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Abstract—A bi-directional optimizing approach for the melting 

spinning process based on an immune-enhanced neural network is 

proposed. The proposed bi-directional model can not only reveal 

the internal nonlinear relationship between the process 

configuration and the quality indices of the fibers as final product, 

but also provide a tool for engineers to develop new fiber products 

with expected quality specifications. A neural network is taken as 

the basis for the bi-directional model, and an immune component 

is introduced to enlarge the searching scope of the solution field so 

that the neural network has a larger possibility to find the 

appropriate and reasonable solution, and the error of prediction 

can therefore be eliminated. The proposed intelligent model can 

also help to determine what kind of process configuration should 

be made in order to produce satisfactory fiber products. To make 

the proposed model practical to the manufacturing, a software 

platform is developed. Simulation results show that the proposed 

model can eliminate the approximation error raised by the neural 

network-based optimizing model, which is due to the extension of 

focusing scope by the artificial immune mechanism. Meanwhile, 

the proposed model with the corresponding software can conduct 

optimization in two directions, namely, the process optimization 

and category development, and the corresponding results 

outperform those with an ordinary neural network-based 

intelligent model. It is also proved that the proposed model has the 

potential to act as a valuable tool from which  the engineers and 

decision makers of the spinning process could benefit.  

 
Index Terms—neural network, artificial immune system, 

bi-directional optimization, spinning process 

 

I. INTRODUCTION 

HE textile manufacturing processes are a typical example of 

the most complicated production lines in industrial systems. 

These systems require a perfect combination of machinery, 

precise producing configurations, highly effective control and 
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monitoring mechanisms. Successful discovery of such a 

combination is an extremely challenging mission for the textile 

manufacturing since it involves varieties of transformations 

physically and chemically which is also the main difference 

between it and other pure mechanical processing lines. Another 

feature brought by these characteristics is the highly nonlinear 

behaviors of the involved manufacturing process. A minor 

variation occurred in one section of the whole line, i.e. the 

fluctuation of set value, the erosion of mechanical equipment, or 

even a minor control mistake made by human operators, could 

cause large diversities for the final product. Unfortunately, such 

minor variations cannot be avoided in practice. So the attempt to 

grasp the nonlinear behaviors of the manufacturing process and 

then learn about their influence towards the final product has 

become a critical task for the system designer, the field engineer 

and the operator. 

As to the textile production, an important direction for 

learning the nonlinear behaviors of the system is trying to find 

out the relationship between production configurations in 

different sections and the quality indices of the final product, 

e.g. the staple or filament. The main representative of the 

configuration is the parameter selection of the sections which is 

also the easiest point that people can think of to find the 

relationship with the product quality. The technicians are 

always keeping on looking for better explanations and the 

corresponding analyzing methods to unveil the connections 

between process parameters and the final quality indices for the 

large-scale textile manufacturing from varieties of aspects. Gou 

and McHugh took the temperature and composition effects into 

consideration to for staple or filament, are classical instances of 

complex acquire their respective effects towards the viscosity, 

glass transformation and zero-shear modulus during the drying 

spinning process [1]. Lee et al. proposed a reduced-order model 

(ROM) to approximate the practical nonlinear model of the 

optic fiber drawing process, and such model can then be used to 

analyze the parameters that may greatly influence the quality of 

the final fiber and how to establish effective control for them 

[2]. For the finishing process, different types of parameters such 

as process temperature and time, water inlet temperature and 

liquor ratio, and this is what Cay et al. have made contributions 

to [3]. Tan et al. developed a one-dimensional slender-jet 

theoretical model with both upper connected Maxwell and 

Pan-Thien and Tanner constitutive equations to investigate the 
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relationship between the viscoelasticity and processing 

parameters on the properties of melt blown fibers [4]. As to the 

origin of the industrial fibers, Duval et al. checked the sampling 

sections from different parts of the plant which could be used to 

spin fibers in order to find the connection between the strength 

of such original materials and their manufactured products [5]. 

All of them are good examples showing the great effort that the 

researchers are taking to find out the detailed relationship 

between the process and the product. Like the two sides of a 

coin, however, this issue has its two aspects and most of the 

current achievements only focus one side, namely, that how to 

get products from process, but leave the other side that how to 

design a process for a known product aside. The lab scientists 

may think the former much useful for conducting analytical 

works, but what the field workers and engineers focus more is 

the magic on creating new fibers, namely, how to build 

production to realize their goals. 

The rapid development of artificial intelligence (AI) has 

provided the textile industry with a powerful tool for analyzing 

its process and products. Due to the comparatively slow 

executing speed, most of the AI-based approaches are still taken 

to build offline systems for estimation and prediction of the 

reasonability of manufacturing and overall quality of the final 

products, but the effort to bring them to practical online 

monitoring and control never stops [6-10]. Another trend is that 

more and more researchers have turned their attention from 

application of a single AI approach to combination of several 

ones, e.g. the artificial neural network (ANN), fuzzy system 

(FS) and genetic algorithm (GA), and usually such an approach 

can be proved more effective for the highly nonlinear systems, 

such as the textile production. For the ANN with its variants, 

Kadi et al. introduced it into the performance estimation of the 

fiber-reinforced composites [11]. Arafeh et al. combined the 

fuzzy mechanism with neural network to form an intelligent 

approach for the material processing [12]. Yu et al. proposed a 

fuzzy neural network (FNN) that simplified the network 

structure and feature selection of the classical ANN. This 

approach can then be applied with a reasonable rule set to 

conduct the fabric selection among different fabric specimen 

[13]. Liu et al. introduced another approach, the firing-strength 

transform matrix to the adaptive neuro-fuzzy inference system 

(ANFIS) and then took it as a predicator for the trim-beam 

numbers in the textile manufacturing [14]. As to the upper level 

of problem solving, namely, the methodology, Deng et al. 

proposed a series of intelligent decision support tools consisting 

of different AI methods (or concepts and frameworks) among 

which different methods take charge of different tasks in a 

whole plan, and a case of multifunctional textile material design 

is then taken to verify the effectiveness of such a guiding plan 

[15]. Yang et al. proposed a hybrid method using 

back-propagation neural network (BPNN), genetic algorithm 

(GA) and simulated annealing algorithm to determine the 

optimal mixing ratio of different components in special types of 

fibers [16]. Yang et al. proposed an improved GA to subtract 

unnecessary elements from a large feature set so that the 

classification for foreign fibers can be realized more efficiently 

and effectively [17]. There are also some other aspects of the 

AI, e.g. the artificial immune mechanism, have great potential to 

be applied to the optimization of the manufacturing process of 

fiber [18] or used to broaden the application scope of special 

textiles [19], but the present achievements are still limited. 

In this paper, a set of optimization problems for both the 

manufacturing processes of staple and filament are raised and 

generalized, through which we try to find a reasonable way to 

solve by applying a hybrid intelligent approach. This approach 

is established on the neural network and the artificial immune 

system (AIS). The neural network is used for building a 

black-box model for the bi-directional relationship between 

production parameters and final quality indices of the textile 

product, and the AIS is further introduced to make the 

approximation of the neural network model more precisely. 

Based on the practical production data, a software platform for 

the realization of the proposed model is established, and the 

bi-directional simulation and assessment can therefore be 

conducted on it. Computerized simulation shows that the 

bi-directional simulation and optimization can be achieved by 

the proposed model, and estimations on the quality indices and 

suggestions for the improvement of production parameters can 

also be acquired. With the help of the software platform, the 

proposed model can further be applied to the practical textile 

manufacturing process. 

The main contribution of this paper is listed as follows. 

Firstly, the optimization of the melting spinning process is 

generalized as a parameter-based bi-directional problem which 

is then modeled by applying the proposed immune-enhanced 

neural network model. Meanwhile, a software platform 

embedded with the proposed model is developed and verified 

by using the practical production data in the textile production. 

Such platform with the proposed model can be applied to the 

manufacturing processes with similar procedures as the melting 

spinning process, which can ultimately be regarded as a 

guidance for the product improvement in the industry field. 

The remaining parts of this paper are organized as follows. 

Section II makes a brief introduction for the melting spinning 

process of textile, which includes both the staple and the 

filament productions. Section III provides the basic idea of the 

bi-directional optimization of the manufacturing process, and 

the necessity of applying AI approaches to solve this problem. 

The detailed design of the proposed immune-enhanced neural 

network model is provided in Section IV. Section V provides 

the simulation and corresponding results with analysis, followed 

by the establishment of the software platform. The whole paper 

is concluded in Section VI. 

 

II. THE MELTING SPINNING PROCESS AND ITS BI-DIRECTIONAL 

OPTIMIZATION 

A. The Basic Structure of the Melting Spinning Process 

A general melting spinning system for filament can be 

depicted as in Fig. 1. It mainly consists of a melting 
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transportation system and a spinning system. The main task of 

the melting transportation system is to convert the raw materials 

for spinning to liquid with a predefined viscosity and 

temperature. The liquid can then be shaped with ease, and the 

detailed spinning procedure can be accomplished by the 

following spinning system [20, 21]. At the very beginning of the 

process, the raw materials for spinning, no matter what its 

original form is, are firstly molten down to solution, and then 

transported to a group of spinnerets through branched tube 

systems. The dense spinning solution is then intruded through 

the holes on bottom of the spinnerets and enters the blowing 

area.  In the blowing area, the air blowing from different 

directions helps to solidify the solution streams so that the so 

called “as-spun” fibers can be formed. The “as-spun” fibers can 

be stretched according to a designated stretching ratio in the 

following procedures. Different types of filaments ask for 

different combinations of equipment and special raw materials, 

but the basic processing procedures are similar. As requested by 

various specifications of the final products, more procedures 

may be added to the whole production line. The melting 

spinning technology for the staple is similar to that for the 

filament to a large extent, and the main difference is that a 

cutting procedure is added in so its final product would be short 

fibers, compared to the long fiber of filament. 

B. Key Parameters and Quality Indices of the Melting 

Spinning Process 

The determination of the parameters for spinning is one of the 

most critical parts on optimizing the manufacturing process [22, 

23]. Since the whole production line is a combination of several 

complex sections, some features can be summarized during the 

selection of these parameters. 1) There are numerous variables 

to be determined in a single processing section, and these 

variables should be coordinated harmoniously so that such a 

single section can work properly. 2) Different sections have 

different parameters. This indicates the whole production is 

under a specific condition based on a reasonable combination of 

each section. So the parameters for all the sections should be 

taken into consideration together to build such a foundation. 3) 

The working status of the spinning line may vary with time, 

which results in redetermination of process configuration. On 

most occasions, the changes for better parameters are inevitable. 

Moreover, the challenge brought by the great nonlinear nature is 

that the shift of parameter value cannot be judged by purely 

applying a constant trend or fixed schemes, e.g. the rising of 

heating temperature will cause either lower spinning speed 

afterwards or higher, which may not be explained by a simple 

mathematical model. So all the factors in the whole spinning 

process (including the key parameters) should be put together to 

make a thorough analysis, and a correctly modified plan against 

the change of working status can be generated. Plus, the 

intensity of changes is also a great factor against the processing 

fluctuation. Inappropriate modification of parameters may lead 

worse results rather than pulling the production back to normal. 

All the features about the parameters in the production as 

above imply a challenging task to determine the most critical 

ones and how to tune them when changes occur. 

C. The General Paradigm of the Optimization for Spinning 

Process 

The melting spinning process is a large complex system with 

numerous variables coupling with each other. Its complex 

mechanism raises the difficulty level of conducting an accurate 

model to demonstrate its detailed dynamic behaviors, which 

consequently brings more challenges to the process analysis and 

optimization. When approaching a practical problem with 

multiple key points, people always tend to apply the “divide and 

conquer” strategy, and so do they with the optimization of the 

textile spinning system. Fig. 2 illustrates a workflow diagram of 

a complete process for modeling the textile spinning production 

with its application. The whole process starts from a 

disassembly of the spinning line, and then the key factors that 

play critical roles can be extracted for further inspection. With 

the aid of computation techniques, one or more models can be 

selected as candidates for modeling the spinning process. The 

model that fits for the actual process is generated out of the 

framework (base models) and the data source (key factors). 

After that, a series of experiments should be elaborately 

 
Fig. 1. Melt spinning procedure. 

 

 
Fig. 2. General workflow of the spinning process optimization. 
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designed so that the performance of the selected model can be 

quantized for comparison. It may also be necessary to roll back 

to the previous steps for picking up better model basis or 

influential factors. The verification of models is followed by the 

practical value estimation whose responsibility is to put the 

model and results with the actual fiber product data together, 

and some advice may appear to make the process optimized 

during this procedure. The optimization may include 

addition/remove/modification of the existing devices, or better 

valuation for process configurations. This may probably lead to 

a distraction between the proposed model in theory and the 

process itself. In this case, another round of model designing 

and test will start. During the whole process, the output (or 

results) of one procedure can be used as the input (or source) of 

its subsequent procedure(s). 

For the candidate models of the spinning process, a rigid 

mathematical deduction is usually accompanied by numerous 

equations with plenty of parameters and assumptions as 

conclusion. However, these achievements always ask for more 

care if the working status of the spinning procedure changes 

even a little [24, 25]. A reasonable alternative to solve such 

problem is to build a black-box-like model that only the input 

and output of the target system are concerned while the internal 

details can be ignored, or more precisely, be modeled by the 

black-box itself. Usually, researchers take the process 

parameters and the quality indices as the input and the output of 

the model, respectively. By applying some nonlinear methods, 

the quality of the final textile product related to the selected 

parameters can be calculated [26, 28]. But such model still has 

limitations. First of all, the data of the manufacturing process 

required for building and verifying the model may not be 

acquired sufficiently, because the parameters of a fixed 

manufacturing process for a specific textile product are mostly 

stable (or just fluctuates within a tiny scope). It cannot provide a 

large range for fully analyzing the behavior of the whole 

process. Meanwhile, a simple input-output model is only 

responsible for acquiring the predicted properties of textile 

products, which can therefore be regarded as a static analysis. It 

does not have the ability to tell the on-site operators how the 

process parameters should be tuned to improve the product 

quality, while this may be more significant for the practical 

textile manufacturing. As a result, a reverse optimizing 

procedure from indices of final products to the process 

configuration is required. 

D. The Bi-Directional Intelligent Optimization 

The basic idea of building a bi-directional optimization 

model rather than a common one as above is derived from the 

actual needs of textile manufacturing itself. It may be useful and 

sufficient for scientists and researchers in laboratories to 

implement a forward model that shows the relation from process 

to products. But what the industrial experts, analysts and 

operators in the spinning workshop need is a tool that helps 

them find the possible sources of problems that deteriorate the 

quality and how to eliminate them. Unlike the lab version 

model, such requirement just asks for a backward one to make 

the problems above solved. This is also the main motivation for 

looking for a bi-directional spinning model and related 

methodology. Based on the situation of the textile industry, an 

effective model that qualifies for practical application in the 

textile production should meet the requirements as below, 

(1) The relation between the process configuration (e.g. the 

parameters) and the quality indices of final product should be 

simulated so that the possible changes of product quality are 

foreseeable. This is actually the main task that the contemporary 

models should finish. 

(2) The quality indices of the final textile product should 

have the ability to be taken as a source to get process 

configurations with the proposed model. By this means, the 

on-site operators can take advantage of such model to develop 

new types of textile productions with desired qualities The 

actual production line can then be reconfigured with the 

deducted set of parameters. The possible waste that may come 

with unsupervised change of process configuration can also be 

prevented. 

These two points as above actually reveals a pair of modeling 

processes consisting of a forward path and a reverse path, which 

is shown in Fig. 3. In the forward path, the process parameters 

are taken as input to gain the corresponding quality indices of 

the final product through a nonlinear model (which may be 

covered by a black-box type mechanism). In the reverse path, on 

the other hand, these parameters are regarded as the destination 

that can be calculated by another model with the quality indices 

as its source. Both the models can be those with strong nonlinear 

characteristics to match the features of production, and 

self-learning capability to generalize knowledge from varieties 

of in-process data. In the textile industry, the forward approach 

here can be called “process optimization” for it can help to 

discover the relation between the changes of production 

configuration and the subsequent product variations. The 

reverse approach can be called “category development” for its 

ability to propose a reasonable set of parameters that lead the 

textile quality to a known desired level. This would be of special 

significance for some textile factories and engineers because the 

idea how to produce something with expected performance is 

their kernel consideration, which may be more meaningful than 

just grasping the relationship between production and product. 

 

III. THE DESIGN OF THE IMMUNE-ENHANCED NEURAL 

NETWORK FOR THE MELTING SPINNING PROCESS 

A. The neural network for the spinning process 

As a useful tool, varieties types of neural networks (NNs) 

with their derivations have been applied to system analysis and 

optimization [29, 30]. An appropriate selection of a NN model 

depends on the characteristics of the target system and the type 

of data set involved (this may be the most critical point for the 

selection). The spinning process is a classical system with a 

huge number of process data collected in a sequential but 

discrete sampling time series. So the corresponding NN for 

modeling this process should have a good master on discrete 
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data. The radial basis function (RBF) NN is featured by its 

ability on approximating discrete system [31], which is 

therefore picked here to play as the foundation of the 

optimization model. The basic structure of the RBFNN for the 

melting spinning process is shown in Fig. 4. The process data 

are received by an input layer, and then transformed by a hidden 

layer with tunable connecting weights and kernel functions. The 

output layer is responsible for generating results for the whole 

RBFNN. For the analysis and optimization of the spinning 

process, two types of data can be taken as the input data, 

namely, the parameters of different sections and the final quality 

indices of fibers. Their detailed roles depend on which direction 

of the analysis should be made. For the process optimization 

(the forward path), the parameters of sections on the production 

line are selected as the input data, and the desired output is the 

predicted quality indices. For the category development, the 

expected quality indices should be treated as the data source for 

optimization. The in-process parameters can be calculated by 

the corresponding model, hoping that such parameters can lead 

to a satisfactory production of fibers. The basic structure of the 

RBFNN can be shared by both the procedures above, but the 

specific configuration of the models may vary according to 

different requirements. 

 

B. The immune-enhanced optimization 

The RBFNN based optimization model could bring an 

approximation to the spinning process, but its accuracy may not 

be satisfied. The input data collected from the fiber production 

can be treated as independent points in a continuous data space, 

but there are no apparent clues indicating how the other points, 

e.g. other production configurations are located in such a space. 

This feature will make the RBFNN model achieve wrong 

results. Moreover, the data set for building the optimization 

model is limited in practice, but the test data set (or more 

practically, the real production data) is unlimited theoretically 

and the trend of the data cannot be well predicted. Such a 

contradiction between the idealized model and the reality may 

further deteriorate the accuracy of the proposed model in the 

long run. To solve these problems, the artificial immune 

mechanism is introduced to strengthen the robustness of the 

RBFNN framework by tuning the weights and parameters of the 

kernel functions of the nodes in the RBFNN. The algorithm can 

be demonstrated as in Fig. 5 a). For the optimization of the 

spinning process, each part of the algorithm should have its own 

specific meaning. A detailed procedure for optimizing the 

spinning process with the artificial immune mechanism can be 

given by the steps as follows, 

Definition of antigen, antibody, and memory cells. The 

antigen ( Ag ) in an artificial immune system can be the 

mathematical statement of the problem to be solved, and the 

antibody ( Ab ) is therefore its possible solution. Multiple 

antibodies form a solution set Abs  with the generation 

evolving. The affinity of Ab  against Ag is defined as its 

ability on eliminating the antigen, namely, resolving the target 

problem which can be written as 

 

~

( )

( )x

x
Ab Ag

yy Abs

F Ab
Aff

F Ab





,                                                   (1) 

 

where ~xAb AgAff  denotes the affinity of x-th antibody against 

the antigen, ( )iF Ab  denotes the fitness value of the i-th 

antibody which can be acquired by substituting the antibody to 

its detailed target problem to get the corresponding solution. 

The affinity between different sAb  is defined as 

 

( { })

~

,

min ( )
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Ab Ab
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Aff x

y z

 






 
,                                             (2) 

 

where ~ ( )Ab AbAff x  is the affinity of the x-th antibody and all the 

other antibodies in a certain antibody set Abs , x y  is the 

distance between the x-th antibody and the y-th antibody (the 

detailed measurement may vary based on different 

requirements). The superior antibodies with higher affinities 

against the antigen or other antibodies can be picked up and 

stored in another set M  which is called the memory cell set, 

and the antibodies in M  are called memory cells Mc . 

As to the spinning process, two types of data in the spinning 

process can be taken to play the role of antibody or antigen, and 

the detailed assignment is decided by the direction where the 

optimization will be conducted as shown in Fig. 3. For the 

process optimization, the quality indices of fiber products 

should be taken as antigen, and the configuration of the neural 

network model should be the antibody (note that a whole set of 

configuration including all the weights and bias is a single 

 
Fig. 4. RBFNN -based optimizing model for the melting spinning 

process. 

 

 
Fig. 3. Schematic of the bi-directional optimizing process. 

 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

6 

antibody). For the category development, the process 

parameters that may lead to certain quality indices of final 

products are taken as antigen, and the antibody is still the 

network configuration. Note that here the antibodies do not 

function on the antigen directly but play as a component of the 

neural network which is the real source of possible solutions to 

eliminate the antigen. 

Creation of Abs  and M . At the beginning of the 

optimization, some antibodies are generated randomly in the 

solution scope and then formed an original M . The original 

antibody set Abs  is left empty. A threshold 
mT  is generated by 

calculating the mean Ag -affinity of all the memory cells in 

M . For the spinning process, since there is no memory cell 

existed at the beginning of the optimization, a randomly 

generated set of antibodies is provided to form the original M , 

and the contents of each memory cell is a set of parameters of 

the neural network that will be tuned. As to the antibody set 

Abs , it is left blank and waiting for the antibody insertion from 

M . 

Clonal selection. For each Mc , calculate its Ag -affinity 

and compare the result with a predefined threshold 
sT . If the 

Ag -affinity of a Mc  excesses 
sT , clone it at a certain 

probability and then put the new ones into the Abs . The 

probability for clonal selection is defined as 

 

~ ~( ) int[ ( ) ( )]rclonal Ab Ag Ab AbClonal x m Aff x Aff x   ,                 (3) 

 

where ( )Clonal x  is the probability of the x-th antibody for 

cloning and 
rclonalm is a reference clonal coefficient which is 

usually greater than one. For each Mc  in the memory cell set of 

the spinning process-specified approach, namely, a candidate 

set of neural network parameters, a temporary neural network 

framework is built to verify its performance. The memory cells 

with a higher Ag -affinity over ST will be picked out and added 

to the Abs . In general, there are a series of parameter-index 

pairs that have been collected from the actual production and 

can be used for verification. Meanwhile, a potential qualified 

neural network should be capable to simulate the behavior of the 

real system on most occasions. So the Ag -affinity of the 

memory cell should be generated based on tests with all the 

data. 

Maturation of Mc  with high affinity. For the Mc  that is 

selected to join the Abs , make a mutation with a certain 

probability on its contents (e.g., by changing several parameters 

in the whole set on a random basis whose probability is 

predefined by field experience) and put the mutated individuals 

into the current Abs . The mutation probability is defined as 

 

~ ( )

1
( )

1
mut

Ab Ab x

P x
Aff




,                                                         (4) 

 

where ( )mutP x  denotes the probability for mutation. Eq. (4) 

indicates that the antibody with a higher Ab -affinity will 

acquire more chances for mutation so that all the antibodies can 

spread in the solution scope as widely as possible. 

Update the Abs . The Ag -affinity of each antibody in the 

current Abs  should be tested, and those with lower affinities 

are removed. Meanwhile, check if there is any antibody whose 

Ag -affinity has been high enough to match the antigen, 

namely, whether the solution with a certain precision has been 

found. The value of such a threshold depends on the specific 

parameters of a certain network. A large threshold will call the 

algorithm for much time to get to the optimum solution, and a 

small one may keep the algorithm stuck in an infinite loop. If a 

solution is found, end the optimization and exit, or the following 

steps will proceed. For the memory cell that consists of network 

configuration, the mutation is implemented by introducing a 

tiny fluctuation to the parameters it represents, which would 

result in different results on the network based on it. The 

memory cells both with and without mutation are added to the 

Abs , and then all the antibodies in the Abs  are substituted to 

the network structure to verify its present performance 

represented by Ag -affinity. Those with inferior performance 

will be removed from the current Abs . Meanwhile, the best 

antibody will also be checked to determine whether the optimal 

solution, namely, a neural network that satisfactorily matches 

the actual spinning system has been found, and in that case the 

optimization will terminate. 

Cycling. Calculate the mean affinity in the current Abs , and 

then compare it with the predefined threshold. If the mean 

affinity is lower than the threshold which means the mutation 

makes no quality improvement to the current antibodies, turn 

back to Clonal selection step. 

Update the memory cells. Compared the Ag -affinity of the 

antibodies in the Abs  with those in the current M , and insert 

the individual antibodies with a higher affinity than the current 

 
a) Artificial immune mechanism 
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memory cells  into M  to become new memory cells. Adjust the 

threshold for the memory cells for the new M , and remove 

those Mc  whose affinity is under the new threshold from M  

so that the mean affinity of the M  can be increased generation 

after generation. 

All the spinning process-specified procedures can be 

depicted as shown in Fig. 5 b). 

 

IV. APPLICATION AND RESULTS 

A. Experiment design 

An industrial fiber production line (1.56dtex cotton-type 

polyester staple fiber, semi-open outer quenching applied) in 

one of the leading Chinese textile manufacturer is taken as the 

optimizing target by applying the proposed immune-NN based 

bi-directional optimization approach. It is a classical polymer 

manufacturing process whose various requirements for the fiber 

products should be met by tuning the in-process parameters. A 

large amount of real-time data has been accumulated by 

technicians for further analysis, which is beneficial for applying 

the intelligent optimizing methods. 

(1) Data collection 

A RBFNN-based optimizing mechanism generally requires a 

series of input and output data for training and testing, and these 

data should cover a wide range of values so that the trained 

model with the related RBFNN approximates the practical plant 

as precisely as possible. But such requirement cannot always be 

satisfied in the analysis of the spinning system. As a practical 

industrial process with large quantities of products, the 

manufacturing configuration should always be kept stable, or at 

least generally unchanged for a long time. So the room for 

adjusting the parameters and the corresponding quality indices 

is limited. To eliminate the disadvantage of such characteristic 

of the spinning system, more running data must be acquired to 

guarantee the optimizing model can cover a larger solution 

scope, which could consequently improve the accuracy of the 

model. In the following experiments, 200 groups of input and 

output data from the practical spinning process are collected for 

building the optimizing model. Each group consists of process 

parameters and the corresponding production quality indices. 

Note that the roles of these two parts of data depend on what 

kind of optimization needs to be made. For the process 

optimization, the process parameters are taken as the input, and 

the quality indices of fibers are taken as the output. For the 

category development, however, their roles should be swapped. 

The detailed information about the data collected is listed in 

Table I, e.g. the categories and the approximate ranges of the 

data. Before the formal experiments, all the data are randomly 

arranged and then taken to train the proposed model, and a pure 

NN model for comparison is also trained with the same data set. 

The reason for the random arrangement of data before training 

is to guarantee the trained model with better adaptation. 

Consequently, the model itself does not need to make an extra 

extrapolation which may decrease the accuracy. 

(2) Process design 

The basic configuration of the production line including the 

process and devices for conducting the experiments is listed in 

Table II. Here four process parameters, namely, the spinning 

velocity (SV), the spinning temperature (ST), the quenching 

velocity (QV), and the quenching temperature (QT) are taken as 

the major factors of the spinning process, and the performance 

indices, namely the elongation corresponding to 1.5 times the 

yielding stress (EYS1.5) and its coefficient of variance 

(EYSCV), breaking tenacity (DT), and the ability of elongation 

(DE), are represented by four major considerations. The basic 

production configuration, e.g. the fineness and the post-drawing 

ratio is kept unchanged, and the device parameters are also 

stable due to the practical foundation of such simulation. The 

whole procedure consists of three parts as below. 

Preliminary verification. An optimizing model with a pure 

NN as its core is introduced, and one of the important quality 

indices of the spinning process, the EYS1.5 is taken to verify the 

ability of approximation of such model. 150 groups of actual 

data (sorted by spinning speed ascending) are taken for training 

the model and the remaining 50 groups act as the test set. The 

aim for doing a preliminary experiment is to reveal the possible 

drawback of an optimizing approach with conventional AI 

methods that have been widely applied to the spinning process, 

 
b) Spinning-specified implementation 

Fig. 5. Flow charts for the artificial immune mechanism and its 

spinning-specified implementation. 

 

TABLE I 

PROCESS CONFIGURATION AND COLLECTED DATA 

Item Unit Range 

Spinning Velocity (SV) 1minm   1000~1197 

Spinning Temperature (ST) C  280~299 

Quenching Velocity (QV) 1minm   100~139 

Quenching Temperature (QT) C  20~24 

EYS 1 
196.29~237.7

8 

EYSCV 1 5.46~10.04 

DT 1 5.82~6.81 

DE 1 20.94~24.05 
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and therefore the necessity for modification can be easily 

concluded. 

Process optimization. The process optimization is conducted 

by applying the process parameters as known knowledge and 

the quality indices of the fiber products as the expected results. 

The proposed intelligent model and the pure NN-based model 

are taken for experiment, and their respective results can be 

compared with the actual quality indices collected from the real 

production. The objective of this part is to explore the dynamics 

of the process parameters and their corresponding influence, 

e.g. a minor modification on the final quality of the fiber 

products. Practically, such experiment can also help to verify 

the ability of the proposed model on generating products with a 

series of specifically tuned producing environments so that the 

time-consuming and high-cost online test can be avoided. The 

parameters of the models applied are listed in Table III. 

Category development. Opposite to the process optimization 

part, the category development turns the input and the output 

around, namely, acquiring the process configuration through 

known fiber quality indices. The approaches applied here are 

the same as those in the process optimization. The 

implementation in such a reverse direction is similar to the 

process optimization simulation technically, but may have 

greater significance for the industrial manufacturers. The aim 

for conducting this part is to determine whether the proposed 

model has the ability to provide reasonable configuration under 

the guidance of the final products. With the proposed intelligent 

mechanism, it is easy to design and make fiber products with 

desired qualities, and the cost for testing different combinations 

of manufacturing parameters can be cut off in a great amount. 

The process and device parameters for this experiment are the 

same as those for the process optimization instance. 

All the experiments above take actions through a Microsoft 

.NET framework-based software specifically designed for 

connecting and optimizing the spinning manufacturing process. 

Both the optimizing approaches including the proposed 

intelligent method and the NN model are coded. This software 

provides the possibility that the proposed AI-based approach 

can be applied to the practical manufacturing without support of 

the laboratory (or even computerized) environment. As a result, 

the proposed algorithm can be implemented by an experienced 

programmer (who builds the codes of the algorithm) along with 

a control engineer (who connects the software with the field 

devices to get running data, meanwhile managing to send 

instructions downward to establish optimization). So the 

expectation that the academic achievements involved can be 

served as a powerful tool for the on-site engineers in the 

spinning factories can be realized, which is the very goal for this 

work. 

 

B. Results and analysis 

(1) Preliminary verification 

Fig. 6 shows the response of the EYS1.5 (shown as “EYS” in 

figures for short) for a model based on the RBFNN, in which the 

EYS1.5 is given in ascending order. The RBFNN-based model 

is firstly trained with the training set of 150 groups of the 

original data, and then tested with both the training set and the 

test set (50 groups). It can be observed that the RBFNN-based 

model approximates the actual value of EYS1.5 satisfactorily 

for the first 150 groups of original data (the training set). But the 

absolute error starts to increase when it comes to the test set. 

Noted that although there’re 150 groups of data which cover 

three fourth of the curve being taken for training, their 

corresponding errors of them still exist. For the test dataset 

(covers the last one fourth part of the curve), the error between 

the model generated value and the actual value of the EYS1.5 

increases gradually. By comparing the actual value and the 

calculated one, the proportion between them can be acquired as 

a tiny decimal, which indicates this model should be 

compensated by multiplying a small coefficient to its original 

result to get a better performance. But such a procedure is not 

theoretically proved so that it cannot be introduced to the 

current model as a reasonable correction. The preliminary 

experiment shows that the RBFNN-based optimizing model 

may not be capable to stimulate the spinning system for 

acceptable performance, especially for the uncovered data, 

which therefore asks for further modification. 

TABLE II 

BASIC CONFIGURATION OF THE SPINNING PROCESS AND DEVICES 

Category Item Value 

Product 

Category 
Fineness/ dtex  1.56 

Post-drawing Ratio 3.6523 

Spinning 

Parameters 
Spinning Velocity/

1minm   
Variable 

Spinning Temperature/ C  
Variable 

Characteristic 

Viscosity/
1dl g  

0.63 

Quenching Velocity/
1minm   

Variable 

Quenching Temperature/ C  
Variable 

Device 

Parameters 

Non-quenching Gap Height/ cm  6 

Number of Spinneret Orifice 3064 

Diameter of Spinneret 

Orifice/ cm  

0.0022 

Pump Mass 

Throughput/

1(min )g hole    

0.0097 

Performance 

Indices 

EYS1.5 Variable 

EYSCV Variable 

DT Variable 

DE Variable 

 

TABLE III 

PARAMETERS OF THE MODELS APPLIED 

Item Value 

Number of Input Neurons 4 

Number of Output Neurons 4 

Number of Hidden Neurons 6 

Size of Memory Cell Set ( M ) 5 

Size of Antibody Set ( Abs ) 20 

ST  0.25 

rclonalm  10 

Maximum Cycling Time 50 
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(2) Process optimization 

The process parameters as input of the optimization are listed 

in Table IV, in which the row marked with “Base” means it’s the 

basic configuration for experiment. One out of four major 

parameters is selected to make changes while keeping others 

stable and its value is tuned for four times. So the whole 

experiment process can be separated to four smaller 

independent experiments and the responses of the product 

indices are provided as shown in Fig. 7 a)-d), respectively. It can 

be observed that the EYS1.5 rises with the increment of 

spinning velocity, spinning temperature or quenching velocity, 

but drops as the quenching temperature becomes higher. For the 

EYSCV and DT, a higher spinning velocity leads to a lower 

index, and the results for tuning the spinning temperature, 

quenching velocity and quenching temperature are similar. For 

the DE, the trend is just opposite to that of the DT. 

As to the performance of optimization, both the models have 

the ability to follow the fluctuation of the process parameters as 

input, and the difference lies that in the proposed algorithm has 

smaller absolute errors. The introduction of the AIS broads the 

searching scope of the optimizing model so that the model can 

“see” those solutions that may have been excluded during the 

training process of the original NN (the configuration of the 

network has actually been fixed once the training process 

finishes, so the result for a specific input is known without 

ability for possible exploration). In the view of numeric 

calculation and the inherent feature of the NN, the errors of both 

the models can be acceptable. Note that a minor fluctuation of 

the process parameter, however, may result in substantial 

changes in quality indices, so a comparative small error should 

still be an advantage. 

 

(3) Category development 

In the category development experiment, five sets of quality 

indices are selected as the input of the reverse models, 

compared to those for the production development. These 

quality indices are collected from the practical manufacturing 

process, covering the whole scope that the quality may possibly 

fluctuate and the required process configuration for each set is 

known. Their detailed values of these sets are listed in Table V, 

and the row marked with “Base” indicates this set is also used 

for training of the NNs included in the models. By applying the 

TABLE IV 

PROCESS PARAMETERS AS INPUT OF THE PROCESS OPTIMIZATION 

Finenes

s 

/ dtex  

SV 

/
1minm   

ST 

/ C  

QV 

/
1minm   

QT 

/ C  

Notes 

1.56 

1100 289 23.5 125 Base 

1110 293 24.5 130  

1120 297 25.5 135  

1130 301 26.5 140  

1140 305 27.5 145  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

Fig. 7. Responses of quality indices against variations of different process 

parameters. 

 

 
Fig. 6. Response of the EYS1.5 against variation of spinning velocity 

using the RBFNN. 
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proposed intelligent optimizing model, the possible process 

configuration that contains four parameters can be generated, 

which can be regarded as a plan for manufacturing. Considering 

different combination of processing parameters may lead to 

similar quality indices, here not one but two plans generated 

from the AIS procedure are recorded to verify the performance 

of the proposed model (they are also the two best antibodies at 

the end of the optimization). Fig. 8 provides the plans generated 

by the proposed model and the actual production configuration 

(The Plan I for the base set is almost identical to the actual 

configuration, for the base set is one of the training sets). 

The verification for these plans is a little different from the 

procedure in the production development simulation. Since a 

different combination of processing parameters may contribute 

to similar products, the performance of these plans cannot be 

summarized only through comparing their contents with the 

actual configuration but should be put back into the actual 

manufacturing process to see what kind of product can be 

produced, and the difference between plans can therefore be 

verified by comparing their final products. Table VI shows the 

production quality with the generated plans and the real ones, 

and the mean errors of the two plans for each index are also 

provided. 

 

V. CONCLUSIONS 

In this paper, a bi-directional optimizing approach for the 

melting spinning process based on an immune-enhanced neural 

network is proposed. The goal of the proposed bi-directional 

model is not only revealing the internal nonlinear relationship 

between the process configuration and the quality indices of the 

fibers, but also providing a tool for engineers to develop new 

fiber products with expected quality specifications. A neural 

network is taken as the foundation of the bi-directional model, 

and an artificial immune component with algorithm is 

introduced to enlarge the searching scope of the solution field so 

that the neural network has a larger possibility to find the 

appropriate and reasonable solution. The proposed intelligent 

model can also help to determine what kind of process 

configuration should be made in order to produce satisfactory 

fiber products. To make the proposed model practical to the 

manufacturing, a software platform is developed which 

performs independently without the academic or laboratory 

TABLE V 

QUALITY INDICES AS INPUT OF THE CATEGORY DEVELOPMENT 

Fineness 

/ dtex  

EYS EYSCV DT DE Notes 

1.56 

218.27 7.3 6.29 22.59 Base 

224.41 7.42 6.14 23.05 Group 1 

211.52 7.6 6.45 22.08 Group 2 

206.04 8.23 6.58 21.67 Group 3 

220.67 8.79 6.23 22.77 Group 4 

 

 
a) Base 

 

 
b) Group 1 

 
c) Group 2 

 

 
d) Group 3 

 

 
e) Group 4 

Fig. 8. Optimal plans generated under different quality requirements. 
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environment. Simulation results show the proposed model can 

eliminate the approximation error raised by the neural 

network-based optimizing model, which is due to the extension 

of focusing scope by the artificial immune mechanism. 

Meanwhile, the proposed model with the corresponding 

software can conduct optimization in two directions, namely, 

the process optimization and category development, and the 

corresponding results outperform those with an ordinary neural 

network-based intelligent model. It is also proved that the 

proposed model has the potential to act as a valuable tool that 

the engineers and decision makers of the spinning process can 

turn to for advice, which actually reaches the goal mentioned 

above. 

The future research directions include the deepening 

development of the optimizing model and the broadening 

exploration of the application scopes in the spinning 

manufacturing for different types of fibers. It should be an 

effective way to combine the inherent dynamic of the spinning 

process with the AI-based methods to form a more accurate 

model, hoping to acquire forward-looking results so that the 

quality of fibers can be much more improved. Similar ideas for 

developing such kind of model can also be applied to other 

spinning processes, or even the manufacturing processes with 

similar characteristics to make the scientists and producers 

involved know not only the reason for possible changes (“why”) 

but also the approaches for better changes (“how”), which is 

also the eventual goal of this work. 
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