1,225 research outputs found

    The Roles of Crossover and Mutation in Real-Coded Genetic Algorithms

    Get PDF

    A theoretical and empirical study on unbiased boundary-extended crossover for real-valued representation

    Get PDF
    Copyright © 2012 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Information Sciences. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Information Sciences Vol. 183 Issue 1 (2012), DOI: 10.1016/j.ins.2011.07.013We present a new crossover operator for real-coded genetic algorithms employing a novel methodology to remove the inherent bias of pre-existing crossover operators. This is done by transforming the topology of the hyper-rectangular real space by gluing opposite boundaries and designing a boundary extension method for making the fitness function smooth at the glued boundary. We show the advantages of the proposed crossover by comparing its performance with those of existing ones on test functions that are commonly used in the literature, and a nonlinear regression on a real-world dataset

    Evolutionary algorithm-based analysis of gravitational microlensing lightcurves

    Full text link
    A new algorithm developed to perform autonomous fitting of gravitational microlensing lightcurves is presented. The new algorithm is conceptually simple, versatile and robust, and parallelises trivially; it combines features of extant evolutionary algorithms with some novel ones, and fares well on the problem of fitting binary-lens microlensing lightcurves, as well as on a number of other difficult optimisation problems. Success rates in excess of 90% are achieved when fitting synthetic though noisy binary-lens lightcurves, allowing no more than 20 minutes per fit on a desktop computer; this success rate is shown to compare very favourably with that of both a conventional (iterated simplex) algorithm, and a more state-of-the-art, artificial neural network-based approach. As such, this work provides proof of concept for the use of an evolutionary algorithm as the basis for real-time, autonomous modelling of microlensing events. Further work is required to investigate how the algorithm will fare when faced with more complex and realistic microlensing modelling problems; it is, however, argued here that the use of parallel computing platforms, such as inexpensive graphics processing units, should allow fitting times to be constrained to under an hour, even when dealing with complicated microlensing models. In any event, it is hoped that this work might stimulate some interest in evolutionary algorithms, and that the algorithm described here might prove useful for solving microlensing and/or more general model-fitting problems.Comment: 14 pages, 3 figures; accepted for publication in MNRA

    Non-elitist Evolutionary Multi-objective Optimizers Revisited

    Full text link
    Since around 2000, it has been considered that elitist evolutionary multi-objective optimization algorithms (EMOAs) always outperform non-elitist EMOAs. This paper revisits the performance of non-elitist EMOAs for bi-objective continuous optimization when using an unbounded external archive. This paper examines the performance of EMOAs with two elitist and one non-elitist environmental selections. The performance of EMOAs is evaluated on the bi-objective BBOB problem suite provided by the COCO platform. In contrast to conventional wisdom, results show that non-elitist EMOAs with particular crossover methods perform significantly well on the bi-objective BBOB problems with many decision variables when using the unbounded external archive. This paper also analyzes the properties of the non-elitist selection.Comment: This is an accepted version of a paper published in the proceedings of GECCO 201

    Evolutionary Computation Methods for Fuzzy Decision Making on Load Dispatch Problems

    Full text link
    This chapter introduces basic concepts relating to a day-ahead market in a power system. A load dispatch model considers a ramp rate and valve-point-loading effects. An environment/economic load dispatch model is presented to handle uncertainty factors. The model provides theoretical foundations for the research on operations and decision making in the electric power market. To solve load dispatch problems from day-ahead markets in power systems, a hybrid evolutionary computation method with a quasi-simplex technique, a weight point method for multi-objective programming, and a fuzzy-number-ranking-based optimization method for fuzzy multi-objective non-linear programming are developed

    Statistical and Computational Tradeoff in Genetic Algorithm-Based Estimation

    Full text link
    When a Genetic Algorithm (GA), or a stochastic algorithm in general, is employed in a statistical problem, the obtained result is affected by both variability due to sampling, that refers to the fact that only a sample is observed, and variability due to the stochastic elements of the algorithm. This topic can be easily set in a framework of statistical and computational tradeoff question, crucial in recent problems, for which statisticians must carefully set statistical and computational part of the analysis, taking account of some resource or time constraints. In the present work we analyze estimation problems tackled by GAs, for which variability of estimates can be decomposed in the two sources of variability, considering some constraints in the form of cost functions, related to both data acquisition and runtime of the algorithm. Simulation studies will be presented to discuss the statistical and computational tradeoff question.Comment: 17 pages, 5 figure

    A Taxonomy for the Crossover Operator for Real-Coded Genetic Algorithms: An Experimental Study

    Get PDF
    The main real-coded genetic algorithm (RCGA) research effort has been spent on developing efficient crossover operators. This study presents a taxonomy for this operator that groups its instances in different categories according to the way they generate the genes of the offspring from the genes of the parents. The empirical study of representative crossovers of all the categories reveals concrete features that allow the crossover operator to have a positive influence on RCGA performance. They may be useful to design more effective crossover models

    Accelerating ant colony optimization by using local search

    Get PDF
    This thesis report is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Computer Science and Engineering, 2015.Cataloged from PDF version of thesis report.Includes bibliographical references (page 42-45).Optimization is very important fact in terms of taking decision in mathematics, statistics, computer science and real life problem solving or decision making application. Many different optimization techniques have been developed for solving such functional problem. In order to solving various problem computer Science introduce evolutionary optimization algorithm and their hybrid. In recent years, test functions are using to validate new optimization algorithms and to compare the performance with other existing algorithm. There are many Single Object Optimization algorithm proposed earlier. For example: ACO, PSO, ABC. ACO is a popular optimization technique for solving hard combination mathematical optimization problem. In this paper, we run ACO upon five benchmark function and modified the parameter of ACO in order to perform SBX crossover and polynomial mutation. The proposed algorithm SBXACO is tested upon some benchmark function under both static and dynamic to evaluate performances. We choose wide range of benchmark function and compare results with existing DE and its hybrid DEahcSPX from other literature are also presented here.Nabila TabassumMaruful HaqueB. Computer Science and Engineerin

    Self-adaptive simulated binary crossover for real-parameter optimization

    Get PDF
    Simulated binary crossover (SBX) is a real-parameter recombinationoperator which is commonly used in the evolutionary algorithm (EA) literature. The operatorinvolves a parameter which dictates the spread of offspring solutionsvis-a-vis that of the parent solutions. In all applications of SBX sofar, researchers have kept a fixed value throughout a simulation run. In this paper, we suggest a self-adaptive procedure of updating theparameter so as to allow a smooth navigation over the functionlandscape with iteration. Some basic principles of classicaloptimization literature are utilized for this purpose. The resultingEAs are found to produce remarkable and much better results comparedto the original operator having a fixed value of the parameter. Studieson both single and multiple objective optimization problems are madewith success
    corecore