Transformer life assessment and failure diagnostics have always been
important problems for electric utility companies. Ambient temperature and load
profile are the main factors which affect aging of the transformer insulation,
and consequently, the transformer lifetime. The IEEE Std. C57.911995 provides a
model for calculating the transformer loss of life based on ambient temperature
and transformer's loading. In this paper, this standard is used to develop a
data-driven static model for hourly estimation of the transformer loss of life.
Among various machine learning methods for developing this static model, the
Adaptive Network-Based Fuzzy Inference System (ANFIS) is selected. Numerical
simulations demonstrate the effectiveness and the accuracy of the proposed
ANFIS method compared with other relevant machine learning based methods to
solve this problem.Comment: IEEE Power and Energy Society General Meeting, 201