46,028 research outputs found

    Industrial process monitoring by means of recurrent neural networks and Self Organizing Maps

    Get PDF
    Industrial manufacturing plants often suffer from reliability problems during their day-to-day operations which have the potential for causing a great impact on the effectiveness and performance of the overall process and the sub-processes involved. Time-series forecasting of critical industrial signals presents itself as a way to reduce this impact by extracting knowledge regarding the internal dynamics of the process and advice any process deviations before it affects the productive process. In this paper, a novel industrial condition monitoring approach based on the combination of Self Organizing Maps for operating point codification and Recurrent Neural Networks for critical signal modeling is proposed. The combination of both methods presents a strong synergy, the information of the operating condition given by the interpretation of the maps helps the model to improve generalization, one of the drawbacks of recurrent networks, while assuring high accuracy and precision rates. Finally, the complete methodology, in terms of performance and effectiveness is validated experimentally with real data from a copper rod industrial plant.Postprint (published version

    Neural network modelling of Abbott-Firestone roughness parameters in honing processes

    Get PDF
    In present study, three roughness parameters defined in the Abbott-Firestone or bearing area curve, Rk, Rpk and Rvk, were modelled for rough honing processes by means of artificial neural networks (ANN). Input variables were grain size and density of abrasive, pressure of abrasive stones on the workpiece's surface, tangential or rotation speed of the workpiece and linear speed of the honing head. Two strategies were considered, either use of one network for modelling the three parameters at the same time or use of three networks, one for each parameter. Overall best neural network consists of three networks, one for each roughness parameter, with one hidden layer having 25, nine and five neurons for Rk, Rpk and Rvk respectively. However, use of one network for the three roughness parameters would allow addressing an indirect model. In this case, best solution corresponds to two hidden layers having 26 and 11 neurons.Peer ReviewedPostprint (author's final draft

    Rapid design of tool-wear condition monitoring systems for turning processes using novelty detection

    Get PDF
    Condition monitoring systems of manufacturing processes have been recognised in recent years as one of the key technologies that provide the competitive advantage in many manufacturing environments. It is capable of providing an essential means to reduce cost, increase productivity, improve quality and prevent damage to the machine or workpiece. Turning operations are considered one of the most common manufacturing processes in industry. It is used to manufacture different round objects such as shafts, spindles and pins. Despite recent development and intensive engineering research, the development of tool wear monitoring systems in turning is still ongoing challenge. In this paper, force signals are used for monitoring tool-wear in a feature fusion model. A novel approach for the design of condition monitoring systems for turning operations using novelty detection algorithm is presented. The results found prove that the developed system can be used for rapid design of condition monitoring systems for turning operations to predict tool-wear

    Lead Acid Battery Modeling for PV Applications

    Get PDF
    Lead-Acid batteries continue to be the preferred choice for backup energy storage systems. However, the inherent variability in the manufacturing and component design processes affect the performance of the manufactured battery. Therefore, the developed Lead-Acid battery models are not very flexible to model this type of variability. In this paper, a new and flexible modeling of a Lead-Acid battery is presented. Using curve fitting techniques, the model parameters were derived as a function of the battery’s state of charge based on a modified Thevenin equivalent model. In addition, the charge and discharge characteristics of the derived model were investigated and validated using a real NP4-12 YUASA battery manufacturer\u27s data sheet to match performance at different capacity rates. Furthermore, an artificial neural network based learning system with back-propagation technique was used for estimating the model parameters using MATLAB software. The proposed neural model had the ability to predict values and interpolate between the learning curves data at various characteristics without the need of training. Finally, a closed-form analytical model that connects between inputs and outputs for neural networks was presented. It was validated by comparing the target and output and resulted in excellent regression factors

    Unexpected Event Prediction in Wire Electrical Discharge Machining Using Deep Learning Techniques

    Get PDF
    Theoretical models of manufacturing processes provide a valuable insight into physical phenomena but their application to practical industrial situations is sometimes difficult. In the context of Industry 4.0, artificial intelligence techniques can provide efficient solutions to actual manufacturing problems when big data are available. Within the field of artificial intelligence, the use of deep learning is growing exponentially in solving many problems related to information and communication technologies (ICTs) but it still remains scarce or even rare in the field of manufacturing. In this work, deep learning is used to efficiently predict unexpected events in wire electrical discharge machining (WEDM), an advanced machining process largely used for aerospace components. The occurrence of an unexpected event, namely the change of thickness of the machined part, can be effectively predicted by recognizing hidden patterns from process signals. Based on WEDM experiments, different deep learning architectures were tested. By using a combination of a convolutional layer with gated recurrent units, thickness variation in the machined component could be predicted in 97.4% of cases, at least 2 mm in advance, which is extremely fast, acting before the process has degraded. New possibilities of deep learning for high-performance machine tools must be examined in the near future.The authors gratefully acknowledge the funding support received from the Spanish Ministry of Economy and Competitiveness and the FEDER operation program for funding the project "Scientific models and machine-tool advanced sensing techniques for efficient machining of precision components of Low Pressure Turbines" (DPI2017-82239-P) and UPV/EHU (UFI 11/29). The authors would also like to thank Euskampus and ONA-EDM for their support in this project

    Bidirectional optimization of the melting spinning process

    Get PDF
    This is the author's accepted manuscript (under the provisional title "Bi-directional optimization of the melting spinning process with an immune-enhanced neural network"). The final published article is available from the link below. Copyright 2014 @ IEEE.A bidirectional optimizing approach for the melting spinning process based on an immune-enhanced neural network is proposed. The proposed bidirectional model can not only reveal the internal nonlinear relationship between the process configuration and the quality indices of the fibers as final product, but also provide a tool for engineers to develop new fiber products with expected quality specifications. A neural network is taken as the basis for the bidirectional model, and an immune component is introduced to enlarge the searching scope of the solution field so that the neural network has a larger possibility to find the appropriate and reasonable solution, and the error of prediction can therefore be eliminated. The proposed intelligent model can also help to determine what kind of process configuration should be made in order to produce satisfactory fiber products. To make the proposed model practical to the manufacturing, a software platform is developed. Simulation results show that the proposed model can eliminate the approximation error raised by the neural network-based optimizing model, which is due to the extension of focusing scope by the artificial immune mechanism. Meanwhile, the proposed model with the corresponding software can conduct optimization in two directions, namely, the process optimization and category development, and the corresponding results outperform those with an ordinary neural network-based intelligent model. It is also proved that the proposed model has the potential to act as a valuable tool from which the engineers and decision makers of the spinning process could benefit.National Nature Science Foundation of China, Ministry of Education of China, the Shanghai Committee of Science and Technology), and the Fundamental Research Funds for the Central Universities
    • …
    corecore