14,106 research outputs found

    Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels

    Get PDF
    Activities within the period from July 1, 1992 through December 31, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the calibration of the Millimeter-wave Imaging Radiometer (MIR), preliminary flight data analysis, and preparation for TOGA/COARE. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. In the current configuration, the MIR has channels at 90, 150, 183(+/-1,3,7), and 220 GHz. Provisions for three additional channels at 325(+/-1,3) and 8 GHz have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. Past Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design, in-flight software, and post-flight data display software. The combination of the above millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide unique radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been published, and is included as an appendix

    First electrostatic probe results from Explorer 17

    Get PDF
    Electrostatic probe results from ionospheric sounding by Explorer XVII satellit

    Methods for detecting flaring structures in Sagittarius A* with high frequency VLBI

    Get PDF
    The super massive black hole candidate, Sagittarius A*, exhibits variability from radio to X-ray wavelengths on time scales that correspond to < 10 Schwarzschild radii. We survey the potential of millimeter-wavelength VLBI to detect and constrain time variable structures that could give rise to such variations, focusing on a model in which an orbiting hot spot is embedded in an accretion disk. Non-imaging algorithms are developed that use interferometric closure quantities to test for periodicity, and applied to an ensemble of hot-spot models that sample a range of parameter space. We find that structural periodicity in a wide range of cases can be detected on most potential VLBI arrays using modern VLBI instrumentation. Future enhancements of mm/sub-mm VLBI arrays including phased array processors to aggregate VLBI station collecting area, increased bandwidth recording, and addition of new VLBI sites all significantly aid periodicity detection. The methods described herein can be applied to other models of Sagittarius A*, including jet outflows and Magneto-Hydrodynamic accretion simulations.Comment: Submitted to Ap

    Coherent microwave radiation emitted during the process of stimulated Raman scattering in weakly compressed hydrogen : experimental studies, together with an attempt to interpret this microwave emission

    Get PDF
    A coherent microwave radiation, concomitant with experiments of stimulated Raman scattering (SRS) in weakly compressed hydrogen, had been observed; qualitative and quantitative results had been obtained, and are given in this article. .An attempt to interpret this emission on a phenomenological basis is presented, on the basis of a model in which the influence of hydrogen molecule anharmonicity is taken into account, leading to two main effects:1) possible existence of an intermediate state involving a vibrationally excited quasiparticle system, the lifetime of which should be very short (0.1-1 ps); 2) nonlinear coupling between the Stokes light wave and the longitudinal propagating waves associated to the quasiparticle system. Moreover, several processes are also to be taken into account; existence of a macroscopic longitudinal electric field, due to coulombian interactions; electrostriction effect giving rise to a "piezoelectric" character for the quasiparticle system; Cherenkov-type and anomalous relativistic Doppler effects. Then, the source of the coherent microwave radiation might be the in phase quadrature part of the longitudinal polarisation associated to the quasiparticle waves, and its emission should appear like parametric instabilities. Concerning the SRS process itself, an additional contribution to the Raman gain should arise from the laser induced electro-optic effect

    Far-field spectral characterization of conical emission and filamentation in Kerr media

    Full text link
    By use of an imaging spectrometer we map the far-field (θλ\theta-\lambda) spectra of 200 fs optical pulses that have undergone beam collapse and filamentation in a Kerr medium. By studying the evolution of the spectra with increasing input power and using a model based on stationary linear asymptotic wave modes, we are able to trace a consistent model of optical beam collapse high-lighting the interplay between conical emission, multiple pulse splitting and other effects such as spatial chirp.Comment: 8 pages, 9 figure

    Investigation of passive atmospheric sounding using millimeter and submillimeter wavelength channels

    Get PDF
    Activities within the period from January 1, 1992 through June 30, 1992 by Georgia Tech researchers in millimeter and submillimeter wavelength tropospheric remote sensing have been centered around the integration and initial data flights of the MIR on board the NASA ER-2. Georgia Tech contributions during this period include completion of the MIR flight software and implementation of a 'quick-view' graphics program for ground based calibration and analysis of the MIR imagery. In the current configuration, the MIR has channels at 90, 150, 183 +/- 1,3,7, and 220 GHz. Provisions for three additional channels at 325 +/-1,3 and 9 GHZ have been made, and a 325-GHz receiver is currently being built by the ZAX Millimeter Wave Corporation for use in the MIR. The combination of the millimeter wave and submillimeter wave channels aboard a single well-calibrated instrument will provide the necessary aircraft radiometric data for radiative transfer and cloud and water vapor retrieval studies. A paper by the PI discussing the potential benefits of passive millimeter and submillimeter wave observations for cloud, water vapor and precipitation measurements has recently been accepted for publication (Gasiewski, 1992), and is included as Appendix A. The MIR instrument is a joint project between NASA/GSFC and Georgia Tech. Other Georgia Tech contributions to the MIR and its related scientific uses have included basic system design studies, performance analyses, and circuit and radiometric load design

    Deterministic dynamics of stimulated Brillouin scattering in optical fibres

    Get PDF
    Abstract unavailable please refer to PD
    corecore