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Abstract 

 

Power transformers play a very important role in electrical power networks and are 

frequently operated longer than their expected design life. Therefore, to ensure their 

best operating performance in a transmission network, the fault condition of each 

transformer must be assessed regularly. For an accurate fault diagnosis, it is important 

to have maximum information about an individual transformer based on unbiased 

measurements. This can best be achieved using artificial intelligence (AI) that can 

systematically analyse the complex features of diagnostic measurements.  

Clustering techniques are a form of AI that is particularly well suited to fault 

diagnosis. To provide an assessment of transformers, a hybrid k-means algorithm, 

and probabilistic Parzen window estimation are used in this research. The clusters 

they form are representative of a single or multiple fault categories. The proposed 

technique computes the maximum probability of transformers in each cluster to 

determine their fault categories. 

The main focus of this research is to determine a quantitative health index (HI) to 

characterize the operating condition of transformers. Condition assessment tries to 

detect incipient faults before they become too serious, which requires a sensitive and 

quantified approach.  Therefore, the HI needs to come from a proportionate system 

that can estimate health condition of transformers over time. To quantify this 

condition, the General Regression Neural Network (GRNN), a type of AI, has been 

chosen in this research. The GRNN works well with small sets of training data and 

avoids the needs to estimate large sets of model parameters, following a largely non-

parametric approach. The methodology used here regards transformers as a collection 

of subsystems and summarizes their individual condition into a quantified HI based 

on the existing agreed benchmarks drawn from IEEE and CIGRE standards. To better 

calibrate the HI, it may be mapped to a failure probability estimate for each 

transformer over the coming year. Experimental results of the research show that the 

proposed methods are more effective than previously published approaches when 
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diagnosing critical faults. Moreover, this novel HI approach can provide a 

comprehensive assessment of transformers based on the actual condition of their 

individual subsystems. 
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Chapter 1:  General Introduction and Overview of Thesis

 

 

1.1 Introduction 

Power transformers are the most expensive and strategic devices in a power 

transmission and distribution network. They play a significant role in the 

transmission of power from generation points to the end users [1-2]. It is expected 

that asset managers will keep these expensive devices functional continuously 

throughout their service life without any unscheduled outages. Maintenance of a 

power transformer can be costly and time-consuming. Moreover, a sudden failure can 

make the maintenance expense even greater than the allocated budget due to 

associated repair and replacement costs. Therefore, to ensure uninterrupted power 

supply and avoid catastrophic failure of a power transformer, both fault diagnosis, 

and condition monitoring are very important to utilities. A number of different off-

line and on-line techniques are currently used to detect faults in transformers and to 

monitor the progressive degradation of their insulation, core, windings, tap changer 

and bushings [2]. Most of them are based on the concentration of dissolved gases and 

various by-products produced from the degradation of insulation. As the opening of 

transformers is mostly impractical, the gas concentrations and other byproducts are 

used as a secondary evidence to diagnose the faults without disconnecting them from 

service. Each of the available methods has some limitations to diagnose faults. 

Therefore, utility experts are dependent on multiple parallel approaches to classify 

the actual faulty category of a transformer. To overcome the shortcomings of existing 

techniques, it becomes necessary to develop a reliable fault diagnostic and condition 

monitoring method. This project is concerned with the limitation of existing fault 

diagnosis, condition monitoring and failure probability estimation techniques of 

transformers. Therefore, the fundamental research question of the thesis is chosen as: 

Can the application of artificial intelligence and machine learning techniques 

estimate the missing measurements of transformers, improve their fault diagnosis 
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techniques, quantify actual operating state and estimate the failure probability based 

on their condition as a function of time? It is expected that improvements to existing 

methods can help to setup an appropriate maintenance strategy that can minimize the 

operational risk while maximizing operating efficiency and service life [2-3].  

 

1.2 Objectives of the Study 

Current fault diagnostic techniques are mostly dependent on the ratio and proportion 

of different gases that dissolve in the transformer oil. One of the widely accepted 

diagnostic methods is the family of Duval triangles where combustible hydrocarbon 

gases represent the three axes of a triangular graph. Each triangle is sub-divided into 

different regions, associated with a specific transformer fault. However, the 

boundaries of the graphical Duval triangles and the ranges of different ratio approach 

for fault diagnosis are not absolute. They are all changing over time based on the 

accumulated evidence and practical experience [4]. There are also growing concerns 

from transformer experts’ regarding the quantification process of various routine and 

diagnostic tests of transformers into a measurable index so that maintenance decision 

can be made by looking at the single index value. Therefore, a detailed, 

comprehensive study was required to improve the accuracy of condition monitoring 

and fault diagnostic techniques.   

Given the research questions in the previous section, a framework was developed 

with six objectives that will answer all of them. To achieve the goals, measurements 

from more than 350 power transformers operated by a utility company in Australia 

are used in this research. A comprehensive study and analysis will be seen in this 

report based on the collected field measurements. The main objectives of this 

research can be summarized as follows: 

i. Identify the limitations of existing condition monitoring techniques and 

diagnostic tests of power transformers. 
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ii. Develop a fault diagnostic method to improve the fault classification accuracy 

of power transformers. 

iii. Investigate the correlation between different routine and diagnostic 

measurement. 

iv. Estimate missing values in multidimensional vectors based on the complete 

set of correlated vector measurements of transformers. 

v. Develop a quantitative health index for condition assessment of power 

transformers. 

vi. Estimate the failure probability of an individual transformer over time based 

on its calculated health index.  

In this thesis, a comprehensive literature review was conducted to understand the 

limitations of existing diagnostic and condition monitoring techniques of 

transformers using relevant international standards and common industrial practices. 

In this project, a hybrid clustering and a probabilistic Parzen window function were 

used to improve the diagnostic techniques and faults classification. If transformer 

health is to be quantified, it is essential to evaluate the operating condition of its 

subsystems and explore the correlation of different measurements. The quantified 

condition index, based on diagnostic tests, tries to detect incipient faults in 

transformers before they became too severe and may be used to estimate its failure 

probability as a function of operating age. Moreover, a General Regression Neural 

Network was also adapted to estimate the missing measurements of transformers that 

are critical to making a decision on asset management and scheduling their 

maintenance. 

 

1.3 Fault Diagnosis 

The dielectric properties of insulating oil and paper used in a transformer changes 

with the increase of its operating age. Therefore, ageing of this insulation over time is 

inevitable. However, a proper maintenance plan can reduce the degradation rate and 
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help to increase the service life of these valuable assets. A transformer may need to 

handle several faults and variable stresses throughout its service life that may degrade 

its insulation and other ancillary components. The degraded insulation reacts with 

moisture and polar contaminants to produce different gases and chemical compounds 

such as acid and the derivatives of furan. At higher operating temperatures, and in the 

presence of moisture, the production rate of these by-products is increases. Over 

time, most of them are partially dissolved in the insulating oil, and they carry 

valuable information about a transformer’s internal condition. Therefore, oil samples 

from the main tank of transformers are periodically collected to measure the 

concentrations of the dissolved materials as evidence for diagnosing fault classes.  

The concentration of dissolved gases in a transformer’s oil increases over time. The 

relative percentages of the dissolved combustible gases are directly correlated with 

different fault conditions. Therefore, to analyze the concentration of the gases, 

several standard techniques such as the family of Duval triangles and ratio 

approaches like Key Gas, Roger’s Ratios, Doernenburg and the IEC method are 

currently available [4-6]. All the ratio methods are based on the practical experience 

of experts, and there is no direct way to express them using a mathematical formula. 

They can only give a valid diagnosis if some of the gas concentrations exceed certain 

thresholds [5]. Moreover, in some cases, the gas ratios may fall outside the 

boundaries of predefined ranges and remain unclassified. To overcome the 

shortcomings of these existing methods, a novel hybrid clustering approach with the 

combination of k-means, k-nearest neighbors, and the Linde-Buzo-Gray (LBG) 

algorithm was developed during this research. The method forms the clusters with 

multidimensional measured vectors in a high dimensional space in such a way that 

each group may contain a single or multiple types of faulty transformers with 

different distinguishable percentages. To take the opinion of neighbors, the measured 

vectors are indexed based on distances from the center of three closest clusters. 

Therefore, each of them could vote for a single or multiple faulty classes. The 

cumulative votes are added together to make the decision on the fault category of 
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transformers. In a later stage, another fault diagnostic technique is introduced using a 

probabilistic Parzen window (PW) estimation [7-8]. The window function of PW 

method is implemented using a multivariate Gaussian kernel. The approach measures 

the probability of a vector measured from an unknown transformer into different 

faulty groups to identify its fault category. It makes a decision based on the highest 

probability of a measured vector in any group. 

 

1.4 Missing Data Estimation 

To monitor the performance and health condition of transformers, besides secondary 

evidence (oil test results) a set of electrical and dielectric tests are regularly 

performed on in-service transformers. However, due to technical problems and 

limited maintenance budgets, different types of measurements may be made at 

different rates or occasionally omitted. Therefore, some measured vectors remain 

incomplete or may contain outdated proxy data. Moreover, due to the improper oil 

sampling and wrong experimental setup in electrical and dielectric tests, some 

ambiguity may be found in measurement.  If the dimensions of measured vectors are 

correlated, then their missing elements can be estimated using a finite set of complete 

measurements [9]. To verify the measured data and determine the missing values in 

the vectors, a General Regression Neural Networks (GRNN) based artificial 

intelligence approach has been adopted in this research. The method estimates the 

missing data based on the correlated set of other measurements. Although not a new 

method, it has not previously been applied to industrial fault detection problems.  The 

performance of the method is compared against a deliberately omitted value in some 

complete vectors.  Although the estimation of missing value does not offer any new 

information to the model, the remaining dimensions of an incomplete vector, 

comprised of actual measurements, can be used to improve the accuracy of model 

parameters estimation. After estimating the missing values, the complete vector may 

help transformer experts to take appropriate maintenance decisions by looking at the 
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full set of necessary information. A paper dealing with missing data estimation 

procedure has been included as one chapter of this thesis.  

 

1.5 Condition Monitoring 

Generally, manufacturers of power transformers expect their products to operate in a 

network for 50 years [10]. To manage the growing demand for electricity, many 

transformers in the utility systems are already beyond their expected design life. 

Moreover, a large population of them are approaching this age without clear evidence 

of their imminent failure. Occasionally, they are required to endure over loading 

conditions to manage the peak demand for electricity. During these peaks, they 

experience higher thermal, dielectric, chemical and mechanical stresses that can 

potentially damage the dielectric and mechanical properties of their solid and liquid 

insulation [11]. When an aged transformer faces regular over loading and repetitive 

short circuit incidents, these can cause severe degradation of its insulation that may 

even lead to an imminent breakdown. To manage the growing number of older assets 

in the utility networks, the effective approach is to either continuously monitor their 

condition or replace them from the existing system. However, the decision to replace 

a transformer is not easy, as it is associated with the huge capital investment. 

Therefore, to justify the decision of a rigorous maintenance or replacement, a high 

standard of evidence is necessary [10]. A quantitative health index can help to take 

the trade-off decision between the cases.  

A power transformer is made from different subsystems such as insulation, bushings, 

tap changer, a core, windings and ancillary components. For proper functioning, each 

of them needs to simultaneously operate correctly. A fault in any subsystem may lead 

to catastrophic failure of a transformer. Therefore, to summarize the operating 

condition of the various subsystems in a transformer, beside online condition 

monitoring, health index (HI) calculation of a transformer received more attention to 

the utilities. In a HI calculation, the measurements from different subsystem are 
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combined into a quantitative index based on the knowledge of experts and 

application of relevant industrial standards [10]. However, most of the available 

techniques are based on the linear combination of using a weighted average and 

require a significant number of measurements. Therefore, they are not sensitive 

enough to the condition of an individual subsystem. Moreover, a level of quantization 

is applied to the measured vectors at a very early stage that throws away valuable 

information and treats wide ranges of measurements equally. Only a few limited 

nonlinear approaches, based on artificial intelligence have been published in recent 

years [12-14]. They all rely on heavily parametric models and use only oil test 

measurements to compute the HI of a transformer. Therefore, a complete assessment 

of a transformer is not possible. Moreover, the accuracy of these approaches is 

dependent on the correct estimation of their large number of model parameters. 

According to the recent statistical surveys [15], it is evident that most of the 

transformer failure occurred due to the malfunction of their tap changer and bushings. 

Therefore, it is important to include their performance in a HI calculation. To assess 

the overall health condition of transformers, a novel artificially intelligent algorithm 

based on a multiple General Regression Neural Networks (GRNN) has been 

developed in the research. The GRNN combined the condition of individual 

subsystems into a quantified health index that summarizes the overall state of each 

transformer. Moreover, the technique also shows the relation of failure probability of 

individual transformer over time, based on their calculated health index. A 

comparative performance of the newly developed approach with expert’s 

classifications based on 345 transformers measurement is provided in this report. 

 

1.6 Outline of the Thesis 

The chapters of the report are a collection of six manuscripts, of which four have 

already been published in reputed journals and one was presented in a peer-reviewed 

conference. One other manuscript (Chapter 4) is currently undergoing review by a 

journal. As each chapter was published separately, readers should expect a degree of 
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repetition in the introduction to each new topic.  Papers have received minor reedits 

during the review of this thesis, but there have been no significant changes compared 

with the published versions. 

In Chapter 2, a comprehensive review of the condition monitoring and diagnostic 

tests is presented. This includes both the fundamental properties of transformers’ 

insulation and as well as condition monitoring, diagnostic tests and lifetime 

estimation principles. Chapter 3 introduces the reader to a multidimensional 

clustering approach for fault diagnosis of transformers. Another fault diagnosis 

technique based on a probabilistic approach is presented in Chapter 4. Chapter 5 

describes the missing data estimation problem in the context of power transformers. 

In Chapter 6 and 7, the main work is presented in the context of a quantitative health 

index based on the diagnostic tests and the combination of different subsystem 

condition measurements respectively. Moreover, a correlation between health index 

and the probability of failure of each transformer is also present in Chapter 7. Finally, 

Chapter 8 represents the summary of the research along with suggestions about future 

work in this area. 
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Chapter 2:  A Review of Condition Monitoring and Diagnostic Tests 

for Life Time Estimation of Power Transformers 

 

 

Abstract 

Power transformers are a key component of electrical networks, and they are both 

expensive and difficult to upgrade in a live network. Many utilities monitor the 

condition of the components that make up a power transformer and use this 

information to minimize the outage and extend the service life. Routine and 

diagnostic tests are currently used for condition monitoring and appraising the ageing 

and defects of the core, windings, bushings and tap changers of power transformers. 

To accurately assess the remaining life and failure probability, methods have been 

developed to correlate results from different routine and diagnostic tests. This paper 

reviews established tests such as dissolved gas analysis, oil characteristic tests, 

dielectric response, frequency response analysis, partial discharge, infrared 

thermograph test, turns ratio, power factor, transformer contact resistance, and 

insulation resistance measurements. It also considers the methods widely used for 

health index, lifetime estimation, and probability of failure. The authors also 

highlight the strengths and limitations of currently available methods. This paper 

summarizes a wide range of techniques drawn from industry and academic sources 

and contrasts them in a unified frame work.  
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2.1 Introduction 

In electric power systems, power transformers are usually considered the most costly 

item and comprise about 60 % investment of high voltage substations [1]. The huge 

investment and growing demand of electricity motivate utilities to accurately assess 

the condition of transformer assets. During operation, transformers regularly 

experience electrical, thermal, chemical and environmental stresses. Over time, due 

to these stresses, faults and chemical reactions, different types of catalytic ageing by-

products like moisture, acids and gases are produced in transformer oil. The ageing 

products gradually reduce the dielectric and mechanical strength of insulation. 

Consequently, as transformers approach the end of their service life, their probability 

of failure increases. Additionally, regular overloading and short circuit incidents on 

aged transformers may lead to unexpected premature failures, resulting in damage to 

customer relationships due to interruption of power supply. Moreover, failure of 

transformers can damage the environment through oil leakages and could be 

dangerous to utility personal by creating fire and explosions, resulting in costly 

repairs and significant revenue losses.  

This paper reviews established routine and diagnostic tests for condition monitoring 

and life time estimation and underlines the limitations of individual methods. Routine 

tests are periodically conducted after a certain interval to assess the overall condition 

and check the performance of transformers. If any degraded performance is detected 

in routine tests, diagnostic tests may need to be performed. Moreover, after any fault, 

commissioning and transportation, some diagnostic tests are always performed to 

check the integrity of a transformer. The measurements produced by these tests are 

used by most utilities to produce health indices that indicate the operating condition 

and estimate the remaining lifetime. This paper would be useful for new maintenance 

engineers taking responsibility for managing electrical power assets to help them 

setup a strategy for maintenance. 
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However, in scheduled maintenance, a fault can develop in the time between 

inspections and can be catastrophic. This limitation promotes utilities to move away 

from scheduled to condition-based maintenance [2-3]. Condition based monitoring 

means that the schedule for conducting tests reflects the best current knowledge 

about the condition of a transformer based on the results of previous tests.  This 

implies a transformer that is considered as being in poor condition is monitored more 

frequently than the scheduled maintenance rate. Condition based monitoring can help 

to avoid unexpected failures through improved assessment of insulation and can save 

both down time and money wasted by scheduled maintenance. Condition based 

monitoring does not imply online monitoring, where remote sensing is used to 

monitor the transformer in real time, but online monitoring has become established 

for important assets. This paper has been organized as follows: In section 2.2, 

statistical failure rate and standard diagnosis have been discussed. Section 2.3 

provides a short review of different routine and diagnostic tests. In section 2.4, 

remaining service life calculation methods have been discussed. Section 2.5 

concludes the paper. 

 

2.2 Transformer Failure Statistics 

The insulation of transformers loses its dielectric and mechanical strength with 

increasing service time. This increases the probability of failure and decreases the 

residual life. According to industry standards, the average expected working life of a 

power transformer is about 40 years [1]. After this time, it is widely accepted that the 

probability of catastrophic failure is very high. To improve the service quality and 

reduce the operating cost of an aged transformer, different condition monitoring and 

diagnostic techniques are currently in use. The age profile of power transformers of a 

leading utility company in Australia is shown in Figure 2.1. 
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Figure 2.1: Power transformers age profile. 

According to the age profile, a large population of transformers (110), out of 360 has 

already crossed the average service life and increasing to 167 within the next decade. 

So, around 31% of these transformers, based on their service length have already 

exceeded the operator’s expected lifetime and an additional 16% will lapse within a 

decade. Nevertheless, the rate of failure among transformers beyond their projected 

lifetime is less than expected by the utilities and they are performing well. In order to 

avoid unpredicted failures of these transformers in the near future, instead increasing 

time based maintenance; continuous condition monitoring is highly desirable.  

Transformer failure rate and life expectancy are affected by a range of external and 

internal mechanisms such as electrical, thermal and mechanical causes. Electrical 

stresses like switching surges, lightning impulses or frequent over loading gradually 

reduce the dielectric strength of insulation that ultimately leads to transformer failure. 

The increased contact resistance, partial discharge (PD) and problems with the 

cooling system increase operating temperature, while mechanical deformation can 

arise from short circuit current and transportation. Thermal stresses and mechanical 

defects, when combined with moisture and contamination, will increase the ageing 

rate of insulation and hasten the electrical failure. Statistics about the common causes 

of transformer failure are shown in Figure 2.2 [4]. 
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Figure 2.2: Causes of failure [4]. 

Although the main tank accessories are the primary contributors to transformers 

failure, there is also a significant contribution from bushings, tap changers and other 

accessories. According to a recent survey conducted by CIGRE work group 

WGA2.37 on 364 failures (>100 kV) [5], the statistics of typical failure location has 

been illustrated in Figure 2.3. 

 

Figure 2.3: Failure locations of transformers [5]. 

 

Additionally, their study on Europe shows that 80% of bushing failure occurs in mid 

service age (12-20 years) and initiate 30% of transformer failures. Given this statistic, 

it is apparent that the integrity of a transformer is dependent on multiple factors. It is 

also essential to prioritize the diagnostic tests based on the degree of influence each 
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component has on transformer health. A taxonomy of important diagnostic methods 

for condition assessment of transformers is provided by Figure 2.4. 
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Figure 2.4: Condition monitoring and diagnostic techniques. 

 

2.3 Condition Monitoring and Diagnostic Tests 

After installing and commissioning power transformers, utilities always expect to 

operate them continuously throughout their service life with a minimum of casual 
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maintenance. To reduce unplanned outages and minimize operational cost, a number 

of routine and diagnostic tests are regularly conducted by utilities to assess the 

insulation condition and mechanical integrity of each transformer. A review on 

conventional and sophisticated routine and diagnostic tests has briefly been discussed 

in the following sections.  

 

2.3.1 Dissolved Gas Analysis 

Dissolved gas analysis (DGA) is a widely accepted and established method for 

condition monitoring of power transformers. It can identify faults such as arcing, 

partial discharge, low-energy sparking, overheating and detect hot spots at an early 

stage without interrupting the service [6]. This approach is accompanied by analysing 

combustible and non-combustible gases dissolved in transformer oil. During their 

working life, transformers regularly have to face faults and stresses (thermal, 

electrical, chemical and mechanical) that produce various fragments, ageing and 

polar oxidative products. Over time, due to interaction between fragments or 

interaction among ageing products, various chemical reactions start that change the 

molecular properties of oil-paper insulation [7]. Additionally, the catalytic behaviour 

of oxygen and moisture produced in oil-paper insulation along with thermal dynamic 

increases the reaction rate. Eventually, different type of gases such as Hydrogen (H2), 

Oxygen (O2), Nitrogen (N2), Carbon dioxide (CO2), Carbon monoxide (CO), 

Methane (CH4), Ethylene (C2H4), Ethane (C2H6), Acetylene (C2H2), Propane (C3H8) 

and Propylene (C3H6) are produced and dissolved in transformer oil. To assess the 

condition of oil and paper insulation and detect faults indirectly from the gases, a 

number of DGA methods like Key Gas, Roger’s Ratios, Duval Triangle, 

Doernenburg, IEC ratio and single gas ratio are currently in use [6]. According to [8], 

70% of power transformer common faults can be detected by DGA. An integrated 

gas monitoring system is helping operators to continuously monitor the trends and 

production of gases produced by operating transformers. However, comparison of 
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results from different methods on the same sample may lead to contradiction and 

there is no clear way to prioritise one result over another. An integrated gas 

monitoring system along with supplemental tests might help to overcome this 

limitation by cross-checking the faults. Although, DGA can detect and classify faults, 

in most cases, it cannot identify the fault location. Consequently, operators need to 

supplement the results with other diagnosis methods. A review of the various DGA 

methods follows. 

 

2.3.1.1 Key Gas Analysis (KGA) Method 

The Key gas method diagnoses faults based on the proportion of combustible gases. 

It provides a series of “templates” associated with standard fault conditions.  For 

instance, 63% of Ethylene with some Ethane (19%) and Methane (16%) indicates 

that transformer oil is overheated  [9]. If the majority of gas is Carbon monoxide 

(92%) then it indicates that the cellulose is overheating. A high percentage of 

Hydrogen (85%) with some proportion of Methane (13%) indicates partial discharge, 

while a high percentage of Hydrogen (60%) with some percentage of Acetylene 

(30%) indicates arcing in oil. In practice, it is almost impossible to obtain exact 

proportions of gases that perfectly match these templates. Often the percentages are 

lower but experience can see a trend and intervene early before a critical stage is 

reaches. As a result, the accuracy of KGA is highly dependent on the investigator’s 

experience and correlation skills. 

 

2.3.1.2 Roger’s Ratios Method 

Roger’s Ratios method (RRM) uses the ratios of gas concentration to identify and 

classify faults in a transformer. The ratios of C2H2/C2H4, CH4/H2 and C2H4/C2H6 are 

used in this method. According to RRM, the classification of different electrical and 

thermal faults is shown in Table 2.1. In some cases, the calculated ratios may not fall 
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any of the classes shown in Table 2.1. Additionally, over time, gases are normally 

produced in transformer without any fault. Consequently, the chance of 

misclassification is a major limitation of the Roger’s Ratios method. 

 

Table 2.1: Roger’s Ratios [9]. 

Case R2=C2H2/C2H4 R1= CH4/H2 R5=C2H4/C2H6 Suggested Fault Diagnosis 

0 <0.1 >0.1 to <1.0 <1.0 Unit normal 

1 <0.1 <0.1 <1.0 Low-energy density arcing – PD 

2 0.1 to 3.0 0.1 to 1.0 >3.0 Arcing-high-energy discharge 

3 <0.1 >0.1 to <1.0 1.0 to 3.0 Low temperature thermal 

4 <0.1 >1.0 1.0 to 3.0 Thermal <700 °C 

5 <0.1 >1.0 >3.0 Thermal >700 °C 

 

2.3.1.3 Gas Patterns Method 

According to the gas patterns method, ethylene (C2H4) and methane (CH4) are the 

key gases that are used to detect poor connection between conductors [10] . Over 

time, due to vibration of the transformer, the contact between conductors may 

become weaken and increase the series resistance. As a result, with the flow of 

current, the contacts get over heat and the hot metal gases such as (C2H4) and (CH4) 

are produced.  Additionally, a small proportion of catalytic metals for instance iron, 

copper, zinc, aluminium and dibenzyldisulfide (DBS) are inherently present in a 

transformer [10]. The normal proportion of dibenzyldisulfide (DBS) in transformer 

oil is between 40 to 65 mg/kg. The concentration of DBS decreases with an increase 

of temperature. At high temperature, the sulfur of DBS starts reacting with copper 

and produces copper sulfide [10].  As this reaction is completely temperature 

dependent, the concentration of copper sulfide and DBS can be used to assess the 

quality of internal contacts of transformers. 
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2.3.1.4 Doernenburg Method 

Doernenburg is a four gas ratios method based on five individual key gases (H2, CH4, 

C2H2, C2H4 and C2H6) that can detect faults and PD activity in a transformer. The 

accuracy of this method is high, but only if significant amount of key gases are 

produced. The correlation summary between faults and four gas ratios is shown in 

Table 2.2. 

Table 2.2: Gas ratios for Doernenburg method [11]. 

Ratio 1 

CH4/H2 

Ratio 2 

C2H2/C2H4 

Ratio 3 

C2H2/CH4 

Ratio 4 

C2H6/C2H2 
Suggested Fault Diagnosis 

0.1-1.1 0.75-1.0 0.3-1.0 0.2-0.4 Thermal Decomposition 

0.01-0.1 Not Significant 0.1-0.3 0.2-0.4 Corona (Low Intensity PD) 

0.01-0.1 0.75-1.0 0.1 -0.03 0.2-0.4 Arcing (High Intensity PD) 

 

2.3.1.5 Duval Triangle Method 

The Duval triangle (DTM) is a three-axis coordinated graphical method, where the 

axes represent CH4, C2H4 or C2H2 percentages from 0% to 100% [12]. Due to its 

accuracy and capability of detecting large number of faults, it is widely used by the 

utilities. In DTM, the entire triangular area has been subdivided into 7 fault regions 

labelled PD, D1, D2, T1, T2, T3 and DT, as shown in Figure 2.5 [13].  
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Figure 2.5: Duval Triangle [14]. 

 

The PD region indicates partial discharge, D1 indicates discharges of low energy, D2 

indicates discharges of high energy, T1 indicates thermal faults of less than 300 °C, 

T2 indicates thermal faults between 300 °C and 700 °C, T3 indicates thermal faults 

greater than 700 °C, and DT indicates a mixture of thermal and electrical faults. 

Although, this method always gives a diagnosis, there is a chance of misclassification 

close to the boundaries between adjacent sections [14]. The classical Duval Triangle 

cannot accurately detect the PD and thermal fault. In order to overcome the 

limitation, Duval introduced Triangle 4 and 5 for mineral oil filled transformers. In 

Triangle 4, axes are presented by H2, CH4 and C2H6 gases. If the fault classification is 

a thermal fault (T1,T2) or a PD by the classical triangular method, then Triangles 4 

must be used for further clarification [15].  Triangle 5 uses gas concentrations of 

CH4, C2H4 and C2H6 respectively that are formed specifically for faults of high 

temperature (T2, T3). In order to get more information about the thermal faults, 

triangle 5 should be used only if Triangle 1 identified the fault as T2 or T3. None of 

the Triangles 4 and 5 should be used for electrical fault D1 or D2. In practice, there 

are cases where contradictory classifications are produced by Triangles 4 and 5. 

Moreover, all triangles have an unclassified region. Consequently, the accuracy of 
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fault classification is dependent on the expert’s experience supported by other ratio 

methods. Furthermore, it can only predict the amount of discharge from the changes 

of gases, not quantify the discharge, especially for small discharges like pico-

coulombs (pC) range, nor can it locate the origin of a fault.  

Over the last decade, a several artificial intelligence (AI) methods such as artificial 

neural networks (ANN), support vector machines (SVM) and fuzzy logic have been 

used by the researchers to analyse the DGA data to detect  insulation degradation, 

identify faults, track performance and calculate health index of transformers [16-20]. 

The AI approaches have made it possible to analyse the DGA data sets into the multi-

dimensional spaces to extract the pattern of the gases for faults detection and 

classification. Moreover, AI can integrate multiple factors and can deal with the non-

linearity of gases production which is common in field measurements to reduce the 

error in decision making. 

 

2.3.2 Oil Quality Test 

Insulating oil quality testing is a common method for assessing the condition of in-

service transformers. As the oil condition has a direct influence on the transformer’s 

performance and the service life, condition monitoring of transformer oil has proven 

very effective. Over the service period, due to the oxidation, chemical reactions and 

variable stresses (thermal, electrical and chemical stresses) oil characteristics and 

condition changes. To quantify these changes and diagnose the severity, a number of 

physical, chemical and electrical tests like dielectric breakdown voltage (DBV), 

power factor, interfacial tension (IFT), acidity, viscosity, color and flash point are 

performed. DBV measures the strength of oil to withstand electrical stress without 

failure [21]. The power factor or dissipation factor test is used to measure the 

dielectric losses in the oil [22].  As the test is very sensitive to ageing products and 

soluble polar contaminants, it can assess the concentration of contaminants in the 

insulating oil. During service time, different types of acids are produced in the 
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transformer oil resulting from atmospheric contamination and oxidation products 

[23]. The acids, along with oxidation products, moisture and solid contaminants 

degrade different properties of the oil. Consequently, the acidity test plays an 

important role to assess the condition of oil. IFT measures the attraction force 

between oil and water molecules that can be used to assess the amount of moisture in 

oil [4]. The value of IFT can help to estimate the soluble polar contaminants and 

products of degradation that affect the physical and electrical properties of the 

insulating oil. Usually, new insulating oil in transformers shows high levels of IFT in 

the range of 40 to 50 mN/m, while an oil sample with IFT less than 25 mN/m 

indicates a critical condition [24]. A detailed procedure for IFT measurement is 

available  in [25].  Viscosity of oil is a factor that plays an important role in heat 

transfer in transformers. With the increase of temperature, viscosity of pure oil 

decreases. Therefore, the strength of the insulation decreases.  Different types of 

nanoparticles such as  SiO2, Al2O3 and ZnO can be added to insulating oil to control 

its viscosity, which can be measured by applying  a COMPASS force field [26]. 

Additionally, tests such as color, flash point etc. are used to detect contaminants in 

service-aged oil [27]. Multiple results are correlated to assess the condition of each 

transformer and schedule its maintenance (reclamation or replacement) to avoid 

costly shutdown and premature failure. IEEE C57.106-2006 presents a classification 

of insulating oil based on variable test parameters and transformer rated voltage that 

has been shown in Table 2.3.    
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Table 2.3: Classification based on oil test parameters. 

 

 

2.3.3 Infrared Thermograph Test 

Infrared thermography is a non-destructive and quick imaging process that can 

visualize the external surface temperature of transformers without interrupting their 

operation [28]. The normal operating temperature of transformers lies between 65 to 

100 °C [29]. The operating temperature of a transformer can rise based on variable 

reasons like short circuit current, high winding resistance, poor contact in 

cable/clump joint, oil leaks and faulty cooling system. With the increase of 

temperature, the ageing rate of insulation increases. The ageing rate of insulation 

becomes double at 6-8 K (Kelvin) from the reference value and reduces the residual 

working life quickly [4]. A temperature rise of 8 to 10 °C from nominal value is 

considered as a critical condition and reduces the design life by half [4]. According to 

[30], a transformer will fail immediately with an increase of 75 °C from normal 

temperature. The increased temperature could be an indication of problematic cooling 

system, or a problem in core, winding, bushing and joints. To identify faults, infrared 

Oil test parameters U≤69 kV 69 kV <U <230kV 230kV≤U Classification 

Dielectric Strength (kV/mm) 

≥45 ≥52 ≥60 Good 

35-45 47-52 50-60 Fair 

30-35 35-47 40-50 Poor 

≤30 ≤30 ≤40 Very Poor 

Interfacial Tension (dyne/cm) 

≥25 ≥30 ≥60 Good 

20-25 23-30 50-60 Fair 

15-20 18-23 40-50 Poor 

≤15 ≤18 ≤40 Very Poor 

Neutralization Number (Acidity) 

≤0.05 ≤0.04 ≤0.03 Good 

0.05-0.1 0.04-0.1 0.03-0.07 Fair 

0.1-0.2 0.1-0.15 0.07-0.1 Poor 

≥0.2 ≥0.15 ≥0.10 Very Poor 

Water content (ppm) 

≤30 ≤20 ≤15 Good 

30-35 20-25 15-20 Fair 

35-40 25-30 20-25 Poor 

≥40 ≥30 ≥25 Very Poor 

Dissipation factor at 50 Hz (25oC) 

≤0.1 Good 

0.1-0.5 Fair 

0.5-1.0 Poor 

≥1.0 Very Poor 
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thermography converts the infrared radiation from targeted surface into colour coded 

pattern images. The test can localize the hot sport and visualize the temperature 

gradient at joints and surfaces. The test result can be verified by comparing with 

historical record or conducting a DGA on the same transformer. Consequently, this 

method can be used as an initial fault detector and supplement of DGA. However, 

thermograph cannot detect the internal temperature of a transformer tank [31]. A 

classification of heating severity based on infrared thermography has been 

summarized in Table 2.4. 

 

Table 2.4: Heating severity classification [31]. 

Increased Temperature Classification 

0-9 °C Attention 

10-20 °C Intermediate 

21-49 °C Serious 

> 50 °C Critical 

 

2.3.4 Excitation Current Test 

This test is used to detect short circuited turns, ground faults, core de-laminations, 

core lamination shorts, poor electrical connections and load tap changer (LTC) 

problems. Since the magnitude of magnetizing current in high voltage (HV) winding 

is less, this test is performed by exciting the HV side, keeping the LV neutral 

grounded and all other terminals floating. Due to the grounded neutral, if there is any 

ground fault, a huge amount of current will flow into the HV side with low excitation 

voltage. During this test, the magnitude of single phase voltage and magnetizing 

current including their phase angle is measured [32]. The measured value is 

compared with historical test or other phases to detect faults. For 50 mA rated 

excitation current, a difference of >5% between phases is an indication of short 

circuited turns, ground faults, core de-laminations, core lamination shorts, poor 

electrical connection and LTC problems; whereas >10% deviation is an indication of 
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internal fault [4]. As the test result is influenced by the residual magnetism, this test 

must be conducted before any direct current test.   

 

2.3.5 Power Factor/Dielectric Dissipation Factor Test 

 The dielectric dissipation factor (𝑡𝑎𝑛 𝛿) test may be used to check the insulation 

integrity in windings, bushings and oil tank of transformers. When an alternating 

voltage is applied across the insulation, a leakage current having reactive (capacitive) 

and resistive components starts to flow. The magnitude of the resistive component is 

dependent on the moisture, ageing and conductive contaminants in the oil, while the 

capacitive current is dependent on the frequency. The ratio of resistive and capacitive 

current is known as the dissipation factor. At low frequencies, the magnitude of 

capacitive current is almost equal to the total leakage current. Consequently, another 

name of this test is the power factor test. According to IS-1866, at 90 0C, the value of 

𝑡𝑎𝑛 𝛿 for fresh oil could vary from 0.010 to 0.015 depending on the transformer’s 

rating. A mathematical correlation between power factor and 𝑡𝑎𝑛 𝛿  can be 

established using the following equation [33].  

 

𝑐𝑜𝑠𝜃 =
𝑡𝑎𝑛 𝛿

√1+(𝑡𝑎𝑛 𝛿)2
    Or   𝑡an δ =

cosθ

√1−(cosθ)2
     (2.1) 

 

Modern testing tools, like Doble M4100 measure the dielectric losses of insulation 

(including bushing) in Watts. A value of more than 0.5% 𝑡𝑎𝑛 𝛿 deviation indicates 

problematic insulation, while >2% means the high chance of imminent failure [4]. 

However, a higher value of  tan δ could also be an indication of potential PD.  

 

2.3.6 Polarization Index Measurement 

The polarization index (PI) measurement is one of the common methods to assess the 

dryness and cleanness of windings solid insulation that depends on the insulation 

classes (A, B or C) and winding components [34]. A PI measurement determines the 
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ratio of 10 minutes resistance to 1 minute resistance after applying the test voltage to 

assess the insulation condition [35]. The winding temperature has a strong influence 

on the measurement of insulation resistance (IR). However, PI is determined by the 

ratio of two resistances, so the impact of winding temperature during the 10 minutes 

test is almost insignificant. With the increase of moisture and impurity in insulation, 

the PI value gradually decreases. According to [34],  insulation having PI in the range 

1.5-2 indicates dry insulation, the range 1-1.5 indicates dirty/wet insulation and less 

than 1 indicates severe pollution and humidity. Moreover, if the PI value rapidly 

decreases 25% from a previous measurement, it is advisable to clean the insulation 

[34]. Although, it is a comparatively quick and convenient testing method, it cannot 

detect the degradation of insulation due to the ageing and stresses over time.  

 

2.3.7 Capacitance Measurement 

The capacitance measurement is used to assess the condition of bushings and detect 

the gross winding movement. The bushings of a transformer are electrically 

equivalent to a number of series capacitors. If a bushing has a dielectric dissipation 

factor (DDF) tap, the capacitance between the bushing conductor and DDF tap is 

commonly known as C1and the capacitance between DDF and ground is known as 

C2. The average life time of bushing is about 30 years. Any problems in bushing like 

cracking of its resin-bonded paper or moisture ingress would increase the value of 

capacitance and reduce its service life. Consequently, the measured capacitance can 

diagnose the condition of bushings. In [4], it has been stated that about 90% of 

bushing failure is due to moisture ingress. The test can also be used to measure 

capacitance between windings and between individual windings and the main tank. 

Any deviation of the capacitance value can be used to detect the mechanical 

deformation of windings and core. As this test is less sensitive and only detects gross 

deformation of windings, a more sensitive approach such as transfer function 

measurement and SFRA may be used as a supplement to the capacitance testing. 
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2.3.8 Transfer Function Measurement 

Transfer function (TF) measurement is one of the acknowledged methods that can 

predict moisture content in solid insulation [36] and detect mechanical faults like 

winding deformation and displacement due to the short circuit current, switching 

impulse and  transportation [37-39]. The transfer function is a frequency-dependent 

parameter that is measured from the ratio of current and voltage of an input terminal, 

or from the ratio of output and input voltage on the same phase. During TF 

measurement, a known voltage is generally applied to the HV terminals and the 

resulting input current is measured from the same side while voltage is measured on 

the corresponding LV winding. A detailed test procedure for TF measurement is 

available in [37]. The TF measurement is sensitive enough to detect both axial and 

the radial buckling of windings, which cannot be detected by the conventional 

leakage reactance measurement. Moreover, TF measurement can specify faults 

without opening the unit and both on-line and off-line modes are available [38, 39]. 

 

2.3.9 Tap Changer Condition 

The load tap changer (LTC) of a transformer is used to regulate the voltage despite 

variations in the load. A range of insulating materials like oil, fiberglass, cardboard 

and proxy resin are used in a tap changer as its insulation. Failure to a tap changer 

can result into a catastrophic failure of nearby transformers.  The authors of  [4] and 

[1], respectively state that 30% and 40% of transformer failure results from the tap 

changer malfunction and this could varies depending on the tap changer types, 

manufacturer, operation and maintenance frequency. Unlike in the main tank, a 

certain amount of combustible gas in the tap changers is considered normal, which is 

produced from the operation of LTC. The trapping of gases is depending on the 

breathing system. A sealed LTC can trap most of the gases while gas is rapidly vents 

from a free breathing system [40]. However, insufficient adoption of standards and 

the lack of guidelines make it hard  to assess the condition of LTC directly from 
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DGA [1]. Consequently, a series of tests such as DGA, oil quality, contact resistances 

and acoustic signal are performed, at the same time the number of operations, 

temperature and motor current is monitored to assess the condition of tap changer and 

its insulation.  

 

2.3.10 Cellulose Paper Insulation Tests 

The solid insulation (paper) within transformers is composed of about 90% cellulose, 

6-7% of hemicelluloses and 3-4% of lignin that have long chains of glucose rings 

[33]. The purpose of this paper is both to provide insulation and mechanical support 

against forces that arise from short circuit and inrush current, and holding the 

windings in position. The dielectric properties and tensile strength of the paper are 

dependent on the number and length of glucose rings [3]. Over time, due to the 

ageing, stresses and loading pattern, the electrical and mechanical properties of the 

paper degrades and a number of chemical compound and byproducts like water, acid 

and gases (CO and CO2) are produced. These byproducts are used in several 

diagnostic techniques like furan analysis and the degree of polymerization (DP) and 

CO2/CO ratio for assessing the condition of paper insulation. All three methods have 

been reviewed below. 

 

2.3.10.1 Ratio of CO2 and CO 

The ratio of CO2/CO can help to assess the condition of paper insulation. Generally, 

without any fault occurring, during the service time, including CO2 and CO different 

proportion of combustible gases are always produces in transformer and dissolved in 

the oil. The carbon oxide gases (CO2 and CO) can be produced from the paper due to 

cellulose overheating, bad connection and problematic cooling system of 

transformers. However, oil decomposition can also produces these gases due to 

different faults [4]. A CO2/CO>10 could mean atmospheric exposure of insulation 

and instant breakdown while a CO2 to CO ratio less than 5 indicates faster 
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degradation of cellulose. For proper maintenance, the identification of gas sources is 

important. The CO2/CO ratio method cannot distinguish the sources. Consequently, 

there is a chance of wrong diagnosis providing a major limitation of CO2/CO ratio 

method. In order to overcome this limitation, additional tests such as furan analysis 

and the DP are recommended along with analysis of other key gases. 

 

2.3.10.2Furan Analysis 

Furan analysis is an integral, non-periodic and post-diagnostic technique that can 

assess the condition of cellulose paper inside transformers without interrupting the 

service. Due to the ageing, loading pattern and chemical reaction, the glucose rings of 

cellulose may break down and the following types of furanoid compounds, namely, 

2-furfural (2-FAL), 5-Hydroxy methyl-2-furfural (5-HMF), 5-Methyl-2-furfural (5-

MEF), 2-Furfurol (2-FOL) and 2-Acetylfuran (2-ACF) are produced which are 

partially soluble in oil [33]. The produced furanoid compounds develop a partition 

between the oil and the solid insulation interphase [41]. The production rate of 

furanoid compounds is influenced by the temperature, catalytic ageing byproducts 

such as moisture, acids, oxygen and CO, that produced by various faults and increase 

the degradation rate of paper [4]. Over time, these furanoid compounds dissolve in 

the insulating oil and changes its color. It is recommended to perform furan analysis, 

if the colour of oil changes remarkably and other catalytic ageing byproducts are 

present [31]. Cellulose paper gradually loses its mechanical strength with the increase 

of furan which can be measured by the gas chromatography (GC), mass 

chromatography (MC) or high performance liquid chromatography (HPLC) on 

collected oil sample following the American Society for  Testing and Material 

(ASTM D5837) or IEC method 61198 [42-43]. A detailed method of HPLC  for 

furan measurement is available in [44]. Moreover, the quantified furan can be used to 

estimate the remaining life time of transformers. If the strength of paper is reduced to 

such an extent that it cannot ensure the mechanical support to windings, the electrical 

integrity of transformer becomes threaten. The furan is very sensitive to the ageing of 
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paper and comparatively stable than other furanoid compounds. As furan increases 

consistently with paper ageing, researchers mostly analyze it. The main limitation of 

this method is that if the insulating oil of a transformer is replaced or reclaimed, it 

cannot accurately assess the condition of solid insulation prior to the change.  The 

thresholds for analyzing ageing of paper insulation based on furan are shown in Table 

2.5. 

Table 2.5: Age profile of cellulose paper based on furan [1]. 

Furaldehyde (ppm) Service Life (Years) 

0.0-0.10 <20 

0.1-0.25 20-40 

0.25-0.5 40-60 

0.50-1.0 >60 

>1.0 - 

 

 

2.3.10.3 Degree of Polymerization 

The degree of polymerization (DP) is another dependable method for assessing the 

health of paper insulation. The paper of transformers is a complex compound of 

carbon, hydrogen and oxygen (C5H10O5) where glucose monomer molecules are 

linked in a special way to form cellulose.  As the insulation ages, the glucose rings 

become fragile and start to break. In DP, the length of glucose molecules rings is 

measured as a way of estimating the integrity of the paper insulation [45]. To 

measure DP, paper samples are collected from multiple positions around the 

windings including the hotspot area, which is generally located at the centre of 

windings. The collection of paper samples from a live and free breath transformer are 

impractical and could be destructive or may cause complete failure of a transformer 

[46]. Consequently, paper samples are collected from the de-energised transformer 

and analysed by molecular weight estimation methods like viscometry or gel 

permeation chromatography (GPC). In the viscometry method, the DP value is 
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measured by averaging the length of cellulose chains based on their viscosity [47-48]. 

The accuracy of this method is influenced by the oxidative degradation of the 

samples and variation in ambient temperature [49-50]. In [51], Ali has shown that 

viscometry can only approximate the length of a cellulose chain, but GPC has  

greater potential than viscometry method to give more useful and detailed  

information about cellulose ageing. In GPC, a DP value is calculated by measuring 

the change in molecular weight distribution of the cellulose paper. As GPC is very 

sensitive to molecular weight, it can detect a small degradation of cellulose through 

the chromatogram [50]. A detail sampling and testing process for GPC is available in 

[50]. Due to the intrusive sampling process, furan analysis is more widely used than 

DP. The furan test can easily make estimates of furan from oil sampling of an in-

service transformer. As furan splits glucose rings into small segments, with the 

increase of furan, the DP value decreases. Consequently, cellulose paper loses its 

insulation quality and tensile strength. The value of DP and the level of furan can be 

correlated to estimate the health of paper/solid insulation. A correlation between DP 

and furan to estimate insulation state are shown in Table 2.6.   

 

Table 2.6: Correlation of 2-FAL and DP value with insulation health [31]. 

2-FAL (ppm)  DP Value Significance  

0-0.1 700 - 1200  Healthy Insulation  

0.1-1.0 450 - 700 Moderate Deterioration  

1-10   250 - 450  Extensive Deterioration  

> 10  < 250  End of Life Criteria  

 

Although, the measurement of DP from the furan is non-destructive and relatively 

straightforward, the contamination of the oil and non-uniform ageing of the paper 

constrain the method in practice [47]. 
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2.3.11 Dielectric Response Analysis 

Dielectric response analysis (DRA) is a widely adopted method for evaluating the 

moisture content in the oil-paper insulation of transformers. In power transformers, 

both the oil and cellulose paper provides the insulation. Moisture occurs inside a 

transformer is produced from chemical reactions and is absorbed in the solid 

insulation (up to 99%) and oil. The production rate of moisture is influenced by the 

organic acids, gases, humidity, ambient temperature and oxygen content. A complex 

dynamic migration of moisture between oil and paper insulation always continues 

and the rate is influenced by the temperature. At high temperature, moisture from the 

solid insulation moves in to the oil but returns to the insulation with a decrease of 

temperature. The amount of moisture in solid insulation can be measured directly by 

the traditional Karl Fischer Titration (KFT) or Piper-Fessler isothermal model [52-

53]. The oil moisture content with the help of an equilibrium chart can also indirectly 

estimate the moisture in solid insulation [52]. The collection of paper samples from 

different places for KFT is mostly impractical and unsuitable for onsite testing. 

Additionally, the accuracy of the Piper-Fessler method is affected by the insufficient 

and incorrect positioning of moisture sensors in the transformer tank [53]. Moreover, 

the influence of temperature also makes it hard to achieve the equilibrium state of 

moisture between oil and paper, which can lead to a significant error in the 

measurement accuracy [54]. Consequently, over the last decade, to overcome the 

above limitations, different indirect, sensitive and nondestructive methods like 

recovery voltage measurement, polarization and depolarization current analysis and 

frequency dielectric response have gained significant attention for accurately 

measuring the moisture content and its impact on the dielectric response to assess the 

insulation ageing [2, 29]. A review on different dielectric responses analysis 

techniques with their limitations has been provided below. 
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2.3.11.1 Recovery Voltage Measurement 

 Recovery voltage measurement (RVM) is a time domain dielectric response 

technique that is used to detect the moisture level in the insulation of transformers. 

The quantity of moisture in insulation gradually increases over time due to the 

ageing. The level of moisture is one of the key decisive factors used to measure 

insulation breakdown. Consequently, the individual knowledge of moisture level in 

the oil and paper insulation is crucial for evaluating the insulation health. RVM uses 

the polarization spectrum of the insulation recovery voltages for evaluating the actual 

state and ageing trend [2, 55]. The RVM method can be represented by the circuit 

diagram shown in Figure 2.6. 

Electrometer

S1

S2

S1 S3

V Paper between 

electrodes

 

Figure 2.6: Circuit diagram for RVM [56]. 

 

To perform the test, a DC voltage V by a standard recovery voltage meter is applied 

across the dielectric by closing the switch S1for a period of time Tc and then the 

capacitor is discharged through a short circuit for a period of time Td by closing the 

switch S2(having previously opened the switch S1).  After discharge in each cycle, the 

geometric capacitance (𝐶0) loses its full charge but some charges are bounded in the 

dielectric insulation which amount is dependent on the insulation quality. The entire 

cycle of the measurement is repeated and increased from a fraction of second to the 

thousands of second by maintaining the charging and discharging time ratio (Tc/Td) = 

2. After charging and discharging on each cycle, when the circuit is open, a part of 
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the bounded charge will be transferred to the geometric capacitance. Eventually, a 

voltage is developed which is known as a recovery voltage (RV). The values of RV 

are recorded by a programmable electrometer having very high input impedance, as a 

function of time Tc and plotted to get the RV spectra. The peak magnitude of the 

voltage and the corresponding time constant are the significant features of the 

polarization spectra. The value of central time constant decreases with the increase of 

moisture in the oil paper insulation and reflect the moisture content in the insulation 

[2]. According to [57], time constant of the insulation is inversely proportional to the 

moisture content and ageing. They also presented, the time constant is also inversely 

related to the temperature and the maximum return voltage decrease with the increase 

of moisture. Eventually, the moisture content and ageing trend can be estimated from 

the measured time constant and the RVM peak.  However, the authors of [58] state 

that, that the influence of insulation  geometry and separate conductivity of oil and 

paper insulation is ignored in the RVM.  Consequently, the RVM spectra are not 

accurate. According to [59], it is hard to separate the impact of oil and paper from 

RVM spectra. However, the introduction of sophisticated software and proper 

modeling tools for dielectric phenomena which can combine the individual 

influencing factors like permittivity and conductivity of oil and paper insulation can 

overcome the limitation and improve the accuracy.   

 

2.3.11.2Polarization and Depolarization Current Analysis 

The polarization and depolarization current (PDC) measurement is one of the latest 

and non-destructive technologies used to measure the oil conductivity and moisture 

content of homogenous and composite insulations of transformers. Due to the 

simplicity and capability to assess HV insulation, PDC technique gained immense 

popularity and are widely using as a supplement of other techniques. Moreover, PDC 

can quantify the moisture and appraise its impact on the ageing of the oil and paper 

insulation [60]. For assessing the state of transformer insulation (oil-paper), in PDC 

measurement, a DC voltage U0 is applied across the oil-paper insulation for a period 
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of time (e.g., 10000 s) to measure the polarization current. As soon as the voltage is 

applied, a high magnitude current with different time constants corresponding to the 

insulating materials and conductivity starts to flow. Over time, the magnitude 

gradually reduces. The time constant of the charging current is dependent on the 

conductivity and polarization process of the individual insulating material [59]. The 

equation of the polarization current can be expressed as  

 

𝑖𝑝  (t)= C0U0⌊
𝜎

𝜖0
+ 𝑓(𝑡)⌋      (2.2) 

 

where σ, ϵ0, C0 and f(t) represent respectively, the composite conductivity, vacuum 

permittivity, geometric capacitance and dielectric response function of the oil-paper 

insulation.  

The influence of the conductivity on the polarization current could be investigated by 

simulating the equation (2.2) using different values of oil and paper conductivity. The 

geometric capacitance C0 between oil-paper insulation can be calculated using the 

following equation. 

𝐶0 =
𝐶𝑚

𝜖𝑟
        (2.3) 

where  𝐶𝑚 represents capacitance between transformer and ground, and 𝜖𝑟 is the 

effective relative permittivity of heterogeneous oil-paper insulation. 

 

Now, for measuring the depolarization current, the voltage source is replaced by a 

short circuit. Consequently, an opposite directional depolarization current will start to 

flow without the contribution of insulation conductivity [59]. The depolarization 

current can be expressed by the following equation. 

 

𝑖𝑑  (t)= C0U0⌊𝑓(𝑡) − 𝑓(𝑡 + 𝑡𝑐)⌋     (2.4) 

where 𝑡𝑐 is the duration of the applied voltage. 
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The dielectric response function 𝑓(𝑡) can be measured experimentally by charging 

the insulation through a step voltage or measuring the depolarization current after 

replacing the step voltage with a short circuit. If the time 𝑡 + 𝑡𝑐 is significantly long, 

the dielectric responses function for the polarization current 𝑓(𝑡 + 𝑡𝑐) ≅ 0. 

Consequently, equation (2.4) can be rearranged as follows 

 

𝑓(𝑡) ≈
−𝑖𝑑(𝑡)

𝐶0𝑈0
        (2.5)  

If the polarization and depolarization current of a composite insulation is known, the 

average conductivity of the combine insulation can be found by rearranging equation 

(2.2) and (2.4) 

𝜎 ≈
𝜖0

𝐶0𝑈0
(𝑖𝑝(𝑡) − 𝑖𝑑(𝑡))      (2.6) 

The combined conductivity can also be calculated from the nonlinearity factor, which 

is the ratio of average conductivity at different voltages [61]. According to [62], 

conductivity, ageing and moisture content of insulation can be estimated from the 

PDC curve shown in Figure 2.7.  

 

Figure 2.7: Oil conductivity, oil properties, geometry, ageing and water 

content influence on the PDC-Curves [62]. 
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As can be seen from this curve, the PDC value is mainly influenced by the 

conductivity in a time range t< 100 s. The current increases in proportion to the 

conductivity. The oil property, ageing and geometry are apparent after 100s and the 

variation of moisture content is visible after 1000 s. In [63], the authors state that if 

the inherent nonlinearity of a homogeneous insulation is neglected, the difference 

between polarization and depolarization current (conduction current) is constant and 

time independent. Moreover, reference [59] states that, the initial conduction is very 

sensitive to the oil condition whereas long term current is mostly influenced by the 

condition of solid insulation. In the case of composite insulation, the difference is 

time dependent and is influenced by the separate conditions of oil and paper 

insulation, thus reflecting  the true combined conductivity of the transformer’s oil 

paper insulation [64].  Thus, PDC testing can be used to accurately assess the 

condition of oil-paper insulation. On the contrary, the accuracy of the PDC is 

dependent on the precise knowledge about the design and the composition of the oil-

paper insulation and the measurement process is very time consuming. In practice, 

the exact design and insulation composition information is not easily available which 

is considered a major limitation of this method. In [59], a modeling process has been 

discussed to partially overcome the limitation. 

 

2.3.11.3 Frequency Dielectric Response 

Frequency dielectric response (FDR) is a widely accepted technique to diagnose the 

ageing state and moisture content in the oil-paper insulation of power transformers 

[65]. As  FDR is very reluctant to external frequency (noise) and capable of giving 

detail analysis, it has received more attention than the RVM and PDC methods [66]. 

In FDR, the dielectric response of composite oil paper insulation is measured at 

frequencies between 100 µHz and  1 kHz [65]. The range can vary depending on the 

moisture quantity in the insulation. However, the prominent resonance effect and 

impure dielectric response restricts the maximum frequency of FDR to 1 kHz. The 

ageing of insulation is mainly influenced by ingress of moisture, insulation geometry 
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and temperature. The amount of moisture and ageing state can be estimated from the 

correlation of temperature, moisture and insulation geometry with dielectric response 

spectrum. However, it is hard to separate the impact of moisture, ageing and 

geometric impact from the dielectric response that is used to quantify the moisture 

content and ageing state [67]. A detailed process to overcome these limitations based 

on the dependent variables is presented in [66]. According to [66], in the frequency 

range of  10-3-102 Hz, the relative permittivity (ϵr) and dissipation factor (tanδ) of oil-

paper insulation increases in proportion to the moisture. However, (ϵr) and tanδ are 

only sensitive to the ageing between 10-3-10-1 Hz. Consequently, the frequency 

range 10-3-102 can be used to discriminate and quantify the effect of moisture and 

ageing on the insulation. However, a recent similar study in [65], states that the 

dielectric response of some pressboard sample may be used to determine moisture 

concentration (1%, 2 % and 3%). It was found that the slope of the dielectric 

response decreases with an increase in frequency. Above 100 Hz, all the sample 

slopes coincide and become flat. Eventually, the slope of the dielectric response 

below 100 Hz can be used to assess the condition of transformer paper insulation. 

According to [68], a typical dielectric response of oil paper insulation is as shown in 

Figure 2.8. 

 

Figure 2.8: Dielectric response of oil paper insulation [68]. 
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2.3.11.4 Frequency Dielectric Response 

Time-frequency domain dielectric response is the latest technology where the 

advantages of PDC and FDR have been combined to assess the condition of 

transformers insulation [69]. At low frequency, the PDC method is faster and 

represents the ageing of oil and paper insulation. At high frequency, the FDR method 

is faster than the PDC and can also assess the oil and paper insulation ageing. In this 

method, the advantages of both FDR and PDC have been combined to develop a 

faster, intelligent and powerful assessing method. The combined technology makes it 

possible to measure the dielectric response over a wider range of frequency (0.05 

mHz to 5 kHz). The measured response could be compared with factory test data or 

historical measurement to accurately assess the state of oil and paper/pressboard 

insulation.  

 

2.3.12Partial Discharge Analysis 

Partial discharge (PD) is a dielectric discharge in a partial area of electrical insulation 

system experiencing high electrical field intensity. In many cases, PD phenomena are 

considered as a preliminary stage of a complete breakdown of the insulation. 

Consequently, for monitoring the condition of power transformers and to avoid 

unexpected hazards, PD measurement is used over a long period of time. In 

transformers, PD can happen in cellulose paper, oil or in the interface of oil-paper 

insulation when the electric field stress exceeds the breakdown strength of insulation. 

Any defect such as cavities and voids in solid insulation, gas bubbles or small 

floating metal particles in oil can damage the uniformity of electrical stress across the 

insulation and may initiate PD that can lead to a flashover. Additionally, over time 

insulating material lose its dielectric strength due to continuous electrical, thermal 

and dielectric stress that directly influences the possibility of PD.  According to [70, 

71], the inception voltage of PD decreases with an increase of temperature. The PD 

magnitude and repetition rate increase significantly with the size of gas bubbles in the 
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oil [72]. The surface discharges on transformer insulation increase and the inception 

voltage also decreases with an increase in total harmonic distortion [73]. Once PD 

starts, it propagates throughout the insulation until complete breakdown occurs. 

Consequently, it is very important to detect, quantify and localize PD during 

operation [74]. During PD, a range of phenomena like electromagnetic emission (in 

the form of radio wave, light and heat), acoustic emission (in audible and ultra-sonic 

ranges), ozone formation and the release of nitrous oxide gases may be observed 

[75]. By using different types of measurement techniques such as electrical, 

chemical, acoustic or optical, the PD phenomena can be detected and localized. A 

short review on different PD assessment methods have been included below. 

 

2.3.12.1Chemical Detection 

This is one of the simplest methods that can detect PD chemically by observing the 

chemical change in the composition of insulating materials. It is based on the 

collection and measurements of gas and oil samples released from PD activity. To 

measure PD, two chemical techniques such as DGA and HPLC are currently 

available. In the DGA test, oil from a transformer is sampled to measure the level of 

key gases in it. The measured gases are finally analysed by the Duval Triangle 

Method to detect PD. Although online monitoring of this method is available, the 

reading, level of gases and classified faults are not calibrated and scientifically 

correlated [76]. The HPLC method measures the PD by evaluating chemically stable 

by-products such as glucose during insulation breakdown. As the sample collection 

and analysis process is time consuming, this method is not suitable for real time 

monitoring of PD. Moreover, the insufficient standard for assessing the severity of 

PD from glucose measurement increases the measurement uncertainty. Furthermore, 

both DGA and HPLC are unable to locate the origin of PD. 
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2.3.12.2Electrical Detection 

This method is based on the detection of high frequency electrical pulses produce 

from a void due to a strong electric stress across it. The test can be performed in 

either on-line or off-line mode. In the case of off-line mode, a known value of a 

coupling capacitor is connected in series with the detection impedance that need to 

connect across the test object. After completing wiring, the circuit is energized from a 

high voltage AC source. The detection impedance can also be connected in series 

with test object (see Figure 2.9) for a better signal- to-noise ratio. Although, 

connecting the impedance in series with test object gives more sensitivity, it is 

commonly used in series with a capacitor to save the measuring device from potential 

damage due to the breakdown insulation of test objects. Moreover, the test object 

needs to be disconnected from ground to allow a detector to be connected in series 

with it. This is an unusual practice for power transformers. For the on-line mode, the 

inner grading foil layer of the bushing is used as a capacitor and an inductor is 

connected to the ground through the outer layer subject to the bushing tab being 

grounded. The circuit diagram of typical PD measurement methods is shown in 

Figure 2.9.  
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Figure 2.9:Measurement of apparent PD by connecting detector at different position. 

 

If PD is present, the void behaves like a capacitor and the voltage across it will 

continue to increase until breakdown happen. Consequently, the capacitor will be 
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discharged and the voltage across it returns to zero. The charging and discharging 

process will continue throughout the cycle as long as the AC supply is connected. 

According to [77], the  repetition rate of charging and discharging is over 1 MHz. 

The discharged energy will mostly be compensated by the coupling capacitor which 

is converted to a voltage signal through the detection impedance.  Comparing with 

the AC cycle, the converted signal can give valuable information about PD like pulse 

shape, intensity, relative phase location, severity of insulation damage. Although this 

method is very sensitive to noise, time consuming and cannot localize PD sources, it 

can provide the most accurate result compared with other methods [78-79]. 

 

2.3.12.3 Acoustic Detection 

The acoustic emission method (AE) measures the amplitude, attenuation or phase 

delay of acoustic signals that are produced from PD, to detect and locate the position 

of PD. The AE is a PD phenomenon-based method that senses acoustic waves in a 

frequency spectrum up to 350 kHz to detect PD [78, 80]. During PD, mechanical 

stress of materials next to the point of origin, cause an audible or non-audible AE 

signal to be produced. In order to detect the signal a number of different sensors like 

piezoelectric transducers, microphones, accelerometers, sound-resistance sensors and 

fibre optic acoustic sensors are commonly used [81]. The sensors are mounted on the 

outside wall of a transformer tank at multiple positions. The relative travel times that 

the signal reaches multiple sensors are triangulated to detect the source of PD and 

assess the severity of insulation defect [78]. Although, AE signals are interfered with 

by the low frequency mechanical vibration of a transformer, compare to electrical 

detection, it shows strong immunity against electromagnetic interference. Due to this 

special characteristic and high signal to noise ratio (SNR), this is an ideal method for 

online PD detection [81]. On the contrary, measurement complexity, extensive data 

processing and low sensitivity to the damping of oil, core, conductors and main tank 

are considered the main limitation of this method [80].  
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2.3.12.4Ultra-High Frequency Detection 

The ultra-high frequency (UHF) detection is a routine and continuous PD monitoring 

procedure for power transformers. This method measures the electrical resonance in 

the frequency range between 100 MHz and 2 GHz to detect and locate PD [82]. As 

the sensor is installed inside the transformer, the shielding effect of the tank helps to 

suppress any external noise [83]. Moreover, the low signal attenuation in oil 

insulation and the high sensitivity for an on-site measurement has increased the use 

of this method to test transformers. To measure PD, several sensors equipped with 

high sensitivity wideband antennas are installed inside the transformer tank. A 

calibration technique is applied before commencing the test to measure the sensitivity 

of the sensors and understand their exact phase and amplitude relationship. The 

position of the sensors is chosen in such a way that at least three sensors in parallel 

can detect signal from relevant parts of a transformer like the windings or tap 

changer.  High frequency cables with known attenuation and phase shift must be used 

for connecting the sensor to the control module. Finally, using the measured 

amplitude and travel time of the signals and applying established triangulation 

methods, a PD phenomenon may be detected and its source localized [84]. A detailed 

calibration and sensitivity checking procedure is available in [82]. 

 

2.3.12.5Optical Detection 

Optical detection is one of the latest technologies using to detect and locate PD of 

transformers. During PD, beside electromagnetic emission, light spectra such as 

ultraviolet, visible and infrared always radiate from the various ionization, excitation 

and recombination process. The radiated spectra transport information about the 

energy level of discharge that can be measured by an optical sensor to detect and 

locate PD [85].  The amplitude of the energy depends on the surrounding insulating 

material. The optical spectrum in oil due to PD starts at approximately 400 nm and 

can extend into the infrared region [85]. The wavelength can vary depending on the 
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insulation type and surrounding medium. Consequently, a sensor that can show the 

correct optical spectrum is crucial for PD detection. For transformers, a single or 

multimode fiber-optic sensor is immersed in the oil tank. According to [86], the 

equipment setup for optical detection is shown in Figure 2.10. 
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Figure 2.10: Schematic diagram for optical PD detection [86]. 

 

In the diagram, the setup consists of a He-Ne laser, phototransistor, amplifier, 

oscilloscope and multimode sensor to detect PD. He-Ne laser is operated in 

continuous wave mode to emit coherent power of 10 mW [86]. The PD source is 

simulated by using a HV source across the electrodes. The sensor collects the signals 

from the origin and guides it to the receiver (phototransistor). Output of the 

phototransistor automatically changes with the change of light intensity. After 

necessary conversion (optical to electrical) and amplification, the received signal is 

displayed by an oscilloscope to predict PD. Further analysis is required in 

computerized software to locate the PD source. As the method only receives optical 

signals, it is completely free from electromagnetic interference. Moreover, the high 

sensitivity and measurement capability in a wide bandwidth have made the method 

most popular in the high voltage industry. A detail procedure and analysis of this 

method is available in [85, 86]. 
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2.3.12.6 High Frequency Current Transformer Installation 

An inductive coupling sensor such as a high frequency current transformer (HFCT) 

can be used to detect online PD in a power transformer [87]. In the HFCT method, an 

externally accessible loop (PD loop) is made on the LV side by connecting the cable 

shield next to the bushing, directly to the main ground. In order to monitor PD, a 

HFCT is permanently clipped around the loop cable. If active PD is present, it will 

generate a high frequency electromagnetic pulse that will transmit through the earth 

conductor. The HFCT will pick up this radiation due to induction. Although, this 

method allows online PD monitoring, it is less sensitive, susceptive to noise and the 

magnitude of the detected signal is very low. Consequently, for analysing the data, an 

amplifier must be installed before analysing devices such as oscilloscope, PD 

detectors or pulse counters [87-88]. 

 

2.3.12.7 Transfer Function Measurement  

A transformer winding’s high frequency transfer function (TF) can be used to 

evaluate and localize the origin of PD that initiates within the windings [80, 89-90]. 

Each transformer windings may be divided into numerous winding sections. If the 

transfer function of individual sections of each winding is known, the transfer 

function of all windings can be calculated [91]. If PD is initiated at unknown 

allocation along the transformer winding, a signal will travel to both the bushing and 

neutral terminals, and will be distorted as it propagates. The distortion rate depends 

on multiple factors including the distance from origin to the detection impedance. 

The distorted PD signal can be measured either using narrow band or wide band 

techniques [80]. Although, the offline narrow band method cannot localize PD, it can 

quantify the apparent charge and measure the repetition rate, individual pulse energy 

and phase shift with the power frequency [80]. In accordance with IEC 60270, a 

frequency range of 9 to 30 kHz is suitable for this method. The wide band method 

uses the same technique as narrow band to detect PD. In addition, it can localize the 
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PD signal by analyzing the shape of it. In accordance with [92], about 10 MHz 

bandwidth is optimal for this method. In order to localize PD, this method uses the 

concept of a transfer function. Following the known sectional transformer function of 

a winding, it calculates the shape of a PD signal at multiple points within the 

windings from both bushing and neutral terminal. The point at which the calculated 

signals are comparable with the practical observations pinpoints the origin of PD 

[91].  On factory test, the accuracy of this method is satisfactory where background 

noise is controlled by some external means.  During on-site test, background noise 

and the transformers own noise, which is similar in nature to PD, directly affect the 

sensitivity and accuracy of this method [80].  The noise from multiple sources has to 

travel through the complete winding, but the PD signal will travel through only some 

sections of the winding. Consequently, noise will face more attenuation than the PD 

signal [91]. Additionally, the calculated transfer function of the noise signal will be 

the same as the transformer’s transfer function. This principle can be used to isolate 

noise in a laboratory environment. During on-site measurement, optical transducers, 

digital filters, amplifiers, windowing (software) and common mode rejection 

technique can be used to suppress the spurious sinusoidal and pulse shaped noise 

[91]. The accuracy of this method is dependent on the uncertainty of the windings’ 

sectional transfer function. For old transformers, where transfer function is measured 

from step response, it can only localize the origin of PD within a quarter of the 

complete winding length.  If the sectional transfer function of windings is known, the 

error of this method is only few percent [91]. A comparison of different available PD 

measurement methods has been summarized in Table 2.7. 
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Table 2.7: Comparison of different PD measurement techniques. 

Method Advantage Disadvantage 

Electrical 

➢ High sensitivity  

➢ High measurement precision 

➢ Good in laboratory environment 

➢ Calibration of the apparent charge 

➢ Difficult to apply onsite measurement  

➢ Influenced by electromagnetic interference  

➢ Unsuitable for long-term monitoring  

UHF 

➢ Better sensitivity then AE [84] 

➢ Higher immunity against noise 

➢ Lower signal attenuation 

➢ No direct correlation with conventional 

measurement following the IEC60270 

➢ Sensitivity need to check for individual 

transformer due to identical internal 

impedance 

➢ Insufficient scope to install sensors in old 

transformer 

Chemical 
➢ Good in laboratory environment 

➢ High sensitivity  

➢ High uncertainty due to unknown 

relationship between glucose and severity 

AE 

 

➢ Good in real time monitoring 

➢ Noise immunity 

➢ Detect the position of PD 

➢ Low sensitivity 

➢ Influenced by external noise 

Optical 

➢ Immune to electromagnetic 

interference  

➢ Visualization of PD is possible 

➢ High sensitivity 

➢ High frequency response 

➢ Easy portability 

➢ No significant disadvantage 

HFCT 
➢ Capable to do real time monitoring 

➢ Easy to install 

➢ Cannot detect source even the nearby phase 

➢ Influenced by external interference 

TF 
➢ Good in laboratory environment 

➢ Capable to detect and locate PD 

➢ On-site test, vulnerable to background noise 

 

 

2.3.13 Leakage Reactance or Short Circuit Impedance Measurement 

Short circuit impedance (SCI) is a frequency dependent parameter has been used over 

many years to detect winding deformation and core displacement of a transformer. 

Short circuit current is considered one of the main symptoms of mechanical 

deformation of core and windings. Any change in mechanical geometry of a 

transformer would change its SCI. A high value of SCI has a direct impact on the 

voltage regulation due to the significant amount of voltage drop across it. On the 



Chapter 2 

 

48 

 

contrary, low values indicate short circuit current. A deviation of ±3% is an 

indication of winding deformation and core displacement [93]. However, 

transformers over 100 MVA should not exceed ±1% from their nameplate value [94]. 

Ampere’s force law states that, an attractive force will be observed between 

conductors if they carry current in same direction and vice versa. According to this 

formula, it can be summarized that the forces from one HV (or LV) winding loops to 

the next will be attractive but the force between HV and LV windings is repulsive. 

Eventually, the axial flux produced from short circuit currents create compressive 

force on inner windings but tensional force on outer windings that try to rupture the 

winding conductors [95-96]. The SCI can be measured either using 3 phase 

equivalent test or per-phase test methods. In order to measure SCI, an input voltage 

must be applied in HV windings one after another keeping the corresponding LV 

winding shorted.  The measurement setup for SCI has been shown in Figure 2.11 (a) 

and (b). 
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Figure 2.11: Circuit connection for single phase (a) and three phase (b) measurement. 

 

To reduce the resistance of the shorting cable, it should be minimal in length and the 

cross-sectional area must be more than 30% greater than the winding conductors to 

handle a large amount of current [97]. The 3-phase equivalent test allows comparing 

the result with nameplate value and between phases to assess the mechanical integrity 

of a transformer. This result could be used as a finger print for future tests.  Per-phase 

test can be performed as a follow up test. This method has a number of limitations 

[97] such as  
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i. It does not provide detailed information of windings state due to single 

frequency (50 or 60 Hz) test.  

ii. It is less sensitive as significant deformation is required to cause a discrepancy.  

iii. It cannot detect axial deformation like tilting or bending of conductors.  

 

2.3.14 Ratio Test 

The turn ratio test of a transformer (TTR) is used to detect open or short circuits 

between turns of the same winding. A deviation of more than 0.5% is an indication of 

insulation failure, short circuit or open turns [4]. In the TTR test, the ratio needs to 

check at all taps position. The TTR can provide evidence of gross winding resistance 

deviation. It is recommended to start the test at low voltage (100 volts) and verify the 

result against the nameplate value. If no significant deviation is found then it is safe 

to increase the voltage up to the rated voltage. This approach helps to avoid unwanted 

insulation breakdown.  

 

2.3.15 Winding Resistance Test 

Winding resistance test can be used to detect loose connection, broken stands or poor 

contacts in LTC.  The resistance must be measured at all taps to verify the LTC 

contact resistances. The result can be analyzed by comparison with name plate 

information, historical data or between phases.  When comparing with nameplate 

values, the test data must be converted to the reference temperature used during the 

factory test. This test could be used as a supplement of DGA and TTR, if DGA 

indicates generation of hot metal gases such as methane (CH4), ethane (C2H6) and 

acetylene (C2H2) [4]. Depending on the percentage of deviation, a manual internal 

inspection may be organized. 
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2.3.16 Core to Ground Resistance Test 

In most modern transformers, the core is intentionally connected to a single ground 

point through a small bushing, preventing circulating currents and detecting multiple 

grounds. During transportation, the grounding system could become loose or 

damaged. The core to ground resistance test is used to detect unintentional core 

grounding and check the integrity of intentional ground points.  The test can be used 

as a supplement of DGA when it indicates hot metal gases. For checking multiple 

grounds, the insulation resistance between the core and tank is measured, while the 

intentional ground cable is kept open. The measured resistance may be used to detect 

and classify the severity of multiple grounds as indicated in Table 2.8. 

Table 2.8: Insulation condition based on core-to-ground resistance [4]. 

Resistance Value Condition 

Resistance >1000MΩ New transformer 

Resistance >100MΩ Aged insulation 

Resistance 10-100MΩ Degraded insulation 

Resistance <10MΩ Destructive circulating current 

 

 

2.3.17 Sweep Frequency Response Analysis 

The sweep frequency response analysis (SFRA) is a non-destructive, highly accurate, 

cost-effective and sensitive method that is used to detect mechanical deformation and 

displacement of a transformer core and windings [97]. Over time, the importance of 

SFRA is increasing due to its high sensitivity for detecting mechanical failures of a 

transformer. It can detects faults  such as winding deformation (axial or radial), 

winding movement, tilting, hoop buckling, inter-turn faults, partial collapse of a 

winding, multiple core grounding, poor  tank grounding and loose contact at HV and 

LV  winding terminals without opening the main tank [97-98].  Generally, short 

circuit current, careless transportation, natural disasters like earthquakes and 
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combustible gas explosions inside a transformer are considered the main reasons for 

core and windings deformation [97]. Frequency response is a unique fingerprint of 

each transformer that changes with the onset of a mechanical defect. The impedance 

of a transformer, which is a frequency dependent parameter, change with mechanical 

deformation, leading to modified frequency response [99]. After commissioning, 

short circuit incidents or transportation, it is recommended to perform FRA to ensure 

the windings and core integrity of transformers. In a two-winding three-phase 

transformer, SFRA measurement can be performed for either transfer function or 

impedance measurement.  Transfer function can be measured from non-transferred 

measurement and impedance  can be measured from transferred measurement [98]. 

The measured transfer function can be used to detect short circuited turns of the 

windings [100]. The circuit diagrams of a transferred measurement and non-

transferred measurement are shown in Figure 2.12 and 2.13 respectively.  
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Figure 2.12: Transferred measurement. 
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Figure 2.13: Non-transferred measurement. 

 

In transferred measurement, an input voltage Vin is injected at each HV terminal and 

the output voltage Vout  is measured from the corresponding LV winding, keeping the 

neutral terminals grounded and the other non-tested terminals floating or shorted to 

the main tank through 1 kΩ resistance  [98, 101].  This measurement is acceptable 

only at frequencies lower than 8 kHz [102]. At higher frequency, it is influenced by 

inter-winding capacitance. Consequently, this test highlights the influence of 

coupling capacitance between HV and LV windings [98]. For the non-transferred 

measurement, input voltage is measured from HV windings and output voltage is 

measured from the respective neutral terminal of the same winding, keeping non-

tested HV terminals open and LV terminals open or short circuited. In order to avoid 

the damping oscillation and reduce the impact of stray capacitance, it is 

recommended to add some resistance (1 kΩ) with both non-excited and excited 

terminals [98, 101].  After conducting SFRA and recording the response, the next 

important task is to analyse the result to verify the mechanical integrity. To analyse 

the data, it is important to know the upper limit of the frequency range for SFRA that 

is useful for fault detection. According to [98], the maximum reproducible range is at 

least  1 MHz. At higher frequencies (over 1.5 MHz), the distributed capacitance 

tended to work as a shunt capacitor with winding inductance, winding lead effects is 
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apparent and recurrence of resonance is less pronounced  [101]. It is commonly 

accepted that the low frequency range (1 to 100 kHz) is useful for detecting core 

deformation, the medium frequency range (100 to 600 kHz) is dominated by winding 

structure and the high frequency range (600 kHz to 1 MHz) can identify problems in 

connection leads [97]. According to [103], the frequency response in different 

sections of the spectrum is shown in Figure 2.14. The frequency range can be 

extended up to 2 MHz for detecting minor faults like conductor bulging, small 

displacement and inter-turn fault [104]. Faults close to either high voltage terminal or 

low voltage terminal can be detected using the impedance value of low-voltage or 

high-voltage windings respectively, setting the opposite side open-circuited [104]. 

Although, SFRA can detect wide ranges of mechanical distortion sensitively, the 

interpretation and analyzation of data is not easy. As there is no standard procedure, 

it is still dependent on experts’ judgement, visual inspection, statistical indices like 

standard deviation, correlation coefficient and relative factor, and comparison with 

historical data. If historical data is not available, data can be analysed by comparing 

between different phases of the same transformer or twin/symmetrical transformers. 

For comparing data between phases, the nominal difference must be allowed for due 

to any inherent constructional asymmetries.  

 

Figure 2.14: Transformer sweep frequency response [103] 
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2.4 Calculation of Residual Life 

Due to economic and technical reasons, beside condition monitoring, the life time 

estimation of transformers has gained more attention from utilities. The estimated life 

time can help them to setup a strategy for refurbishment and develop a forecasting 

system for future investment. Over the decade, different techniques like health index 

calculation, probability of failure estimation, statistical depreciation analysis, 

correlation of operating temperature and DP with insulation life are using to calculate 

the remaining service life of transformer. A review of different life time estimation 

methods can be summarized as follows.  

 

2.4.1 Hot Spot Temperature Calculation 

The hot spot temperature (HST) of a transformer has a direct impact on its insulation 

life. The ageing rate of insulation is accelerated with the increase of HST.  According 

to industry loading guides (IEE, IEC, CIGRE and ANSI), temperature is the principle 

factor for reducing the service life of transformers. The nominal HST of a 

transformer oil-paper insulation is considered as 110 oC and could be acceptable up 

to 140 oC [31, 49]. The effect of ambient temperature, windings faults, faulty cooling 

systems, over loading and unwanted harmonics (non-sinusoidal load) increase the 

HST and reduce the life of transformers. Consequently, the remaining service life of 

a transformer can be calculated from the correlation of HST and ageing rate of 

insulation. According to [105],  the equation of HST in oC can be expressed as 

follows  

𝜃𝐻𝑆 = 𝜃𝐴 + 𝛿𝜃𝑇𝑂 + 𝛿𝜃𝐻       (2.7) 

 

where 𝜃𝐻𝑆 is the hot spot temperature, 𝜃𝐴 is the ambient temperature, 𝛿𝜃𝑇𝑂 is the top 

oil temperature raise and 𝛿𝜃𝐻  is the winding HST raise over top oil temperature. The 
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value of 𝛿𝜃𝑇𝑂 is directly influenced by the transformer’s load. According to [106], the 

impact of  load  variation on 𝛿𝜃𝑇𝑂 can be expressed by the following equation 

 

𝛿𝜃𝑇𝑂 = (𝛿𝜃𝑇𝑂.𝑈 − 𝛿𝜃𝑇𝑂.𝑖)(1 − 𝑒−𝑡
𝜏𝑇𝑂⁄ ) + 𝛿𝜃𝑇𝑂.𝑖    (2.8) 

 

where 𝛿𝜃𝑇𝑂.𝑈 is the top oil temperature gradient at ultimate state, 𝛿𝜃𝑇𝑂.𝑖 is the initial 

top oil temperature gradient, t is the duration of loading (in hours) and 𝜏𝑇𝑂 is the oil 

time constant (in hours). However, winding HST is also influenced both by the 

operating load and its duration. A correlation between winding HST and loading time 

for various loads can be modeled by the following equation [106]. 

 

𝛿𝜃𝐻 = (𝛿𝜃𝐻.𝑈 − 𝛿𝜃𝐻.𝑖)(1 − 𝑒−𝑡
𝜏𝑊⁄ )     (2.9)  

 

where 𝛿𝜃𝐻.𝑈is the hot–spot temperature gradient at ultimate steady state, 𝛿𝜃𝐻.𝑖 is the 

initial temperature gradient, t is the loading duration in hour and 𝜏𝑊 is the winding 

time constant (in hours).  If the 𝜃𝐻𝑆 is known, the Arrhenius Dakin formula can be 

used to calculate the life consumption. According to the formula 

 

𝑃𝑒𝑟 𝑢𝑛𝑖𝑡 𝑙𝑖𝑓𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 𝐴𝑒
(

𝐵

273+𝜃𝐻𝑆
)
     (2.10) 

 

where A and B are the constants. The value of A and B represent the characteristics of 

insulation. The typical value of A and B are 9.8×10-18 and 15000 respectively [105]. 

The ratio of per unit life at design temperature (110 oC) relative to the per unit life at 

any other operating temperature (θHS) is known as the ageing acceleration factor. 

According to [107], the ageing acceleration factor can be expressed by the following 

equation  

𝐹𝐴𝐴 = 𝑒(
15000

383
 − 

15000

𝜃𝐻𝑆+273)       (2.11) 
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According to [108], the loss of unit life and its percentage in a given period of time 

for a transformer can be approximated as: 

`𝐹𝐸𝑄𝐴 =
∑ 𝐹𝐴𝐴𝑛 𝛿𝑡𝑛

𝑁
𝑛=1

∑ 𝛿𝑡𝑛
𝑁
𝑛=1

       (2.12) 

 

where FEQA is the equivalent ageing factor, FAAn is the aging acceleration factor 

during the time interval 𝛿𝑡𝑛 and N is the total number of time intervals. 

% 𝐿𝑜𝑠𝑠 𝑜𝑓 𝑙𝑖𝑓𝑒 =
𝐹𝐸𝑄𝐴∗𝑡∗100

𝐼𝑛𝑠𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑠𝑖𝑔𝑛 𝑙𝑖𝑓𝑒
     (2.13) 

 

In order to avoid the complexity of this calculation process, annual estimation of 

cyclic ambient temperature and load have been considered. Consequently, a 

transformer’s unit life can easily be estimated from the hourly basis annual 

temperature and load curve. However, to improve the reliability of a transformer’s 

estimated residual life, a more sophisticated modelling approach is necessary that can 

incorporate other ageing factors along with the environmental effect of ambient 

temperature and HST more accurately.  

 

2.4.2 Concentration of Furan and DP Value Measurement 

The DP value calculation and the furan concentration measurement is another method 

that is using to calculate the residual life of a transformer by assessing the 

degradation of the cellulosic paper insulation. Generally, for unaged paper, the value 

of DP is expected to be 1000-1200  [109-110], whereas paper having a DP value of 

200-300 is considered to have reached its end of life [111]. Over time, due to 

chemical reactions, the DP value of a transformer paper decreases due to the 

influence of temperature, water content and oxygen. Consequently, it can provide 

valuable information about the mechanical strength and the degradation state of 

cellulose.  According to the Arrhenius relation, the DP value can be linked with 
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temperature in terms of a time dependent reaction rate (k) by using the following 

equation [111] 

𝐷𝑃(𝑡) =
𝐷𝑃(𝑡0)

1+𝐷𝑃(𝑡0) ∗ ∫ 𝑘(𝑡)𝑑𝑡
𝑡
𝑡0

      (2.14) 

where 𝑘 = 𝐴 ∗ 𝑒−
𝐸𝑎

𝑅𝑇⁄ ,A is a constant that depends on the water content, oxygen or 

acidity, 𝐸𝑎 is the minimum activation energy in J/mol, required to start the chemical 

reaction, T is the temperature (in degrees Kelvin) and R=8.314 𝑚𝑜𝑙−1𝐾−1 is the ideal 

gas constant. The DP value after any aging period 𝑡𝑛can also be calculated by the 

following Emsley’s equation [112]. 

𝐷𝑃𝑛 =
1

𝐴∗𝑒−
𝐸𝑎

𝑅𝑇⁄
∗𝑡𝑛 +

1

  𝐷𝑃𝑛−1

       (2.15) 

where the value of A is dependent on both the water content and the dissolved oxygen 

gas but not on the temperature [112-113]. Finally, the loss of life after any time 

period tn can be calculated by dividing the aging during the time interval by the 

expected life at a particular temperature [112]. Consequently, the life lost at a 

particular time interval can be expressed as follows 

𝐿𝐿𝑛 =
𝑡𝑛

1
200−

1
1000

𝐴
 ∗ 𝑒

𝐸𝑎
𝑅𝑇⁄

       (1.16) 

 

The percentage of residual life  

%𝑅𝐿 = (1 − ∑ 𝐿𝐿𝑛
𝑁
𝑛=1 ) ∗ 100      (1.17)  

where N is the total number of time interval and  %𝑅𝐿 for a new transformer has been 

considered 100%. 

As direct testing of DP value for a live transformer is critical and requires that the 

transformer be disconnected from the live network [42], the furan concentration is 

widely used to estimate the remaining residual life of a transformer. The furan (2-

FAL) is released from the degradation of materials produced by the breakdown of 

cellulose and maintains an inverse relationship with DP.  Consequently, different 
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correlation techniques have been developed to relate the furan concentration with DP 

to avoid the complexity of direct DP measurement. In [114], the value of DP has 

been correlated with the  furan concentration using the following equation.  

𝐷𝑃 =
log(2𝐹𝐴𝐿)−1.51

−0.0035
       (2.18) 

where the concentration of furan (2FAL) is used in mg/l.   

A summary of different correlation methods between DP and furan are also available 

in [115]. The calculated DP value, based on furan concentration, is ultimately used to 

calculate the residual life of a transformer. The benefit of this method is that, the 

error can be reduced by updating the measured quality parameters and DP value can 

be verified from the measured value of furan. 

 

2.4.3 Probability of Failure Calculation 

Failure of a transformer occurred after certain level of insulation and performance 

degradation. The probability of failure can be calculated by characterizing the 

degradation as a function of time. According to [116], the degradation model of 

transformers can be expressed by the following differential equation 

 

𝑑𝜒

𝑑𝑡
= −𝐴𝐹𝑅0𝜒

𝑘        (2.19) 

 

where  𝐴𝐹 is an ageing factor, k is a shape parameter, 𝑅0  is a constant and 𝜒  is a 

performance parameter representing the ratio of initial and later performance. The 

ageing factor can be calculated from the assessment and observation of selected 

properties. As temperature increases the ageing rate of insulation, the effect of 

temperature on paper insulation degradation has been approximated by the following 

equation.  

 

𝐴𝐹 = 𝛿
1

𝑇0
[𝜃−25]

        (2.20) 
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where 𝜃 and T0 are the temperature in Celsius and Kelvin respectively and 𝛿 is the 

model coefficient. Suppose, a transformer fails at time t, for a degradation level𝜒𝑓 ,  

the probability of failure for the transformer can be expressed as follows [116] 

 

𝑃(𝜒) = 1 − 𝑒𝑥𝑝 [−(
𝜒

𝜒𝑓
)𝜂]       (2.21) 

 

where 𝑃(𝜒) is the probability of failure, 𝜒 is the initial degradation, 𝜒𝑓 is degradation 

after time t and 𝜂 is the shape parameter. Finally, the calculated probability of failure 

(99%) can be used to estimate the remaining service life of a transformer. According 

to [1], the remaining service life of a transformer in terms of probability of failure 

can be expressed by the following equation 

 

𝜏𝑅 =
𝜏𝑃(𝜒)≈80−99%−𝜏𝑒

𝐴𝐹
       (2.22)  

 

where 𝜏𝑅 is the remaining life, 𝜏𝑃(𝜒) is the age at which probability of failure is in the 

range 80-99% and 𝜏𝑒 is the effective age. To get a safety margin for avoiding failure, 

it is recommended to calculate the remaining life based on slightly earlier failure 

probability (80%) than the 99%.  This margin is dependent on a particular utility’s 

strategy and maintenance practice. Additionally, the financial risk of replacing a 

faulty transformer and the consequences of an outage need to be considered. The 

probability of a transformer’s failure at any time is dependent on the remaining 

insulation strength and active stress on that particular time. Over time, insulation 

loses its mechanical and dielectric strength and the probability of failure increases. 

The failure probability of transformers follows the typical bathtub curve, where the 

initial failure rate is high but greatly reduces and flattens after few years of faultless 

operation until it starts to steadily climb again as the transformer starts to age [31].  
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2.4.4 Health Index Calculation 

The percentage health index (HI) calculation is one of the reliable methods for life 

time estimation of a transformer. In HI calculation, a large number of routine and 

diagnostic tests are combined for explicitly assessing the overall condition of a 

transformer. The following equation is typical of HI calculations [1] 
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Here DIi are the index scores; Ci are the weight factors of each individual test, n is the 

number of tests (weight criteria) for a transformer and its LTC respectively.  The 

formula allocates 40% of the total weight to the LTC and remaining 60% models the 

causes of direct transformer failure, based on a survey conducted by the CIGRE 

group. This could vary depending on the failure statistic of utilities [117]. A detail of 

this method is available in [1]. One of the drawbacks of this linear approach is that it 

is less sensitive to the individual test. For instance, if the condition of a bushing is 

very poor which could potentially lead transformers into a catastrophic failure, the 

overall HI score will not be changed significantly. To overcome the limitation, the 

test results can be combined in a multiplicative way so that if one test result is very 

poor, the overall HI score will be very low. The calculated HI can be correlated with 

approximate expected lifetime as follows in Table 2.9. 

 

Table 2.9:Health index and remaining lifetime [1]. 

Health Index Description Approximate Expected Lifetime 

85–100  Minor deterioration of a limited number of 

components. 

More than 15 years  

70–85  Significant deterioration of some components. More than 10 years  

50–70  Widespread significant deterioration. Up to 10 years 

30–50  Widespread serious deterioration. Less than 3 years 

0–30 Extensive serious deterioration. At end-of-life  
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2.5 Conclusions 

Transformers are unusual among industrial plant, since many of their operating 

components are not amenable to direct visual inspection as they are obscured within a 

bath of oil.  This has necessitated a wealth of ingenious techniques that judge a 

transformer’s operating condition from a diverse set of indirect measurements. This 

paper has investigated a wide range of established diagnostic tests to identify the 

most influential parameters on transformer performance and service life. To improve 

the measurement accuracy and detect fault types, testing methods have been 

organized following their sensitivity and detection capability against faults and 

insulation degradation. Based on the fault detection capability, routine and diagnostic 

tests have been summarized in Table 2.10. As previously stated, 70% of common 

faults can be diagnosed by DGA alone, but additional tests are needed to indicate 

when mechanical faults have occurred.  

 

Few power transformers are privately owned and most are operated by utility 

companies that subject their assets to regular online monitoring and less frequent 

offline maintenance.  The issue these companies face is targeting a limited pool of 

resources to get the greatest benefit to their assets whilst simultaneously minimizing 

the risk of unexpected and catastrophic failures. It is expected that condition 

monitoring and lifetime estimation approaches will help to correlate various tests to 

measure the actual level of insulation and performance degradation. For improving 

reliability, relevant industrial standards and survey results, such as CIGRE, IEEE and 

IEC, have been used on selected methods for understanding and interpreting the test 

results. These analytical and diagnostic techniques will help the maintenance 

engineers to interpret the test results and suggest the important parameters of 

transformers that need to be monitored. These techniques also help utilities to prevent 

unexpected failures and provide justification to asset manager for replacing 

unreliable aged transformers through proper prediction.  This review provides a snap 

shot of current tests and power transformer condition monitoring techniques. This is 
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an area where there is significant ongoing research to better understand the 

characteristics of the various tests and to devise better methods for combining test 

results to monitor the condition of these expensive and critical devices. As the 

installed base of assets age, it seems likely that the importance of these techniques 

will only continue to increase. 

 

Table 2.10: Comparison between online, routine and diagnostic tests for fault 

detection. 

Name of the 

tests 

Online 

monitoring 

Routine 

test 

Diagnostic 

test 

Type of faults detection 

Electrical Mechanical Thermal 

DGA X X X X  X 

Oil testing  X X X  X 

Furan analysis   X X  X 

DP 

measurement 
  X X   

SFRA  X X  X  

Power factor 

measurement 
X X X X X  

Leakage 

reactance 
  X  X  

Insulation 

resistance 
 X X X   

PD 

measurement 
X  X X  X 

Turns ratio 

measurement 

 
X    X 

Dielectric 

response 

analysis 

 

 X   X 

Winding 

resistance 

 
X    X 

Core-to-

ground 

resistance 

 

 X   X 

Excitation 

Current 

 
 X   X 
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Chapter 3:  A Nearest Neighbour Clustering Approach for Incipient 

Fault Diagnosis of Power Transformers

 

 

Abstract 

Dissolved gas analysis (DGA) is one of the popular and widely accepted methods 

for fault diagnosis in power transformers. This paper presents a novel DGA 

technique to improve the diagnosis accuracy of transformers by analysing the 

concentrations of five key gases produced in transformers. The proposed approach 

uses a clustering and cumulative voting technique to resolve the conflicts and deal 

with the cases that cannot be classified using Duval Triangles, Rogers’ Ratios and 

IEC Ratios Methods. Clustering techniques group the highly similar faults into a 

cluster providing a virtual boundary between dissimilar data. A cluster of data 

points may contain single or multiple types of faulty transformers’ data with 

different distinguishable percentages. The k-nearest neighbour (KNN) algorithm is 

used for indexing the three closest clusters from an unknown transformer data point 

and allows them to vote for single or multiple faults categories. The cumulative 

votes have been used to identify a transformer’s fault category. Performance of the 

proposed method has been compared with different conventional methods currently 

used such as Duval Triangles, Rogers’ Ratios and IEC Ratios Method along with 

published results using computational and machine learning techniques such as 

rough sets analysis, neural networks (NNs), support vector machines (SVMs), 

extreme learning machines (ELM) and fuzzy logic. The experimental comparison 

with both published and utility provided data show that the proposed method can 

significantly improve the incipient fault diagnosis accuracy in power transformers. 
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3.1 Introduction 

A power transformer is one of the most important and expensive components in 

power transmission and distribution systems [1]. Its precise operation is essential for 

ensuring the reliable and stable operation of a power system. Any fault in the power 

transformer may lead to the unscheduled outages resulting in interruption of power 

supply. Failure of transformers hampers the stability of operation and causes a great 

loss to the utilities. As sudden failure of a transformer can result in an explosion, it 

has significant implications both for quality of service and it poses a risk to both 

maintenance crew and the general public. Therefore, incipient fault diagnosis and 

condition monitoring of power transformers are both gaining attention [2], by the 

utilities to ensuring continuous operation and minimising the operational risks. 

Due to the continuous operation and variable loading, transformers are always 

subjected to electrical, thermal, mechanical and chemical stresses. As a result, 

different types of combustible and non-combustible gases, such as Hydrogen (H2), 

Oxygen (O2), Nitrogen (N2), Carbon dioxide (CO2), Carbon monoxide (CO), 

Methane (CH4), Ethylene (C2H4), Ethane (C2H6), Acetylene (C2H2), Propane (C3H8) 

and Propylene (C3H6) are released and dissolved in transformer oil [3]. Moreover, the 

excessive thermal, electrical and chemical stresses change the dielectric properties 

and mechanical strength of cellulose paper and produce furanoid compounds, 

namely, 2-furfural (2-FAL), 5-Hydroxy methyl-2-furfural (5-HMF), 5-Methyl-2-

furfural (5-MEF), 2-Furfurol (2-FOL) and 2-Acetylfuran (2-ACF) which are partially 

soluble in oil [4-5]. In order to monitor the insulation condition and detect faults in a 

transformer, different techniques such as Dissolved Gas Analysis (DGA), Furan 

Analysis, Degree of Polymerisation (DP) measurement, Gas Chromatography (GC), 

Mass Chromatography (MC), High Performance Liquid Chromatography (HPLC) 

and moisture analysis are available [6]. Among these, DGA is a non-invasive, proven 

and widely accepted method to detect incipient faults in transformers. The DGA 
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method can be used to continuously monitor the overall condition of transformers 

and generate advance warnings of newly developing faults. Therefore, operators can 

conveniently plan their remedial action following the total gas production or the 

production rate of individual gases that minimizes the risk of premature failure.  

In order to analyse the measured gas concentrations, DGA techniques such as the 

family of Duval Triangles, Key Gas, Modified Rogers’ Ratios, Doernenburg and IEC 

Ratios have been used over the last few decades [7-8]. The Duval Triangles are one 

of the preferred methods for many utility companies, as they do very well in 

classifying incipient faults, and can assess the state of insulation in transformers. 

However, there are cases where the Duval Triangles fail to produce any classification 

and there is a chance of misclassification near to the boundary between adjacent 

regions [9]. In order to investigate these unusual cases, a link has been established 

with a large utility company in Western Australia having more than 350 power 

transformers in operation. The company primarily uses Duval Triangles to assess the 

overall condition of their transformers. They also consider IEC, Modified Rogers’ 

Ratios and Key Gas methods before classifying their transformers into a fault 

category, especially for the cases when Duval Triangles fail or ambiguously classify 

a transformer. Additionally, over time, gases are produced by normal operation of 

transformers without indicating any fault. Consequently, there is a chance of 

misclassification of healthy transformers. According to [10], the permissible limit of 

dissolved gases in transformer oil corresponding to the operating time of a healthy 

transformer is shown in Figure 3.1. 
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Figure 3.1: Permissible concentration of dissolved gases in a healthy transformer [10]. 

 

In this paper, a novel fault diagnosis technique has been proposed which can 

effectively classify the critical cases where there is a contradiction between various 

Duval Triangles and cannot be classified by the conventional ratio methods. The 

arrangement of the paper is as follows. Section 3.2 describes the motivation of the 

research. Section 3.3 presents the basic concept of k-means algorithm (KMA). 

Section 3.4 describes the proposed machine learning technique utilising k-means 

clustering and k-nearest neighbour pattern classification.  Section 3.5 presents the 

results that were achieved with the method, section 3.6 presents a case study and 

section 3.7 presents a summary of the results and conclusions.  

 

3.2 Motivation of Research 

DGA is one of the proven methods that used widely by many utilities for condition 

monitoring and fault diagnosis in power transformers. Due to their continuous 

operation, the normal ageing of transformer insulation is inevitable. Frequent 

overloading and short circuit incidents can create electrical, mechanical and thermal 
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stresses in transformer insulation that degrade the dielectric properties of insulation 

and increase its ageing rate. The decomposition of insulating material increases the 

operational risk to transformers and produces several combustible and non-

combustible gases that become partly dissolved in transformer oil. In DGA-based 

analysis, the concentration and production rate of gases are measured and 

continuously monitored to assess the insulation condition of a transformer and locate 

the sources of faults. In order to interpret the dissolved gases, a graphical technique 

like the Duval Triangles and different ratio methods such as Rogers’ Ratios, 

Doernenburg Ratios, IEC Ratio, Single Gas Ratio and the Key Gas method are used 

over long periods of time. All of these conventional methods are very simple and 

easy to implement. However, different methods have different advantages and 

limitations. Therefore, comparison of the results from different methods on the same 

sample may lead to contradictions, and there is no clear way to prioritise one result 

over another, leading to ambiguity [11]. The accuracy of the IEC method is affected 

by the incomplete coding and absolute code boundary. It cannot identify the fault 

samples, if they fall outside the definite ratio limits. In addition, the interference 

problem between low energy discharge (D1) and high energy discharge (D2) of this 

method may lead to misleading classification [12]. The classification of Rogers’ 

Ratios is not precise for detecting all faults [12]. It gives more accurate diagnosis for 

the low thermal (T1) fault. The Doernenburg method can only provide three types of 

diagnosis. It cannot distinguish the severity of thermal decomposition.  

All these ratio methods do not involve any mathematical formulation and their 

accuracy is dependent on the concentration and ratio of the key gases. Moreover, in 

some cases, the calculated ratios do not fall within any of the fault classes and remain 

unclassified. The Duval Triangles always gives a fault diagnosis even when a 

transformer is known to be healthy. The classical Duval Triangle cannot accurately 

detect the partial discharge (PD) and thermal fault. For mineral oil filled 

transformers, if the fault classification is a thermal fault or a partial discharge by the 
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classical triangular method, then Triangles 4 and 5 must be used for further 

clarification. In practice, there are cases where contradictory classifications are 

produced by Triangles 4 and 5. Moreover, all triangles have an unclassified region. 

Consequently, the accuracy of fault classification is dependent on the expert’s 

experience supported by other ratio methods. The classification of transformers’ 

incipient faults following the Rogers’ Ratios, and IEC ratios has been tabulated in 

Tables 3.1 and 3.2, respectively. 

Table 3.1: Rogers’ ratios [13]. 

Case R2= C2H2/C2H4 R1= CH4/H2 R5= C2H4/C2H6 Suggested Fault Diagnosis 

0 <0.1 >0.1 to <1.0 <1.0 Unit normal 

1 <0.1 <0.1 <1.0 Low-energy density arcing (LEDA)/PD 

2 0.1 to 3.0 0.1 to 1.0 >3.0 Arcing-high-energy discharge (AHED) 

3 <0.1 >0.1 to <1.0 1.0 to 3.0 Low temperature thermal (LTT) 

4 <0.1 >1.0 1.0 to 3.0 Thermal <700 °C (T2) 

5 <0.1 >1.0 >3.0 Thermal >700 °C (T3) 

 

Table 3.2: Ratio limits for respective faults based on IEC60599 (2007). 

Case Characteristic Fault C2H2/C2H4 CH4/H2 C2H4/C2H6 

PD Partial Discharge - <0.1 <0.2 

D1 Low Energy Discharges >1 0.1-0.5 >1.0 

D2 High Energy Discharges 0.6 to 2.5 0.1 to 1.0 >2.0 

T1 Thermal Fault <300 °C - >1.0 <1.0 

T2 Thermal Fault 300 to 700 °C <0.1 >1.0 1.0 to 4.0 

T3 Thermal Fault >700 °C <0.2 >1.0 >4.0 

 

To overcome the limitations of these conventional approaches, various computational 

and machine learning techniques such as Support Vector Machines (SVMs) [2], 

Neural Networks (NNs) [14], Extreme Learning Machines (ELM) [15], Fuzzy Logic 

[16-17] and Rough Sets (RS) detection [18]have been combined with DGA 

interpretation techniques to analyse the incipient faults in transformers. These new 

techniques have improved the accuracy of fault diagnosis and solved the interference 

problem between fault classes. The combined approach is helping researchers and 
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utilities to explore the relationship between different fault patterns and their 

characteristic parameters. In this research, a modified clustering technique and k-

Nearest Neighbour algorithm have been used, and a modified cumulative voting 

mechanism has been proposed to classify and predict the incipient faults in power 

transformers. 

 

3.3 Basic Concepts of k-means Algorithm 

Cluster analysis is prevalent in any discipline that aims to find the natural grouping, 

detect anomalies and identify salient features of data points in a given data set. The 

groups are called clusters and the region belonging to a cluster is a Voronoi cell [19], 

in which the density of similar data points is higher than in other regions. A good 

clustering technique generally uses the splitting, merging or randomized approaches 

for partitioning given data points into clusters so that the formal objective function is 

optimized [19]. The most common objective in clustering technique is to minimize 

the squared error between the empirical mean of a cluster and the points lying in its 

Voronoi cell. The k-means algorithm (KMA) is one of the simplest and widely used 

unsupervised learning algorithm that minimizes the clustering error and can be used 

to discover the natural grouping of data points [19-20].  For a set of n data points 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑛} , in a real d-dimensional space 𝑹𝑑, KMA determines a set of K cluster  

𝐶 = {µ1, µ2, … , µ𝑘} in 𝑹
𝑑 such that the mean squared Euclidean distance from each 

data point to the nearest centre is minimized. Each of the clusters is associated with a 

subset of X such that any 𝑥𝑖 is a member of only one cluster. The subset of 𝑋 that 

cluster around 𝜇𝑘  will be referred to as 𝐶𝑘 . Each of the subsets is disjoint and 

therefore the union of all 𝐶𝑘 provides the entire set of points and can be expressed as, 

               ⋃𝐶𝑘 = 𝑋.                                                                                                     (3.1)

𝐾

𝑘=1
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According to [21], the sum of the squared-error for the set of clusters C can be 

defined as 

 

J(C) = ∑ ∑ ║𝑥𝑖 − 𝜇𝑘║
2

𝑥𝑖∈𝐶𝑘

𝐾
𝑘=1      (3.2) 

        

Although, the objective function J(C)decreases with the increasing number of clusters 

K, and become zero when K= n, the number of cluster centres and data points are 

equal. It needs to be minimized when K< n using KMA. The steps of KMA are as 

follows [22-24]:  

 

i. Place K centres into the d-dimensional space of the data points X. The 

locations are known as initial centres (𝜇𝑘) of the 𝐶𝑘 clusters. 

ii. Assign data points to the Voronoi cell (group) which centre has the closest 

distance to form subsets 𝐶𝑘. 

iii. Compute new cluster centres 𝜇𝑘 from the mean of data points lying in their 

Voronoi cell.  

iv. Repeat steps 2 and 3 until the square error is reduced to a pre-determined 

value or the centroids are immobilized.   

 

Although KMA is a simple and popular method in clustering applications, it is very 

sensitive to the initial positions of the cluster centres [21]. It is an NP-hard algorithm 

and therefore a globally optimal solution cannot be found, except for unrealistically 

small values of n and K.  However, there are well-established heuristic algorithms, 

such as those employed here, for providing adequate albeit suboptimal clustering 

when n and K are larger. In this work, a number of heuristics like Lloyd’s algorithm 

and Linde-Buzo-Gray (LBG) have been combined with conventional KMA [19]. 

These approaches offer a more efficient clustering algorithm that can minimize the 

clustering error, employed by the conventional KMA as a local search procedure. To 
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solve the K clustering problem, the proposed hybrid approach proceeds in an 

incremental way. Initially, a single centre is calculated following the LBG algorithm 

and placed in the d-dimensional space. The centre is calculated from the geometric 

mean of the given data points. In each stage, the old centroids are split into two. 

Moreover, in each stage of the LBG algorithm, the nearest data points to each centre 

are computed and the centres are moved to the centroid of data points lying in their 

Voronoi cell. These steps are repeated until some convergence condition is met. The 

only difference between Lloyd’s and LBG algorithm is that LBG specifies the initial 

placement of a centre which is absent in Lloyd’s algorithm [19]. A detailed procedure 

of the LBG algorithm has been discussed in [25]. In the LBG algorithm, there is no 

guarantee that every cluster centre will have some data association. This limitation 

can be overcome by supervising the splitting and relocating any centres where cluster 

(𝐶𝑘) becomes an empty set. The centres obtained from supervised LBG can be used 

as initial centres for KMA to take the advantage of global minima. This hybrid 

method reduces the clustering error that results from the local convergence.  Finally, 

the feature of clusters with the collaboration of k-nearest neighbour (KNN) algorithm 

can be used in a diagnostic decision table to classify the fault category of 

transformers.    

 

3.4 Methodology 

The methodology involved a development of a clustering process combined with a 

cumulative voting technique to determine the fault category of a transformer. This 

section includes data collection, pre-processing, model development, neighbour 

selection and training stage which have been discussed below.  
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3.4.1 Data Collection and Processing 

Data of combustible gases generated from the insulating oil in 376 power 

transformers have been collected by a large utility company in Western Australia. 

The gas concentrations are measured in parts per million (ppm) by analysing an oil 

sample drown from each transformer under laboratory conditions. The measured gas 

concentrations have been analysed using the Rogers’ Ratios, Duval Triangles, 

Doernenburg and IEC ratio methods and verified by the utility’s experts before 

labelling them into a fault category. It is presumed that the final classification from 

the combined approach of different conventional methods, sophisticated software 

analysis and expert’s judgement is accurate and reliable. To verify the accuracy of 

suspected faulty transformers, these transformers have been removed from the 

services for investigation, and the findings have exactly matched with the expert’s 

fault classification. The proposed method is based on a clustering technique that uses 

the percentage concentrations of the five combustible gases comprising Hydrogen 

(H2), Methane (CH4), Ethylene (C2H4), Ethane (C2H6) and Acetylene (C2H2). The 

sum of the five gas concentrations has been calculated as per (3.3). The summation is 

defined as the total combustible gases (TCG). 

𝑇𝐶𝐺 = 𝐻2 + 𝐶𝐻4 + 𝐶2𝐻4 + 𝐶2𝐻6 + 𝐶2𝐻2    (3.3) 

Therefore, the percentage of those individual gases has been calculated and used as 

an input for the proposed method to classify the testing data sets into seven targeted 

fault categories. The individual percentage calculation procedure and the targeted 

fault category with their fault code have been shown in Table 3.3. 
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Table 3.3: Input and targeted output of the proposed method. 

 

Moreover, the collected data sets are divided into two subsets. The first subset (318 

measurements) is used as a training data set and the second subset (58 measurements) 

which could not be classified easily by the Duval Triangles or come with a 

conflicting classification due to the overlapping between different faults. 

 

3.4.2 Proposed Model 

In this work, a hybrid clustering technique has been used because it has advantages 

over the Duval Triangles method. In Duval Triangles, five dimensional key gases are 

mapped into a set of two dimensional spaces to make a classification of transformer 

faults based on a set of linear boundaries. This dimension reducing mapping throws 

away some valuable information. The proposed clustering technique preserves all of 

the five-dimensional gases information in the expectation that it can do better than 

the Duval Triangles and other ratio methods, in the cases when they fail or contradict 

each other. There are two stages in the proposed approach. Firstly, a set of clusters 

based around the global k-Means Algorithm (KMA) is generated. The clusters are 

representative of various fault categories. After clustering, the k-Nearest Neighbour 

algorithm (KNN) has been used to decide which clusters are closest to the data set of 

an unclassified transformer. In this research, three closest clusters have been 

identified based on their Euclidean distances from the testing data. The specific 

procedure for clustering the data points and neighbours selection has been discussed 

Input Targeted Fault Category Fault Code 

 

1. %𝐻2 =
𝐻2

𝑇𝐶𝐺
∗ 100 

2. %𝐶𝐻4 =
𝐶𝐻4

𝑇𝐶𝐺
*100 

3. %𝐶2𝐻4 =
𝐶2𝐻4

𝑇𝐶𝐺
∗ 100 

4. %𝐶2𝐻6 =
𝐶2𝐻6

𝑇𝐶𝐺
*100 

5. %𝐶2𝐻2 =
𝐶2𝐻2

𝑇𝐶𝐺
*100 

 

1. Partial Discharge  

2. Discharge of Low Energy  

3. Discharge of High Energy  

4. Thermal Fault, t<150°C  

5. Thermal Fault, 150°C < t <300 °C  

6. Thermal Fault, 300 °C < t <700 °C 

7. Thermal Fault, t >700 °C  

 

1. PD 

2. D1 

3. D2 

4. S 

5. O 

6. C 

7. T3 
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in the following sections and a summary of the comparative performances can be 

seen in Tables 3.7-3.9. However, a workflow of the proposed model with the 

combination of Duval Triangles has been shown in Figure 3.2.   

Start

Healthy 

Transformer

Suspect 

Transformer

Gas Concentrations 

Percentages Calculation

Apply Duval 

Triangles

  Ambiguous Classification  Unambiguous Classification

Use Duval ClassificationFind Nearest Clusters

Use Alternative 

Classification

Read DGA Data

 

 

Figure 3.2: Workflow of the proposed model for practical application. 

 

 

3.4.3 Clustering Procedure 

The clustering of the training data points has been completed by using modified 

KMA. In order to perform the clustering of training data points 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, 

an initial cluster centre 𝜇1 ∈ 𝐶 for KMA is computed following the LBG algorithm 

(mean of all data points) and placed in the five-dimensional space (𝑅5) that formed 

by the percentages of five gas concentrations. The number of cluster centres 
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gradually increased to K (where 𝐾 = 2𝑛 for   𝑛 = 1,2, … ,6 ) through successive 

iterations. In each stage of iteration, the old centre(s) are split into two and Euclidean 

distances from the centres to all data points are calculated. Let the 𝐶𝑗  represent the 

data points (neighbourhood) in a Voronoi cell for which 𝜇𝑗  is the nearest centre. The 

set of data points lying to the cluster 𝐶𝑗 can be expressed as follows: 

𝐶𝑗 = {𝑥𝑖: ||𝑥𝑖 − 𝜇𝑗||
2 ≤ ||𝑥𝑖 − 𝜇𝑘||

2   ∀   𝑘 = 1,2,3, … , 𝐾}  (3.4)  

where||𝑥𝑖 − µ𝑗||
2  is the Euclidean distance between a training data points 𝑥𝑖  (𝑖 =

1,2,3, … , 𝑛)and the cluster centre µ𝑗 , and K is the number cluster centres. After 

finishing the allocation of all data points to the Voronoi cells of cluster centres, for 

the next iteration, the position of cluster centres moves to the centroid of data in 

subset 𝐶𝑗. The new position of the cluster centres can be calculated by the following 

equation. 

µ𝑗 =
∑ 𝑥𝑖𝑥𝑖∈𝐶𝑗

∑ 1𝑥𝑖∈𝐶𝑗

        (3.5)  

In the next stage, the distances of all points from the new position of centres are again 

calculated and associated them to centres having smallest Euclidean distances. These 

steps are repeated until 𝜇𝑗  become immobilized or the square error 𝐽(𝐶) is reduced to 

a pre-determined value [22]. 

 

3.4.4 Neighbor Selection and Voting 

In this section, the distances to three closest cluster centres 𝜇𝑖 ,  𝜇𝑗 and 𝜇𝑘 from any 

unknown transformer data point x is measured and sorted into ascending order of 

distance. In a later stage, the clusters have been used in a voting mechanism to 

classify a faulty transformer. In the case of conventional voting, a decision is taken 
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based on the majority opinion. For instance, if one neighbouring cluster is associated 

with a T1 fault, the second one might be associated with T2 and third neighbour 

might be labelled as a T1 fault, then the majority votes for T1 will classify the 

transformer as having a T1 type fault. As the clusters are sometimes straddling the 

boundaries of the Duval Triangles method, a cumulative voting system has been 

introduced where each of the three clusters can vote for multiple fault categories. In 

most cases they vote for one fault category, sometimes they can also vote for two or 

three categories because they might be closer to a corner where three faulty regions 

join together. In the final step, a distance matrix has been used for cumulative voting. 

Hence the cluster that is closest has a stronger bearing on the overall result, the next 

farthest has a weaker bearing and the next most distant one has a still weaker bearing 

on the final result. Mathematically, the voting weight of any cluster can be expressed 

by the following equation. 

𝑊𝑝 =
𝑆−||𝑥−𝜇𝑝||2

2∗𝑆
       (3.6) 

where 𝑆 = ∑ ||𝑥 − 𝜇𝑖||
2 + ||𝑥 − 𝜇𝑗||

2 + ||𝑥 − 𝜇𝑘||
2  and 𝑝 ∈ {𝑖, 𝑗, 𝑘} are the three 

nearest clusters centresfrom any data point 𝑥. Finally, the cumulative votes are added 

up in a weighted fashion to determine the classification of an unknown transformer 

most effectively. 

 

3.4.5 Training Stage 

During the training stage, 318 transformers gas concentrations out of 376 collected 

from the utility company have been used to develop the proposed clustering 

technique. These training data points were excluded from the test set. The fault 

categories of the training data points are labelled by the utility experts. The number 

of individual fault category of the training samples is shown in Figure 3.3. 
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Figure 3.3: Training samples following the fault categories. 

 

To create a cluster of points (rows) in a five-dimensional Euclidean space, the 

relative percentages of the five gases have been calculated and put into the individual 

columns of a matrix X. The matrix X can be expressed as  

 

𝑿 =

[
 
 
 
 
 
 
 

%𝐻21,1
, %𝐶𝐻41,2

, %𝐶2𝐻41,3
, %𝐶2𝐻61,4

, %𝐶2𝐻21,5

%𝐻22,1
, %𝐶𝐻42,2

, %𝐶2𝐻42,3
, %𝐶2𝐻62,4

, %𝐶2𝐻22,5
…                    …                  …                                  …                       …
…                    …                  …                                  …                       …
…                    …                  …                                  …                       …
…                    …                  …                                  …                       …

%𝐻2318,1
, %𝐶𝐻4320,2

, %𝐶2𝐻4320,3
, %𝐶2𝐻6320,4

, %𝐶2𝐻2318,5]
 
 
 
 
 
 
 

 

 

After creating the Euclidean space, 64 five-dimensional cluster centres were created 

following the LBG algorithm so that the training data can be partitioned around the 

nearest cluster centres. After each LBG iteration, each cluster centroid (initial centre 

is the mean of X) was split into two until 64 clusters are formed.  The centres having 

zero association with the training data points (where 𝐶𝑗  was an empty set) were 

removed, and the remaining were used as initial centres in KMA. To ensure optimum 

performance, the 34 best cluster centres have been chosen by using KMA. The 

selection process includes splitting the centres having large number of data 
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associations, and removing or combining the centres having lower numbers of data 

associations. The association is evaluated by indexing the data points to the centres 

based on their distances to them. The iterative process was continued until each of the 

clusters become representative of a particular fault class or multiple classes with 

different distinguishable percentages. Moreover, there was no cluster where 𝐶𝑗 was 

exceptionally large set. A summary of the probabilities of each fault category based 

on its association with each cluster centre are shown in Table 3.4. 

 

Table 3.4: Probability of a transformer fault following its association to a cluster centre. 

Cluster Centres C (%) D1 (%) D2 (%) O (%) PD (%) S (%) T3 (%) 

µ1  100      

µ2     80 10 10 

µ3 
1

10 
     90 

… …… …… ……. ……. …….. …… .…. 

µ15 
1

100 
      

µ16  25    75  

µ17 
6

67 
     33 

… …... …… ……. ……. …….. …… …. 

µ25  8 92     

µ26  86 14     

µ27   100     

.… …… …… ……. ……. …….. …… …. 

µ32 .   100    

µ33    100    

µ34      100  

 

The probability matrix of Table 3.4 shows that the single clustering technique could 

wrongly classify an unlabeled measurement, if it is close to a cluster on the boundary 

between multiple Voronoi regions (fault categories). The misclassification rate could 

increase greatly for a measurement closest to a cluster centre like µ17which Voronoi 

region comprises 67 percent C type faulty data points and 33 percent T3 type faulty 
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data points. To deal with this interference problem, the k-Nearest Neighbour (KNN) 

algorithm has been used for the 1st, 2nd and 3rdnearest neighbouring cluster centres 

detection based on their distances. Moreover, the cumulative weighted voting, based 

on the distances from the centre has been proposed to identify a fault class of an 

unknown transformer. For instance, in case of three neighbours clustering approach, 

if the cluster centres µ3, µ2, and µ17 are the 1st, 2nd and 3rd nearest neighbours of a 

training data point, and their distance weight factors are 65%, 25% and 10% 

respectively, of total weight then the voting process can be expressed as the follows: 

 

 

Table 3.5: Modified voting metrics. 

 

Neighbours C D1 D2 O PD S T3 

C3 10*0.65      90*0.65 

C2     80*0.25 10*0.25 10*0.25 

C17 67*0.10      33*0.10 

Total Vote 13.2    20 2.5 64.3 

 

 

From Table 3.5, the maximum cumulative vote belongs to T3 since it has the largest 

column total. Consequently, the transformer will be classified as having a T3 type 

fault. 

 

3.5 Results and Discussion 

This research targeted the examples that cannot be classified easily by the Duval 

Triangles or come with a conflicting classification due to the overlapping between 

different faults. Therefore, a subset of 58 transformer measurement samples out of 

376 have been selected as a test set and classified them according to the proposed 

method. All 58 were excluded from the training examples. A comparison of fault 

classification based on modified Roger’s Ratios, the IEC ratios and proposed method 

on 58 targeted transformer measurements have been summarized in Table 3.6. 

 



Chapter 3 

 

92 

 

Table 3.6: Comparison of Rogers’ ratios, IEC ratios and the proposed method. 

 

The accuracy of each method shown in Table 3.6 has been calculated by comparing 

them with expert classifications. The overall accuracy of the proposed method is 

93%. The method makes occasional errors but it does provide a useful decision-

support mechanism for engineers who are trying to deal with the critical cases. A 

similar type of experiment with slightly different method has been conducted by 

other researchers [12,15, 18]. They used their own training sets (Not disclosed in the 

literature) to train up their classifier to classify the test sets labelled by the experts in 

the power industry. To verify the performance of the proposed approach, it has been 

applied on their published test sets. In [18], researchers  applied the rough sets (RS) 

analysis technique and artificial neural networks (ANNs) combined with RS and k-

means clustering (KMC) algorithms to determine transformer fault categories. A 

comparison of their methods, different established methods and the proposed method 

are shown in Table 3.7.  

Test Methods Unresolved Diagnosis Wrong Diagnosis Accuracy 

Roger’s Ratios 21 9 75.67% 

IEC Ratio 27 8 74.19% 

Proposed Method - 4 93.10% 
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Table 3.7: Fault diagnosis comparison between established and adapted methods. 

 

 The proposed method was also applied on the test samples available in [12] where 

each fault has been found by using a decision tree (formed from if-else conditions) 

based on the gas contrition limits for particular types of fault. They considered the 

decision tree method as a new approach to DGA. According to this method they 

found overlapping between different faults with the same gas limit used in the 

decision tree. To solve the overlapping problem, they included additional gas ratios 

in the decision tree and named it as Modified New Approach DGA. The proposed 

method has been compared with the decision tree method and different ratio methods 

to evaluate its performance. The comparison has been summarized in Table 3.8. 

 

 

 

Case 

Number 
H2 CH4 C2H4 C2H6 C2H2 

Diagnosis Result 

Expert 

Diagnosis 

Duval 

Triangle 
RS 

RS-

ANN 

KMC-RS-

ANN 

Roger’s 

Ratios 

IEC 

Ratio 

Proposed 

Method 

1 60 40 110 10 70 D2 D2 D2 D2 D2 D2 D2 D2 

2 31 7 5 19 67 D2 D1 - D2 D2 - - D1 

3 293 50 15 13 120 D2 D2 D2 D2 D2 D2 D1 D2 

4 57 7 4.5 19 71 D2 D1 - D2 D2 - - D1 

5 467 148 266 13 511 D2 D2 D2 DT D2 D2 D1 D2 

6 160 90 17 27 58 D1 D1 D1 D1 D1 - - D1 

7 402 81 27 39 25 D1 D2 D1 D1 D1 - - D1 

8 4 79 312 112 0 T2 T1 - T2 DT T2 T2 T2 

9 180 180 4 74 3 DT T3 DT DT DT - - T2 

10 1300 740 2000 260 71 T3 T3 T3 T3 T3 - - T3 

11 42 97 600 157 0 T3 T3 Normal Normal Normal T2 T2 T3 

12 44 52 119 15 1 T3 T3 T3 T3 T3 T3 T3  T3 

13 42 79 152 31 1 T3 T3 T3 T3 T3 T3 T3 T3 

14 164 244 497 103 8 T3 T3 T3 T3 T3 T3 T3 T3 

15 22 51 57 42 0 T2 T2 T2 T2 T2 T2 T2 T2 

16 679 4992 3671 1823 0 T2 T1 T2 T2 T2 T2 T2 T2 
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Table 3.8: Comparison between decision tree, ratio and proposed methods. 

 

 In [15], the researchers have used different artificial intelligence and machine 

learning techniques such as ANN, SVM, ELM, and SaE-ELM to classify the fault 

category of a transformer. They compared the classification of all the four methods 

and the decision taken from the majority votes.  A comparison of their methods and 

the proposed method is shown in Table 3.9. 

Table 3.9: Comparison of different adapted fault diagnosis methods. 

 

Case 

Number 
H2 CH4 C2H4 C2H6 C2H2 

Diagnosis Result 

Actual 

Diagnosis 

New 

Approach 

DGA 

Modified 

New 

Approach 

DGA 

Roger’s 

Ratios 

IEC 

Ratio 

Proposed 

Method 

1 117 17 3 1 1 PD PD, D1 PD - - PD 

2 32930 2397 0 157 0 PD PD, D1 PD PD PD PD 

3 78 20 13 11 28 D1 D1, D2 D1 - D1 D2 

4 1230 163 233 27 962 D1 D1, D2 D1 D2 D1 D1 

5 8200 3790 4620 250 277 D2 D2, T1 D2 - - D2 

6 130 140 120 2 0 T1 D2, T1 T1 T3 T3 T2 

7 78 66 2.6 283 0 T1 D2, T1 T1 Normal PD T1 

8 30.4 117 138 44.2 0.1 T2 T2, T3 T2 T3 T2 T2 

9 27 90 63 42 0.2 T2 T1, T2 T1 T2 T2 T2 

10 1100 1600 2010 221 26 T3 T2, T3 T3 T3 T3 T2 

Case 

Number 
H2 CH4 C2H4 C2H6 C2H2 

Diagnosis Result 

ANN SVM ELM 
SaE-

ELM 

Duval 

Triangle 

Roger’s 

Ratios 

IEC 

Ratio 

Proposed 

Method 

1 103 5.8 7.3 5 0.7 T1 T3 T1 T1 S - - T1 

2 416 21 43.1 10.5 1 T1 T3 T1 T3 T3 - - T3 

3 59 53 60.3 17.7 0.8 T2 T2 T2 T2 C - - T2 

4 10.5 4.8 4.8 5 2.2 D1 D1 D1 D1 DT - - D1 

5 137 97 29 12 1.5 T2 T2 T2 T2 C LEDA/PD - T2 

6 89 73 6.8 6 5 D2 D2 D2 D2 DT - - T2 

7 240 157 127 98 0.8 T2 T2 T2 T2 C LEDA/PD - T2 

8 116 104 51 36 0 T2 T2 T2 T2 C LEDA/PD - T2 
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3.6 Case Study and Analysis 

To provide a deeper understanding, all 34 literature cases have been used in a case 

study. The proposed method differs from the experts’ diagnoses in three cases (Case 

number 2, 4 and 9), out of 16 shown in Table 3.8. According to the experts’ 

judgements, cases 2, 4 and 9 are D2, D2 and DT faults but are classified as D1, D1 

and T2 respectively, by the proposed method. Duval Triangle classified the faults as 

D1, D1 and DT correspondingly, but the other two conventional methods: Roger’s 

ratio and IEC ratio failed to diagnose these cases. As the DT fault category has been 

omitted from the proposed method due to the insufficient training data points, it has 

been classified as a T2 fault. Moreover, gas concentrations collected from the utility 

company predominantly used Duval Triangles to classify their transformers’ fault 

categories could be a reason for misclassification in cases 2 and 4, respectively. The 

proposed method effectively solved the over-lapping problem in 7 cases out of 10 

shown in Table 3.9. The IEC method could not detect any faults in the 8 cases shown 

in Table 3.9. Even the performance of Roger’s ratio is not satisfactory, but the 

proposed method accurately classified all cases except for case number 6. That case 

is classified by the ANN, SVM, ELM, and SaE-ELM methods as a D2 fault. 

According to the Duval Triangle, the fault category of the sample is DT fault, which 

is a combination of thermal and dielectric. The proposed method has classified the 

case as a T2 type fault. As the data point close to the three neighbouring cluster 

centres, which Voronoi regions comprise multiple types of faults with closed 

percentage of probabilities, it is clear the case 6 has been misclassified. This problem 

could be overcome by increasing the number of clusters with a much larger number 

of training data points.  

In this research, the number of cluster centres and their positions are carefully chosen 

through a continuous iteration process and their performances have been tested 

before being applied to an unlabelled measurement. Deliberately preserved extra 

dimensional information has helped to accurately classify 93 percent of the cases, 
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which other conventional established methods could not cope with. Moreover, the 

proposed method performed well on the published data as shown in Table 3.7, 3.8 

and 3.9 respectively. 

 

3.7 Conclusions 

A new DGA diagnosis technique has been developed that is based around a 

clustering approach combined with a modified KNN cumulative voting approach that 

considers inter-neighbour distances. The experimental results show that it correctly 

classifies 93% of the difficult cases where Duval’s triangle is unable to make a 

classification. This result is compared with other methods like the Rogers’ Ratios and 

IEC method, all of which fail in a significant fraction of cases (See Tables 3.7-3.9). 

The focus of this work has been to develop a method that compliments Duval’s 

widely adopted triangles method rather than replacing it. The interaction can be seen 

from the workflow diagram shown in Figure 3.2. It can be seen that the proposed 

method is very suitable for incipient fault diagnosis in power transformers.  

One of the weaknesses of the proposed technique is that it does not deal well with the 

mixture of dielectric and thermal (DT) faults. Most other systems considered also 

have difficulties differentiating DT from other fault categories. Further work needs to 

be done in this area, particularly building classifiers with large number of training 

examples that can deal with very uncommon faults more effectively.   
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Chapter 4: Application of Parzen Window Estimation for Incipient 

Fault Diagnosis in Power Transformers

 

 

Abstract 

Accurate incipient faults diagnosis in oil-filled power transformers is important to 

utilities for schedule maintenance and minimizes the operation cost. Dissolved Gases 

Analysis is one of the proven tools for incipient fault diagnosis in power 

transformers. To improve the accuracy and solve the cases that cannot be classified 

using Rogers’ Ratios, IEC Ratios and Duval Triangles Methods, a novel DGA 

technique based on Parzen Window estimation has been presented in this paper. The 

model uses the concentrations of five combustible gases such as Hydrogen (H2), 

Methane (CH4), Ethylene (C2H4), Ethane (C2H6) and Acetylene (C2H2) to compute 

the probability of transformers in different fault groups to identify their fault 

categories. Performance of the proposed method has been compared with different 

conventional methods and artificial intelligence-based techniques such as Rough Sets 

Analysis, Neural Networks, Support Vector Machines and Extreme Learning 

Machines for the same set of transformers. A comparison with other soft computing 

approaches shows that the proposed method is reliable and effective for incipient 

fault diagnosis in power transformers. 
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4.1 Introduction 

Power transformers are the most expensive and critical components in power 

transmission and distribution networks. Failure of a transformer can be catastrophic, 

uneconomical and cause serious problems in power system stability. Therefore, its 

precise operation is essential to ensure continuous power supply and prevent a great 

financial loss for the utility companies. According to [1], about 80% of transformer 

faults occur from incipient deterioration that could be identified through predictive 

maintenance and online monitoring techniques. Therefore, incipient fault diagnosis 

and condition monitoring techniques are gaining more attention from the utilities to 

prevent unscheduled outages and minimize their operational risks. 

Due to continuous operation, faults and overloading, power transformers are 

subjected to thermal, electrical, chemical and mechanical stresses throughout their 

operating life. These stresses may cause decay of insulating oil and release some 

gases which become dissolved in the dielectric fluid. These gases include Hydrogen 

(H2), Oxygen (O2), Nitrogen (N2), Carbon dioxide (CO2), Carbon monoxide (CO), 

Methane (CH4), Ethylene (C2H4), Ethane (C2H6), Acetylene (C2H2), Propane (C3H8) 

and Propylene (C3H6). The gas concentrations may be measured by Gas 

Chromatography [2] and analysed by different Dissolved Gas Analysis (DGA) 

techniques to identify the fault afflicting a transformer. The gas concentrations 

observed in transformers under incipient fault condition increases as a function of 

temperature, and their individual concentration depend on the type of  fault allowing 

them be used as a fault detector [3].  For instance, H2 and CH4 start to form under low 

thermal stress at about 150 °C and is an indicator of partial discharge, while 

temperatures over 500 °C lead to formation of C2H2 which is an indicator of arcing. 

Moreover, the concentration of CO2,CO and their ratios can be used to assess the 

condition of paper insulation as they are produced from the degradation of solid 

insulation [4]. As DGA is a non-invasive, proven and widely accepted method to 

detect incipient faults in transformers, its popularity has increased over time.  
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To analyse the gas concentrations of a transformer, different DGA techniques such as 

Key Gas, Modified Rogers’ Ratios, Doernenburg, IEC Ratios and Duval Triangles 

have been used over the last few decades [5-6].  Some of the methods use gas ratios, 

while others use specific gas concentrations to evaluate the condition of a 

transformer. Although these conventional methods are very simple and easy to 

implement, they have shortcomings, such as incorrect diagnosis or unresolved 

diagnosis. Additionally, over time, gases are produced by normal operation of 

transformers that do not indicate any fault. Consequently, there is a chance of 

misclassification of healthy transformers based on ratio approaches. According to [4], 

[7], the permissible limit of dissolved gases in transformer oil corresponding to the 

operating time of a healthy transformer is shown in Table 4.1. 

Table 4.1: Permissible concentration of dissolved gases in a healthy transformer [7]. 

 

 

 

 

In order to overcome limitation in classical methods and develop a reliable incipient 

fault classifier, different artificial intelligence and machine learning techniques such 

as artificial neural networks (ANNs) [8], support vector machines (SVMs) [9], fuzzy 

logic [10-11], neuro fuzzy systems [12], and the nearest neighbour clustering 

approach (NNCA) [13] have been proposed by the researchers. To deal with the 

critical cases where the Duval Triangles and conventional ratio methods fail or 

ambiguously classify a transformer, DGA data set of 376 transformers from a large 

utility company in Western Australia has been collected. The combustible gas 

concentrations have been analysed by a novel probabilistic density function based on 

the Parzen Window method, which can effectively classify the critical cases that 

cannot be classified using the conventional ratio or Duval Triangles methods due to 

overlap between different faults. The arrangement of the rest of the paper is as 

    Gas < 4 years           4-10 years >10 years 

    CH4              70           150             300 

    C2H4              150           200             400 

    C2H6              50           150             1000 

    C2H2              30           50             150 

     H2              150           300             300 
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follows: Section 4.2 describes the motivation for the research. Section 4.3 presents 

the basic concept of Parzen Window estimation. Section 4.4 describes the 

methodology, while section 4.5 presents the results that were achieved with the 

method. Section 4.6 evaluate and compare the proposed method with other methods. 

Section 4.7 presents a case study and section 4.8 presents a summary of the results 

and conclusions. 

 

4.2 Motivation of Research 

Dissolved gases analysis (DGA) is a widespread diagnostic method that has gained 

worldwide acceptance for incipient fault diagnosis in transformers [14]. Due to 

continuous operation, faults and variable stresses (electrical, mechanical and 

thermal), the dielectric properties of oil and solid insulation such as paper, pressboard 

and transformer board, which are all made of cellulose, become degraded over time. 

The decomposition of insulating material produces different combustible and non-

combustible fault gases and increases the operational risk to transformers. In DGA-

based analysis, the concentration and production rate of gases are measured and 

regularly monitored to assess the insulation condition of a transformer and locate the 

sources of faults. In order to interpret the dissolved gases, a graphical technique such 

as the Duval Triangles or different ratio methods such as Rogers’ Ratios, 

Doernenburg Ratios, IEC Ratio, Single Gas Ratio and the Key Gas method are used 

over long periods of time. All of these conventional methods are very simple and 

easy to implement. However, each method has different advantages and limitations. 

Therefore, comparison of the results from different methods on the same sample may 

lead to contradictions, and there is no clear way to prioritise one result over another 

[15]. The accuracy of the IEC method is affected by the incomplete coding (limited 

classifications) and absolute code boundary (strict to ratio limits). It cannot identify 

the faulty samples, if they fall outside the defined ratio limits. In addition, the low 

energy discharge (D1) and high energy discharge (D2) of this method may interfere 

leading to  a misleading classification [16]. The classification of Rogers’ Ratios is not 
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precise for detecting all faults [16]. Its diagnosis is most accurate for the low thermal 

(T1) fault [13]. The Doernenburg method can only provide three types of diagnosis 

by comparing the different limit values. It cannot distinguish the severity of thermal 

decomposition. The detailed procedure for this method is available in  an IEEE 

standard [17]. All these ratio methods do not involve any mathematical formulation 

and their accuracy is dependent on the concentration limits and ratios of the key 

gases. Moreover, in some cases, the calculated ratios do not fall within any of the 

fault classes and remain unclassified.  

The Duval Triangles always gives a fault diagnosis even when a transformer is 

known to be healthy. The classical Duval Triangle cannot accurately detect the partial 

discharge (PD) and thermal faults. For mineral oil filled transformers, if the fault 

classification is a thermal fault or a partial discharge by the classical triangular 

method, then Triangles 4 and 5 must be used for further clarification. In practice, 

there are cases where contradictory classifications are produced by Triangles 4 and 5. 

Moreover, all triangles have an unclassified region. Consequently, the accuracy of 

fault classification is heavily dependent on an expert’s experience supported by other 

ratio methods. To improve the diagnostic capability of these standard methods, 

different artificial intelligences and machine learning techniques such as the ANN, 

SVM, fuzzy logic and NNCA have been introduced [8-11, 13]. Although, they are 

able to solve the problem of many unresolved and wrong diagnoses to a large extent, 

each of them has limitations. For instance, an ANN needs to train with a large 

training dataset to ensure a reliable output. Likewise, in fuzzy logic the derivation of 

rules may prove very difficult. Similarly, the wavelet network has high efficiency but 

low convergence [3]. Finally, in NNCA, detection of cluster centres and partitioning 

them into different fault categories is critical.  
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4.3 Basic Concepts of Parzen Window Estimation 

Probability Density Function (PDF) estimation is prevalent in many statistical 

applications for analysing numerical data. Different PDF methods are currently 

available to estimate the density of unknown measurements. Parzen Windows is one 

of the popular nonparametric methods is used here to estimate the probability of an 

unknown transformer fault class based around the PDF of known transformer 

measurements [18-19]. It is a form of inductive learning that generalises the PDF 

from a finite set of examples drawn from the distribution.  Being nonparametric, it 

does not need to estimate the values of a large set of synaptic weights as would be the 

case with ANNs.  

 

Parzen Windows (PW) estimates the common probability density function 𝑝(𝑥) for 

an independent and identically distributed finite observation of any measurements 𝑋. 

The shape of the density function 𝑝(𝑥) is entirely dependent on the sample data and 

its accuracy moves towards the true value with an increased number of observations 

[19]. Therefore, no functional form of assumption is necessary to estimate the PDF of 

unknown measurements [20]. According to [21], the probability that a measurement 

𝑥 belongs to a region ℛ that is a subset of the domain can be expressed by (4.1). 

 

𝑃 = ∫ 𝑝(𝑥)𝑑𝑥
𝑅

       (4.1) 

If the region ℛ is assumed to be very small, the probability density 𝑝(𝑥) within ℛ 

can be considered constant. Therefore, (4.1) can be approximated (4.2). 

𝑃 = 𝑝(𝑥)V         (4.2)  

where 𝑉 is the volume of ℛ.  

If 𝑁 samples 𝑋1,, 𝑋2,, 𝑋3,, …𝑋𝑁 are drawn from a distribution in D-dimensional space 

where each will be a vector 𝑋𝑛 = [𝑥𝑛,1,, 𝑥𝑛,2, … , 𝑥𝑛,𝐷], then a probability density𝑝(𝑥), 
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predicts the number of samples 𝐾 out of 𝑛 fall inside the ℛ region can be estimated 

by: 

𝐾 ≃ 𝑁𝑃        (4.3) 

Rearranging (3.2) and (3.3), the probability density can be approximated as: 

𝑝(𝑥) ≅ 𝐾
𝑛𝑉⁄         (4.4) 

If the region ℛ is treated as a hypercube centred on 𝑋𝑛 with side length σ, then its 

volume will be 𝑉 = 𝜎𝐷. The number of samples (𝐾) belonging to the region ℛ can 

be calculated through a function 𝑘(𝑥) that meets the following conditions [19]: 

𝑘(𝒙) = {
1             |𝑥𝑖 | ≤ 0.5  𝑖 = 1,2, … , 𝐷
0                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       

    (4.5) 

where 𝒙 = [𝑥1,, 𝑥2, … , 𝑥𝐷]. Therefore, the value of 𝐾 can be defined as 

              𝐾 = ∑ 𝑘 (
𝑥−𝑋𝑛

𝜎
)

𝑁

𝑛=1

                                                                                        (4.6) 

The new expression for probability density at any sample point 𝑥 can be calculated 

by substituting the value of 𝐾  from (4.6) into (4.4) which is shown in (4.7). 

               𝑝(𝑥) =
1

𝑁𝜎𝐷
∑ 𝑘 (

𝑥−𝑋𝑛

𝜎
)

𝑁

𝑛=1

                                                                      (4.7) 

Equation (4.7) is considered to be the basic formulation of PW estimation where 

𝑘(𝑥)  is a statistical kernel [22] or window function. Different kernels such as 

rectangular (4.5) or Gaussian kernels can be applied to define a window function. As 

the Gaussian function is smooth, in this research, a multivariate Gaussian kernel is 

commonly applied to obtain a smoother density model. Moreover, in a special form 

of radially symmetrical Gaussian, function can be completely specified by using a 
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variance parameter only [22]. Thus, the PW density function using a Gaussian kernel 

function with a common covariance 𝛴 can be written as: 

               𝑝(𝑥) =
1

𝑁√(2𝜋)𝐷 ∗ |𝛴|
∑ 𝑒𝑥𝑝 (−

(𝑥−𝑋𝑛)𝑇Σ−1(𝑥−𝑋𝑛)

2
)

𝑁

𝑛=1

                      (4.8) 

where 𝛴  is a the kernel covariance matrix (multivariate standard deviation)  that 

decides the shape of the estimated probability density function [20]. From (4.8), it 

can be seen that the final density function is obtained by summing the kernels of 

representative samples drawn from the total measurements. The smoothness of the 

function increases with the increased value of 𝛴  and gradually starts to loss 

information [21]. However, if the value is too small, the model becomes very 

sensitive to noise. The optimal value of 𝛴 can be estimated by analysing the training 

set discussed in a following section. After estimating the optimal value of𝛴 , the 

probability density of any test measurement can be calculated by using (4.8). 

 

4.4 Methodology 

This section involved a development of PDF based on a limited number of 

transformer’s measurements to identify the fault category of a previously unseen 

transformer. In this sense, it is like training an ANN from a training set and then 

testing with a second disjoint set of measurements.  In order to develop an efficient 

PDF, the nonparametric PW density method has been introduced. Different 

subsections of the methodology such as data collection, pre-processing, Density 

Function Estimation, Training and Feature Selection have been discussed below. 

 

4.4.1 Data Processing and Normalization 

To perform the research, concentration of five combustible gases such as Hydrogen 

(H2), Methane (CH4), Ethylene (C2H4), Ethane (C2H6) and Acetylene (C2H2) were 

collected from 376 power transformers of a utility company located in Western 
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Australia. The concentrations of gases were measured in parts per million (ppm). The 

concentrations have been measured by sampling the oil of each transformer’s main 

tank and analysing them in a laboratory. In the case of an abrupt change in 

concentration between successive scheduled measurements, the sample was 

recollected then re-examined in multiple laboratories to verify the actual 

concentration. In order to differentiate the faulty transformers and classify their fault 

categories, the gas concentrations were analysed using conventional approaches such 

as Rogers’ Ratios, Duval Triangles, Doernenburg and IEC ratio methods. Moreover, 

sophisticated software and expert judgements have also been used to determine the 

ultimate fault category of a transformer. In some cases, a faulty transformer has been 

removed from service to investigate the ultimate fault category. In most of the cases, 

the findings exactly match the expert classification. Therefore, in this work it is 

assumed that the final fault category of transformers decided from the combination of 

expert judgement and established methods is reliable and accurate. In the proposed 

PDF estimation technique, the amount of total combustible gases (TCG) for each 

transformer has been calculated by adding their five combustible gases such as 

Hydrogen (H2), Methane (CH4), Ethylene (C2H4), Ethane (C2H6) and Acetylene 

(C2H2) as in (4.9). 

𝑇𝐶𝐺 = 𝐻2 + 𝐶𝐻4 + 𝐶2𝐻4 + 𝐶2𝐻6 + 𝐶2𝐻2    (4.9) 

After calculating the TCG, individual percentages of the combustible gases have 

been computed and used as an input to the proposed PW method. The percentage 

calculation procedure and the seven-targeted fault classification based on PW method 

are summarized in Table 4.2.  
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 Table 4.2: Input and targeted output of the proposed method. 

 

Finally, 376 collected measurements have been divided into disjoint training (85% of 

measurements) and testing (15% of measurements) subsets. The testing subset has 

been purposely selected to include the critical cases that could not be classified 

unambiguously by the conventional methods and comes with a conflicting 

classification by using Duval Triangles method due to the overlapping between 

different faults. Therefore, measurements from 318 transformers have been used as a 

training set to develop the proposed model and the remaining 58 transformer 

measurements are used to evaluate the performance of the model. 

 

4.4.2 Density Function Estimation 

In this research, a nonparametric based PW technique has been applied to estimate 

the density function. Each of the concentrations shown in Table 4.2 has been 

concatenated to form a point in a five-dimensional space. For PDF estimation, a 

Gaussian kernel function has been centred on each of the 318 training set drawn from 

376 power transformers measurements collected from the utility company. The 

individual kernels are added together for determining a common width that is known 

as the smoothing parameter to estimate the probability density of each measurement. 

A mathematical expression of PDF is shown in (4.8). The challenging task when 

applying the proposed method is to precisely estimate the value of the covariance 

matrix (𝛴) for five-dimensional data which is also known as a smoothing factor. The 

Input Targeted Fault Category 

 

1. %𝐻2 =
𝐻2

𝑇𝐶𝐺
∗ 100 

2. %𝐶𝐻4 =
𝐶𝐻4

𝑇𝐶𝐺
*100 

3. %𝐶2𝐻4 =
𝐶2𝐻4

𝑇𝐶𝐺
∗ 100 

4. %𝐶2𝐻6 =
𝐶2𝐻6

𝑇𝐶𝐺
*100 

5. %𝐶2𝐻2 =
𝐶2𝐻2

𝑇𝐶𝐺
*100 

 

1. Partial Discharge (PD) 

2. Discharge of Low Energy (D1) 

3. Discharge of High Energy (D2) 

4. Thermal Fault, t<150°C (S) 

5. Thermal Fault, 150°C < t <300 °C (O) 

6. Thermal Fault, 300 °C < t <700 °C (C) 

7. Thermal Fault, t >700 °C (T3) 
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smoothing parameter is very important as the shape of probability density function 

depends on it. Therefore, it has a great influence on the measured performance. 

Although, a larger value of 𝛴  will make the estimated PDF curve smoother, the 

estimated curve will also start to lose finer details. However, a smaller value of 𝛴 

may lead to false spikes in PDF curve depending on the specific distribution of the 

training points and thus becomes prone to noise. The optimal value of 𝛴 depends on 

the size of the training set, their type and the amount of noise they are corrupted by 

[18]. Probability distributions of Hydrogen (H2) are shown in Figure 4.1, where the Y 

axis represents probability 𝑝(𝑥). 

 

Figure 4.1: Probability Distribution of H2. 

 

From Figure 4.1, it is obvious that the probability distribution of H2 becomes 

smoother with the increased value of sigma (covariance). To estimate the optimal 

value for Σ, different methods such as Silverman’s rule of thumb [23], or a leave-one-
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out estimator [18] can be used. Zewen Hu in [19], chose the optimal value of 

covariance 𝛴 from𝑎 √𝑛  ⁄ where a is a constant and n is the sample size. These 

methods proved not to be effective on the proposed higher dimensional method. 

Therefore, the value of 𝛴  has been estimated by search increment of the 

multiplicative factor (E) between values 0.0001 to 1.0 with the covariance matrix 

computed from the training data points. From this experimental search, the optimal 

value of E was found to be 0.25. However, to calculate the inverse of 𝛴 following 

(3.8), in some fault classes, the covariance matrix becomes singular due to their 

limited number of features (some gases are absent). This means it is impossible to 

calculate the matrix inverse as needed by (4.8). To overcome the singularity problem, 

a regularisation technique [24] has been applied. In this approach, a matrix with very 

small diagonal values (having same dimensions as  𝛴 ) has been added to the 

covariance matrix. The diagonal values have been controlled by a small 

multiplicative factor 𝜆. The equation of covariance calculation for the proposed five-

dimensional case can be expressed by (4.10). 

𝛴 = 𝐸𝛴𝑆 + 𝜆𝛪        (4.10) 

where 𝛴𝑆 is the covariance of the training samples, 𝜆 is a constant and 𝛪 is an identity 

matrix having same dimensions of the samples. 

 

4.4.3 Training and Feature Extraction 

To train-up the proposed model, the percentages of combustible gas concentrations 

from 318 transformers have been used. The fault classifications of the transformers 

are labelled by the utility experts through a combination of different established 

methods, software analysis and their professional experience.  The training sample 

based on fault categories is shown in Figure 4.2, where X-axis represents the fault 

categories. 
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Figure 4.2: Training samples following the fault categories. 

 

It can be seen from Figure 4.2 that the utility experts have classified their 

transformers into seven faulty categories. These categories have been used to form 

groups following their percentages of gas concentrations where each group contain 

certain number of faulty transformers. For instance, fault group C formed from 27 

faulty transformers, fault group D1 contains 95 transformers, while 59 transformers 

belong to fault group D2 and so on. Now following the proposed method, the 

probability density of each transformer in each group of faulty transformers has been 

calculated for different values of 𝐸 and 𝜆 to get an estimation of their optimal values. 

Transformers having the highest probability in a particular faulty group will be 

classified by the fault category of those transformers. From experiments, it has been 

seen that with a small value of 𝐸= 0.01, the classifications of the training data points 

exactly match with the expert’s opinion but performance on the test set is 

unsatisfactory. With an increased value of 𝐸, although the performance of training 

data slightly decreases, the accuracy of testing data fault classification increases. 

Therefore, the value of 𝐸  was increased gradually through a continuous iterative 

process while keeping the value of 𝜆  constant at 0.01 (a value also found 

experimentally). A satisfactory result (94.82% accuracy) was found for the test set 

when 𝐸 = 0.25. If the value of 𝐸 is further increased, the accuracy again starts to 
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drop. As a result, this value is considered as a near-optimal point for this experiment. 

Bearing in mind that the proposed method specialises on cases where the existing 

methods fail. A workflow for combining the approach with the existing Duval 

Triangles method has been shown in Figure 4.3. This allows each of these methods to 

be used on the test measurements where they are most effective. 

 

Chromatographic Gas Concentrations in ppm

Apply Concentration 

Limits Shown in Table 1
Healthy Transformer

Suspect Transformer

Individual Gas 

Percentage Calculation

Apply Duval Triangles

Unambiguous Classification

Use Duval Classification

Ambigious Classification

Estimate Probability in 

Different Fault Groups

Use  Alternative 

Classification having 

Highest Probability

Apply PW Method

 

Figure 4.3:  Workflow of the proposed model for practical application. 

 

4.5 Results and Discussion 

In order to test the efficacy of the proposed Parzen windows method, the percentage 

of combustible gas concentrations from transformers have been analysed to generate 

a classification into one of seven fault categories. Categories are labelled as partial 

discharge (PD), discharge of low energy (D1), discharge of high energy (D2), 

thermal fault <150°C (S), thermal fault between 150°C to 300 °C (O), thermal fault 

between 300 °C to 700 °C (C) and thermal fault >700 °C (T3). In each case a domain 
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expert has also classified the transformer using the same fault labels. In this work, 

critical cases have been chosen that cannot be classified unambiguously by using 

conventional ratio methods or the low-dimensional Duval Triangles graphical 

approach. Therefore, a subset of 58 transformer measurements out of 376 have been 

selected as a test set, omitted from the training phase, and classified using the Parzen 

windows method. Performance of the proposed method was compared to the 

modified Roger’s Ratios, IEC ratios and previous work  using the Nearest Neighbour 

Clustering Approach (NNCA) [13] and have been summarised in Table 4.3.   

 

Table 4.3: Comparison of Rogers’ ratios, IEC ratios, NNCA and the proposed method. 

 

The accuracy of the proposed method shown in Table 4.3 is higher than NNCA when 

compared with expert decisions. (However, given the small test set, it is unclear 

whether this improvement is statistically significant). The overall performance of this 

method is 95% accurate, which is much higher than the conventional ratio methods. 

In 3 cases, the method wrongly diagnoses the fault category of transformers, but it 

provides a useful decision-support mechanism for engineers who are trying to deal 

with these critical cases. Moreover, this new approach shows probable advantages 

over earlier NNCA methods. In NNCA, which is a combination of the k-Means 

algorithm (KMA), k-Nearest Neighbour algorithm (KNN) and Linde-Buzo-Gray, 

determination of actual centre locations is critical. As KMA only converges to the 

local minima, different positions of initial cluster centres lead to different final 

clusterings [25]. To overcome this problem partially, a number of variants like 

Lloyd’s algorithm and Linde-Buzo-Gray have been combined with conventional 

Test Methods Unresolved Diagnosis Wrong Diagnosis Accuracy 

Roger’s Ratios 21 9 75.67% 

IEC Ratio 27 8 74.19% 

NNCA - 4 93.10% 

Proposed Method - 3 94.82% 
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KMA [26]. However, there is no guarantee that data will be optimally assigned to the 

various clusters. The advantages of the Parzen window method are as follows: 

 

i. Information of the cluster centres is not necessary. 

ii. It can be used to solve problems without the probability distribution 

knowledge of a training set. 

iii. No assumptions are required to classify a faulty class of transformers. 

iv. The complexity and correlation of input random variables do not affect the 

performance of the proposed algorithm. 

 

4.6 Evaluation and Comparison with Other Methods 

To better evaluate the performance of the proposed method, it has also been applied 

to the test sets generated by other researchers [16, 27-28]. The authors of these papers 

have done a similar type of experiment but have focused on different approaches to 

identify the fault category of transformers. They have also trained their classifiers 

using training data, labelled by the utility experts. In [16], researchers diagnosed the 

category of a faulty transformer using a decision tree based on the concentration of 

combustible key gas limits and named it as a New Approach DGA. They found that 

different faults having the same gas limit overlapped. To deal with the overlapping 

problem, an additional gas ratio was included into the decision mechanism and 

renamed it as the Modified New Approach DGA. The performance of the proposed 

Parzen windows (PW) method has been compared to the decision tree approach [16] 

and conventional ratio methods in Table 4.4. 
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Table 4.4: Comparison between decision tree, ratio, NNCA and the proposed method 

(shown in bold). 

 

From Table 4.4, it can be seen that the correct diagnosis rate of the proposed PW 

method is higher than those of the IEC and Roger’s ratios methods. Moreover, the 

proposed method has accurately classified all the cases except case number 6. 

The proposed method was also applied on the test sets disclosed in literature [27] 

where fault categories have been determined by applying a rough sets (RS) analysis 

technique and artificial neural networks (ANNs) combined with RS and k-means 

clustering (KMC) algorithms. A comparative performance of their methods, different 

established methods and proposed method has been summarised in Table 4.5. 

 

 

 

 

 

 

 

 

 

 

Case 
Number 

H2 CH4 C2H4 C2H6 C2H2 

Diagnosis Result 

Actual 
Diagnosis 

New 
Approach 

DGA 

Modified New 
Approach 

DGA 

Roger’s 
Ratios 

IEC 
Ratio 

Proposed 
Method 

1 117 17 3 1 1 PD PD, D1 PD - - PD 

2 32930 2397 0 157 0 PD PD, D1 PD PD PD PD 

3 78 20 13 11 28 D1 D1, D2 D1 - D1 D1 

4 1230 163 233 27 962 D1 D1, D2 D1 D2 D1 D1 

5 8200 3790 4620 250 277 D2 D2, T1 D2 - - D2 

6 130 140 120 2 0 T1 D2, T1 T1 T3 T3 T3 

7 78 66 2.6 283 0 T1 D2, T1 T1 Normal PD T1 

8 30.4 117 138 44.2 0.1 T2 T2, T3 T2 T3 T2 T2 

9 27 90 63 42 0.2 T2 T1, T2 T1 T2 T2 T2 

10 1100 1600 2010 221 26 T3 T2, T3 T3 T3 T3 T3 



Chapter 4 

 

117 

 

 

Table 4.5: Fault diagnosis comparison between established and adapted methods. 

 

Application of this linear approach to classify a transformer’s fault category may not 

be effective for critical cases. To deal with the nonlinear problem, different artificial 

intelligence and machine learning techniques such as ANN, SVM, extreme learning 

machine(ELM), and self-adaptive evolutionary extreme learning machine (SaE-

ELM) were proposed in [28]. They classify each testing transformer following these 

four methods and the final decision taken following the majority of votes. A 

comparison of the artificial intelligence and machine learning techniques with the 

PW probability density estimation method is shown in Table 4.6. 

 

 

 

 

Case 

Number 
H2 CH4 C2H4 C2H6 C2H2 

Diagnosis Result 

Expert 

Diagnosis 

Duval 

Triangle 
RS RS-ANN 

KMC-RS-

ANN 

Roger’s 

Ratios 

IEC 

Ratio 

Proposed 

Method 

1 60 40 110 10 70 D2 D2 D2 D2 D2 D2 D2 D2 

2 31 7 5 19 67 D2 D1 - D2 D2 - - D1 

3 293 50 15 13 120 D2 D2 D2 D2 D2 D2 D1 D2 

4 57 7 4.5 19 71 D2 D1 - D2 D2 - - D1 

5 467 148 266 13 511 D2 D2 D2 DT D2 D2 D1 D2 

6 160 90 17 27 58 D1 D1 D1 D1 D1 - - D1 

7 402 81 27 39 25 D1 D2 D1 D1 D1 - - S 

8 4 79 312 112 0 T2 T1 - T2 DT T2 T2 T2 

9 180 180 4 74 3 DT T3 DT DT DT - - T2 

10 1300 740 2000 260 71 T3 T3 T3 T3 T3 - - T3 

11 42 97 600 157 0 T3 T3 Normal Normal Normal T2 T2 T2 

12 44 52 119 15 1 T3 T3 T3 T3 T3 T3 T3 T3 

13 42 79 152 31 1 T3 T3 T3 T3 T3 T3 T3 T3 

14 164 244 497 103 8 T3 T3 T3 T3 T3 T3 T3 T3 

15 22 51 57 42 0 T2 T2 T2 T2 T2 T2 T2 T2 

16 679 4992 3671 1823 0 T2 T1 T2 T2 T2 T2 T2 T2 
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Table 4.6: Comparison of different adapted technique and proposed methods. 

 

 

4.7 Case Study 

To provide a better insight, all the cases in literature have been used in the case study.  

Except for case number 6, the proposed method has solved all the over-lapping 

problems shown in Table 4.3. Case number 6 differs from the expert classification 

(T1), has been classified as T3. The method also has successfully classified 12 cases 

out of 16 shown in Table 4.4. The wrongly classified cases are 2, 4, 7 and 9. The 

expert has classified those problems as D2, D2, D1 and DT while the proposed 

method classifies them as D1, D1, S and T2 respectively. Duval Triangle classified 

the faults as D1, D1, S and DT correspondingly, but the other two conventional 

methods: Roger’s ratio and IEC ratio failed to diagnose these cases as their ratios fall 

outside the defined limits. As the gas concentrations collected from the utility 

company predominantly used Duval Triangles to classify their transformers’ fault 

categories, it could be a reason for misclassification in cases 2, 4 and 7 respectively.  

The DT fault which is a combination of thermal and dielectric fault was not included 

in the targeted categories. Therefore, it has been classified as a T2 type thermal fault. 

A similar problem also arises in case number 6 shown in Table 4.5. That case is 

classified by the ANN, SVM, ELM, and SaE-ELM methods as a D2 fault. Moreover, 

for the cases shown in Table 4.5, IEC method could not detect any faults and the 

performance of the Roger’s ratio is not satisfactory. The problems of the proposed 

Case 
Number 

H2 CH4 C2H4 C2H6 C2H2 

Diagnosis Result 

ANN SVM ELM 
SaE-
ELM 

Duval 
Triangle 

Roger’s 
Ratios 

IEC 
Ratio 

Proposed 
Method 

1 103 5.8 7.3 5 0.7 T1 T3 T1 T1 S - - T1 

2 416 21 43.1 10.5 1 T1 T3 T1 T3 T3 - - T2 

3 59 53 60.3 17.7 0.8 T2 T2 T2 T2 C - - T2 

4 10.5 4.8 4.8 5 2.2 D1 D1 D1 D1 DT - - D1 

5 137 97 29 12 1.5 T2 T2 T2 T2 C LEDA/PD - T2 

6 89 73 6.8 6 5 D2 D2 D2 D2 DT - - T2 

7 240 157 127 98 0.8 T2 T2 T2 T2 C LEDA/PD - T2 

8 116 104 51 36 0 T2 T2 T2 T2 C LEDA/PD - T2 
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method could be overcome by increasing the number of random samples drawn from 

the larger number of training measurements. 

In this research, the optimal value of covariance for five-dimensional data sets is 

carefully chosen through a continuously supervised iterative process. All the five-

dimensional gas concentrations’ information has been deliberately preserved 

throughout the proses aiming to get a better result than with the Duval Triangles. In 

the Duval triangle, gas concentrations are mapped into low dimensional spaces prior 

to classifying a transformer fault category. Deliberately preserved extra dimensional 

information has helped to accurately classify 95 percent of the cases. Moreover, the 

performance of this method is satisfactory on the published data which has been 

shown in Tables 4.3, 4.4 and 4.5. 

 

4.8 Conclusions 

A new procedure for DGA analysis based on PDF estimation by using the PW 

method is introduced in this paper. The method is specialized to deal with the 

difficult cases where Duval’s triangle fails to provide a definitive fault classification. 

To develop a reliable and effective fault classifier, five key gas concentrations from 

376 power transformers were normalised into percentage form. The new approach is 

straight forward and easy to apply without the knowledge of cluster centres. The 

comparative results shown in Tables 4.4, 4.5 and 4.6 demonstrate that the 

performance of the PW method is much better than the conventional ratio-based 

diagnostic strategies and comparable with different artificial intelligences and 

machine learning techniques such as the ANN, SVM, ELM, SaE-ELM and NNCA. 

The experimental results in Table 4.3 show that it correctly classifies 94.8% of these 

difficult cases where Duval’s triangle provides an ambiguous classification. As the 

accuracy of this method is dependent on the number of training samples, the accuracy 

could be improved and the repair cost for a transformer may be reduced by having a 

larger number of training samples. 
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Chapter 5: Missing Measurement Estimation of Power 

Transformers Using a GRNN

 

 

Abstract 

Many industrial devices are monitored by measuring several attributes at a time.  For 

electrical power transformers, their condition can be monitored by measuring 

electrical characteristics such as frequency response and dissolved gas concentrations 

in insulating oil.  These vectors can be processed to indicate the health of a 

transformer and predict its probability of failure.  One weakness of this approach is 

that missing measurements render the vector incomplete and unusable.  A solution is 

to estimate missing measurements using a General Regression Neural Network on the 

assumption that they are correlated with other measurements.  If these missing values 

are completed, the entire vector of measurements can be used as an input to a pattern 

classifier.  To test this approach, known values were deliberately omitted allowing an 

estimate to be compared with actual values. Tests show the method is able to 

accurately estimate missing values based on a finite set of complete observations. 
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5.1 Introduction 

Missing data is a common problem in the wide range of industrial asset management 

systems. It can create a problem in many applications and decision-making processes 

that are dependent on the complete set of vector measurements and how vectors 

change over time. To monitor the performance of a plant, often measurements are 

made in a group in the same period. In practice, due to unavoidable situations, such 

as problem with a sensor or a broken data transmission line, some measurements may 

be missed out. Therefore, experts have to take decision based on the available 

dimensions of the measured vectors.  

 

To illustrate the missing data problem, in this work, measurements of electrical 

power transformers have been used as a basis of these experiments. Measurements 

such as dissolved gas analysis and dielectric insulation tests can be used to assess the 

condition of a transformer and indicate its likelihood of imminent failure. Due to 

financial constraints, environmental conditions and other technical issues, utility 

cannot always perform all the required measures resulting in the set {𝑋1, 𝑋2,⋯ , 𝑋𝑛} 

being incomplete or containing outdated measurements. To handle this situation, 

utility experts often take decisions based on their knowledge and past experiences. It 

is beneficial in automated decision making if a reasonable estimate of missing values 

can be made from a finite set of complete measurements. Therefore, the 

measurements can also be used in a data analysis system like an artificial neural 

network that requires complete vectors of measurements. To estimate the missing 

input vector elements different statistical and artificial intelligence techniques have 

been used [1]. All these approaches try to find the correlations between variables 

which are inherent in the input space. One of the well-known missing data estimation 

techniques is the expectation maximization (EM) algorithm [2]. EM can estimate the 

missing value of a multidimensional vectors if one or more values are missing at 

random (MAR) [3-4]. A value is considered MAR if it is dependent on the other 

specified dimensions such that the missing data is traceable [5]. The algorithm 
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creates a model that approximates a missing value based on its maximum likelihood 

from the available set of vectors. The accuracy of the EM model is limited as it uses 

finite number of estimators (kernels) to estimate the missing values [3]. Moreover, 

the performance of the algorithm is dependent on the initial accuracy of the estimated 

missing value in the E-step which tries to improve by following an expectation 

maximization step or M-step based on the finite set of complete vectors. Abas in [3] 

presents an alternative approach and shows that,  if the missing value in a multi-

dimensional vector can be estimated with high accuracy initially, the performance of 

the EM model can be improved. To estimate the missing value an Incremental 

General Regression Neural Network (IGRNN) [3] was applied as a replacement of 

the initial E-step of the EM algorithm. The estimated values were then used in the M-

step to estimate the parameters of the model and provide better performance than the 

EM. This paper presents a General Regression Neural Network (GRNN)1 which is 

quite similar to the Abas’ method except the model’s smoothing parameter was 

estimated from an experimental search based on the complete set of measurements 

using a holdout method [6]. The GRNN considers the missing data as a function 

interpolation problem consisting of a nonlinear mapping from a set of input variables 

(its domain) onto a single output variable (its codomain). To estimate the distribution 

of measurements, a multivariate Gaussian Kernel is adopted in this work because it 

has small number of parameters that need to be estimated and computing its 

derivative is simple. The arrangement of the paper is as follows: Section 5.2 

describes methodology of the research. Section 5.3 presents the proposed machine 

learning technique. Section 5.4 presents the results that were achieved with the 

method and section 5.5 presents the conclusions. 

 

5.2 Methodology 

This section used a GRNN technique to find the correlation between different 

dimensions of a multidimensional vector (of measurements). The GRNN uses a 

                                                           
1 More detail about GRNN introduction is available in the next chapter, page 140. 
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statistical Gaussian kernel for exploring a best-fitting model to predict the missing 

value of a measurement based on the complete set of training measurements. Various 

aspects of the methodology section are discussed in the subsections below. 

 

5.2.1 Input Selection 

To check the operating condition of insulation in power transformers various 

dielectric and chemical tests are regularly performed. These tests help to monitor the 

key performance parameters of the paper and oil insulation such as dielectric 

breakdown voltage (DBV), moisture content, acidity, furan, power factor (pf), total 

dissolved combustible gases (TDCG) and interfacial tension (IFT) of the insulating 

liquid [7-8]. As these measurements act as indicators of a small set of underlying 

fault conditions, the values are often inter-related resulting in a statistical correlation 

between the various values. To estimate the missing values of these multidimensional 

vectors only the correlated measurements need to be considered. In the collected data 

set, it was found that the pf of oil was the most commonly missing dimension. 

Therefore, only the measurements having some degree of correlation with pf were 

used in this experiment. During operation, some power is always dissipated through 

the oil of a transformer as a form of heat energy. This loss increases the overall 

temperature of a transformer and accelerates its aging rate. The ageing by-products 

contaminate oil and increase the conductivity and permittivity of this insulating liquid 

[9]. Therefore, oil resistance decreases, resulting in an increase in the dissipation 

factor. The amount of degradation due to the dissipated power and contamination is 

evaluated by the pf test [10-11]. The oxidative degradation of paper and oil produce 

hydrophilic carboxylic acids that affect the chemical (acidity) and physical 

(interfacial tension) properties of the fluid. In an IFT test, the surface tension between 

oil and water is measured and this decreases with the increase of hydrophilic 

materials in the insulating oil. The correlation between the IFT and pf based on the 

collected data is shown in Figure 5.1. 
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Figure 5.1: Correlation between IFT and pf of oil 

 

It can be seen from Figure 5.1 that the pf of oil has an inverse correlation with IFT. 

 

Moisture is one of the most unexpected by-products in a transformer since it is 

produced from the degradation of paper insulation. It reduces the dielectric strength 

of oil and paper insulation resulting in an increase in the ageing and dissipation 

factor. The moisture can also come from several sources such as the surrounding 

atmosphere and leaky seals of transformers [12]. A correlation between the 

percentage of moisture concentration and pf of the oil is shown in Figure 5.2. 

 

Figure 5.2: Correlation between Moisture and pf of Oil. 

y = -2E-05x3 + 0.0027x2 - 0.1237x + 2.0819

R² = 0.3525

0.0

0.5

1.0

1.5

2.0

2.5

10 20 30 40 50 60

p
f

o
f 

 T
ra

n
sf

o
rm

er
 O

il

IFT of Oil (dyne/cm)

y = 0.0124x3 - 0.0799x2 + 0.226x + 0.1075

R² = 0.4609

0.0

0.5

1.0

1.5

2.0

2.5

0 1 2 3 4 5 6

p
f 

o
f 

 T
ra

n
sf

o
rm

er
 O

il

Moisture in Oil (%)



Chapter 5 

 

128 

 

Figure 5.2 shows that the pf of oil increases with an increase of moisture 

concentration in it. 

The ageing and variable operating stresses also produce gases in transformers that 

partially dissolve in the insulating oil. The collected data shows a degree of 

correlation between pf and TDCG. Therefore, TDCG can also be used as an input. 

However, the DBV, furan and acidity of oil did not show any correlation with its pf, 

hence they were excluded from the input. As the operating age of a transformer has a 

significant effect on its condition of insulation, it has been also considered here.  

 

5.2.2 Data Processing and Normalization 

In this work, a vector of measurements from 345 power transformers based on their 

oil tests data were provided by a large utility company in Australia. All the tests on 

the collected oil samples were conducted in 2014. In the data set, 35 vectors were 

incomplete due to missing values in single or multiple dimensions of the vectors. 

There was no way of testing these missing values as the actual missing values are 

unknowable. Therefore, another 20 incomplete vectors were created from the 310 

complete measurements by deliberately obscuring some of the dimensions to mimic 

the actual missing values. The remaining 290 complete vectors were used to 

construct a training set for the proposed model. The performance of the model was 

verified using a test set comprised of these obscured values. The test set was sorted 

so that vectors with the fewest missing values were processed first. The dimensions 

of the vectors were normalized by dividing by their corresponding maxima to scale 

each in the range zero to unity. Therefore, the GRNN model was free from the 

dominant influence of any particular dimension.  
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5.2.3 Proposed Model 

In this research, a nonparametric GRNN model technique has been applied to 

estimate the missing value of the multidimensional vector (s). To develop the 

proposed GRNN model, both the training and test sets were divided into dependent 

(missing dimension) and independent variables. The dependent variable 𝑌 = {𝑌𝑛} of 

the test set is predicted from the number of D-dimensional independent 

measurements 𝑿 = {𝑋𝑛} of the training set where  𝑋𝑛 ∈ ℛ𝐷 , ℎ𝑒𝑟𝑒 𝐷 = 4 . The 

prediction is the most probable value of 𝑌for each value of 𝑋based on a finite set of 

𝑛 training measurements and their associated 𝑌 values. Thus, the GRNN learns a 

mapping from an input domain containing 𝑋 to an output co-domain containing Y, 

where either space can be multidimensional, but here 𝑌 is a scalar. If a GRNN is 

trained with a finite number of available measurements, it can estimate a linear or 

nonlinear regression surface to predict the most probable value of Y for any new 

measurement of  𝑥.According to [13],  the basic equation for the GRNN function  

𝑔(𝑥)  based on a multivariate Gaussian kernel can be written as:    

 

𝑔(𝑥) =
∑ 𝑌𝑛𝑒𝑥𝑝(−

𝐷𝑛
2

2
)𝑁

𝑛=1

∑ 𝑒𝑥𝑝(−
𝐷𝑛

2

2
)𝑁

𝑛=1

      (5.1) 

 

where 𝑥  is a multidimensional independent variable of the test set, 𝑌𝑛  is the 

dependent variable for the training set and 𝐷𝑛
2 = (𝑥 − 𝑋𝑛)𝑇𝛴−1(𝑥 − 𝑋𝑛)  is the 

distance between the training set and the point of prediction. The exponential terms 

of (5.1) reflect the contribution of each training point to the dependent variable of𝑥 

that has been intentionally kept missing to validate the performance of the model.  

 

The performance of the model is dependent on the smoothing parameter 𝛴 which is 

the multivariate covariance matrix of the independent variables of training set. Larger 

values within the matrix will result in a smoother interpolation but force the model to 

ignore some important features of the training samples [14]. Conversely, if the  

values are very small then the model will over fit the training examples and losses its 
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generalization capability [15]. Therefore, a trade-off between the maximum and 

minimum element values of the  𝛴 matrix is necessary such that all useful features of 

the training set can be taken into account. 

 

5.3 Training and Testing 

During the training stage, the dependent variables of the 290 training set were 

estimated using their four dimensional independent variables. The 𝛴 value for the 

model was directly calculated from the training set. To vary the values in the 𝛴 

matrix, a scalar multiplicative factor 𝐸 was added in front of it. Therefore, large value 

of 𝐸 result in a smoother interpolation and small value mean potential for over fitting 

the dat. The new equation of 𝛴 can be written as,   

 

𝛴 = 𝐸𝛴𝑆        (5.2) 

 

where𝛴𝑆 is the covariance matrix of the training samples and 𝐸 is a multiplicative 

factor chosen to vary the amount of smoothing. 

 

An optimal value of 𝐸  was estimated based on the holdout method [6]. In this 

approach, one sample from the training set was removed at a time and a network was 

constructed using all of the other samples. The network was used to estimate the 

dependent variable of the missing sample for a small value (0.001) of  𝛴 following 

equation (5.1). The process was repeated for all samples and the mean-squared error 

between actual and estimated values were computed and stored. Then the value of 𝐸 

was increased linearly up to 1 with a very small step and the whole process is 

repeated. The mean-squared error at all values of 𝐸 was computed. Finally, the value 

of 𝐸 (0.2539 shown as square box in Figure5.3) given the smallest error was selected 

for the proposed model. A detailed procedure of the holdout method has been 

discussed in the previously published work [16]. The mean-squared error at different 

values of 𝐸 for oil tests is shown in Figure 5.3. 
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Figure 5.3: Mean-squared error at different values of  𝐸 

 

After estimating an optimal value of 𝐸, the independent variables of the test set were 

computed and compared with their true values to validate the performance of the 

model. To estimate the actual missing values of the 35 measurements that were 

sorted orderly in the previous data processing section, all the complete measurements 

(training and test sets) were used.  The steps of the GRNN algorithm are described as 

follows: 

 

i. The estimation of the first missing value 𝑔(𝑥) is computed as a weighted 

average of all the 310 observed dependent values  𝑌𝑛, where each observed 

value is weighted exponentially according to its distance from the point of 

prediction as shown in (5.1).  

ii. After estimating one missing value, the vector is added to the complete ones 

and then used to estimate the next missing value.  

 

Step1 and Step 2 are repeated until all missing values in the sorted measurements 

were completed.  
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As the GRNN is very versatile at learning mappings, it can also to estimate multiple 

missing value of a vector. For instance, if a vector is 𝑍 = [𝐴 𝐵 𝐶 𝐷 ] and its two 

elements 𝐶 and 𝐷 are missing, the mapping is started as  ℛ2 → ℛ using 𝐴 𝑎𝑛𝑑 𝐵 to 

estimate  𝐶 . After an initial estimation of   𝐶 , the value of 𝐴  𝐵 𝑎𝑛𝑑 𝐶  are used to 

create a mapping of  ℛ3 → ℛ to estimate the most likely value of  𝐷. Now 𝐶 and 𝐷 

can be used to estimate each other following the last step in an iterative way until 

they are convergence. 

 

5.4 Results and Discussion 

In order to analyse the performance of the proposed GRNN model, initially it was 

trained with a significant number of training examples to extract an optimal value of 

the smoothing parameter  𝛴. After estimating appropriate smoothing, the model was 

applied on the 20 test cases to estimate their missing values where the true values 

were known. The estimated result is shown in Table 5.1. 
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Table 5.1: Estimation of known missing data based on four dimensional vectors. 

 

Serial 

Number 

Operating 

Age 

(Years) 

IFT 

(dyne/cm) 

Moisture 

(%) 

TDCG 

(ppm) 

Actual 

pf of 

Oil 

Estimated 

pf of Oil 

Error 

(%) 

1 50 24 2.7 176 0.3203 0.3348 -4.53 

2 50 28 2.2 198 0.4504 0.4472 0.71 

3 50 25 4.7 195 0.5670 0.5619 0.90 

4 51 19 4.9 78 0.7701 0.7628 0.95 

5 51 23 3.1 300 0.3340 0.3351 -0.33 

6 51 26 4.6 188 0.3993 0.3876 2.93 

7 50 29 3.7 296 0.3254 0.3196 1.78 

8 50 34 2.5 205 0.5310 0.5325 -0.28 

9 52 24 5.0 423 0.4115 0.4120 -0.12 

10 52 30 2.9 282 0.3034 0.3151 -3.86 

11 52 21 5.0 318 0.7828 0.7644 2.35 

12 52 17 4.5 432 0.9557 0.8233 13.85 

13 52 19 4.9 119 0.6671 0.5778 13.39 

14 52 24 3.8 184 0.5907 0.5046 14.58 

15 52 21 5.2 179 0.6899 0.7216 -4.59 

16 53 21 4.5 228 0.4969 0.4715 5.11 

17 54 26 1.0 122 0.3976 0.3745 5.81 

18 54 19 3.6 116 0.3534 0.3421 3.20 

19 54 29 3.4 259 0.3832 0.3570 6.85 

20 54 21 3.1 656 0.3418 0.3442 -0.70 

 

 

From Table 5.1, it can be seen that in most cases, the proposed GRNN model 

estimated the pf of oil accurately with a reasonable amount of over and under 

estimation (less than 7% error). However, in the three cases (shown in bold), serial 

numbers 12, 13 and 14 significant amounts of errors were observed. It was because 

of the limited distribution of the training examples in the space where the three points 

are located. The errors could have been reduced with a large number of training 

examples such that the underlying GRNN function will be continuous [6]. After 

getting satisfactory performance on the estimation of the known missing values, the 

model was applied to estimate the 35 missing values in the data set collected from a 

large utility company. Therefore, it is expected that the estimated values are very 
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close to their true values and will help the utility experts to take correct decisions on 

schedule maintenance by looking at the complete set of measurements. 

 

5.5 Conclusions 

In this paper, a new application of the general regression neural network has been 

presented to estimate missing values of transformer measurements. Five correlated 

performance parameters of transformers such as operating age, IFT, percentage of 

moisture, TDCG and pf of oil were used as inputs to estimate any missing values. 

The performance parameter of the model 𝛴 which was controlled by a multiplicative 

scalar 𝐸 estimated using the well-known holdout method such that the mean square 

error between the actual value and the estimated value is reduced. Comparative 

results presented in Table 5.1 indicate that this method could be effective to estimate 

the missing data in the industrial and utility sectors. 
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Chapter 6: Application of a General Regression Neural Network for 

Health Index Calculation of Power Transformers

 

 

Abstract 

A power transformer is one of the most important components in a transmission 

network. To assess the overall condition of this valuable asset, health index 

calculations are recently gaining more attention from the utility companies that 

operate networks. Only limited research has been conducted on health index 

calculations of transformers. Most of the past approaches are based on the linear 

combination of weighted scores of measurements following the industry standards 

such as IEEE, IEC and CIGRE. A few previous methods based on artificial 

intelligence and statistical approaches such as fuzzy logic, multivariate analysis and 

binary logistic regression have been published in recent years. In this paper, a 

General Regression Neural Network (GRNN) which has a nice nonlinear property 

and can work with measurements without quantization has been evaluated. The 

GRNN allows multi-dimensional measurements to be combined through an optimal 

weighting and scoring system to compute a quantitative health index of power 

transformers. The weighting of each test was assigned based on a smoothly 

interpolated continuous function. The efficacy of the model has been validated 

against expert classifications and data sets published in the literature. The 

comparative results demonstrate that, the proposed method is reliable and very 

effective for condition assessment of transformers through an automated health index 

calculation.  
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6.1 Introduction 

Power transformers are the most valuable assets in a power grid and comprise a 

significant fraction of the total investment in a power delivery system. The failure of 

a transformer can have a profound impact on the end users or utilities along with the 

cost implications of replacement, lost revenue and customer impacts [1-2]. Moreover, 

a sudden failure can damage the environment through oil leakages and can pose a 

risk to utility personal by causing fire and explosions. Therefore, to maintain an 

optimal balance among maintenance costs, safety and capital investments, proper 

condition assessment of these valuable assets is essential. 

 

Over recent decades, health index (HI) calculations have been used as a powerful tool 

to assess the condition of transformers. In these HI calculations, a transformer’s 

current information such as various test results, expert observations and field 

inspection data are combined into a single quantitate index to reflect its overall 

condition. Although the HI cannot reflect the status of any particular part of a 

transformer, it measures the level of long-term degrading that cannot be easily 

determined by one-off inspections. The calculated HI score is a result of interaction 

between different routine and diagnostic tests that are not considered by the classical 

condition monitoring techniques [3].  Thus, the calculated HI can identify the 

transformers that are close to their end-of-life and differentiate the transformers that 

have a higher probability of failure [4-6]. This information helps utilities to manage 

their assets appropriately, through clearly identifying the transformers that need more 

attention or major capital expenditure. 

 

The challenging task in any HI calculation is to identify the most significant 

measurements and incorporate them through justified weightings. One of the 

established practices of many utilities is to use the recommended conditional score 

and weighting factors supplied by industry standards organizations such as IEEE, 
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IEC and CIGRE and combine the test results in a linear way. Mathematically, the 

linear approach can be expressed by the following equation. 

 

ℎ(𝒙) =
𝑤1𝑥1 + 𝑤2𝑥2 + ⋯+ 𝑤𝑛𝑥𝑛

𝑤1 + 𝑤2 + ⋯+ 𝑤𝑛
                                                           (6.1) 

 

whereℎ is a health index metric, 𝑤 and 𝑥 represent the weight and conditional score 

of each test respectively and 𝑛  represents the number of tests included in a HI 

calculation.    

 

After computing the HI, the conditional categories of transformers are determined 

based on the standard deviation within a known set of calculated scores. A similar 

approach has been used by Jahromi [4] where the HI scores of each transformer have 

been calculated by summing the product of scores and weights based on 24 tests. One 

of the limitations of this method is that a large number of tests need to be conducted 

simultaneous to apply the method. As some of the tests are conducted irregularly, at 

most points in time the set {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}  is incomplete or contains outdated 

measurements. Moreover, a wide range of test results are treated equally and the 

method is insensitive to a single but critical result that could potentially lead a 

transformer to a catastrophic failure. Ahmed in [5], has used a Fuzzy Logic approach 

where the membership of a measurement in the five health condition categories was 

calculated using a number of Fuzzy sets (membership functions). To calculate the 

degree of membership, a certain portion of each set was overlapped with 

neighbouring sets using linear boundaries. Therefore, a measurement could be a 

member of single or multiple sets. The percentage of the overlapping zone is 

completely subjective and dependent on the experts’ knowledge. Moreover, the 

derivation of the expert rules is also critical, since the tests are applied as a decision 

tree; hence the order of tests is important. Ahmed gave most importance to the furan 

concentration over other tests. However, the actual estimation 
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of furan from oil sampling in some cases is difficult as furan can disappear due to 

evaporation through the open breathing system or become disassociated under 

oxidizing and increased temperature conditions [7-8]. Oil treatment in the form of 

reclamation, replacement or top-up also has an impact on the furan concentration. 

Therefore, the calculated HI based on Fuzzy rules may have a certain degree of 

inaccuracy. Weijie in [9] also proposed another nonlinear approach where the 

conditional HI scores of transformers were calculated by using a binary logistic 

regression (BLR). The regression model can be expressed by (6.2).  

 

𝐻(𝑥; 𝛽) =
1

1+𝑒
−(𝛽0+∑ 𝛽𝑖𝑥𝑖

𝑛
𝑖=1 )

      (6.2) 

 

where𝛽0 is a constant and 𝛽𝑖  is a coefficient that reflects the contribution of each 

independent test 𝑥𝑖 . 

 

It is apparent from (6.2) that the accuracy of the method is dependent on the 

estimation of a set of coefficients {𝛽𝑖} . Although, the BLR model can learn a 

sigmoidal surface that is similar to a single layer perceptron, it has much more 

limited interpolation than can be achieved by a general regression neural network 

(GRNN) as used here.  

 

In order to overcome the shortcomings of the currently available methods, a novel 

GRNN technique has been adopted for this work. The GRNN tackles the HI 

calculation as a function interpolation problem consisting of a nonlinear mapping 

from a set of six input variables (containing information about the operational 

condition of transformers) onto a single output variable representing the predicted 

overall health condition of transformers. The GRNN is a non-parametric method as 

opposed to Fuzzy Logic and Binary Logistic Regression that require a manual choice 

of model complexity and estimation of the resulting parameters (or coefficients). This 

means the GRNN will naturally form a model whose complexity is justified by the 
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availability of training examples, complying with Risannen’s minimum description 

length principle [10]. The GRNN has the ability to control model complexity when 

the set of transformer data is constrained and this is a significant contribution arising 

from this work. This property also makes the GRNN well suited to multivariate 

interpolation of high-dimensional training examples. The GRNN is from the family 

of radial basis function networks and its sole parameter controls the smoothness of 

interpolation offered. It can learn quickly the underlying function of high 

dimensional measurements from limited number of training examples. The 

performance of the model is evaluated by making a comparison between predicted 

and measured values based on the mean square error. The arrangement of the paper is 

as follows. Section 6.2 describes the overview of general regression neural network. 

Section 6.3 presents the methodology followed in this research. Section 6.4 describes 

results that were achieved with the method. Section 6.5 presents the comparative 

analysis with other methods and section 6.6 presents a summary of the results and 

conclusions.   

 

6.2 Overview of General Regression Neural Network 

The general regression neural network (GRNN) is a single-pass learning algorithm 

that uses radial basis functions as a form of standard statistical kernel regression [11-

12]. It is a kind of probabilistic neural network that has the capability to converge to 

the underlying function of measurements by induction from a limited number of 

training examples. The GRNN possesses a simple network structure that is fast when 

learning and quickly converges to the optimal regression surface. It exhibits excellent 

approximation to arbitrary functions having inputs and outputs from sparse and noisy 

sources, and can achieve optimal performance by adjusting a single smoothing 

parameter. Therefore, it has numerous applications in engineering and scientific data 

analysis.   
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In the GRNN, the value of a dependent variable 𝑌 = {𝑌𝑛} is predicted from a number 

of given D-dimensional independent measurements 𝑿 = {𝑋𝑛} where 𝑋𝑛 ∈ ℛ𝐷
.The 

prediction is the most probable value of 𝑌for each value of 𝑋based on a finite set of 

𝑛measurements and their associated 𝑌 values. Thus, the GRNN learns a mapping 

from an input domain containing 𝑋 to an output codomain containing Y, where either 

space can be multidimensional, but here 𝑌 is assumed as a scalar. If a GRNN is 

trained with a finite number of available measurements, it can estimate a linear or 

nonlinear regression surface to predict the most probable value of Y for any new 

measurement of X. If the joint continuous probability distribution function (pdf) 

𝑓(𝑿, 𝑌) of a random variable vector  𝑿  and a scalar random variable 𝑌 is known,  the 

conditional expectation [11] of 𝑌 for a given value of 𝑋 can be expressed as:   

𝐸[𝑌|𝑿] =
∫ 𝑌𝑓(𝑿, 𝑌)𝑑𝑦

+∞

−∞

∫ 𝑓(𝑿, 𝑌)𝑑𝑦
+∞

−∞

                                                                   (6.3) 

In practice, for most cases the joint probability distribution function of𝑿and 𝑌 is 

unknown. However, the joint pdf can be empirically approximated using 

nonparametric Parzen window estimation from a finite set of measurements (a form 

of training set)[13]. This approach is free from any assumption of a particular 

functional form, as the parameters of the model are determined directly from the 

training set. Thus, the GRNN learns and is able to generalize immediately. Cacoullos 

in [14] has shown the suitability of Parzen window estimation for multidimensional 

cases. The probability density of 𝑋  at any sample point 𝑥  in a hypercube region 

ℛ𝐷
can be estimated [15]as: 

𝑓(𝒙) =
1

𝑁𝜎𝐷
∑ 𝑘 (

𝑥−𝑋𝑛

𝜎
)

𝑁

𝑛=1

                                                                   (6.4) 

where σ is the side length of a hypercube, 𝜎𝐷 is the volume of the hypercube and 

𝑘(𝑥) is a statistical kernel or window function [15].  
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To estimate the joint pdf of 𝑿 and 𝑌 , different kernel functions 𝑘(𝑥)  such as 

rectangular or Gaussian kernels can be used. As the Gaussian function is simple to 

implement and has continuous derivatives, a multivariate Gaussian kernel is widely 

applied to obtain a smooth density model. Thus the Parzen window density function 

using a multivariate Gaussian kernel function with a covariance matrix 𝛴 [11] can be 

written as:  

 

            𝑓(𝑿, 𝑌) =
1

𝑁√(2𝜋)𝐷 ∗ |𝛴|
∑ 𝑒𝑥𝑝 (−

(𝑥−𝑋𝑛)𝑇Σ−1(𝑥−𝑋𝑛)

2
)

𝑁

𝑛=1

∗ 𝑒𝑥𝑝 (−
(𝑦−𝑌𝑛)𝑇Σ−1(𝑦−𝑌𝑛)

2
)                                                         (6.5) 

 

If the Parzen window estimator of (6.4) is modified by the conditional mean of (6.5), 

then the basic equation for the GRNN function  𝑔(𝑥)[16] can be written as:  

 

𝑔(𝑥) =
∑ 𝑌𝑛𝑒𝑥𝑝(−𝐷𝑛

2

2
)𝑁

𝑛=1

∑ 𝑒𝑥𝑝(−𝐷𝑛
2

2
)𝑁

𝑛=1

                                                                   (6.6) 

 

where 𝑥 is a new measurement used for testing and 𝐷𝑛
2 =(𝑥 − 𝑋𝑛)𝑇Σ−1(𝑥 − 𝑋𝑛) is 

the squared Mahalanobis distance [15] between the training data set and the point of 

prediction. (This is a generalization of the Euclidean distance to allow for the case 

where 𝛴  is non-diagonal). The exponential terms of (6.6) works as a weighting 

parameter that reflects the contribution of each known 𝑌𝑛 to the output 𝑔(𝑥). Training 

points 𝑋 closest to a prediction point will contribute preferentially as the exponential 

term becomes bigger due to decreased distance.  

 

The smoothness of the GRNN function depends on the multivariate standard 

deviation𝛴. When the value of 𝛴 is large, the estimated density model is forced to 

become smoother. As a result, it ignores some features of the training samples but 

also attenuates any additive noise in the training examples [12]. If the value 𝛴 is too 
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small, the model will over-fit the training examples, trying to track every feature of 

training set, becoming sensitive to sparse and noisy data, and resulting in a loss of its 

generalization capability [17]. Therefore, a good choice of 𝛴 is imperative so that all 

useful features of the training set are taken into account since the prediction points 

closer to 𝑋get heavier weighting.If the actual distribution of measurements for any 

application field is unknown then the optimal value of 𝛴 for a given number of 𝑁 

measurements is critical [11]. One way of computing the optimal value of 𝛴 is by an 

experimental search, such that the estimated value of any known 𝑔(𝑿𝒋)based on the 

remaining 𝑿𝒏−𝟏  training measurements is as close as possible to its actual value. 

Therefore, 𝛴 is chosen such that the mean squared error between the estimated value 

and the actual value will be minimized. A detail procedure for calculation of 𝛴 is 

shown in [11].  

 
 

6.3 Methodology 

In this section, a GRNN is used to find the correlation between independent variables 

and a continuous dependent variable. The GRNN uses a statistical Gaussian kernel 

for exploring a best fitting model to predict the health index (HI) score of 

transformers using six independent variables. The calculated HI scores are finally 

used to assess the health condition of transformers. To present a fair comparison 

between the GRNN, Fuzzy Logic and BLR, the same six inputs are used here. 

However, the GRNN could be adapted to use more inputs when measurements are 

available. Different subsections of the methodology section are discussed below. 

 

6.3.1 Input Selection 

In the dissolved gas analysis (DGA) method, concentrations of different combustible 

dissolved gases such as Hydrogen (H2), Methane (CH4), Ethylene (C2H4), Ethane 

(C2H6), Acetylene (C2H2) and Carbon monoxide (CO) are measured to identify faults 

such as partial discharge, internal arcing, overheating and poor electrical contacts in 
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transformers [4,9,18]. As normal operation of transformers produces some gas, there 

is a chance of mis-diagnosis from DGA. Moreover, there are cases when DGA fails 

to provide sufficient information about the integrity of transformers [4]. Therefore, it 

is beneficial to use the summation of combustible gases and include additional 

measurements to improve the accuracy of overall assessment. In this research, a 

quantitative HI score based on total dissolved combustible gas (TDCG) and five 

additional measurements such as oil quality, dissipation factor, acidity, water in oil 

and insulation resistance has been used.  The TDCG was calculated from the 

summation of combustible gases. The reasons for using six independent variables are 

discussed in the following paragraph.  

 

In an oil filled transformer, both mineral oil and paper are used as insulators. During 

normal operation of transformers, due to unavoidable inefficiency, some power is 

always lost through the insulating oil as a form of heat energy. This dissipated power 

increases the overall temperature of a transformer and accelerates its aging rate. The 

ageing by-products contaminate oil and increase the conductivity and permittivity of 

this insulating liquid [19]. Therefore, oil resistance decreases, resulting in an increase 

in the dissipation factor. The amount of degradation due to the dissipated power and 

contamination is evaluated by the dissipation factor (DF) test [5,20]. Besides 

insulating, the solid paper/pressboard helps to hold the windings in position. 

Degradation of this paper insulation is considered to be a primary cause of a 

transformer’s end-of-life [21]. Furan (2-Furfuraldehyde) is a chemical compound that 

is produced from the breakdown of cellulose chains with in the solid insulation and is 

usually used to assess the condition of paper ageing. The furan concentration has a 

conditional correlation with the degree of polymerization (DP) and increases with the 

ageing of paper insulation [8, 22]. If the conditions are satisfied, the furan 

concentration may be used to estimate the DP value of paper insulation. Generally, a 

DP value less than 200 is considered the end-of-life for paper insulation [7]. 

According to a recent research, the furan level for the normal and thermally upgraded 

paper (TUP) corresponding to DP of 200 is 7.337 ppm and 2.843 ppm (by weight) 
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respectively [7]. However, due to the maintenance activities, if the oil is reclaimed, 

replaced or topped-up the relation between furan and DP is not valid until the 

concentration has been given time to destabilize. Therefore, both furan and DF have 

been used in the proposed HI calculation. As there were only few transformers with 

TUP in the asset register of the utility and so this factor was not considered here. 

 

Water is one of the most unexpected impurities in transformer oil. It can be produced 

locally from chemical processes such as ageing of paper and oxidation of oil [22]. 

The dipole momentum of water molecules make them polarized in an electric field 

thus affecting the dissipation factor [22]. Moreover, the contaminating particles and 

free water reduce the dielectric breakdown voltage (DBV) of oil [9, 23]. The water 

may also create bubbles at high temperature that can increase the probability of 

partial discharge inception  and has an accelerated aging effect on the paper [24]. The 

DBV measures the strength of oil to withstand electrical stress without failure. Thus 

DBV and water content give an overall condition assessment of oil in transformers 

[5]. As these two measurements can provide valuable information about oil integrity, 

they have also been included in the HI calculation. 

 

During a transformer’s service life, acids are produced in its oil resulting from 

atmospheric contamination and oxidative degradation [25]. These acids degrade the 

properties of the oil and paper insulation. The concentration of acids provides an 

indication of the oxygenated products and solid contaminants of the insulation. 

Consequently, the acidity has also been adopted in the proposed HI calculation to 

indicate the condition of insulation. 

 

6.3.2 Data Processing and Normalization 

In this work, six dimensional measurements, specifically TDCG, dissipation factor, 

acidity, water content, furan and dielectric strength are used as the domain of the 

GRNN model.  The upper and lower limits of each measurement have been 
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considered to create a four level quantization of each measurement. The ranges have 

been chosen based on the IEEE Std C57.106shown in Table 6.1. To develop a 

training set, the mid points of the four conditional limits for each test were used. A 

conditional score such as 0.25, 0.5, 0.75 and 1.0 respectively were set to the middle 

points of the Good, Fair, Poor, Very Poor ranges. A number of 𝑋𝑛 = 4𝐷(𝑤ℎ𝑒𝑟𝑒 𝐷 =

6 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠)  independent variables for the training set were 

produced using the combination of these mid points. The dependent variable 𝑌𝑛 for 

each combination was calculated by averaging their corresponding position scores. 

The 4096 training measurements (patterns) produced from the combination of six 

tests are used as an input to train the proposed GRNN. To ensure the same scaling of 

each dimension, each input of the test set is normalized dividing by 1.5 times of the 

lower limit value of the Very Poor category. (The scaling factor 1.5 ensures that 

outlying measurements are included in the chosen range specially when the Very 

Poor category upper limit boundary is missing). Due to this approach, the underlying 

pdf for a kernel has been estimated with the same width in each dimension.  
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Table 6.1:Grading of transformers based on six key measurements [1, 19] 

 

 

6.3.3 Working Principle 

To improve the accuracy of overall conditional assessment of power transformers, a 

continuously interpolated function has been proposed in this work. If IEEE Std. 

C57.106 is strictly applied, each measurement is quantised into four non-overlapping 

ranges. Therefore, after quantisation all the values within each range are 

indistinguishable and this throws away information could be useful in the later stage, 

forming a major drawback of this approach. To deal with this limitation, a continuous 

function has been developed using the GRNN interpolation technique, but still based 

on the limit values of the four conditional scores. The midpoint of the high and low 

 U≤69 kV 
69 kV <U 
<230kV 

230kV≤U Classification Condition Score 

Dielectric 
Strength kV 
(2mm gap) 

≥45 ≥52 ≥60 Good 1 

35-45 47-52 50-60 Fair 2 

30-35 35-47 40-50 Poor 3 

≤30 ≤30 ≤40 Very Poor 4 

Neutralization 
Number (Acidity) 

≤0.05 ≤0.04 ≤0.03 Good 1 

0.05-0.1 0.04-0.1 0.03-0.07 Fair 2 

0.1-0.2 0.1-0.15 0.07-0.1 Poor 3 

≥0.2 ≥0.15 ≥0.10 Very Poor 4 

Water content 
(ppm) 

≤30 ≤20 ≤15 Good 1 

30-35 20-25 15-20 Fair 2 

35-40 25-30 20-25 Poor 3 

≥40 ≥30 ≥25 Very Poor 4 

Dissipation factor 
(%) at 50 Hz 25°C 

 

≤0.1 Good 1 

0.1-0.5 Fair 2 

0.5-1.0 Poor 3 

≥1.0 Very Poor 4 

 Total dissolved 
combustible gas 
(TDCG) in ppm 

720 Good 1 

721-1920 Fair 2 

1921-4630 Poor 3 

>4630 Very Poor 4 

Furan (ppm) 

0-0.1 Good 1 

0.1-1.0 Fair 2 

1.0-10 Poor 3 

>10 Very Poor 4 
Note: The boundaries of conditional scores for Dielectric Strength, Acidity and Water content are dependent on the 

voltage rating of transformers. 
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point of each limit has been assigned with a conditional score and used in the GRNN 

model.The GRNN interpolation technique based solely on the water concentration of 

the oil is shown in Figure 6.1.  

 

 

 

Figure 6.1: GRNN interpolation of normalised water content and conditional score. 

 

In Figure 6.1. 𝜆 and 𝛾 represent the upper and lower limit of a Voronoi (quantisation) 

region respectively so the four ranges can be expressed using the following notation.  
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𝐿𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 =

[
 
 
 
𝜆1,𝐷      𝛾1,𝐷

𝜆2,𝐷    𝛾2,𝐷

𝜆3,𝐷    𝛾3,𝐷

𝜆4,𝐷    𝛾4,𝐷 ]
 
 
 

 

where 𝐷 is the dimension of the measurements and𝛾𝑖,𝐷 = 𝜆𝑖+1,𝐷 for the next band 

and so on (the ranges are non-overlapping and contiguous). The targeted midpoint 

(shown as a red cross in Figure 6.1) for each Voronoi region can be written as :  

∅𝑛,𝐷 =
𝜆𝑛,𝐷+ 𝛾𝑛,𝐷

2
 𝑤ℎ𝑒𝑟𝑒 𝑛 = 1,2… ,4 𝑎𝑛𝑑 𝐷 = 1,2, . . ,6  (6.7) 

It is apparent from Figure 6.1 that a small value of 𝛴 (0.01) instructs the GRNN to 

work as a step function. The GRNN gradually became a smooth interpolator with the 

increased values of 𝛴. A similar representation but for a two-dimensional domain 

comprising normalised water concentration and acidity and for small and large values 

of 𝛴 controlled by a variable multiplicative parameter 𝐸 is shown in Figure 6.2 (a) 

and (b) respectively. 

 

Figure 6.2 (a): Health Index at a Small Value of 𝐸. 
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Figure 6.2 (b): Health Index at a Large Value of  𝐸. 

Figure 6.1 and 6.2 shows a function in a one and two-dimensional domain 

respectively, but a similar approach may be applied to much higher dimensional 

measurements to calculate their respective conditional scores. As the method is based 

on the six-dimensional measurements, the actual algorithm is more complex than the 

graphical three-dimensional presentation shown in Figure 6.2 (a) and Figure 6.2 (b).    

In this research, six dimensional measurements were used. Therefore, the midpoint of 

each Voronoi region (plateau)  in six dimensional space  can  be expressed as 

follows. 

 

𝑋𝑖,𝑗,𝑘,𝑙,𝑚,𝑛 = [∅𝑖,1 ∅𝑗,2  ∅𝑘,3  ∅𝑙,4  ∅𝑚,5  ∅𝑛,6]    (6.8) 

 

After selecting an optimal value of   𝛴 , the conditional score for any higher 

dimensional measurements may be calculated by mapping with a continuous smooth 

interpolated function.  
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6.3.4 Proposed Model 

In the proposed GRNN method, following equation (6.8) a set of 4096 measurements 

were produced using the boundaries of four conditional scores. The measurements 

were divided into training and test sets. The training set comprises 3996 

measurements while the remaining 100 measurements were randomly selected as a 

test set. To estimate the probability distribution function (pdf) of the training set, a 

nonparametric Parzen window (PW) estimation technique was applied. In the PW 

approach, a multivariate Gaussian kernel function was centred on each of the 

3996training vectors. The individual kernels were added together (equation 6.4) to 

determine a common width (smoothing parameter) to estimate the probability density 

of each measurement. The equation of the covariance matrix 𝛴  (smoothing 

parameter) for the proposed six-dimensional cases can be expressed by (6.9).  

 

𝛴 = 𝐸𝛴𝑆        (6.9) 

 

where 𝛴𝑆 is the covariance matrix of the training samples and 𝐸 is a multiplicative 

factor chosen to provide an appropriate amount of smoothing (see Figure 6.1).  

 

The estimation of 𝐸 is very important as the smoothness of the pdf depends on it, 

much as demonstrated in Figure 6.1. So, it has a great influence on the performance 

of GRNN. The optimal value of 𝛴will vary based on the size, mixture of noise and 

type of the training set [27]. Although, a larger value of 𝛴 will make the estimated 

pdf curve smoother, the estimated curve will also start to lose finer details. 

Conversely, a smaller value of 𝛴 may lead to false spikes in the pdf curve depending 

on the specific distribution of the training points and thus the interpolated function 

becomes prone to noise. Therefore, the optimal value 𝐸was estimated by linearly 

increasing the value of 𝐸with a step size 0.001in the range 0.001 to 1.0. With the 

increased value of𝐸, the accuracy of the model was monitored for the 100 test cases 

chosen from 4096 measurements. It was found that with the increased value of 𝐸the 
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accuracy was increased up to a certain level. If the value of 𝐸further increased, the 

accuracy started to drop. As a result, the value at which maximum accuracy found 

considered as a near-optimal point for this experiment which was 0.450.  

 

After estimating the value of 𝐸, the actual health index of a transformer could be 

calculated by summing the general regression of separate measurements as shown in 

Figure 6.1. 

 

𝑔(𝑥) = 𝑔1(𝑥1) + 𝑔2(𝑥2) +…+𝑔𝐷(𝑥𝐷)    (6.10) 

 

If the functions 𝑔(𝑥) are linear the solution degenerates into one such as equation (1), 

whereas if they are non-linear the solution is closer to that in equation (6.2).  The 

drawback of this approach is that, the model only learns 4 × 6 = 24 regions (4 for 

each dimensional measurement). The model could not appraise any cross correlation 

of the measurements. To overcome this limitation, in this work, the regressions are 

combined in a multivariate way so that it can learn all the possible combinations 

(4𝐷=4096) and evaluate the cross correlation of the measurements to calculate the HI 

of a transformer. (For instance, in the two-dimensional (D=2) domain shown in 

Figure 6.2(a) there are 42 = 16 plateaus.) This approach can be expressed using the 

following equation. 

 

𝑔(𝑥) = 𝑔(𝑥1, 𝑥2, … , 𝑥𝐷)      (6.11) 

 

Here the function 𝑔(𝑥) is implemented as a GRNN using a method described in 

equation (6.6). From (6.11), it can be said that for any combination such as one or 

two tests indicate poor condition of a transformer while other indicate fair or good, 

the GRNN and learn from it. This cross correlation exploring capability helps the 

proposed model to accurately calculate the HI of transformers. As can be seen from 

Figure 6.2 (a) the training data (equation (6.8)) derived from the IEEE Std. C57.106 

does not show large scale correlation but the interpolation provided by Figure 6.2 (b) 
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allows localized correlation to be exploited.  Methods for exploring larger scale 

correlation will form the basis for future work.  

 

6.4 Results and Discussion 

To analyze performance of the proposed GRNN model, data from power 

transformers rated less than 69 kV were collected from a utility company in 

Australia. As the boundary of conditional scores for Dielectric Strength, Acidity and 

Water content(shown in Table 6.1) changes with the increased voltage rating, only 

the 100 transformers having less than 69 kV rating were considered in this 

experiment. Out of them, 83 transformers were installed between 1965 and 1980 

prior to the introduction of the thermally upgraded paper (TUP). In 1993, the utility 

started to use TUP in new transformers. Although this information has not been 

provided by the utility, the set of transformers made with TUP cannot comprise more 

than 17% of the total set. Therefore, the impact of 17% or less TUP transformers on 

their furan concentration is not considered in this work. The measurements from the 

transformers were made in 2013. The oil samples were collected without any 

exposure to the atmosphere and the winding, oil and ambient temperatures were 

recorded at the time of sampling. Therefore, the impact of ambient temperature on 

the samples was ignored. As most of the transformers had been in operation for over 

30 years, their ageing is apparent in expert classifications. Only four transformers 

which are under 20 years old were found in the poor category and this could be the 

result of loading patterns, harmonics in load, different faults and their maintenance 

plans. The utility experts used 19 tests to determine the HI score of transformers. To 

calculate the HI scores following a linear approach, they divided the test results into 

five groups to assess the condition of different subsystems such as paper, oil, Tap 

changer, windings and bushings. Based on the calculated scores, transformers were 

classified into four groups such as Satisfactory, Fair, Poor and Severe. However, in 

the majority of the cases no significant degradation was found in the tap changers, 

windings and bushings. So these measurements were deemed to be of little diagnostic 
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value and have been omitted from these tests. A comparison between the proposed 

method and the expert classifications is summarized in Table 6.2, where VG, G, M, B 

and VB in proposed method indicate very good, good, moderate, bad and very bad 

condition respectively. Moreover, to facilitate the comparison, the VG and G 

conditions were considered the same as the satisfactory category of expert 

classifications. 

 

Table 6.2: Comparative health condition between experts’ classifications and 

proposed method. 

 

Note: The matching cases are shown in bold 
 

 

From Table 6.2, it can be seen that in 17 cases the proposed method wrongly 

classified the fault category of transformers, which means the method showed an 

83% match to the expert classifications. Several reasons could contribute to these 

misclassifications. One of the important reasons is that they assign weight to each test 

based on their experience, statistical analysis and the survey reports published by 

Omicron, Doble and CIGRE[28]. Moreover, the experts also used an additional 13 

tests, not seen by the proposed method, that lead to them forming different 

conclusions in some complex cases. 

 

6.5 Comparison with Other Methods 

The proposed method was also compared with other published approaches such as 

asset-management and health assessment consulting company (AMHA) 

Conditions 
Proposed method 

Expert classifications 
VG G M B VB 

Satisfactory 2 1 
   

3 

Fair 
 

4 16 2 
 

22 

Poor 
  

6 31 3 40 

Severe 
   

2 33 35 

Total 2 5 22 35 36 100 
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classifications, Fuzzy Logic [5] and Binary Logistic Regression [9]. The AMHA 

classifications have been considered as a target value for the proposed method. A 

comparison between the proposed method and other published methods is 

summarised in Table 6.3, and the results of six diagnostic tests of 30 transformers are 

shown in appendix A of the report. 

 

Table 6.3: Calculated health indices and corresponding conditions of transformers. 

 

From Table 6.3, it can be seen that the proposed method performed well with the 

published cases. In four cases (case number 2, 10, 27 and 30), it slightly deviated 

from the AMHA classification. The AMHA classified them as G, G, G and M which 

has been classified by the proposed GRNN as M, M, M and B respectively. The 

Number AMHA Fuzzy Logic 
Binary Logistic 

Regression 

Proposed 

GRNN 

1 0.377 G 0.36 G 0.434 M 0.370 G 

2 0.334 G 0.3 G 0.17 G 0.560 M 

3 0.29 G 0.3 G 0.007 G 0.047 VG 

4 0.7 B 0.78 B 0.826 VB 0.78 B 

5 0.102 G 0.2 VG 0.002 G 0.03 VG 

6 0.274 G 0.3 G 0.004 G 0.085 VG 

7 0.316 G 0.3 G 0.023 G 0.316 G 

8 0.29 G 0.3 G 0.006 G 0.133 VG 

9 0.226 G 0.22 VG 0.003 G 0.04 VG 

10 0.316 G 0.3 G 0.12 G 0.586 M 

11 1 B 0.94 VB 0.973 VB 0.93 VB 

12 0.931 B 0.93 VB 0.841 VB 0.69 B 

13 1 B 0.94 VB 0.973 VB 0.83 VB 

14 0.916 B 0.83 B 0.589 B 0.59 B 

15 0.732 B 0.78 B 0.885 VB 0.70 B 

16 0.354 G 0.3 G 0.03 G 0.399 G 

17 0.45 M 0.53 M 0.594 B 0.45 M 

18 0.291 G 0.3 G 0.37 G 0.406 G 

19 1 B 0.94 VB 0.997 VB 0.79 B 

20 0.347 G 0.3 G 0.005 G 0.119 VG 

21 0.414 M 0.15 VG 0.077 G 0.36 G 

22 0.241 G 0.11 VG 0.002 G 0.04 VG 

23 0.953 B 0.94 VB 0.895 VB 0.85 VB 

24 0.368 G 0.3 G 0.018 G 0.015 VG 

25 0.45 M 0.51 M 0.181 G 0.55 M 

26 0.072 G   0.11 VG 0.004 G 0.01 VG 

27 0.371 G   0.42 M 0.045 G 0.61 M 

28 0.225 G   0.3 G 0.006 G 0.314 G 

29 0.241 G   0.3 G 0.015 G 0.238 G 

30 0.45 M   0.48 M 0.2 M 0.79 B 
Note: In GRNN, HI score between 0.0-2.0 is VG, 0.21-0.40 is G, 0.41-0.60 is M, 0.61-0.80 is B and 0.81-1.0 is VB 
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Fuzzy Logic and Binary Logistic Regression also disagreed in three and four cases 

respectively. The root cause analysis of the misclassification revealed that the case 

number 2, 10 and 27 crossed the boundary of the good condition in three tests(results 

shown in bold in Table 6.4) out of six suggested by IEEE Std C57.106 and this lead 

the misclassification. Case number 30 crossed the good condition limit in five tests 

(results shown in bold in Table A.1 in Appendix Section) out of which two are in the 

poor condition region. Therefore, it has been classified as a bad transformer. 

 

 

6.6 Conclusions 

In this paper, a novel statistical kernel-based GRNN approach has been presented to 

calculate the health index of power transformers. Four conditional scores based on 

six important tests (TDCG, DBV, acidity, water, furan and dissipation factor) have 

been used to train the proposed model. The conditional score of each test 

measurement was calculated through a direct mapping using a smooth interpolated 

continuous function and the weight has been calculated based on the distance 

between the training data set and the point of prediction. The method was tested 

using measurements from 100 transformers collected from a utility company and 

compared with their experts’ classifications. The comparative results show that in 

83% of the cases the GRNN classification matches the expert classifications. 

Moreover, a comparative result with three published methods shown in Table 6.3 is 

also satisfactory. As the approach is free from any assumption, it can be used directly 

by utilities to compute the HI of their fleets of transformers. Therefore, it is expected 

that this method will help utilities to make the best technical and economic decisions 

on asset management and will play an important role to improve the long-term 

performance of transformers. The boundaries of different conditional scores available 

in the IEEE Std. C57.106 are not papameters for the proposed method. The accuracy 

of the proposed method may be improved by slight adjustment of the IEEE 

boundaries. Searching the improved boundaries based on a bigger training set could 

be a basis for future work. 
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Chapter 7: Calculating a Health Index for Power Transformers 

Using a Subsystem-based GRNN Approach

 

 

Abstract 

 

A power transformer is one of the most crucial items of equipment in the electricity 

supply chain. The reliability of this valuable asset is strongly dependent on the 

condition of its subsystems such as insulation, core, windings, bushings and tap 

changer. Integration of various measured parameters of these subsystems makes it 

possible to evaluate the overall health condition of an in-service transformer. This 

paper develops an artificially intelligent algorithm based on multiple General 

Regression Neural Networks (GRNN) to combine the operating condition of various 

subsystems of a transformer to form a quantitative health index (HI). The model is 

developed using a training set derived from four conditional boundaries based on 

IEEE standards, the literature and the knowledge of transformer experts. Performance 

of the proposed method is compared with expert classifications using a database of 

345 power transformers. This shows that the proposed method is reliable and 

effective for condition assessment and is sensitive to poor condition of any single 

subsystem. 
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7.1 Introduction 

Power transformers are one of the most important and expensive high voltage 

components in power transmission and distribution networks. The average designed 

life of a transformer is 25 to 40 years [1]. In this paper, the percentage of the 345 

units investigated that were over 50 years was 9% and another 23% were between 40 

and 50 years of age. Many of these transformers have not shown much evidence of 

aging that would indicate they are near end-of-life [2]. To avoid the catastrophic 

failure of these older transformers while managing the growing demand for 

electricity, significant changes are required to current operation and maintenance 

procedures. Therefore, actual condition assessment of transformers is gaining 

attention from power utility organizations to improve their technical and financial 

performance [3-6].      

 

Over the past decade, to summarize various diagnostic test results, health index (HI) 

calculations have been proposed as a useful tool to assess the overall condition of 

transformers [1]. In a HI calculation, results from site and laboratory testing, field 

inspection and operator observations are combined into a single quantitative index 

that reflect the health condition of each transformer. The index value helps to identify 

the risky assets that need more attention than others and helps to prioritize the 

maintenance program based on the actual and changing condition of each device [7]. 

If the HI changes suddenly then it indicates one of the two possible situations, either 

deterioration of a transformer health or an indication of incorrect measurements. 

Hence the method also provides a way of highlighting misleading test results. All the 

methods currently reported in the literature for the HI calculation have some 

limitations. Most of them are linear approaches where the HI is calculated using the 

weighted average of different routine and diagnostic tests. The averages are 

calculated by quantizing against conditional ranges (each separated by a sharp 

boundary) for different measurements suggested by industry standards such as IEEE, 

IEC and CIGRE [1]. The quantization technique treats wide ranges of measurements 
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equally and also becomes very sensitive near the boundaries, since a small change of 

measurement at the boundary may result in a different quantization level. Moreover, 

the weighting of health indices in this method is subjective and usually decided by 

the utility experts. As a result, the calculated index may inconsistent between 

different utilities.     

 

Over the past decade, beside conventional linear approaches, artificial intelligence 

methods such as Fuzzy Logic [8], Fuzzy C-Means [9], Support Vectors Machines [9] 

and Binary Logistic Regression [10] have also been used to combine the 

measurement of transformers  into a quantitative HI. Most methods are based on the 

oil test data that ignore a transformer’s ancillary components such as bushings and 

tap changer. As a result, these methods cannot provide a comprehensive assessment 

of transformer condition. According to an international survey conducted by CIGRE 

[11], the contribution of different subsystems to the failure of power transformers is 

shown in Figure 7.1. It is apparent from Figure 7.1 that the on-load tap changer 

(OLTC), winding and bushing make the most significant contribution to a 

transformer’s probability of failure. Therefore, it is imperative to also include these 

components’ operating condition as part of the HI calculation.      

 

Figure 7.1:Power transformers failure statistics based on a CIGRE survey [11]. 

 

Core, 5%

Auxiliary, 5%
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Winding , 30%
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To partly overcome the limitations of existing methods, a general regression neural 

network (GRNN) based artificial intelligence technique is proposed in this paper. The 

GRNN offers a smooth interpolation property and can learn quickly the underlying 

function of high dimensional measurements from a limited set of training examples. 

It is largely nonparametric as most of the required parameters can be derived directly 

from the available measurements. To integrate the condition of different sections in 

the HI, the proposed method divided the measurements into groups associated with 

physical subsystems. The condition of each subsystem was evaluated by using a 

nonparametric GRNN function. Finally, they were combined in a multivariate way to 

compute a quantitative HI for assessing the health condition and predicting the failure 

probability of transformers over time.   

 

7.2 Review 

The diagnostic measurements of power transformers are not always linearly 

dependent. To combine these measurements into a quantified HI score, the available 

linear approaches are insufficient. Therefore, the introduction of artificial intelligence 

and machine learning techniques has become necessary. In recent years, different 

non-linear machine learning techniques such as Fuzzy Logic [8], Fuzzy C-Means [9] 

and Binary Logistic Regression [10] have been proposed by experts to analyze 

transformers’ measurements. These new techniques have improved the accuracy of 

the HI calculation and helped utilities to better manage assets. In the Fuzzy Logic 

approach [8], membership functions are overlapped with each other such that a 

measurement can be a member of a single or multiple sets with a different degree of 

membership. This association is evaluated by using a number of expert rules derived 

from the order of measurements which are subjective and dependent on the expert’s 

experience. Moreover, a large number of parameters such as the shape of boundary 

functions and their overlapping area with the adjacent boundaries are required to 

provide a consistent outcome. Therefore, the calculated HI based on Fuzzy rules may 

have a certain degree of inaccuracy. A similar approach was proposed in [9] with 
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measurements having a higher degree of membership to a set used to form clusters. 

The clusters were assigned with a health index level that was used to develop the 

training set. Another nonlinear HI calculation approach was proposed by Weijie in 

[10] using binary logistic regression (BLR). The regression model can be expressed 

by (7.1).   

 

𝐻(𝑥; 𝛽) =
1

1+𝑒
−(𝛽0+∑ 𝛽𝑖𝑥𝑖

𝑛
𝑖=1 )

      (7.1) 

 

where 𝛽0 is a constant and 𝛽𝑖  is a coefficient that reflects the contribution of each 

independent test measurement 𝑥𝑖 .   

 

It is apparent from (7.1) that the accuracy of this method is always dependent on the 

estimation of 𝑛 + 1  parameters. All these machine learning methods are highly 

parametric and their estimation of parameters is therefore dependent on a sufficient 

number of training examples that, in practice, may not be available [12]. To 

overcome the problem of estimating large number of unknown parameters, a non-

parametric GRNN technique has been proposed in this work. The required smoothing 

parameter of the GRNN can be derived directly from the finite set of training 

examples.   

 

7.3 Parameters in Health Index Calculation 

Various tests can be used to influence the health index of transformers. It is beneficial 

to include additional tests to get a more realistic assessment of a power transformer 

[1]. To compute a quantitative HI, 21 representative measurements of diagnosis were 

used in six groups shown in Figure 7.2 to assess the condition of individual 

subsystems. The condition parameters of each group are discussed below.    
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7.3.1 Insulation Condition 

During operation, due to ageing and variable stresses, different types of gases, acid 

compounds, moisture and other contaminants may form in a transformer’s insulating 

oil [13]. The compositions of the gases are correlated with distinct internal faults 

such as partial discharge, arcing and overheating [14]. As normal operation of 

transformers also produces some gases, it is not always possible to check the integrity 

of this valuable asset using dissolved gas analysis (DGA) alone. In fact, some 

transformers can operate throughout their useful life emitting a substantial amount of 

gas. Moreover, it is difficult to combine all gases in a HI calculation. Therefore, 

summation of just the combustible gases is used in this method to improve the 

calculation efficiency. To assess the thermal decomposition of cellulose paper, 

sometimes the ratio of 𝐶𝑂2/𝐶𝑂 is also used. The typical ratio of 𝐶𝑂2  to 𝐶𝑂  for 

healthy cellulose insulation should be between 3 and 10 [14]. According to [15], this 

ratio is normally more than seven and only applicable if the respective concentrations 

of 𝐶𝑂2 and 𝐶𝑂 exceed 5000 ppm and 500 ppm respectively. Under high temperature 

overheating conditions (such as arcing), 𝐶𝑂  forms more rapidly than 𝐶𝑂2and the 

ratio approaches unity. A ratio below 3 indicates degrading insulation by arcing while 

above 10 it indicates cellulose ageing from thermal heating. To include the condition 

of paper insulation in HI calculation, this ratio is used in the proposed method. 

  

Besides DGA, there are other chemical oil tests such as acidity, furan and interfacial 

tension measurement used to assess the condition of oil and paper insulation. In a 

transformer, acid is mainly produced from oxidation of insulation [16]. However, it 

can also be produced from atmospheric contamination and changes to the properties 

of oil-paper insulation that greatly reduce the service life of transformers [17, 18]. 

Concentration of furan, a by-product of cellulose, can be used to measure the 

degradation of paper. Furan is inversely correlated with the degree of polymerization 

(DP) up to a certain temperature which is considered as a primary indicator of 

transformers’ end-of-life [19]. As the measurement of DP from direct paper sampling 
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is difficult to undertake, it is indirectly estimated from the conditional correlation of 

the furan concentration in oil [13, 20]. The chemical formula of cellulose can be 

written as [𝐶6𝐻10𝑂5]𝑙   where 𝑙 the length of glucose rings that comprise the polymer 

and so l is used as the DP value. Due to ageing and chemical reactions, the glucose 

rings gradually split into smaller fragments and furanoid compounds are produced as 

a by-product. The compounds are partially soluble in oil. The production rate of the 

furanoid compounds increases with the presence of high temperatures and catalytic 

ageing by-products such as moisture, acids and oxygen. Therefore, the paper loses its 

mechanical strength and eventually threatens the electrical integrity of a transformer. 

The damaged paper cannot provide sufficient mechanical support against magnetic 

forces caused by short circuit and magnetic inrush current and this may lead to 

premature failure. Moreover, furan concentration can also be used to validate the 𝐶𝑂2 

to 𝐶𝑂 ratio approach that are used to identify cellulose degradation. If the ratio is less 

than three and furan concentration atypically is high then it indicates the gases are 

produced from the degradation of paper insulation. Another way of estimating the 

deterioration of insulating fluid is to measure the interfacial tension (IFT) between 

the fluid and water. Generally, the insulating oil of transformers is a non-polar 

saturated hydrocarbon. However, with the oxidative degradation of paper and oil, 

hydrophilic carboxylic acids are produced that can affect the chemical (acidity) and 

physical (interfacial tension) properties of the fluid. In an IFT test, the surface tension 

between oil and water is measured as this decrease with an increase of hydrophilic 

materials in the insulating oil. Since the condition of transformer insulation is a very 

important aspect of HI calculations, the acidity, furan and interfacial tension are also 

adopted to reflect the condition of oil and paper insulation.     
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Figure 7.2: Subsystem-based measurements for HI calculation of transformers. 

 

7.3.2 Impurity Analysis 

Moisture is the most harmful impurity in transformer insulation that is produced from 

the degradation of paper insulation. It reduces the dielectric strength of oil and paper 

insulation and increases their ageing rate. In a power transformer, the moisture 
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content comes from several sources such as the surrounding atmosphere, leaky seals 

and the drying process, or it may be produced internally from the degradation of solid 

insulation [21]. Moisture dynamics between insulating oil and paper are quite 

complex and greatly dependent on the temperature [21]. With the increase of winding 

temperature, moisture starts migrating from paper to oil and vice versa. A sudden 

temperature raised from emergency overloading or initial energization releases 

moisture in the form of bubbles that float up into the oil [22]. The dielectric strength 

of bubbles is very low. Therefore, flash-over may occur between the electrodes in the 

area having strong electric stress.  If the moisture increases beyond the saturation 

level of oil, free water starts to form and further decrease the dielectric strength of the 

oil [17]. This water also increases the ageing rate of the cellulose hence reducing the 

service life of transformers.  

 

A power factor test may also be used to evaluate the ageing of oil [23]. The test is 

very sensitive to the ageing by-products and soluble polar contaminants like water 

[17]. A higher value of power factor is a good indicator of contaminated oil. The 

power factor is also known as dielectric dissipation factor (DDF) and can also be 

used to determine the dryness of insulating system (windings and oil). In the DDF 

test, an alternating voltage is applied to insulation and the dielectric loss (dissipated 

as heat energy) across the insulating liquid is measured [24]. Capacitance 

measurements between inter-windings and windings to main tank body are also 

carried out at the same time to check the ageing of insulation or mechanical 

deformation of windings. The break down voltage (DBV) measures the dielectric 

strength of oil to withstand electrical stress without failure [25]. It is always 

necessary to have a significantly higher DBV value of oil than the operating voltage 

to prevent premature dielectric failure. The DBV value decreases with increased 

water and contaminants in the oil. The polarization index (PI) is another common 

method to assess the dryness and cleanness of solid insulation [26]. In the PI test, the 

ratio of 10 minute resistance to 1 minute resistance of insulation is calculated after 

applying a test voltage. The polarization index value decreases with the increase of 
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moisture and impurity in the insulation. As these test results are greatly influenced by 

the moisture content and contaminants, they are kept as part of the same subsystem 

group.  

 

7.3.3 Internal Components 

To check the integrity of a transformer’s internal components, a number of electrical 

tests such as excitation current, sweep frequency response analysis (SFRA), windings 

ratio, windings resistance and short circuit impedance are used [1]. The excitation 

current test is used to detect short circuit turns, core delamination shorts, tap changer 

problems and multiple groundings. During the test, magnetization current is 

measured by energizing the high voltage side while keeping the low voltage neutral 

grounded. Any short circuit incident in the core, windings and grounding changes the 

magnetization current that will be picked up by this test [2]. The turn ratio tests can 

detect any shorts between turns of the same winding including the tap changer. The 

winding resistance is measured to detect poor electrical connection in windings and 

the tap changer. Short circuit impedance can identify the winding movement and 

structural problems. In any transformer, most of the flux passes through the core 

rather than the spaces between windings and core. This test measures the leakage 

reactance of the flux passing through these spaces. With any distortion of windings, 

the size of the spaces varies and that changes its leakage reactance. The SFRA 

technique is a very sensitive method that is used to check the mechanical condition of 

core and windings. Deformation could take place in windings (axial and radial) and 

core (delamination) due to fault currents and large mechanical forces resulting from 

transportation and relocation. As no mechanical deformation was found in any SFRA 

test report of transformers collected from the utility, it was excluded from this group.   
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7.3.4 Bushing Condition 

The average expected life of a bushing is 30 to 40 years. It is the third highest 

contributor to transformer failures [11]. Moisture may enter into bushings through 

leaky gaskets and other openings, and degrades the quality of a bushing.  According 

to [18], 90 % of bushing failures occur due to moisture ingress. Deposition of dirt and 

conductive contaminants such as salts on the outer surface of a bushing may cause 

flashover. Therefore, it is imperative to appraise all bushings carefully to ensure 

reliable operation of transformers. To assess their actual condition, besides operating 

age, diagnostic tests like dielectric dissipation factor (DDF) and capacitance 

measurement are commonly used. In the capacitance test, the capacitance  𝐶1between 

the centre conductor and outer layer of the foil is measured by accessing the DDF 

tap. Moreover, the capacitance 𝐶2 between the DDF tap and ground is also measured. 

If the foil becomes degraded by cracks and moisture ingress, the capacitance value 

will be changed. Consequently, the measured capacitance and DDF value can be used 

to diagnose the bushing condition and contamination of its insulation respectively.   

 

7.3.5 Tap Changer Condition 

Statistically the tap changer makes the single highest contribution to any 

transformer’s failure risk [11]. As a result, special care should be taken with this 

device to avoid unexpected failures. Several distinct types of tap changers are used in 

transformers. Based on their construction, a range of insulating materials such as oil, 

epoxy resin, fiberglass and cardboard are used. To assess the condition of a tap 

changer, beside various tests like DGA, oil quality and contact resistance, some 

statistical information such as the number of previous operations, maintenance 

history and construction type are commonly used by utilities. Unlike DGA of the 

main tank, a certain level of combustible gases is quite normal in a tap changer due to 

the operational arcing. Therefore, the interpretation of its DGA is slightly different 

from that of the main tank. Due to poor availability of DGA and oil analysis data, the 
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construction type and the number of operation are used in this work to assess the 

condition of a tap changer.  

 

7.3.6 Other Parameters 

Beside the conventional condition assessment approaches, loading information and 

maintenance history are also considered in this work to improve the accuracy of 

health index calculation. The recorded peak load of a particular month was applied to 

calculate the historical load contribution on health index calculation. Moreover, the 

last five years’ maintenance work orders for each transformer are also analysed to 

find the past condition of individual transformers.  

 

7.4 Methodology 

In this section, the general regression neural network (GRNN), a kind of probabilistic 

model, was used to calculate the health index (HI) for each subsystem of 

transformers. The GRNN has a nice interpolation property and the capability to learn 

high dimensional mappings very quickly. It is non-parametric, as all the required 

parameters in the GRNN can be derived directly from the finite set of training 

measurements. In the GRNN, a dependent variable 𝑌 = {𝑌𝑛} is predicted using a 

number of given D-dimensional independent measurements𝑿 = {𝑋𝑛} where  𝑋𝑛 ∈

ℛ𝐷. The prediction is the most probable value of 𝑌for each value of 𝑋based on a 

finite set of 𝑛measurements and their associated 𝑌 values. Thus, the GRNN learns a 

mapping from an input domain containing 𝑋 to an output codomain containing Y, 

where either space can be multidimensional. If a GRNN is trained with a finite 

number of available measurements, it can estimate a linear or nonlinear regression 

surface to predict the most probable value of Y for any new measurement of  𝑥 . 

According to [27],  the basic equation for the GRNN function  𝑔(𝑥)  based on a 

multivariate Gaussian kernel can be written as:    
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𝑔(𝑥) =
∑ 𝑌𝑛𝑒𝑥𝑝(−

𝐷𝑛
2

2
)𝑁

𝑛=1

∑ 𝑒𝑥𝑝(−
𝐷𝑛

2

2
)𝑁

𝑛=1

      (7.2) 

where in this application 𝑥 is a multidimensional new measurement used for testing, 

𝑌𝑛  is the HI score for the training set and 𝐷𝑛
2 = (𝑥 − 𝑋𝑛)𝑇𝛴−1(𝑥 − 𝑋𝑛)  is the 

Mahalanobis distance between the training set and the point of prediction. The 

exponential terms of (7.2) reflect the contribution of each of the training points to the 

HI score of 𝑥.  

 

The challenge of this approach is to find an optimal value of the multivariate standard 

deviation𝛴 for the training set, also known as the smoothing parameter. A large value 

of 𝛴 forces the model to become smoother and ignores some features of the training 

samples [28]. Conversely, if the value of 𝛴 is too small, the model will overfit the 

training examples and try to track every feature of the training set [29]. Overfitting 

makes the model very sensitive to noise and damages its generalization capability. 

Therefore, a reasonable estimation of 𝛴 is very important so that all useful features of 

the training set are taken into account since the prediction points closer to training 

sample will get heavier weighting. One way of deterring the optimal value of 𝛴 is via 

the “holdout” method [30]. In this approach, one sample from the training set is 

removed at a time and a network is constructed using all of the other samples. A 

presentation on holdout method is available in [30]. An implementation of this 

method is presented in section 7.3. Different subsections of the GRNN approach are 

discussed below. 

 

7.4.1 Data Processing and Normalization 

In this work, measurements of 345 power transformers1 were collected from a large 

utility company in Australia. The transformers assessed comprised of 28% at 72kV, 

65% at 154kV and the remainder at 245 kV and 345kV. The company uses 21 tests to 

                                                           
1This work used only 345 transformer measurements out of 376 collected from the utility company as 

only 345 transformers provided the full set of 21 measurements. 
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evaluate their large population of transformers. The measurements were collected 

into six groups (Figure 7.2) following their cross correlation to assess the individual 

subsystem of transformers such as insulation, windings, bushing and tap changer. 

The upper and lower limits of each measurement have been considered to create a 

four-level quantization of each measurement. The ranges have been chosen from the 

combination of IEEE Standards, manufacturer guidelines and utility practices. To 

develop a number of 𝑋𝑛 = 4𝐷(where 𝐷 is the number of tests) independent variables 

of a training set (patterns) for a subsystem, the mid points of the four conditional 

ranges for each test related to it were used. For instance, if the number of tests in a 

subsystem is six than total number of training patterns will be  46 = 4096 . To 

calculate the dependent variable 𝑌𝑛 corresponding to a pattern, a conditional score 

value such as 0.25, 0.5, 0.75 and 1.0 respectively was set at the mid-points of the 

Good, Fair, Poor, Very Poor ranges for each test (the stepped line in Figure 7.3). 

Finally, the dependent variable 𝑌𝑛 for each pattern was calculated by averaging their 

corresponding position scores. The patterns of the training set was normalised by 

dividing their corresponding upper limit of the Very Poor condition to ensure the 

scaling between zero and unity. This approach ensured the same scaling of each 

dimension. In the case of a missing upper limit (which could be infinity), 1.5 times 

the lower limit of the Very Poor condition was used as a normalisation factor.  

 

7.4.2 GRNN Model 

To develop the GRNN model, a Gaussian kernel was used in this work. As the 

Gaussian function is simple to implement and has continuous derivatives, it has been 

adopted here to obtain a smooth probability density model. According to IEEE Std. 

C57.106, each test is quantized into four non-overlapping ranges using sharp 

boundaries. The Standard treats all values equally within a range. Quantization 

throws away valuable information that could be useful at a later stage, forming a 

major drawback of this approach. Moreover, near the boundary of two adjacent 

ranges, the quantization is very sensitive to the measured value. A small change at 
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this region may lead to a completely different condition. To overcome these 

limitations, a continuous function has been developed using the GRNN interpolation 

technique but using the same limit values of the four conditional scores. The 

midpoint of the high and low point of each limit has been assigned with a conditional 

score and used in the GRNN model. The GRNN interpolation technique based on the 

water concentration of the insulating oil is shown in Figure 7.3. 

 

 

Figure 7.3: GRNN interpolation of normalized water content and conditional scores. 

 

In Figure 7.3. 𝜆 and 𝛾  represent the lower and upper limits of each quantisation 

region respectively so the four ranges can be expressed using the following notation. 

𝐿𝑖𝑚𝑖𝑡 𝑣𝑎𝑙𝑢𝑒𝑠 =

[
 
 
 
𝜆1,𝐷      𝛾1,𝐷

𝜆2,𝐷    𝛾2,𝐷

𝜆3,𝐷    𝛾3,𝐷

𝜆4,𝐷    𝛾4,𝐷 ]
 
 
 

 

where 𝐷 is the dimension of the measurements and𝛾𝑖,𝐷 = 𝜆𝑖+1,𝐷 for the next range 

and so on. The targeted midpoint (shown as a red cross in Figure 7.3.) for each 

quantisation region can be written as 
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∅𝑚,𝐷 =
𝜆𝑚,𝐷+ 𝛾𝑚,𝐷

2
 𝑤ℎ𝑒𝑟𝑒 𝑚 = 1,2… ,4    (7.3) 

 

It can be seen from Figure 7.3 that the GRNN works like a step function given a 

small value of   𝛴 = 0.01 . It gradually becomes a smooth interpolator with the 

increasing values of 𝛴. Therefore, a small change of water concentration does not 

impact much on the conditional score near the boundary regions resulting in almost 

identical scores. A similar multivariate approach has been applied to higher 

dimensional measurements to calculate the conditional scores of each individual 

subsystem. The detail procedure of this multivariate approach is available from 

previous published work [31]. 

 

 

7.4.3 Feature Extraction for the Health Index Calculation 

In the proposed GRNN model, initially the mid points of the four conditional limits 

for each test of a subsystem were calculated following equation (7.3). The points 

were assigned with a score of 0.25, 0.5, 0.75 and 1.00 respectively based on their 

position in the middle of Good, Fair, Poor and Very Poor ranges. The combination of 

the points was used to produce a set containing 4𝐷 independent variables 𝑋𝑛 used as 

the training set. The dependent variable𝑌𝑛  (HI score for a subsystem) for each 

combination of 𝑋𝑛 was calculated by averaging their corresponding position scores. 

For instance, if a subsystem is assessed by three tests and the scores are the midpoints 

of a Good, Fair and Very Poor limits respectively, then the HI score will be the 

average of 0.25, 0.5, and 1.0 which is 0.58. After computing 𝑋𝑛and 𝑌𝑛, they were 

used to train the GRNN model. To estimate the smoothing of the model, the 

covariance (𝛴𝑆) of 𝑋𝑛 was calculated and the holdout method was applied. To vary 

the value of𝛴𝑆, a multiplicative factor 𝐸 was added in front of it. Therefore, the new 

equation of 𝛴𝑆 can be written as     
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𝛴 = 𝐸𝛴𝑆        (7.4) 

 

where 𝐸  is a multiplicative factor chosen to provide an appropriate amount of 

smoothing (see Figure 7.3) and 𝛴 is the smoothing value used for the distance metric 

𝐷𝑛 of (7.2).    

 

In the holdout approach, one sample from the training set was removed at a time and 

a network was constructed using all of the other samples. The network is used to 

estimate the HI score of the missing sample at a small value (0.001) of  𝐸 . The 

process is repeated for all samples and the mean-squared error is estimated and 

stored. Then the value of 𝐸 is increased linearly up to 1 with a small incremental step 

and the whole process is repeated. The mean-squared error for all values of E was 

plotted. Finally, the value of 𝐸 giving the smallest error was selected for the proposed 

model. The mean-squared error at different values of 𝐸  for the moisture analysis 

subsystem is shown in Figure 7.4. 

 

 

Figure 7.4: Mean-squared error at different values of smoothing control parameter𝐸. 
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In Figure 7.4, it is apparent that the mean-squared error at small values of 𝐸 is high 

and decreases with the increasing value of  𝐸. After a certain point (𝐸 = 0.2208), the 

error again starts to increase. Therefore, the value 0.2208 was chosen as the optimal 

solution of 𝐸 for the subsystem. Similarly, the smoothing parameters 𝐸 for the other 

five groups/subsystems were also calculated. These values were used as a 

multiplicative factor for 𝛴𝑆  (equation 7.4) to ensure the optimal smoothing to the 

GRNN interpolated function for each subsystem of the training set. Finally, the HI 

score for each subsystem of the 345 transformer measurements collected from the 

utility was calculated using GRNN interpolation following the equation (7.1). To 

compute the overall HI score of transformers, the general regression (equation 7.2) of 

the individual subsystems were combined using arithmetic and geometric mean. In 

the arithmetic approach, the regressions were added together and normalised in the 

range 0 to 100. The equation of the approach can be written as follows.  

𝑔(𝑥) =
1

𝑘
(𝑔1(𝑠1) + 𝑔2(𝑠2) + ⋯+ 𝑔𝑘(𝑠𝑘))    (7.5) 

where 𝑘 is the number of subsystems considered and 𝑔𝑘(𝑠) is the HI score of the 𝑘𝑡ℎ 

subsystem. 

 

In the multiplicative approach, the resultant HI score was calculated from the 𝑘𝑡ℎroot 

of the product of 𝑘regressions. This approach was chosen so that, if one or more 

subsystems of a transformer are unhealthy, then the overall HI score of the 

transformer will also be very unhealthy. It is based on the assumption that, to work 

correctly, each of the independent subsystems that comprise a transformer must be 

healthy. The equation of the multiplicative approach can be expressed using the 

following equation.      

 

𝑔(𝑥) = √𝑔1(𝑠1)𝑔2(𝑠2)…𝑔𝑘(𝑠𝑘)
𝑘

     (7.6) 

where 𝑘 and 𝑔𝑘(𝑠) have the same meaning as in equation (5.5).   



Chapter 7 

 

179 

 

From equation (7.6), it can be seen that the overall HI score of a transformer was 

calculated from the geometric mean of the subsystem scores. Therefore, if one or 

more subsystem is unhealthy (close to zero), it will dominate the product to strongly 

influence the overall HI (it behaves much like a logical AND function). However, the 

arithmetic mean (7.5) considers all subsystems equally and is much less sensitive to 

an individual unhealthy subsystem condition (it behaves more like a logical OR). 

 

7.5 Results and Analysis 

In the previous work [1], the HI was created as a weighted average of individual 

measurement. They were not following a subsystem-based approach, where weighted 

scores of each measurement were combined linearly to compute an overall HI of a 

transformer. This made the approach insensitive to any single measurement. 

Moreover, in most of the previous work, a high degree of quantization was applied 

that throws away information and treated wide ranges of measured values equally. To 

overcome these limitations, the proposed method has preserved all the available 

information up to the end stage to produce an effective HI as a percentage between 0 

and 100 where 100 implies totally unhealthy and 0 means very healthy (note this 

scale is opposite to that discussed in section 7.4.3). Therefore, comparing the 

proposed method with the linear approach the experts have followed is not sufficient, 

as at best the model will learn only to be as good as the experts. The proposed 

method has the potential to do better than the experts. Consequently, to explore the 

secondary evidence, the conventional linear approach and the GRNN (Additive and 

Multiplicative) HI scores based on 345 transformers measurements collected from a 

utility company were analysed. The comparative results are shown in Figure 7.5 (a) 

and (b) respectively.  
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Figure 7.5 (a): Linear versus additive approaches. 

 

 

Figure 7.5 (b): Linear versus multiplicative approaches. 
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0.9062). The variance above and below the line of best fitting is almost constant 

throughout the range and the discrepancy came from the interpolation of 

measurements (as per Figure 7.3). As both methods rely on arithmetic averaging, 

neither occupies the entire HI range of 0-100. However, the multiplicative approach 

Figure 7.5(b) only agreed closely with the linear approach at lower 

values (𝑜𝑣𝑒𝑟𝑎𝑙𝑙  𝑅2 = 0.8347). At higher values, in some cases the multiplicative 

approach became disassociated (highlighted as coloured squares) from the linear 

approach. After analysis, it was found that one or more transformer’s subsystems of 

these cases were in critical condition which increased the HI significantly (equation 

7.6). For instance, a transformer (Green Square at the top right corner of Figure 7.5 

(b)) was assigned with a much higher (82) HI score by the multiplicative method than 

the linear approach, which assigned 61 due to the very unhealthy condition of its 

Bushing and Tap changer subsystems. Likewise, the purple transformer assigned 

with smaller (healthier) score than the green one as only its Bushing was very 

unhealthy but its Tap changer was relatively healthier. Therefore, these cases suggest 

that the multiplicative approach is performing better than the additive and linear 

approaches by focusing on individual subsystems that may compromise operation of 

a transformer. 

To offer a deeper understanding, the GRNN and linear approach HI scores are also 

plotted against the operating age of transformers in Figure 7.6 (a) and (b) 

respectively. 
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Figure 7.6 (a): Relationship between age and linear HI. 

 

Figure 7.6 (b): Relationship between age and GRNN HI. 
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to manufacturing defects may be ignored since devices are strictly factory tested prior 

to installation. Hence the curve starts with a constant failure rate and it can be 

expected that the HI score will increase gradually up to a certain age with a limited 

number of failure incidents. After the average age (40-50 years), the failure rate will 

increase rapidly. The best fit curve of the linear approach does not show these 

expected properties. Given that, the HI scores increase in a relatively linear way from 

delivery age zero. However, the GRNN score in Figure 7.6(b) gradually increased up 

to 40 years of service. After the age, it increased more rapidly as would be expected 

by the experts. Therefore, the GRNN in Figure 7.6(b) appears to model the expected 

failure rate better than the conventional linear approach shown in Figure 7.6(a).  

To directly compare the utility experts’ classification with the proposed method, a 

candlestick chart is shown in Figure 7.7. In this chart, the midpoint is the mean HI 

score of a class and the coloured body shows one standard deviation either side of the 

mean. The maximum and minimum score of a class are used to calculate the upper 

and lower outlier/error of the sticks.  

 

Figure 7.7: Comparison between the GRNN score and expert classifications. 
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Expert classification is normally presented in a quantised way as one of five 

categories [1]: Very Good, Good, Moderate, Bad and Very Bad. These categories 

were compared with the multiplicative GRNN HI scores using a candlestick chart 

shown in Figure 7.7. From the chart, it can be seen that there is a strong agreement 

between the GRNN and expert classification for the Very Good transformers. 

However, the disagreement starts from the Good condition with outliers that 

gradually increase with the degradation of transformers. This GRNN method is much 

more sensitive to one dysfunctional subsystem than the expert’s typically linear 

approach. Therefore, the unhealthiest transformers in the good category having some 

moderate class measurements in their subsystems were assigned with a higher HI 

score. Conversely, the healthiest transformers in the moderate class were allocated a 

lower HI score as some of their measurements were near the region of different 

quantization boundaries. Unlike the linear approach, the GRNN does not apply any 

quantization to the intermediate results. Moreover, the GRNN is less sensitive to the 

exact placement of the quantisation boundaries as it works based on a continuous 

smooth interpolated function rather than a step function. Therefore, it picked up the 

boundary cases and assigned with appropriate scores which may be overlooked by 

the utility experts. 

 

7.6 Probability of Failure Analysis 

In this section, the Weibull distribution has been applied to estimate the actual failure 

probability of power transformers. It is one of the most commonly used lifetime 

distributions that can model the failure rate function of populations of complex 

systems [33] such as those with bathtub curve-like hazard functions. It provides a 

flexible modelling technique as the corresponding failure rate function can be 

adjusted by using a variable shape parameter. The function of a two parametric 

Weibull distribution can be expressed as follows: 
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𝑓(𝑥) = {
𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

𝑒−(𝑥 𝜆)⁄ 𝑘

, 𝑥 ≥ 0

0                            ,   𝑥 < 0
     (7.7) 

where, in this application, 𝑥  is the age of transformers(in years), 𝑘  and 𝜆  are the 

shape and scale parameter respectively.  

 

It is assumed that the median life expectancy of power transformer is 50 years and 

that no transformers will be in operation beyond 80 years [1]. Therefore, using the 

Weibull function, the failure probability density function of transformers versus 

operating age has been calculated. A Weibull probability distribution of transformers 

is shown in Figure 7.8(a). 

Using a similar approach to that in [32], the value of 𝑘 is assumed to be 4 implying 

that the mean time to failure decreases with the cube of operating age. (The mean 

time to failure is an averge length of time a device is expected to be operational based 

on the finite number of observations). The scale parameter 𝜆 = 54.503 is estimated 

from the function so that 50 % of transformers in operation have failed before the age 

of 50 years. The ratio of failed transformers is shown in Figure 7.8(b) and the 

cummulative density function is derived from Figure 7.8 (a).  

 

 

Figure 7.8 (a): Weibull distribution over time. 
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Figure 7.8 (b): Ratio of failed over time. 

 

As the ratio of failure is known from Figure 7.8 (b), the failure rate per year can be 

calculated using the following equation [33]. 

ℎ(𝑡) =
𝑓(𝑡)

1−𝐹(𝑡)
        (7.8) 

where 𝑓(𝑥) is a failure density function and 𝐹(𝑡) is a cumulative failure distribution 

function (as in Figure 7.8 (b)).  

The relation between the failure rate  ℎ(𝑡) and operating age of transformers is shown 

in Figure 7.9(a). Now mapping the best fitting curve of the HI score over operating 

age from Figure 7.6(b) to the failure rate per year curve shown in Figure 7.9(a), the 

failure rate over HI score has been calculated. A relationship between failure rate and 

HI score is shown in Figure 7.9(b) 
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Figure 7.9 (a): Failure rate over time. 

 

Figure 7.9 (b): Failure rate over HI score. 
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score, the probability of failure for individual transformer can be estimated. For ++-

instance, if the HI score of a transformer is 80, then its probability of failure in next 

year will be approximately 14 %. Therefore, the calculated HI can be calibrated to 

justify the plan of assets replacement at the end-of-life.     

 
 

7.7 Conclusions 

In this work, a HI score for a power transformer has been estimated by non-linear 

combination of condition scores for each of its subsystems. The condition of each 

subsystem is estimated from diagnostic measurements using a non-parametric GRNN 

regression model.  The model assessed the long term degradation of different 

subsystems such as insulation, windings, core, bushing and tap changers of 

transformers and combined them into a condition-based HI score. Beside the 

conventional routine and diagnostic tests, the maintenance history and loading 

information is also evaluated in this work. It was found that the proposed method was 

sensitive enough to detect a single degraded subsystem of transformers (resulting in 

an increase in the HI score). The system is performing at least as well as experts for 

most of the transformers with some evidence provided for unusual cases such that the 

proposed method is doing better than existing techniques. Moreover, the calculated 

HI has been mapped to the probability of failure over time. Therefore, it is expected 

that the proposed HI method will be a useful tool for utilities to manage their large 

fleets of transformers and will provide them methodical justification for asset 

replacement at the end-of-life.    
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Chapter 8:  Summary and Future Directions

 

 

8.1 Summary  

Power transformers are working at the heart of transmission networks to deliver 

power to end users. To manage the growing demand for electricity, besides other 

electrical infrastructure, the number of transformers in utility networks is 

continuously increasing over time. The reliability of the power system is strongly 

dependent on the maintenance pattern and the operating condition of this expensive 

device. To prevent an unexpected outage of a network and avoid time-consuming, 

costly repair or replacement, improvement in the fault diagnosis and condition 

monitoring techniques is always desirable. These improvements provide the 

fundamental research questions of this thesis. To address these issues, one of the 

objectives of the research was to develop a hybrid clustering approach that can 

improve transformer diagnosis accuracy and fault classifications. This work also 

quantified the operating condition of transformers using a set of routine and diagnosis 

measurements that can evaluate their subsystems such as insulation, core, windings, 

bushings and tap changers. Therefore, operators can identify the assets that need 

more attention than others by looking at their condition score. Moreover, the detected 

correlation between the condition score and failure probability of transformers as a 

function of operating age can provide decision support to the asset managers to plan 

the repair or replacement of the expensive assets. 

It is always beneficial to detect faults in a transformer at an incipient stage. To 

identify defects and improve their classification accuracy, besides conventional 

methods such as the family of Duval Triangles and ratio approaches, the application 

of artificial intelligence (AI) has become commercially viable. The intelligence 

methods look for the secondary evidence using the measured concentration of 

variable performance indicative byproducts such as dissolved gases, furan, acid and 

moisture. To track down their changing rate over time, oil samples from on service 
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transformers are periodically collected. Utility expert’s use these findings to make 

maintenance decisions and judge the necessity for further off-line investigations. 

However, due to unavoidable situations, such as a problem with a sensor, faulty 

communication devices, a laboratory defect, financial constraints and utility 

practices, some measurements may be missed out. Therefore, experts have to take the 

decision based on the available dimensions (known measurements) of each vector. 

To deal with the missing dimensions in the measured vectors, a General Regression 

Neural Network was used in this research. The model can estimate the missing value 

using the knowledge of a complete set of vectors with a reasonable error. 

 

It has been shown in many recent studies that a single method is insufficient to 

classify the fault category of transformers accurately. Especially, if the measured gas 

ratios fall outside the predefined limits of available ratio approaches, they cannot give 

any diagnosis. Also, most of the methods only provide a valid diagnosis if the 

concentrations of gases exceed certain minimum thresholds. Moreover, if the 

measured vector of a faulty transformer is located at the boundary between two or 

more faulty classes they cannot distinguish the fault’s cause with any confidence. 

Therefore, understanding the actual correlation between different measured quantities 

and the introduction of more sophisticated analysis techniques like AI became 

necessary. 

Although there is an extensive body of literature available on different aspects of 

fault diagnosis of power transformers, relatively few relevant scientific studies were 

found dealing with health index (HI) calculation of a transformer. In a HI calculation, 

the condition of different primary and supplementary components is summarized to 

reflect the overall operating condition of each transformer. In practice, there is 

typically a scarcity of information and knowledge to allow the combination of 

various measurable quantities into a quantitative health index in an appropriate 

manner. Most of the available methods are dependent on a linearly weighted score of 

measurements. Therefore, they are insensitive to the condition of a single but critical 

primary or auxiliary component that can potentially cause a catastrophic failure of 
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transformers. Over the last decade, researchers started to use some nonlinear artificial 

machine learning techniques based on the oil test data to quantify the health condition 

of transformers. However, their approaches are insufficient to give an overall 

assessment of a transformer as oil test data can only evaluate the status of the oil and 

paper insulation of transformers. They mostly ignore the condition of the bushings, 

tap changer, maintenance history and past operating load information. Therefore, the 

focus of this research was to integrate the status of all subsystems including loading 

pattern and maintenance history to find unified assessment of transformer condition. 

In Chapter 2, a comprehensive literature review was carried out to underline the 

limitations of existing fault diagnostic techniques and explore the scope of 

improvement to overcome some of the constraints. As part of the review process, a 

comparative analysis of different fault diagnosis methods has been presented here. It 

also covered the methodology and application of various electrical, dialectic and 

chemical tests, and their dependency on multiple factors. A summary of existing 

ageing and remaining life estimation procedures based on the hot spot temperature, 

DP value, and concentration of furan is also discussed in this section. Finally, 

different health index calculation techniques and their correlation with operating age 

have been included in this chapter. 

Chapter 3 presented a fault diagnostic technique for transformers based on a 

supervised hybrid k-means algorithm. It was found in the literature that some of the 

existing methods struggle to distinguish critical faults when they are overlapping with 

each other. Many of the ratio approaches cannot always provide diagnosis and are 

only valid when gas concentrations exceed certain limits. To overcome the 

limitations, a hybrid algorithm was developed to form the desired number of clusters 

based on the vector of five combustible gas concentrations collected from 376 power 

transformers owned by a large utility company in Australia. The clusters were 

representative of a single or multiple fault classes with different distinguishable 

percentages. The center of each cluster was calculated from the mean of associated 

vectors belonging to it. It was proven from the initial output of the k-means algorithm 

that the performance of the method varied with the initial positioning of the cluster 
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centers. The limitation was partially overcome by integrating the Linde-Buzo-Gray 

(LBG) algorithm with the k-means. The LBG algorithm was used to better supervise 

the splitting and relocation of cluster centers during the training process. In each 

iteration, a center with associated with an empty set of measurements was removed 

or occasionally relocated until the number of cluster centers reached the desired 

value. The hybrid method helped to reduce the clustering error that results from the 

local convergence. Additionally, a novel three nearest-neighbour concept was 

developed allowing cumulative voting, based on the distances of measured vectors 

from three closest centers. The performance of the approach was compared with 

other published methods and expert’s classifications of the same set of data resulting 

in an accuracy of 93%, which is much higher than the ratio approaches such as IEC 

ratio (74%) and Roger’s ratio (76%) respectively. Nevertheless, the identification of 

global centers for different faults, based on the finite set of vector measurements, was 

quite complex and dependent on a significant number of supervising iteration 

techniques developed in this work. So, this was found to be a comparatively slow 

process and a computationally expensive method. Furthermore, the outcome of the 

approach suggests that there may be value in exploring a relatively non-parametric 

approach that can increase the accuracy of fault diagnosis that will reduce the number 

of unknown parameters.  

Chapter 4 presented an extended version of the clustering diagnosis technique based 

on a probabilistic Parzen Window (PW) method. The method was established to deal 

with critical cases where conventional approaches fail to provide a definitive fault 

diagnosis. To develop the process, the same five gas concentrations of the previous 

hybrid clustering method were used. The gas concentrations were divided into groups 

to classify the seven standard fault categories of transformers. The members of each 

fault group were assigned based on the combination of expert’s classification and 

other established methods. The PW method initially estimated the joint probability 

distribution function (PDF) of the five-dimensional training measurements in 

different fault groups. To enable this, multivariate Gaussian kernels were centered on 

top of each training vector and superimposed. The performance of the method was 
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improved by selecting an optimal smoothing (width) parameter for the PDF. The 

function was then used to estimate the probability of each transformer in different 

fault groups. As the PW method provides a kind of soft clustering, a transformer 

could be a member of various fault groups with a distinct percentage of probability. 

Therefore, a transformer having maximum probability in a defective group was used 

to classify its fault category. Unlike hybrid clustering, the method only considers the 

possibility of defects in different target groups, not on the location of their centers. 

Therefore, it is free from the problem of local convergence. It was evident from the 

comparative analysis that this PW method can accurately classify over 94% critical 

test cases and performed much better than the conventional ratio-based diagnostic 

strategies. As the accuracy of the method is dependent on the number of training 

data, it can further be improved if a large training set is available. 

Chapter 5 attempted to estimate the missing values in multidimensional 

measurements of power transformers to facilitate the maintenance decision. To assess 

the condition and take maintenance decisions for a transformer, experts normally 

group the discrete measurements of it into a vector to observe the variation of 

different measurements over time. Often technical issues and limited operational 

budget cause utilities to omit some of the measurements rendering the vectors 

incomplete and hence unusable. However, some of the dimensions in the measured 

vectors are often inter-related and partially duplicate the missing information 

necessary for decision making. Therefore, to estimate missing values, the 

interpolation property of a General Regression Neural Network (GRNN) was used. 

The GRNN determined the missing values based on the knowledge of other complete 

sets of vector measurements. The performance of the model was verified against a set 

of vectors by deliberately leaving off some of their dimensions to mimic actual 

missing values. From a comparative analysis of the deliberately obscured data, it was 

found that the GRNN model was capable of estimating missing values with less than 

7% average error. Only in a few cases, did the errors exceeded 10%, due to the 

discontinuity of the training examples in the high dimensional space where they were 

located. The performance of the model can be improved by using well-distributed 
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training examples that can help to develop a smooth continuous GRNN function. By 

estimating missing values, incomplete vectors can be rectified allowing them to be 

utilized for fault diagnosis and health index methods (as discussed in other chapters).  

Although the estimated missing values of a vector do not provide any new 

information to the model, the other complete dimensions, based on real 

measurements, can be used to improve the performance of models. Moreover, it can 

help transformer experts to make better maintenance decisions by looking at the 

complete vector measurement.          

Chapter 6 aimed to address the research objective related to a quantitative health 

index (HI) of power transformers from the correlation of oil characteristic 

measurements. In the existing linear approaches, the health index score is calculated 

using the weighted average of different measurements. Therefore, they are insensitive 

to any single measurement but critical to the operating condition of transformers. To 

overcome this drawback and quantify the operating condition of transformers using 

diagnostic measurements, the interpolation property of a GRNN was applied. The 

approach used the insulating oil test data to calculate a quantitative index. Four 

conditional categories of 30 transformers and their associated indices supplied by an 

asset-management and health assessment consulting company (AMHA) were used as 

a target value for this method. A training set of 4096 conditional scores was 

developed using the four conditional limit values of six oil test data following the 

IEEE Standard C57.106. Finally, the HI score was calculated by mapping the oil test 

vectors with 4096 combinations using an interpolated multivariate GRNN mapping. 

The single bandwidth parameter of the model was estimated using an experimental 

search such that the mean square error between the target and estimated value was 

minimized. The performance of the model was compared with three other methods: 

AMHA, Fuzzy Logic, and Binary Logistic Regression and it was found to out-

perform the other methods in condition assessment of transformers. Moreover, the 

new method was used to calculate the HI core of 345 power transformers operated by 

an Australian utility company. A comparative study against the utility expert’s health 

index was also presented in this section. The method agreed in 83% of cases with the 
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expert’s decision to classify the conditional category of transformers. However, 

experts used an additional 13 measurements that were not seen by the proposed 

method, resulting in disagreement with them in some cases. As a faulty bushing or 

tap changer can lead to the catastrophic failure of a transformer, it is also important to 

include their condition in any HI calculation. Therefore, the results highlighted the 

necessity of further investigation to improve the performance of the model.  

Finally, Chapter 7 presented as an extended method for calculating a quantitative 

health index to characterize the condition of operating power transformers. The 

objective of this section was to assess the individual subsystem and explore the 

correlation between quantified health index and the probability of failure as a 

function of operating age in years. The proposed method was based on analysis of 

multiple (possibly correlated) test measurements associated with each subsystem of 

the device and was shown to be very sensitive to a poor performance, even of a single 

subsystem. For proper function, all the subsystems of a transformer must 

simultaneously operate correctly. To calculate the HI, initially the condition of each 

subsystem was assessed using a GRNN mapping derived from a training set, which is 

the novelty of this approach never applied by others. The training set was developed 

from the combination of IEEE, IEC and CIGRE guidelines on measurements that 

classify the four conditional categories of transformer subsystems. The calculated HI 

score for each subsystem were then combined in a sensitive “multiplicative” way, 

such that if any one of its subsystems was found to be faulty, then the whole 

transformer would be considered as unhealthy. Unlike the conventional linear 

approach, this method did not apply any premature quantization that could throw 

away valuable information at an early stage of processing. Additionally, compared to 

other nonlinear artificial intelligence directions, the method avoided the estimation of 

large sets of model parameters, following a largely non-parametric approach. 

Moreover, the method used the Weibull distribution to estimate the failure 

probability of any individual transformer. The primary outcome of the integration of 

Weibull distribution was the expected percentage failure rate of each transformer 

over the coming year. As the utility experts are very cautious allowing suspect 
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transformers to remain in service to avoid possible catastrophic failure and 

subsequent consequences, there is huge scarcity of faulty transformer data. Therefore, 

the performance of the method was validated by systematically exploring the 

statistical evidence. The secondary evidence proved that the method performs better 

than established approaches on more challenging cases. Therefore, it is expected that 

this approach will provide a valuable tool for utilities to manage fleets of 

transformers while providing a methodical justification for asset replacement.   

The objectives of the research were to resolve the asset management problem of 

power transformers and develop a decision support mechanism that can help experts 

in decision making. Relevant literature of this area has been critically reviewed to 

achieve the goals and underlined the strength and weakness of existing fault 

diagnosis and condition monitoring techniques. A comparative analysis of them is 

presented in the second chapter of this report. The proposed hybrid clustering 

approach introduced in the third section improved the fault detection and 

classification of transformers significantly. However, the method was found 

computationally expensive and was not suitable for online fault detection. To 

overcome the limitations, a non-parametric Parzen Window function was applied and 

found to offer a satisfactory solution. The quantified health index calculation 

approach forming chapters six and seven is capable of providing a valuable condition 

summary beyond what is readily detectable by using diagnostic measurements alone. 

The failure probability estimation for an individual power transformer based on its 

condition score is the core contribution of this research. Therefore, it is expected that 

the outcome of this study will contribute to the power transformer asset management 

and could be a source of reference point for future works. 

 

8.2 Future Directions 

The findings of this research suggest that the condition of each subsystem of a 

transformer shows distinctive performance characteristics before failure. These 

properties can be correlated with different operating conditions of transformers 
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including their loading pattern to estimate the degradation rate of their service life. In 

future, we plan to develop a model based on artificial intelligence that can predict the 

remaining service life of transformers at variable operational stresses and loads. I 

would also like to explore the influence of manufacturers and their design 

specifications on operating condition of transformers. Therefore, it would be possible 

to increase the service life of this valuable asset by adjusting its loading and reducing 

stress by introducing proper maintenance plan.  Also, there are scopes to adjust the 

conditional boundaries (Very Good, Good, Moderate, Bad, Very Bad) of different 

diagnostic measurements as the IEEE, IEC and CIGRE standards are not always 

absolute, and there is some contradiction between each other. The boundary range 

can be adjusted with a large number of statistical evidence. Moreover, we would also 

like to validate our percentage of failure probability statistics (Chapter 7) against the 

historically recorded measurements of failed transformers. 
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Appendix A 

The results of six diagnostic tests of 30 arbitrarily numbered transformers used in 

section 6.5 are shown in Table A.1. Although this section was a part of Chapter 6 in 

the original published paper, to ensure a better flow of this thesis report, it has been 

relocated to the final appendix section. 

 

Table A.1: Results of six diagnostic tests. 

 

 

 

 

Number 
Water 

(ppm) 

Acidity 

(mgKOH/g) 

DBV 

(kV) 

Dissipation 

Factor (%) 

TDCG 

(ppm) 

Furan 

(ppm) 

1 21.7 0.024 32.5 0.075 483 0.86 

2 26.9 0.098 40.5 0.894 254 0.65 

3 14.5 0.033 58 0.14 78 0.26 

4 21.2 0.226 48.7 0.424 215 5.53 

5 10 0.01 75 0.111 126 0.06 

6 15.5 0.075 71 0.143 38 0.53 

7 16.8 0.167 70.1 0.255 149 0.78 

8 15 0.092 67.8 0.211 28 0.69 

9 17 0.035 62.7 0.113 9 0.21 

10 30 0.088 37.6 0.353 197 0.31 

11 16.2 0.181 25.5 0.201 35 8.76 

12 15 0.155 37.5 0.182 53 7.29 

13 16.8 0.115 25.6 0.174 78 9.6 

14 15 0.21 57 0.22 53 6.69 

15 27.6 0.089 30.4 0.128 336 5.12 

16 23.5 0.106 45.8 0.207 30 0.24 

17 24.8 0.012 29.9 0.068 504 1.68 

18 23.6 0.07 39.2 0.203 22 0.5 

19 30.5 0.073 28.7 67 30 1.7 

20 18.4 0.063 64.5 0.243 69 0.15 

21 21.1 0.019 28.4 0.025 144 0.02 

22 8.1 0.01 66.9 0.042 71 0.05 

23 19.6 0.216 41.1 0.264 48 7.54 

24 6 0.01 67.6 0.126 427 0.08 

25 18.4 0.152 37.2 0.299 81 1.14 

26 11.1 0.032 67.2 0.089 119 0.04 

27 21.5 0.147 60.8 0.938 168 0.92 

28 7.5 0.16 70.1 0.448 10 0.06 

29 13 0.091 51.6 0.369 8 0.32 

30 35.7 0.229 41.4 0.639 24 1.07 


