4,686 research outputs found

    Machine Learning Applications in Estimating Transformer Loss of Life

    Full text link
    Transformer life assessment and failure diagnostics have always been important problems for electric utility companies. Ambient temperature and load profile are the main factors which affect aging of the transformer insulation, and consequently, the transformer lifetime. The IEEE Std. C57.911995 provides a model for calculating the transformer loss of life based on ambient temperature and transformer's loading. In this paper, this standard is used to develop a data-driven static model for hourly estimation of the transformer loss of life. Among various machine learning methods for developing this static model, the Adaptive Network-Based Fuzzy Inference System (ANFIS) is selected. Numerical simulations demonstrate the effectiveness and the accuracy of the proposed ANFIS method compared with other relevant machine learning based methods to solve this problem.Comment: IEEE Power and Energy Society General Meeting, 201

    A convolutional neural network based deep learning methodology for recognition of partial discharge patterns from high voltage cables

    Get PDF
    It is a great challenge to differentiate partial discharge (PD) induced by different types of insulation defects in high-voltage cables. Some types of PD signals have very similar characteristics and are specifically difficult to differentiate, even for the most experienced specialists. To overcome the challenge, a convolutional neural network (CNN)-based deep learning methodology for PD pattern recognition is presented in this paper. First, PD testing for five types of artificial defects in ethylene-propylene-rubber cables is carried out in high voltage laboratory to generate signals containing PD data. Second, 3500 sets of PD transient pulses are extracted, and then 33 kinds of PD features are established. The third stage applies a CNN to the data; typical CNN architecture and the key factors which affect the CNN-based pattern recognition accuracy are described. Factors discussed include the number of the network layers, convolutional kernel size, activation function, and pooling method. This paper presents a flowchart of the CNN-based PD pattern recognition method and an evaluation with 3500 sets of PD samples. Finally, the CNN-based pattern recognition results are shown and the proposed method is compared with two more traditional analysis methods, i.e., support vector machine (SVM) and back propagation neural network (BPNN). The results show that the proposed CNN method has higher pattern recognition accuracy than SVM and BPNN, and that the novel method is especially effective for PD type recognition in cases of signals of high similarity, which is applicable for industrial applications

    Use of Machine Learning for Partial Discharge Discrimination

    No full text
    Partial discharge (PD) measurements are an important tool for assessing the condition of power equipment. Different sources of PD have different effects on the insulation performance of power apparatus. Therefore, discrimination between PD sources is of great interest to both system utilities and equipment manufacturers. This paper investigates the use of a wide bandwidth PD on-line measurement system to facilitate automatic PD source identification. Three artificial PD models were used to simulate typical PD sources which may exist within power systems. Wavelet analysis was applied to pre-process the obtained measurement data. This data was then processed using correlation analysis to cluster the discharges into different groups. A machine learning technique, namely the support vector machine (SVM) was then used to identify between the different PD sources. The SVM is trained to differentiate between the inherent features of each discharge source signal. Laboratory experiments indicate that this approach is applicable for use with field measurement data

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Artificial intelligence for superconducting transformers

    Get PDF
    Artificial intelligence (AI) techniques are currently widely used in different parts of the electrical engineering sector due to their privileges for being used in smarter manufacturing and accurate and efficient operating of electric devices. Power transformers are a vital and expensive asset in the power network, where their consistent and fault-free operation greatly impacts the reliability of the whole system. The superconducting transformer has the potential to fully modernize the power network in the near future with its invincible advantages, including much lighter weight, more compact size, much lower loss, and higher efficiency compared with conventional oil-immersed counterparts. In this article, we have looked into the perspective of using AI for revolutionizing superconducting transformer technology in many aspects related to their design, operation, condition monitoring, maintenance, and asset management. We believe that this article offers a roadmap for what could be and needs to be done in the current decade 2020-2030 to integrate AI into superconducting transformer technology

    Application of Machine Learning Methods for Asset Management on Power Distribution Networks

    Get PDF
    This study aims to study the different kinds of Machine Learning (ML) models and their working principles for asset management in power networks. Also, it investigates the challenges behind asset management and its maintenance activities. In this review article, Machine Learning (ML) models are analyzed to improve the lifespan of the electrical components based on the maintenance management and assessment planning policies. The articles are categorized according to their purpose: 1) classification, 2) machine learning, and 3) artificial intelligence mechanisms. Moreover, the importance of using ML models for proper decision making based on the asset management plan is illustrated in a detailed manner. In addition to this, a comparative analysis between the ML models is performed, identifying the advantages and disadvantages of these techniques. Then, the challenges and managing operations of the asset management strategies are discussed based on the technical and economic factors. The proper functioning, maintenance and controlling operations of the electric components are key challenging and demanding tasks in the power distribution systems. Typically, asset management plays an essential role in determining the quality and profitability of the elements in the power network. Based on this investigation, the most suitable and optimal machine learning technique can be identified and used for future work. Doi: 10.28991/ESJ-2022-06-04-017 Full Text: PD

    Evaluation of Lightning Impulse Test by Frequency Response Analysis

    Get PDF
    In this work are presented the basis for improving the interpretation of transformer lightning impulse test and the development of a graphical user interface system, which allows comparisons of time domain data and frequency response. The frequency response is obtained from deconvolution of voltage and neutral current records. A quantitative comparison of frequency response is performed using the techniques applied to displacement detection through Frequency Response Analysis, such as correlation and spectral deviation. The system is implemented using 8 bit digitizers to acquire the voltage and neutral current records. The quantization error and reliability of the frequency response obtained is handled through the use of the coherence function and tolerance bands. The system is thoroughly tested applying a lightning impulse test to a dry type distribution transformer, simulating an interdisc fault with a spark gap. Failure detection is confirmed

    Development of a quantitative health index and diagnostic method for efficient asset management of power transformers

    Get PDF
    Power transformers play a very important role in electrical power networks and are frequently operated longer than their expected design life. Therefore, to ensure their best operating performance in a transmission network, the fault condition of each transformer must be assessed regularly. For an accurate fault diagnosis, it is important to have maximum information about an individual transformer based on unbiased measurements. This can best be achieved using artificial intelligence (AI) that can systematically analyse the complex features of diagnostic measurements. Clustering techniques are a form of AI that is particularly well suited to fault diagnosis. To provide an assessment of transformers, a hybrid k-means algorithm, and probabilistic Parzen window estimation are used in this research. The clusters they form are representative of a single or multiple fault categories. The proposed technique computes the maximum probability of transformers in each cluster to determine their fault categories. The main focus of this research is to determine a quantitative health index (HI) to characterize the operating condition of transformers. Condition assessment tries to detect incipient faults before they become too serious, which requires a sensitive and quantified approach. Therefore, the HI needs to come from a proportionate system that can estimate health condition of transformers over time. To quantify this condition, the General Regression Neural Network (GRNN), a type of AI, has been chosen in this research. The GRNN works well with small sets of training data and avoids the needs to estimate large sets of model parameters, following a largely non-parametric approach. The methodology used here regards transformers as a collection of subsystems and summarizes their individual condition into a quantified HI based on the existing agreed benchmarks drawn from IEEE and CIGRE standards. To better calibrate the HI, it may be mapped to a failure probability estimate for each transformer over the coming year. Experimental results of the research show that the proposed methods are more effective than previously published approaches when diagnosing critical faults. Moreover, this novel HI approach can provide a comprehensive assessment of transformers based on the actual condition of their individual subsystems

    Development of a quantitative health index and diagnostic method for efficient asset management of power transformers

    Get PDF
    Power transformers play a very important role in electrical power networks and are frequently operated longer than their expected design life. Therefore, to ensure their best operating performance in a transmission network, the fault condition of each transformer must be assessed regularly. For an accurate fault diagnosis, it is important to have maximum information about an individual transformer based on unbiased measurements. This can best be achieved using artificial intelligence (AI) that can systematically analyse the complex features of diagnostic measurements. Clustering techniques are a form of AI that is particularly well suited to fault diagnosis. To provide an assessment of transformers, a hybrid k-means algorithm, and probabilistic Parzen window estimation are used in this research. The clusters they form are representative of a single or multiple fault categories. The proposed technique computes the maximum probability of transformers in each cluster to determine their fault categories. The main focus of this research is to determine a quantitative health index (HI) to characterize the operating condition of transformers. Condition assessment tries to detect incipient faults before they become too serious, which requires a sensitive and quantified approach. Therefore, the HI needs to come from a proportionate system that can estimate health condition of transformers over time. To quantify this condition, the General Regression Neural Network (GRNN), a type of AI, has been chosen in this research. The GRNN works well with small sets of training data and avoids the needs to estimate large sets of model parameters, following a largely non-parametric approach. The methodology used here regards transformers as a collection of subsystems and summarizes their individual condition into a quantified HI based on the existing agreed benchmarks drawn from IEEE and CIGRE standards. To better calibrate the HI, it may be mapped to a failure probability estimate for each transformer over the coming year. Experimental results of the research show that the proposed methods are more effective than previously published approaches when diagnosing critical faults. Moreover, this novel HI approach can provide a comprehensive assessment of transformers based on the actual condition of their individual subsystems
    • …
    corecore