the overhead of remote object access is 
about 100 times that of local access. The difference is due 
to the transmission of DSM pages from remote nodes 
through the network. Note that this is a worst-case result as 
the update will cause the whole 4KB page of data to be 
moved or the page diff to be calculated and shifted in the 
subsequent remote object accesses. The 23 times difference 

between the access time for local object access and that for 
local method stack access is because of the overhead 
produced by the DSM-lock and unlock operations, as 
performed by the iastore instruction, although no diffs 
will be received in this local case. Note that it is possible to 
have two or more threads to update the same object at the 
same time, the DSM's lock and unlock primitives are used 
for data consistency control.  
 

B. Cooperative Semaphore Overhead 

 
 We compare the time for a migrated thread to perform 
cooperative semaphore operations with one without 
migration. Consider when a slave thread tries to acquire a 
cooperative semaphore, it sends a semaphore acquire 
message to its master which spends T0 time. The message 
will trigger a SIGIO signal when it arrives at the console. 
With the help of a SIGIO handler, JESSICA will then notify 
the TM that some data is ready for the master thread to 
read. As a result, the master thread is rescheduled back to 
the ready queue. Notice that the master thread may not be 
able to resume execution immediately because there may be 
other threads currently waiting in the ready queue in front of 
it.  
 Assume that after T1 time, it is the master's turn to 
execute, and the master acquires the semaphore which 
spends T2 time. After the semaphore is acquired, the master 
sends a success message to the slave, prompting the slave 
thread to resume (all together T3 + T4) its execution. T3 is 
the time to send the message to the slave, and T4 is the 
delay until the slave thread is rescheduled after the message 
has arrived. It can be estimated that the total time for a slave 
thread to acquire a cooperative semaphore is equal to T0 + 
T1 + T2 + T3 + T4, while that for a local thread to acquire a 
semaphore is simply T2. In other words, the extra overhead 
in this case is T0 + T1 + T3 + T4.  
 We have conducted a series of experiments to measure 
the time taken for a migrated thread to acquire a free 
cooperative semaphore remotely and the time taken for a 
local thread to acquire a free semaphore locally. A free 
semaphore is a semaphore that is not currently held by 
anyone and so a thread can acquire it immediately. In this 
case, the value for T2 will be the smallest. By our design, 
both the master and the slave thread are the only active 
threads running in their respective nodes; therefore the time 
to wait before resuming execution, i.e., T1 and T4, would 
be zero. It is found that the time it took to acquire a remote 
cooperative semaphore for a slave thread this way is about 
261 microseconds. For the case of a local, non-migrated 
thread, the time is approximately 7.78 microseconds. 
Hence, the ratio of the time required to acquire a free 
semaphore remotely to that for the local case is about 34:1. 
By similar arrangement, we were able to determine the time 
for releasing a semaphore both remotely and locally. The 
result shows the times are about the same: it took about 258 
microseconds to remotely release a cooperative semaphore 
and 7.81 microseconds to release a local one. 



 It can be seen that a major portion of the cooperative 
semaphore overhead comes from the need to send control 
messages between nodes and from the operating system 
invoking the SIGIO handler. A point to note is that the 
overheads measured here are minimum values. In general, it 
will take some time for a thread to resume execution after it 
is rescheduled since there could be other threads, with either 
the same or higher scheduling priorities, already running in 
the same node. Moreover, a semaphore may not always be 
available immediately when a thread tries to acquire it. 
Hence, T1 and T2 could be larger.  
 

C. Migration Latency 

 
 The migration latency is the time between the moment the 
migrating thread is frozen by the console and the moment it 
is restarted later as a slave thread at the worker node. The 
migration latencies, i.e., T0 + T1, for different sizes of the 
delta sets are measured, where: 

• T0 is the time taken to notify the destination node and 
to have the destination node prepare itself for the 
migration. The value of T0 is relatively constant.  

• T1 is the time taken to marshal a delta set at the console 
node, to send the marshaled data across the network, 
and eventually to de-marshal the received data at the 
destination node. The value of T1 is therefore 
proportional to the size of the transferring delta set.  

 When the size of the delta set is zero, the migration 
latency is about 27.91 milliseconds. T0 includes the time 
taken to execute the java.lang.Object.clone() method in 
the worker node as well as the time for sending handshake 
messages between the console and the worker node. The 
purpose of the clone() method is to create an image of the 
migrating thread at the destination node, which will then 
become the slave thread. The default implementation of the 
clone() method in JESSICA is to perform a memcpy() to 
duplicate the thread object byte-by-byte. 
 A further breakdown of this T0 value reveals that the time 
required to invoke the clone() method is about 6.76 
milliseconds. This includes the time to set up a TCP 
connection between the master and the migrated slave 
thread and that for sending the handshake messages. Now 
consider the case when a thread is migrated just before it 
starts executing the first instruction; the size of the smallest 
possible delta set, which contains no local variable or stack 
data, is 208 bytes. The minimum migration latency is 
measured to be about 29.79 milliseconds. Further analyses 
of the delta execution overhead were studied in the next 
section. 
 

D. Cost of Delta Execution 

 
 We have devised a test program based on a DeltaE class 
to study the effect of machine-dependent code on thread 
migration and the cost of delta execution. There are two 

methods f() and g() defined in class DeltaE. The native 
method f() would print the level of recursion to stdout 
before returning. The function autoMigrate() is a special 
native function which will cause the Migration Manager to 
migrate the current thread to a worker node. 
 When an instance of DeltaE is instantiated, the thread 
will recursively invoke method g() and method f() until i 
reaches zero, where i represents the number of recursion. 
autoMigrate() will then cause the DetalE thread to be 
migrated to a worker node. At this point the execution 
context of the thread should contain a chain of delta sets 
interleaved by sets of machine-dependent sub-contexts. By 
the time the migrated thread resumes its execution at the 
worker node, it will continue from the point of return of 
autoMigrate(), which is also the point of return of method 
g(). From this point onwards, the effect of delta execution 
will cause the execution control to bounce back and forth 
between the console and the worker node. At the console 
node the current level of recursion will be printed to stdout 
as a set of machine-dependent sub-context is executed, 
while at the worker node the control will complete the 
execution of method g() as the next delta set is shipped 
there. 
 In our experiment the number of recursion was set to 100 
and it took 2037 milliseconds to execute the test program. 
The time spent was mainly on the shipping of delta sets as 
well as the bouncing of execution control between the 
console and the worker node for 100 times. In the case 
where migration was disabled, the time spent to execute the 
test program was found to be 18 milliseconds. Hence, the 
round-trip overhead for each bouncing of control between 
the console and the worker node due to delta execution is 
about 20.19 milliseconds, which is considerably efficient. 
 

V. RELATED WORKS 

 
 In this section, we shall briefly discuss some other works 
related to thread migration, and the realization of a single 
system image. 
 cJVM [11] is a cluster-enabled implementation of a Java 
Virtual Machine that provides a single-system image of a 
traditional JVM while executing on a cluster. cJVM 
supports distributed access to objects using a master-proxy 
model. The node where an object is created contains the 
master copy, while proxies are used to other nodes to access 
the object. Smart-proxy is employed to allow multiple proxy 
implementations for a given class while using the most 
efficient implementation on a per instance basis. A single 
system image is maintained in some degree that applications 
are unable to distinguish between accessing the master of an 
object or its proxy. This is achieved by the use of a 
distributed heap, which also gives the application an illusion 
that the system is using a monolithic heap like traditional 
JVM does. Instead of thread migration like JESSICA, 
remote objects are accessed transparently through the 
method shipping technique, in which the proxy redirects the 
flow of execution to the node where the master copy of the 



object is located. Load balancing can be achieved in cJVM 
through remote thread creation, which distributes newly 
created threads according to a pluggable load balancing 
routine. It determines the best node on which the new 
instance of the runnable class is created. Because of the 
method shipping technique, load distribution across the 
cluster is therefore largely dependent on the placement of 
distributed objects across the cluster. 
 JavaParty [14] is built on top of Java RMI which extends 
Java as minimally and transparently as possible with a pre-
processor and a run-time system for distributed parallel 
programming in heterogeneous environment. JavaParty 
provides a single system image by using a shared address 
space to support location-transparent remote access. Since 
JavaParty regards threads as objects of a thread class, 
remote threads can be created as objects of a remote thread 
class and migration of threads is also possible. Therefore, 
programmers need not deal with the mapping of remote 
objects or threads to specific nodes of the network. In object 
migration, if a remote object that implements an instance 
part is moving to a different host, a proxy is left behind. If a 
method call arrives at the proxy, a MovedException is 
thrown back to the caller. With the exception, the caller is 
informed about the new location of the moved object. The 
JavaParty compiler and run-time system deals with the 
locality and communication optimization. The runtime 
system offers distribution strategies, which are used when 
new objects are created. It can also schedule object 
migration by moving an object to the position of the caller 
or to the location of a different remote object. JavaParty 
introduces the new class identifier remote for parallel 
execution of Java threads. Program code modifications are 
needed to turn a multi-threaded Java program into a 
distributed JavaParty program by identifying the classes and 
threads that should be spread across the distributed 
environment. 
 Solaris MC [12] provides the same ABI/API as Solaris, 
running Solaris applications without modifications. Solaris 
MC provides a global process space for global process 
management, so that the location of a process is transparent 
to the user. Processes living within this global process space 
can be uniquely identified and have their physical locations 
hidden. The global process space supports remote creation 
of processes and operating-system-related messages are 
transparently redirected to the node where the processes 
reside. This global process space is analogous to the single 
thread space of JESSICA. While threads living in the single 
thread space of JESSICA can freely migrate node to node 
within the cluster, processes in the global process space of 
Solaris MC cannot. Process migration in Solaris MC is 
intended only for planned shutdown of nodes to achieve 
high fault-tolerance. Both Solaris MC and JESSICA 
provide migration transparency by redirecting location-
dependent operations and messages.  
 The objective of Java/DSM [10] is to support 
heterogeneous parallel computing that hides users from the 
difference in architecture and data format for different 
machines.  The use of the DSM system transparently 

handles message passing details such as data replication, 
remote interface design and reference marshalling. 
Java/DSM allows a multithreaded Java program written for 
a single machine to run on a parallel platform with fewer 
changes than a system using Java RMI. Java/DSM provides 
a shared memory space for object allocation which is 
similar to the global object space in JESSICA. However, the 
single-system-image offered by Java/DSM is incomplete, as 
a thread's location is not transparent to the programmer, and 
thread migration is not supported. 
 

VI. CONCLUSIONS 

 
 To achieve SSI for cluster computing is a challenging 
task since SSI is a form of complete transparency that 
requires the integration and unification of all types of 
resources in a cluster.  
 The single thread space approach is our solution to 
achieve single system image. With the support of single 
thread space, the whole cluster is encapsulated into a single 
computing system from the view of a multi-threaded Java 
application. All Java threads created in a user program can 
be executed at any node in the cluster and the threads need 
not be aware of their physical location. With the support of 
preemptive thread migration (delta execution), a Java thread 
can be preempted and migrated to another node at any time 
during its execution. Based on this thread migration 
technique, parallel execution of a Java application can be 
achieved by simply creating as many threads as needed. 
Threads are automatically redistributed across the cluster to 
exploit real parallelism. The global object space provides 
location-independent object access. The proposed 
redirection mechanism allows any location-dependent 
resources to be transparently accessible by a migrated 
thread. Although it is true that the master-slave design for 
supporting migration transparency can make the console 
node a potential bottleneck, the centralized design allows 
control state to be maintained at a single location which 
reduces implementation complexity.  
 The implementation of JESSICA is at the middleware 
level and is compatible with the standard JVM. The 
implementation does not need any low-level or platform-
specific supports. Thus it is portable across different 
hardware platforms. Our experiments have shown that the 
major overheads had come from remote object accesses 
made by the migrated threads as well as distributed thread 
synchronization. Work is underway to replace the current 
DSM by a more efficient DSM which adapts better to the 
access patterns [16].  
 Overall, establishing an SSI illusion using the middleware 
approach to support parallel execution of multi-threaded 
Java programs in a cluster environment is feasible and 
beneficial. The single thread space approach has proved to 
be a simple, flexible, and portable solution for realizing the 
goal of single system image. In our future work [19], we 
plan to port the W3C’s Jigsaw Web server on JESSICA, 
where a cluster of four 4-way SMP servers with Gigabit 



Ethernet network [20] wil l be employed to support the 
execution. Additional SSI features such as the idea of a 
global network subsystem and more efficient network data 
redirection as supported in Solaris MC can be employed to 
let JESSICA achieve the ultimate goal of SSI – complete 
transparency. 
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