106 research outputs found

    Master index of volumes 61–70

    Get PDF

    An extensive English language bibliography on graph theory and its applications

    Get PDF
    Bibliography on graph theory and its application

    Tropical Positivity and Semialgebraic Sets from Polytopes

    Get PDF
    This dissertation presents recent contributions in tropical geometry with a view towards positivity, and on certain semialgebraic sets which are constructed from polytopes. Tropical geometry is an emerging field in mathematics, combining elements of algebraic geometry and polyhedral geometry. A key in establishing this bridge is the concept of tropicalization, which is often described as mapping an algebraic variety to its 'combinatorial shadow'. This shadow is a polyhedral complex and thus allows to study the algebraic variety by combinatorial means. Recently, the positive part, i.e. the intersection of the variety with the positive orthant, has enjoyed rising attention. A driving question in recent years is: Can we characterize the tropicalization of the positive part? In this thesis we introduce the novel notion of positive-tropical generators, a concept which may serve as a tool for studying positive parts in tropical geometry in a combinatorial fashion. We initiate the study of these as positive analogues of tropical bases, and extend our theory to the notion of signed-tropical generators for more general signed tropicalizations. Applying this to the tropicalization of determinantal varieties, we develop criteria for characterizing their positive part. Motivated by questions from optimization, we focus on the study of low-rank matrices, in particular matrices of rank 2 and 3. We show that in rank 2 the minors form a set of positive-tropical generators, which fully classifies the positive part. In rank 3 we develop the starship criterion, a geometric criterion which certifies non-positivity. Moreover, in the case of square-matrices of corank 1, we fully classify the signed tropicalization of the determinantal variety, even beyond the positive part. Afterwards, we turn to the study of polytropes, which are those polytopes that are both tropically and classically convex. In the literature they are also established as alcoved polytopes of type A. We describe methods from toric geometry for computing multivariate versions of volume, Ehrhart and h^*-polynomials of lattice polytropes. These algorithms are applied to all polytropes of dimensions 2,3 and 4, yielding a large class of integer polynomials. We give a complete combinatorial description of the coefficients of volume polynomials of 3-dimensional polytropes in terms of regular central subdivisions of the fundamental polytope, which is the root polytope of type A. Finally, we provide a partial characterization of the analogous coefficients in dimension 4. In the second half of the thesis, we shift the focus to study semialgebraic sets by combinatorial means. Intersection bodies are objects arising in geometric tomography and are known not to be semialgebraic in general. We study intersection bodies of polytopes and show that such an intersection body is always a semialgebraic set. Computing the irreducible components of the algebraic boundary, we provide an upper bound for the degree of these components. Furthermore, we give a full classification for the convexity of intersection bodies of polytopes in the plane. Towards the end of this thesis, we move to the study of a problem from game theory, considering the correlated equilibrium polytope PGP_G of a game G from a combinatorial point of view. We introduce the region of full-dimensionality for this class of polytopes, and prove that it is a semialgebraic set for any game. Through the use of oriented matroid strata, we propose a structured method for classifying the possible combinatorial types of PGP_G, and show that for (2 x n)-games, the algebraic boundary of each stratum is a union of coordinate hyperplanes and binomial hypersurfaces. Finally, we provide a computational proof that there exists a unique combinatorial type of maximal dimension for (2 x 3)-games.:Introduction 1. Background 2. Tropical Positivity and Determinantal Varieties 3. Multivariate Volume, Ehrhart, and h^*-Polynomials of Polytropes 4. Combinatorics of Correlated Equilibri

    Subject Index Volumes 1–200

    Get PDF

    Min-max results in combinatorial optimization

    Get PDF

    Proceedings of the 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications

    Get PDF

    Rigidity through a Projective Lens

    Get PDF
    In this paper, we offer an overview of a number of results on the static rigidity and infinitesimal rigidity of discrete structures which are embedded in projective geometric reasoning, representations, and transformations. Part I considers the fundamental case of a bar−joint framework in projective d-space and places particular emphasis on the projective invariance of infinitesimal rigidity, coning between dimensions, transfer to the spherical metric, slide joints and pure conditions for singular configurations. Part II extends the results, tools and concepts from Part I to additional types of rigid structures including body-bar, body−hinge and rod-bar frameworks, all drawing on projective representations, transformations and insights. Part III widens the lens to include the closely related cofactor matroids arising from multivariate splines, which also exhibit the projective invariance. These are another fundamental example of abstract rigidity matroids with deep analogies to rigidity. We conclude in Part IV with commentary on some nearby areas

    Spectral characterizations of complex unit gain graphs

    Get PDF
    While eigenvalues of graphs are well studied, spectral analysis of complex unit gain graphs is still in its infancy. This thesis considers gain graphs whose gain groups are gradually less and less restricted, with the ultimate goal of classifying gain graphs that are characterized by their spectra. In such cases, the eigenvalues of a gain graph contain sufficient structural information that it might be uniquely (up to certain equivalence relations) constructed when only given its spectrum. First, the first infinite family of directed graphs that is – up to isomorphism – determined by its Hermitian spectrum is obtained. Since the entries of the Hermitian adjacency matrix are complex units, these objects may be thought of as gain graphs with a restricted gain group. It is shown that directed graphs with the desired property are extremely rare. Thereafter, the perspective is generalized to include signs on the edges. By encoding the various edge-vertex incidence relations with sixth roots of unity, the above perspective can again be taken. With an interesting mix of algebraic and combinatorial techniques, all signed directed graphs with degree at most 4 or least multiplicity at most 3 are determined. Subsequently, these characterizations are used to obtain signed directed graphs that are determined by their spectra. Finally, an extensive discussion of complex unit gain graphs in their most general form is offered. After exploring their various notions of symmetry and many interesting ties to complex geometries, gain graphs with exactly two distinct eigenvalues are classified

    * ILR School Theses and Dissertations: A Listing

    Get PDF
    Compiled by Susan LaCette.revILRThesesComplete.pdf: 4443 downloads, before Oct. 1, 2020
    • …
    corecore