1,795 research outputs found

    Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS

    Full text link
    GROMACS is a widely used package for biomolecular simulation, and over the last two decades it has evolved from small-scale efficiency to advanced heterogeneous acceleration and multi-level parallelism targeting some of the largest supercomputers in the world. Here, we describe some of the ways we have been able to realize this through the use of parallelization on all levels, combined with a constant focus on absolute performance. Release 4.6 of GROMACS uses SIMD acceleration on a wide range of architectures, GPU offloading acceleration, and both OpenMP and MPI parallelism within and between nodes, respectively. The recent work on acceleration made it necessary to revisit the fundamental algorithms of molecular simulation, including the concept of neighborsearching, and we discuss the present and future challenges we see for exascale simulation - in particular a very fine-grained task parallelism. We also discuss the software management, code peer review and continuous integration testing required for a project of this complexity.Comment: EASC 2014 conference proceedin

    Breadth First Search Vectorization on the Intel Xeon Phi

    Full text link
    Breadth First Search (BFS) is a building block for graph algorithms and has recently been used for large scale analysis of information in a variety of applications including social networks, graph databases and web searching. Due to its importance, a number of different parallel programming models and architectures have been exploited to optimize the BFS. However, due to the irregular memory access patterns and the unstructured nature of the large graphs, its efficient parallelization is a challenge. The Xeon Phi is a massively parallel architecture available as an off-the-shelf accelerator, which includes a powerful 512 bit vector unit with optimized scatter and gather functions. Given its potential benefits, work related to graph traversing on this architecture is an active area of research. We present a set of experiments in which we explore architectural features of the Xeon Phi and how best to exploit them in a top-down BFS algorithm but the techniques can be applied to the current state-of-the-art hybrid, top-down plus bottom-up, algorithms. We focus on the exploitation of the vector unit by developing an improved highly vectorized OpenMP parallel algorithm, using vector intrinsics, and understanding the use of data alignment and prefetching. In addition, we investigate the impact of hyperthreading and thread affinity on performance, a topic that appears under researched in the literature. As a result, we achieve what we believe is the fastest published top-down BFS algorithm on the version of Xeon Phi used in our experiments. The vectorized BFS top-down source code presented in this paper can be available on request as free-to-use software

    Performance Characterization of Multi-threaded Graph Processing Applications on Intel Many-Integrated-Core Architecture

    Full text link
    Intel Xeon Phi many-integrated-core (MIC) architectures usher in a new era of terascale integration. Among emerging killer applications, parallel graph processing has been a critical technique to analyze connected data. In this paper, we empirically evaluate various computing platforms including an Intel Xeon E5 CPU, a Nvidia Geforce GTX1070 GPU and an Xeon Phi 7210 processor codenamed Knights Landing (KNL) in the domain of parallel graph processing. We show that the KNL gains encouraging performance when processing graphs, so that it can become a promising solution to accelerating multi-threaded graph applications. We further characterize the impact of KNL architectural enhancements on the performance of a state-of-the art graph framework.We have four key observations: 1 Different graph applications require distinctive numbers of threads to reach the peak performance. For the same application, various datasets need even different numbers of threads to achieve the best performance. 2 Only a few graph applications benefit from the high bandwidth MCDRAM, while others favor the low latency DDR4 DRAM. 3 Vector processing units executing AVX512 SIMD instructions on KNLs are underutilized when running the state-of-the-art graph framework. 4 The sub-NUMA cache clustering mode offering the lowest local memory access latency hurts the performance of graph benchmarks that are lack of NUMA awareness. At last, We suggest future works including system auto-tuning tools and graph framework optimizations to fully exploit the potential of KNL for parallel graph processing.Comment: published as L. Jiang, L. Chen and J. Qiu, "Performance Characterization of Multi-threaded Graph Processing Applications on Many-Integrated-Core Architecture," 2018 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS), Belfast, United Kingdom, 2018, pp. 199-20

    Easing parallel programming on heterogeneous systems

    Get PDF
    El modo más frecuente de resolver aplicaciones de HPC (High performance Computing) en tiempos de ejecución razonables y de una forma escalable es mediante el uso de sistemas de cómputo paralelo. La tendencia actual en los sistemas de HPC es la inclusión en la misma máquina de ejecución de varios dispositivos de cómputo, de diferente tipo y arquitectura. Sin embargo, su uso impone al programador retos específicos. Un programador debe ser experto en las herramientas y abstracciones existentes para memoria distribuida, los modelos de programación para sistemas de memoria compartida, y los modelos de programación específicos para para cada tipo de co-procesador, con el fin de crear programas híbridos que puedan explotar eficientemente todas las capacidades de la máquina. Actualmente, todos estos problemas deben ser resueltos por el programador, haciendo así la programación de una máquina heterogénea un auténtico reto. Esta Tesis trata varios de los problemas principales relacionados con la programación en paralelo de los sistemas altamente heterogéneos y distribuidos. En ella se realizan propuestas que resuelven problemas que van desde la creación de códigos portables entre diferentes tipos de dispositivos, aceleradores, y arquitecturas, consiguiendo a su vez máxima eficiencia, hasta los problemas que aparecen en los sistemas de memoria distribuida relacionados con las comunicaciones y la partición de estructuras de datosDepartamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)Doctorado en Informátic

    Scalable Applications on Heterogeneous System Architectures: A Systematic Performance Analysis Framework

    Get PDF
    The efficient parallel execution of scientific applications is a key challenge in high-performance computing (HPC). With growing parallelism and heterogeneity of compute resources as well as increasingly complex software, performance analysis has become an indispensable tool in the development and optimization of parallel programs. This thesis presents a framework for systematic performance analysis of scalable, heterogeneous applications. Based on event traces, it automatically detects the critical path and inefficiencies that result in waiting or idle time, e.g. due to load imbalances between parallel execution streams. As a prerequisite for the analysis of heterogeneous programs, this thesis specifies inefficiency patterns for computation offloading. Furthermore, an essential contribution was made to the development of tool interfaces for OpenACC and OpenMP, which enable a portable data acquisition and a subsequent analysis for programs with offload directives. At present, these interfaces are already part of the latest OpenACC and OpenMP API specification. The aforementioned work, existing preliminary work, and established analysis methods are combined into a generic analysis process, which can be applied across programming models. Based on the detection of wait or idle states, which can propagate over several levels of parallelism, the analysis identifies wasted computing resources and their root cause as well as the critical-path share for each program region. Thus, it determines the influence of program regions on the load balancing between execution streams and the program runtime. The analysis results include a summary of the detected inefficiency patterns and a program trace, enhanced with information about wait states, their cause, and the critical path. In addition, a ranking, based on the amount of waiting time a program region caused on the critical path, highlights program regions that are relevant for program optimization. The scalability of the proposed performance analysis and its implementation is demonstrated using High-Performance Linpack (HPL), while the analysis results are validated with synthetic programs. A scientific application that uses MPI, OpenMP, and CUDA simultaneously is investigated in order to show the applicability of the analysis

    Efficient Machine Learning Approach for Optimizing Scientific Computing Applications on Emerging HPC Architectures

    Get PDF
    Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly-structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-flow and irregular memory accesses. Furthermore, these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-flow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-flow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address the parallel implementation challenges of such irregular applications on different HPC architectures. In particular, we use supervised learning to predict the computation structure and use it to address the control-flow and memory access irregularities in the parallel implementation of such applications on GPUs, Xeon Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon Phis. We use numerical simulation of charged particles beam dynamics simulation as a motivating example throughout the dissertation to present our new approach, though they should be equally applicable to a wide range of irregular applications. The machine learning approach presented here use predictive analytics and forecasting techniques to adaptively model and track the irregular memory access pattern at each time step of the simulation to anticipate the future memory access pattern. Access pattern forecasts can then be used to formulate optimization decisions during application execution which improves the performance of the application at a future time step based on the observations from earlier time steps. In heterogeneous architectures, forecasts can also be used to improve the memory performance and resource utilization of all the processing units to deliver a good aggregate performance. We used these optimization techniques and anticipation strategy to design a cache-aware, memory efficient parallel algorithm to address the irregularities in the parallel implementation of charged particles beam dynamics simulation on different HPC architectures. Experimental result using a diverse mix of HPC architectures shows that our approach in using anticipation strategy is effective in maximizing data reuse, ensuring workload balance, minimizing branch and memory divergence, and in improving resource utilization
    corecore