5,582 research outputs found

    Estimating Fire Weather Indices via Semantic Reasoning over Wireless Sensor Network Data Streams

    Full text link
    Wildfires are frequent, devastating events in Australia that regularly cause significant loss of life and widespread property damage. Fire weather indices are a widely-adopted method for measuring fire danger and they play a significant role in issuing bushfire warnings and in anticipating demand for bushfire management resources. Existing systems that calculate fire weather indices are limited due to low spatial and temporal resolution. Localized wireless sensor networks, on the other hand, gather continuous sensor data measuring variables such as air temperature, relative humidity, rainfall and wind speed at high resolutions. However, using wireless sensor networks to estimate fire weather indices is a challenge due to data quality issues, lack of standard data formats and lack of agreement on thresholds and methods for calculating fire weather indices. Within the scope of this paper, we propose a standardized approach to calculating Fire Weather Indices (a.k.a. fire danger ratings) and overcome a number of the challenges by applying Semantic Web Technologies to the processing of data streams from a wireless sensor network deployed in the Springbrook region of South East Queensland. This paper describes the underlying ontologies, the semantic reasoning and the Semantic Fire Weather Index (SFWI) system that we have developed to enable domain experts to specify and adapt rules for calculating Fire Weather Indices. We also describe the Web-based mapping interface that we have developed, that enables users to improve their understanding of how fire weather indices vary over time within a particular region.Finally, we discuss our evaluation results that indicate that the proposed system outperforms state-of-the-art techniques in terms of accuracy, precision and query performance.Comment: 20pages, 12 figure

    A robust Bayesian analysis of the impact of policy decisions on crop rotations.

    Get PDF
    We analyse the impact of a policy decision on crop rotations, using the imprecise land use model that was developed by the authors in earlier work. A specific challenge in crop rotation models is that farmer’s crop choices are driven by both policy changes and external non-stationary factors, such as rainfall, temperature and agricultural input and output prices. Such dynamics can be modelled by a non-stationary stochastic process, where crop transition probabilities are multinomial logistic functions of such external factors. We use a robust Bayesian approach to estimate the parameters of our model, and validate it by comparing the model response with a non-parametric estimate, as well as by cross validation. Finally, we use the resulting predictions to solve a hypothetical yet realistic policy problem

    The ECMWF Ensemble Prediction System: Looking Back (more than) 25 Years and Projecting Forward 25 Years

    Full text link
    This paper has been written to mark 25 years of operational medium-range ensemble forecasting. The origins of the ECMWF Ensemble Prediction System are outlined, including the development of the precursor real-time Met Office monthly ensemble forecast system. In particular, the reasons for the development of singular vectors and stochastic physics - particular features of the ECMWF Ensemble Prediction System - are discussed. The author speculates about the development and use of ensemble prediction in the next 25 years.Comment: Submitted to Special Issue of the Quarterly Journal of the Royal Meteorological Society: 25 years of ensemble predictio

    A Wildfire Prediction Based on Fuzzy Inference System for Wireless Sensor Networks

    Get PDF
    The study of forest fires has been traditionally considered as an important application due to the inherent danger that this entails. This phenomenon takes place in hostile regions of difficult access and large areas. Introduction of new technologies such as Wireless Sensor Networks (WSNs) has allowed us to monitor such areas. In this paper, an intelligent system for fire prediction based on wireless sensor networks is presented. This system obtains the probability of fire and fire behavior in a particular area. This information allows firefighters to obtain escape paths and determine strategies to fight the fire. A firefighter can access this information with a portable device on every node of the network. The system has been evaluated by simulation analysis and its implementation is being done in a real environment.Junta de Andalucía P07-TIC-02476Junta de Andalucía TIC-570

    Spatially Aware Ensemble-Based Learning to Predict Weather-Related Outages in Transmission

    Get PDF
    This paper describes the implementation of prediction model for real-time assessment of weather related outages in the electric transmission system. The network data and historical outages are correlated with variety of weather sources in order to construct the knowledge extraction platform for accurate outage probability prediction. An extension of logistic regression prediction model that embeds the spatial configuration of the network was used for prediction. The results show that developed algorithm has very high accuracy and is able to differentiate the outage area from the rest of the network in 1 to 3 hours before the outage. The prediction algorithm is integrated inside weather testbed for real-time mapping of network outage probabilities using incoming weather forecast

    Lower precision for higher accuracy: precision and resolution exploration for shallow water equations

    No full text
    Accurate forecasts of future climate with numerical models of atmosphere and ocean are of vital importance. However, forecast quality is often limited by the available computational power. This paper investigates the acceleration of a C-grid shallow water model through the use of reduced precision targeting FPGA technology. Using a double-gyre scenario, we show that the mantissa length of variables can be reduced to 14 bits without affecting the accuracy beyond the error inherent in the model. Our reduced precision FPGA implementation runs 5.4 times faster than a double precision FPGA implementation, and 12 times faster than a multi-Threaded CPU implementation. Moreover, our reduced precision FPGA implementation uses 39 times less energy than the CPU implementation and can compute a 100×100 grid for the same energy that the CPU implementation would take for a 29×29 grid

    Inductive biases in deep learning models for weather prediction

    Full text link
    Deep learning has recently gained immense popularity in the Earth sciences as it enables us to formulate purely data-driven models of complex Earth system processes. Deep learning-based weather prediction (DLWP) models have made significant progress in the last few years, achieving forecast skills comparable to established numerical weather prediction (NWP) models with comparatively lesser computational costs. In order to train accurate, reliable, and tractable DLWP models with several millions of parameters, the model design needs to incorporate suitable inductive biases that encode structural assumptions about the data and modelled processes. When chosen appropriately, these biases enable faster learning and better generalisation to unseen data. Although inductive biases play a crucial role in successful DLWP models, they are often not stated explicitly and how they contribute to model performance remains unclear. Here, we review and analyse the inductive biases of six state-of-the-art DLWP models, involving a deeper look at five key design elements: input data, forecasting objective, loss components, layered design of the deep learning architectures, and optimisation methods. We show how the design choices made in each of the five design elements relate to structural assumptions. Given recent developments in the broader DL community, we anticipate that the future of DLWP will likely see a wider use of foundation models -- large models pre-trained on big databases with self-supervised learning -- combined with explicit physics-informed inductive biases that allow the models to provide competitive forecasts even at the more challenging subseasonal-to-seasonal scales

    Dispersal and extrapolation on the accuracy of temporal predictions from distribution models for the Darwin's frog

    Get PDF
    Indexación: Web of Science; Scopus.Climate change is a major threat to biodiversity; the development of models that reliably predict its effects on species distributions is a priority for conservation biogeography. Two of the main issues for accurate temporal predictions from Species Distribution Models (SDM) are model extrapolation and unrealistic dispersal scenarios. We assessed the consequences of these issues on the accuracy of climate-driven SDM predictions for the dispersal-limited Darwin's frog Rhinoderma darwinii in South America. We calibrated models using historical data (1950-1975) and projected them across 40 yr to predict distribution under current climatic conditions, assessing predictive accuracy through the area under the ROC curve (AUC) and True Skill Statistics (TSS), contrasting binary model predictions against temporal-independent validation data set (i.e., current presences/absences). To assess the effects of incorporating dispersal processes we compared the predictive accuracy of dispersal constrained models with no dispersal limited SDMs; and to assess the effects of model extrapolation on the predictive accuracy of SDMs, we compared this between extrapolated and no extrapolated areas. The incorporation of dispersal processes enhanced predictive accuracy, mainly due to a decrease in the false presence rate of model predictions, which is consistent with discrimination of suitable but inaccessible habitat. This also had consequences on range size changes over time, which is the most used proxy for extinction risk from climate change. The area of current climatic conditions that was absent in the baseline conditions (i.e., extrapolated areas) represents 39% of the study area, leading to a significant decrease in predictive accuracy of model predictions for those areas. Our results highlight (1) incorporating dispersal processes can improve predictive accuracy of temporal transference of SDMs and reduce uncertainties of extinction risk assessments from global change; (2) as geographical areas subjected to novel climates are expected to arise, they must be reported as they show less accurate predictions under future climate scenarios. Consequently, environmental extrapolation and dispersal processes should be explicitly incorporated to report and reduce uncertainties in temporal predictions of SDMs, respectively. Doing so, we expect to improve the reliability of the information we provide for conservation decision makers under future climate change scenarios.http://onlinelibrary.wiley.com/doi/10.1002/eap.1556/abstract;jsessionid=1E2084FF99600D0EEC9FA358A3DBC2A3.f02t0
    corecore