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A B S T R A C T

This dissertation presents recent contributions in tropical geometry with a view towards
positivity, and on certain semialgebraic sets which are constructed from polytopes.

Tropical geometry is an emerging field in mathematics, combining elements of algebraic
geometry and polyhedral geometry. A key in establishing this bridge is the concept
of tropicalization, which is often described as mapping an algebraic variety to its
“combinatorial shadow”. This shadow is a polyhedral complex and thus allows to study
the algebraic variety by combinatorial means. Recently, the positive part, i.e. the inter-
section of the variety with the positive orthant, has enjoyed rising attention. A driving
question in recent years is: Can we characterize the tropicalization of the positive part?
In this thesis we introduce the novel notion of positive-tropical generators, a concept
which may serve as a tool for studying positive parts in tropical geometry in a combi-
natorial fashion. We initiate the study of these as positive analogues of tropical bases,
and extend our theory to the notion of signed-tropical generators for more general
signed tropicalizations. Applying this to the tropicalization of determinantal varieties,
we develop criteria for characterizing their positive part. Motivated by questions from
optimization, we focus on the study of low-rank matrices, in particular matrices of rank
2 and 3. We show that in rank 2 the minors form a set of positive-tropical generators,
which fully classifies the positive part. In rank 3 we develop the starship criterion, a ge-
ometric criterion which certifies non-positivity. Moreover, in the case of square-matrices
of corank 1, we fully classify the signed tropicalization of the determinantal variety,
even beyond the positive part.

Afterwards, we turn to the study of polytropes, which are those polytopes that are both
tropically and classically convex. In the literature they are also established as alcoved
polytopes of type A. We describe methods from toric geometry for computing mul-
tivariate versions of volume, Ehrhart and h∗-polynomials of lattice polytropes. These
algorithms are applied to all polytropes of dimensions 2, 3 and 4, yielding a large class
of integer polynomials. We give a complete combinatorial description of the coefficients
of volume polynomials of 3-dimensional polytropes in terms of regular central subdivi-
sions of the fundamental polytope, which is the root polytope of type A. Finally, we
provide a partial characterization of the analogous coefficients in dimension 4.

In the second half of the thesis, we shift the focus to study semialgebraic sets by combi-
natorial means. Intersection bodies are objects arising in geometric tomography and are
known not to be semialgebraic in general. We study intersection bodies of polytopes
and show that such an intersection body is always a semialgebraic set. Computing the
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irreducible components of the algebraic boundary, we provide an upper bound for the
degree of these components. Furthermore, we give a full classification for the convexity
of intersection bodies of polytopes in the plane.

Towards the end of this thesis, we move to the study of a problem from game theory,
considering the correlated equilibrium polytope PG of a game G from a combinatorial
point of view. We introduce the region of full-dimensionality for this class of polytopes,
and prove that it is a semialgebraic set for any game. Through the use of oriented
matroid strata, we propose a structured method for classifying the possible combina-
torial types of PG, and show that for (2× n)-games, the algebraic boundary of each
stratum is a union of coordinate hyperplanes and binomial hypersurfaces. Finally, we
provide a computational proof that there exists a unique combinatorial type of maximal
dimension for (2× 3)-games.
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L I S T O F S Y M B O L S
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volk (k-dim’l) Euclidean volume
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Some Specific Polytopes

∆d d-dimensional simplex
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C(d) centrally symmetric cube
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Bn Birkhoff polytope
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Cones and Fans
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ehrP(t) univariate Ehrhart polynomial
ehrP(a) multivariate Ehrhart polynomial
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Toric Geometry
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I N T R O D U C T I O N

Polytopes are fundamental objects in geometry and mathematics as a whole. Dating
back to Platon and Archimedes, it seems surprising that to this day they still prove to
be rich objects of study. While some people argue that the golden times of the study of
polytopes lies back in the 1990’s, they still emerge in new mathematical contexts, such
as physics, economics, statistics, and algorithmic game theory [Wei22; Voh11; Sul18;
NRTV07]. From this point of view it might not be the objects themselves that are new,
but the ever new arising questions as well as the interplay with other fields make them
contemporary objects of study, while keeping their ancient Greek sublimity.

At the core of this dissertation lies the interplay between polyhedral geometry and
semialgebraic structures. Connecting combinatorics and (real) algebraic geometry, we
use tools from discrete geometry to study semialgebraic sets, and tools from algebraic
geometry to understand discrete structures. Historically, these two fields have been
proven to go well together: For instance, the classical question of realization spaces of
polytopes establishes a natural bridge to semialgebraic sets. In this thesis we take a
different route, adding tropical geometry to the mix.

The authors’ intent is to showcase how combining methods and questions from dif-
ferent areas of mathematics establishes new connections, which enrich the modern
mathematical field. Polyhedral structures lie at the heart of this thesis, and at the
same time, working at the triple intersection between combinatorics, geometry and
algebraic concepts, we are typically motivated by questions from other areas, such as
optimization (Chapter 2), geometric tomography (Chapter 4) or game theory (Chapter 5)
[Sch03; Gar06; AH02]. We work with methods from tropical geometry while borrowing
tools from toric geometry, and we substantiate our results with explicit computations
[BEZ20; BBMS21; BHP22b]. All results obtained in this thesis are concrete, and traceable
through examples.

This dissertation consists of two main parts. The title of the first part is Tropical Posi-
tivity and Polytropes, and we study geometric objects from a tropical point of view. In
the second part, Semialgebraic Sets from Polytopes, the central role is played by certain
semialgebraic sets which are constructed from polytopes. As the subtitle of this thesis
suggests, further main themes are Volumes, Determinants and Matroids. We now give
a more thorough introduction to the two parts, emphasizing the common themes
whenever possible and giving an outline of the main contributions of each chapter.
Each of the chapters contains its own introduction, where we elaborate further on the
context as well as the state of current research, and provide references to related work.
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introduction

Tropical Geometry is an emerging field in mathematics, living on the intersection
between combinatorics and algebraic geometry. Tropicalization has been proven to be a
powerful tool for studying algebraic varieties by combinatorial means: transforming an
algebraic variety into a polyhedral complex while still preserving essential properties of
the former has opened up possibilities to understand algebraic varieties from a combi-
natorial point of view. At the same time, many applications urge to add real aspects to
the picture. As a starting point, understanding the signed tropicalization has developed
into a fundamental question in tropical geometry in recent years. Interestingly, even
understanding the intersection of an algebraic variety with the positive orthant is not
well understood, and not even a uniform notion of the positive part has established in
the most recent publications in the field.
Chapter 2: Tropical Positivity and Determinantal Varieties gives the first overview over
all different notions of tropical positivity in the literature, and clarifies the distinction
when working over the complex numbers or the reals. We introduce the novel notion
of positive tropical generators, a concept which may serve as a tool for studying positive
parts in tropical geometry in a combinatorial fashion. Afterwards, we initiate the study
of the positive tropical determinantal variety. Motivated by questions from optimization,
our main focus lies in the study of the positive part for low-rank matrices. We fully
characterize the signed tropicalizations of determinantal hypersurfaces, and the positive
part of the determinantal variety of rank 2. Introducing the novel notion of bicolored
tree arrangements, we provide a partial characterization of the positive part of tropical
determinantal varieties of rank 3.
The study of positive tropical geometry was pioneered by Speyer and Williams [SW05],
who considered the positive part of the tropical Grassmannian. Any point in the
Grassmannian gives rise to a realizable matroid, and points in the tropical Grassmannian
correspond to valuated matroids, i.e. lifting functions on matroid polytopes. Matroids
in the (totally) positive Grassmannian are called positroids, and matroid polytopes
of positroids are the intersection of the class of matroid polytopes with the class of
polytopes which we consider in Chapter 3 [LP20].
Chapter 3: Multivariate Volume, Ehrhart and h∗-polynomials of polytropes concerns the
study of polytropes, a special class of polytopes which are both classically and tropically
convex. In discrete geometry and algebraic combinatorics, they are established under
the name of alcoved polytopes of type A, and the volume and univariate h∗-polynomials
of these polytopes have enjoyed a lot of attention in recent years. In this chapter, we
consider the associated toric variety, and, using methods from the intersection theory
on this toric variety, we compute multivariate volume, Ehrhart and h∗-polynomials for
all polytropes of dimension at most 4. This yields a total of 81 675 distinct multivari-
ate polynomials, and the study of these allows for novel insights to a combinatorial
interpretation of the coefficients of volume polynomials, establishing a remarkable
connection to central triangulations of the fundamental polytope, the root polytope of
type A.
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introduction

The second part of this thesis concerns semialgebraic sets which arise from constructions
involving polytopes. While in Chapter 3 a (multivariate) volume polynomial can be
seen as a compact way to encode the Ehrhart and h∗-polynomial, in Chapter 4 the
volume plays a central role in the construction of the main objects of study.
Chapter 4: Intersection Bodies of Polytopes considers intersection bodies, a class of convex
bodies and star bodies arising in convex analysis and geometric tomography. We initiate
the study of intersection bodies of polytopes from the point of view of real algebraic ge-
ometry, showing that these objects are indeed semialgebraic sets, and study the degrees
of the algebraic boundary of these sets. We give an explicit semialgebraic description,
which makes this class of intersection bodies computable. In the 2-dimensional case we
obtain an unexpected result: the intersection body of a polygon is almost never convex.
Chapter 5: Combinatorics of Correlated Equilibria concerns an equilibrium concept arising
through a linear program in game theory. The set of correlated equilibria of a fixed
game is a polytope, and the set of Nash equilibria is the intersection of this polytope
with the Segre embedding of products of projective spaces. A driving question in
the field is: When does the convex hull of the Nash equilibria greatly differ from the
correlated equilibrium polytope? A key indicator for this is to understand when the
polytope is of maximal dimension. We initiate the study of correlated equilibrium
polytopes from a discrete geometric point of view, and introduce the notion of the
region of full-dimensionality for any class of games. By studying the algebraic boundary
of an oriented matroid strata for the class of (2× 3)-games, we are able to fully classify
all combinatorial types of correlated equilibrium polytopes of maximal dimension.
Surprisingly, there exists only one unique such combinatorial type.

3





1
B A C K G R O U N D

In this chapter we provide the background to the most prominent concepts in this
thesis. The first half concerns the discrete and combinatorial notions. We begin by
establishing common themes of polyhedral geometry, and introduce matroids and
the main concepts from tropical combinatorics. In the second half of this chapter we
turn to the background of the algebro-geometric aspect, such as the basic concept of
algebraic varieties and fields with valuations. Afterwards we establish the main notions
of Gröbner theory and discuss the Fundamental Theorem of tropical algebraic geometry.
Finally, we give a brief introduction to toric varieties and the most important concepts
concerning semialgebraic sets.

1 .1 polyhedral geometry

Polyhedral structures lie at the heart of this dissertation. In this section we introduce
these central objects and those constructions which will be recurrently used in the
following chapters. We follow the conventions of [Zie95].

1.1.1 Polytopes

A polyhedron is the intersection of finitely many closed halfspaces and a polytope is a
bounded polyhedron. Equivalently, a polytope P ⊆ Rd is the convex hull of finitely
many points v1, . . . , vn ∈ Rd [Zie95, Theorem 1.1], i.e. P = conv(v1, . . . , vn) where

conv(v1, . . . , vn) = {λ1v1 + · · ·+ λnvn | λi ∈ [0, 1], λ1 + · · ·+ λn = 1} .

For notational convenience we write conv(S) for the convex hull of the elements of a
finite set S, and for a matrix A ∈ Rd×n with columns v1, . . . , vn we use the convention
conv(A) = conv(v1, . . . , vn).

Figure 1.1: The Birkhoff polytope B3 from Chapter 2, a polytrope from Chapter 3 and the polar
of a zonotope from Chapter 4.
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1 background

We denote by vert(P) the set of vertices of a polytope P ⊆ Rd. A polytope P is a
lattice polytope if all of its vertices are contained in the integer lattice Zd ⊆ Rd and a
0/1-polytope is a lattice polytope with vert(P) ⊆ {0, 1}d.
The normalized volume or lattice volume of a lattice polytope is defined as Vol(P) =
dim(P)! vol(P), where vol(P) denotes the Euclidean volume of P. If dim(P) = k < d,
then we write Volk(P) and volk(P) for the respective volume inside the affine span aff(P),
which is the smallest affine space containing P. A polyhedron is relatively open if it is
open inside its affine span. A k-dimensional simplex ∆k ⊆ Rd is the convex hull of k + 1
affinely independent vectors and is unimodular if Volk(∆k) = 1. The standard simplex
∆d−1 ⊆ Rd is the convex hull of all standard unit vectors.

A hyperplane supports P if it bounds a closed halfspace containing P, and any intersec-
tion of P with such a supporting hyperplane yields a face F of P. A face is a proper face
if F ( P and inclusion-maximal proper faces are referred to as facets. Note that also
the empty set is a face of P and by convention dim(∅) = −1. The numbers fi ∈ N of
i-dimensional faces of P form the f -vector f = ( f−1, f0, . . . , fdim(P)). We denote by F
the collection of faces of P. These are partially ordered by inclusion and hence form
a poset (F ,(), the face lattice of P. Two polytopes are combinatorially equivalent (or
combinatorially isomorphic) if their face lattices are isomorphic, in which case we say that
they have the same combinatorial type. The polar (or polar dual) of P is the polytope

P◦ =
{

y ∈ (Rd)∗
∣∣∣ 〈 x, y 〉 ≤ 1 for all x ∈ P

}
,

where (Rd)∗ denotes the dual space of Rd. A polytope is simplicial if all of its facets
are simplices and simple if every vertex of P is contained in precisely dim(P) edges.
Equivalently, P is simple if and only if P◦ is simplicial [Zie95, Proposition 2.16].

The Minkowski sum of polytopes P1, . . . , Pk ⊆ Rd is

P1 + · · ·+ Pk = {x1 + · · ·+ xk | xi ∈ Pi for i ∈ [k]} .

and a zonotope is a Minkowski sum of line segments.

A polyhedral complex P is a finite collection of polyhedra such that

(i) ∅ ∈ P ,

(ii) if P ∈ P then all faces of P are in P ,

(iii) if P, P′ ∈ P , then P ∩ P′ is a face both of P and P′.

A polyhedral complex is pure of dimension k if dim(P) = k holds for every inclusion-
maximal P ∈ P . A pure k-dimensional polyhedral complex P is strongly connected
or connected through codimension 1 if for every maximal P, P′ ∈ P with dim(P) =
dim(P′) = k there exists a sequence P1, . . . , Pl such that dim(Pi) = k and dim(P∩ P1) =
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1.1 Polyhedral Geometry

dim(Pl ∩ P′) = dim(Pi−1 ∩ Pi) = k− 1 for every i ∈ [l]. The k-skeleton of a polyhedral
complex is the collection of all faces of P of dimension at most k. Similarly, the
codimension 1-skeleton (or codim 1-skeleton) of a pure k-dimensional polyhedral
complex is the collection of all faces of dimension at most k− 1.

1.1.2 Cones and Fans

A polyhedral cone C ⊆ Rd is a polyhedron such that λu + µv ∈ C for every u, v ∈ C and
λ, µ ∈ R≥0. Equivalently, it is the conical hull of finitely many vectors u1, . . . , un ∈ Rd

[Zie95, Theorem 1.3], i.e.

C = cone (u1, . . . , un) = {µ1u1 + · · ·+ µnrn | µ1, . . . , µn ≥ 0} .

As for the convex hull, we will use the notation cone (S) for the conical hull of vectors
in a finite set S. The lineality space of C is the linear space L(C) = C ∩ (−C) and a cone
is pointed if its lineality space is trivial. The rays of C are its 1-dimensional faces and a
cone is rational if the slope of each ray is given by a rational vector. The primitive ray
generator of a ray r with rational slope is the unique vector u = (u1, . . . , ud) ∈ Zd such
that r = {λu | µ ≥ 0} and gcd(u1, . . . , ud) = 1. The dual cone of C is

C∨ =
{

y ∈ (Rd)∗
∣∣∣ 〈 x, y 〉 ≥ 0 for all x ∈ C

}
.

A polyhedral fan Σ ⊆ Rd is a finite family of nonempty polyhedral cones such that
every nonempty face of a cone in Σ is also a cone in Σ, and the intersection of any two
cones in Σ is a face of both. The fan Σ is complete if

⋃
C∈Σ C = Rd and it is pure if all

inclusion-maximal cones have the same dimension. A k-dimensional cone is a simplicial
cone if it is generated by k rays and a simplicial fan is a fan in which every cone is
simplicial. Similarly, a rational cone C ⊆ Rd is smooth if its primitive ray generators are
contained in a lattice basis of Zd and a smooth fan is a fan in which every cone is smooth.

Let P ⊆ Rd be a polytope and let F denote the collection of faces of P. For a fixed face
F ∈ F , the set of normal vectors of supporting hyperplanes form the (inner) normal cone

NF =

{
u ∈ (Rd)∗

∣∣∣∣ F ⊆ {x ∈ P | 〈 x, u 〉 = min(〈 y, u 〉 | y ∈ P)}
}

.

The collection Σ(P) of normal cones of faces of P forms the (inner) normal fan of P.

1.1.3 Polyhedral Subdivisions

Regular subdivisions and triangulations of polytopes play a central role in polyhedral
geometry. The Cayley trick establishes a connection between certain regular subdivi-
sions and mixed subdivisions, and is the underlying reason for the identifications in
Section 1.3, while matroid subdivisions play a central role in the description of tropical
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(
0

h(0)

)

0 2 51 3 4

h

Figure 1.2: The regular subdivision of the interval from Example 1.1.1.

planes in Section 2.5. Central triangulations are a key concept for establishing one of
the main results in Chapter 3 and are also an important construction in Chapter 4.
We follow the exposition of [Zie95, Chapter 5.1] for general regular subdivisions, and
[Jos21, Chapter 4.1] and [San05] for mixed subdivisions and the Cayley trick. [DLRS10,
Chapters 2 and 9.2] may serve as further references.

A polyhedral subdivision S of a polytope P ⊆ Rd is a polyhedral complex such that⋃
S∈S = P. The subdivision is a triangulation if every polytope in S is a simplex. Let

V ⊆ Rd be a finite set of points such that P = conv(V). We will typically consider the
sets V = vert(P) or V = P ∩Zd in the case of lattice polytopes. A regular subdivision of
P is a subdivision which is induced by a lifting function. More precisely, let h : V → R

and consider
lift(V) = conv

(( v
h(v)
) ∣∣ v ∈ V

)
⊆ Rd+1.

We sometimes refer to the value h(v) as the weight of v. The lower hull of lift(V) is the
collection of faces of the polytope lift(V) which have an inner normal vector whose last
coordinate is positive (or equivalently an outer normal vector whose last coordinate is
negative). We apply a coordinate projection to the lower hull of lift(V) by projecting
away the last coordinate. This yields a polyhedral complex which is a subdivision of
P = conv(V). Any subdivision of P which can be obtained by this procedure is called
a regular subdivision P.

Example 1.1.1 (Regular subdivision). We consider the regular subdivision of the lattice
points V = P∩Z in the interval P = conv(0, 5), which is induced by the lifting function

h(0) = 3, h(1) = 3 +
1
2

, h(2) = 1, h(3) = 2 +
1
2

, h(4) = 3, h(5) = 4,

as depicted in Figure 1.2. The regular subdivision consists of the maximal faces
conv(0, 2) and conv(2, 5). �
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1.1 Polyhedral Geometry

Let P1, . . . , Pk ⊆ Rd be polytopes such that their Minkowski sum P = P1 + · · ·+ Pk ⊆ Rd

is full-dimensional. A Minkowski cell is any d-dimensional polytope B1 + · · ·+ Bk such
that the set Bi is the convex hull of some vertices of Pi for any i ∈ [k]. A mixed subdivision
S of P is a subdivision in which the inclusion-maximal polytopes are Minkowski cells
and Bi ∩ B′i is a face both of Bi and B′i for any such cells B = B1 + · · · + Bk, B′ =
B′1 + · · ·+ B′k ∈ S and any i ∈ [k].
We now explain how mixed subdivisions of P1 + · · ·+ Pk are in bijection with subdivi-
sions of the Cayley polytope C(P1, . . . , Pk) via the Cayley trick. The Cayley polytope (or
Cayley embedding of P1, . . . , Pk) is defined as

C(P1, . . . , Pk) = conv(Pi × {ei} | i ∈ [k]) ⊆ Rd ×Rk.

We consider the affine subspace

H(λ1, . . . , λk) =
{
(x, y) ∈ Rd ×Rk

∣∣∣ yi = λi for all i ∈ [k]
}

.

The intersection with the Cayley polytope yields the weighted Minkowski sum

C(P1, . . . , Pk) ∩ H(λ1, . . . , λk) =
k

∑
i=1

λiPi.

We obtain P1 + · · ·+ Pk up to a scaling factor 1
k by choosing the parameters λi =

1
k for

all i ∈ [k]. The restriction of any polyhedral subdivision of C(P1, . . . , Pk) to H( 1
k , . . . , 1

k )
induces a mixed subdivision of P1 + · · ·+ Pk. In fact, this procedure induces a bijection
between subdivisions of C(P1, . . . , Pk) and mixed subdivisions of P1 + · · ·+ Pk [HRS00,
Theorem 3.1 “Cayley Trick”]. A coherent mixed subdivision is a mixed subdivision of
P1 + · · ·+ Pk which corresponds to a regular subdivision of the Cayley polytope. This
is the class of subdivisions we will encounter in Section 1.3 and can be seen for example
in Figure 1.5.

Example 1.1.2 (Cayley Trick). Let P1 = conv
((

0
0

)
,
(

1
0

))
and P2 = conv

((
0
0

)
,
(

0
2

))
. The

Cayley polytope is the 3-dimensional polytope with lattice points

C(P1, P2) ∩Z4 =

{( 0
0
1
0

)
,
( 1

0
1
0

)
,
( 0

0
0
1

)
,
( 0

1
0
1

)
,
( 0

2
0
1

)}
.

As lifting function we choose h : C(P1, P2) ∩Z4 → R such that h((0, 2, 0, 1)t) = 1 and
weight 0 for all remaining lattice points. The intersection of the regular subdivision of
C(P1, P2) with the 2-dimensional affine subspace H( 1

2 , 1
2 ) is depicted in Figure 1.3. By the

discussion above, this is a coherent mixed subdivision of the rectangle P = P1 + P2. �
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P1

P2

Figure 1.3: The regular subdivision of the Cayley polytope C(P1, P2) from Example 1.1.2. The
blue edges indicate the regular subdivision of C(P1, P2), and the mixed subdivision
of 1

2 (P1 + P2) is shown in red.

1.1.4 Ehrhart Theory

Ehrhart theory concerns lattice point counting in lattice polytopes and is thus the
theory of the discrete volume of polytopes. We will study multivariate Ehrhart and
h∗-polynomials of polytropes in Chapter 3. In this section we follow the exposition in
[BR15, Chapter 3].

The Ehrhart counting function ehrP(k) of P ⊆ Rd gives the number of lattice points in
the kth dilate of P for k ∈ Z≥1, i.e. ehrP(k) = |kP ∩Zd|.

Theorem 1.1.3 (Ehrhart’s Theorem [Ehr62]). The counting function ehrP(k) agrees
with a polynomial in k for positive integers k ∈ Z≥1, . The degree of this polynomial
is equal to the dimension of P.

The constant term of this polynomial is equal to 1 and the leading coefficient equals the
Euclidean volume of P within its affine span. In the 2-dimensional case, the Ehrhart
polynomial recovers Pick’s formula

|P ∩Z2| = vol(P) +
|∂P ∩Z2|

2
+ 1.

The Ehrhart series EhrP(t) of a polytope P is the formal power series

EhrP(t) = 1 + ∑
k≥1

ehrP(k)tk,

10



1.1 Polyhedral Geometry

Figure 1.4: The Ehrhart polynomial of the unit square is ehr(k) = (k + 1)2

which has the rational expression

EhrP(t) =
h∗P(t)

(1− t)dim(P)+1
,

where the h∗-polynomial h∗P(t) = ∑dim(P)
i=0 h∗i ti has degree at most dim(P). The coefficients

of the h∗-polynomial form the h∗-vector h∗ = (h∗0 , h∗1 , . . . , h∗dim(P)), where each h∗i is a
non-negative integer [Sta80] and their sum is equal to the normalized volume of P
within its affine span. The Ehrhart polynomial may be recovered from the h∗-vector via

ehrP(k) =
d

∑
i=0

h∗i

(
k + d− i

d

)
.

For a lattice polytope P = {x ∈ Rd : Ax ≤ b} with A ∈ Zm×d, b ∈ Zm, the multivariate
Ehrhart counting function ehrP : Zm → Z gives the number of lattice points in the vector
dilated polytope, i.e.

ehrP(a) = |{x ∈ Zd | Ax ≤ a}|.

This counting function is closely related to vector partition functions, which can be
used to show that ehrP(a) is piecewise-polynomial [DM88].

Example 1.1.4 (Ehrhart polynomial). We consider the unit square

P =

{
x ∈ R2

∣∣∣∣ ( 1 0
0 1
−1 0
0 −1

)
x ≤

( 1
1
0
0

)}
.

The Ehrhart polynomial of P is ehrP(k) = (k + 1)2 and the Ehrhart series is

EhrP(t) = 1 + ∑
k≥1

(k + 1)2tk =
t2 + 1
(1− t)3 =

h∗(t)
(1− t)3 .

The h∗-vector is thus h∗ = (1, 1) and indeed the sum h∗0 + h∗1 = 2 is the normalized
volume of P. The multivariate Ehrhart counting function counts the number of lattice
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points in the parameterized polytope

P(a) =
{

x ∈ R2
∣∣∣∣ ( 1 0

0 1
−1 0
0 −1

)
x ≤

( a1
a2
a3
a4

)}
=
{

x ∈ R2 | −a3 ≤ x1 ≤ a1,−a4 ≤ x2 ≤ a2
}

.

for a ∈ Z4. If −a3 ≤ a1 and −a4 ≤ a2, then P(a) 6= ∅. For such a ∈ Z4, the multivariate
Ehrhart counting function coincides with the polynomial

ehrP(a) = (a1 + a3 + 1)(a2 + a4 + 1).

Note that ehr(k(1, 1, 0, 0)t) = (k + 1)2 recovers the Ehrhart polynomial of the original
square P. �

1 .2 matroids and oriented matroids

Matroids are axiomatic abstractions of linear spaces, which arise through the axiom-
atization of linear independence of columns of a matrix. Oriented matroids can be
viewed as an abstraction of matroids representable over an ordered field. Matroids and
matroid subdivisions of hypersimplices are a key concept in Section 2.5 for the study
of tropical determinantal varieties of rank 3. Oriented matroids serve as an inspiration
for the ordered type of a hyperplane arrangement in Section 4.6, and oriented matroid
strata are central objects of study in Chapter 5. We follow the exposition of [Sch03,
Chapters 39–40] and [GOT17, Chapter 6.2.3].

Let E be a finite set. A matroid M = (B, E) on the ground set E is defined through a
nonempty finite collection B of subsets of E satisfying the basis exchange axiom

∀X, Y ∈ B, i ∈ X \Y ∃ j ∈ Y \ X : (X \ i) ∪ j ∈ B and (Y \ j) ∪ i ∈ B.

A set B ∈ B is called a basis of M. The basis exchange axiom implies that bases of
M have the same cardinality, and this cardinality is the rank of M. The rank of any
subset S ⊆ E is defined as rkM(S) = max(|S ∩ B| | B ∈ B) and a set F ⊆ E is a flat if
rk(F ∪ e) = rk(F) + 1 for any e ∈ E \ F. Equivalently, F is a flat if it equals its span,
where the span of a set S ⊆ E is defined as

span(S) = {e ∈ E | rk(S ∪ e) = rk(S)}.

Any (r× n)-matrix A of rank r with columns indexed by E induces a matroid MA of
rank r, where B ⊆ E is a basis of MA if and only if the determinant of the submatrix AB
with columns indexed by elements in B is nonzero. A matroid M is realizable if there
exists a matrix A such that M = MA.
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1.2 Matroids and Oriented Matroids

The matroid polytope (or matroid bases polytope) is the convex hull

PM = conv

(
∑
i∈B

ei

∣∣∣∣∣ B ∈ B
)
⊆ RE.

The vertices of PM are in bijection with bases of M and the basis exchange axiom implies
that a polytope matroid polytope is a 0/1-polytope with edges in direction ei − ej for
i, j ∈ E. Alternatively, we can characterize matroid polytopes as follows.

Theorem 1.2.1 ([FS05, Proposition 2.3]). The matroid polytope PM is given by the
hyperplane description

PM =
{

x ∈ RE | ∀ e ∈ E xe ≥ 0

and ∑
e∈F

xe ≤ rk(F) for all flats F ⊆ E

and ∑
e∈E

xe = rk(M)
}

A matroid subdivision of a polytope P is a subdivision in which every face is a matroid
polytope.

We now turn to chirotopes, which are maps encoding basis orientations of a matroid.
Chirotopes are in bijection with oriented matroids, i.e. every chirotope gives rise to a
unique oriented matroid and vice versa [BLVS+99, Theorem 3.5.5]. For the purposes of
this thesis we thus use these terms interchangeably. A chirotope of rank r is a nontrivial
alternating sign map χ : Er → {−, 0,+} such that

(i) {{λ1, . . . , λr} , | λ = (λ1, . . . , λr) ∈ Er, χ(λ) 6= 0} is the set of bases of a matroid,

(ii) for all λ = (λ1, . . . , λr−2) ∈ Er−2 and a, b, c, d ∈ E \ {λ1, . . . , λr−2} the set

{χ(λ, a, b)χ(λ, c, d), −χ(λ, a, c)χ(λ, b, d), χ(λ, a, d)χ(λ, b, c)}

either contains {+,−} or equals {0}.

Any (r× n)-matrix A of rank r with entries in an ordered field and columns indexed by
E induces a chirotope χA, where χA(λ) = sgn(det(Aλ)) and Aλ denotes the submatrix
of A with columns indexed by λ1, . . . , λr for λ ∈ Er. A chirotope χ is realizable if χ = χA
for some matrix A.
A realizable oriented matroid can be viewed in terms of a central hyperplane arrangement,
i.e. an arrangement of hyperplanes through the origin. Consider the arrangement H
of the n hyperplanes A⊥e ⊆ Rr, e ∈ E, which are orthogonal to the n columns of A.
The chambers of H are the connected components of Rr \ H. To each such chamber
C, we associate the signed covector s ∈ {−,+}E, se = sgn(〈 Ae, x 〉) for any x ∈ C. The
signed covector s describes for each hyperplane of H on which side of the hyperplane
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the chamber lies. These (maximal) signed covectors are also referred to as topes in the
literature. Again, the collection of signed covectors uniquely describes the oriented
matroid corresponding to the chirotope χA.

1 .3 tropical combinatorics

The main theme of Part I of this dissertation is tropical geometry, i.e. geometry over
the tropical semiring. In this section we establish the main combinatorial aspects of
tropical geometry that we will encounter in this thesis – tropical convexity and tropical
hypersurfaces. For this, we follow the conventions of [Jos21, Chapter 1 and 5]. In
Section 1.6 we discuss the Fundamental Theorem of tropical geometry, expanding
the tropical background towards a more algebraic direction. As is custom in tropical
geometry, we identify Rd ∼= (Rd)∗ with its dual space in this section.

The min-plus tropical semiring is defined as T = (R∪ {∞},⊕,�) = (R∪ {∞}, min,+),
where for elements a, b ∈ T we define the tropical addition a⊕ b and tropical multipli-
cation a� b by

a⊕ b = min(a, b), a� b = a + b.

In this semiring, the additive neutral element is ∞ and the multiplicative neutral element
is 0. We can extend the tropical operations to vector addition and scalar multiplication
in the tropical semimodule Td by applying them coordinate-wise. More specifically, we
define

λ� v⊕ µ� w = (min(λ + v1, µ + w1), . . . , min(λ + vd, µ + wd)).

for any scalars λ, µ ∈ T and vectors v = (v1, . . . , vd), w = (w1, . . . , wd) ∈ Td. Analo-
gously to the ordinary product of two matrices, the tropical matrix product A� B ∈ Td×n

of A ∈ Td×r, B ∈ Tr×n is the matrix with entries

(A� B)ij =
r⊕

k=1

Aik � Bkj = min
(

Aik + Bkj | k ∈ [r]
)

.

Since ∞ is the additive neutral element in the tropical semiring, the tropical projective
torus is defined as TPd−1 = Rd/(R � 1), in which points are considered modulo
addition with the all-ones vector.

1.3.1 Tropical Convexity

We now introduce the tropical analogue of convexity, which gives rise to the notion of
tropical polytopes. Polytropes are a special class of tropical polytopes, and will be the
main object of study in Chapter 3. They also serve as a tool for the proofs in Section 2.5.
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Figure 1.5: Left: The tropical polytopes P1, P2, P3 from Example 1.3.1 in the chart where the last
coordinate is 0, together with the dual mixed subdivision of 3∆2 from Example 1.3.3.
Right: The tropically convex set S that is not a tropical polytope.

Let V = {v1, . . . , vn} ⊆ Rd be a finite set of points. The tropical convex hull of V is given
by the set of all tropical linear combinations

tconv(V) = {λ1 � v1 ⊕ · · · ⊕ λn � vn | λ1, . . . , λn ∈ R}.

We write tconv(A) for the tropical convex hull of the points which form the columns
of a matrix A ∈ Rd×n. A set S ⊆ Rd is tropically convex if for any points s, t ∈ S the set
S contains the tropical line segment tconv(s, t). Note that λ� w = λ1+ w ∈ tconv(V)
for any point w ∈ tconv(V) and λ ∈ R. Thus, we identify a tropically convex set
with its image in the tropical projective torus TPd−1 = Rd/(R� 1). A tropical polytope
P ⊆ TPd−1 is the tropical convex hull of finitely many points.

Example 1.3.1 (Tropical convex hulls). Consider the tropical polytopes Pi = tconv(Ai) ⊆
TP2 with tropical vertices given as columns of the matrices

A1 =

1 0 −1
0 1 −1
0 0 0

 , A2 =

−1 0 1
0 −1 1
0 0 0

 , A3 =

 5 −1 −4
−1 5 −5
0 0 0

 .

The tropical polytopes P1, P2 and P3 are depicted in Figure 1.5. Furthermore we note

that tconv(A1) = tconv(At
1)−

(
1
1
0

)
. Indeed, viewing the columns of At

1 as points in

TP2, we obtain

At
1 =

 1 0 0
0 1 0
−1 −1 0

 ∼=
2 1 0

1 2 0
0 0 0

 ,
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which can be obtained by adding the vector
(

1
1
0

)
to each column of A1. In the discussion

below Theorem 1.3.2 we will see that this isomorphism tconv(A) ∼= tconv(At) holds in
more generality.
The triangle, which can be written as the ordinary convex hull S = conv(0, e1, e2) is a
tropically convex set, but not a tropical polytope. This can be seen from the fact that
any point s in the interior of the edge conv(e1, e2) cannot be written as the tropical
convex hull of any finite subset of S that does not contain s itself. �

The following theorem shows that any tropical polytope can be viewed as a polyhedral
complex consisting of ordinary polytopes.

Theorem 1.3.2 ([DS04, Theorem 1 and Lemma 7]). Let V = {v1, . . . , vn} ⊆ TPd−1

and let vij = (vj)i denote the ith coordinate of vj for j ∈ [n]. There is a piecewise-linear
isomorphism between the tropical polytope tconv(V) and the polyhedral complex of
bounded faces of the unbounded polyhedron

PV = {(y, z) ∈ Rd+n/(1, . . . , 1,−1, . . . ,−1) | yi + zj ≤ vij for all i ∈ [d], j ∈ [n]}.

The boundary complex of PV is dual to the regular subdivision of the product of
simplices ∆d−1 × ∆n−1 induced by the weights vij.

The bounded faces of PV are dual to the interior faces of the regular subdivision of
∆d−1 × ∆n−1, i.e. those faces which are not entirely contained in the boundary of
∆d−1 × ∆n−1. As a corollary of Theorem 1.3.2 we obtain that the polyhedral complexes
tconv(A) ⊆ Rd and tconv(At) ⊆ Rn are isomorphic for any matrix A ∈ Rd×n, since
the regular subdivision of ∆d−1 × ∆n−1 induced by the weights vij is isomorphic to the
regular subdivision of ∆n−1 × ∆d−1 induced by the weights vji. Furthermore, note that
the product of simplices is a Cayley polytope

∆d−1 × ∆n−1 = C(∆d−1, . . . , ∆d−1︸ ︷︷ ︸
n times

) ∼= C(∆n−1, . . . , ∆n−1︸ ︷︷ ︸
d times

) = ∆n−1 × ∆d−1. (1.1)

By the Cayley trick (cf. Section 1.1.3), the regular subdivisions of ∆d−1 × ∆n−1 are thus
in bijection with the coherent mixed subdivisions of n∆d−1 and d∆n−1.

Example 1.3.3. We continue with the three tropical polytopes from Example 1.3.1.
Figure 1.5 shows the corresponding mixed subdivisions of 3∆2, which are in bijection
with the regular subdivisions of ∆2 × ∆2 that are dual to the tropical polytopes in the
sense of Theorem 1.3.2. �

A tropical polytope P has a unique minimal set of points V such that P = tconv(V),
called tropical vertices [DS04, Proposition 21]. Considering P as a polyhedral complex in
the sense of Theorem 1.3.2, let pvert(P) denote the set of those vertices of the polyhedral
complex which are contained in the boundary of P. The set of tropical vertices of P is
contained in pvert(P). A point p ∈ pvert(P) which is not a tropical vertex is called a
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pseudovertex of P.

In Chapter 2 we will encounter different notions of the rank of a matrix A ∈ Rd×n

in tropical geometry, which have interpretations in terms of the tropical polytope
P = tconv(A) [DSS05]. The tropical rank of A equals the dimension of P as a polyhedral
complex, and the Barvinok rank of A is the number of tropical vertices of P. It is known
that the tropical rank is bounded from above by the Barvinok rank. In between lies the
Kapranov rank, which is the smallest dimension among all tropical linear spaces which
contain P.

1.3.2 Tropical hypersurfaces and Newton polytopes

We now turn to the description of tropical hypersurfaces. These will be crucial in
order to characterize tropical varieties and prevarieties. In Chapter 2 we will consider
tropical determinantal hypersurfaces, and introduce a notion of positivity for tropical
prevarieties, i.e. for the intersection of finitely many tropical hypersurfaces.

A tropical Laurent polynomial is a finite sum of the form

f (x) =
⊕
v∈S

cv � x�v = min
v∈S

(cv + 〈 x, v 〉),

where S ⊆ Zd and cv 6= ∞ for all v ∈ S. We use the notation x�2
i for xi � xi for a single

variable, and x�v = x�v1
1 � · · · � x�vd

d for a multivariate tropical Laurent monomial.
For each subset T ⊆ S we can consider the relatively open polyhedral regions

RT =
{

x ∈ Rd
∣∣∣ f (x) = cv + 〈x, v〉 if and only if v ∈ T

}
=
{

x ∈ Rd
∣∣∣ − f (x) = 〈( x

−1 ) , ( v
cv )〉 if and only if v ∈ T

}
.

The nonempty regions form a disjoint, relatively open covering of Rd. The Newton
polytope of f is defined as

N ( f ) = conv(v | v ∈ S) ⊆ Rd.

The coefficients define the lifting function h(v) = cv on the set S, yielding the lifted
Newton polytope lift(S) = conv(( v

cv ) | v ∈ S). Note that x ∈ RT if and only if ( x
−1 )

is a linear functional minimizing the lower face lift(T) of the lifted Newton polytope
for some T ⊆ S. Hence, the nonempty regions RT, T ⊆ S are dual to the regular
subdivision of the Newton polytope with lifting function h. The tropical hypersurface
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T ( f ) is the set

T ( f ) =
{

y ∈ Rd
∣∣∣ the minimum of {cv + 〈 y, v 〉 | v ∈ S} is attained at least twice

}
=

⋃
T⊆S
|T|≥2

RT.

Any such tropical hypersurface can be seen as a polyhedral complex, in which the
polyhedra are the Euclidean closures of the regions RT in the above union. The
previous observation yields the following duality statement.

Theorem 1.3.4 ([Jos21, Theorem 1.13]). The tropical hypersurface T ( f ) is dual to
the 1-skeleton of the regular subdivision of N ( f ), i.e. the collection of all faces of the
subdivision of dimension at least 1.

If all cv, v ∈ S have the same value (i.e. f has constant coefficients), then the regular
subdivision of N ( f ) is trivial, and so the tropical hypersurface V( f ) coincides with the
codimension-1 skeleton of the normal fan of the Newton polytope N ( f ).

Example 1.3.5 (Tropical hypersurfaces). Figure 1.6 shows the tropical hypersurfaces
T ( f1), T ( f2) ⊆ R2 and the dual regular subdivisions ofN ( f1) andN ( f2) of the tropical
polynomials

f1 = x1 ⊕ x2 ⊕ 1,

f2 = (1� x�2
1 )⊕ (x1 � x2)⊕ x⊕ y⊕ 1.

�

1 .4 algebraic varieties and valuations

We now turn to the background of the algebro-geometric aspects of this thesis. In this
section we introduce the basic concept of algebraic varieties and fields with valuations.

1.4.1 Affine Algebraic Varieties

A (complex, affine) variety V( f1, . . . , fk) ⊆ Cd is the vanishing set of finitely many
polynomials f1, . . . , fk ∈ C[x1, . . . , xd], i.e.

V( f1, . . . , fk) =
{

x ∈ Cd
∣∣∣ fi(x) = 0 for all i ∈ [k]

}
.

If I is the ideal generated by polynomials f1, . . . , fk, then V(I) = V( f1, . . . , fk). A
hypersurface is a variety of the form V( f ), i.e. the vanishing set of a single non-constant
polynomial f 6= 0. A variety is irreducible if it cannot be written as the union of two
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1 0

0

1 0 1

0 0

Figure 1.6: The tropical hypersurfaces and the dual subdivisions of the Newton polytopes of the
tropical polynomials from Example 1.3.5. The labels of the lattice points of N ( f ) are
the values of the respective coefficients of f , which induce the regular subdivision.

proper subvarieties, i.e.

V(I) = V(J) ∪ V(J′) =⇒ V(I) = V(J) or V(I) = V(J′).

If f , g ∈ C[x1, . . . , xd] then V( f g) = V( f ) ∪ V(g) and hence a hypersurface V( f ) is
irreducible if and only if f cannot be factored into nonconstant polynomials f = gg′.
The Zariski topology is the topology on Cd in which varieties are the closed sets. The
Zariski closure of a set S ⊆ Cd is the closure with respect to the Zariski topology, i.e. the
smallest algebraic variety V (with respect to inclusion) such that S ⊆ V .
The complex algebraic torus is (C∗)d =

{
x ∈ Cd

∣∣ xi 6= 0 for all i ∈ [d]
}

. Similarly, we
can define the algebraic torus over any field K as (K∗)d =

{
x ∈ Kd

∣∣ xi 6= 0for all i ∈ [d]
}

.

1.4.2 Fields With Valuations

Valuations play a central role in the notion of tropicalization. Most importantly, in
Chapter 2 we will consider the fields of real and complex Puiseux series, equipped with
their canonical valuations induced by the degree map.

Let K be a field. A valuation on K is a function val : K → R∪ {∞} such that

(i) val(a) = ∞ if and only if a = 0,

(ii) val(ab) = val(a) + val(b),

(iii) val(a + b) ≥ min(val(a), val(b))
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holds for all a, b ∈ K. These conditions imply that val(a + b) = min(val(a), val(b)) if
val(a) 6= val(b). Every field has a trivial valuation in which val(a) = 0 for every nonzero
a ∈ K. For a point x = (x1, . . . , xd) ∈ Kd we write val(x) = (val(x1), . . . , val(xd)) for
the coordinate-wise valuation.

Example 1.4.1 (Puiseux series). The field of Puiseux series K{{t}} over a field K can
be defined as the union of Laurent series

⋃
N≥1 K((t1/N)) in the formal variable t1/N .

Nonzero elements in this field are of the form

x(t) =
∞

∑
k=k0

cktk/N for some k0 ∈ Z, N ∈N,

i.e. formal power sums with coefficients ck ∈ K, rational exponents with a common
denominator N, and a term with lowest exponent k0

N and nonzero coefficient ck0 . We
denote the leading term of x(t) by lt(x(t)) = ck0 tk0/N and the leading coefficient by
lc(x(t)) = ck0 . The degree map deg : K{{t}} → Q maps a Puiseux series to its lowest
non-zero exponent deg(x(t)) = k0

N . This induces the valuation val(x) = deg(x) for all
nonzero x ∈ K{{t}} and val(0) = ∞. �

In the following sections, we denote the complex and real Puiseux series by C =
C{{t}} and R = R{{t}} respectively. If K is an algebraically closed field of char-
acteristic 0, then so is K{{t}}, and therefore C is algebraically closed. In order to
be able to define initial forms over fields with valuations, we consider the valua-
tion ring R = {a ∈ K | val(a) ≥ 0} ∪ {0}. The unique maximal ideal of R is m =
{a ∈ K | val(a) > 0} ∪ {0} and for a ∈ K we denote by a the image of a in the residue
field R/m.

Example 1.4.2 (Images in the residue field). Let x(t) = ∑∞
k=k0

cktk/N ∈ K{{t}}, so

val(x(t)) = k0
N . We compute the image t− val(x(t))x(t) inside the residue field. Note that

t− val(x(t))x(t) =
∞

∑
k=k0

ckt(k−k0)/N =
∞

∑
k=0

ck+k0 tk/N

and the image inside the residue field is thus t− val(x(t))x(t) = lc(x(t)) = ck0 .
On the other hand, if K is a field with trivial valuation then R/m = K and val(x) = 0
for any x ∈ K \ {0}. In this case t− val(x)x = x = x. �

1 .5 gröbner theory

Gröbner bases are a key concept in tropical geometry. The Fundamental Theorem of
tropical algebraic geometry in Section 1.6 establishes the connection between initial ide-
als and tropical varieties, and is the main tool to detect tropical positivity in Chapter 2.
In Chapter 3 we study polytropes via the polytrope region, which is the intersection of
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1.5 Gröbner Theory

a polyhedral cone with certain Gröbner fan.

Let K be a field with valuation. In most of the literature on Gröbner theory, the valuation
is assumed to be trivial and ideals are contained in the polynomial ring. This is the
setup of Chapter 3. However, for the purposes of tropical geometry as in Section 1.6 it
is important to allow non-trivial valuations and ideals in the Laurent polynomial ring.
The material presented in this section reduces to the conventional exposition (as e.g.
in [CLO15, Chapter 2]) in the case of trivial valuations. Here, the distinction between
Laurent polynomial rings and polynomial rings does not make a significant difference.
In order to avoid assumptions on the properties of the valuations for this thesis, we
assume that (K, val) is either a field of complex or real Puiseux series (C, val) =
(C{{t}}, val) or (R, val) = (R{{t}}, val) as described in Example 1.4.1, or a field K with
trivial valuation. We follow the exposition in [MS15, Chapter 2.4–2.5].

Given a vector v = (v1, . . . , vd) ∈ Zd, we write xv for the Laurent monomial ∏d
i=1 xvi

i .
Given a nonzero Laurent polynomial f = ∑v∈S cvxv, S ⊆ Zd, the weight of a monomial
term cvxv with respect to w is val(cv) + 〈 v, w 〉. The initial form inw( f ) of f with respect
to w is the sum of all terms of minimal weight. More precisely, let

mw = min(val(cv) + 〈 v, w 〉 | v ∈ S) .

Then the initial form of f is defined as

inw( f ) = ∑
v∈S:

val(cv)+〈 v,w 〉=mw

t− val(cv)cv xv.

Example 1.4.2 implies that if (K, val) equals (C, val) or (R, val) then

inw( f ) = ∑
v∈S:

val(cv)+〈 v,w 〉=mw

lc(cv)xv

and if K has trivial valuation then

inw( f ) = ∑
v∈S:

〈 v,w 〉=mw

cvxv.

Let I = 〈 f1, . . . , fk〉 ⊆ R be an ideal inside the polynomial ring R = K[x1, . . . , xd] or
inside the Laurent polynomial ring R = K[x±1

1 , . . . , x±1
d ]. The initial ideal inw(I) ⊆ R of

I with respect to w is the ideal

inw(I) = 〈inw( f ) | f ∈ I〉.

In general, the initial forms of the generators f1, . . . fk do not generate the initial ideal
inw(I). However, for any ideal I ⊆ R there exists a Gröbner basis of I with respect to the
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weight vector w, i.e. a finite set G ⊆ R such that inw(I) = 〈inw(g) | g ∈ G〉. If R is the
polynomial ring and K has trivial valuation, then every such Gröbner basis generates
the ideal [CLO15, Corollary 2.5.6]. If R is the Laurent polynomial ring over a field with
arbitrary valuation, then this is only the case if I is homogeneous [MS15, Remark 2.4.4].
In this case, we can choose G to be a homogeneous Gröbner basis [MS15, Lemma 2.4.2].

Two distinct weight vectors w, w′ ∈ Rd can induce the same initial ideal inw(I) = inw′(I).
The set of such weight vectors forms the (relatively open) polyhedron

Cw(I) = {w′ ∈ Rd | inw(I) = inw′(I)}.

The collection of the Euclidean closures of all such polyhedra form the Gröbner complex,
a polyhedral complex which covers the entire space Rd. If K has trivial valuation, then
each such polyhedron is a cone. The collection of all these cones forms the Gröbner fan
GF of the ideal I, which is a complete polyhedral fan.

Let K be a field with trivial valuation and R = K[x1, . . . , xd]. The initial ideal inw(I) is
a monomial ideal for any fixed generic weight vector w. Let G be a Gröbner basis of
inw(I). A standard monomial with respect to G is a monomial in K[x1, . . . , xd]/ inw(I)
and the standard monomials form a K-vectorspace basis for K[x1, . . . , xn]/I [Stu96,
Chapter 10]. Therefore, any polynomial p modulo I can be expressed in its normal form
modulo G, which is the unique representation of p modulo I as a K-linear combination
of standard monomials [CLO15, Chapter 2 §6].

1 .6 tropical varieties

In this section we discuss the Fundamental Theorem of tropical algebraic geometry,
which characterizes three equivalent ways to describe tropical varieties. This will be
particularly important in Chapter 2, where we consider tropical determinantal varieties
and point configurations on tropicalizations of linear spaces. We follow the conventions
of [MS15, Chapter 3.2].

Let (K, val) be a field with valuation. As in Section 1.5, we assume that (K, val) is
either the field of complex or real Puiseux series, or a field with trivial valuation. Let
f = ∑v∈S cvxv ∈ K[x±1

1 , . . . , x±1
d ] be a nonzero Laurent polynomial. The tropicalization of

the Laurent polynomial f is the tropical Laurent polynomial

trop( f ) =
⊕
v∈S

val(cv)� x�v.

Recall from Section 1.3.2 that T (trop( f )) denotes the tropical hypersurface, i.e. a
subcomplex of the dual complex of a regular subdivision of the Newton polytope
N ( f ) = N (trop( f )). Kapranov’s Theorem relates tropical hypersurfaces to valuations
(cf. Section 1.4.2) and initial forms (cf. Section 1.5).
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1.6 Tropical Varieties

Theorem 1.6.1 (Kapranov’s Theorem, [MS15, Theorem 3.1.3]). Let K be an alge-
braically closed field with a nontrivial valuation, f ∈ K[x±1

1 , . . . , x±1
d ] be a Laurent

polynomial and V( f ) ⊆ (K∗)d be the defined hypersurface inside the algebraic torus.
Then the following three subsets of Rd coincide.

(i) T (trop( f ))

(ii)
{

w ∈ Rd
∣∣ inw( f ) is not a monomial

}
(iii) cl ({val(x) | x ∈ V( f )})

Example 1.6.2 (Tropical line). Let f = x1− x2 + t ∈ C[x1, x2]. Then the tropicalization of
the Laurent polynomial is trop( f ) = x1 ⊕ x2 ⊕ 1. The tropical hypersurface T (trop( f ))
is thus the tropical line from Example 1.3.5 and is depicted in Figure 1.6 on page 19.
This gives a description of trop(V( f )) as in Theorem 1.6.1(i). In terms of initial forms
we have

inw( f ) =



x1 + t if w = (1, w2), w2 > 1,

−x2 + t if w = (w1, 1), w1 > 1,

x1 − x2 if w = (w1, w1), w1 < 1,

x1 − x2 + t if w = (1, 1),

monomial otherwise,

and Theorem 1.6.1(ii) implies that the tropical line is the set of weight vectors w such
that inw( f ) is not a monomial. Finally, for a description as in Theorem 1.6.1(iii), note
that

V( f ) =
{( x1

x1+t
) ∣∣ x1 ∈ C

}
=
{( x2−t

x2

) ∣∣ x2 ∈ C
}

and we have

val
(( x1

x1+t
))

=


(

val(x1)
val(x1)

)
if val(x1) < 1,(

val(x1)
1

)
if val(x1) ≥ 1,

val
(( x2−t

x2

))
=


(

val(x2)
val(x2)

)
if val(x2) < 1,(

1
val(x2)

)
if val(x2) ≥ 1.

As promised by Theorem 1.6.1, all of these descriptions coincide. �

The Fundamental Theorem of Tropical Algebraic Geometry extends Kapranov’s Theo-
rem to general algebraic varieties. Let I ⊆ K[x±1

1 , . . . , x±1
d ] be an ideal and V(I) ⊆ (K∗)d

be the corresponding algebraic variety. The tropicalization trop(V(I)) of the variety V(I)
is the Euclidean closure of the set of valuations of points of V(I) inside the algebraic
torus, i.e.

trop(V(I)) = cl ({val(x) | x ∈ V(I)}) ⊆ Rd.
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A tropical variety is any subset of Rd that can be obtained as the tropicalization of some
algebraic variety. Tropical varieties can be characterized as follows.

Theorem 1.6.3 (Fundamental Theorem of Tropical Algebraic Geometry, [MS15,
Theorem 3.2.3]). Let K be an algebraically closed field with a nontrivial valuation,
I ⊆ K[x±1

1 , . . . , x±d ] be an ideal and V(I) ⊆ (K∗)d be the defined variety inside the
algebraic torus. Then the following three subsets of Rd coincide.

(i)
⋂

f∈I T (trop( f ))

(ii)
{

w ∈ Rd
∣∣ inw(I) 6= 〈1〉

}
(iii) cl ({val(x) | x ∈ V(I)})

The tropicalization trop(V(I)) is a pure, strongly connected (i.e. connected through
codimension 1) polyhedral complex, whose dimension equals the dimension of V(I).
The Fundamental Theorem implies that every tropical variety can be written as
the intersection of infinitely many tropical hypersurfaces. In fact, any tropical va-
riety is also a tropical prevariety, i.e. the intersection of finitely many hypersurfaces
trop(V(I)) =

⋂
f∈B trop(V( f )) [MS15, Theorem 2.6.6]. The finite set B ⊆ I is a tropical

basis of the ideal I.

We now discuss an analog to the “constant coefficient case” of tropical hypersurfaces
from Section 1.3.2 which we need for our purposes in Chapter 2. In this case, a
tropical variety turns out to be a polyhedral fan, i.e. a polyhedral complex with-
out bounded faces. Let K be a field with trivial valuation and K{{t}} be the field
of Puiseux series over K. Take f1, . . . , fk ∈ K[x±1

1 , . . . , x±1
d ] and consider the ideal

I = 〈 f1, . . . , fk〉 ⊆ K{{t}}[x±1
1 , . . . , x±1

d ] generated over the Laurent polynomial ring
with coefficients in the Puiseux series. Then trop( fi) is a tropical polynomial with
constant coefficients in the sense of Section 1.3.2. Furthermore, the tropical variety
trop(V(I)) is a polyhedral fan [MS15, Lemma 2.6.5].

We close this section with a discussion on different versions of the Fundamental
Theorem in the literature. Many older articles rely on a version of the Fundamental
Theorem which is stated for ideals generated over the polynomial ring, and thus
consider the variety V(I) inside Kd. The Fundamental Theorem over the polynomial
ring states the following.

Theorem 1.6.4 (Fundamental Theorem over the polynomial ring [SS04, Theorem 2.1]).
Let K be an algebraically closed field with a nontrivial valuation, I ⊆ K[x1, . . . , xd] be
an ideal and V(I) ⊆ Kd be the defined variety. Then the following three subsets of Rd

coincide.

1.)
⋂

f∈I T (trop( f ))
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1.6 Tropical Varieties

2.)
{

w ∈ Rd
∣∣ inw(I) does not contain a monomial

}
3.) cl

({
val(x)

∣∣ x ∈ V(I) ∩ (K∗)d})
We now show that these two versions of the Fundamental Theorem agree. To make
this statement more rigorous, we fist collect some basic facts. For the remainder of
this section, we denote by I the ideal generated by polynomials f1, . . . , fk over the
polynomial ring and by I± the ideal generated over the Laurent polynomial ring.
First note, that for any ideal J ⊆ K[x±1

1 , . . . , x±1
d ] there exist polynomial generators

f1, . . . , fk ∈ K[x1, . . . , xd] such that J = 〈 f1, . . . , fk〉±. In other words, any such ideal J is
of the form J = I± for some ideal I ⊆ K[x1, . . . , xd]. To see this, let g1, . . . , gk be Laurent
polynomials which generate J. Then any element h ∈ J is of the form h = ∑k

i=1 cigi for
some Laurent polynomials ci, i ∈ [k]. There exists some monomial xα, α ∈ Zd

≥0 such
that for all i ∈ [k] the product fi = xαgi is a polynomial. Thus,

h =
k

∑
i=1

(x−αci)(xαgi) =
k

∑
i=1

(x−αci) fi ∈ 〈 f1, . . . , fk〉±.

Second, note that we can write I± = I · K[x±1
1 , . . . , x±d ], i.e. every element in I±

can be written as product f g, where f ∈ I and g ∈ K[x±1
1 , . . . , x±d ]. To see this, let

I = 〈 f1, . . . , fk〉 and h = ∑k
i=1 ci fi ∈ I± with Laurent polynomials ci, i ∈ [k]. Again, we

can choose some monomial xα, α ∈ Zd
≥0 such that for all i ∈ [k] the product xαci is a

polynomial. This yields h = ∑k
i=1 ci fi = x−α ∑k

i=1 xαci fi and ∑k
i=1 xαci fi ∈ I.

Theorem 1.6.5. For any ideal, each of the three characterizations of the fundamental
theorems over the polynomial ring (Theorem 1.6.4) and the Laurent polynomial ring
(Theorem 1.6.3) are equivalent.

Proof. Let f1, . . . fk ∈ K[x1, . . . , xd] ⊆ K[x±1
1 , . . . , x±1

d ]. Recall that we denote by I the
ideal generated by polynomials f1, . . . , fk over the polynomial ring and by I± the ideal
generated over the Laurent polynomial ring. V(I) ⊆ Kd and V(I±) ⊆ (K∗)d denote the
respective varieties. Furthermore, recall that any ideal over the Laurent polynomial
ring has polynomial generators.

(i) ⇐⇒ (1): We show that
⋂

f∈I T (trop( f )) =
⋂

h∈I± T (trop(h)). Kapranov’s Theorem
(Theorem 1.6.1) implies that T (trop( f )) = trop(V( f )) for any Laurent polynomial. For
the corresponding hypersurface inside the torus holds V( f ) = V(〈 f 〉±). We thus obtain⋂

f∈I

T (trop( f )) =
⋂
f∈I

trop(V(〈 f 〉±))

=
⋂
f∈I

⋂
g∈K[x±1

1 ,...,x±d ]

trop(V(〈g f 〉±))
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=
⋂
f∈I

⋂
g∈K[x±1

1 ,...,x±d ]

T (trop(g f ))

=
⋂

h∈I±
T (trop(h)).

(ii) ⇐⇒ (2): We show that inw(I) contains a monomial if and only if inw(I±) = 〈1〉.
First note that inw( f g) = inw( f ) inw(g) holds in both rings [MS15, Lemma 2.6.2]. Let
w ∈ Rd such that inw(I) contains a monomial. Then there exists some f ∈ I such that
inw( f ) = xα for some α ∈ Zd

≥0. Since I ⊆ I± we have that f ∈ I±, and hence x−α f ∈ I±.
Furthermore, inw(x−α f ) = x−α inw( f ) = x−αxα and thus inw(I±) = 〈1〉.
Conversely, let w ∈ Rd such that inw(I±) = 〈inw(h) | h ∈ I±〉 = 〈1〉. By [MS15, Lemma
2.6.2], for any q ∈ inw(I±) there exists some h ∈ I± such that q = inw(h). Thus,
1 = inw(h) for some h ∈ I±. Since I± = I · K[x±1

1 , . . . , x±d ] we can write h = f g for some
polynomial f ∈ I and some Laurent polynomial g. Note that there exists a monomial
α ∈ Zd

≥0 such that xαg ∈ K[x1, . . . , xd] and thus xα f g ∈ I. This yields

inw(xα f g) = xα inw( f g) = xα ∈ inw(I).

(iii) ⇐⇒ (3): Since the Laurent polynomial ring is the coordinate ring of the algebraic
torus, by localization we obtain that V(I) ∩ (K∗)d = V(I±). Hence, we have equality
of the sets

{
val(x)

∣∣ x ∈ V(I) ∩ (K∗)d} = {val(x) | x ∈ V(I±)} and in particular their
Euclidean closures agree.

1 .7 toric geometry

In this section we give an introduction to toric varieties, divisors and toric intersection
theory on smooth toric varieties. In Chapter 3 we will consider toric varieties defined by
a certain class of smooth fans in order to compute volume polynomials of polytropes.
We follow the exposition of [CLS11, Chapters 1, 3, 4, 12, 13].

1.7.1 Normal Toric Varieties

A toric ideal is a prime ideal that is generated by binomials which are differences of
monomials. The lattice points S = C∨ ∩ (Zd)∗ in the dual cone of a rational polyhedral
cone C ⊆ Rd form a (saturated) semigroup, i.e. x + y ∈ C∨ for all x, y ∈ C∨. If
A = {m1, . . . , ms} is a finite generating set for S, we consider the matrix A with
columns m1, . . . , ms. For each point α ∈ ker A ∩Zs we write α = α+ − α−, where
α+, α− ∈ Zs

≥0. The (normal) affine toric variety UC ⊆ Cs of the cone C is the variety
defined by the toric ideal

I = 〈xα+ − xα− | α ∈ ker A ∩Zs〉
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1.7 Toric Geometry

[CLS11, Proposition 1.1.9]. We have that dim(UC) = dim(C). Since every proper
face F of C is a cone of lower dimension, UF is an affine open subset subset of UC
[CLS11, Proposition 1.3.16]. Each toric variety admits an action of a torus T, which is
an algebraic variety isomorphic to the algebraic torus (C∗)d that T inherits a group
structure from this isomorphism.
Let Σ be a complete rational polyhedral fan, e.g. the normal fan of a polytope. The
(normal) toric variety XΣ associated to Σ consists of affine pieces UC, C ∈ Σ, which
are glued together along affine subvarieties corresponding to common faces [CLS11,
Chapter 3.1]. We note that dim(XΣ) = dim(Σ) and that the variety is smooth if and
only if the fan is smooth (in the sense of Section 1.1.2).

Example 1.7.1 (Affine toric varieties). Consider the cones

C = cone(e1, e2, e1 + e3, e2 + e3), C∨ = cone(e1, e2, e3, e1 + e2 − e3)

The four ray generators of C∨ generate the semigroup S = C∨ ∩ (Z3)∗. Computing the
kernel of the matrix whose columns are these four generators yields

A =

1 0 0 1
0 1 0 1
0 0 1 −1

 , ker A = span (1 1 − 1 − 1)

and so the toric ideal is by I = 〈x1x2 − x3x4〉. This defines the toric variety UC, which
is a hypersurface in C4. �

Each affine piece can be written as union of “torus orbits” UC =
⋃

F is a face of C O(F).
The Zariski closure of such a torus orbit is a (toric) subvariety of XΣ of dimension
codim(C) [CLS11, Theorem 3.2.6]. Thus, each ray u of the fan Σ corresponds to a
torus-invariant subvariety of codimension 1, called a torus-invariant prime divisor. From
now on let XΣ be a smooth variety. A torus-invariant (Weil) divisor on XΣ is an integral
combination

D = ∑
u∈Σ

dim(u)=1

cuDu,

where the sum ranges over all 1-dimensional cones u of Σ, cu ∈ Z and Du is the
torus-invariant prime divisor corresponding to the ray u. In principle, one has to
distinguish between different classes of divisors, namely Weil divisors and Cartier
divisors. However, on smooth varieties both classes coincide [CLS11, Theorem 4.0.22]
and so we refer to them as divisors.

1.7.2 Volumes via Toric Intersection Theory

Let P ⊆ Rd be the simple lattice polytope

P =
{

x ∈ Rd
∣∣∣ 〈 x, ui 〉+ bi ≥ 0 for i ∈ [m]

}
,
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where ui is the primitive (inner) facet normal of the facet

Fi = {x ∈ P | 〈 x, ui 〉+ bi = 0} .

We denote by Σ the (inner) normal fan of P and by XΣ the toric variety defined by the
fan Σ. We assume that Σ is a smooth fan and thus XΣ is a smooth variety of dimension
dim(XΣ) = dim(P). As described in Section 1.7.1, a fixed ray generator ui of a ray in Σ
corresponds to a torus-invariant prime divisor Di of XΣ. This is a subvariety of XΣ of
codimension 1 and as such gives rise to a cohomology class [Di] ∈ H2(X, Q). We define
the divisor of the polytope P as the linear combination DP = ∑m

i=1 biDi, which induces the
cohomology class [DP] = [∑m

i=1 biDi] = ∑m
i=1 bi[Di].

Our main motivation for considering cohomology classes of divisors on toric varieties
is to compute the volume of P. Inside the cohomology ring, the volume of P can be
expressed the “integral” (or “intersection product”) as follows.

Theorem 1.7.2 ([CLS11, Theorem 13.4.1]). The normalized volume of P is given by

Vol(P) =
∫

X

[
m

∑
i=1

biDi

]dim(XΣ)

.

Instead of describing the intersection product inside the cohomology ring explicitly,
we make use of an isomorphism between the cohomology ring and a quotient of
a polynomial ring. We now explain this isomorphism and establish the analogous
statement of Theorem 1.7.2 under this isomorphism. The Stanley-Reisner ideal plays a
central role in the statement of this isomorphism.
Let K be a field of characteristic 0. The boundary complex ∂P◦ of the polar polytope P◦

is a simplicial complex on m vertices, which allows us to consider the Stanley-Reisner
ideal of ∂P◦. This is the ideal M in the polynomial ring R = K[x1, . . . , xm] which is
generated by the (inclusion-minimal) non-faces of ∂P◦, i.e.

M = 〈xi1 · · · xik | {i1, . . . , ik} is not a face of ∂P◦〉.

The cohomology ring H∗(X, Q) is isomorphic to the graded ring R/(L + M), where L
is the ideal

L =

〈
m

∑
i=1
〈e, ui〉xi

∣∣∣∣∣ e ∈ B
〉

,

and B be a basis of Zd. The variable xi in R/(L + M) corresponds to [Di], the cohomol-
ogy class of a torus-invariant prime-divisor. Therefore, the expression [∑m

i=1 biDi]
dim(XΣ)

in Theorem 1.7.2 translates to a polynomial(
m

∑
i=1

bixi

)dim(P)

∈ H2 dim(P)(X, Q)⊗ K = (R/(L + M))dim(P).
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1.8 Semialgebraic Sets and Algebraic Boundaries

The top cohomology group is a one-dimensional vector space. Let γ ∈ K and γxα be a
basis of this vector space in normal form (in the sense of Section 1.5) modulo L + M as
a K-vectorspace. The expression (∑m

i=1 bixi)
dim(P) ∈ R/(L + M) has a normal form δxα

with coefficient δ ∈ K. The volume of P is given by the constant δ
γ [DLS03, Algorithm

A]. In Chapter 3 we explicitly compute these intersection products for polytropes of
dimensions at most 4, i.e. polytopes with normal vectors ei − ej, i, j ∈ [n− 1] and ±ei.

1 .8 semialgebraic sets and algebraic boundaries

In Part II of this thesis we make use of tools from real algebraic geometry to study sets
defined by polynomial inequalities. In Chapter 4 we show that the intersection body
of a polytope is always a semialgebraic set and we give bounds on the degrees of the
irreducible components of the algebraic boundary. In Chapter 5 we study the possible
combinatorial types of correlated equilibrium polytopes via oriented matroid strata,
which are semialgebraic sets. We follow the conventions of [BCRR98, Chapter 2].

A set S ⊆ Rd is a basic closed semialgebraic set if it can be written as the intersection of
finitely many polynomial inequalities, i.e.

S =
{

x ∈ Rd
∣∣∣ f1(x) ≥ 0, . . . , fk(x) ≥ 0

}
for polynomials f1, . . . , fk ∈ R[x1, . . . , xd]. A set is a basic open semialgebraic set if it is of
the form

S =
{

x ∈ Rd
∣∣∣ f1(x) > 0, . . . , fk(x) > 0

}
.

A semialgebraic set is a finite boolean combination (i.e. unions, intersections and comple-
ments) of basic (closed or open) semialgebraic sets.

Example 1.8.1 (Semialgebraic sets). Let f1 = x1, f2 = x2 and f3 = x2
1 + x2 − 1. The

set of points in R2 such that f3(x) ≤ 0 is the unit disk, and the set of points such
that f1(x), f2(x) ≥ 0 are the right and upper halfplane respectively. The basic closed
semialgebraic sets

S1 =
{

x ∈ R2 ∣∣ f1 ≥ 0, f2 ≥ 0, f3 ≤ 0
}

,

S2 =
{

x ∈ R2 ∣∣ f1 ≤ 0, f2 ≤ 0, f3 ≤ 0
}

are shown in Figure 1.7. �

Note that, in particular, every polytope is a basic semialgebraic set. Furthermore, any
coordinate projection of a semialgebraic set is semialgebraic.

Theorem 1.8.2 (Tarski-Seidenberg Theorem [BCRR98, Theorem 2.2.1]).
Let π : Rd+1 → Rd, (x1, . . . , xd, xd+1) 7→ (x1, . . . , xd) be the coordinate projection.
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1 background

Figure 1.7: The semialgebraic sets S1 (left) and S2 (right) from Example 1.8.1.

However, this statement does not hold for basic semialgebraic sets: While the projection
of a basic semialgebraic set is still semialgebraic, it is in general not basic.

In Chapters 4 and 5 we will study semialgebraic sets by algebraic means. The main
tool for this is the algebraic boundary ∂aS ⊆ Cd of such a set S ⊆ Rd, which is the Zariski
closure of the topological (Euclidean) boundary ∂S over C. If a semialgebraic set is
compact and convex, then its algebraic boundary is a hypersurface [Sin15, Proposition
2.9].

Example 1.8.3 (Algebraic boundary). The two sets S1 and S2 from Example 1.8.1 have
a common algebraic boundary ∂aS1 = ∂aS2. It is the hypersurface defined by the
polynomial

f1 f2 f3 = x1x2(x2
1 + x2

2 − 1).

The irreducible components are thus the unit circle and the two coordinate hyperplanes,
as shown in Figure 1.8. �

Figure 1.8: The real picture of the algebraic boundary of the semialgebraic sets S1 and S2, as
described in Example 1.8.3.
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Part I

Tropical Positivity and Polytropes





2
T R O P I C A L P O S I T I V I T Y A N D D E T E R M I N A N TA L VA R I E T I E S

Tropicalization is a modern and powerful tool for understanding algebraic varieties via
a polyhedral ‘shadow’, to which combinatorial tools can be applied (for instance to solve
enumerative problems). We are particularly interested in identifying the tropicalization
of semialgebraic subsets of algebraic varieties as a subset of the tropicalization of the
whole (complex) variety. Specifically, we care about the positive part of an algebraic vari-
ety, which arises in various applications from combinatorial optimization [GMTW19]
to physics [SW21; ALS21] and statistics [MSUZ16]. The tropicalizations of the positive
parts of various classical varieties have been studied before. In this work, we focus on
determinantal varieties inspired by applications to optimization.
A finite generating set of the vanishing ideal of a given variety (in other words, an
algebraic description) can be tropicalized to define a polyhedral complex known as a
tropical prevariety. If this happens to coincide with the tropicalization of the variety
itself, the generating set is called a tropical basis. We coin the notion of positive-tropical
generators as an analog of this property for the positive part. For determinantal varieties,
all cases where the appropriate minors form a tropical basis have been classified in a
series of works [DSS05; CJR11; Shi13]. We take the first steps towards a characterization
when they are also positive-tropical generators.
This question has been studied before for other varieties: [SW21; ALS21] showed that
the 3-term Plücker relations form a set of positive-tropical generators of the tropical
Grassmannian (even though they are, in general, not a tropical basis). The main result
of [Bor21] implies that the tropicalizations of the incidence Plücker relations form a
set of positive-tropical generators of the tropical complete flag variety. For the tropical
Pfaffian, [RS22, Corollary 4.5] implies that the polynomials defining the tropical Pfaffian
prevariety, when restricting to a certain (Gröbner) cone, form a set of positive-tropical

Figure 2.1: The Birkhoff polytope B3, which characterizes the tropical determinantal variety T2
3,3.
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2 tropical positivity and determinantal varieties

generators of the restriction of the tropical Pfaffian to this cone. In the context of cluster
varieties, the proof of [JLS21, Proposition 4.1] implies that the generators of the cluster
variety form a positive-tropical generating set (although it is unknown whether they
form a tropical basis).
The notions of positivity differ in the literature on positivity in tropical geometry,
e.g. distinguishing between positive solutions over the complex Puiseux series and
positive solutions that are fully real. We therefore also introduce the notion of really
positive-tropical generators, which cut out the fully real, positive part. Inspired by Viro’s
patchworking [Vir83; Vir06] – a combinatorial tool to construct real algebraic curves
with prescribed topology – we extend this idea of positive generators to arbitrary sign
patterns, introducing the notion of (really) signed-tropical generators. Generating sets
for signed tropicalizations have been studied in [Tab15] under the name ‘real tropical
bases’. Really signed-tropical generators turn out to allow for more flexibility and may
exist even if real tropical bases do not.
Our main results are combinatorial criteria for the (signed) tropicalization of determi-
nantal varieties, i.e. the set of matrices of bounded rank [MS05]. This variety is closely
related to the Grassmannian. For this study, we introduce the triangle criterion, which
is our main tool for identifying positivity. This criterion is purely combinatorial, and
relies on the graph structure of the Birkhoff polytope. As a special case, we consider
the determinantal varieties of low rank matrices, i.e. matrices of rank 2 and 3.
In rank 2, the (3× 3)-minors form a tropical basis [DSS05]. We relate this to the novel
notion of positive-tropical generators.

Theorem 2 .4 .3 . The (3× 3)-minors form a set of positive-tropical generators the
tropical determinantal variety of rank 2.

The points of the tropical variety (of matrices of Kapranov rank at most 2) are matrices,
whose column span is contained in a tropical line and the columns can be interpreted
as marked points on this line. This is how Develin, and Markwig and Yu associate a
bicolored phylogenetic tree to such a matrix [Dev05; MY09]. We show that this tree
determines the positivity of the tropical matrix.

Corollary 2 .4 .6 . A (tropical) matrix in the tropical determinantal variety of rank
2 lies in the tropicalization of the positive part if and only if the associated tree is a
caterpillar tree.

This relies on the fact, that the nonnegative rank is equal to the rank for a real matrix of
rank 2 (with nonnegative entries) and a result from [Ard04], showing that the positive
part consists precisely of those matrices with Barvinok rank 2 (Theorem 2.4.2). The
construction of bicolored phylogenetic trees realizes the tropical determinantal variety
combinatorially as a subfan of the tropical Grassmannian [MY09]. In the spirit of
[MY09], we establish a bijection on the level of the corresponding matrices and tropical
Plücker vectors, highlighting that this bijection is induced by a simple coordinate
projection (Theorem 2.4.23).
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In rank 3, the (4× 4)-minors are in general not a tropical basis and we do not know
if they are positive-tropical generators. For the combinatorial criterion, we thus only
obtain a necessary condition for positivity – or, in other words, a combinatorial certificate
of non-positivity, which we call Starship Criterion. In this case, the column span of
a matrix in the tropicalization of the determinantal variety of rank 3 is contained
in a tropical plane. The notion of a starship is inspired by the geometry of point
configurations on a tropical plane, which certify non-positivity.

Theorem 2 .5 .5 (Starship Criterion ) . A matrix in the tropical determinantal
variety of rank 3 does not lie in the tropicalization of the positive part if the induced
point configuration forms a starship.

By [HJJS09], a tropical plane is uniquely determined by its tree arrangement (namely the
trees obtained by intersecting the plane with the hyperplanes at infinity). However, we
show that the bicolored tree arrangement that we can derive from a tropical matrix (of
Kapranov rank at most 3) does not contain sufficient information to determine positivity:
The main issue is that some of the marked points (coming from the columns of the
matrix) can be on bounded faces of the tropical plane, whereas the tree arrangement is
unable to capture this information (Example 2.5.9). However, if the tropical matrix is
positive, then the resulting arrangement of bicolored phylogenetic trees solely consists
of caterpillar trees (Theorem 2.5.8).

Theorem 2 .5 .8 . If a matrix in the tropical determinantal variety of rank 3 lies in
the tropicalization of the positive part, then the resulting bicolored phylogenetic tree
arrangement solely consists of caterpillar trees.

In corank 1, we show that the characterization of positivity for the determinantal
hypersurface extends nicely to the other orthants (Proposition 2.2.4). This heavily relies
on the fact that in this case the tropical prevariety coincides with the tropical variety.
This chapter is based on [BLS22], which is joint work with Georg Loho and Rainer Sinn.

Overview

In this chapter, we discuss different notions of tropical positivity, and characterize
the positive part of determinantal varieties of low rank. The background is provided
in Sections 1.1 to 1.6. In Section 2.1 we discuss the different notions of positivity
in tropical geometry and generators of positivity. We extend this in Section 2.1.3 to
arbitrary orthants and we introduce tropical determinantal varieties in Section 2.1.4.
Section 2.2 covers determinantal hypersurfaces, whose Newton polytope is the Birkhoff
polytope. In this section, we begin the combinatorial translation of positivity by
introducing cartoons, which leads to the triangle criterion in terms of cartoons, followed
by its geometric version. In Section 2.3, we explain how one can describe maximal
cones of the determinantal prevariety by unions of perfect matchings, and obtain the
triangle criterion in terms of bipartite graphs. In Section 2.4, we consider the special
case of rank 2, and describe a bijection between a subfan of the Grassmannian and the
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2 tropical positivity and determinantal varieties

tropical determinantal variety. In Section 2.5, we consider the rank 3 case. We obtain
the starship criterion for positivity and consider bicolored tree arrangements.

2 .1 positivity in tropical geometry

In this section, we describe different notions of positivity that can be found in the
literature. Based on the differences of these notions, we introduce (really) positive-tropical
generating sets, which characterize the (real) positive part of a tropical variety. We
then generalize this to (really) signed-tropical generating sets, which describe the signed
tropicalization of a variety with respect to a fixed orthant, and discuss the differences
between these notions. Finally, we introduce tropical determinantal varieties, the main
protagonists in this chapter.

2.1.1 Notions of Positivity

Let C = ⋃∞
n=1 C((t1/n)) and R =

⋃∞
n=1 R((t1/n)) be the fields of Puiseux series over C

and R, respectively, as defined in Section 1.4.2. Recall that we denote by lc(x(t)) the
leading coefficient of a Puiseux series x(t), i.e. the coefficient of the term of lowest
exponent, and the leading term by lt(x(t)). The degree map val(x(t)) returns the degree
of the leading term of a nonzero Puiseux series x(t), and we consider the valuation
map val (x1(t), . . . , xd(t)) = (val(x1(t)), . . . , val(xd(t))). We define the positive complex
(and real respectively) Puiseux series as

C+ = {x(t) ∈ C | lc(x(t)) ∈ R>0} ,
R+ = {x(t) ∈ R | lc(x(t)) ∈ R>0} ,

which are both convex cones (note that this notation differs e.g. from [SW05]).
Let I ⊆ C[x1, . . . , xd] be an ideal. The tropicalization trop(V(I)) of the variety V(I) ⊆ Cn

is the Euclidean closure of the set
{

val(z) | z ∈ V(I) ∩ (C∗)d}. We consider trop(V(I))
as a polyhedral complex, in which w, w′ are contained in the relative interior of the
same face if inw(I) = inw′(I). A more detailed explanation of initial ideals and tropical
varieties is given in Sections 1.5 and 1.6.

Definition 2.1.1 (Positive parts). The positive part of trop(V(I)) is trop+C (V(I)) =
trop(V(I) ∩ Cd

+) and the really positive part is trop+R(V(I)) = trop(V(I) ∩Rd
+). Simi-

larly, a point w ∈ trop(V(I)) is positive (respectively really positive) if it is contained in
the positive part (respectively the really positive part) of trop(V(I)).

For any set B of generators of an ideal I we have

trop(V(I)) ⊆
⋂
f∈B

trop(V( f )),

and so also
trop+C (V(I)) ⊆

⋂
f∈B

trop+C (V( f )). (2.1)
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2.1 Positivity in Tropical Geometry

Figure 2.2: The positive part of the tropicalization of the line given by f = x1 − x2 + t from
Example 2.1.4.

We reserve the notation trop+(V(I)) for the case when trop+C (V(I)) = trop+R(V(I))
holds, so that there can be no confusion about the notion of positivity. For ideals in the
polynomial ring, the positive part of a tropical variety was characterized by Speyer and
Williams as follows:

Proposition 2.1.2 ([SW05, Proposition 2.2]). Let I ⊆ C[x1, . . . , xn] be an ideal. A
point w lies in trop+C (V(I)) if and only if the initial ideal of I with respect to w does
not contain any (non-zero) polynomial whose (non-zero) coefficients all have the same
sign, i.e. if and only if

inw(I) ∩ R≥0[x1, . . . , xd] = 〈 0 〉 .

Remark 2.1.3. In Section 1.6 we define tropical varieties primarily for ideals generated
over the Laurent polynomial ring. However, Theorem 1.6.5 allows us to consider ideals
over the polynomial ring instead. We make this choice in order to be able to apply
Proposition 2.1.2, whose proof relies on the equivalence (2)⇐⇒ (3) of Theorem 1.6.4,
the Fundamental Theorem over the polynomial ring.

Example 2.1.4 (Positive parts). We continue Example 1.6.2 of the tropical line and
compute its positive part, as depicted in Figure 2.2. Let f = x1 − x2 + t ∈ C[x1, x2] and
I = 〈 f 〉. Recall that

V( f ) =

{(
x1

x1 + t

) ∣∣∣∣∣ x1 ∈ C
}

=

{(
x2 − t

x2

) ∣∣∣∣∣ x2 ∈ C
}

.

Let k ∈ Q, and consider the (positive) Puiseux series x1 = tk . Then

val

((
x1

x1 + t

))
= val

((
tk

tk + t

))
=


(

k
k

)
if k < 1(

k
1

)
if k ≥ 1
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2 tropical positivity and determinantal varieties

and so these two rays of the tropical line are contained in the positive part. However,
for any x2 ∈ C with val(x2) ≥ 1 we have that x2 − t 6∈ C+. Thus, the ray

val

((
x2 − t

x2

))
=

(
1

val(x2)

)

is not contained in the positive part trop+(V( f )). This computation also reveals, that
trop+C (V( f )) = trop+R(V( f )) for the tropical line. In terms of initial forms, we have

inw( f ) =



x1 + t if w = (1, w2), w2 > 1

−x2 + t if w = (w1, 1), w1 > 1

x1 − x2 if w = (w1, w1), w1 < 1

x1 − x2 + t if w = (1, 1)

monomial otherwise.

which, by Proposition 2.1.2, implies that for any w = (w1, w2) ∈ trop(V( f )) we have
that w is positive if and only if w 6= (1, w2), w2 > 1. �

Proposition 2.1.2 implies that the positive part is closed. For certain ideals I ⊆
C[x1, . . . , xn] there is an equivalent definition of positivity in terms of the tropical-
izations of the polynomials in the vanishing ideal of the variety.

Definition 2.1.5. Let F ⊆ C+[x1, . . . , xd] be a finite set of polynomials of the form

f = ∑
e∈E+

fexe − ∑
e∈E−

fexe,

such that fe ∈ C+ for all e ∈ E+ ∪ E−. In particular, the leading coefficient lc( fe) of
every fe ∈ C is real. The combinatorially positive part Trop+( f ) of the tropical hypersurface
trop(V( f )) is the set of all points w ∈ trop(V( f )) such that the minimum of{

〈w, e〉+ val( fe)
∣∣ e ∈ E+ ∪ E−

}
is achieved at some e ∈ E+ and at some e ∈ E−. Let P =

⋂
f∈F trop(V( f )) be a

tropical prevariety. The combinatorially positive part of P with respect to F is Trop+(P) =⋂
f∈F Trop+( f ).

In particular, the above definition can be made for every finite set of polynomials
F ⊆ R[x1, . . . , xd] with coefficients in the real Puiseux series. In [SS04], the definition
of the combinatorially positive part of tropical hypersurfaces is made for polynomials
f ∈ R[x1, . . . , xn], in which case val( fe) = 0 for all e ∈ E+ ∪ E−.
If I = 〈 f | f ∈ F〉 and P = trop(V(I)) is also a tropical variety, then trop+C (V(I)) =⋂

f∈I Trop+(V( f )) by the following Corollary 2.1.6. In this sense, the notions of positiv-
ity and combinatorial positivity agree for tropical varieties.
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2.1 Positivity in Tropical Geometry

Corollary 2.1.6. For hypersurfaces the positive part coincides with the combinatori-
ally positive part, i.e. Trop+( f ) = trop+C (V( f )) for any polynomial f ∈ R[x1, . . . , xd]
(or more generally f ∈ C[x1, . . . , xd] such that its coefficients are in (C+) ∪ (−C+) ).

Proof. By definition, w ∈ Trop+( f ) if and only if the minimum of{
〈w, e〉+ val( fe)

∣∣ e ∈ E+ ∪ E−
}

is achieved at some e+ ∈ E+ and at some e− ∈ E−. Equivalently, the initial form
inw( f ) contains the terms fe+xe+ − fe−xe− , i.e. inw(〈 f 〉) ∩ R≥0[x1, . . . , xd] = 〈 0 〉 . By
Proposition 2.1.2, this is equivalent to w ∈ trop+C (V( f )).

2.1.2 Generators of Positivity

We make the following definitions.

Definition 2.1.7. Let F ⊆ R[x1, . . . , xd] be a finite set of polynomials. Then F is a set
of positive-tropical generators (or is a positive-tropical generating set) if

trop(V(I) ∩ Cd
+) =

⋂
f∈F

trop(V( f ) ∩ Cd
+).

It is a set of really positive-tropical generators if

trop(V(I) ∩Rd
+) =

⋂
f∈F

trop(V( f ) ∩Rd
+).

The definition of a set of positive-tropical generators is reminiscent of the definition of
a tropical basis in Section 1.6. However, these notions are conceptually different and we
now discuss the similarities and differences between them. We begin with similarities –
under some circumstances, a tropical basis is guaranteed to be a set of positive-tropical
generators.

Theorem 2.1.8. If trop(V( f )) is a tropical hypersurface, then f is a positive-tropical
generator and a really positive-tropical generator for any f ∈ R[x1, . . . , xd].

Proof. This follows directly from the definition of (really) positive-tropical generators.

Theorem 2.1.9. For a binomial ideal, every tropical basis containing a reduced
Gröbner basis (with respect to any ordering) forms a set of positive-tropical generators.

Proof. Let I be a binomial ideal with tropical basis B. By assumption, B contains a
reduced Gröbner basis G. This Gröbner basis G consists solely of binomials by [ES96,
Proposition 1.1]. Let w ∈ trop(V(I)). Then inw(I) = 〈inw( f ) | f ∈ G〉 does not contain
a monomial and so inw( f ) = f for all f ∈ G. Thus, I = inw(I) and G is a reduced
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2 tropical positivity and determinantal varieties

Gröbner basis of inw(I). Now, Proposition 2.1.2 together with [BBRS20, Lemma 5.6]
implies that w ∈ trop+C (V(I)) if and only if inw(I) ∩R≥0[x1, . . . , xd] = 〈0〉 if and only
if G ∩R≥0[x1, . . . , xd] = ∅. Therefore, w ∈ trop+C (V(I)) =

⋂
f∈I trop+C (V( f )) if and

only if w ∈ ⋂ f∈G trop+C (V( f )). Note that⋂
f∈I

trop+C (V( f )) ⊆
⋂
f∈B

trop+C (V( f )) ⊆
⋂
f∈G

trop+C (V( f )),

and so w ∈ trop+C (V(I)) if and only if w ∈ ⋂ f∈B trop+C (V( f )).

The following example illustrates, that not every set of positive-tropical generators
forms a tropical basis.

Example 2.1.10 (The totally positive tropical Grassmannian). Positive-tropical genera-
tors have been studied in the case of the tropical Grassmannian. More precisely, it was
shown that the 3-term Plücker relations are not a tropical basis, but they are indeed a
positive-tropical generating set [SW21; ALS21]. It is also known that the positive part
and the really positive part agree [SW05]. Hence, the 3-term Plücker relations also form
a really positive-tropical generating set. �

If the positive part and the really positive part of a tropical variety coincide, then every
set of positive-tropical generators is also a set of really positive-tropical generators,
because

trop+C V(I) =
⋂

f∈F
trop+C (V( f ))

= ⊆

trop+R V(I) ⊆
⋂

f∈F
trop+R(V( f )).

Remark 2.1.11. In [Tab15] the notion of a real tropical basis was introduced. This is a
finite generating set, which cuts out the signed tropicalization of the real part of the
variety. In particular, a real tropical basis is always a set of really positive-tropical
generators. We elaborate on this further in Remark 2.1.16.

For our notion of positive-tropical generators, Example 2.1.10 and Table 2.1 indicate
that tropical bases and positive-tropical generators are distinct concepts of similar flavor.
This motivates the following question.

Question 2.1.12. Is there a tropical variety where a tropical basis is not a set of positive-
tropical generators?

In particular, we raise this question for tropical determinantal varieties, which will be
the main object of study in the following sections. Given Table 2.1, does this already
fail for the minors?

42



2.1 Positivity in Tropical Geometry

2.1.3 Signed-Tropical Generators

We devote the remainder of this section to discuss how a description of a tropical
hypersurface trop(V( f )) for one orthant (the positive orthant) can be extended to all
orthants by ‘flipping signs’. This goes back to the idea of Viro’s patchworking [Vir06]. It
is crucial that for a hypersurface, the notions of positivity and combinatorial positivity
coincide (cf. Corollary 2.1.6). More precisely, let f = ∑α cαxα be a polynomial in d
variables x = (x1, . . . , xd) and s ∈ {−1, 1}d a sign vector. Analogously to the notions
introduced in Section 2.1.1 we define

Cs =
{
(ξ1(t), . . . , ξn(t)) ∈ Cd | lc(ξi) ∈ R and sgn(lc(ξi)) = si for all i ∈ [d]

}
and trops(V( f )) = trop(V( f ) ∩ Cs). We consider the modified polynomial f s =

∑α sαcαxα. By construction, for a point ξ = (s1ξ1, . . . , snξn), ξi ∈ C+ one obtains

f (ξ) = ∑
α

cαξα = ∑
α

sαcα(ξ1, . . . , ξd)
α = f s(ξ1, . . . , ξd).

In other words, ξ ∈ V( f ) ∩ Cs if and only if (ξ1, . . . , ξd) ∈ V( f s) ∩ (C+)d and hence

trops(V( f )) = trop+C (V( f s)).

We can extend this idea to make the following definitions.

Definition 2.1.13. Let V(I) ⊆ Cd be a variety and F ⊆ R[x1, . . . xd] be a finite set of
polynomials. Let s ∈ {−1, 1}d be a fixed sign vector. The set F is a set of signed-tropical
generators of trop(V(I)) with respect to s if

trop(V(I) ∩ Cs) =
⋂

f∈F
trop(V( f ) ∩ Cs) =

⋂
f∈F

trops(V( f )).

The finite set F ⊆ R[x1, . . . xd] is a set of really signed-tropical generators of trop(V(I))
with respect to s if

trop(V(I) ∩Rs) =
⋂

f∈F
trop(V( f ) ∩Rs).

Proposition 2.1.14. If trop(V( f )) is a tropical hypersurface, then f is a (re-
ally) signed-tropical generator for trops(V( f )) with respect to every sign vector
s ∈ {−1, 1}d for any polynomial f ∈ R[x1, . . . , xd]. Furthermore, if f = ∑α cαxα,
then trops(V( f )) = trop+C (V( f s)), where f s = ∑α

(
∏ sαi

i

)
cαxα.

Proof. The first part of the statement follows directly from the definition of (really)
signed-tropical generators. The second part is implied by the discussion above.
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2 tropical positivity and determinantal varieties

Let P denote the tropical prevariety P =
⋂

f∈F trop(V( f )) with finite generating set F .
Note that, similarly to the positive part, also for the more general signed part we have

trop(V(I) ∩ Cs) ⊆
⋂

f∈F
trops(V( f )) ⊆ P .

In this sense, one can interpret the “signed-tropical prevariety”
⋂

f∈F trops(V( f )) as a
combinatorial approximation of the signed tropicalization trop(V(I) ∩ Cs). Thus, when
considering signed tropicalizations, a finite set F that is a signed-tropical generating set
with respect to every sign pattern s ∈ {−1, 1}d simultaneously might be a useful tool for
understanding the different orthants trop(V(I) ∩ Cs) in a combinatorial fashion. Note
that a set of positive-tropical generators is not necessarily a signed-tropical generating
set for other orthants, as illustrated in the following example.

Example 2.1.15 (Positive generators do not generate all orthants). Consider the tropi-
calization of the linear space L that is the row span of M with Plücker vector p given
by

M =

(
1 0 −1 1
0 1 −1 −2

)
,

12 13 14 23 24 34

p = ( 1 −1 −2 1 −1 3 ).

A tropical basis of the tropicalized linear space trop(L) is given by the polynomials

f1 = p12x3 − p13x2 + p23x1 = x3 + x2 + x1 = 0
f2 = p13x4 − p14x3 + p34x1 = −x4 + 2x3 + 3x1 = 0
f3 = p12x4 − p14x2 + p24x1 = x4 + 2x2 − x1 = 0
f4 = p23x4 − p24x3 + p34x2 = x4 + x3 + 3x2 = 0

[MS15, Lemma 4.3.16], and trop+C (L) ⊆ ⋂4
i=1 trop+C (V( fi)). Note that trop+C (V( f1)) =

∅, so trop+C (L) = ∅ and { f1} is a positive-tropical generating set. Let s = (−1, 1, 1, 1).
Then trops(L) ⊆ ⋂4

i=1 trops(V( fi)). Since f s
3 has only positive coefficients, it follows

that trops(V( f3)) = ∅, and so trops(L) = ∅. However, trops(V( f1)) is non-empty, so
{ f1} is not a signed-tropical generating set with respect to s. �

Remark 2.1.16. As mentioned in Remark 2.1.11, a real tropical basis [Tab15] cuts out
a signed version of the tropicalization of the real part of the variety. By definition, a
real tropical basis is a set of really signed-tropical generators with respect to every sign
pattern s ∈ {−1, 1}d simultaneously. We note however, that the converse is not true.
For example, there are hypersurfaces for which there exists no real tropical basis [Tab15,
Example 3.15]. On the other hand, by Proposition 2.1.14 the defining polynomial of a
hypersurface is always a really signed-tropical generator for every orthant.

2.1.4 Determinantal Varieties

We set the stage for the following sections by introducing the determinantal varieties
we will consider. Let Ir ⊆ C[xij | (i, j) ∈ [d]× [n]] be the ideal generated by all (r + 1)×
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2.1 Positivity in Tropical Geometry

(r + 1)-minors of a symbolic (d× n)-matrix. The determinantal variety V(Ir) ⊆ Cd×n

consists of all (d× n)-matrices of rank at most r. As in the case of the Grassmannian
[SW05], also for the tropicalization of determinantal varieties the positive part and the
really positive part coincide.

Proposition 2.1.17. Let A ∈ Cd×n be a matrix such that the leading coefficient
of every entry Aij ∈ C is real. Then there exists a matrix B ∈ Rd×n of real Puiseux
series that has the same rank as A and the Puiseux series in every entry has the same
leading term as in A, meaning that lt(Aij) = lt(Bij) holds for all (i, j) ∈ [d]× [n].

Proof. Without loss of generality, we assume d ≤ n. We first show the claim for a matrix
of full rank d. First set Bij = lt(Aij). If the rank of the resulting matrix B is less than
d, then we can add terms of higher degree with generic real coefficients to the entries
of B to obtain a matrix of full rank such that lt(Bij) = lt(Aij) for all (i, j) ∈ [d]× [n] as
claimed.
Let now rk A = r < d. We can assume that the first r rows of A are linearly independent
and write the remaining rows Ai for r + 1 ≤ i ≤ d as linear combinations of the first r,
say

Ai =
r

∑
k=1

ci
k Ak

with ci
k ∈ C. We write akjtαkj for the leading term of Akj (for (k, j) ∈ [r]× [n]) and bi

ktβi
k

for the leading term of ci
k so that akj ∈ R and bi

k ∈ C. If the entry Aij for i ≥ r + 1 is
non-zero, then its leading coefficient is therefore of the form ∑k∈S akjbi

k for some subset
S ⊆ [r]. We thus know that ∑k∈S akjbi

k ∈ R. Note that since akj ∈ R we have

∑
k∈S

akjbi
k =

1
2

(
∑
k∈S

akjbi
k + ∑

k∈S
akjbi

k

)
=

1
2

(
∑
k∈S

akjbi
k + ∑

k∈S
akjbi

k

)
.

To get the matrix B as desired, we apply the first part of the proof to the first r rows
of A so that we get rows B1, . . . , Br where each entry is a real Puiseux series. To fill in
the last rows, we replace ci

k by (ci
k + ci

k)/2 ∈ R, where c for a Puiseux series c ∈ C is
defined as the series whose coefficients are the complex conjugates of the coefficients of
c. Setting

Bi =
r

∑
k=1

1
2
(ci

k + ci
k)Ak =

1
2

(
r

∑
k=1

ci
k Ak +

r

∑
k=1

ci
k Ak

)
for i ≥ r + 1 gives the leading term of Bij as

1
2

(
∑
k∈S

aikbi
k + ∑

k∈S
aikbi

k

)
= ∑

k∈S
aikbi

k ∈ R.
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2 tropical positivity and determinantal varieties

d = 3 d = 4 d = 5 d = 6 d = 7

r = 2
YES

Thm. 2.1.8 and 2.4.3
YES

Thm. 2.4.3
YES

Thm. 2.4.3
YES

Thm. 2.4.3
YES

Thm. 2.4.3

r = 3
YES

Thm. 2.1.8
? ? ?

r = 4
YES

Thm. 2.1.8
? ?

r = 5
YES

Thm. 2.1.8
?

r = 6
YES

Thm. 2.1.8

Table 2.1: When do the (r + 1)× (r + 1)-minors form a set of positive-tropical generators, i.e.
when is (Tr

d,n)
+ = (Pr

d,n)
+ for d ≤ n? A cell is colored in gray if the set of minors

forms a tropical basis according to Theorem 2.1.19.

Corollary 2.1.18. The positive and the really positive part of the tropicalization of
the variety V(Ir) ⊆ Cd×n of (d× n)-matrices of rank at most r coincide, i.e.

trop+C (V(Ir)) = trop+R(V(Ir)).

In particular, every set of positive-tropical generators for the ideal Ir of (r+ 1)× (r+ 1)-
minors is a set of really positive-tropical generators.

We denote by Tr
d,n the tropicalization of the determinantal variety of (d× n)-matrices of

rank at most r. Since the minors of a matrix are polynomials with constant coefficients,
the tropical determinantal variety Tr

d,n is a polyhedral fan (cf. Section 1.6), and its
positive part is a closed subfan.
By Corollary 2.1.18 the positive part is independent of the choice between C and R,
hence we denote it by trop+(V(Ir)) = (Tr

d,n)
+. While the ideal Ir is generated by the

(r + 1)× (r + 1)-minors, this does not necessarily carry over to the tropical variety Tr
d,n.

In a sequence of works it has been characterized when they actually form a tropical
basis.

Theorem 2.1.19 ([DSS05; CJR11; Shi13]). The ((r + 1)× (r + 1)-minors of a (d× n)-
matrix of variables form a tropical basis of the ideal Ir they generate if and only if
r ≤ 2, or r = min(d− 1, n− 1), or else r = 3 and min(d, n) ≤ 6.
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2.1 Positivity in Tropical Geometry

It is thus worthwhile to define the tropical determinantal prevariety

Pr
d,n =

⋂
f is a

((r+1)×(r+1))-minor

trop(V( f )) =
⋂

I⊆( [d]
r+1)

J⊆( [n]
r+1)

trop(V( f I J)).

and the positive tropical determinantal prevariety

(Pr
d,n)

+ =
⋂

f is a
((r+1)×(r+1))-minor

trop+C (V( f )) =
⋂

I⊆( [d]
r+1)

J⊆( [n]
r+1)

trop+C (V( f I J)), (2.2)

where f I J denotes the polynomial corresponding to the minor given by the rows indexed
by I and columns indexed by J. As mentioned above, we have Tr

d,n ⊆ Pr
d,n and (Tr

d,n)
+ ⊆

(Pr
d,n)

+. We emphasize again, that the notion of positivity for prevarieties is purely
combinatorial, and the inclusion of a positive tropical variety and the corresponding
positive tropical prevariety may be strict. We can interpret the matrices in the above
sets in terms of the different notions of ranks for tropical matrices.

Definition 2.1.20 (Tropical notions of rank). A matrix A ∈ Rd×n over the tropical
semiring has rank 1 if it is the tropical matrix product of a (d× 1)-matrix and a (1× n)-
matrix. Let A ∈ Rd×n be a tropical matrix and M ∈ Rr×r a square submatrix. The
submatrix M is tropically singular if the minimum in the evaluation of the tropical
determinant ⊕

σ∈Sr

(
r⊙

i=1

Miσ(i)

)
= min

(
r

∑
i=1

Miσ(i)

∣∣∣∣∣ σ ∈ Sr

)
is attained at least twice, and non-singular otherwise. The tropical rank of A is the
largest integer r such that A has a tropically non-singular submatrix. The Kapranov
rank of A is the smallest integer r such that there exists a matrix Ã ∈ Cd×n of rank r
such that A = val(Ã). The Barvinok rank of A is the smallest integer r for which A can
be written as the tropical sum of r rank-1 matrices. Equivalently, the Barvinok rank is
the smallest integer r such that A = X � Y for some matrices X ∈ Rd×r, Y ∈ Rr×d (cf.
Proposition 2.4.1).

It was shown in [DSS05] that

tropical rank of A ≤ Kapranov rank of A ≤ Barvinok rank of A (2.3)

and that indeed all of these inequalities can be strict. In the light of these notions of
rank, we can view the tropical determinantal variety Tr

d,n and prevariety Pr
d,n as sets as

Tr
d,n =

{
A ∈ Rd×n

∣∣∣ A has Kapranov rank ≤ r
}

,

Pr
d,n =

{
A ∈ Rd×n

∣∣∣ A has tropical rank ≤ r
}

.
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2 tropical positivity and determinantal varieties

Note that the first inequality in (2.3) also implies the inclusion Tr
d,n ⊆ Pr

d,n. We now
describe the geometric interpretations of these notions.
Throughout this chapter, we will only consider tropical linear spaces that arise as
tropicalizations of classical linear spaces. The following is a well-known fact in tropical
geometry. We provide a proof for completeness.

Proposition 2.1.21. Let A ∈ Tr
d,n. Then the columns of A are n points in TPd−1

lying on a tropical linear space of dimension at most r− 1.

Proof. Let A ∈ Tr
d,n. Then A has Kapranov rank r′ ≤ r, and there exists a matrix

Ã ∈ Cd×n of rank r′ such that A = val(Ã). Hence, the columns of Ã are n points on a
linear space H ⊆ Cd of dimension r′. Equivalently, we can view them as n points on a
linear space in CPd−1 of dimension r′ − 1. The tropicalization of this linear subspace
yields a linear space of the same dimension in TPd−1 containing the columns of A.

2.1.5 The Lineality Space of Tropical Determinantal Varieties

As described above, a tropical determinantal varieties is a polyhedral fan. We now
describe the lineality space of this fan, i.e. the common lineality space of all cones in Tr

d,n.
By Proposition 2.1.21 we can consider matrices A ∈ Tr

d,n as point configurations of n
points on a common tropical linear space in TPd−1. We describe how the lineality space
of Tr

d,n can be interpreted in terms of these point configurations, and that matrices in Tr
d,n

modulo lineality space correspond to point configurations in TPd−1 modulo translation.

The lineality space of Tr
d,n is spanned by the vectors

d

∑
i=1

Eij for j ∈ [n] and
n

∑
j=1

Eij for i ∈ [d], (2.4)

where Eij denotes the standard basis matrix in Rd×n. Let A ∈ Tr
d,n and consider

the columns as a point configuration in TPd−1. Let H be an (r − 1)-dimensional
tropical linear space containing the columns of A. We now describe in which sense the
combinatorics of the point configuration stays invariant modulo lineality space. We
write 1 for the vector (1, 1, . . . , 1)t ∈ Td. First, fix j ∈ [n]. Then

A′ := A +
d

∑
i=1

Eij = (A1, . . . , Aj + 1, . . . , An)

so A′ is a matrix where for all columns holds A′k = Ak, if k 6= j. However, as a point in
TPd−1 we have Aj

∼= Aj + 1 = A′. Therefore, as a point configuration inside TPd−1,
we consider the point configurations given by the matrices A and A′ to be the same.
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2.2 Determinantal Hypersurfaces

Second, fix i ∈ [d]. Then

A′′ := A +
n

∑
j=1

Eij = (A1 + ei, . . . , An + ei)

so A′′ is a matrix where for all columns holds A′′k = Ak + ei. Thus, the point con-
figuration given by A′′ is a translation by ei of the point configuration defined by A.
The points of A′′ lie on the translated tropical linear space H + ei. Hence, the points
in Tr

d,n modulo lineality space correspond to point configurations in TPd−1 modulo
translation.

2 .2 determinantal hypersurfaces

In this section, we seek to understand the positive part of the tropicalization of singular
quadratic matrices. By definition of the Kapranov rank, the set Tn−1

n,n is formed by all
tropical (n × n)-matrices of Kapranov rank at most n − 1. Let A ∈ Tn×n be such a
matrix. We can interpret the columns of A as a point configuration of n labeled points
on a tropical hyperplane in the tropical projective torus TPn−1. In this section, we
characterize the positive point configurations, those given by matrices A in the positive
part (Tn−1

n,n )+ of the tropical variety. We say that a cone C ∈ Tn−1
n,n (or a point A ∈ Tn−1

n,n )
is positive if it lies in the positive part.

2.2.1 Edges of the Birkhoff Polytope

We begin by investigating the maximal cones of (Tn−1
n,n )+ in the tropical hypersurface

Tn−1
n,n = trop(V(det)), where we abbreviate

det = ∑
σ∈Sn

(
sgn(σ)

n

∏
i=1

xiσ(i)

)
∈ Z[xij | i, j ∈ [n] ] .

As described in Section 1.3.2, this entails that Tn−1
n,n is the codim 1-skeleton of the normal

fan of the Newton polytope of the polynomial det. This Newton polytope is known
as the Birkhoff polytope Bn (also called perfect matching polytope or assignment polytope)
whose vertices are the (n× n)-permutation matrices.
For notational convenience we identify a permutation σ ∈ Sn with the permutation
matrix that represents it. Two vertices of Bn (corresponding to permutations σ, π ∈ Sn)
are connected by an edge if and only if σπ−1 is a cycle [BS96]. A maximal cone C ∈ Tn−1

n,n
is the normal cone of an edge conv(σ, π) of Bn for σ, π ∈ Sn. For a weight vector w in
the interior int(C) of the cone, the initial ideal inw(I) of I = 〈det〉 is generated by the
binomial

inw(det) = sgn(σ)
n

∏
i=1

xiσ(i) + sgn(π)
n

∏
i=1

xiπ(i).
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2 tropical positivity and determinantal varieties

Applying Proposition 2.1.2 to this polynomial yields a characterization of positive cones
of Tn−1

n,n .

Proposition 2.2.1. Let C ∈ Tn−1
n,n be a cone which is dual to a face FC of the Birkhoff

polytope Bn. Then C is positive if and only if FC contains an edge conv(σ, π) such
that sgn(σ) 6= sgn(π).

Proof. If C is a maximal cone of Tn−1
n,n then FC = conv(σ, π) is an edge, and Propo-

sition 2.1.2 implies that C is positive if and only if sgn(σ) 6= sgn(π). Let C be a
non-maximal cone. If FC contains an edge FC′ = conv(σ, π) such that sgn(σ) 6= sgn(π),
then the normal cone C′ of this edge is positive. Since C ⊆ C′ and positivity is a closed
property, it follows that C is positive.
Conversely, let C be positive. Then by Proposition 2.1.2 for every A ∈ relint(C) the
initial form inA(det) has terms of mixed signs. Since every monomial of the initial form
corresponds to a vertex of Bn, and the edge graph of FC is connected, this implies that
there is an edge of FC whose vertices correspond to monomials (i.e. permutations) of
different signs.

Example 2.2.2 (The positive part of T2
3,3). For n = 3 the Schlegel diagram of the 4-

dimensional Birkhoff polytope B3 is shown in Figure 2.1. In this case, the graph of
B3 is the complete graph. Figure 2.3 shows a coloring of the edges of B3 with green
edges corresponding to positive maximal cones of T2

3,3 and red edges corresponding
to non-positive maximal cones. The set of red edges has two connected components
inducing a partition of the vertices of B3 into even permutations and odd permutations,
i.e. the alternating group A3 and its complement S3 \ A3. The green edges form the cut
(An, Sn \ An) between these components. �

2.2.2 Extension to All Orthants

In this section, we want to exploit the observation made in Section 2.1.3 in order to
understand the signed tropicalizations of the variety Tn−1

n,n with respect to sign patterns
beyond the positive orthant. Hence, we fix a sign matrix s ∈ {−1, 1}n×n. Recall
from Proposition 2.2.1 that a maximal cone of Tn−1

n,n = trop(V(det)) is positive if and
only if the permutation σπ−1 for the corresponding edge conv(σ, π) is an even cycle.
Therefore, we can interpret the partition of the maximal cones in positive and non-
positive cones as a coloring of the edges of the graph Gn of the Birkhoff polytope Bn, as
in Example 2.2.2. We color the edges dual to positive cones in green ("positive edges"),
and the remaining ones in red ("non-positive edges").
The Newton polytopes of det and dets agree. Hence, for each sign pattern s we obtain a
2-coloring of the edges of Gn, corresponding to the (non-)positivity of the maximal cones
of trop(V(dets)). Then, the green edges correspond to maximal cones of trops(V(det)),
i.e. the tropicalization of (n× n)-matrices of rank n− 1 in Cs. We begin by investigating
the 2-coloring for s = 1, i.e. the coloring given by trop+C (V(det)).
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2.2 Determinantal Hypersurfaces

Figure 2.3: The graph of B3 with edges colored according to the positivity of their dual cones
in T2

3,3, as explained in Example 2.2.2. The edges of the two triangles (12), (13), (23)
and id, (123), (132) are red, all remaining edges are green and dashed.

Lemma 2.2.3. The 2-coloring of Gn given by trop+C (V(det)) has exactly 2 connected
components formed by red edges. The vertices in one component correspond to the
elements of the alternating group An ⊆ Sn, the even permutations of Sn. The vertices
in the other component correspond to the odd permutations Sn \ An. Furthermore,
the induced subgraphs on An and Sn \ An only have red edges and the green edges
are exactly the edges in the cut (An, Sn \ An).

Proof. We identify the vertices in Gn with the permutations in Sn so that the edge set is
given by the pairs

{
(σ, π) | σπ−1 is a cycle

}
. Let σ ∈ An, and c ∈ An be a 3-cycle, and

consider π = σc. Then π ∈ An, and so π is a neighbor of σ in Gn. The permutations
σ and π have equal sign, so by Proposition 2.2.1 the edge (σ, π) is colored in red.
Since the alternating group An is generated by 3-cycles, it follows that all permutations
π ∈ An are contained in one red connected component. All remaining vertices are in
Sn \ An. Note that if τ is a transposition, then Sn \ An = τAn, and that all edges inside
τAn are red. Finally, permutations in τAn have negative sign, so all edges between An
and τAn are green.

Proposition 2.2.4. Let s ∈ {−1, 1}n×n. The coloring of the graph Gn induced by
trops(V(det)) has 2 red connected components, which partition the vertices into 2
parts. Equivalently, the green edges are the edges of a cut.
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2 tropical positivity and determinantal varieties

B=

A=

B 6=

A 6=

B=

A=

B 6=

A 6=

Figure 2.4: Auxiliary graphs for the 2-coloring for sign patterns s (left) and s′ (right) after
the sign flip of a single entry from the proof of Proposition 2.2.4. Within the sets
A=, A 6=, B=, B 6= all edges are red. The color of the edge between two parts in the
auxiliary graph represents the color of all edges in Gn between the parts. Green
edges are dashed.

Proof. By the discussion above, we are interested in the coloring of the graph Gn
given by the positive cones of trop+C (V(dets)). If s = 1, then the claim holds by
Lemma 2.2.3. Fix (k, `) ∈ [n]× [n]. We show that if the claim holds for a fixed sign
pattern s ∈ {−1, 1}(n×n), then it also holds for the sign pattern s′, where s′k` = −sk`
and and sij = s′ij for all other entries. That is, we show that the property is preserved
under flipping the sign of the (k, `)th entry. Let (A, B) be the partition of vertices of the
coloring induced by dets. Note that

dets = ∑
σ∈Sn

(
sgn(σ)

n

∏
i=1

siσ(i)xiσ(i)

)
,

so an edge (σ, π) is red if and only if

sgn(σ)
n

∏
i=1

siσ(i) = sgn(π)
n

∏
i=1

siπ(i).

Flipping the sign at (k, `) thus switches the color of all edges conv(σ, π) where there
exists an i′ ∈ [n] such that (i′, σ(i′)) = (k, `) and (i, π(i)) 6= (k, `) for all i ∈ [n] (or
if there exists an i′′ ∈ [n] such that (i′′, π(i′′)) = (k, `) and (i, σ(i)) 6= (k, `) for all
i ∈ [n]). Equivalently, flipping the sign at (k, `) switches the color of all edges where
σ(k) = ` and π(k) 6= ` (or σ(k) 6= ` and π(k) = `). Hence, we partition A into
A= = {σ ∈ A | σ(k) = `} , A 6= = A \ A= and similarly B = B= t B 6=. We then flip
the colors of all edges between (A=, A 6=), (A=, B 6=), (B=, A 6=), (B=, B 6=), as shown in
Figure 2.4. The resulting graph has red components A= t B 6= and A 6= t B=.

The above statement implies that the elements in the set {trops( f ) | s ∈ {−1, 1}n×n}
correspond to certain cuts in the graph Gn.

Question 2.2.5. Is there a group theoretical interpretation of the 2n2
partitions given by

the cuts for every sign pattern?
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2.2 Determinantal Hypersurfaces

2.2.3 Triangle Criterion for Positivity

In this section, we identify the positive part of the tropical determinantal hypersurface
Tn−1

n,n from a different point of view. We make use of Proposition 2.2.1 to obtain the
triangle criterion, which will serve as a main tool to characterize positive parts of more
general determinantal varieties and prevarieties for low-rank matrices in Section 2.4
and Section 2.5. It turns out that this works well for hypersurfaces of square matrices
of size n = 3, 4 and corank 1, but there are examples for n ≥ 5 where this fails.

Proposition 2.2.1 implies that it suffices to consider maximal cones of Tn−1
n,n . The triangle

criterion assigns a cartoon to each such maximal cone. We seek to determine the
positivity of this cone from the respective cartoon. First, we give the construction of the
cartoon and give the triangle criterion for detecting positivity for n = 3, 4. Afterwards,
we describe its geometric interpretation in terms of tropical point configurations, and
show that the triangle criterion does not hold for n ≥ 5.

Construction 2.2.6 (Cartoons of maximal cones). Let C ∈ Tn−1
n,n be a maximal cone. Then

C is dual to an edge conv(σ, π) of the Birkhoff polytope Bn, whose vertices correspond
to permutations in Sn. Let Kn denote the complete graph on nodes {v1, . . . , vn}. To
obtain the cartoon of C we decorate the complete graph with n points placed on edges
and nodes of Kn as follows: for each j ∈ [n], decorate the edge vσ−1(j)vπ−1(j) of Kn with
a marking if σ−1(j) 6= π−1(j). If σ−1(j) = π−1(j), decorate the vertex vσ−1(j).

Example 2.2.7 (Cartoons of maximal cones). Consider the cone

C = cone (E13, E23, E31, E32) ∈ T2
3,3.

It is dual to the edge conv(σ, π), where σ = (1, 2) is a transposition and π = id. The
cartoon is a decorated K3, with two markings on the edge v1v2 and a marking placed
at the node v3. A cartoon of this type is shown in Figure 2.5(a). �

Proposition 2.2.8 (Triangle criterion for cartoons). Let n = 3, 4 and C ∈ Tn−1
n,n be

a maximal cone. C is positive if and only if its cartoon does not contain a marked
triangle. A triangle is marked if every edge has at least one marking in its interior,
and the markings of vertices are allowed to be moved to adjacent edges.

(a) Positive configuration. (b) Non-positive configuration.

Figure 2.5: The possible cartoons of maximal cones in T2
3,3.
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(a) Positive configuration. (b) Non-positive configuration. (c) Positive configuration.

Figure 2.6: The possible cartoons of maximal cones in T3
4,4.

Proof. The cone C is dual to an edge conv(σ, π). Two permutations form an edge of
Bn if and only if σπ−1 is a cycle. By Proposition 2.2.1 the cone C is positive if and
only if σπ−1 is a cycle of even length. Let σπ−1 be a cycle of length `, so it is of the
form (i1, . . . , i`). Now, denote I = {i1, . . . , i`} and J = [n] \ I. Then Construction 2.2.6
decorates each node vσ−1(j) for j ∈ J and decorates the cycle formed by the edges
(vσ−1(ik+1)

, vπ−1(ik)
) (where i`+1 = i1). Therefore, up to symmetry, it is enough to con-

sider the potential cycle lengths to determine the configurations.

Figure 2.5 shows all possible cartoons for n = 3, up to permutation of the nodes of
the graph. More precisely, Figure 2.5(a) shows the cartoon in the case that σπ−1 is
a transposition and Figure 2.5(b) shows the cartoon for when σπ−1 is a 3-cycle. The
possible cartoons for n = 4 are shown in Figure 2.6: Figure 2.6(a) shows the cartoon for
when σπ−1 is a transposition, Figure 2.6(b) the cartoon of a 3-cycle, and Figure 2.6(c)
the cartoon of a 4-cycle. Summarizing, the configurations depicted in Figure 2.5(a),
Figure 2.6(a) and Figure 2.6(c) are positive, while Figure 2.5(b) and Figure 2.6(b) are
negative.

Example 2.2.9 (Triangle criterion fails for n ≥ 5). Let C ∈ T4
5,5 be the maximal cone that

is dual to the edge conv(σ, π) of B5, where σ = (4, 5) is a transposition and π = id.
Then, modulo the lineality space of T4

5,5, every matrix A ∈ int(C) satisfies the zero
pattern 

0
0

0
0 0
0 0

 ,

i.e. Aij = 0 whenever σ(i) = j or π(i) = j, and all other entries of A are nonnegative.
The cone C has 18 rays, corresponding to the blank spaces in the zero pattern above.
By Proposition 2.2.1 this cone is positive. However, the cartoon of C, as shown in
Figure 2.7, contains a triangle in which each node is decorated with a marking. This
example can be generalized to any n ≥ 5. �
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Figure 2.7: The cartoon of the cone in Example 2.2.9.

2.2.4 Geometric Triangle Criterion

As described in Proposition 2.1.21, the columns of A ∈ Tn−1
n,n can be viewed as n points

in TPn−1 lying on a common tropical linear space of dimension n− 2. We now show
how the cartoons describe the geometry of these point configurations. But first, we
describe two different important kinds of cones. The Birkhoff polytope Bn ⊆ Rn×n has
vertices corresponding to permutations in Sn. Modulo lineality space of the normal fan
of Bn, an edge conv(σ, π) has normal cone

C = cone
(
Eij
∣∣ i, j ∈ [n], σ(i) 6= j, π(i) 6= j

)
. (2.5)

The standard simplex ∆n−1 ⊆ Rn is the convex hull of the unit vectors e1, . . . , en. Modulo
lineality space of the normal fan of ∆n−1, an edge conv(ek, el) , k, l ∈ [n] has normal
cone

Wkl = cone (ei | i ∈ [n], i 6= k, i 6= l) .

Up to translation, there is a unique tropical hyperplane H of dimension n− 2 in TPn−1.
This hyperplane can be viewed as the codimension-1 skeleton of the normal fan of
∆n−1. Equivalently, the tropical hyperplane H = Hc is the set of points

Hc =
{

x ∈ TPd−1
∣∣∣ the minimum of xi + ci, i ∈ [n] is attained at least twice

}
(2.6)

and the point −(c1, . . . , cd) is the apex of H. We call a cone Wkl of dimension n− 2 a
wing of H.

Example 2.2.10 (A tropical point configuration). Let C be the cone from Example 2.2.7
and consider the matrix

A =

0 0 2
0 0 1
3 1 0

 ∈ int(C).
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Figure 2.8: The point configuration from Example 2.2.10.

The point configuration in TP2 is displayed in Figure 2.8 in the chart where the last
coordinate is 0, i.e.

A ∼

−3 −1 2
−3 −1 1
0 0 0

 .

The points lie on the common hyperplane with apex (1, 1, 0). The first two columns lie
on the wing W1,2 = cone(e3). The third column lies on the wing W2,3 = cone(e1). �

The lineality space of Tn−1
n,n is spanned by the vectors in (2.4) as shown in Section 2.1.5,

and the lineality space of more general tropical determinantal varieties is given in
Section 2.1.5.

Lemma 2.2.11. Let C ∈ Tn−1
n,n be a cone and A ∈ C. There exists a matrix A′ ∈ Tn−1

n,n
such that A ∼ A′ modulo lineality space of Tn−1

n,n and A′ij ≥ 0 for all i, j ∈ [n].
Furthermore, the columns of A′ are points on the tropical hyperplane H0 with apex
at the origin. If C is a maximal cone dual to the edge conv(σ, π) of Bn, then A′ij = 0 if
j ∈ {σ(i), π(i)}.

Proof. Let A ∈ C. Then by (2.5) there is a matrix A′ ∈ C such that A ∼ A′ modulo
lineality space of Tn−1

n,n , and A′ij ≥ 0 for all i, j ∈ [n] such that j 6∈ {σ(i), π(i)} and
A′ij = 0 otherwise. For each column j ∈ [n] this means that the minimum value is 0,
and (2.6) implies that the columns of A lie on the tropical hyperplane H0.

Example 2.2.12 (A representation of A modulo lineality space). Consider the matrix
from Example 2.2.10. We first subtract the apex c = (1, 1, 0) of the tropical line from
every column of the matrix. Then we add mj1 to every column, where mj is the
minimum entry of the jth column. This yields0 0 2

0 0 1
3 1 0

 ∼
−1 −1 1
−1 −1 0
3 1 0

 ∼
0 0 1

0 0 0
4 2 0

 .

�
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Lemma 2.2.13. Let C be a maximal cone of Tn−1
n,n and conv(σ, π) be the dual edge of

the Birkhoff polytope Bn. Let A ∈ C and let H be a tropical hyperplane containing
the columns of A. If the edge vσ−1(j)vπ−1(j) is decorated in the cartoon of C, then the
jth column Aj of A lies on the wing Wσ−1(j),π−1(j) of H. If the node vσ−1(j) is decorated
in the cartoon, then the column Aj lies on the wing Wk,σ−1(j) for some k ∈ [n].

Proof. By Lemma 2.2.11 we can assume that Aij = 0 for all i, j ∈ [n] such that j ∈
{σ(i), π(i)}, and Aij ≥ 0 otherwise, and that H = H0 is the tropical hyperplane
with apex at the origin. Equivalently, Aij = 0 if i ∈ {σ−1(j), π−1(j)}. In particular
Aσ−1(j)j = Aπ−1(j)j = 0. The cartoon of C has a decorated edge vσ−1(j)vπ−1(j) if and only
if σ−1(j) 6= π−1(j). If σ−1(j) 6= π−1(j), then the column Aj is contained in the wing
Wσ−1(j)π−1(j) = cone

(
ei
∣∣ i 6= σ−1(j), i 6= π−1(j)

)
. The cartoon has a decorated node

vσ−1(j) if and only if σ−1(j) = π−1(j), and the column Aj may lie on any wing not
containing the ray in direction eσ−1(j).

Construction 2.2.14 (Cartoons of matrices). Let C ∈ Tn−1
n,n be a maximal cone with

dual edge conv(σ, π) and A ∈ int(C). Let H be a tropical hyperplane containing the
columns of A. To obtain the cartoon of A with respect to H, we decorate the boundary
complex of the (n− 1)-dimensional simplex ∆n−1 with n points placed on faces of ∆n−1.
More precisely, for each j ∈ [n], decorate the face F of ∆n with a marking if the column
Aj lies in the interior of the cone of H that is dual to the face F.

Lemma 2.2.15. Let C ∈ Tn−1
n,n be a maximal cone. Let A ∈ C and H be a tropical

hyperplane such that each column of A lies in the interior of a wing of H. Then
the cartoon of A with respect to H can be obtained from the cartoon of C by sliding
markings from nodes of the edge graph Gn of the Birkhoff polytope Bn to incident
edges.

Proof. By assumption, each column lies in the interior of a wing of H, so the cartoon
of A with respect to H has only markings on edges of ∆n−1. If the cartoon of C has a
marked edge vσ−1(j)vπ−1(j), then Lemma 2.2.13 implies that the column Aj lies on the
wing Wσ−1(j),π−1(j) of H, and so the column Aj marks the same edge in the cartoon of A
w.r.t. H. If the cartoon of C has a marked node vσ−1(j), then Lemma 2.2.13 implies that
the column Aj lies on some wing Wk,σ−1(j), k ∈ [n] of H, and so the column Aj marks
the edge with vertices vk and vσ−1(j) in the cartoon of A w.r.t H. Thus, the cartoon of A
w.r.t. H can be obtained from the cartoon of C by sliding the marking from the node
vσ−1(j) to the incident edge with vertex vk.

Theorem 2.2.16 (Geometric triangle criterion). Let n = 3, 4 and C ∈ Tn−1
n,n be a

maximal cone. Let A ∈ C and H be a tropical hyperplane such that each column of
A lies in the interior of a wing of H. Then the cartoon of A with respect to H has
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markings only on edges of ∆n−1, and C is positive if and only if the cartoon of A with
respect to H does not contain a marked triangle.

Proof. By Proposition 2.2.8 (Triangle criterion for cartoons), C is positive if and only if
the cartoon of C does not contain a marked triangle, i.e. a triangle with three distinct
markings, where each edge contains at least one marking in its interior, or on an
incident vertex. Lemma 2.2.15 implies that the cartoon of A w.r.t H can be obtained
from the cartoon of C by sliding the markings from nodes to edges. Hence, the set
of marked triangles of the cartoon of A w.r.t H is a subset of the marked triangles of
the cartoon of C. It thus remains to show that if the cartoon of C contains a marked
triangle, then so does the cartoon of A w.r.t to H. For n = 3, there is a unique such
configuration (Figure 2.5(b)) and all markings of the cartoon of C are already on edges.
For n = 4, there is also a unique such configuration (Figure 2.6(b)), and the markings of
the marked triangle are on edges. Hence, this is also a marked triangle in the cartoon
of A w.r.t H.

Example 2.2.17 (Geometric triangle criterion fails for n ≥ 5). Consider the (positive)
cone from Example 2.2.9. The cartoon of cone C, which is depicted in Figure 2.7, has a
marked triangle. However, sliding the markings from nodes to edges yields the cartoon
in Figure 2.9, which does not have a marked triangle. This example can be generalized
to any n ≥ 5. �

Figure 2.9: The cartoon from Example 2.2.17.

2 .3 determinantal prevarieties and bipartite graphs

Let det be the polynomial representing the determinant of a (n× n)-matrix. Recall from
Section 2.2.1 that Tn−1

n,n = trop(V(det)) is the codimension-1 skeleton of the normal fan
of the Birkhoff polytope Bn. In [Paf15] the faces of Bn are identified with face graphs,
which are unions of perfect matchings on the bipartite graph on vertices [n] t [n].

Construction 2.3.1 (Face graphs [Paf15]). Let C ∈ trop(V(det)) = Tn−1
n,n be a cone in the

tropical hypersurface, and let Λ ⊆ Sn such that conv(Λ) is the face of Bn dual to C. We
associate the bipartite graph Γ(C) on vertices V(Γ(C)) = R t G, R = {r1, . . . , rn}, G =
{g1, . . . , gn} and edges

E(Γ(C)) =
{

rigj
∣∣ σ(i) = j for some σ ∈ Λ

}
.
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This extends to a labeling of the entire normal fan of Bn, where the label of the normal
cone of a vertex σ is a perfect matching with edges (ri, gσ(i)), i ∈ [n]. The label of a cone
dual to a face F is the union of all labels of normal cones of vertices contained in F.
Thus, such a label is a union of perfect matchings.

Proposition 2.3.2 (Triangle criterion for bipartite graphs). Let C ∈ Tn−1
n,n be a

maximal cone. Then Γ(C) consists of a cycle of length 2l, and a perfect matching of
the remaining 2(n− l) vertices. C positive if and only if l is even.

Proof. Let C be a maximal cone and conv(σ, π) be the edge of Bn dual to C. The
bipartite graph Γ(C) is a union of 2 perfect matchings, corresponding to σ and π. Since
these permutations form an edge on Bn, we have that σπ−1 is a cycle of length l, i.e.
there are elements i1, . . . il ∈ [n] such that σπ−1(ik) = ik+1 (and il+1 = i1). Equivalently,
σ(ik) = π(ik+1) and σ(ik−1) = π(ik). For all other elements i′ ∈ [n] holds σ(i′) = π(i′).
Thus, Γ(C) consists of isolated edges (ri′ , gσ(i′)) (forming a perfect matching) and a cy-
cle (ri1 , gσ(i1)), (gπ(i2), ri2), (ri2 , gσ(i2)), . . . , (gπ(il), ril ), (ril , gσ(il)), (gπ(il+1), ri1). Therefore,
Γ(C) consists of a cycle of length 2l and isolated edges. By Proposition 2.2.1, the cone
C is positive if and only if sgn(σπ−1) = −1, and equivalently the length l of the cycle
σπ−1 is even.

We extend the idea of face graphs as labels of cones of Tr
r+1,r+1 = Pr

r+1,r+1 by embedding
these face graphs, for each I and J, in a bipartite graph Γ(C) on vertices [d] t [n]. This
yields a label Γ(C) of cones in the tropical determinantal prevariety Pr

d,n.

Definition 2.3.3. Let I = {i1, . . . , ir+1} ∈ ( [d]
r+1), J = {j1, . . . , jr+1} ∈ ( [n]

r+1) where ik <
ik+1, jk < jk+1, and let σ ∈ Sr+1 be a permutation σ : [r + 1]→ [r + 1]. In the following,
sets I and J are always of this form. We define the embedded permutation to be the map

σI J : I −→ J
ik 7−→ jσ(k).

The embedded Birkhoff polytope BI J
r+1 ⊆ Rd×n is the convex hull of the permutation

matrices of the embedded permutations σI J , σ ∈ Sr+1, where in this embedding, for
each (i, j) 6∈ I × J we set the ijth entry of each matrix in BI J

r+1 to zero.

Recall from Section 2.1.4 that Tr
d,n ⊆ Pr

d,n =
⋂

f∈Ir
trop(V( f )), where f ∈ Ir ranges over

all (r + 1)× (r + 1)-minors of a (d× n)-matrix. More precisely, the ideal Ir is generated
by polynomials

f I J = ∑
σ∈Sr+1

sgn(σ)
r+1

∏
k=1

xik jσ(k) = ∑
σ∈Sr+1

sgn(σ)
r+1

∏
k=1

xikσI J(ik)
.

Thus, a cone CI J ∈ trop(V( f I J)) can be seen as cone in the normal fan of BI J
r+1.
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r1
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r3
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g3
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Figure 2.10: The label Γ(C) of the cone in Example 2.3.6 (left) and the bipartite complement
Γ(C)c (right).

Construction 2.3.4 (Labels of cones in Pr
d,n). Let C ∈ Pr

d,n be a cone in the tropical
determinantal prevariety. Then for each I ⊆ [d], J ⊆ [n] of size |I| = |J| = r + 1 there
exists a unique inclusion-minimal cone CI J ∈ trop(V( f I J)) such that C =

⋂
I,J CI J . Let

Λ(I, J) ⊆
{

σI J
∣∣ σ ∈ Sr+1

}
such that conv(Λ(I, J)) is the face of BI J

r+1 dual to CI J . Let
R = {r1, . . . , rd} and G = {g1, . . . , gn}. R corresponds to row indices of matrices in Pr

d,n,
and G corresponds to column indices. To C we associate the bipartite graph Γ(C) on
vertices V(Γ(C)) = R t G and edges

E(Γ(C)) =
⋃
I,J

{
rik gjl

∣∣∣ σI J(ik) = jl for some σI J ∈ Λ(I, J), l, k ∈ [r + 1]
}

.

Definition 2.3.5. Let Γ be a bipartite graph on vertices V(Γ) = R t G. The bipartite
complement Γc is the bipartite graph on vertices V(Γ) = V(Γc) and edges

E(Γc) =
{

rigj
∣∣ ri ∈ R, gj ∈ G, rigj 6∈ E(Γ)

}
.

Example 2.3.6 (Label of a cone in T2
3,4). Let d = 3, n = 4 and r = 2. Consider the cone

C ∈ P2
3,4 = T2

3,4 with rays
C = cone (E11, E22, E33, E34) .

Then C =
⋂

I,J CI J , where I = [3] and for J1 = {1, 2, 3}, J2 = {1, 2, 4} the cone CI Jk is
dual to the edge conv

(
σI Jk , π I Jk

)
of BI Jk

3 , where σ = (1, 2, 3) and π = (1, 3, 2). More
precisely,

σI J1(1) = 2, σI J1(2) = 3, σI J1(3) = 1, π I J1(1) = 3, π I J1(2) = 1, π I J1(3) = 2,

σI J2(1) = 2, σI J2(2) = 4, σI J2(3) = 1, π I J2(1) = 4, π I J2(2) = 1, π I J2(3) = 2.

For J3 = {1, 3, 4}, J4 = {2, 3, 4} the cone CI Jk is dual to the edge conv
(
σI Jk , π I Jk

)
with

σ = (1, 2, 3) and π = (1, 3). Hence,

σI J3(1) = 3, σI J3(2) = 4, σI J3(3) = 1, π I J3(1) = 4, π I J3(2) = 3, π I J3(3) = 1,

σI J4(1) = 3, σI J4(2) = 4, σI J4(3) = 2, π I J4(1) = 4, π I J4(2) = 3, π I J4(3) = 2,

Thus, the label Γ(C) is the bipartite complement of the graph with edges r1g1, r2g2, r3g3
and r3g4, as shown in Figure 2.10. �
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Figure 2.11: The label Γ(C) of the two distinct cones in Example 2.3.7 (left) and the bipartite
complement Γ(C)c (right).

Example 2.3.7 (Labels are not unique). Consider the two adjacent maximal cones

C1 = cone (E11, E12, E34, E44, E11 + E12 + E13)

C2 = cone (E11, E12, E34, E44, E11 + E12 + E21 + E22)

of the tropical determinantal variety T2
4,4 of rank 2. Both cones have the an identical

label Γ(C1) = Γ(C2), which is the bipartite complement of the bipartite graph on 4 + 4
vertices with the four edges r1g1, r1g2, r3g4, r4g4, as shown in Figure 2.11. Since r = 2,
Theorem 2.4.15 will imply that both cones are positive. �

Theorem 2.3.8. If C ∈ Pr
d,n is a cone, then each induced subgraph on vertices

I ⊆ ( [d]
r+1), J ⊆ ( [n]

r+1) contains a subgraph consisting of a cycle of length 2l, where
l = l(I, J) ∈ N and a perfect matching of the remaining 2(r + 1− l) vertices. If C is
positive, then for each I, J the length of the cycle l = l(I, J) is even.

Proof. Let C be a cone. Then there exist unique inclusion-minimal cones CI J ∈
trop+C (V( f I J)) such that C =

⋂
I,J CI J , and Γ(C) is the union of the labels Γ(CI J). By

Proposition 2.3.2, every subgraph H on vertices V(H) = I t J ⊆ RtG, |I| = |J| = r + 1
contains a subgraph consisting of a cycle of length 2l, l = l(I, J), and a perfect matching
of the remaining vertices. If C is positive, then so is CI J for each I, J. In this case
Proposition 2.3.2 implies that l(I, J) is even.

We note that the converse of the statement above is not true. In fact, for most cones
C that are not maximal (including non-positive cones), the label Γ(C) is the complete
bipartite graph Kn,d. We close this section with a property of the label Γ(C).

Proposition 2.3.9. Let C ∈ Pr
d,n be a cone and Γ(C) the label on vertices V(Γ(C)) =

R t G. Each vertex v ∈ R has degree at least n− r, and every vertex g ∈ G has degree
at least d− r.

Proof. By Theorem 2.3.8, each subgraph of Γ(C) of size (r + 1) + (r + 1) contains a
union of perfect matchings. Let v1 ∈ R and assume for contradiction that deg(v1) ≤
|G| − (r + 1) = n− (r + 1). Then there are nodes g1, . . . , gr+1 ∈ G that are not adjacent
to v1. Hence, for any v2, . . . , vr+1 ∈ R, the vertex r1 is isolated in the induced subgraph
H on vertices {v1, . . . , vr+1} t {g1, . . . , gr+1}. However, by Theorem 2.3.8, the graph
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H does not contain an isolated vertex, which yields the desired contradiction. An
analogous argument implies that deg(g) ≥ |R| − r = d− r for all g ∈ G.

We illustrate the difference between the applicability of the triangle criteria for cartoons
(Proposition 2.2.8) and for bipartite graphs (Proposition 2.3.2). Indeed, for maximal
cones of Tn−1

n,n the description via cartoons and bipartite graphs are equivalent, as the
proof of Proposition 2.3.2 suggests. For arbitrary choices of d and n, there is a single
bipartite graph describing a cone C ∈ Pr

d,n as given in Construction 2.3.4. We can

describe C by a collection of cartoons as follows: for each I ∈ ( [d]
r+1), J ∈ ( [n]

r+1), detect all
maximal cones CI J ∈ trop(V( f I J)) such that C ⊆ CI J and consider their cartoons. This
describes the cone C by a collection of at least ( d

r+1)(
n

r+1) cartoons (C might be contained
in multiple maximal cones for fixed I, J). Each of the cartoons can be obtained from the
graph Γ(CI J) and Γ(C) as the union over all these graphs. In other words, a label can
be seen as the union of the collection of cartoons. Therefore, the label Γ(C) contains
strictly less information. Still, Theorem 2.3.8 gives a criterion to detect (combinatorial)
non-positivity.

Example 2.3.10 (Detecting non-positivity from Γ(C)). Let r = 2, d = 4, n = 3, and
consider the matrix

A =


k1 0 0
0 k2 0
0 0 1 + k3

0 0 1

 ∈ T2
4,3, k1, k2, k3 > 0.

Let C ∈ T2
4,3 be the maximal cone containing A ∈ int(C), and let J = [3]. For each

I ∈ ([4]3 ) there is a unique maximal cone CI J containing C. Their cartoons are displayed
in Figure 2.12 (left). The cone C is positive if and only if for each I (and J) there exists
a positive cone CI J ⊇ C. C is not positive, which can be seen from the cartoons in
Figure 2.12 by the Triangle criterion for cartoons (Proposition 2.2.8). The label Γ(C)
can be seen in Figure 2.12 (right). The induced subgraph H on vertices {r1, r2, r3} t
{g1, g2, g3} does not contain a cycle of length 2l, l even. Hence, Theorem 2.3.8 implies

I = {1, 2, 3} I = {1, 2, 4} I = {1, 3, 4} I = {2, 3, 4}

r1

r2

r3

r4

g1

g2

g3

Figure 2.12: The cartoons of the maximal cones CI J in Example 2.3.10 (left) and the label Γ(C)
(right). The edges outside the subgraph H are dashed.
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that C is not positive, and there can be no positive cone with such a label. For r = 2,
we present a full characterization of labels of maximal cones in terms of positivity in
Theorem 2.4.15. �

2 .4 rank 2

In this section, we consider the tropicalization of the matrices of rank at most 2, that
means the tropical determinantal variety T2

d,n of tropical matrices of (Kapranov) rank at
most 2. It was shown in [DSS05] that the notions of tropical rank and Kapranov rank
agree for rank 2.
We first give a characterization of the positive part of T2

d,n in terms of the Barvinok
rank. In Section 2.4.2, we consider a triangulation of the determinantal variety by
the space of bicolored phylogenetic trees, and translate the characterization in terms
of the Barvinok rank to its equivalent version in terms of bicolored phylogenetic
trees. Using this language of phylogenetic trees, in Section 2.4.3 we are able to give
a full characterization of the positive cones of the tropical determinantal varieties in
term of their bipartite labels (as defined in Construction 2.3.4). We note that this
characterization is not equivalent to the previous ones, as the cones are not in bijection
with their labels, but multiple cones can have the same label (cf. Example 2.3.7). Finally,
in Section 2.4.5 we explain the connection of bicolored phylogenetic trees with the
tropical Grassmannian, which is the space of uncolored phylogenetic trees. Here, we
give an explicit description of a projection map, which induces a bijection of the space
of bicolored phylogenetic trees and those uncolored phylogenetic trees which allow a
certain admissible coloring.

2.4.1 Positivity and Barvinok Rank

Ardila showed in [Ard04] that a tropical matrix of tropical rank 2 is positive if and only
if it has Barvinok rank 2. The proof reveals a crucial connection between the positivity
of tropical matrices and the nonnegative rank of matrices with ordinary rank 2. We
begin by reviewing different characterizations of the Barvinok rank.

Proposition 2.4.1 ([DSS05, Proposition 2.1]). For a tropical matrix A ∈ Rd×n, the
following are equivalent:

(i) A has Barvinok rank at most r.

(ii) The columns of A lie in the tropical convex hull of r points in TPd−1.

(iii) There are matrices X ∈ Rd×r, Y ∈ Rr×d such that A = X�Y.

Here, X � Y denotes the tropical matrix multiplication, i.e. (X � Y)ij =
⊕r

k=1 Xik �
Ykj = min

(
Xik + Ykj | k ∈ [r]

)
. Tropical convex hulls are discussed in more detail in

Section 1.3.1. The equivalence of (i) and (iii) leads to the argument in [Ard04], which
we give for completeness.
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2 tropical positivity and determinantal varieties

Theorem 2.4.2 ([Ard04]). The positive part (T2
d,n)

+ of the tropical determinantal
variety T2

d,n coincides with the set of matrices of Barvinok rank 2.

Proof. Consider the map f : Rd×2 ×R2×n → Rd×n, (X, Y) 7→ XY. The image of this
map is the determinantal variety V(I2) ⊆ Rd×n, i.e. the set of matrices of rank at most
2. We can write f as a polynomial map

f = ( f11, . . . , fdn) : R2d+2n → Rdn where fij(X, Y) = Xi1Y1j + Xi2Y2j .

Each fij has only positive coefficients, i.e. f is positive. By replacing ‘+’ with ‘min’ and
replacing ‘·’ with ‘+’ in the definition of f , we obtain its tropicalization

trop( f ) = g : Rd×2 ×R2×n → Rd×n, (X, Y) 7→ X�Y .

Since f is positive, it follows that Im(g) ⊆ trop+(V(I2)) = (T2
d,n)

+ from [PS04, Theorem
2]. Furthermore, if f (R2d+2n

>0 ) = Im( f ) ∩Rdn
>0, then Im(g) = (T2

d,n)
+. Indeed, this holds

since every positive (d× n)-matrix of rank 2 can be written as the product of a positive
(d× 2)-matrix and a positive (2× n)-matrix [CR93, Theorem 4.1]. Finally, note that
Im(g) is precisely the set of matrices of Barvinok rank 2 by Proposition 2.4.1.

Consider the columns of A ∈ T2
d,n as the coordinates of n points in TPd−1. Proposi-

tion 2.1.21 implies that these are n points lying on a common tropical line L in TPd−1.
A tropical line in TPd−1 is a pure, connected 1-dimensional polyhedral complex not
containing any cycles. This complex consists of d unbounded rays in direction of the
standard basis e1, e2, . . . , ed−1, ed

∼= −(e1 + · · ·+ ed−1). It has k ≤ d− 3 vertices, which
are connected by k− 1 bounded edges. It was shown in [SS04] that tropical lines are in
bijection with phylogenetic trees on d leaves, and the space of tropical lines in TPd−1 is
the tropical Grassmannian trop (Gr(2, d)). We describe the tropical Grassmannian in
more detail in Section 2.4.4. On the other hand, since in the case of rank 2 the Kapranov
and the tropical rank coincide, the tropical convex hull of the n columns of A is a
1-dimensional polyhedral complex that only consists of bounded line segments. Recall
from Section 1.3.1 that this complex has two different kinds of vertices, called tropical
vertices (which is a subset of the n columns of A) and pseudovertices. As a set, the
tropical convex hull is strictly contained in the tropical line L.

Proposition 2.4.1 and Theorem 2.4.2 together characterize the possible “positive” point
configurations of n points on a tropical line: Such a tropical point configuration is posi-
tive if and only if its tropical convex hull has (at most) 2 tropical vertices. This means
that the columns lie on a tropical line segment, which is a concatenation of classical
line segments [DS04, Proposition 3]. Based on this connection with the Barvinok rank,
we obtain a stronger result about the representation by (3× 3)-minors.
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Theorem 2.4.3. The (3× 3)-minors form a set of positive-tropical generators for the
positive tropical determinantal variety (T2

d,n)
+ of rank 2.

Proof. By Theorem 2.4.2 and (2.1) (in Section 2.1.1), we have that{
A ∈ Rd×n

∣∣∣ A has Barvinok rank ≤ 2
}
= (T2

d,n)
+ ⊆

⋂
f is a

(3×3)-minor

trop+C (V( f )).

It thus remains to show the reverse inclusion. Let A ∈ trop+C (V( f )) for every (3× 3)-
minor f . Let I = {i1, i2, i3} ∈ [d], J = {j1, j2, j3} ⊆ [d] and consider the minor

f I J(xi1 j1 , xi1 j2 , xi1 j3 , xi2 j1 , xi2 j2 , xi2 j3 , xi3 j1 , xi3 j2 , xi3 j3) = ∑
σ∈S3

sgn(σ)
3

∏
k=1

xik jσ(k) .

By assumption, A ∈ trop+C (V( f I J)). In other words, there exists some matrix ÃI J ∈
V( f I J) ∩ (C+)d×n such that A = val(ÃI J) and

f I J(ÃI J
i1 j1

, ÃI J
i1 j2

, ÃI J
i1 j3

, ÃI J
i2 j1

, ÃI J
i2 j2

, ÃI J
i2 j3

, ÃI J
i3 j1

, ÃI J
i3 j2

, ÃI J
i3 j3

) = 0.

Note that ÃI J might differ for different choices of I, J. Recall that, by assumption,
A ∈ (P2

d,n)
+ ⊆ P2

d,n = T2
d,n by (2.2) (in Section 2.1.4) and Theorem 2.1.19, and so A (and

each submatrix) has Kapranov rank ≤ 2. Hence, the columns of A lie on a tropical line
L, and the convex hull of its columns is a 1-dimensional polyhedral complex supported
by L. We want to show that A has Barvinok rank ≤ 2, i.e. that the tropical convex hull
of the columns of A has at most 2 tropical vertices. Let M be the (3× n)-submatrix of A
with rows i1, i2, i3 ∈ [d]. We view the columns of M as n points in TP2 and consider the
tropical convex hull of these points as polyhedral complex of ordinary line segments.
First, we show that the tropical convex hull of the n columns of M does not contain
a pseudovertex that is incident to more than 2 edges. Assume for contradiction that
there is such a pseudovertex p incident to 3 line segments l1, l2, l3. Then there must be 3
columns j1, j2, j3 of M whose tropical convex hull contains p and the three line segments
l1, l2, l3. Consider the (3 × 3)-submatrix N with rows I = {i1, i2, i3} and columns
J = {j1, j2, j3}. Note that N is the valuation of the submatrix Ñ ∈ (C+)3×3 of the matrix
ÃI J . By assumption, the matrix Ñ is positive and has rank ≤ 2. Thus, N has Kapranov
rank ≤ 2, i.e. N ∈ (T2

3,3)
+. Therefore, Theorem 2.2.16 (Geometric triangle criterion)

implies that the tropical convex hull of columns of N cannot contain a pseudovertex
incident to 3 line segments. Hence, M does not contain such a subconfiguration. We
have thus shown that A does not contain a (3× n)-submatrix where the convex hull
of the columns contain a pseudovertex that is incident to (at least) 3 line segments.
Note that the tropical convex hull of the columns of a matrix is isomorphic the tropical
convex hull of its rows. We can thus apply the same argument to At to obtain that A
also does not contain a (d× 3)-submatrix with this property either.

65



2 tropical positivity and determinantal varieties

We have shown that the tropical convex hull of the columns of any (3× n)- or (d× 3)-
submatrix of A has at most 2 tropical vertices. We now show the same statement for
the entire (d× n)-matrix A. Assume for contradiction that the convex hull of the n
columns in TPd−1 contains a pseudovertex p of that is incident to line segments l1, l2, l3.
Then again there must be 3 columns j1, j2, j3 of A such that their tropical convex hull
contains p and l1, l2, l3. However, these columns form a (3× d)-submatrix of A, which
yields a contradiction to the argument above.

2.4.2 Bicolored Phylogenetic Trees

It was shown in [Dev05; MY09] that T2
d,n is a shellable complex of dimension d + n−

4. Furthermore, it admits a triangulation by the space of bicolored phylogenetic trees
BPTd,n. That is, BPTd,n is a simplicial fan, whose cones are in correspondence with
the combinatorial types of bicolored phylogenetic trees. The identification of matrices
in T2

d,n with bicolored trees is as follows.

Construction 2.4.4 (Bicolored phylogenetic trees [MY09]). Let A1, . . . , An be tropically
collinear points in TPd−1 and L be a tropical line through these points. The tropi-
cal convex hull tconv(A1, . . . , An) is a connected 1-dimensional polyhedral complex
supported on a subset of L. First, for each j ∈ [n] attach a green leaf with label j at
the point Aj. Note that the line L has an unbounded ray in each coordinate direction
e1, . . . , ed. Shorten such an unbounded ray in direction ei to obtain a red leaf with label
i. This procedure results in a tree on d red and n green leaves. We refer to these color
classes as R = {r1, . . . , rd} (for “red” or “rows of A”) and G = {g1, . . . , gn} (for “green”,
corresponds to columns of A). An example of this construction is shown in Figure 2.13.

A1

A2

A3

→ e1

e2 →

→e3

g1

g2

g3

g1

g2

g3

r3

r2

r1

g1

r3

g2

r2
r1

g3

Figure 2.13: The construction of the bicolored phylogenetic tree for the matrix from Exam-
ple 2.2.10, from left to right.
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Definition 2.4.5. An internal edge of a bicolored tree is an edge between two vertices
that are not leaves. A vertex of a bicolored tree is an internal vertex if it is adjacent to at
least 2 internal edges. A tree is a caterpillar tree if every vertex is incident to at most two
internal edges.

We refer to a bicolored phylogenetic tree as positive if it can be obtained by applying
Construction 2.4.4 to a positive matrix A ∈ (T2

d,n)
+. The geometric interpretation

(Proposition 2.4.1 (ii)) of (positive) matrices of Barvinok rank 2 implies the following
for bicolored trees.

Corollary 2.4.6. A bicolored phylogenetic tree is positive if and only if it is a
caterpillar tree.

Proof. Let P be a bicolored phylogenetic tree. Then the tree corresponds to a cone in
the triangulation BPTd,n of T2

d,n in which for every matrix A, Construction 2.4.4 yields
P. Note that, by construction, the set of bounded edges of P coincides with the tropical
convex hull of the columns of A. By Theorem 2.4.2, A is positive if and only if A has
Barvinok rank 2, i.e. the tropical convex hull of the columns of A is the concatenation of
ordinary line segments (Proposition 2.4.1). Equivalently, the tropical convex hull (and
the resulting phylogenetic tree) does not contain a vertex that is incident to 3 internal
edges or more.

We now describe the fan structure of BPTd,n. Understanding the structure of this fan
will be crucial for the arguments made in Sections 2.4.3 and 2.4.5.

Definition 2.4.7. Let P ∈ BPTd,n be a phylogenetic tree. The removal of an internal
edge splits the tree into two connected components, inducing a partition of the set
of leaves of P. These partitions (S, ([d] t [n]) \ S) are the bicolored splits of the tree. A
bicolored split is elementary if one of the two parts has only 2 elements.

The construction of bicolored phylogenetic trees implies that each of the two parts of a
bicolored split contains leaves of both colors.
The lineality space of the space BPTd,n of bicolored phylogenetic trees coincides with the
lineality space of T2

d,n as described in Section 2.1.5. By construction, two collinear point
configurations that are equal up translation induce the same bicolored phylogenetic
trees. Modulo this lineality space, the fan BPTd,n is a simplicial fan in which every
cone is generated by d + n− 3 rays. The rays of a cone in BPTd,n correspond to the
bicolored splits of the trees in the cone. More precisely, if r = {λA | λ ≥ 0} is a ray of
the fan BPTd,n, then for each λ > 0 Construction 2.4.4 produces the same tree. This
tree has a single internal edge, separating the leaves S and ([d] t [n]) \ S, and both S
and ([d] t [n]) \ S contain leaves of both color classes.
Two (bicolored) splits (S1, ([d] t [n]) \ S1) = (S1, Sc

1), (S2, ([d] t [n]) \ S2) = (S2, Sc
2) are

compatible if
S1 ⊆ S2 or S1 ⊆ Sc

2 or S2 ⊆ Sc
1 or Sc

1 ⊆ Sc
2.
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A1

A2, A3
→ e1

e2 →

→e3

B1B2, B3 → e1

e2 →

→e3

C1

C2, C3
→ e1

e2 →

→e3

g2
g3

r3

r1
r2

g1 g2
g3

r3

r2
r1

g1 g2
g3

r3 r2
r1

g1

Figure 2.14: The point configurations A, B and C = A+ B from Example 2.4.9 and the respective
bicolored phylogenetic trees.

A set of bicolored splits form a cone C in BPTd,n if and only if they are pairwise
compatible. If a bicolored tree P is contained in the relative interior of the cone C, then
the rays of C are thus in correspondence with the internal edges of P.

Definition 2.4.8. A tree is maximal if it is contained in the interior of a maximal cone of
BPTd,n. Equivalently, a tree is maximal if it has d + n− 3 internal edges.

Example 2.4.9 (Compatible bicolored splits). Consider the matrices

A =

0 0 0
0 0 0
0 1 1

 , B =

1 0 0
0 0 0
0 0 0


Both A and B span rays in BPT3,3, as the corresponding phylogenetic trees are
the bicolored splits (r1r2g1, r3g2g3) and (r1g1, r2r3g2g3) respectively, as shown in Fig-
ure 2.14. Note that the bicolored splits are compatible (r1g1 ⊆ r1r2g1), so they span a
2-dimensional cone. The sum C = A + B is a point in the interior of this cone, and
corresponds to the tree with exactly these two bicolored splits. Hence, the rays A, B
correspond to the bounded edges of the tree A + B. �

Remark 2.4.10. The fan structure of the triangulation BPTd,n together with Corol-
lary 2.4.6 implies that every positive cone of T2

d,n is contained in a positive maximal
cone, as every (non-maximal) caterpillar tree can be obtained by contracting internal
edges of a maximal caterpillar tree, and maximal phylogenetic trees correspond to
maximal cones in BPTd,n.

We present one result regarding the triangulation, that will be useful for characterizing
the positive labels of cones of T2

d,n in terms of bipartite graphs. This proof uses the
balancing condition of tropical lines. A first introduction to tropical lines was given in
Section 2.4.1, describing a tropical line as a pure, embedded 1-dimensional polyhedral
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g1

r1 r2

P

g1

r2 r1

P′

e1

e2

A1

0

E
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e1

e2 B1

0 E′

B

Figure 2.15: The trees P and P′ from Lemma 2.4.11 and the corresponding point configurations
A and B.

complex. Let v be a vertex of this polyhedral complex. If the tropical line in TPd−1 is
non-degenerate (i.e. has d− 3 bounded edges), then the balancing condition implies
that the slopes of all edges incident to v sum to the zero vector.

Lemma 2.4.11. Let P be a fixed maximal bicolored phylogenetic tree and let S be the
set of bicolored splits of P, such that S contains the splits

Sr1,g1,r2 = ({r1, g1, r2}, (R t G) \ {r1, g1, r2}) and Sr1,g1 = ({r1, g1}, (R t G) \ {r1, g1}),

as depicted in Figure 2.15 on the left. Let CP ∈ BPTd,n be the maximal cone in the
space of bicolored phylogenetic trees, so that all matrices in the interior of CP corre-
spond to P, and C ∈ T2

d,n be the unique maximal cone of the tropical determinantal
variety containing CP. Then C also contains the maximal cone CP′ ∈ BPTd,n, where all
matrices correspond to trees P′ of fixed combinatorial type, and the set of bicolored
splits of P′ is S ′ = (S \ Sr1,g1) ∪ Sr2,g1 , where Sr2,g1 = ({r2, g1}, (R t G) \ {r2, g1})
(Figure 2.15 on the right).

Proof. We reverse Construction 2.4.4 to obtain a point configuration of points A1, . . . ,
An ∈ TPd−1 forming a matrix A ∈ CP. Let A1, . . . , An be such points and L a tropical
line containing them. The line L is a 1-dimensional polyhedral complex consisting
of bounded edges and d unbounded rays in directions e1, . . . , ed = −(e1 + · · ·+ ed−1).
Since P is maximal the line L is non-degenerate, i.e. has d− 3 bounded segments. We
now construct explicit matrices A, B, realizing P and P′ respectively.
The bicolored split Sr1,g1 of P implies that the point A1 lies on the ray of L in direction
e1, and the bicolored split Sr1,g1,r2 implies that the rays e1 and e2 meet in a common
vertex v, and that there is a bounded edge E of L separating the rays in directions e1, e2
from the rays in directions e3, . . . , ed (cf. Figure 2.15). Similarly, if B is a matrix realizing
P′, and L′ is the line through columns of B, then the bicolored split Sr2,g1 of P′ implies
that the point B1 lies on the ray direction e2, and the bicolored split Sr1,g1,r2 implies that
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the rays e1 and e2 meet in a common vertex v′, and that there is an internal edge E′ of
L′ separating the rays in directions e1, e2 from the rays in directions e3, . . . , ed. Since all
remaining bicolored splits of P and P′ are the same, we can assume that all columns
Ak = Bk coincide for k ≥ 2. Therefore, L = L′ and the point configurations only differ
in the position of the points A1, B1 respectively, as depicted in Figure 2.15 (bottom).
After translation of the point configurations, we can assume that both for L and L′ the
vertices v, v′ are the origin 0. The points A1 and B1 can be realized by the first two unit
vectors respectively. Since L and L′ satisfy the balancing condition, the internal edges
E, E′ have slope −e1 − e2 = e3 + · · ·+ ed, and so all remaining points in the two point
configurations can be realized as points Mj = (M1j, . . . , Mdj), where M1j = M2j = 0
and Mkj > 0 for all 3 ≤ k ≤ d and j = 2, . . . , n. Therefore, the tree P can be realized as
the matrix A, and P′ is induced by the matrix B as follows:

A =



1 0 0 . . . 0
0 0 0 . . . 0

0
...
0

M


B =



0 0 0 . . . 0
1 0 0 . . . 0

0
...
0

M


,

where M is some (d− 2)× (n− 1)-matrix such that Mij > 0 ∀ i ∈ [d− 2], j ∈ [n− 1].
We need to show that, for a fixed (3× 3)-minor f I J , the initial forms selected by the
weights in A and in B, respectively, are the same. So let i1 < i2 < i3, j1 < j2 < j3 be the
indices of three rows and three columns, respectively. They define the polynomial f I J

corresponding to the (3× 3)-minor

f I J = xi1 j1 xi2 j2 xi3 j3 + xi1 j2 xi2 j3 xi3 j1 + xi1 j3 xi2 j1 xi3 j2

−xi1 j1 xi2 j3 xi3 j2 − xi1 j3 xi2 j2 xi3 j1 − xi1 j2 xi2 j1 xi3 j3

and (3× 3)-submatrices AI J , BI J of A, B. With this notation, we need to prove the
equality inAI J ( f I J) = inBI J ( f I J), where inAI J ( f I J) is the polynomial consisting of those
terms with minimal AI J-weight.
If 1 6∈ {j1, j2, j3} or 1, 2 6∈ {i1, i2, i3} them AI J = BI J and the claim holds. For j1 = 1 and
i1 = 1, i2 = 2 the submatrices are

AI J =

1 0 0
0 0 0
0 Mi3 j2 Mi3 j3

 and BI J =

0 0 0
1 0 0
0 Mi3 j2 Mi3 j3

 .
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The choice Mij > 0 implies that inAI J ( f ) = inBI J ( f ) = xi1 j2 xi2 j3 xi3 j1 − xi1 j3 xi2 j2 xi3 j1 , where
in each case both terms have weight 0. If j1 = 1, i1 = 1, i2 6= 2 the submatrices are

AI J =

1 0 0
0 Mi2 j2 Mi3 j2

0 Mi3 j2 Mi3 j3

 and BI J =

0 0 0
0 Mi3 j2 Mi3 j2

0 Mi3 j2 Mi3 j3

 .

The initial form with respect to these matrices can only differ if Mi2 j2 + Mi3 j3 or Mi3 j2 +

Mi2 j3 are the terms with minimal BI J-weight. However, e.g. Mi2 j2 appears as weight of
the term xi1 j3 xi2 j2 xi3 j1 , and since Mij > 0, the weight Mi2 j2 is strictly smaller. Finally, if
j1 = 1, i1 = 2 then the argument is analogous to the above case j1 = 1, i1 = 1, i2 6= 2.

The roles of R and G can be exchanged in the above statement. Thus, if d, n ≥ 3, then
every maximal bicolored caterpillar tree has exactly 2 such pairs of bicolored splits.
This implies the following result on the number of triangulating cones for positive
cones in T2

d,n.

Corollary 2.4.12. Let C ∈ T2
d,n be a maximal cone and P ∈ C a bicolored cater-

pillar tree. Then the triangulation of C by the space of bicolored phylogenetic trees
subdivides C into at least 4 parts.

2.4.3 Positivity and Bipartite Graphs

We now describe the labels of P2
d,n = T2

d,n, which were introduced in Section 2.3. In
particular, we show that for r = 2, even though different cones might have the same
label, the labels detect positivity. In other words, a label fully characterizes when a
maximal cone lies in (P2

d,n)
+. Recall from Theorem 2.4.3 that (P2

d,n)
+ = (T2

d,n)
+, so this

criterion also applies to positive cones of the tropical determinantal variety of rank 2.
By Remark 2.4.10, it suffices to consider maximal cones.

Lemma 2.4.13. Let C ∈ T2
d,n be a maximal cone and C1, . . . , Cm ∈ BPTd,n be maximal

cones of the space of bicolored phylogenetic trees triangulating C. Let Pk be the
combinatorially unique (maximal) bicolored phylogenetic tree corresponding to Ck.
Then

E(Γ(C)c) ⊇
{

rigj
∣∣ {i, j} is an elementary bicolored split of Pk for some k ∈ [m]

}
.

Proof. The rays of the space of bicolored phylogenetic trees are in bijection with bi-
colored splits (A, B), i.e. trees with one internal edge partitioning the set of leaves
into two parts A and B, such that both parts contain leaves of both colors (cf. Sec-
tion 2.4.2). As a matrix in Rd×n, a ray generator (modulo lineality space) can be given
as ∑i,j∈A Eij, |A| ≤ |B|. If A = {i, j} is an elementary bicolored split, then Eij spans
a ray of some Ck, so cone(Eij) is contained in C. Any point except the rays of C are
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nontrivial nonnegative combinations of rays of C. Thus, cone(Eij) is also an extremal
ray of C. It follows that{

rigj
∣∣ Eij spans a ray of C

}
⊇ {rigj | {i, j} is an elementary bicolored split

of Pk for some k ∈ [m]}.

Let CI J ∈ trop(V( f I J)) be the inclusion-minimal cone containing C. Then cone(Eij) ⊆
CI J . Since CI J is a cone in the normal fan of BI J

3 , all rays of CI J are of the form cone(Ekl).
Hence, cone(Eij) cannot be written as a nontrivial nonnegative combination of rays of
CI J , and so cone(Eij) is a ray of CI J . By Construction 2.3.4 and (2.5) (in Section 2.2.4) ,
for the cone CI J holds

E(Γ(CI J)c) =
{

rigj

∣∣∣ Eij spans a ray of CI J
}

,

and rigj is an edge in Γ(C)c if and only if it is contained in Γ(CI J)c for all I, J such that
i ∈ I and j ∈ J. Thus,

E(Γ(C)c)) ⊇
{

rigj
∣∣ Eij spans a ray of C

}
.

Example 2.4.14 (Incompatible bicolored elementary bicolored splits). Consider the
maximal cone C from Example 2.3.6. The edges in Γ(C)c are r1g1, r2g2, r3g3 and r3g4.
Let A ∈ C and P be the bicolored phylogenetic tree corresponding to A. Lemma 2.4.13

implies that these are all the possible candidates for elementary bicolored splits of
bicolored phylogenetic trees in C. Note that the bicolored splits corresponding to the
edges r3g3 and r3g4 are not compatible. Thus, there exists no phylogenetic tree having
both as elementary bicolored splits simultaneously. �

Theorem 2.4.15. Let Γ(C) be the label of a maximal cone C ∈ T2
d,n. Then C is positive

if and only if the bipartite complement of Γ(C) consists of 4 edges which form two
disjoint paths of length 2 (as shown in Figure 2.16), and isolated vertices.

r1

r2

r3

g1

g2

g3

r1

r2

r3

r4

g1

g2

r1

r2

g1
g2

g3
g4

Figure 2.16: The possible complements Γ(C)c of positive labels (up to relabeling of the vertices
within the parts, and without isolated vertices).

Proof. Let Γ(C)c be a graph consisting of 4 edges which form two disjoint paths p1, p2.
As first case, consider p1 = g1r1g2 and p2 = r2g3r3. Lemma 2.4.13 implies that the union
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of elementary bicolored splits of all bicolored phylogenetic trees in C is contained in

S = {{r1, g1} , {r1, g2} , {r2, g3} , {r3, g3}} .

Any subset of S of size 3 contains two bicolored splits that are not compatible (cf.
Section 2.4.2). Hence, every maximal phylogenetic tree P in C has at most 2 elementary
bicolored splits. At the same time, every maximal phylogenetic tree contains at least 2
elementary bicolored splits, and this number is 2 if and only if P is a caterpillar tree.
Thus, each maximal phylogenetic tree in C is a caterpillar tree. The argument is similar
for p1 = r1g1r2, p2 = r3g2r4 and for the case p1 = g1r1g2, p2 = g3r2g4. In all of these
cases, Corollary 2.4.6 implies that C is positive.
Suppose C is a positive cone. By Theorem 2.3.8, every induced subgraph H on 3 + 3
vertices contains a subgraph Gpos consisting of a 4-cycle and a disjoint edge. For the
remainder of this proof, we consider the bipartite complement Hc. By Proposition 2.3.9,
every vertex in Hc has degree at most 2. Note that Hc cannot have a P4 (Figure 2.17(a)) as
a subgraph, since its complement (Figure 2.17(b)) does not contain a graph isomorphic
to Gpos. Hence, Hc (and therefore Γ(C)c) consists of disjoint paths of length 3 and
isolated edges.

r1

r2

r3

g1

g2

g3

(a)

r1

r2

r3

g1

g2

g3

(b)

Figure 2.17

Similarly, Hc cannot contain a perfect matching (3 isolated edges as shown in Fig-
ure 2.18(a)), since the complement (Figure 2.18(b)) does not contain a graph isomorphic
to Gpos.

r1

r2

r3

g1

g2

g3

(a)

r1

r2

r3

g1

g2

g3

(b)

Figure 2.18

Thus, Γ(C)c has at most 4 edges which form two disjoint paths of length 2. However,
by Lemma 2.4.13 the edges of Γ(C)c contain the union of all elementary bicolored splits
of trees in C. Corollary 2.4.12 implies that there are at least 4 distinct such trees and
hence at least 4 distinct elementary bicolored splits. Therefore, the number of edges of
Γ(C)c is 4.
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2.4.4 Bicoloring Trees and the Tropical Grassmannian trop (Gr(2, d + n))

We now investigate the striking resemblance between T2
d,n, (its triangulation given

by) the moduli space BPTd,n of bicolored phylogenetic trees on d + n leaves, and the
tropical Grassmannian trop (Gr(2, d + n)), the moduli space of ordinary phylogenetic
trees. It was shown in [SS04] that a tropical Plücker vector p ∈ trop (Gr(2, d + n)) gives
a tree metric by

− pij = length of the path between leaves i and j, (2.7)

where the length of a path is the sum of the lengths of all edges of the path and the
length of the leaves i, j. Thus, each point p ∈ trop (Gr(2, d + n)) corresponds to a metric
tree on d + n leaves. A point p ∈ TP(d+n

2 ) is a tropical Plücker vector (i.e. is contained
in the tropical Grassmannian) if and only if it satisfies the 3-term Plücker relation (or
4-point condition)

min
(

pij + pkl , pil + pjk, pik + pjl
)

is attained at least twice

for all distinct i, j, k, l ∈ [d + n]. As in the case of BPTd,n, the tropical Grassman-
nian trop (Gr(2, d + n)) is a polyhedral fan. We now describe the fan structure of
trop (Gr(2, d + n)), which will play an important role in the proofs in Section 2.4.5.
The lineality space of the tropical Grassmannian trop (Gr(2, d + n)) is spanned by the
vectors

∑
i∈[d+n]

i 6=k

ẽik, k ∈ [d + n]

where the vectors ẽij = ẽji ∈ TP(d+n
2 )−1 are the standard basis vectors. We now

explain how points in trop (Gr(2, d + n)) behave modulo this lineality space. Let
p ∈ trop (Gr(2, d + n)) and fix k ∈ [d + n]. Then

p′ := (p + ∑
i∈[d+n]

i 6=k

ẽik)st =

pst if s, t 6= k

pst + 1 if s = k or t = k.
(2.8)

Recall that −pij is the length of the path between leaves i and j of an (uncolored)
phylogenetic tree P. That is, the tree P has internal edges of certain lengths, and
each leaf i has a length `i. The vector p′ is the tree metric of the tree P′ of the same
combinatorial type, where all lengths of internal edges coincide with the lengths of
internal edges of P. Furthermore, the leaf i of P′ has length `′i, and (2.8) implies that
`i = `′i for i 6= k and `k = `′k − 1. Therefore, the points in trop (Gr(2, d + n)) modulo
lineality space correspond to metric phylogenetic trees modulo leaf lengths.

Definition 2.4.16. Let P be a phylogenetic tree on d + n leaves. A split of P is a partition
of the leaves into two parts induced by the deletion of an internal edge of P. A split is
elementary if one of the two parts has only 2 elements.
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The fan trop (Gr(2, d + n)) is, modulo its lineality space, a simplicial fan in which
every cone is generated by d + n − 3 rays. The rays of trop (Gr(2, d + n)) (modulo
lineality space) correspond to splits, i.e. partitions of the leaves [d + n] into two parts
(S, ([d + n]) \ S). As trees, these are phylogenetic trees with a unique internal edge
separating the leaves in S and ([d + n]) \ S. Similarly to their bicolored counterparts in
Section 2.4.2, two (uncolored) splits (S1, Sc

1), (S2, Sc
2) are compatible if

S1 ⊆ S2 or S1 ⊆ Sc
2 or S2 ⊆ Sc

1 or Sc
1 ⊆ Sc

2.

A set of splits forms a cone C in trop (Gr(2, d + n)) if and only if they are pairwise
compatible. If a tree P is contained in the interior of C, then the rays of C are in corre-
spondence to the bounded edges of P. The maximal cones of the tropical Grassmannian
trop (Gr(2, d + n)) correspond to phylogenetic trees with d + n− 3 internal edges.

Example 2.4.17 (Compatible uncolored splits). Let d + n = 5 and consider the tropical
Plücker vectors

12 13 14 15 23 24 25 34 35 45
p = ( 0 −1 −1 −1 −1 −1 −1 0 0 0)
q = ( 0 0 −1 −1 0 −1 −1 −1 −1 0)

Both p and q span rays in trop (Gr(2, d + n)), as the corresponding phylogenetic trees
are split trees with splits (12, 345) and (123, 45) respectively, and in both cases the
unique internal edge has length 1 and all leaves have length 0. Note that the splits are
compatible (12 ⊆ 123), so they span a 2-dimensional cone. The sum p + q is a point
in the interior of the cone, and corresponds to the tree with exactly these two splits.
Moreover, the length of each internal edge is 1 and all leaf lengths are 0. �

Lemma 2.4.18. If d + n ≥ 5, then a maximal phylogenetic tree on d + n leaves has at
most d+n

2 elementary splits.

Proof. By definition, an elementary split arises through the removal of an internal edge
which separates 2 leaves from all others. Within this proof, we call such an edge an
“outer edge”. Let k be the number of outer edges. We double count the number of
leaf-edge-incidences for outer edges (i.e. the pairs (leaf, outer edge) such that the leaf is
adjacent to the outer edge). A single outer edge is adjacent to precisely 2 leaves. Thus,
the number of such pairs is 2k. On the other hand, a single leaf is adjacent to at most
one outer edge. The tree has d + n leaves, and hence the number of pairs is at most
d + n. Combining both counts yields 2k ≤ d + n or equivalently k ≤ d+n

2 .

Remark 2.4.19. The number of elementary splits is minimized by caterpillar trees (which
have precisely 2 elementary splits) and the bound in Lemma 2.4.18 is attained by
snowflake trees, which are trees with a unique internal vertex incident to all internal
edges. If d + n = 4, then there exists a unique tree, which has precisely one elementary
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2 tropical positivity and determinantal varieties

split. If the tree admits a (d, n)-coloring (as defined below), then d = n = 2, since
every the split cannot have a monochromatic part. If d + n ≤ 3, then there exists no
elementary split.

Definition 2.4.20. A (d,n)-bicoloring of P is a 2-coloring of the leaves into d red and n
green leaves such that no split of P has a monochromatic part.

There is a simple characterization of the existence of a bicoloring in terms of the number
of leaves and elementary splits.

Proposition 2.4.21. Let P be a maximal phylogenetic tree on d + n leaves for some
fixed d, n ∈ N and let k be the number of elementary splits of P. Then P has a
(d, n)-bicoloring if and only if k ≤ min(d, n). In this case, the number of possible
(d, n)-bicolorings is 2k(d+n−2k

d−k ).
In particular, for any phylogenetic tree P on m leaves, there exist d, n ∈N such that
d + n = m and P has a (d, n)-bicoloring.

Proof. Let P be a phylogenetic tree on d+ n leaves, and suppose P has a (d, n)-bicoloring.
Since every elementary split contains exactly one leaf of each color in the part with 2
elements, it follows directly that there are at least k leaves of each color, and thus k ≤ d
and k ≤ n.
Conversely, let k be the number of elementary splits of P and k ≤ min(d, n). For each
of these k elementary splits there are exactly 2 possible colorings of the part with
two elements. Thus, there are exactly 2k possible colorings of the sets of size 2 of the
elementary splits.
Since P has d + n leaves in total, there are d + n− 2k remaining leaves to color: d− k in
one color and n− k in the other color. Note that for any such coloring, the removal of
any internal edge will split the colored tree into 2 parts, with leaves of both colors in
both parts. Thus, any such coloring is a bicoloring. In total there are hence

2k
(

d + n− 2k
n− k

)
= 2k

(
d + n− 2k

d− k

)
(d, n)-bicolorings of a maximal tree with k elementary splits. Finally, by Lemma 2.4.18

a maximal phylogenetic tree on m leaves has at most k ≤ m
2 elementary splits. Thus,

choosing values for d, n ∈N such that d + n = m and k ≤ min(d, n) is always possible.
For non-maximal trees this is a lower bound: Let (A, B) be an inclusion-minimal split,
i.e. a split such that |A| ≤ |B| and there exists no split (C, D) such that C ⊆ A or
D ⊆ A. Then A contains at least 2 leaves and we can apply the same argument as
above to inclusion-minimal splits instead of elementary splits.

Example 2.4.22 (Admissible bicolorings). Consider the maximal tree on 5 leaves as
shown in Figure 2.19, with elementary splits (12, 345) and (123, 45). We choose the
partition d + n = 2 + 3, i.e. we want to color 2 leaves in red and 3 leaves in green. In
order to obtain a bicoloring, we need to color one of the leaves in {1, 2} in red, and
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1

2
3

4

5

Figure 2.19: The tree from Example 2.4.22

one of the leaves in {4, 5} in red, and color the remaining 3 leaves in green. For the
partition 1 + 4, there is no (1, 4)-bicoloring of this tree, as every such 2-coloring has at
least one monochromatic elementary split. �

2.4.5 Bicoloring Trees and Back

We now show that the combinatorial idea of “bicoloring a tree” can be made precise
also on the algebraic level. In this section we describe a map which, for each (d, n)-
bicoloring of leaves [d + n], establishes a bijection between the polyhedral fan BPTd,n
and a suitable subfan of trop (Gr(2, d + n)). On the level of trees, the map correspond
to “coloring a tree” and its inverse to “forgetting the colors”. A similar result was
established in [MY09, Lemma 2.10]. Theorem 2.4.23 reveals that this map can be seen
as a coordinate projection.

We first describe the subfan of trop (Gr(2, d + n)), and the map from this subfan to
BPTd,n. Fix d, n ∈ N and let R t G = [d + n] be a 2-coloring of the leaves in color
classes (R, G) such that |R| = d, |G| = n. We say that the coloring (R, G) of the leaves is
admissible for P if it is a (d, n)-bicoloring (as defined in Definition 2.4.20), i.e. if for every
split of P both parts contain leaves of both colors. Let now UPT (R,G) be the collection
of cones in trop (Gr(2, d + n)) corresponding to (uncolored) phylogenetic trees such
that the coloring (R, G) is admissible. Consider the coordinate projection

π(R,G) : UPT (R,G) −→ BPTd,n

(pij)ij∈(d+n
2 )
7−→ (pij)i∈R,j∈G.

(2.9)

We will show that the image of this map is indeed BPTd,n. Let p ∈ UPT (R,G), and
denote by P the uncolored, metric phylogenetic tree defined by p. For such a fixed
uncolored tree P and coloring (R, G), let P(R,G) denote the coloring of P with respect to
(R, G). Let π(R,G)(p) = A ∈ BPTd,n. We say that π(R,G) preserves the combinatorial type
of P if the bicolored phylogenetic tree defined by A has the same combinatorial type
(sometimes also called tree topology) as P. A tree is called a split tree if it is has exactly
one internal edge.
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2 tropical positivity and determinantal varieties

Theorem 2.4.23. The map π(R,S) induces a bijection of fans BPTd,n and UPT (R,G),
which preserves the combinatorial types of trees.

The proof of this theorem is deferred to the end of this section. The structure of the
proof is as follows. We first describe a “nice” representation (modulo lineality spaces of
UPT (R,G) and BPTd,n) of p and A (Lemma 2.4.27). We then establish the result for the
lineality spaces of the fans (Lemma 2.4.28) and the rays (Proposition 2.4.29). Since both
fans are simplicial, the bijection then follows from the linearity of the map.
By Proposition 2.4.21, for each cone C ∈ trop (Gr(2, d + n)) there exists at least one
choice of R t G = [d + n] such that the projection of p ∈ relint(C) gives the respective
bicoloring of the tree corresponding to C. However, this choice of R t G cannot be
made globally, as the following example shows.

Example 2.4.24 (A global bicoloring is impossible). Consider any uncolored phylo-
genetic tree P with labeled leaves 1, . . . , d + n and splits ({1, 2}, [d + n] \ {1, 2}) and
({1, 2, 3}, [d + n] \ {1, 2, 3}), as shown in Figure 2.20. We can choose a coloring such
that 1 ∈ R and 2, 3 ∈ G. The cone in BPTd,n containing P is adjacent to the cone
containing P′, where P′ is defined by the same set of splits as P, except that the first
split ({1, 2}, [d + n] \ {1, 2}) is replaced by the split ({2, 3}, [d + n] \ {2, 3}). However,
the coloring with 1 ∈ R and 2, 3 ∈ G is not an admissible bicoloring of P′, since the
split ({2, 3}, [d + n] \ {2, 3}) has a part that does not contain leaves of both color classes.
A similar argument can be made for the coloring 2 ∈ R, 1, 3 ∈ G. �

2

1
3

P

2

3
1

P′

Figure 2.20: The trees from Example 2.4.24.

Remark 2.4.25. In Theorem 2.4.23 we show that π(R,G) is a bijective map, and hence
an inverse exists. The inverse map (π(R,G))−1 can be interpreted as “forgetting the
colors” of a bicolored tree. Given a bicolored phylogenetic tree P, we forget the colors
relabeling the leaves with [d + n]. The relabeling is not canonical. For example, we can
assign to the red leaves the labels in [d] and assign the labels d + j, j ∈ [n] to the green
leaves.

Furthermore note that the map π(R,G) does not preserve positivity. The cones in the
totally positive Grassmannian correspond to trees with clockwise ordered labels [SW05].
There are examples of caterpillar trees with a labeling of the leaves that is not in clock-
wise order. On the other hand, there are trees with clockwise ordered labels that are
not caterpillar trees.
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It was described in [FR15, Example 3.10] that a 1-dimensional tropical linear space
is a Stiefel tropical linear space if and only is it is a caterpillar tree. This gives us a
characterization of the preimage of the fan of positive bicolored phylogenetic trees
under π(R,G).

Proposition 2.4.26. Fix (R, G) such that RtG = [d+n] and let Σ(R,G) be the subfan
of UPT (R,G) ⊆ trop (Gr(2, d + n)) consisting of all Stiefel tropical linear spaces for
which (R, G) is an admissible (d, n)-bicoloring. Let (BPTd,n)

+ = BPTd,n ∩ (T2
d,n)

+

denote the restriction of BPTd,n to the positive part. Then π(R,G)(Σ(R,G)) = (BPTd,n)
+

induces a bijection of fans.

Proof. A 1-dimensional tropical linear space is a Stiefel tropical linear space if and
only is it is a caterpillar tree [FR15, Example 3.10]. Thus, Corollary 2.4.6 implies that
every admissible (d, n)-bicoloring of a tree associated to a Stiefel tropical linear space
belongs to the tropicalization of a nonnegative matrix and vice versa. By Theorem 2.4.23,
π(R,G) is a bijection of fans UPT (R,G) and BPTd,n that preserves combinatorial types.
Restricting π(R,G) therefore induces a bijection of Σ(R,G) and (BPTd,n)

+.

We devote the remainder of this section to the proof of Theorem 2.4.23. To this end, fix
a partition (R, G) of [d + n] such that |R| = d and |G| = n.

Lemma 2.4.27. Let P be a (uncolored) phylogenetic split tree with one internal edge
of length λ, and m = d + n leaves, where the removal of the internal edge splits the
leaves into two parts S1 and S2. Let P(R,G) be the bicolored split tree (R1 tG1, R2 tG2),
i.e. a tree with one internal edge of positive length, red leaves R = {r1, . . . , rd}, and
green leaves G = {g1, . . . , gn}, where the removal of the internal edge splits the leaves
into two parts R1 t G1 and R2 t G2, and additionally R1 t R2 = R, G1 t G2 = G.

1.) Let p ∈ trop (Gr(2, d + n)) be the tropical Plücker vector corresponding to P. Then
p ∼ pλ modulo the lineality space of trop (Gr(2, d + n)), where

pλ
ij =

−λ if i ∈ S1 and j ∈ S2

0 if i, j ∈ S1 or i, j ∈ S2.

2.) Let A ∈ BPTd,n be a matrix corresponding to P(R,G). Then there exists a unique
µ > 0 such that A ∼ Aµ modulo the lineality space of BPTd,n, where Aµ is the
matrix with columns

Aµ
j =

−µ ∑i∈R2
ei if j ∈ G1

−µ ∑i∈R1
ei if j ∈ G2.
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Proof. We begin by showing (1). Let `1, . . . , `m denote the lengths of the leaves 1, . . . , m
of P. By (2.7) (in Section 2.4.4), the Plücker vector p corresponding to P is

pij =

−λ− `i − `j if i ∈ S1 and j ∈ S2

−`i − `j if i, j ∈ S1 or i, j ∈ S2

= pλ
ij + p`ij,

where we define p`ij = −`i − `j . Note that p` lies in the lineality space of the tropical
Grassmannian trop (Gr(2, d + n)), and so p ∼ pλ.
For (2), note that the bicolored split tree P(R,G) is also generated by the matrix Aµ for
any µ > 0. Since A and Aµ generate the same tree, they are both contained in the
interior of the same cone of BPTd,n. Since P(R,G) is a split tree, modulo lineality space
of BPTd,n, this cone is 1-dimensional. We choose µ = 1 and consider the matrix A1 as
generator for this ray. Then for every point A′ ∈ cone(A1) there exists a unique µ ≥ 0
such that A′ = µA1 = Aµ. Hence, this also holds for the original matrix A, i.e. there
exists a unique µ > 0 such that A ∼ Aµ modulo lineality space of BPTd,n.

Lemma 2.4.28. π(R,G) induces a bijection of lineality spaces of the tropical determi-
nantal variety T2

d,n and the tropical Grassmannian trop (Gr(2, d + n)). Thus, if p ∼ p′

then π(R,G)(p) ∼ π(R,G)(p′).

Proof. The fan UPT (R,G) is a subfan of trop (Gr(2, d + n)). Since the lineality space of
a fan is the intersection of the lineality spaces of all cones it contains, the lineality space
of trop (Gr(2, d + n)) is thus contained in the lineality space of UPT (R,G). We first
show that the images of the d + n generators of the lineality space of trop (Gr(2, d + n))
(as described in Section 2.4.4) span the lineality space of BPTd,n. This implies that
π(R,G) induces a bijection of lineality spaces. Let p = ∑i∈[d+n]

i 6=k
ẽik, k ∈ [d + n]. Since

R t G = [d + n], either k ∈ R or k ∈ G. If k ∈ R, then for i ∈ R, j ∈ G we have

pij =

0 if i = k

1 otherwise .

Thus, π(R,G)(p) is the matrix π(R,G)(p) = ∑d
i=1
i 6=k

∑n
j=1 Eij. On the other hand, if k ∈ G,

then π(R,G)(p) = ∑d
i=1 ∑d

j=1
j 6=k

Eij. Indeed, these vectors span the same vector space as

the vectors given in (2.4) in Section 2.1.5. Hence, π(R,G) induces a bijection of lineality
spaces of trop (Gr(2, d + n)) and BPTd,n.
Let p, p′ ∈ trop (Gr(2, d + n)) arbitrary, such that p ∼ p′ modulo lineality space L
of trop (Gr(2, d + n)). Then p ∈ p′ + L, and since π(R,G) is linear, it follows that
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π(R,G)(p+L) = π(R,G)(p) +π(R,G)(L), where π(R,G)(L) is the lineality space of BPTd,n
by the above. Hence, π(R,G)(p) ∼ π(R,G)(p′).

Proposition 2.4.29. The map π(R,G) induces a bijection of rays of the fans UPT (R,G)

and BPTd,n and preserves the combinatorial types of split trees.

Proof. Let p ∈ UPT (R,G) ⊆ trop (Gr(2, d + n)) be a ray generator. Then p corresponds
to a split tree P with two parts S1,S2 of leaves. By Lemma 2.4.27 we have that p ∼ pλ

modulo the lineality space of trop (Gr(2, d + n)). By construction, π(R,S)(pλ) = Aλ,
so by Lemma 2.4.28 p ∼ pλ implies π(R,G)(p) ∼ Aλ. Note that Aλ is the matrix
representing the (R, G)-bicoloring P(R,G) of P. Hence, π(R,G) sends rays of UPT (R,G)

onto rays of BPTd,n, preserving the combinatorial type of split trees. Note that this
implies injectivity: Let r, r′ be distinct rays of UPT (R,G) with respective ray generators
p, p′. Then p, p′ correspond to phylogenetic split trees P, P′ of distinct combinatorial
types. Since the (R, G)-bicoloring is admissible for both P and P′, the matrices π(R,G)(p)
and π(R,G)(p′) correspond to bicolored trees of distinct combinatorial types. Hence,
π(R,G)(r) and π(R,G)(r′) are distinct rays of BPTd,n.
For surjectivity, let r = cone(A) be a ray of BPTd,n. Then there is a unique λ > 0
such that A ∼ Aλ. Let A` be a matrix in the lineality space of BPTd,n such that
A = Aλ + A`. By construction π(R,G)(pλ) = Aλ and since π(R,G) is a bijection on the
lineality spaces, there is a unique p` in the lineality space of trop (Gr(2, d + n)) such
that A` = π(R,G)(p`). Again, since π(R,G) is linear, it follows for p := pλ + p` that

π(R,G)(p) = π(R,G)(pλ) + π(R,G)(p`) = Aλ + A` = A.

Proof of Theorem 2.4.23. Proposition 2.4.29 establishes the statement for rays. Let p ∈
UPT (R,G) be an arbitrary Plücker vector and P be the corresponding uncolored phyloge-
netic tree with splits. Modulo lineality space of trop (Gr(2, d + n)), we can assume that
P has all leaf lengths 0. Let S1, . . . , Sk be the compatible splits of P with internal edge
lengths λ1, . . . , λk, and pS1 , . . . , pSk be the Plücker vectors of the corresponding split
trees P1, . . . , Pk. Since the Si are the splits of P, it follows that pS1 + · · ·+ pSk = p and
pS1 , . . . , pSk are ray generators for the rays of the cone C such that p ∈ relint(C). Since
C is simplicial, this sum is unique. By above, π(R,G) is a bijection on the level of rays, so
equivalently π(R,G)(pS1), . . . , π(R,G)(pSk) is a set of rays in BPTd,n, corresponding to the
bicolored split trees P(R,S)

1 , . . . , P(R,S)
k . Since the definition of compatibility is indepen-

dent of the coloring, these bicolored splits are compatible and hence form a cone C′ in
BPTd,n. Again, BPTd,n is a simplicial fan, and so any point C′ has a unique representa-
tion as sum of ray generators of C′. Consider A = π(R,G)(pS1) + · · ·+ π(R,G)(pSk). Then
by construction, this matrix corresponds to a tree with bicolored splits P(R,S)

1 , . . . , P(R,S)
k ,
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i.e. the tree P(R,G). Finally, since π(R,G) is a coordinate projection, if i ∈ R, j ∈ G, then

pij = π(R,G)(pS1 + · · ·+ pSk)ij = π(R,G)(pS1)ij + · · ·+ π(R,G)(pSk)ij = Aij

and so π(R,G)(p) = A. Since π(R,G) is a bijection of the rays, and all sums are unique,
this extends to a bijection to the entire fan.

2 .5 rank 3

In this section, we show the extensions and limitations of the techniques for certifying
positivity for T3

d,n. The main idea is to identify a criterion for a matrix A not to be
contained in the positive determinantal prevariety (P3

d,n)
+ by identifying a (4× 4)-

minor, such that A is not contained in the respective positive tropical hypersurface.
As (T3

d,n)
+ ⊆ (P3

d,n)
+, we thereby also obtain a condition for A not to be contained in

(T3
d,n)

+. As before, we consider the columns of a matrix A ∈ T3
d,n as a point configuration

of n points in TPd−1. Due to the rank condition (Proposition 2.1.21), these points lie on
a common tropical plane. We view a tropical plane as an embedded pure 2-dimensional
polyhedral complex in TPd−1. It has d unbounded rays r1, . . . rd, where the slope of ri
is in standard unit direction ei. Furthermore it has bounded edges with edge directions
∑i∈I ei for I ⊆ [d], |I| ≥ 2. More precisely, a tropical plane is a subcomplex of the
polyhedral complex that is dual to a regular matroid subdivision of the hypersimplex

∆(d, 3) = [0, 1]d ∩
{

x ∈ Rd

∣∣∣∣∣ d

∑
i=1

xi = 3

}

where in this subdivision of ∆(d, 3) each maximal cell corresponds to a matroid of rank
3. Regular subdivisions are defined in Section 1.1.3, and an exposition on matriods and
matroid polytopes is given in Section 1.2. We describe this subcomplex of ∆(d, 3) in
more detail in Section 2.5.2.

Definition 2.5.1. Let A ∈ T3
d,n and consider the induced point configuration. The matrix

A ∈ T3
d,n (or equivalently the corresponding point configuration) is generic with respect

to a tropical plane E if every point Aj lies on the interior of a 2-dimensional face of E.
We call a 2-dimensional face of the plane E a marked face if it contains a point of the
point configuration in its interior.

Recall from Section 2.2.4 that we call the 2-dimensional faces of a tropical plane in TP3

the wings of the plane.

2.5.1 Starship Criterion for Positivity

We establish a condition on the local properties of a tropical plane based on Theo-
rem 2.2.16 (Geometric triangle criterion). The idea is as follows: Let A ∈ T3

d,n and E
be a tropical plane containing the columns of A. The matrix A is non-positive if there

82



2.5 Rank 3

exists a non-positive (4× 4)-submatrix. The geometric triangle criterion describes the
associated point configuration of 4 points in TP3. We identify a projection of E which
selects such a (4× 4)-submatrix to certify non-positivity. The condition to identify the
correct submatrix solely depends on the collection of marked faces, i.e. a local structure
of the underlying tropical plane. Since a tropical plane is dual to a matroid subdivision
of ∆(d, 3), we thus argue via normal cones of faces of matroid polytopes, reducing
this problem to a question about flags of flats of the respective matroids. Recall from
Section 1.2 that all facets of a matroid polytope are given by an inequality defined by
some flat of the corresponding matroid.

Lemma 2.5.2. Let M be a matroid of rank 3 on n elements, and H1, H2, H3 be distinct
flats of rank 2. If H1 ∩ H2 ∩ H3 = G is a flat of rank 1, then H3 6⊆ H1 ∪ H2.

Proof. Assume for contradiction that H3 ⊆ H1 ∪ H2. Let h ∈ H3 \ G. Then h ∈ H1
or h ∈ H2, and without loss of generality we can assume h ∈ H1. Since G is a flat,
and h 6∈ G we get that rk(G ∪ {h}) = 2 = rk(H1). Hence, G ∪ {h} ⊆ H1 implies that
span(G ∪ {h}) = H1. However, at the same time, since rk(G ∪ {h}) = 2 = rk(H3) and
G ∪ {h} ∈ H3, we have that span(G ∪ {h}) = H3. Thus, H1 = span(G ∪ {h}) = H3,
contradicting the assumption that H1, H2, H3 are distinct.

Lemma 2.5.3. Let E ⊆ TPd−1 be a realizable tropical plane, i.e. a tropical plane that
arises as the tropicalization of a plane in CPd−1. Let F1, F2, F3 be distinct 2-dimensional
faces of E, intersecting in a common unbounded 1-dimensional face r. Then there is
an index set I ⊆ [d] with |I| = 4 such that for the coordinate projection πI : TPd−1 →
TP3 onto these coordinates the following holds: πI(E) ⊆ TP3 is a tropical plane with
wings πI(F1), πI(F2), πI(F3) intersecting in the common unbounded 1-dimensional
πI(r).

Proof. Let E ⊆ TPd−1 be a realizable tropical plane. Then E is a subcomplex of a
polyhedral complex that is dual to a matroid subdivision of ∆(d, 3), where each maximal
matroid polytope corresponds to a matroid of rank 3. Let v be the vertex of the ray
r = F1 ∩ F3 ∩ F3, and P be the matroid polytope dual to v. Let M be the corresponding
matroid of rank 3 on ground set [n]. Each 2-dimensional face Fk spans the normal cone
of a face of P. The 1-dimensional faces of Fk that are incident to v have slopes ∑i∈Gk

ei
and ∑i∈Hk

ei respectively. Here, for each k = 1, 2, 3, we have that ∅ ( Gk ( Hk ( [n] is
a chain of flats of M [MS15, Theorem 4.2.6]. Thus, Gk is a flat of rank 1, and Hk is a
flat of rank 2. By assumption, F1, F2, F3 intersect in an unbounded 1-dimensional face
r. Hence, there exists an element g ∈ [n] such that G1 = G2 = G3 = {g}. Therefore,
H1, H2, H3 intersect in a flat of rank 1. By assumption, H1, H2, H3 are distinct, and so
by Lemma 2.5.2 we can choose distinct h1 ∈ H1 \ (H2 ∪ H3), h2 ∈ H2 \ (H1 ∪ H3) and
h3 ∈ H3 \ (H1 ∪ H2). Let I = {h1, h2, h3, g}. Then πI(r) ⊆ TP3 is the ray spanned by eg,
and πI(Fk) = cone(eg, ehk).
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F1

F2
F3

Figure 2.21: A configuration of three marked 2-faces forming a starship.

Finally, we show that πI(E) is tropical plane. Since E is realizable, E is the tropicalization
of a 2-dimensional plane E in CPd−1. We can first apply the coordinate projection to
obtain a linear space πI(E) ⊆ CP3 of dimension at most 2. Note that πI(E) is the
tropicalization of πI(E), and is thus a tropical linear space of dimension at most 2. But
since πI(Fk) ⊆ πI(E) and πI(Fk) is a 2-dimensional cone, πI(E) has dimension 2 and
is a tropical plane.

Definition 2.5.4 (Starship). Let A ∈ T3
d,n be a matrix and let E be a tropical plane

containing the points given by the columns of A. If E has 3 marked 2-faces F1, F2, F3 that
intersect in an unbounded 1-dimensional face, then we say that E contains the starship1

formed by the marked faces F1, F2, F3. Such a configuration can be seen in Figure 2.21.

Theorem 2.5.5 (Starship criterion). Let A ∈ T3
d,n be a matrix in the relative interior

of a cone C ∈ T3
d,n and let E be a tropical plane containing the points given by the

columns of A. If E has 3 marked 2-faces that intersect in an unbounded 1-dimensional
face, then C is not positive. In other words, C is not positive if E contains a starship.

Proof. Let A1, A2, A3 be the points lying on 2-faces F1, F2, F3 respectively, and let j ∈
[n] \ {1, 2, 3}. By Lemma 2.5.3 there exists a coordinate projection onto coordinates
I = {i1, . . . , i4} such that πI(F1), πI(F2), πI(F3) are 2-dimensional faces of the tropical
plane πI(E) ⊆ TP3, which intersect in a common unbounded ray in direction ei4 . Note
that the projection of the point πI(Ak) marks the 2-face πI(Fk) for k = 1, 2, 3, and
πI(A4) ∈ πI(E). This point configuration of 4 points in TP3 is also represented by
the (4× 4)-submatrix of A with rows I = {i1, i2, i3, i4} and columns J = {1, 2, 3, j}.
Dually, this corresponds to 3 marked edges of the simplex ∆3 incident to the triangle
that is dual to the ray ei4 . By the Geometric triangle criterion (Theorem 2.2.16) this

1more precisely, a starship of type “Lambda-class T-4a shuttle”
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(4× 4)-matrix is not positive. Thus, if {j1, j2, j3, j4} = {1, 2, 3, j}, then for the minor

f I J = ∑
σ∈S4

sgn σ
4

∏
k=1

xikσ(jk)

holds that A 6∈ trop+C (V( f I J)). It follows that A is not contained in the positive tropical
determinantal prevariety (as defined in (2.2) in Section 2.1.4), i.e.

A 6∈
⋂

f I J is a
(4×4)-minor

trop+C (V( f I J)) = (P3
d,n)

+

and in particular
A 6∈

⋂
f∈Ir

trop+C (V( f )) = (T3
d,n)

+.

We give an example of a matrix A ∈ T3
d,n, in which the point configuration in TPd−1

does not contain a starship, but an appropriate coordinate projection does.

Example 2.5.6 (The converse of the Starship criterion does not hold). Consider the
matrix

A =


k k 0 0 0
0 k k 0 1
0 0 k k 0
0 0 0 k k
k 0 0 0 k


for any k > 1. This is a point configuration where

A1 ∈W1 = cone (e1, e5) , A2 ∈W2 = cone (e1, e2) , A3 ∈W3 = cone (e2, e3) ,

A4 ∈W4 = cone (e3, e4) , A5 ∈W5 = e2 + cone (e4, e5) ,

which are 2-dimensional wings of a tropical plane E ⊆ TP4. Hence, this point con-
figuration does not satisfy the assumptions of the Starship criterion (Theorem 2.5.5)
– it does not contain a starship. We project the marked wings W1, W2, W3, W5 onto
the first 4 coordinates. Then π(W1) = cone(e1), π(W2) = cone (e1, e2) , π(W3) =
cone (e2, e3) , π(W5) = e2 + cone(e4). The projections π(W1), π(W2), π(W3) are cones of
the (unique) tropical plane E′ in TP3 with apex at the origin, and the projection π(W5)
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is a ray in the wing cone (e2, e4) of E′. Thus, the submatrix

A1 A2 A3 A5


1 k k 0 0
2 0 k k 1
3 0 0 k 0
4 0 0 0 k

constitutes a starship (with unbounded ray in direction e2) with respect to E′, where the
projections of A1, A3 and A5 are the marking points. If i1 = 1, i2 = 2, i3 = 3, i4 = 5 and

f I J = ∑
σ∈S4

sgn σ
4

∏
k=1

xikσ(k)

then the Geometric triangle criterion (Theorem 2.2.16) implies that we have that A 6∈
trop+C (V( f I J)) and hence A 6∈ (P3

d,n)
+ (so in particular A 6∈ (T3

d,n)
+) for arbitrary

matrices A ∈ P3
d,n. If C is a cone containing A in its relative interior, then this implies

that C is not positive. Hence, the converse of Theorem 2.5.5 does not hold for the matrix
A ∈ P3

d,n. We continue with this in Example 2.5.9. �

2.5.2 Bicolored Tree Arrangements

Tree arrangements were introduced in [HJJS09] for studying the Dressian Dr(d, 3). It
was shown that tree arrangements encode matroid subdivisions of the hypersimplex
∆(d, 3) by looking at the induced subdivision on the boundary. In particular, this im-
plies that we can associate a tree arrangement to every tropical plane. In this section, we
extend this idea and introduce bicolored tree arrangements, which correspond to a tropical
plane with a configuration of points on it. However, we will see in Example 2.5.9 that
this is not a one-to-one correspondence.

We first describe the established bijection between tropical planes and (uncolored) tree
arrangements, following [HJJS09]. As introduced at the beginning of this section, a trop-
ical plane is a subcomplex of the polyhedral complex that is dual to a regular matroid
subdivision of the hypersimplex ∆(d, 3). Inside the affine space

{
x ∈ Rd

∣∣∣ ∑d
i=1 xi = 3

}
,

the facets of ∆(d, 3) are given by xi = 0 and xi = 1. A tropical plane is the polyhedral
complex dual to the subcomplex of a matroid subdivision of ∆(d, 3) consisting of the
faces which are not contained in {xi = 0}. Every matroid subdivision of ∆(d, 3) is
uniquely determined by the restriction of the subdivision to the n facets of ∆(d, 3)
defined by {xi = 1} [HJJS09, Section 4]. We restrict this matroid subdivision to the
remaining facets given by {xi = 1}. These facets are isomorphic to a hypersimplex
∆(d, 2), so the restricted subdivisions are dual to a tropical line in TPd−2. This tropical
line has rays in directions e1, . . . , ei−1, ei+1, . . . , ed. As these tropical lines are in bijection
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Figure 2.22: The bicolored tree arrangement of the non-positive matrix in Example 2.5.6.

with (uncolored) phylogenetic trees, this yields a tree arrangement. We extend this idea
as follows.

Construction 2.5.7 (Bicolored tree arrangements). Let A ∈ T3
d,n be the matrix giving n

points A1, . . . , An on a tropical plane E in TPd−1. If A is generic with respect to E, then
every point Aj, j ∈ [n] lies in the interior of a 2-face F ⊆ E, where each 1-dimensional
face of F has slope ∑i∈I ei. When restricting to a facet {xi′ = 1} of ∆(d, 3), then the
subdivision of this facet is dual to the collection of faces of E that contain the unbounded
ray in direction ei′ . We denote the collection of these unbounded faces by Fi′ .
Let Ji′ ⊆ [n] be the set of points lying on a face in Fi′ . To obtain a bicolored tree
arrangement, project all of these 2-dimensional faces of E and the points in Ji′ onto
the coordinates 1, . . . , i′ − 1, i′ + 1, . . . , d. The projection of the 2-faces in Fi′ form
tropical line Li′ , and the projection of the points are points on Li′ . Hence, applying
Construction 2.4.4 induces a bicolored phylogenetic tree Pi′ . We call the collection of
these bicolored trees P1, . . . , Pd a bicolored tree arrangement.

Theorem 2.5.8. Let A ∈ T3
d,n be generic with respect to the tropical plane E. If A

is positive, then every tree in the induced bicolored tree arrangement is a caterpillar
tree.

Proof. Let P be a tree in the bicolored tree arrangement that is not a caterpillar tree.
We show that A is not positive. After relabeling we can assume that P = Pd, i.e. P is
the tree on the dth facet. Since P is not a caterpillar tree, it has an internal vertex that
is incident to at least 3 internal edges. Thus, P corresponds to a tropically collinear
point configuration, on which there are points with labels 1, 2, 3 on a tropical line
L ∈ TPd−2 whose tropical convex hull in TPd−2 contains the 3 internal edges. Consider

the ((d− 1)× 3)-matrix A{1,2,3}
consisting of the respective columns A1, A2, A3. This

matrix A{1,2,3}
has Kapranov rank 2. By Corollary 2.4.6, it has no positive lift of rank 2.

Thus, A{1,2,3}
has a (3× 3)-submatrix B with row indices i1, i2, i3, such that (possibly
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after relabeling ) the column Bk lies on the ray of a tropical line in TP2 with slope ek
for k = 1, 2, 3.
Pick any additional column j, and consider the (4× 4)-submatrix D with row indices
i1, i2, i3, d and column indices 1, 2, 3, j. Then the points given by the columns Dk, k ∈ [3],
and Dj lie on a common tropical plane E ⊆ TP3. By genericity of A w.r.t. E, the points
Dk, k ∈ [3] lie in the interior of the faces of E that are (up to translation) the cones
spanned by the rays ek and ed, respectively. Dually, this corresponds to 3 marked edges
of the simplex ∆3 incident to the triangle that is dual to the ray ed. By the Geometric
triangle criterion (Theorem 2.2.16) this (4× 4)-matrix is not positive. As in the proof of
Theorem 2.5.5, this implies that A is not positive.

Example 2.5.9 (The converse of Theorem 2.5.8 does not hold). Consider the matrix
from Example 2.5.6. This matrix is not positive. However, the bicolored trees in this
arrangement are all caterpillar trees, as depicted in Figure 2.22. Thus, the converse of
Theorem 2.5.8 does not hold. �

Remark 2.5.10. The Starship criterion can be obtained as a corollary of Theorem 2.5.8 in
the special case that A is generic w.r.t to the tropical plane E. Indeed, if A is positive,
then every tree in the bicolored tree arrangement is a caterpillar tree. However, a
starship with unbounded ray in direction ei′ yields a tree Pi′ that is not a caterpillar tree.
Thus, A is not positive. We note that however, that a tree which is not a caterpillar tree
does not necessarily arise from a point configuration containing a starship, so in the
general setup none of the two statements implies the other.

In both statements of Theorem 2.5.5 and Theorem 2.5.8, the converse fails to be true. A
main problem lies in the fact that both the tree arrangement and the Starship criterion
are only able to capture the geometry of the unbounded faces of the tropical plane.
While this information is enough to reconstruct the entire plane [HJJS09], this does not
suffice to capture information about the point configuration on bounded faces of the
tropical plane.
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3
M U LT I VA R I AT E V O L U M E , E H R H A RT, A N D h∗ - P O LY N O M I A L S O F
P O LY T R O P E S

Polytropes are a fundamental class of polytopes, which masquerade in the literature
as alcoved polytopes of type A [LP07; LP18]. Among many others, they include order
polytopes, some associahedra and matroid polytopes, hypersimplices, and Lipschitz
polytopes. They are tropical polytopes which are classically convex [JK10] and are
closely related to the notion of Kleene stars and the problem of finding shortest
paths in weighted graphs [Tra17; JS19]. Polytropes also arise in a range of algorithmic
applications to other fields, including phylogenetics [YZZ19], mechanism design [CT18],
and building theory [JSY07].
It is well known that computing the volume of a polytope is hard, and already approxi-
mating the volumes of convex bodies is “difficult” [BF87]. For an exact computation,
computing the volume of a polytope is #P-hard (and thus at least NP-hard), even
when restricting to the class of polytopes defined by a totally unimodular matrix
[DF88]. However, viewing polytropes as the “building blocks” of tropical polytopes,
understanding their volumes provides insight into the volume of tropical polytopes.
Determining whether the volume of such a tropical polytope is zero is equivalent to
deciding whether a mean payoff game is winning [AGG12]. The volume of a tropical
polytope can hence serve as a measurement of how far a game is from being winning
[GM19].
Unimodular triangulations of polytropes were studied in the language of affine Coxeter
arrangements in [LP07], producing a volume formula and non-negativity of the h-vector
corresponding to the triangulation. Motivated by a novel possibility for combining
algebraic methods with enumerative results from tropical geometry, we continue to
study the volume of polytropes, both continuously and discretely. The Ehrhart counting

Figure 3.1: A 3-dimensional polytrope.
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function encodes the discrete volume by counting the number of lattice points in any
positive integral dilate of a polytope. For lattice polytopes, this counting function is
given by a univariate polynomial, the Ehrhart polynomial, with leading term equal to
the Euclidean volume of the polytope. Rewriting the Ehrhart polynomial in the basis
of binomial coefficients determines the h∗-polynomial and reveals additional beautiful
connections between the coefficients and the geometry of the polytope. It is an area
of active research to determine the relations between the h∗-coefficients of alcoved
polytopes [SVL13, Question 1]; for example, it is conjectured that the h∗-vectors of
alcoved polytopes of type A are unimodal.
In recent work, Loho and Schymura [LS20] developed a separate notion of volume
for tropical polytopes driven by a tropical version of dilation, which yields an Ehrhart
theory for a new class of tropical lattices. This notion of volume is intrinsically tropical
and exhibits many natural properties of a volume measure, such as being monotonic
and rotation-invariant. Nevertheless, the discrete and classical volume can be more
relevant for certain applications; for example, the irreducible components of a Mustafin
variety correspond to the lattice points of a certain tropical polytope [CHSW11; Zha21],
which can thus be counted by an Ehrhart polynomial.
We pass from univariate polynomials to multivariate polynomials to push the connec-
tions between the combinatorics of the polynomials and the geometry even further.
Combinatorial types of polytropes have been classified up to dimension 4 [Tra17; JS19].
Each polytrope of the same type has the same normal fan. Given a normal fan, we
create multivariate polynomial functions in terms of the rays that yield the (discrete)
volume and h∗-polynomials for any polytrope of that type. We first use algebraic
methods to compute the multivariate volume polynomials, following the algorithm in
[DLS03]. We then transform these polynomials into multivariate Ehrhart polynomials,
which are highly related to vector partition functions, using the Todd operator. Finally
we perform the change of basis to recover the h∗-polynomials.

Result 3 .4 .1 . We compute the multivariate volume, Ehrhart, and h∗-polynomials
for all types of polytropes of dimension ≤ 4.

Each combinatorial type of polytropes of dimension n− 1 corresponds to a certain
triangulation of the fundamental polytope FPn, the polytope with vertices ei − ej for
i, j ∈ [n] [JS19]. Our computations show that the volume polynomials of polytropes of
dimension 3 have integer coefficients with a strong combinatorial meaning:

Theorem 3 .4 .3 . The coefficients of the volume polynomials of maximal 3-dimensional
polytropes reflect the combinatorics of the corresponding regular central subdivision
of FP3.

For example, each coefficient of a monomial of the form aijaklast is either 6 or 0. This
reflects whether the vertices ei − ej, ek − el and es − et form a face in the triangulation
of FP4 or not. Similarly, the coefficient of the monomial a2

ijakl is −3 if the vertex ek − el

is incident to a triangulating edge of a square facet of FP3 and 0 otherwise. These
intriguing observations naturally lead to a question of generalization.
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Question 3.4.6. How do the coefficients of the volume polynomials of maximal (n− 1)-
dimensional polytropes reflect the combinatorics of the corresponding regular central
subdivision of FPn?

To emphasize this question, we show that our data of volume polynomials of dimension
4 is highly structured:

Theorem 3 .4 .5 . In the 8855-dimensional space of homogeneous polynomials of
degree 4, the 27 248 normalized volume polynomials of 4-dimensional polytropes
span a 70-dimensional affine subspace.

We note that these polynomials have integer coefficients, and the possible non-zero
coefficients are ±1,±2,±3,±4,−6, 8,±12, 24. Similar to the three-dimensional case,
each coefficient of a monomial of the form aijaklastauv is either 24 or 0, which reflects
whether the vertices ei − ej, ek − el , es − et and eu − ev form a face in the triangulation of
FP5. We present a partial characterization of these coefficients in Table 3.1.
This chapter is based on [BEZ23], which is joint work with Sophia Elia and Leon Zhang.
Our code and the resulting polynomials are publicly available on a GitHub repository
[BEZ20].

Overview

In this chapter we describe methods for computing the multivariate volume, Ehrhart,
and h∗-polynomials for all polytropes. The necessary background is given in Sections 1.1
to 1.3, 1.5 and 1.7. We begin in Section 3.1 by extending the exposition on tropical
convexity from Section 1.3.1, and introduce the class of polytropes. We describe our
methods to compute multivariate volume polynomials in Section 3.2, and extend
to multivariate Ehrhart and h∗-polynomials in Section 3.3. In Section 3.4, we apply
these methods to compute the volume, Ehrhart, and h∗-polynomials of polytropes of
dimension 2, 3 and 4. We give a complete description of the coefficients of volume
polynomials of 3-dimensional polytropes in terms of regular central subdivisions of
the fundamental polytope, and give a partial characterization of these coefficients in
dimension 4.

3 .1 tropical convexity and polytropes

The class of polytropes is a subclass of tropical polytopes, namely the class tropical
polytopes which are also classically convex. In this section we describe how polytropes
can be seen as “building blocks” of tropical polytopes [DS04] and outline the connection
to Kleene stars [Tra17; JS19].
Let V = {v1, . . . , vn} ⊆ Rd be a finite set of points. Recall from Section 1.3 that the
tropical convex hull of V is given by the set of all tropical linear combinations

tconv(V) = {λ1 � v1 ⊕ · · · ⊕ λn � vn | λ1, . . . , λn ∈ R} .
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Figure 3.2: The max-tropical hyperplane Hmax
j ⊆ TP2 in the chart where the third coordinate

is 0, with faces labeled for type identification.

and we identify a tropically convex set tconv(V) ⊆ Rd with its image in the tropical
projective torus TPd−1 = Rd/(R� 1). Let P = tconv(V) ⊆ TPd−1 be a tropical
polytope, i.e. the tropical convex hull of finitely many points. We denote by vij the
ith coordinate of vj, j ∈ [n], i.e. the ijth entry of the (d × n)-matrix with columns
v1, . . . , vn. The (tropical) type of a point x ∈ TPd−1 with respect to V is the collection of
sets S(x) = (S1, . . . , Sd), where an index j ∈ [n] is contained in Si if

vij − xi = min
(
v1j − x1, . . . , vdj − xd

)
.

Geometrically, we can view the type of x as follows. The max-tropical hyperplane
Hmax

vj
⊆ TPd−1 with apex at vj ∈ TPd−1 is

Hmax
vj

=
{

y ∈ TPd−1 | the maximum of
{

yi − vij
∣∣ i ∈ [d]

}
is attained at least twice

}
.

Each such hyperplane Hmax
vj

induces a complete polyhedral fan Fvj in TPd−1. Two

points x, y ∈ TPd−1 lie in the same relatively open cone of Fvj if and only if vj − x and
vj − y achieve their minima in the same set of coordinates. For a point x ∈ TPd−1 with
type S(x) = (S1, . . . , Sd), the set Si records for which hyperplanes Hmax

vj
the point x lies

in a face of Fvj such that vj − x is minimal in coordinate i. Figure 3.2 shows the regions
in which j ∈ [n] is contained in Si for i ∈ [3], based on the position of x in TP2.
Each collection of points with the same type is called a cell of the tropical hyperplane
arrangement Hmax

v1
, . . . , Hmax

vn
. Due to the resemblance to ordinary hyperplane arrange-

ments, in which the cells correspond to signed covectors of an oriented matroid, this is
also known as the covector decomposition [Jos21, Chapter 6.3], and this construction also
gives rise to the notion of tropical oriented matroids [AD09].
A cell of type S = (S1, . . . , Sd) is bounded if and only if Si 6= ∅ for each i ∈ [d]. Such
a bounded cell is a polytrope, i.e. a tropical polytope that is classically convex [JK10].
The tropical polytope P = tconv(V) is the union of all bounded cells in the tropical
hyperplane arrangement.
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v4

v1

v2

v3

(1, 24, 3)

(12, 4, 3)

(1, 2, 34)

Figure 3.3: The tropical polytope in TP2 as given in Example 3.1.1, pictured in the chart where
the last coordinate is 0. It is canonically decomposed into three polytropes, labeled
with their respective types S = (S1, S2, S3).

Example 3.1.1 (The cells of a tropical polytope). Consider the tropical polytope P =
tconv(V), V = (v1, v2, v3, v4) with tropical vertices

v1 =
( 0

1
0

)
, v2 =

( 1
−1
0

)
, v3 =

( 5
4
0

)
, v4 =

(
4
0
0

)
.

The max-tropical hyperplanes Hmax
vj

with apex vj, j ∈ [4] induce a subdivision of TP2,
and the tropical polytope P is the union of the three maximal cells of this subdivision.
The types of the bounded cells are S = (S1, S2, S3) ∈ {(1, 2, 34), (1, 24, 3), (12, 4, 3)}, as
illustrated in Figure 3.3. We use the shorthand notation Sj = 12 for Sj = {1, 2}. Each of
the maximal cells is both classically and tropically convex. Thus, this gives the canonical
decomposition of P into polytrope cells. �

The tropical type of a cell depends both on the choice of generators v1, . . . , vn as well as
on their ordering. However, the tropical vertices, as described in Section 1.3.1, serve
as unique minimal set of generators for every tropical polytope [DS04, Proposition
21]. We will see in Proposition 3.1.5 that a polytrope is a tropical simplex, i.e. the
number of tropical vertices of a polytrope in TPn−1 is n. Let P be a polytrope and let
v1, . . . , vn ∈ Rn be affine representatives of the tropical vertices of P such that vii = 0
for all i ∈ [n], and v1, . . . , vn are ordered lexicographically. Following [Tra17, Section
4], we define the lex-type of P as the tropical type of the unique maximal bounded
cell of tconv(v1, . . . , vn). Note that the tropical type is a labeled refinement of the
combinatorial type [DS04, Corollary 13]. The combinatorial type is independent of the
ordering of the vertices, and thus also the combinatorial type two polytropes of the
same lex-type agrees.
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v1

v2

v3

(1, 2, 3)
v2

v1

v3

(2, 1, 3)

Figure 3.4: The two hexagonal cells with distinct tropical types from Example 3.1.2.

Example 3.1.2 (Two hexagonal cells with distinct tropical types). Consider the tropical
convex hulls of the columns of

c =

0 1 2
1 0 2
0 0 0

 and d =

1 0 2
0 1 2
0 0 0

 ,

as depicted in Figure 3.4. In both cases the tropical hyperplane arrangement has a
unique 2-dimensional bounded cell, which is a hexagon. In the case of c the tropical
type of this cell is (1, 2, 3), while for d the type of this cell is (2, 1, 3). Viewed as a
polytrope, the lex-type of the bounded cell is (1, 2, 3), since the columns of c are ordered
lexicographically. �

Remark 3.1.3. The notion of lex-type follows the definition of tropical type in [Tra17].
This differs from the original definition of the type of a tropical polytope from [DS04],
where the ordering of v1, . . . , vn is taken into account. Applying the original definition,
the two hexagonal cells in Example 3.1.2 are thus considered as tropical polytopes of
distinct types, and every permutation of the ordering of v1, . . . , vn yields a different
type. Choosing a lexicographic order v1, . . . , vn, as in [Tra17], the lex-type of P is
a representative of the set of all distinct tropical types (in the sense of [DS04]) of
polytropes with n tropical vertices up to the action of the symmetric group Sn. The
existence of such a representative follows from [Tra17, Section 4]. All cited results
in this chapter which concern a count of types refer to the number of lex-types, i.e.
modulo the action of the symmetric group. In all other context in this chapter this
distinction is irrelevant.

We now describe the connection between polytropes and Kleene stars, which arise
in optimization when minimizing the lengths of paths in a weighted directed graph
[JS19]. Let c ∈ Rn2−n. We can identify c with an (n× n)-matrix having zeros along the
diagonal. Under this identification, c describes weights on the edges of a complete
directed graph with n vertices, where the entry cij represents the weight of the edge
going from node i to node j. A digraph has a negative cycle if there exists a directed
cycle whose edge weights sum to a negative number.
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1

23

3
2 3

4

5

6

( −3
−6
0

)

(
2
4
0

)

( −5
−2
0

)
y1 − y3 ≤ 2

y1 − y2 ≤ 3y3 − y1 ≤ 5

y2 − y1 ≤ 3

Figure 3.5: The complete directed graph from Example 3.1.4 and polytrope P from Example 3.1.6,
both corresponding to the Kleene star c = (3, 2, 3, 4, 5, 6). The polytrope P is pictured
in the chart where the last coordinate is zero.

Example 3.1.4 (Weights on digraphs and Kleene stars). Let n = 3 and consider the
vector c = (3, 2, 3, 4, 5, 6) ∈ R6. We view c as the (3× 3)-matrix

c =

0 3 2
3 0 4
5 6 0

 ,

where each off-diagonal entry represents the weight of an edge in a complete directed
graph on 3 vertices, as depicted in Figure 3.5. Furthermore, note that in this example
the weighted digraph has no negative cycles, and that the coordinate cij records the
weight of the lowest-weight path from node i to node j. We continue with this in
Example 3.1.6. �

We define Rn ⊆ Rn2−n to be the set of all vectors c with no negative cycles in the
corresponding weighted graph. The Kleene star c? ∈ Rn×n of c is the (n× n)-matrix
such that c?ij is the weight of the lowest-weight path from i to j. If c has no negative

cycles, then it can be computed as the (n − 1)th tropical power c? = c�(n−1) [JS19,
Section 2]. In this case, the shortest path from node i to itself is the trivial path, which
has length 0. Thus, for any c ∈ Rn the Kleene star c? is zero along the diagonal, and
we can again identify c? with a vector in Rn2−n. Following [Tra17, Section 2.3.2] the
polytrope region Poln ⊆ Rn ⊆ Rn2−n is the closed polyhedral cone given by

Poln = {c ∈ Rn | c = c?}
=
{

c ∈ Rn×n | cii = 0, cij ≤ cik + ckj for all pairwise distinct i, j, k ∈ [n]
}

.
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Thus, points in the polytrope region correspond to weighted graphs whose edges satisfy
the triangle inequality. As the name suggests, the polytrope region parameterizes the
set of all polytropes.

Proposition 3.1.5 ([Pue13, Theorem 1], [Tra17, Proposition 12]). Let P ⊆ TPn−1 be
a non-empty set. The following statements are equivalent:

(i) P is a polytrope.

(ii) There is a matrix c ∈ Poln such that P = tconv(c), where the columns of the
matrix c are taken as a set of n points in TPn−1.

(iii) There is a matrix c ∈ Poln such that

P =
{

y ∈ Rn ∣∣ yi − yj ≤ cij, yn = 0
}

.

Furthermore, the matrix c in the last two statements are equal, and uniquely deter-
mined by P.

Example 3.1.6 (Polytropes from Kleene stars). The Kleene star c from Example 3.1.4
defines the polytrope P =

{
y ∈ R3 | yi − yj ≤ cij, y3 = 0

}
, as depicted in Figure 3.5.

Considering the columns of c as points in TP2, the matrix c is equivalent to

c =

0 3 2
3 0 4
5 6 0

 ∼
−5 −3 2
−2 −6 4
0 0 0

 .

As promised by Proposition 3.1.5 (ii), these are the coordinates of the three tropical
vertices of P, i.e. P = tconv(c). �

Example 3.1.7 (Not all tropical vertices are Kleene stars). There are matrices d ∈ Rn×n

such that P = tconv(d), as in condition (ii) from Proposition 3.1.5, but d 6∈ Poln. Indeed,
consider the matrix d from Example 3.1.2. Then P = tconv(d). Viewing the columns of
d as points in TP2 we obtain

d =

1 0 2
0 1 2
0 0 0

 ∼
 0 −1 2
−1 0 2
−1 −1 0

 .

However, d13 = 2 > 1 = −1 + 2 = d12 + d23 and so d 6∈ Pol3. Furthermore, the set{
y ∈ R3

∣∣ yi − yj ≤ dij, y3 = 0
}

is empty. Ordering the columns of the matrix on the
right hand side lexicographically yields a matrix which is equivalent to the matrix
the matrix c from Example 3.1.2. This is the Kleene star such that P = tconv(c) ={

y ∈ R3
∣∣ yi − yj ≤ cij, y3 = 0

}
. �
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The statement from Proposition 3.1.5 implies that polytropes in TPn−1 are tropical
simplices, i.e. the tropical convex hull of exactly n points. A polytrope of dimension
n − 1 is maximal if it has (2n−2

n−1 ) vertices as an ordinary polytope. To see why this
is indeed the maximal number of classical vertices, recall from Theorem 1.3.2 that a
polytrope is dual to a regular subdivision of the product of simplices ∆n−1 × ∆n−1. The
normalized volume of this polytope is (2n−2

n−1 ), bounding the number of maximal cells
in the regular subdivision and hence the number of vertices of the polytrope. This
bound is attained in every dimension [DS04, Proposition 19]. Any maximal polytrope
P is a smooth polytope [GOT17, Chapter 7.3], i.e. a simple polytope whose normal
fan is a smooth fan in the sense of Section 1.1.2. Furthermore, if P is maximal, then
every inequality yi − yj ≤ cij is facet-defining. Thus, the rays of the normal fan are
(coordinate projections of) the vectors in direction ei − ej, i, j ∈ [n], i.e. the roots in the
root system An. As a consequence, two maximal polytropes of the same tropical type
have the same normal fan.
In the following, we describe how maximal polytropes can be classified through
algebraic methods. Let R be the polynomial ring R = K[xij | (i, j) ∈ [n]2, i 6= j],
where K is a field containing the rational numbers. In Section 3.2 we will choose K
to be the fraction field K = Q(aij | (i, j) ∈ [n]2, i 6= j), where the variables aij define
the “indeterminate polytrope” P(a) =

{
y ∈ Rn

∣∣ yi − yj ≤ aij, yn = 0
}

. We consider
the toric ideal

In = 〈xijxji − 1, xijxjk − xik | i, j, k ∈ [n] pairwise distinct〉, (3.1)

which appears in [Tra17] as the toric ideal associated with the all-pairs shortest path
program. In the language of Section 1.7.1, this is the toric ideal associated to the matrix
A with columns of the form ei − ej. Let GF n be the Gröbner fan of In, as described in
Section 1.5. The matrix A is known to be (totally) unimodular (cf. Section 3.2.2), and
hence GF n is the chamber complex of all polytopes with inner facet normals in directions
ei − ej, where i, j ∈ [n] ([Stu96, Proposition 8.15], [DLRS10, Chapter 5.4]). This means
that the normal fan of the polytope

P(c) =
{

y ∈ Rn | yi − yj ≤ cij, yn = 0
}

is fixed for each relatively open cone (also called chamber) C in the chamber complex
GF n and every point c ∈ C. In other words, the the combinatorial type of P(c) is fixed
along an open chamber of GF n. Let GF n|Poln be the restriction of the Gröbner fan
of In to the polytrope region Poln. This polyhedral fan captures the tropical types of
polytropes.

Theorem 3.1.8 ([Tra17, Theorems 17 - 18]). Relatively open cones of GF n|Poln are in
bijection with lex-types of polytropes in TPn−1. Maximal open cones of GF n|Poln are
in bijection with lex-types of maximal polytropes in TPn−1.

We now illustrate how this result can be used to show that there is a unique lex-type of
maximal polytropes in dimension 2.
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Figure 3.6: The two different types of alcoved triangles.

Example 3.1.9 (The Gröbner fan GF 3). The toric ideal I3 ⊆ K[x12, x13, x21, x23, x31, x32]
from (3.1) is given by

I3 = 〈x12x23x31 − 1, x13x31 − 1, x21x13x32 − 1, x23x32 − 1〉.

Using Macaulay2 [GS22] we compute that the Gröbner fan GF 3 is a complete poly-
hedral fan in R6, and the lineality space L of GF 3 is 2-dimensional. With indexing
w = (w12, w13, w21, w23, w31, w32) the space L is spanned by the vectors (1, 0,−1,−1, 0, 1)
and (0, 1, 0, 1,−1,−1). Modulo L, the primitive ray generators of GF 3 the standard
unit vectors e1, . . . , e6, together with the ray generators

(1, 0, 0, 0, 0, 1), (0, 0, 1, 0, 1, 0), (0, 0, 0, 0, 1, 1), (0, 0, 1, 1, 1, 0), (0, 0, 1, 0, 1, 1).

The fan GF 3 consists of 18 maximal cones. Restricting to the polytrope region Pol3,
the fan GF 3|Pol3 consists of a single maximal cone, which corresponds to the unique
maximal lex-type in dimension 2. The remaining 17 maximal cones of GF 3 restrict to
proper faces of this cone. 6 of these lower-dimensional cones correspond to pentagons,
9 cones correspond to rectangles and 2 cones to triangles. These triangles are the two
different types of alcoved triangles, which are depicted in Figure 3.6. �

Recall from Theorem 1.3.2 that a tropical polytope tconv(V) ⊆ TPn−1 can be described
as the polyhedral complex of bounded faces of an unbounded polyhedron PV , and is
dual to a regular subdivision of the product of simplices ∆|V|−1 × ∆n−1. If tconv(V)
is a polytrope, then Proposition 3.1.5 implies that |V| = n. Even more, tconv(V) is
a polytrope if and only if the bounded region of PV consists of a single bounded
face [DS04, Theorem 15], and hence all maximal cells in the dual subdivision of
∆n−1 × ∆n−1 share some vertex. Thus, the types of polytropes are dual to “central
subdivisions” of ∆n−1 × ∆n−1. By (1.1) (on page 16) and the Cayley trick (Section 1.1.3),
this is identical to studying coherent mixed subdivisions of the dilated simplex n∆n−1.
Regular subdivisions of products of simplices can hence be related to certain regular
subdivisions of the fundamental polytope FPn, a subpolytope of n∆n−1 (up to translation),
introduced by Vershik [Ver15] and further studied by Delucchi and Hoessly [DH20].
The fundamental polytope FPn (or root polytope of type A) is defined as

FPn = conv
(
ei − ej | i 6= j ∈ [n]

)
.
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e3 − e1 e2 − e1

e2 − e3

e1 − e3e1 − e2

e3 − e2

Figure 3.7: The fundamental polytopes from Example 3.1.10. Left: The fundamental polytope
FP3 with its unique central subdivision. Right: The fundamental polytope FP4 with
unique interior lattice point 0.

The fundamental polytopes FP3 and FP4 are pictured in Figure 3.7. A regular central
subdivision of FPn is a regular subdivision in which the unique relative interior lattice
point 0 of FPn is a vertex of each maximal cell. These central subdivisions were studied
in [ABH+11] as subdivisions of the boundary of the root polytope of type A.

Example 3.1.10 (The fundamental root polytopes FP3 and FP4). If n = 2, then the
fundamental polytope FP3 coincides with the permutohedron Π3 (up to translation
by the vector (2, 2, 2)t). This is a 2-dimensional polytope with 6 vertices, containing
the origin as its only interior lattice point. It has a single regular central triangulation,
which is in bijection with the unique lex-type of maximal polytropes in TP2. Figure 3.7
shows FP3 as a subpolytope of the dilated and translated simplex 3∆2 − (1, 1, 1)t, and
the fundamental polytope FP4. �

The number of lex-types of polytropes can be enumerated using the following theorem.

Theorem 3.1.11 ([JS19, Theorem 22]). The types of full-dimensional polytropes in
TPn−1 are in bijection with regular central subdivisions of FPn.

In dimension 2, the hexagon is the unique lex-type of maximal polytropes, as can
be seen in Example 3.1.9. In dimension 3 there are 6 distinct maximal types [JK10;
JP12]. Using Theorem 3.1.8, [Tra17] showed that in dimension 4 there are 27 248
distinct types. In higher dimensions, this number is unknown. These type counts were
independently confirmed in [JS19] using the identification in Theorem 3.1.11. We relate
our computational results to regular central subdivisions of the fundamental polytope
in Sections 3.4.3 and 3.4.4.
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3 .2 multivariate volume polynomials

We seek to compute a multivariate volume polynomial for each tropical type of polytropes.
That is, for each fixed tropical type we compute a polynomial q̂(a) in variables aij,
where i, j ∈ [n], i 6= j such that, when c? is a Kleene star defining a polytrope P = P(c?)
of the respective tropical type, the polynomial q̂ evaluates to the normalized volume of
the polytrope q̂(c?) = Vol(P(c?)). For each maximal tropical type, our computation of
such a polynomial will depend on a fixed Kleene star c? of the appropriate type. In
this and the following sections we introduce the multivariate polynomials of interest
and describe methods for computing these functions for polytropes, motivated by the
methods in [Tra17] and [DLS03]. Throughout this chapter, we assume that P(c?) is a
lattice polytope unless stated otherwise, i.e. that c? is an integer vector. Furthermore,
we will always measure the volume of a polytope P inside its affine span. For simplicity
we abbreviate the Euclidean volume by vol(P) = voldim(P)(P) and the discrete volume
by Vol(P) = Voldim(P)(P) throughout this chapter.

3.2.1 The Toric Variety of a Polytrope

In order to compute multivariate volume polynomials of polytropes we use methods
from toric geometry as described in Section 1.7. Let P be a maximal polytrope, i.e.
P = P(c?) with

P(c?) =
{

y ∈ Rn−1
∣∣∣ yi − yj ≤ c?, yn = 0

}
for some Kleene star c? ∈ Poln inside a maximal open region of Poln. Let uij denote the
primitive ray generators of the (inner) normal fan Σ(c?) of P(c?), i.e. uij = −(ei − ej)
for (i, j) ∈ [n− 1]2, i 6= j and uin = −ei, uni = ei for i ∈ [n− 1]. Recall that if P is
maximal, then all these n2 − n vectors indeed span rays of the fan Σ(c?). Let XΣ(c?) be
the normal toric variety defined by the fan Σ(c?). Since the normal fan of P(c?) is a
smooth fan (as defined in Section 1.1.2) the variety XΣ(c?) is smooth. We denote by Dij
the torus-invariant prime divisor corresponding to the ray uij. Then the polytope P(c?)
corresponds to the divisor

DP(c?) = ∑
ij∈[n]×[n]

i 6=j

c?ijDij.

Let K be a field of characteristic 0 and R = K[xij | (i, j) ∈ [n]2, i 6= j]. At the end of this
section we will make the choice K = Q(aij | (i, j) ∈ [n]2, i 6= j) for indeterminates aij.
Recall from Section 1.7.1 that the variable xij corresponds to the ray uij and thus the
facet of P(c?) that lies in the hyperplane

〈
y, uij

〉
= c?ij. As described in Section 1.7.2,

the normalized volume of P(c?) can be computed via the toric variety XΣ(c?) from the
coefficient δ, where δxα is the normal form of

∑
i,j∈[n]

i 6=j

c?ijxij
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inside the quotient ring R/(L + M), and xα corresponds to a choice of a basis of the
top cohomology group. Here, M is the Stanley-Reisner ideal of the boundary complex
of ∂P(c?)◦ and L is the ideal

L =

〈
∑

ij∈[n]×[n]
i 6=j

〈b, uij〉xij

∣∣∣∣∣∣∣∣ b ∈ B
〉

,

where B is any basis for Zn. Choosing B to be the standard basis for Zn, for a given
vector b = ek we get

∑
ij∈[n]×[n]

i 6=j

〈ek, uij〉xij = ∑
j∈[n]

xkj − ∑
j∈[n]

xjk

and so the ideal is equal to

L =

〈
∑

j∈[n]
xkj − ∑

j∈[n]
xjk

∣∣∣∣∣∣ k ∈ [n]

〉
.

Considering the complete directed graph Kn on n vertices, this ideal can be viewed as
generated by the cuts of Kn that isolate a single vertex.

The main idea of this section is the following. We consider the “indeterminate poly-
trope”

P(a) =
{

y ∈ Rn ∣∣ yi − yj ≤ aij, yn = 0
}

,

defined by indeterminates aij. When evaluated at a Kleene star c? ∈ Poln, the polytope
P(c?) is a polytrope, and for any maximal open region C ∈ GF|Poln the tropical type
of the maximal polytrope is fixed. Inside this region, all polytropes have the same
normal fan Σ = Σ(c?). Restricted to such a chamber, the coordinates of each vertex are
linear functionals in variables aij. Thus, inside a chamber the volume is a polynomial
in variables aij.

Formally, let K = Q(aij | (i, j) ∈ [n]2, i 6= j) and C ∈ GF|Poln a maximal open chamber
in the polytrope region. Then there is a polynomial q = qC such that for each c? ∈ C
holds

q(c?) = Vol(P(c?)).

We refer to this polynomial as the volume polynomial, which is, up to a correcting factor
γ ∈ K, given by the leading coefficient δ of the normal form

δxα = ∑
i,j∈[n]

i 6=j

aijxij
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inside the ring R/(L + M). In the following section, we determine the ideal M and the
correcting factor of δ by combining results from [DLS03; BY06; Tra17].

3.2.2 Computing Multivariate Volume Polynomials

We continue the discussion from Section 3.2.1 in order to compute multivariate volume
polynomials of polytropes. It remains to determine the ideal M and the correcting
factor of δ. For both of these purposes we first show that polytropes fit into the frame-
work of [DLS03], i.e. that there exists a nonnegative unimodular matrix A such that
P(a) =

{
y ∈ Rn2−n

≥0

∣∣∣ Ay = Aa, x ≥ 0
}

and ker(A)∩Rn
>0 = ∅, and all column sums are

positive. Recall that a matrix is totally unimodular if every minor equals −1, 0, or 1. We
note that every nonnegative totally unimodular matrix is unimodular in the sense of
[DLS03].

Proposition 3.2.1. Let P(a) be the indeterminate polytope. Then there exists a non-
negative totally unimodular matrix A such that P(a) =

{
y ∈ Rn2−n

≥0

∣∣∣ Ay = Aa, x ≥ 0
}

and ker(A) ∩Rn
>0 = ∅, and all column sums are positive.

Proof. Consider P(a) =
{

y ∈ Rn
∣∣ yi − yj ≤ aij, yn = 0

}
. As P(a) is contained in the

linear space given by yn = 0, we can project onto the first n− 1 coordinates, which
yields

P(a) =
{

y ∈ Rn−1
∣∣∣ By ≤ a

}
for a suitable matrix B ∈ Z(n2−n)×(n−1) with rows Bij indexed by (i, j) ∈ [n]2, i 6= j.
More precisely, if i, j ∈ [n− 1] then Bij = ei − ej, and Bin = ei, Bnj = −ej.
For each inequality yi − yj ≤ aij we introduce a nonnegative slack variable yij ≥ 0 and
replace the inequality by the equation yi − yj + yij = aij. Furthermore, we replace the
inequalities yi ≤ ain,−yj ≤ anj by equations yi + yin = ain,−yj + ynj = anj. This gives a

representation as
(

B | Idn

)
y = a with y = (y1, . . . , yn−1, y12, . . . , yn−1,n).

In particular, we have the equation −yj + ynj = anj. We can thus substitute the variable
yj by ynj − anj, which leaves us with a system of equations of the form

yij + yni − ynj = aij + ani − anj (3.2)

yjn + ynj = ajn + anj. (3.3)

This system of equations only involves the nonnegative variables yij, i, j ∈ [n], i 6= j.
Adding these equations gives

yij + yni + yjn = aij + ani + ajn. (3.2’)

The set of solutions to the system with equations (3.2) and (3.3) is equal to the set of
solutions to the system with (3.2’) and (3.3), yielding a nonnegative matrix A with
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positive column sums, such that

P(a) =
{

y ∈ Rn2−n
≥0

∣∣∣ Ay = Aa
}

and ker(A) ∩ Rn2−n
≥0 = ∅. It is well-known that the constraint matrix B is totally

unimodular [Tra17, Section 2.3.3]. This property is preserved under the operations we
applied to obtain the matrix A, and hence A is totally unimodular.

Remark 3.2.2. The expressions aij + ani + ajn and ain + ani can be interpreted in terms
shortest paths of the complete digraph. These are the weights of the shortest cycle
passing through i and n and the shortest directed cycle passing through i, j and n
respectively.

Example 3.2.3 (The matrix A in dimension 2). Any 2-dimensional polytrope P(a) has a
description in terms of inequalities as

P(a) =


(

y1

y2

)
∈ R2

∣∣∣∣∣∣∣
y1 − y2 ≤ a12, y2 − y1 ≤ a21

y1 ≤ a13, y2 ≤ a23

y1 ≥ −a31, y2 ≥ −a32

 ,

when a is contained in the polytrope region Pol3. We want to compute the constraint
matrix A by turning the above description of a polytrope into one involving only
equalities, mimicking the proof of Proposition 3.2.1. We begin by translating the above
to a matrix description of P(a):

1 −1
1 0
−1 1
0 1
−1 0
0 −1


(

y1

y2

)
≤



a12

a13

a21

a23

a31

a32


Introducing slack variables yij, we get the representation



1 −1 1 0 0 0 0 0
1 0 0 1 0 0 0 0
−1 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0
−1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1





y1

y2

y12

y13

y21

y23

y31

y32


=



a12

a13

a21

a23

a31

a32


.
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Substituting y1 = y31 − a31, y2 = y32 − a32 and deleting zero-columns and zero-rows
gives us


1 0 0 0 1 −1
0 1 0 0 1 0
0 0 1 0 −1 1
0 0 0 1 0 1





y12

y13

y21

y23

y31

y32


=


a12 + a31 − a32

a13 + a31

a21 − a31 + a32

a23 + a32

 .

This is a system of equations of the form (3.2) and (3.3). Replacing them by the system
of equations as given in (3.2’) and (3.3) yields

Ay =


1 0 0 1 1 0
0 1 0 0 1 0
0 1 1 0 0 1
0 0 0 1 0 1





y12

y13

y21

y23

y31

y32


=


a12 + a23 + a31

a13 + a31

a21 + a13 + a32

a23 + a32

 = Aa.

This gives us the desired representation P(a) =
{

y ∈ Rn2−n
≥0

∣∣∣ Ay = Aa
}

. �

Let K = Q(aij | (i, j) ∈ [n]2, i 6= j), for indeterminate variables aij, and consider the
polynomial ring R = K[xij | (i, j) ∈ [n]2, i 6= j]. Following [DLS03], we consider the
toric ideal I ⊆ R seen previously in Section 3.1:

In = 〈xr − 1 | r is a row of A〉 = 〈xinxni − 1, xijxjnxni − 1〉 = 〈xijxji − 1, xijxjk − xik〉,

where (i, j, k) ∈ [n]3 are pairwise distinct. For our purposes, i.e. for n ≤ 5, the equality
of these ideals can be verified computationally e.g. with Macaulay2 [GS22].
Fix a maximal tropical type and a Kleene star c? corresponding to a polytrope P(c?) of
that type. We write M = inc?(In) for the initial ideal of In with respect to the weight
vector c?.

Proposition 3.2.4 ([DLS03, Corollary 2.2]). The initial ideal M is the Stanley-
Reisner ideal of the normal fan Σ(c?) of the simple polytope P(c?).

In order to compute the volume polynomial, we would like to apply Algorithm 3.2.6.
For this, we need to know the minimal prime ideals of M. A prime ideal is a minimal
prime ideal over In (or a minimal prime of In) if it is minimal (with respect to inclusion)
among all prime ideals containing In.
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Proposition 3.2.5 ([BY06, Lemmas 5 and 6], [DLS03]). The facets of P(c?) are in
bijection with variables xij of R/(L + M). The vertices of P(c?) are in bijection with
minimal primes of M.

In the above bijection, the facet Fij given by the inequality yi − yj = c?ij is identified with
the variable xij. A vertex v of the polytrope can be identified with the minimal prime
〈xij | ij 6∈ Iv〉, where Iv =

{
ij
∣∣ Fij contains v

}
. Thus, a minimal prime is generated by

variables which correspond to facets that do not contain a given vertex v.
We fix a maximal open cone C ∈ GF|Poln and a Kleene star c? ∈ C. Recall that XΣ(c?) is
the smooth toric variety defined by the normal fan Σ(c?) of the maximal polytrope P(c?),
and that we consider XΣ(c?) as a variety defined over K = Q(aij | (i, j) ∈ [n]2, i 6= j).
Let D be the divisor on XΣ(c?) corresponding to the polytrope P(a) given by the
indeterminates aij, i.e. P(a) =

{
y ∈ Rn

∣∣ yi − yj ≤ aij, yn = 0
}

. We can write D as

D = ∑
ij∈[n]×[n]

i 6=j

aijDij,

where Dij is the prime divisor corresponding to the ray of Σ(c?) spanned by uij = ej− ei.
Recall from Section 1.7.2 that (the cohomology class of) the divisor Dij corresponds to
the variable xij in R/(L + M). Let

q = ∑
ij∈[n]×[n]

i 6=j

aijxij

be the polynomial in R/(L + M) representing the cohomology class [D] of the divisor
D. Since the dimension of any polytrope is n− 1 when being defined by a Kleene star
in GF|Poln , we can compute the volume polynomial restricted to the open maximal
cone C ∈ GF|Poln by

Vol(P(a)) =
∫

XΣ(c?)

[D]n−1.

The intersection number
∫

XΣ(c?)
[D]n−1 is a constant in R/(L + M) and thus a rational

function with variables aij. In the following we present an algorithm to compute the
integral of a cohomology class of XΣ(c?) inside R/(L + M), which we can apply to qn−1,
i.e. the polynomial representing [D]n−1. In other words, if the input of Algorithm 3.2.6
is given by the polynomial p = qn−1, the output is a multivariate volume polynomial
which is valid for every d? ∈ C.
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Algorithm 3.2.6 (Computing the integral of a cohomology class of a toric variety X).

Input : A polynomial p(x) with coefficients in a field K ⊃ Q.
Output : The integral

∫
X p of the corresponding cohomology class on X.

1: Compute a Gröbner basis G for the ideal L + M.
2: Find a minimal prime 〈xj | xj 6∈ Iv〉 of M, and compute the normal form of

∏i∈Iv
xi modulo the Gröbner basis G. It looks like γ · xα, where γ is a non-zero

element of K and xα is the unique standard monomial of degree n− 1.
3: Compute the normal form of p modulo G and let δ ∈ k be the coefficient of xα in

that normal form.
4: Output the scalar δ/γ ∈ K.

This algorithm appeared as [DLS03, Algorithm A] and the correctness of the algorithm
follows from [DLS03, Sections 2–3]. Note that γ is independent of the choice of the
minimal prime 〈xj | xj 6∈ Iv〉 in (2). This can be seen from the fact that XΣ(c?) is smooth,
and hence any two monomials ∏i∈Iv

xi are congruent to each other modulo L + M. The
entire discussion above implies the following theorem.

Theorem 3.2.7. Let C ∈ GF n|Poln be a maximal open cone, fix c? ∈ C and consider
the “indeterminate polytrope”

P(a) =
{

y ∈ Rn ∣∣ yi − yj ≤ aij, yn = 0
}

,

with fixed normal fan Σ(c?). Let K = Q(aij | (i, j) ∈ [n]2, i 6= j), let R denote the
polynomial ring with coefficients in K and

q = ∑
ij∈[n]×[n]

i 6=j

aijxij

be the polynomial in R/(L + M) in variables xij and indeterminates aij ∈ K. Using
p = qn−1 as the input of Algorithm 3.2.6, the output δ

γ ∈ K is a multivariate volume
polynomial in variables aij, i.e.

VolC(a) =
δ

γ
,

such that for every d? ∈ C the normalized volume of P(d?) is Vol(P(d?)) = VolC(d?).

Remark 3.2.8. Recall that GF n|Poln is the restriction of the Gröbner fan of In to the
polytrope region Poln. By Theorem 3.1.8, maximal open cones of GF n|Poln are in
bijection with types of maximal polytropes. Since Algorithm 3.2.6 only depends on
inc?(In) and not on the choice of c? itself, the multivariate volume polynomial is
constant along an open cone of GF n|Poln . This reflects the fact that polytropes of the
same tropical type have the same normal fan. Therefore, maximal polytropes of the
same type have the same multivariate volume polynomial, and it suffices to compute
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x32

x12

x13

x23

x21

x31

Figure 3.8: The polytrope P(c?) corresponding to c? = (3, 2, 3, 4, 5, 6). The facets are in bijection
with variables in R and vertices are in bijection with minimal primes of I3.

the polynomial for only one representative c? for each maximal cone. Furthermore,
the polynomials agree on the intersection of the closure of two of these cones [Stu95].
Thus, given a Kleene star c? corresponding to a non-maximal polytrope P(c?), we can
choose any of the maximal closed cones that contain c? and evaluate the corresponding
multivariate volume polynomial at c? to compute the volume of P(c?).

Example 3.2.9 (The volume polynomial in dimension 2). We apply the above discussion
to compute the multivariate volume polynomial for 2-dimensional polytropes. Note
that the volume, Ehrhart- and h∗-polynomial of the hexagon can be derived by more
elementary methods as, for example, counting unimodular simplices in an alcoved
triangulation and Pick’s formula. However, as the presentation is less instructive in
dimensions 3 and 4, we showcase the algebraic machinery on this example. As in
Example 3.1.9, the toric ideal I3 is

I3 = 〈x12x23x31 − 1, x13x31 − 1, x21x13x32 − 1, x23x32 − 1〉.

We also have L as

L = 〈x12 + x13 − x21 − x31, x21 + x23 − x12 − x32, x31 + x32 − x13 − x23〉.

Let c? = (3, 2, 3, 4, 5, 6) as in Examples 3.1.4 and 3.3.4. By Example 3.1.9 the restriction
GF 3|Pol3 consists of a single open maximal cone containing c?. The corresponding
polytrope P(c?) is the hexagon displayed in Figure 3.8, with facets labeled according to
Proposition 3.2.5.
Using Macaulay2, we compute that the initial ideal M of I3 with respect to the weight
vector c? is

M = 〈x12x21, x13x21, x12x23, x12x31, x13x31, x23x31, x13x32, x21x32, x23x32〉.
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A Gröbner basis for L + M is given by

G = 〈x31 − x12 + x21 − x13, x13x21, x12x13 + x2
13, x32 − x23 + x12 − x21, x13x23 + x2

13,

x2
21 − x2

13, x12x21, x2
12 − x2

13, x3
13, x21x23 + x2

13, x12x23, x2
23 − x2

13〉.

Any vertex gives us a minimal prime. We choose the vertex v incident to the facets
labeled by x31 and x32, giving us the minimal prime 〈xij | ij 6∈ Iv〉 = 〈x12, x13, x21, x23〉
and the monomial ∏ij∈Iv

xij = x31x32. Modulo the Gröbner basis G, this has normal
form γ · xα = (−1)x2

13, so γ = −1 and xα = x2
13.

Let q = ∑ij∈[3]2
i 6=j

aijxij. This is the polynomial in R/(L + M) corresponding to the divisor

described in Section 3.2. We want to compute the volume of the polytrope P(c?) by
applying Algorithm 3.2.6 to p = q2. The normal form of the polynomial q2 modulo G is

(a2
12 − 2a12a13 + a2

13 + a2
21 − 2a13a23 − 2a21a23

+a2
23 − 2a21a31 + a2

31 − 2a12a32 − 2a31a32 + a2
32)x2

13,

so the coefficient δ of xα gives us the volume polynomial for the normalized volume

Vol(a) =
δ

γ
= −(a2

12 − 2a12a13 + a2
13 + a2

21 − 2a13a23 − 2a21a23

+a2
23 − 2a21a31 + a2

31 − 2a12a32 − 2a31a32 + a2
32).

Evaluating at the original vector c? gives 79, which is the normalized volume of the
original polytope. The volume polynomial vol(a) for the Euclidean volume of P(a) is
given as

vol(a) =
1
2

Vol(a).

The fact that GF 3|Pol3 consists of a single maximal cone, together with Remark 3.2.8
implies that this polynomial is a universal volume polynomial, which computes the
volume of every 2-dimensional polytrope. �

Remark 3.2.10. The volumes of polytropes were studied in the language of alcoved
polytopes of type A in [LP07, Theorem 3.2], and this theory was extended to general
root systems in [LP18, Theorem 8.2]. The normalized volume of an alcoved polytope is
described as a sum of discrete volumes of alcoved simplices. More specifically, given a
fixed alcoved polytope of type A, the normalized volume of the respective polytope P
can be computed as

Vol(P) = ∑
σ∈Sn−1

|Pσ ∩Zn−1|,

where Pσ =
{

x ∈ Rn−1
∣∣ x + ∆σ ⊆ P

}
and

∆σ =
{

y ∈ Rn−1
∣∣∣ 0 ≤ yσ(1) ≤ · · · ≤ yσ(n−1) ≤ 1

}
.
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This is a formula yields a value for the normalized volume for polytropes of any
dimension. At the same time, as the expression x + ∆σ ⊆ P in the definition of Pσ

is of semialgebraic nature, it does seem clear how to utilize this approach to obtain
multivariate polynomials using algebraic methods.

3 .3 multivariate ehrhart and h∗ -polynomials

In this section we describe how to compute the multivariate analogues of the Ehrhart
and the h∗-polynomial for polytropes. An introduction to Ehrhart polynomials and
h∗-polynomials is given in Section 1.1.4. In order to obtain such a multivariate Ehrhart
polynomial, we fix a tropical type of polytropes and apply the Todd operator to
the respective multivariate volume polynomial. We then extend to multivariate h∗-
polynomials by applying a change of basis to the Ehrhart polynomial, which involves
the use of Eulerian polynomials.

3.3.1 Computing multivariate Ehrhart polynomials

As in the previous section, let C ∈ GF|Poln be a maximal open cone, c? ∈ C and P(c?)
be a lattice polytrope given by inequalities

P(c?) =
{

x ∈ Rn−1
∣∣∣ xi − xj ≤ c?ij, −c?ni ≤ xi ≤ c?in

}
.

Recall from Section 1.1.4 that the Ehrhart polynomial ehr : Z→ Z counts the number
of lattice points in an integer dilate of a lattice polytope when evaluated at a positive
integer, i.e.

ehrP(c?)(k) =
∣∣∣kP(c?) ∩Zn−1

∣∣∣ = ∣∣∣{x ∈ Rn−1
∣∣∣ xi − xj ≤ kc?ij, −kc∗ni ≤ xi ≤ kc?in

}∣∣∣ .

Thus, the Ehrhart polynomial of P(c?) counts lattice points in the class of lattice
polytopes that can be obtained by uniformly translating the all facet-defining hy-
perplanes of P(c?) simultaneously. The multivariate lattice point counting function
ehrC(a) : Zn2−n → Z is given by

ehrC(a) =
∣∣∣{x ∈ Rn−1

∣∣∣ xi − xj ≤ aij, −ani ≤ xn ≤ ain

}∣∣∣ ,

where we allow the facet-defining hyperplanes to translate independently from each
other, preserving (or possibly coarsening) the normal fan Σ(c?). As we will see, the
restriction of the lattice point counting function ehrC(a)|C : C ∩Zn2−n → Z is a poly-
nomial in variables aij. We use the Todd operator to pass from multivariate volume
polynomials to these multivariate Ehrhart polynomials of polytropes. We begin by
defining single and multivariate versions of the Todd operator, following [BR15, Chapter
12] and [CLS11, Chapter 13.5], and then explain the method we used for computations.
Finally, we illustrate these methods by computing the multivariate and univariate
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Ehrhart polynomials of the hexagon from Example 3.2.9.

The Todd operator is related to the Bernoulli numbers, a sequence of rational numbers
Bk for k ∈ Z≥0 whose first few terms are 1,− 1

2 , 1
6 , 0,− 1

30 , 0. They are defined through
the generating function

z
exp(z)− 1

= ∑
k≥0

Bk

k!
zk.

Definition 3.3.1. The Todd operator is the differential operator

Toddh = 1 + ∑
k≥1

(−1)k Bk

k!

(
d

dh

)k

.

Note that for a univariate polynomial f (h) of degree d we have ( d f
dh )

k = 0 for any k > d.
Thus, restricting to polynomials of degree at most d yields Toddh : K[x]≤d → K[x]≤d,
where we obtain the finite expression

Toddh( f ) = 1 +
d

∑
k=1

(−1)k Bk

k!

(
d f
dh

)k

,

i.e. Toddh( f ) is a polynomial. The Todd operator can be succinctly expressed in
shorthand as

Toddh =
d

dh

1− exp
(
− d

dh

) .

In order to compute the multivariate Ehrhart polynomials, we use a multivariate version
of the Todd operator. For h = (h1, h2, . . . , hm), we write

Toddh =
m

∏
j=1

( ∂
∂hj

1− exp(− ∂
∂hj

)

)
.

The Todd operator allows one to pass from a continuous measure of volume on a
polytope to a discrete measure: a lattice point count. Let

P =
{

x ∈ Rd
∣∣∣ Ax ≤ b

}
for some A ∈ Rm×d, b ∈ Rm. For h ∈ Rm, the shifted polytope Ph is defined as

Ph =
{

x ∈ Rd
∣∣∣ Ax ≤ b + h

}
.
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Theorem 3.3.2 (Khovanskii-Pukhlikov, [BR15, Chapter 12.4]). Let P ⊆ Rd be a
full-dimensional smooth polytope. Then

|P ∩Zd| = Toddh vol(Ph)|h=0.

In words, the number of lattice points of P equals the evaluation of the Todd operator
at h = 0 on the relative Euclidean volume of the shifted polytope Ph.

In Theorem 3.3.2, one applies the Todd operator to the volume of a shifted version Ph of
the polytope P. In our setting of multivariate volume polynomials that are constant on
fixed cones of the polytrope region in the Gröbner fan, a nice simplification occurs that
allows us to ignore this shift. As above, let C ∈ GF|Poln be a maximal open cone. By
Section 3.2, there is a multivariate volume polynomial VolC(a) which evaluates to the
normalized volume of P(c?) for any c? ∈ C. The polynomial volC(a) = 1

(n−1)! VolC(a)
thus evaluates to the Euclidean volume.
The shifted polytrope P(c?)h has the description

P(c?)h =
{

x ∈ Rn−1
∣∣∣ xi − xj ≤ c?ij + hij, −(c?ni + hni) ≤ xi ≤ c?in + hin

}
= P(c? + h)

for any h ∈ Rn2−n. As long as h is small enough, the shifted polytrope remains in
the same cone, i.e. c? + h ∈ C, and its Euclidean volume is given by evaluating the
multivariate volume polynomial volC(a + h) at c?. As volC(a) is a polynomial, we have ∏

i,j∈[n]
i 6=j

∂

∂hij

 volC(a + h)
∣∣
h=0 =

 ∏
i,j∈[n]

i 6=j

∂

∂aij

 volC(a).

Hence, we obtain that

ehrC(a) = Toddh volC(a + h)|h=0 = Todda volC(a).

Example 3.3.3 (The Ehrhart polynomial in dimension 2). We now apply the Todd opera-
tor to the multivariate volume polynomial of the hexagon from Example 3.2.9. As in the
before, this 2-dimensional example can be computed with more elementary methods,
such as Pick’s formula. However, this example generalizes to higher dimensions, and
we use it to present our methods in a manageable size. Recall that in dimension 2 the
volume polynomial is

vol(a) = ∑
i,j∈[3]

i 6=j

−1
2

a2
ij + ∑

i,j,k∈[3]
i,j,k distinct

(aijaik + ajiaki).
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Applying the multivariate Todd operator to this volume polynomial, we obtain

Toddh vol(a + h)
∣∣∣∣
h=0

=

(
∂

∂h32
1−exp(− ∂

∂h32
)

)
. . .
(

∂
∂h13

1−exp(− ∂
∂h13

)

) [(
∂

∂h12
1−exp(− ∂

∂h12
)

)
vol(a + h)

] ∣∣∣∣
h=0

=

(
∂

∂h32
1−exp(− ∂

∂h32
)

)
. . .
(

∂
∂h13

1−exp(− ∂
∂h13

)

)[(
1 +

2

∑
k=1

(−1)k Bk

k!
( ∂

∂h12

)k
)

vol(a + h)

] ∣∣∣∣
h=0

=

(
∂

∂a32
1−exp(− ∂

∂a32
)

)
. . .
(

∂
∂a13

1−exp(− ∂
∂a13

)

)[(
1 +

2

∑
k=1

(−1)k Bk

k!
( ∂

∂a12

)k
)

vol(a)

]

=

(
∂

∂a32
1−exp(− ∂

∂a32
)

)
. . .
(

∂
∂a13

1−exp(− ∂
∂a13

)

) [
vol(a) +

1
2
(−a12 + a13 + a32)−

1
12

]
...

= −1
2

a2
12 + a12a13 −

1
2

a2
13 −

1
2

a2
21 + a13a23 + a21a23 −

1
2

a2
23 + a21a31 −

1
2

a2
31

+ a12a32 + a31a32 −
1
2

a2
32 +

1
2

a12 +
1
2

a13 +
1
2

a21 +
1
2

a23 +
1
2

a31 +
1
2

a32 + 1

= vol(a) + ∑
i,j∈[3]

i 6=j

aij

2
+ 1.

Hence, for integral Kleene stars c? ∈ Z6, i.e. whenever P(c?) is a smooth maximal
lattice polytrope, we get that

|P(c?) ∩Z2| = vol(c?) + ∑
i,j∈[3]

i 6=j

c?ij
2
+ 1.

Pick’s formula implies that ∑i,j∈[3]
i 6=j

c?ij is the number of lattice points on the boundary of

P(c?). Evaluating this polynomial at c? = (3, 2, 3, 4, 5, 6) gives 52, the number of lattice
points in the polytrope. Evaluating at tc? = (3t, 2t, 3t, 4t, 5t, 6t) recovers the univariate
Ehrhart polynomial of the polytrope P(c?)

ehrP(c?)(t) =
79
2

t2 +
23
2

t + 1.

�

3.3.2 Computing multivariate h∗-polynomials

We now describe how to compute a multivariate h∗-polynomial from a multivariate
Ehrhart polynomial corresponding to each tropical type. As discussed in Section 1.1.4,
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the coefficients of the h∗-polynomial h∗(t) = h0 + h1t + · · ·+ hdtd are the coefficients of
the Ehrhart polynomial expressed in the basis{(

t + d− i
d

) ∣∣∣∣ i ∈ {0, 1, . . . , d}
}

of the vector space of polynomials in t of degree at most d. To transform the Ehrhart
polynomial to the h∗-polynomial, we perform a change of basis, in which the Eulerian
polynomials play a central role. We first explain this transformation in the univariate
case, following [BR15, Chapter 2].

The Eulerian polynomial Ad(t) is defined through the generating function

∑
j≥0

jdtj =
Ad(t)

(1− t)d+1 .

Explicitly, we can write the Eulerian polynomial as

Ad(t) =
d

∑
m=1

A(d, m− 1)tm,

where A(d, m) is the Eulerian number that counts the number of permutations of [d]
with exactly m ascents. The first few Eulerian polynomials are A0(t) = 1, A1(t) = t,
and A2(t) = t2 + t. Recall from Section 1.1.4 that the Ehrhart series of a d-dimensional
polytope P is

EhrP(t) = ∑
k≥0

ehrP(k)tk = ∑
k≥0

(λ0 + λ1k + · · ·+ λdkd)tk =
d

∑
i=0

λi Ai(t)
(1− t)i+1 .

On the other hand, we have

EhrP(t) =
h∗P(t)

(1− t)d+1 .

This yields an expression for the h∗-polynomial in terms of the coefficients of the
Ehrhart polynomial as

h∗P(t) =
d

∑
i=0

λi Ai(t)(1− t)d−i.

Let ehrC(a) be a multivariate Ehrhart polynomial defined on a fixed open maximal
cone C of GF|Pol , as in Section 3.3.1. Since C is a cone, we have kc? ∈ C ∩Zn2−n for
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every k ∈ Z>0, c? ∈ C ∩Zn2−n, and so we similarly obtain

Ehr(t) = ∑
k≥0

ehrC(ka)tk

= ∑
k≥0

(λ0(a) + λ1(a)k + · · ·+ λd(a)kd)tk

=
d

∑
i=0

λi(a)Ai(t)
(1− t)i+1

=
h∗(a, t)

(1− t)d+1 .

where λs(a) is a homogeneous polynomial of degree s in variables aij. To compute the
coefficient of the multivariate h∗-polynomial, we thus collect the terms of each degree
in the above expression.

Example 3.3.4 (The h∗-polynomial in dimension 2). We compute the multivariate h∗-
polynomial of the hexagon as discussed above. Recall from Example 3.3.3 that

ehr(ta) = λ2(a)t2 + λ1(a)t + 1

=

(
∑

i,j∈[3]
i 6=j

−1
2

a2
ij + ∑

i,j,k∈[3]
i,j,k distinct

(aijaik + ajiaki)

)
t2 +

(
∑

i,j∈[3]
i 6=j

aij

2

)
t + 1.

With these coefficients we can compute

λ2(a)A2(t)(1− t)0 =

(
∑

i,j∈[3]
i 6=j

−1
2

a2
ij + ∑

i,j,k∈[3]
i,j,k distinct

(aijaik + ajiaki)

)
(t2 + t),

λ1(a)A1(t)(1− t)1 =
(

∑
i,j∈[3]

i 6=j

1
2

aij
)
(−t2 + t),

λ0(a)A0(t)(1− t)2 =t2 − 2t + 1.

The sum of these three polynomials gives the multivariate h∗-polynomial of the hexagon:

h∗(a, t) =
(

∑
i,j∈[3]

i 6=j

−1
2
(a2

ij + aij) + ∑
i,j,k∈[3]

i,j,k distinct

(aijaik + ajiaki) + 1
)

t2

+

(
∑

i,j∈[3]
i 6=j

1
2
(aij − a2

ij) + ∑
i,j,k∈[3]

i,j,k distinct

(aijaik + ajiaki)− 2
)

t + 1.
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Evaluating h∗(a, t) at (c, t) = (3, 2, 3, 4, 5, 6, t) yields

h∗(c?, t) = 29t2 + 49t + 1,

which is the univariate h∗-polynomial of the hexagon P(c?) from Examples 3.3.3
and 3.2.9. The coefficients of h∗(c?, t) sum to 79, which equals the normalized volume
of P(c?), as observed previously in Example 3.2.9. �

3 .4 computations and observations

In this section we describe the results of our application of the methods described
in Sections 3.2 and 3.3 to maximal polytropes of dimension at most 4. All scripts
and results of our computations can be found in a GitHub Repository [BEZ20]. We
summarize our computational results as follows.

Result 3.4.1. We compute the multivariate volume, Ehrhart and h∗-polynomials for
all tropical types of polytropes of dimension ≤ 4.

Since the Ehrhart polynomials and h∗-polynomials solely depend on the volume polyno-
mials, we focus on studying the coefficients of the latter. For 3-dimensional polytropes
we establish a connection of these coefficients with central subdivisions of the funda-
mental polytope FP3. We first discuss the computational details.

3.4.1 Data and computation

We applied the methods described in Sections 3.2 and 3.3 to a dataset which was
obtained in the work of [JS19]. The dataset contains the vertices of one polytrope
for each maximal lex-type of dimension 3 and 4. The vertices of each polytrope were
arranged to form a Kleene star and corresponding weight vector c?. The aforementioned
methods were then applied to obtain multivariate volume, Ehrhart and h∗-polynomials
for the corresponding tropical type, using SageMath (version 9.0) [Sag], with an
interface to Macaulay2 (version 1.15) [GS22]. The GitHub repository [BEZ20]
contains the input data and the output of every step as a text file, and all scripts we
used for the computations. Furthermore, it contains scripts for tests, with which we
verified the correctness of our computations, and the respective output files of these
tests.
Our computations were performed on a desktop computer with a 3.6 GHz quad-core
processor. On average, the running time was about 5 minutes for each 4-dimensional
volume polynomial, 0.15 seconds for each Ehrhart polynomial and 0.73 seconds for
each h∗-polynomial. Parallelization is possible as the computations are independent for
each tropical type.
In order to verify our computational results, we independently computed the univariate
volume and Ehrhart polynomials with respect to our input data and compared them
with our multivariate results, as explained in Examples 3.3.3, 3.3.4 and 3.2.9. To check
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the h∗-polynomial of a representative polytrope, we attempted to compute its h∗-
polynomial by computing its Ehrhart series with Normaliz [BISO] and compared this
with our multivariate h∗-polynomial evaluated at the corresponding weight vector. We
attempted to perform this check on a cluster, interrupting the Normaliz computation
of each polytrope’s Ehrhart series after 10 minutes. We ran this computation for 1459
(of 27 248) polytropes of dimension 4. For 670 (of 1459), the Normaliz computation
finished in under 10 minutes and the respective h∗-polynomials matched. Investigating
further on a small sample of cases in which the Normaliz computation did not finish
within 10 minutes revealed that the Ehrhart series computation could take as long as
12 hours, in comparison to the 5 minutes required by our methods.

3.4.2 2-dimensional polytropes

First, we consider 2-dimensional polytropes. As noted in Section 3.1, there is a unique
lex-type of maximal polytropes, as the polytrope region contains only a single maximal
cone (Example 3.1.9). We computed the multivariate volume polynomial by apply-
ing Algorithm 3.2.6, where we use a fixed representative c? from the interior of the
polytrope region to compute the initial ideal M = inc?(I3) of the toric ideal I3 (Exam-
ple 3.2.9). Applying the Todd operator to the normalized volume polynomial yields the
multivariate Ehrhart polynomial (Example 3.3.3), and the use of Eulerian polynomials
allows us to compute the multivariate h∗-polynomial (Example 3.3.4). We note that the
volume, Ehrhart and h∗-polynomials are all symmetric with respect to the S3-action.

3.4.3 3-dimensional polytropes

In the case of maximal 3-dimensional polytropes there are 6 types of maximal poly-
tropes [JK10; JP12]. We applied the algorithms in Sections 3.2 and 3.3 to Kleene stars
corresponding to polytropes representing these 6 types, yielding the volume, Ehrhart,
and h∗-polynomials of their respective tropical types.

Example 3.4.2 (A volume polynomial of a 3-polytrope). One of the six normalized
volume polynomials is

2a3
12 − 3a2

12a13 + a3
13 − 3a2

12a14 + 6a12a13a14 − 3a2
13a14 + a3

21 − 3a2
13a23 + 6a13a14a23 − 3a2

14a23

− 3a14a2
23 − 3a21a2

23 + a3
23 − 3a2

21a24 + 6a14a23a24 + 6a21a23a24 − 3a14a2
24 − 3a23a2

24 + a3
24 − 3a2

21a31

+ 6a21a24a31 − 3a2
24a31 − 3a24a2

31 + a3
31 − 3a2

12a32 + 6a12a14a32 − 3a2
14a32 − 3a2

31a32 − 3a14a2
32

+ 6a14a24a34 + 6a24a31a34 + 6a14a32a34 + 6a31a32a34 − 3a14a2
34 − 3a24a2

34 − 3a31a2
34 − 3a32a2

34 + 2a3
34

+ 6a21a31a41 − 3a2
31a41 + 6a31a32a41 − 3a2

32a41 − 3a21a2
41 − 3a32a2

41 + a3
41 − 3a2

12a42 + 6a12a13a42

− 3a2
13a42 + 6a12a32a42 + 6a32a41a42 − 3a13a2

42 − 3a32a2
42 − 3a41a2

42 + a3
42 − 3a2

21a43 + 6a13a23a43

+ 6a21a23a43 − 3a2
23a43 + 6a21a41a43 − 3a2

41a43 + 6a13a42a43 + 6a41a42a43 − 3a13a2
43 − 3a21a2

43

− 3a42a2
43 + a3

43.

�
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We devote the remainder of this subsection to an analysis of the coefficients of the
normalized volume polynomials. Recall from Section 3.1 that the 6 tropical types of
maximal 3-dimensional polytropes correspond to different regular central triangulations
of the fundamental polytope FP4.

Theorem 3.4.3. The coefficients of the volume polynomials of maximal 3-dimensional
polytropes reflect the combinatorics of the corresponding regular central triangulation
of FP3. More precisely, the coefficient of a monomial of the form aijaklast describes
the triangles on the boundary of FP3, the coefficient of a monomial a2

ijakl describes
triangulating edges, and the coefficient of a3

ij relates to the degree of the vertex ei − ej

of FP3.

Proof. Consider the normalized volume polynomials

Vol
({

x ∈ R4
∣∣∣ xi − xj ≤ aij, x4 = 0

})
= ∑

v∈N12

αvav,

of degree 3, where
av = ∏

i,j∈[4]
i 6=j

a
vij
ij and ∑

i,j∈[4]
i 6=j

vij = 3.

Thus, there is a natural decomposition of the set of all possible exponent vectors v into
three different disjoint subsets T111, T21, and T3, one for each partition of [3].

T111 = {v ∈N12 |vij = vkl = vst = 1 for some i 6= j, k 6= l, s 6= t and

(i, j), (k, l), (s, t) are pairwise distinct},
T21 = {v ∈N12 |vij = 2, vkl = 1 for some i 6= j, k 6= l and (i, j) 6= (k, l)},
T3 = {v ∈N12 |vij = 3 for some i 6= j}.

The 6 tropical types of maximal 3-dimensional polytropes correspond to different
regular central triangulations of the fundamental polytope FP4. A regular central
triangulation is determined by a choice of a triangulating edge in each of the six square
facets of FP4. The coefficients of the volume polynomials encode the data of these six
facet triangulations as follows.

1.) Let v ∈ T111, so that the monomial av is aijaklast for some i 6= j, k 6= l, s 6= t and
(i, j), (k, l), (s, t) are pairwise distinct. The coefficients αv are directly determined by
the corresponding triangulation of FP4:

αv =


6 if conv

(
ei − ej, ek − el , es − et

)
is a triangle in the

corresponding regular central triangulation of FP4,

0 otherwise.
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2.) Let v ∈ T21, so that the monomial av is a2
ijakl for some i 6= j, k 6= l and (i, j) 6= (k, l).

The coefficient αv is nonzero only if ei − ej and ek − el are adjacent vertices of FP4.
Every edge of FP4 is contained in a unique square facet. The coefficient αv is deter-
mined by the unique square facet S of FP4 containing the edge conv

(
ei − ej, ek − el

)
as

αv =

−3 if ek − el incident to triangulating edge of S

0 otherwise.

3.) Let v ∈ T3, so that the monomial av is a3
ij for some i 6= j. The coefficient αv is given

by
αv = 7− deg(ei − ej),

where deg(ei − ej) is the number of edges incident to the vertex ei − ej in the regular
central subdivision of FP4. Note that every vertex in such a triangulation has degree
4, 5, 6 or 7, and so the coefficient αv has value 0, 1, 2 or 3 for every v ∈ T3.

We note that the above descriptions of the coefficients of the volume polynomial imply
that the sums of coefficients corresponding to each partition of 3 are the same for all
six volume polynomials:

∑
v∈T3

αv = 12, ∑
v∈T21

αv = −108, ∑
v∈T111

αv = 120.

Example 3.4.4 (A regular central triangulation of FP4). Consider the polytrope P(c?)
defined by the Kleene star

c? =


0 11 20 29

21 0 19 20
20 29 0 11
19 20 21 0

 .

This polytrope is depicted in Figure 3.1. Assigning the height c∗ij to the vertex ei − ej

of the fundamental polytope FP4 and height 0 to the central lattice point at the origin,
yields the regular central triangulation in Figure 3.9. The coordinates of the vertices
of FP4 are shown in Figure 3.7 and the volume polynomial corresponding to this
polytrope is the polynomial displayed in Example 3.4.2. In this subdivision the vertex
e1 − e2 has degree deg(e1 − e2) = 5, and so the coefficient of a3

12 = 7− 5 = 2. The
vertices e1 − e2 and e1 − e4 are adjacent vertices in FP4, and e1 − e4 is incident to the
unique triangulating edge of the square facet of FP4 containing both vertices. Thus,
the coefficient of a2

12a14 is −3. On the other hand, the vertices e3 − e2 and e4 − e2 are
adjacent in FP4, but the vertex e3− e2 is not contained in such a triangulating edge, and
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Figure 3.9: The regular central triangulation of FP4 corresponding to the polytrope in Exam-
ple 3.4.4, with triangulating edges of square facets of FP4 colored red.

so the coefficient of a2
32a42 is 0. Finally, the vertices e3 − e1, e3 − e2, e3 − e4 form a face in

the triangulation, and so the coefficient of a31a32a41 is 6. �

3.4.4 4-dimensional polytropes

Finally we consider 4-dimensional polytropes. In this case there are 27 248 tropical
types of maximal polytropes. As before, we applied the methods of Sections 3.2 and 3.3
to obtain multivariate volume, Ehrhart, and h∗-polynomials for these polytropes.
We embed the 27 248 normalized volume polynomials in the vector space of homo-
geneous polynomials of degree 4 using the canonical basis. This vector space has
dimension (23

4 ) = 8855. This yields the following result.

Theorem 3.4.5. In the 8855-dimensional space of homogeneous polynomials of
degree 4, the 27 248 normalized volume polynomials of 4-dimensional polytropes
span a 70-dimensional affine subspace.

The affine span of these volume polynomials has dimension 70, implying that there is
much structure in their coefficients. We note that this equals the number of facets in a
regular central triangulation of FP5.

We were able to computationally verify the relations collected in Table 3.1. For example,
all coefficients for monomials corresponding to the partition 2 + 2 = 4 lie in the set
{0, 6}, and the sum of all such coefficients is 300. Furthermore, the S5-orbit of the
monomials a12a13a14a15 and a21a31a41a51 always appears in the volume polynomial with
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coefficient 24. Finally, the coefficient −4 always appears exactly twice as often as the
coefficient 12.

Partition Example monomial Possible coefficients Coefficient sum

4 a4
12 −6,−3,−2,−1, 0, 1, 2, 3 −20

3 + 1 a3
12a13 −4, 0, 4, 8 320

2 + 2 a2
12a2

13 0, 6 300
2 + 1 + 1 a12a13a2

14 −12, 0, 12 −2160
1 + 1 + 1 + 1 a12a13a14a15 0, 24 1680

Table 3.1: Relations of some coefficients of volume polynomials of 4-dimensional polytropes.

As in the 3-dimensional case, a monomial corresponding to the partition 1+ 1+ 1+ 1 =
4 has coefficient 24 if and only if it appears as a face in the corresponding triangulation.
Beyond these observations, we were unable to detail the exact relationship between the
volume polynomials and their corresponding regular central triangulations.

Question 3.4.6. How do the coefficients of the volume polynomials of maximal (n− 1)-
dimensional polytropes reflect the combinatorics of the corresponding regular central
subdivision of FPn?

A natural first step would be to prove that, for v with partition 1 + 1 + · · ·+ 1 = n− 1,
the coefficient αv is nonzero if and only if it corresponds to a face in the regular central
triangulation. For n = 3, 4 we verified that this is indeed the case.
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Part II

Semialgebraic Sets from Polytopes





4
I N T E R S E C T I O N B O D I E S O F P O LY T O P E S

In this chapter we study intersection bodies of polytopes from the perspective of discrete
and real algebraic geometry. Originally, intersection bodies were defined by Lutwak
[Lut88] in the context of convex geometry. In view of the notion of (d− 1)-dimensional
cross-section measures and the related concepts of associated bodies (such as intersec-
tion bodies, cross-section bodies, and projection bodies), intersection bodies play an
essential role in geometric tomography (see [Gar06, Chapter 8] and [Mar94, Section 2.3]),
which is, in the words of Gardner, the “area of mathematics dealing with the retrieval
of information about a geometric object from data about its sections, or projections, or
both” [Gar06, Preface]. In particular, we mention here the Busemann-Petty problem
which asks if one can compare the volumes of two convex bodies by comparing the
volumes of their sections [Gar94a; Gar94b; Kol98; GKS99; Zha99a]. Moreover, Ludwig
showed that the unique non-trivial GL(d)-covariant star-body-valued valuation on con-
vex polytopes corresponds to taking the intersection body of the dual polytope [Lud06].
Due to such results, the knowledge on properties of intersection bodies interestingly
contributes also to the (still not systematized) theory of starshaped sets [HHMM20,
Section 17].

Recently, there is increased interest in investigating convex geometry from an algebraic
point of view [BPT13; Sin15; RS10; RS11]. In this chapter, we will focus on the
intersection bodies of polytopes from this perspective. It is known that in R2, the
intersection body of a polytope which is centered at the origin (i.e. centrally symmetric
and the center of symmetry is the origin) is the same polytope rotated by π/2 and
dilated by a factor of 2 (see e.g. [Gar06, Theorem 8.1.4]). Moreover, if K is a full-
dimensional convex body in Rd centered at the origin, then so is its intersection body
[Gar06, Chapter 8.1]. But what do these objects look like in general? In Rd, with d ≥ 3,

Figure 4.1: The intersection body of the icosahedron.
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they cannot be polytopes [Cam99; Zha99b] and they may not even be convex. In fact,
for every convex body K, there exists a translate of K such that its intersection body
is not convex. This happens because of the important role played by the origin in the
construction of the intersection body. However, we show that intersection bodies of
polytopes behave well in regards of semialgebraicity.

Theorem 4 .2 .4 . The intersection body of a polytope is a semialgebraic set.

This result relies on the fact that the combinatorial type of the intersection of a polytope
with a hyperplane is fixed for each region of a certain central hyperplane arrangement.
The proof is constructive, and hence reveals an algorithm to explicitly compute the
intersection body of a polytope (Algorithm 4.3.2). Furthermore, this allows us to
approximate the intersection body by the dual polytope of a certain zonotope. We
consider the algebraic boundary of an intersection body and give a bound on the
possible degrees.

Theorem 4 .4 .5 . Let P ⊆ Rd be a full-dimensional polytope containing the origin,
and let f1(P) be the number of edges of P. Then the degrees of the irreducible
components of the algebraic boundary of IP are bounded from above by

f1(P)− (d− 1).

Although the intersection body of a polytope is always semialgebraic, in many cases it
is not a convex body. We give a full characterization of convex intersection bodies of
polytopes in dimension 2.

Theorem 4 .6 .14 . Let P ⊆ R2 be a polygon. Then IP is a convex body if and only if

(i) P = −P, or

(ii) the origin is the midpoint of an edge of P and P ∪−P is convex.

Sections 4.1 to 4.5 of this chapter are based on [BBMS22], which is joint work with
Katalin Berlow, Chiara Meroni and Isabelle Shankar. All supplementary material,
including implementations of Algorithm 4.3.2 in SageMath [Sag] and OSCAR [Osc],
as well as an interactive case study of the intersection bodies of translates of the
3-dimensional cube are publicly available on a MathRepo page [BBMS21].

Overview

We study intersection bodies of polytopes from a point of view of discrete and real
algebraic geometry. The background is provided in Sections 1.1, 1.2, 1.4 and 1.8. In
Section 4.1, we prove semialgebraicity for the intersection body of polytopes containing
the origin, and we generalize the result to arbitrary polytopes in Section 4.2. In
Section 4.3, we present an algorithm to compute the radial function of the intersection
body of a polytope. An implementation is available at [BBMS21]. In Section 4.4,
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we describe the algebraic boundary of the intersection body, which is a hypersurface
consisting of several irreducible components, each corresponding to a region of a certain
hyperplane arrangement. Theorem 4.4.5 gives a bound on the degree of the irreducible
components. Section 4.5 focuses on the intersection body of the d-cube centered at
the origin (Figure 4.6(a)). In the final Section 4.6.2 we give a classification of convex
intersection bodies of 2-dimensional polytopes.

4 .1 the intersection body of a polytope is semialgebraic

In this section we introduce the notions from convex geometry that are used to define
intersection bodies. We then consider the combinatorial types of sections of a polytope,
which leads to the construction of an associated zonotope. At the end of this section,
we use this construction in order to show that the intersection body of a polytope
containing the origin is semialgebraic.
A set S ⊆ Rd is a starshaped set if there exists a point o ∈ S such that the line segment
conv(o, s) is contained in S for every point s ∈ S. In particular, every convex set is a
starshaped set. A convex body K is a nonempty, compact convex set. A subset F ⊆ K
is an exposed face of K if it is maximized by a linear functional, i.e. there exists some
vector ` ∈ (Rd)∗ such that F = {x ∈ K | 〈 x, ` 〉 ≥ 〈 y, ` 〉 ∀ y ∈ K}. In convex geometry
it is common to use functions in order to describe a starshaped set or a convex body, i.e.
a non-empty convex compact subset of Rd. This can be done e.g. by the radial function.
A more detailed introduction can be found in [Sch13].

Definition 4.1.1 (Radial function). Given a starshaped set S ⊂ Rd, the radial function of
S is

ρS : Rd → R, x 7→ max(λ ∈ R | λx ∈ S) .

As a convention ρK(0) = ∞ when 0 ∈ K and it is 0 otherwise. An immediate con-
sequence of the definition is that ρK(cx) = 1

c ρK(x) for c > 0. Therefore, we can
equivalently define the radial function on the unit sphere Sd−1, and then extend to the
whole space using the previously mentioned relation. Throughout this chapter we will
use the convention that x denotes a vector in Rd whereas u denotes a vector in Sd−1.
With the observation that we can restrict to the sphere, we define the intersection body
of K by its radial function, which is given by the Euclidean volume of the intersections
of K with hyperplanes through the origin.

Definition 4.1.2 (Intersection body). Let K be a convex body in Rd. Its intersection
body is defined to be the set IK =

{
x ∈ Rd

∣∣ ρIK(x) ≥ 1
}

where the radial function
(restricted to the sphere) is

ρIK(u) = vold−1(K ∩ u⊥)

for u ∈ Sd−1. We denote by u⊥ the hyperplane through the origin with normal vector
u, and by voli the i-dimensional Euclidean volume, for i ≤ d. A set K is centered at the
origin if K = −K, i.e. if it is centrally symmetric and the origin is the center of symmetry.
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u
ρIP(u)

Figure 4.2: The intersection body of the shifted square from Example 4.1.3.

By construction, every intersection body is a starshaped set which is centered at the
origin.

Example 4.1.3 (Intersection body of the translated square). We consider the square
P = [−2, 2]2. P is centered at the origin, and thus by [Gar06, Theorem 8.1.4], the
intersection body is IP = [−4, 4]2. However, this does not apply to the translated
square

P +
(

1
1

)
= conv

(( −1
−1

)
,
( −1

3

)
,
(

3
3

)
,
( 3
−1
))

.

For any u ∈ S2, the distance from the origin to the boundary of IP in direction u is the
length of the line segment P ∩ u⊥. The intersection body IP is not convex, as shown in
Figure 4.2. We will continue with this in Example 4.1.7. �

We begin our investigation by considering the intersection body of polytopes which
contain the origin. For instance, Figure 4.1 displays the intersection body of an icosa-
hedron centered at the origin. If the origin belongs to the interior of the polytope P,
then ρP is continuous and hence ρIP is also continuous [Gar06]. Otherwise we may
have some points of discontinuity which correspond to unit vectors u such that u⊥

contains a facet of P; there are finitely many such directions. The intersection body is
well defined, but there may arise subtleties when dealing with the boundary. However,
we will see later (in Remark 4.4.1) that for our purposes everything works out.

Example 4.1.4 (Sections of the 3-cube). Let C(3) = [−1, 1]3 be the 3-dimensional centrally
symmetric cube. The intersection body IC(3) is shown in Figure 4.6(a). Since the cube
is centered at the origin, the intersection body is convex. We now discuss the possible
polytopes that can be obtained when intersecting the cube with a hyperplane through
the origin.
If we intersect C(3) with hyperplanes u⊥, for u ∈ S2, we can observe that there are
two possible combinatorial types for C(3) ∩ u⊥. All sections are either a parallelogram
(Figure 4.3(a)) or a hexagon (Figure 4.3(b)). There are finitely many regions of the
sphere for which the combinatorial type stays the same (cf. Lemma 4.1.5). We will see
in the proof of Theorem 4.1.8 that within such a region, we can parameterize the area
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(a) (b)

Figure 4.3: The two combinatorial types of hyperplane sections of the 3-cube.

of the parallelogram or hexagon with respect to the vector u to construct the radial
function of IP. In fact, this will provide a semialgebraic description of the intersection
body. If the intersection C(3) ∩ u⊥ is a parallelogram, then the radial function in an
open neighborhood of u will be a constant term over a coordinate variable, e.g. 4

z . On
the other hand, when the intersection is a hexagon, the radial function is a degree two
polynomial over xyz. We continue with this in Example 4.4.2. �

Lemma 4.1.5. Let P be a full-dimensional polytope in Rd, and consider the central
hyperplane arrangement

H(P) =
{

v⊥
∣∣∣ v is a vertex of P and v is not the origin

}
.

The maximal open chambers C of H(P) satisfy the following property. For all x ∈ C,
the hyperplane x⊥ intersects a fixed set of edges of P and the polytopes Q = P ∩ x⊥

are of the same combinatorial type.

Proof. Let x ∈ Rd \ {0} be generic and consider Q = P ∩ x⊥. The vertices of Q are
the points of intersection of x⊥ with the edges of P. Perturbing x continuously, the
intersecting edges (and thus the combinatorial type) remain the same, unless the hyper-
plane x⊥ passes through a vertex v of P. This happens if and only if 〈x, v〉 = 0 and thus
the set of normal vectors of such hyperplanes is given by v⊥ =

{
x ∈ Rd

∣∣ 〈x, v〉 = 0
}

.
Taking the union over all vertices yields the central hyperplane arrangement H(P).
By construction, each open chamber C in the complement of H(P) is an open convex
polyhedral cone, and consists of those points x such that x⊥ intersects a fixed set of
edges of P.

In order to describe the radial function of the intersection body of a polytope, we
are thus interested in the open chambers of hyperplane arrangement H(P) from
Lemma 4.1.5. The complexity of the explicit computation (Algorithm 4.3.2) will depend
on the number of these chambers. Let m = |{v is a vertex of P}/∼| where v ∼ w if
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4 intersection bodies of polytopes

v = ±λw for some λ > 0. Then the number of chambers is bounded from above by

d

∑
j=0

(
m
j

)
,

which is the number of chambers of a generic central hyperplane arrangement [Sta07,
Proposition 2.4]. We note that there are several ways to view the hyperplane arrange-
ment H(P) in Lemma 4.1.5. For example, since the vertices of P are the normal vectors
of the facets of the polar polytope P◦, we can describe H(P) as the collection of linear
hyperplanes which are parallel to facets of P◦. Furthermore, any hyperplane arrange-
ment is the codim 1-skeleton of the normal fan of a zonotope whose edge directions
are orthogonal to the hyperplanes of the arrangement. This motivates the following
definition.

Definition 4.1.6 (Associated zonotope). The zonotope associated to P is the Minkowski
sum of line segments

Z(P) = ∑
v∈vert(P)

conv(−v, v) .

The fan Σ induced by the hyperplane arrangement H(P) is the normal fan of the
zonotope Z(P). As we will see in Remark 4.4.8, the polar polytope of Z(P) plays an
important role in the visualization and the combinatorics of the intersection body IP. It
serves as a “polyhedral approximation” of the intersection body, whose facial structure
suggests a lot of intuition for the structure of the intersection body itself.

Example 4.1.7 (The associated zonotope of the translated square). We continue the
study of the translated square from Example 4.1.3. The hyperplane arrangement H(P)
consists of three hyperplanes v⊥1 = v⊥4 , v⊥2 , v⊥3 , where

v1 =
(

3
3

)
, v2 =

(
2
−1
)

, v3 =
( −1

2

)
, v4 =

( −1
−1

)
.

This is the 1-skeleton of the normal fan of the zonotope

Z(P) = conv
(( −8

0

)
,
( −6
−6

)
,
(

8
0

)
,
(

6
6

)
,
(

0
−8
)

,
(

0
8

))
and its polar is

Z(P)◦ = 1
24 conv

(( −3
−1

)
,
( −3

3

)
,
( −1
−3

)
,
(

1
3

)
,
(

3
−3
)

,
(

3
1

))
.

Figure 4.4 shows the hyperplane arrangement H(P) and the two polytopes Z(P) and
Z(P)◦. Note that the pieces of the boundary of IP correspond to facets of Z(P)◦. �

We now show that the intersection body of a polytope is semialgebraic, provided that
the origin lies in the interior of P. In Section 4.2 we extend this statement to all convex
polytopes.
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Figure 4.4: The zonotope Z(P) (left), the hyperplane arrangement H(P) (center) and the polar
Z(P)◦ of the shifted square in Examples 4.1.3 and 4.1.7.

Before we begin, we explain a key fact which is used in the following proof. Let
∆ ⊆ Rd be a (d − 1)-dimensional simplex where one of the vertices is the origin,
and let u ∈ Sd−1 be a vector which is orthogonal to the (d − 1)-dimensional linear
space containing ∆. Since u is a unit vector, the normalized volume of ∆ agrees with
the normalized volume of the d-dimensional simplex ∆u = conv(∆, u). If M∆(u) is
the matrix whose rows are the vertices of ∆u, then the normalized volume is the
determinant Vold(∆u) = |det(M∆(u))|. For the Euclidean volumes this implies

vold−1(∆) =
1

(d− 1)!
Vold−1(∆) =

1
(d− 1)!

Vold(∆u) =
1

(d− 1)!
|det(M∆(u))|.

We will make use of this fact for computing the volume of sections of the polytope P.

Theorem 4.1.8. Let P ⊆ Rd be a full-dimensional polytope containing the origin.
Then IP, the intersection body of P, is semialgebraic.

Proof. Let H(P) be the hyperplane arrangement from Lemma 4.1.5, and fix a region
U = C ∩ Sd−1 for an open chamber C of H(P). For every u ∈ U the hyperplane u⊥

intersects P in the same set of edges. Let v be a vertex of Q = P ∩ u⊥. Then there is an
edge conv(a, b) of P such that v = conv(a, b) ∩ u⊥. This implies that v = λa + (1− λ)b
for some λ ∈ (0, 1) and 〈v, u〉 = 0. From this we get that

λ =
〈b, u〉
〈b− a, u〉 ,

which implies that

v =
〈b, u〉
〈b− a, u〉 (a− b) + b =

〈b, u〉a− 〈a, u〉b
〈b− a, u〉 .

In this way we express v as a function of u (for fixed a and b). Let v1, . . . , vn be the
vertices of Q and let conv(ai, bi) be the corresponding edges of P.
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We now consider the following triangulation of Q: first, triangulate each facet of Q
that does not contain the origin, without adding new vertices (this can always be done
e.g. by a regular subdivision using a generic lifting function [DLRS10, Proposition
2.2.4]). For each (d − 2)-dimensional simplex ∆ in this triangulation, consider the
(d− 1)-dimensional simplex conv(∆, 0) with the origin. This constitutes a triangulation
T of Q, in which the origin is a vertex of every maximal simplex.
Restricting to U, the radial function of the intersection body IP in direction u is the
volume of Q, and hence given by

ρIP(u) = vold−1(Q) = ∑
∆∈T

vold−1(∆).

We can thus compute ρIP(u) as

ρIP(u) = ∑
∆∈T

1
(d− 1)!

|det (M∆(u))| ,

where

M∆(u) =



vi1(u)
vi2(u)

...
vid−1(u)

u


=



〈bi1 ,u〉ai1−〈ai1 ,u〉bi1
〈bi1−ai1 ,u〉

...
〈bid−1

,u〉aid−1
−〈aid−1

,u〉bid−1
〈bid−1

−aid−1
,u〉

u


and the row vectors {vi1 , vi2 , . . . , vid−1} (along with the origin) are vertices of the simplex

∆ of the triangulation. Therefore, for u ∈ U we obtain an expression ρIP(u) = p(u)
q(u)

for some polynomials p, q ∈ R[u1, . . . , ud] without common factors. With the same
procedure applied to all regions UC = C ∩ Sd−1, where C is a chamber of H(P), we
obtain an expression for ρ|Sd−1 that is continuous and piecewise a quotient of two
polynomials pC, qC. It follows from the definition of the radial function that

IP =
{

x ∈ Rd
∣∣∣ ρIP (x) ≥ 1

}
=

{
x ∈ Rd

∣∣∣∣ 1
‖x‖ρIP

(
x
‖x‖

)
≥ 1

}
.

Notice that for every ∆ ∈ T we have the following equality:

det
(

M∆

(
x
‖x‖

))
= det


vi1

(
x
‖x‖

)
...

vid−1

(
x
‖x‖

)
x
‖x‖

 = det


vi1 (x)

...
vid−1 (x)

x
‖x‖

 =
1
‖x‖ det (M∆ (x))
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and therefore, if x
‖x‖ ∈ UC,

ρIP

(
x
‖x‖

)
= ∑

∆∈T

1
(d− 1)!

∣∣∣∣det
(

M∆

(
x
‖x‖

))∣∣∣∣
=

1
‖x‖ ∑

∆∈T

1
(d− 1)!

|det (M∆ (x))|

=
pC(x)
‖x‖qC(x)

.

For x ∈ C we obtain that

ρIP(x) =
1
‖x‖ρIP

(
x
‖x‖

)
=

pC(x)
‖x‖2qC(x)

.

Let C be the set of open chambers of H(P) such that ρIP
∣∣
C 6= 0 for every C ∈ C. We can

write the intersection body as

IP =
⋃

C∈C

{
x ∈ cl(C)

∣∣∣∣ pC(x)
‖x‖2qC(x)

≥ 1
}

=
⋃

C∈C

{
x ∈ cl(C)

∣∣ ‖x‖2qC(x)− pC(x) ≤ 0
}

.

where cl(C) denotes the Euclidean closure of C. This expression gives a semialgebraic
description of IP.

Observation 4.1.9. By construction of the polynomials pC, qC in the previous proof, we
always have deg pC = deg qC + 1. This can be seen from the fact that det(M∆(x)) is
a polynomial of degree d, where each summand is a rational function which is the
product of a monomial with (d− 1) rational functions, each having a linear numerator
and denominator. The polynomials pC and qC are obtained by dividing by the greatest
common denominator. Therefore, the degrees of pC and qC always differ by 1.

Example 4.1.10 (The radial function of the translated square). We continue with Exam-
ples 4.1.3 and 4.1.7 of the translated square P and compute its radial function restricted
to the cone C = cone

((
1
1

)
,
(

1
3

))
from the hyperplane arrangement H(P). For any

x ∈ int(C) the intersection Q = P ∩ x⊥ is a line segment. The hyperplane x⊥ intersects
the interior of the two adjacent edges conv(a1, b1) , conv(a2, b2) of P with vertices

a1 =
( −1

3

)
, b1 = a2 =

( −1
−1

)
, b2 =

( 3
−1
)

.
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Since dim(Q) = 1, no further triangulation of the facets of Q is needed. Following the
proof of Theorem 4.2.4, we obtain the matrices

M∆1(x) =

[ 〈 b1,x 〉a1−〈 a1,x 〉b1
〈 b1−a1,x 〉

x

]
=

[
−1 x1

x2

x1 x2

]
, M∆2(x) =

[ 〈 b2,x 〉a2−〈 a2,x 〉b2
〈 b2−a2,x 〉

x

]
=

[
x2
x1
−1

x1 x2

]

with determinants

det(M∆1(x)) = −x2 −
x2

1
x2

, det(M∆2(x)) =
x2

2
x1

+ x1.

For any x ∈ C the evaluation of the rational function det(M∆1(x)) is negative and the
evaluation of det(M∆1(x)) is positive. Thus,

pC(x)
qC(x)

= |det(M∆1(x))|+ |det(M∆1(x))|

= −
(
−x2 −

x2
1

x2

)
+

(
x2

x1
+ x1

)
=

(x2
1 + x2

2)(x1 + x2)

x1x2

and the radial function is

ρC(x) =
pC(x)
‖x‖2qC(x)

=
(x2

1 + x2
2)(x1 + x2)

(x2
1 + x2

2)(x1x2)
=

x1 + x2

x1x2
.

The boundary of IP restricted to C is the zero set of the polynomial

qC(x)− pC(x)
(x2

1 + x2
2)

= x1x2 − x1 − x2.

�

Example 4.1.11 (The intersection body of the icosahedron). Let P ⊆ R3 be the regular
icosahedron, whose 12 vertices are all the even permutations of

(
0,± 1

2 ,±( 1
4

√
5 + 1

4 )
)

.
The associated hyperplane arrangement has 32 = 12 + 20 chambers. The first type of
chambers is spanned by five rays and the radial function of IP is given by a quotient of
a quartic and a quintic, defined over Q(

√
5). In the remaining twenty chambers ρIP is

a quintic over a sextic, again with coefficients in Q(
√

5). This intersection body is the
convex set shown in Figure 4.1. We will continue the analysis of IP in Example 4.4.9. �

4 .2 non-convex intersection bodies

The theory of intersection bodies assures that the intersection body of a centrally
symmetric convex body is again a centrally symmetric convex body, as in Example 4.1.4

136
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(a) (b)

Figure 4.5: The intersection body of the cube in Example 4.2.1 from two different points of view.

and in Example 4.1.11. On the other hand, given any polytope P (indeed this holds
more generally for any convex body) there exists a translation of P such that IP is not
convex. In fact, this is almost always the case if the origin does not lie in the interior and
holds in general when the origin lies outside of P. The main purpose of this section is
to extend the result from Theorem 4.1.8 to polytopes where the origin is not contained
in P, by adjusting how we compute the volume of a hyperplane section. We begin
with an example of a polytope which has the origin as a vertex, yielding a non-convex
intersection body.

Example 4.2.1 (A non-convex intersection body). Let P be the cube [−1, 1]3 + (1, 1, 1)t,
so that the origin is a vertex of P. The hyperplane arrangement associated to P divides
the space in 32 chambers. In two of them the intersection of the hyperplane with P
is the origin, and thus the radial function is 0. In six regions the section of P is a
quadrilateral, and the radial function has the following shape (up to permutation of
the coordinates and sign):

ρ(x, y, z) =
4
z

.

There are then 18 = 6 + 12 regions in which the radial function looks like

ρ(x, y, z) =
2x
yz

or ρ(x, y, z) =
2(x + 2z)

yz
.

In the remaining six regions we have

ρ(x, y, z) =
2(x2 + 2xy + y2 + 2xz + z2)

xyz
.

Figure 4.5 shows two different points of view of IP, which is in particular not convex. �

The following lemma is a well-known result. However, as this is the key idea in the
proof of Theorem 4.2.4, we provide a proof of the statement here for completeness.
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Lemma 4.2.2. Let P ⊂ Rd be a full-dimensional polytope, and let F be the set of
its facets. Let p be a point outside of P. For each face F ∈ F , let F̂ denote the set
conv(F ∪ {p}). Then the following equality holds:

vol(P) = ∑
F∈F

sgn(F) vol(F̂)

where sgn(F) = 1 if P and p belong to the same halfspace defined by F, and −1
otherwise.

Proof. Let P̂ = conv(P ∪ {p}) and denote by F+
p the set of facets F of P for which the

closed halfspace defined by F containing P also contains p, possibly on its boundary.
Let F−p = F \ F+

p .
First we will show that P̂ =

⋃
F∈F+

p
F̂. The inclusion

⋃
F∈F+

p
F̂ ⊆ P̂ follows immediately

from convexity. To see the opposite direction, let q ∈ P̂ and consider r to be the ray
starting at p and going through q. Either r intersects P only along its boundary, or there
are some intersection points also in the interior of P. In the first case r ∩ P ⊆ F and
so q ∈ F̂ for some face F, which, by convexity, must be in F+

p . On the other hand, if
the ray r intersects the interior of the polytope P, denote by a the farthest among the
intersection points, i.e. a ∈ P such that

‖a− p‖ = max(‖α− p‖ | α ∈ P ∩ r) .

Let Fa be a facet containing a. Then, q is contained in the convex hull of Fa ∪ {p}, i.e. F̂a.
From the definition of a it follows that the halfspace defined by Fa containing p must
also contain P, so Fa ∈ F+

p and our statement holds.
Next, we will show that

⋃
F∈F−p F̂ = cl(P̂ \ P). The pyramid F̂ is contained in the closed

halfspace defined by F which contains p. By the definition of F−p , this halfspace does
not contain P thus F̂ ∩ P = F. Also, F̂ ⊆ P̂ so we have that F̂ ⊆ cl(P̂ \ P) and hence⋃

F∈F−p F̂ ⊆ cl(P̂ \ P). Conversely, let q ∈ cl(P̂ \ P). If q = p we are done, so assume
q 6= p. Then, q = λp + (1− λ)b for some b ∈ P, λ ∈ [0, 1). Let a be the point at which
the segment from p to b first intersects the boundary of P, i.e.

‖a− p‖ = min(‖α− p‖ | α ∈ P, α = tp + (1− t)b for t ∈ [0, 1)) .

Then by construction there exists a facet Fa ∈ F−p containing a, such that q ∈ F̂a, which
proves the reverse inclusion.
Thus, we have that

vold

 ⋃
F∈F+

p

F̂

 = vold(P̂) = vold(P̂ \ P) + vold(P) = vold

 ⋃
F∈F−p

F̂

+ vold(P).
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If F1 6= F2 and F1, F2 ∈ F+
p or F1, F2 ∈ F−p , then the d-dimensional volume of F̂1 ∩ F̂2 is

zero, therefore
∑

F∈F+
p

vol(F̂) = ∑
F∈F−p

vold(F̂) + vold(P)

and the claim follows.

Remark 4.2.3. We note that the proof of Lemma 4.2.2 above solely uses the fact that
the volume is a valuation on the polytope, and can thus be adapted to any such
valuation. More precisely, let P be a family of polytopes in Rd containing the empty
set, and G an abelian group. A valuation is a map ϕ : P → G such that ϕ(∅) = 0
and ϕ(P ∪Q) = ϕ(P) + ϕ(Q)− ϕ(P ∩Q) for all P, Q ∈ P for which P ∪Q, P ∩Q ∈ P
[McM09]. Since the properties of the volume which are used in the proof of Lemma 4.2.2
are properties of a valuation, this proof can be adapted to hold for any such valuation.
Another example of such a valuation is the lattice point count in lattice polytopes from
Section 1.1.4.

Theorem 4.2.4. Let P ⊆ Rd be a full-dimensional polytope. Then IP, the intersection
body of P, is semialgebraic.

Proof. What remains to be shown is that IP is semialgebraic in the case when the origin
is not contained in P, and hence it is not contained in any of its sections Q = P ∩ u⊥

for u ∈ §d−1. From Lemma 4.2.2, with p = 0 ∈ Rd we have that

vold−1(Q) = ∑
F facet of Q

sgn(F) vold−1(F̂)

where F̂ is the convex hull of F and the origin. Let TF be a triangulation of F. As in the
proof of Theorem 4.1.8 we calculate

vold−1(F̂) = ∑
∆∈TF

1
(d− 1)!

|det(M∆(u))|

where M∆(u) is the matrix whose rows are the vertices of the simplex ∆ ∈ TF and u.
We then follow the remainder of the proof of Theorem 4.1.8 to see that the intersection
body is semialgebraic.

4 .3 the algorithm

The proofs of Theorems 4.1.8 and 4.2.4 lead to an algorithm to compute the radial
function of the intersection body of a polytope. We use this section to describe this
algorithm. By Lemma 4.1.5 the regions C in which ρ(x)|C = p(x)

‖x‖2q(x) for fixed polynomi-
als p(x) and q(x) are the closures of the open chambers of the hyperplane arrangement
H(P). Equivalently, these are the maximal cones of the normal fan of the zonotope
Z(P) from Definition 4.1.6. Algorithm 4.3.1 computes the radial function for each of
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these maximal cones individually. The radial function for the entire intersection body
is computed by Algorithm 4.3.2, which contains Algorithm 4.3.1 as a subroutine.

Algorithm 4.3.1 (Computing the radial function for a fixed maximal cone C).
Input : A full-dimensional polytope P ⊆ Rd and a maximal cone C of the normal

fan of Z(P).
Output : The radial function ρ(x) of the intersection body IP restricted to C.

1: Let F be the collection of facets of P such that for all u ∈ U = int(C) ∩ Sd−1 and
F ∈ F holds: dim(F ∩ u⊥) = dim(P)− 2 and 0 6∈ F.

2: Let Q = P ∩ u⊥ for some fixed u ∈ U. Triangulate F ∩ u⊥ for F ∈ F , i.e. all facets
of Q not containing the origin. Let T be the collection of all maximal cells of these
triangulations.

3: for each cell ∆ ∈ T do
4: Let v1, . . . , vd−1 be the vertices of ∆, ordered such that det(( v1 ... vd−1 )) > 0.
5: For i = 1, . . . , d− 1, let ei = conv(ai, bi) be the edge of P such that ei ∩ u⊥ = vi.
6: Let x = (x1, . . . , xd) be a vector with indeterminates x1, . . . , xd. Let M∆(u) be

the (d× d)-matrix with ith row 〈bi ,x〉ai−〈ai ,x〉bi
〈bi−ai ,x〉 and last row x.

7: if conv(0, ∆) intersects the interior of P then
8: Define sgn(∆) = 1
9: else

10: Define sgn(∆) = −1
11: end if
12: end for
13: return 1

‖x‖2(d−1)! ∑∆∈T sgn(∆)det(M∆)

This algorithm has as output the rational function ρ(x)|C = p(x)
‖x‖2q(x) . Iterating over all

regions yields the final Algorithm 4.3.2.

Algorithm 4.3.2 (Computing the radial function of IP).
Input : A full-dimensional polytope P in Rd.
Output : The radial function ρ(x) of the intersection body IP.

1: Let Σ be the normal fan of the zonotope Z(P) (as in Definition 4.1.6).
2: for each maximal cone C of Σ do
3: Compute ρ|C via Algorithm 4.3.1.
4: end for
5: return

(
1

‖x‖2(d−1)! ∑∆∈T sgn(∆)det(M∆), C
)

for C ∈ Σ

An implementation of these algorithms both for SageMath 9.2 [Sag] and Oscar
0.7.1-DEV [Osc] can be found in [BBMS21].
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4 .4 algebraic boundary and degree bound

Knowing the radial function of a star body S implies knowing its boundary. In fact,
when 0 ∈ int(S) then x ∈ ∂S if and only if ρS(x) = 1 (see Remark 4.4.1 for the other
cases). In this section we describe the algebraic boundary (as defined in Section 1.8)
of intersection bodies of polytopes, i.e. the Zariski closure of the Euclidean boundary
∂P over C. Using the same notation as in the proof of Theorem 4.1.8, we can observe
that the algebraic boundary of the intersection body of a polytope is contained in the
union of the varieties V

(
‖x‖2qC(x)− pC(x)

)
. Indeed, we actually know more: as we

will prove in Proposition 4.4.3, the pC’s are divisible by the polynomial ‖x‖2, and hence

∂a IP =
⋃

C∈C
V
(

qC(x)− pC(x)
‖x‖2

)
,

where C is the set of open chambers of H(P) such that ρIP|C 6= 0. This is due to
the assumption made in the proof of Theorem 4.1.8 that pC, qC do not have common
components. In other words, these are exactly the irreducible components of ∂a IP.

Remark 4.4.1. As already mentioned in Section 4.1, there may be difficulties when
computing the boundary of IP in the case where the origin is not in the interior of the
polytope P. More precisely, x is a discontinuity point of the radial function of IP if and
only if x⊥ contains a facet of P. Therefore ρIP has discontinuity points if and only if the
origin lies in the union of the affine linear spans of the facets of P. In this case, there
are finitely many rays on which the radial function is discontinuous and these rays of
discontinuity are contained in the hyperplane arrangement H(P). If d = 2, these rays
disconnect the space, and this implies that we loose part of the (algebraic) boundary of
IP. To fix this, we need to add segments from the origin to the boundary points in the
direction of these rays to the set

{
x ∈ R2

∣∣ ρIP(x) = 1
}

. However, in higher dimensions
the discontinuity rays do not disconnect Rd so

{
x ∈ Rd

∣∣ ρIP(x) = 1
}

approaches the
region where the radial function is zero continuously except for these finitely many
directions. Therefore there are no extra components of the boundary of ∂a IP for d ≥ 3.

Example 4.4.2 (The algebraic boundary for the 3-cube). We continue Example 4.1.4
by computing the intersection body of the 3-dimensional cube C(3) and its algebraic
boundary. The intersection body IC(3) is displayed in Figure 4.6(a). The normal fan Σ
of the zonotope Z(P) has 14 maximal cones, dividing the Euclidean boundary of IC(3)

into 14 regions. Among them, 6 of the regions of ∂IC(3) arise as the intersection of a
convex cone spanned by 4 rays with a hyperplane; they constitute “facets” of IP, i.e.
flat faces of dimension 2. For example the facet exposed by the vector (1, 0, 0)t is the
intersection of z = 4 with the convex cone

C1 = cone
((

1
0
1

)
,
( −1

0
1

)
,
( 0

1
1

)
,
( 0
−1
1

))
.

In other words, the variety V(z− 4) is one of the irreducible components of ∂a IP. The
remaining 8 regions are spanned by 3 rays each, and the polynomial that defines the
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boundary of IP is a cubic, such as

2xyz− 2x2 − 4xy− 2y2 − 4xz + 4yz− 2z2

in the region

C2 = cone
(( 0

1
1

)
,
( −1

1
0

)
,
( −1

0
1

))
.

Hence ∂a IP is the union of 14 irreducible components, six of degree 1 and eight of
degree 3. �

Proposition 4.4.3. Let P ⊆ Rd be a full-dimensional polytope, and H(P) the
hyperplane arrangement from Lemma 4.1.5. Fix an open chamber C of H(P), and
let pC, qC ∈ R[x1, . . . , xd] such that ρIP|C = pC(x)

‖x‖2qC(x) (as in the proof of Theorem 4.2.4).

Let Q = P∩ u⊥ for some u ∈ U = C∩ Sd−1. Then the polynomial ‖x‖2 = x2
1 + . . .+ x2

d
divides pC(x) and

deg
(

qC(x)− pC(x)
‖x‖2

)
≤ f0(Q).

Proof. Let T be a collection of simplices containing the origin, which are induced by
triangulations of the facets of Q, as in the proof of Theorem 4.2.4. Then the volume of
Q is given by

pC(x)
qC(x)

=
1

(d− 1)! ∑
∆∈T

sgn(∆) |det(M∆ (x))| ,

where sgn(∆) ∈ {1,−1} depending on its position relative to the origin, and M∆(x) is
the matrix as in the proof of Theorem 4.1.8. Notice that for each M = M∆(x), we can
rewrite the determinant to factor out a denominator:

det(M(x)) = ∑
σ∈Sd

sgn(σ)
d

∏
i=1

Miσ(i)

= ∑
σ∈Sd

sgn(σ)xσ(d)

d−1

∏
i=1

〈bi, x〉aiσ(i) − 〈ai, x〉biσ(i)

〈bi − ai, x〉

=
d−1

∏
i=1

1
〈bi − ai, x〉 ∑

σ∈Sd

sgn(σ)xσ(d)

d−1

∏
i=1

(
〈bi, x〉aiσ(i) − 〈ai, x〉biσ(i)

)
=

(
∏

vi∈vert(∆)

1
〈bi − ai, x〉

)
· det

(
M̂ (x)

)
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4.4 Algebraic Boundary and Degree Bound

where

M̂(x) =


...

〈bi, x〉ai − 〈ai, x〉bi
...
x


and the determinant of M̂(x) is a polynomial of degree d in the xi’s. Note that if we
multiply M̂(x) · x we obtain the vector (0, . . . , 0, x2

1 + . . .+ x2
d). Hence if x2

1 + . . .+ x2
d = 0,

then M̂(x) · x = 0, i.e. the kernel of M̂(x) is non-trivial and thus det(M̂(x)) = 0.
This implies the containment of the complex varieties V(‖x‖2) ⊆ V(det(M̂(x))) and
therefore the polynomial x2

1 + . . . + x2
d divides the polynomial det(M̂(x)).

In each summand sgn(∆) |det(M∆ (x))| of pC
qC

, every vertex of Q appears at most once,
and all vertices of Q are contained in at least one simplex ∆ ∈ T . Thus, the greatest
common multiple of all summands is

qC(x) = (d− 1)! ∏
vi∈vert(Q)

〈bi − ai, x〉

= (d− 1)!

(
∏

vi∈vert(∆)
〈bi − ai, x〉

)(
∏

vi∈vert(Q)\vert(∆)
〈bi − ai, x〉

)

for any ∆ ∈ T , and

pC(x) = ∑
∆∈T

(∣∣∣det(M̂ (x))
∣∣∣ · ∏

vi∈vert(Q)\vert(∆)
〈bi − ai, x〉

)
.

Hence deg qC ≤ f0(Q). The degree bound for p then follows from Observation 4.1.9.
Alternatively, note that for each ∆ ∈ T the determinant det(M̂(x))) is a polynomial of
degree d, and ∏vi∈vert(Q)\vert(∆)〈bi − ai, x〉 has degree f0(Q)− (d− 1). Thus,

deg pC ≤ d + f0(Q)− (d− 1) = f0(Q) + 1,

so the claim follows.

Corollary 4.4.4. In the hypotheses of Proposition 4.4.3, if P is centered at the
origin, then we can improve the bound to

deg
(

qC(x)− pC(x)
‖x‖2

)
≤ f0(Q)

2
.

Proof. If P is centered at the origin, then so is Q = P ∩ x⊥ and hence we can choose
the triangulation T to be centrally symmetric, i.e. T = T + ∪ (−T +) and T + ∩ (−T +)
only intersect along lower-dimensional faces. Since Q is centered at the origin, we have
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sgn(∆) = 1 for all ∆ ∈ T . Thus,

pC

qC
=

1
(d− 1)! ∑

∆∈T
|det(M∆ (x))|

=
2

(d− 1)! ∑
∆∈T +

|det(M∆ (x))|

Let vert(Q+) denote the vertices of Q contained in T +. Then in the proof of Proposi-
tion 4.4.3 we obtain

qC(x) = (d− 1)! ∏
vi∈vert(Q+)

〈bi − ai, x〉

and so deg qC ≤ f0
2 . Recall from Observation 4.1.9 that deg pC = deg qC + 1. Thus,

deg pC
‖x‖2 < deg qC.

Notice that generically, meaning for the generic choice of the vertices of P, the bound
in Proposition 4.4.3 is attained, because p and q will not have common factors. An
example of such a polytope is the simplex in Example 4.4.7.

Theorem 4.4.5. Let P ⊆ Rd be a full-dimensional polytope with f1(P) edges. Then
the degrees of the irreducible components of the algebraic boundary ∂a IP are bounded
from above by

f1(P)− (d− 1).

Proof. We want to prove that f0(Q) ≤ f1(P) − (d − 1), for every Q = P ∩ u⊥, u ∈
Sd−1 \ H(P). By definition, every vertex of Q is a point lying on an edge of P, so
trivially f0(Q) ≤ f1(P). We want to argue now that it is impossible to intersect more
than f1(P)− (d− 1) edges of P with the hyperplane H = u⊥. If the origin is one of the
vertices of P, then all edges that have the origin as a vertex give rise to a single vertex
of Q: the origin itself. There are at least d such edges, because P is full-dimensional,
and so f0(Q) ≤ f1(P)− (d− 1).
Suppose now that the origin is not a vertex of P. Then H does not contain vertices of
P. The hyperplane H divides Rd in two half spaces H+ and H−, and so it divides the
vertices of P in two families of k vertices in H+ and ` vertices in H−. Either k or ` are
equal to 1, or they are both greater than one. In the first case let us assume without
loss of generality that k = 1, i.e. there is only one vertex v+ in H+. Pick one vector v−

in H−. Since P is a full-dimensional polytope, there are at least d edges of P with v− as
a vertex. Only one of them may connect v− to v+ and therefore the other d− 1 edges
must lie in H−. This gives f0(Q) ≤ f1(P)− (d− 1).
On the other hand, let us assume that k, ` ≥ 2. Then there is at least one edge in
H+ and one edge in H−. If d = 3 these are the d− 1 edges that do not intersect the
hyperplane. For d > 3 we reason as follows. Suppose that H intersects a facet F of P.
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4.4 Algebraic Boundary and Degree Bound

(a) (b) (c)

Figure 4.6: Left: the intersection body of the cube in Example 4.4.2. Right: the intersection body
of the tetrahedron in Example 4.4.7. Center: the dual body of the zonotope Z(P)
associated to both the cube and the tetrahedron (up to dilation). Such a polytope
reveals the structure of the boundary divided into regions of these two intersection
bodies.

Then it cannot intersect all facets of F (i.e. a ridge of P), otherwise we would get F ⊆ H
which contradicts the fact that H does not intersect vertices of P. So there exists a ridge
F′ of P that does not intersect the hyperplane; it has dimension d− 2 ≥ 2 and therefore
it has at least d− 1 edges. Hence, f0(Q) ≤ f1(P)− (d− 1). By Proposition 4.4.3, the
degree of each irreducible component of the algebraic boundary is bounded by f0(Q),
and so the claim follows.

Corollary 4.4.6. In the hypotheses of Theorem 4.4.5, if P is centrally symmetric
and centered at the origin, then we can improve the bound to

1
2
( f1(P)− (d− 1)) .

Proof. Combining the results of Corollary 4.4.4 and Theorem 4.4.5, if P is centrally
symmetric, then the degree of each irreducible component is bounded by f0(Q)

2 ≤
1
2 ( f1(P)− (d− 1)).

Example 4.4.7 (Different polytopes can have the same associated zonotope). Let P be
the 3-dimensional tetrahedron

P = conv
((

−1
−1
−1

)
,
( −1

1
1

)
,
( 1
−1
1

)
,
( 1

1
−1

))
.

The intersection body IP is displayed in Figure 4.6(c). The associated hyperplane
arrangement coincides with the one associated to the cube in Example 4.4.2, so it has
14 chambers that come in two families. The first one consists of cones spanned by four
rays, such as C1 (see Example 4.4.2). The polynomial that defines the boundary of IP
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4 intersection bodies of polytopes

in this region is a quartic, namely

q2(x, y, z)− p2(x, y, z)
‖(x, y, z)‖2 = (x + z)(x− z)(y + z)(y− z)− 2(x2 + y2 − z2)z.

On the other hand the cones of the second family are spanned by three rays: here the
section of P is a triangle and the equation of the boundary if IP is a cubic. An example
is the cone C2 with the polynomial

q1(x, y, z)− p1(x, y, z)
‖(x, y, z)‖2 = (x− y)(x− z)(y + z) + (x− y− z)2.

Note that this region furnishes an example in which the bounds given in Proposi-
tion 4.4.3 and Theorem 4.4.5 are attained. �

Remark 4.4.8. Definition 4.1.6 together with Proposition 4.4.3 implies that the structure
of the irreducible components of the algebraic boundary of IP is related to the face
lattice of the dual of the zonotope Z(P). More precisely, in the generic case, the
lattice of intersection of the irreducible components restricted to the chambers of H(P)
is a sublattice of the face lattice of the dual polytope Z(P)◦. Thus, a classification of
“combinatorial types” of such intersection bodies can be approached by the classification
of zonotopes, or equivalently hyperplane arrangements, and their associated oriented
matroids (cf. Section 1.2). Such a classification depends on the choice of a definition of
“combinatorial type of an intersection body” and is subject to future research. If IP is
convex, then a possible candidate is to consider the notion of patches as introduced in
[PSW22], which attempts to generalize the notion of faces of polytopes to more general
convex semialgebraic sets. For establishing such a study, it is however worth noting
that the same zonotope can be associated to two polytopes P1 and P2 which are not
combinatorially equivalent. One example of this instance is a pair of polytopes such
that P1 = conv(v1, . . . , vn) and P2 = conv(±v1, . . . ,±vn), as can be seen in Figure 4.6
for the cube and the tetrahedron.

To have a better overview over the structure of the boundary of IP, one strategy is to
use the Schlegel diagram of Z(P)◦ [Zie95, Chapter 5]. We label each maximal cell by
the degree of the polynomial that defines the corresponding irreducible component of
∂a IP, as can be seen in Figures 4.7 and 4.8.

Example 4.4.9 (The algebraic boundary for the icosahedron). We continue with the
regular icosahedron from Example 4.1.11, which is shown in Figure 4.1. In the 12
regions which are spanned by five rays, the polynomial that defines the boundary of
IP has degree 5 and it looks like

((
√

5x +
√

5y− x + y)2 − 4z2)((
√

5x + x + 2y)2 − (
√

5z− z)2)y+

8
√

5x3y + 68
√

5x2y2 + 72
√

5xy3 + 20
√

5y4 − 40
√

5xyz2 − 20
√

5y2z2 + 4
√

5z4+

8x3y + 164x2y2 + 168xy3 + 44y4 − 8x2z2 − 72xyz2 − 44y2z2 + 12z4.
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4.4 Algebraic Boundary and Degree Bound

Figure 4.7: The Schlegel diagram of Z(P)◦, in the case where P is the icosahedron from Exam-
ple 4.4.9. The labels represent the degrees of the polynomials of ∂a IP.

In the other 20 regions spanned by three rays, ∂IP is the zero set of a sextic polynomial
with the following shape

((
√

5x + x + 2y)2 − (
√

5z− z)2)((
√

5y− 2x− y)2 − (
√

5z− z)2)xy

+20
√

5x4y− 20
√

5x2y3 − 4
√

5xy4 + 4
√

5y5 − 4
√

5x3z2

−60
√

5x2yz2 − 12
√

5xy2z2 + 12
√

5xz4 + 44x4y− 8x3y2 − 44x2y3

+12xy4 + 12y5 − 12x3z2 − 156x2yz2 − 60xy2z2 − 8y3z2 + 28xz4.

We visualize the structure of these pieces using the Schlegel diagram in Figure 4.7,
where the numbers correspond to the degree of the polynomials, as explained in
Remark 4.4.8. �

Using this technique we are then able to visualize the boundary of intersection bodies
of 4-dimensional polytopes via the Schlegel diagram of Z(P)◦.

Example 4.4.10 (The labeled Schlegel diagram for a 4-dimensional intersection body).
We consider the 4-dimensional polytope

P = conv
(( 1

1
0
0

)
,
( 0

1
0
0

)
,
( 0
−1
0
0

)
,
( 0

0
−1
0

)
,
( 0

0
0
−1

))
.

The boundary of its intersection body IP is subdivided in 16 regions. In four of them
the equation is given by a polynomial of degree 3, whereas in the remaining twelve
regions the polynomial has degree 5. In Figure 4.8 we show the Schlegel diagram of

Z(P)◦ = conv

(
±
(

1/2
−1/2

0
0

)
,±
( 1

0
0
0

)
,±
( 0

0
1
0

)
,±
( 0

0
0
1

))
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(a) (b)

Figure 4.8: The Schlegel diagram of Z(P)◦ from Example 4.4.10. There are four cells whose
corresponding polynomial in ∂IP has degree 3, including the outer facet; the others
correspond to degree 5 polynomials.

with a number associated to each maximal cell which represents the degree of the
polynomial in the corresponding region of ∂IP. �

4 .5 the cube

In this section we investigate the intersection body of the d-dimensional cube C(d) =
[−1, 1]d, with a special emphasis on the linear components of its algebraic boundary.

Proposition 4.5.1. The algebraic boundary of the intersection body of the d-
dimensional cube C(d) has at least 2d linear components. These components are in
bijection with those 2d open regions of the hyperplane arrangement H(P) which
contain the standard basis vectors or their negatives.

Proof. We show the claim for the first standard basis vector e1. The argument for the
other vectors ±ei, i = 1, . . . , d is analogous.
Let C be the region from Lemma 4.1.5 which contains e1 and consider U = C ∩ Sd−1.
For any u ∈ U, the polytope C(d) ∩ u⊥ is combinatorially equivalent to C(d−1). Hence
we can compute the (signed) volume,

vold−1(C(d) ∩ u⊥) = det


v(1) − v(0)

...
v(d−1) − v(0)

u


where v(0) is an arbitrarily chosen vertex of C(d) ∩ u⊥ and the remaining v(i) are vertices
of C(d) ∩ u⊥ adjacent to v(0). Next, we observe that for any vertex v of C(d) ∩ u⊥ which
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lies on the edge conv(a, b) of C(d), v is the vector

v =

(
− 1

u1

d

∑
j=2

ajuj, a2, . . . , ad

)
.

This follows from the formulation of v in the proof of Theorem 4.1.8 and the fact that
b1 = −a1 and bi = ai for i = 2, . . . , d. Combining this with the determinant above gives
us the following expression for the radial function restricted to U:

ρIC(d)(u) =
1
u1

det



−∑d
j=2(a(1)j − a(0)j )uj a(1)2 − a(0)2 · · · a(1)d − a(0)d

−∑d
j=2(a(2)j − a(0)j )uj a(2)2 − a(0)2 · · · a(2)d − a(0)d

...
...

...
−∑d

j=2(a(d)j − a(0)j )uj a(d)2 − a(0)2 · · · a(d)d − a(0)d

u2
1 u2 · · · ud


where we assume the determinant is nonnegative, otherwise we multiply by −1.
Expanding the determinant along the bottom row of the matrix yields

ρIC(d)(u) =
1
u1

u2
1 det


a(1)2 − a(0)2 . . . a(1)d − a(0)d

a(2)2 − a(0)2 . . . a(2)d − a(0)d
...

a(d)2 − a(0)2 . . . a(d)d − a(0)d

+ γ(u2, . . . , un)

 .

where γ(u2, . . . , ud) is a polynomial consisting of the quadratic terms in the remaining
ui’s. Note that since γ does not contain the variable u1 and ρ is divisible by the quadric
u2

1 + . . . + u2
d by Proposition 4.4.3, it follows that

ρIC(d)(u) =
u2

1 + . . . + u2
d

u1
det


a(1)2 − a(0)2 . . . a(1)d − a(0)d

a(2)2 − a(0)2 . . . a(2)d − a(0)d
...

a(d)2 − a(0)2 . . . a(d)d − a(0)d

 . (4.1)

Let A be the (d− 1)× (d− 1)-matrix appearing in this last expression (4.1). Then the
irreducible component of the algebraic boundary on the corresponding region C is
described by the linear equation x1 = |det A|.

Note that for an arbitrary polytope P of dimension at least 3, the irreducible components
of the algebraic boundary ∂a IP cannot all be linear. This is implied by the fact that the
intersection body of a convex body is not a polytope. It is thus worth noting that the
intersection body of the cube has linear components at all. We now investigate the
non-linear pieces of ∂a IC(d).
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Example 4.5.2 (The intersection body of the 4-cube). Let C(4) = [−1, 1]4 be the 4-
dimensional cube and IC(4) be its intersection body. The associated hyperplane ar-
rangement has 8 + 32 + 64 = 104 chambers. The first 8 are spanned by 6 rays and the
boundary here is linear, i.e. it is a 3-dimensional cube. For example, the linear face
exposed by (1, 0, 0, 0) is cut out by the hyperplane w = 8.
The second family of chambers is made of cones with 5 extreme rays, where the
boundary is defined by a cubic equation with shape

3xyz− 3w2 − 6x2 − 12xy− 6y2 − 12xz + 12yz− 6z2.

Finally there are 64 cones spanned by 4 rays such that the boundary of the intersection
body is a quartic, such as

4wxyz− w3 − 3w2x− 3wx2 − x3 − 3w2y− 6wxy− 3x2y− 3wy2 − 3xy2

− y3 − 3w2z− 6wxz− 3x2z + 18wyz− 6xyz− 3y2z− 3wz2 − 3xz2 − 3yz2 − z3.

�

Proposition 4.5.1 gives a lower bound on the number of linear components of the
algebraic boundary of IC(d). We conjecture that for any d ∈N, the algebraic boundary
of the intersection body of the d-dimensional cube centered at the origin has exactly
2d linear components. Computational results for d ≤ 5 support this conjecture, as
displayed in Table 4.1. It shows the number of irreducible components of IC(d) sorted by
the degree of the component, for d = 2, 3, 4, 5. The first two columns are the dimension
of the polytope, and the number of chambers of the respective hyperplane arrangement
H(C(d)). The third column is the degree bound from Corollary 4.4.6. The remaining
columns show the number of regions whose equation in the algebraic boundary have
degree deg, for deg = 1, . . . , 5.

dimension # chambers degree bound deg = 1 2 3 4 5

2 4 1 4 0 0 0 0
3 14 5 6 0 8 0 0
4 104 14 8 0 32 64 0
5 1882 38 10 0 80 320 1472

Table 4.1: Number of irreducible components of the algebraic boundary of the intersection body
of the d-cube, listed by degree.

The highest degree attained in these examples is equal to the dimension of the respective
cube. In particular, the degree bound for centrally symmetric polytopes, as given in
Corollary 4.4.6, is not attained in any of the cases for d ≥ 3. Finally, note that the
number of regions grows exponentially in d, and thus for d ≥ 3, the number of
non-linear components exceeds the number of linear components.
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4 .6 convex intersection bodies of polygons

In the previous sections we have seen that intersection bodies of polytopes are not
always convex. Even more, convexity is not preserved under translation, as illustrated
in Example 4.1.3. In fact, even the combinatorics of the hyperplane arrangement H(P)
may change. In this section we study the behavior of the hyperplane arrangement and
the intersection body under translation in dimension 2. We introduce an affine line
arrangement, which describes when the hyperplane arrangement is preserved under
translation, and fully characterize the conditions under which IP is convex.

4.6.1 The Affine Line Arrangement and Ordered Types

In the following, we investigate how the intersection body of a polygon P behaves
under translation of P. We will see that the space of translation vectors can be subdi-
vided into regions induced by an affine line arrangement, and in each such region a
continuous translation of P results in a continuous deformation of the intersection body.
For this purpose, we introduce ordered types of hyperplane arrangements, which will
correspond to regions of the affine line arrangement.

Let P ⊆ R2 be a fixed polygon with n vertices, and denote by Hv = v⊥ ⊆ R2 the
hyperplane though the origin that is orthogonal to a vertex v of P. As seen in the
previous sections, the collection of all such hyperplanes forms a central hyperplane
arrangement H(P) in R2. For each such hyperplane we define its positive side

H+
v =

{
x ∈ R2 | 〈 x, v 〉 > 0

}
,

and its negative side
H−v =

{
x ∈ R2 | 〈 x, v 〉 < 0

}
.

We now choose a translation vector t ∈ R2 and consider the vertices {v + t | v ∈ vert(P)}
of the translated polygon Pt = P + t. Note that P0 = P. The hyperplane arrangement
H(Pt) is given by the hyperplanes (v + t)⊥, where v ranges over the vertices of P.
The hyperplane Hv+t can be obtained from Hv by a (orientation preserving) rotation
rv,t : R2 → R2 such that rv,t

(
v
||v||

)
= v+t
||v+t|| , and thus rv,t(Hv) = Hv+t, rv,t(H+

v ) = H+
v+t

and rv,t(H−v ) = H−v+t.

We label each chamber C of H(Pt) with a sign vector s(C) ∈ {+,−}vert(Pt) indexed by
the vertices w = v + t of Pt, where

s(C)w = + if C ⊆ H+
w ,

s(C)w = − if C ⊆ H−w .

As described in Section 1.2, the set {s(C) | C ∈ H(Pt)} the set of signed cocircuits of
the underlying oriented matroid of the hyperplane arrangement. Let C1, . . . , CM be
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H1

H2H3

(+,−,+)

(+,−,−)

(+,+,−)

(−,+,−)

(−,+,+)

(−,−,+)

H(P)

H1

H2H3

(+,−,+)

(+,+,+)

(+,+,−)

(−,+,−)

(−,−,−)

(−,−,+)

H(Pt1)

H1

H2H3

(−,−,+)
(−,−,−)

(−,+,−)

(+,+,−)
(+,+,+)

(+,−,+)

H(Pt2)

Figure 4.9: The hyperplane arrangements of Pt for the translations of the triangle from Exam-
ple 4.6.1.

maximal chambers of H(Pt) in clockwise order, where C1 is the chamber whose signed
cocircuit s(C1) is maximal with respect to reverse lexicographic order (and + > −).
For the purposes of our studies, we associate to Pt the ordered type OT (Pt) of the
hyperplane arrangement H(Pt), which is the ordered tuple of signed vectors OT (Pt) =
(s(C1), . . . , s(CM)).

Example 4.6.1 (Ordered types for the triangle). Let P = conv(v1, v2, v3) be the triangle
with vertices

v1 =

(
0
1

)
, v2 =

(
−1
−1

)
, v3 =

(
1
−1

)
.

Figure 4.9 shows the hyperplane arrangements H(Pt) for

t0 =

(
0
0

)
, t1 =

(
0
2

)
, t2 =

(
0
−2

)
.

Note that the underlying oriented matroids of H(Pt) for t = t1 and t = t2 are the same,
but their ordered types differ. We continue with this in Example 4.6.4. �

First, we characterize the possible ordered types of hyperplane arrangements in R2

with 2 hyperplanes.
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v

w

(−,+)

(−,−)

(+,−)

(+,+)

det M > 0
v

w

(+,+)

(+,−)

(−,−)

(−,+)

det M < 0

v
w

(+,+) (−,−)

det M = 0

v
w

(+,−) (−,+)

det M = 0

Figure 4.10: The four ordered types of arrangements with two hyperplanes as in Lemma 4.6.2.

Lemma 4.6.2. Let u, v ∈ R2 and H(u, v) = u⊥ ∪ v⊥. Let M = (u v) ∈ R2×2 be the
matrix with columns u and v. The ordered type of H(u, v) is uniquely determined by
the sign of the determinant of M. More specifically, the ordered types are

(i) (++,+−,−−,−+) if det M > 0,

(ii) (++,−+,−−,+−) if det M < 0,

(iii) (++,−−) if det M = 0 and u = λv, λ > 0,

(iv) (+−,−+) if det M = 0 and u = λv, λ < 0.

Proof. First note that det M 6= 0 if and only if u⊥ 6= v⊥. In this case H(u, v) has exactly
4 chambers. By construction, switching the order of u and v reverses the orientation
of the linear space spanned by u and v. As can be seen in Figure 4.10, the labeling of
the chambers (in clockwise order) solely depends on the relative orientation of u and v,
i.e. the sign of the determinant of M. If det M = 0 then u⊥ = v⊥ and the hyperplane
arrangement consists of two maximal chambers. In this case, we have that u = λv for
some nonzero λ ∈ R. Again, the labeling of the chambers is uniquely determined by
the sign of λ, as illustrated in Figure 4.10.

Theorem 4.6.3. Let P ⊆ R2 be a polygon. The affine hyperplane arrangement

L (P) = {aff(−v1,−v2) | v1, v2 are vertices of P}

of affine lines through pairs of vertices of −P subdivides R2 into open regions. The
latter are in bijection with ordered types of H(Pt) in the following way. For each such
region R the ordered type of the hyperplane arrangement H(Pt) is fixed for all t ∈ R,
and for any two distinct regions the ordered types are distinct.
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t0

t1

t2

−v3 −v2

−v1

Figure 4.11: The affine line arrangement L (P) of the triangle from Examples 4.6.1 and 4.6.4.

Proof. Let R be a region of L (P) and v1, v2 be distinct vertices of P. Equivalently,
w1 = v1 + t and w2 = v2 + t are distinct vertices of Pt for all t ∈ R2. By construction
of L (P), the open region R does not intersect aff(−v1,−v2), i.e. R lies on one side of
this affine line. Consider the matrix Mt = (w1 w2) = (v1+t v2+t) ∈ R2×2. Note that
det(Mt) = 0 if and only if t ∈ aff(−v1,−v2), i.e. when w1, w2 lie on a common line
through the origin. Furthermore, the affine line aff(−v1,−v2) partitions the ambient
space R2 into two open halfspaces, in which the determinant of Mt is nonzero and has
a fixed sign. Therefore, for all t ∈ R the matrix Mt has a fixed nonzero sign.
Let t ∈ R and let C be a chamber of H(Pt) with signed cocircuit s(C). We can write

C =
⋂

wi ,wj∈vert(Pt)\{0}
wi 6=wj

C(wi, wj)

as the intersection of a chamber C(wi, wj) for each subarrangement H(wi, wj) = w⊥i ∪
w⊥j , where (wi, wj) is a pair of distinct vertices of Pt which are both different from the
origin. The signed cocircuit satisfies s(C)wk = s(C(wi, wj))wk for k = i, j. Therefore,
the ordered type of H(Pt) can be seen as the common refinement of ordered types of
H(wi, wj), where (wi, wj) ranges over all pairs of vertices of Pt. By Lemma 4.6.2, the
ordered type of H(wi, wj) is uniquely determined by the sign of the determinant of
the matrix Mt, and thus also the sign of s(C)wk is uniquely determined. Therefore, the
ordered type of H(Pt) is uniquely determined by the position of t relative to the affine
lines in L (P), i.e. the region R ⊆ L (P) containing t.

Example 4.6.4 (The affine line arrangement of the triangle). Let P be the triangle from
Example 4.6.1. The affine line arrangement is shown in Figure 4.11. Note that the
translation vectors t = t0, t1, t2 all lie in different regions of the arrangement, and thus
the ordered types of the hyperplane arrangements H(Pt) are distinct. �

We emphasize that there are two hyperplane arrangements or line arrangements in R2

which play a main role in the study of convexity of intersection bodies of polygons.
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We have the central hyperplane arrangement H(Pt), which depends on the choice of t,
and subdivides R2 into open two-dimensional cones, which we call chambers of H(Pt).
On the other hand, we have the affine line arrangement L (P), which subdivides R2

into open two-dimensional components, which we call regions of L (P). Note that
L (P) = L (Pt)− t by construction.
We now describe how the regions in the affine line arrangement L (P) relate to the
geometry of the intersection body IPt.

Lemma 4.6.5. Let P be a polygon and t ∈ R2. Let C be a maximal open chamber of
H(P), and Ct be a maximal open chamber of H(Pt) such that s(C) = s(Ct), i.e. their
signed cocircuits agree. Let u ∈ C, ut ∈ Ct and

E = {e ⊆ P | e is an edge of P, u⊥ ∩ e 6= ∅},
Et = {et ⊆ Pt | et is an edge of Pt, u⊥t ∩ et 6= ∅}.

Then Et = E .

Proof. Let e = conv(v1, v2) ∈ E be an edge of P. Since u⊥ ∩ e 6= ∅, we have that v1, v2
lie on different sides of u⊥. Equivalently, we have s(C)v1 = −s(C)v2 , and without
loss of generality s(C)v1 = +. Thus, u ∈ H+

v1
∩ H−v2

. Since H(Pt) is obtained from
H(P) by rotating the hyperplanes individually, and s(C) = s(Ct) it follows that ut ∈
H+

v1+t ∩ H−v2+t. Since e + t is an edge of Pt if and only if e is an edge of P, the claim
follows.

Theorem 4.6.6. Let R be a maximal open region of L (P) and t ∈ R. Fix a sign
vector s ∈ {+,−}vert(P) and let Ct be an open chamber of H(Pt) such that s(Ct) = s.
Then the radial function ρIPt |Ct of IPt restricted to the chamber Ct and the region R is
linear and continuous in t.

Proof. By Lemma 4.6.5, for a fixed region R and fixed chamber Ct, for any vector ut ∈ Ct
the set of edges of Pt which intersect ut is fixed. Since P is 2-dimensional, this is a pair of
edges conv(a1 + t, b1 + t) , conv(a2 + t, b2 + t), where a1, a2, b1, b2 are vertices of P. Let
Qt = Pt ∩ u⊥t be the one-dimensional section with vertices v1 = conv(a1 + t, b1 + t)∩ u⊥t
and v2 = conv(a2 + t, b2 + t) ∩ u⊥t . Recall from the proof of Theorem 4.2.4 that we can
compute

vol1(Qt) =
1
‖x‖2 (sgn(v1)|det(M1(x, t))|+ sgn(v2)|det(M1(x, t))|) ,

where sgn(vi) ∈ {1,−1} depends on the position of vi relative to t and

Mi(x, t) =

[ 〈bi+t,x〉(ai+t)−〈ai+t,x〉(bi+t)
〈bi−ai ,x〉

x

]
= Mi(x, 0) +

[ 〈t,x〉(ai−bi)
〈bi−ai ,x〉

x

]
.
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Figure 4.12: The arrangement L (P) of affine lines for P = [−1, 1]2, together with IPt for
different choices of t.

The determinant of Mi(x, t) is thus a homogeneous polynomial of degree 1 in the
variable t, and so the radial function is linear and continuous in t.

Example 4.6.7. Figure 4.12 shows the continuous deformation of the intersection body
IPt of the unit square P = [−1, 1]2 under translation by t ∈ R2 within each bounded
region of the affine line arrangement. �

4.6.2 Convexity

For each fixed region R of the affine line arrangement L (P), Theorem 4.6.6 implies
that, as we move t ∈ R continuously, the intersection body IPt deforms continuously
as well. We now characterize under which circumstances the intersection body of a
polygon is convex. Recall that IP cannot be convex if the origin lies outside of P or is a
vertex of P. We thus consider the distinct cases of when the origin lies in the interior of
P, and when the origin is a point on the boundary. Figure 4.12 shows that in the case
of the square, the intersection body of P + t is convex for precisely 5 translation vectors.
In Theorem 4.6.14 we show that the number of such translation vectors is always finite,
and the square maximizes this number.

Definition 4.6.8 (Convexity in a chamber). Let P ⊆ R2 be a polygon and let C be a
chamber of H(P). We say that IP ⊆ R2 is convex in C if IP ∩ C is convex. Recall from
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Section 4.4 that the boundary of IP in the chamber C is defined by exactly one of the
irreducible components of the algebraic boundary ∂a IP. We will refer to this boundary
component as the component of ∂a IP in C.

Remark 4.6.9. Let C be a chamber of H(P) such that IP is not convex in C. Then IP is
not convex. However, that IP is convex in C for all C does not suffice for showing that
IP is convex.

In the following Propositions 4.6.10 and 4.6.11 we consider polygons with the origin
in the interior, and characterize the geometry of the boundary of IP in terms of the
geometry of the boundary of P. More precisely, we will see that the convex pieces of
the boundary of IP correspond to pairs of parallel edges of P, and all convex pieces are
linear. We begin by describing the linear pieces of ∂IP.

Proposition 4.6.10. Let P ⊆ R2 be a polygon. Let C be a chamber of H(P), and let
x ∈ C. We denote by v1(x), v2(x) the points of intersection x⊥ ∩ ∂P = {v1(x), v2(x)}
of the boundary of P with the line x⊥. Let conv(a1, b1) , conv(a2, b2) be edges of P
such that v1(x) ∈ conv(a1, b1) and v2(x) ∈ conv(a2, b2). Then the component of ∂a IP
in C is linear if and only if the segments conv(a1, b1) and conv(a2, b2) are parallel.

Proof. We want to prove that {x ∈ C | ρIP|C(x) = 1} is a line segment. Assume that
v1(x) = λa1 + (1− λ)b1 and v2(x) = µa2 + (1− µ)b2 for some λ, µ ∈ (0, 1). Since
v1(x), v2(x) ∈ x⊥, we have

λ =
〈 b1, x 〉

〈 b1 − a1, x 〉 , µ =
〈 b2, x 〉

〈 b2 − a2, x 〉 .

We want to compute the length of conv(v1(x), v2(x)), or equivalently the length of
conv(0, v1(x)− v2(x)). As in the proof of Theorem 4.1.8, we compute this via the area
of the triangle with vertices 0, v1(x)− v2(x) and x

‖x‖2 . Hence, the radial function can be
computed by the determinant

ρIP|C(x) =
1
‖x‖2

∣∣∣∣∣det

[
v1(x)− v2(x)

x

]∣∣∣∣∣ .

We compute the radial function explicitly. First,

v1(x)− v2(x) = (〈 b2−a2,x 〉(〈 b1,x 〉a1−〈 a1,x 〉b1)−〈 b1−a1,x 〉(〈 b2,x 〉a2−〈 a2,x 〉b2))
〈 b1−a1,x 〉〈 b2−a2,x 〉 .

The irreducible component of ∂aP in C is given by the set of points x ∈ C such that
ρIP|C(x) = 1, i.e. the points which satisfy

1
‖x‖2 det

[
(〈 b2 − a2, x 〉 (〈 b1, x 〉 a1 − 〈 a1, x 〉 b1)− 〈 b1 − a1, x 〉 (〈 b2, x 〉 a2 − 〈 a2, x 〉 b2))

x

]
= 〈 b1 − a1, x 〉 〈 b2 − a2, x 〉 ,

(4.2)
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assuming that the determinant in the left hand side is positive in C (otherwise it gets
multiplied by −1). This determinant is a cubic polynomial in x, which by Proposi-
tion 4.4.3 is divisible by ‖x‖2. Hence, the left hand side of (4.2) is a homogeneous linear
polynomial in x. It divides the right hand side if and only if (b2 − a2) = κ(b1 − a1) for
some κ ∈ R, i.e. if the the two line segments are parallel. In this case (4.2) is a linear
equation, and hence the curve defined by (4.2) is a line; otherwise it is a conic, passing
through the origin.

Proposition 4.6.11. Let P ⊆ R2 be polygon with the origin in its interior. If there
exists a line through the origin which intersects ∂P in two non-parallel edges, then IP
is not convex.

Proof. Let C be a chamber of of H(P) such that x⊥ intersects two non-parallel edges
`1, `2 of P. Consider ua, ub ∈ C ∩ S1. As shown in Figure 4.13, we denote

u⊥a ∩ `1 = a = ( a1
a2 ) , u⊥b ∩ `1 = b =

(
b1
b2

)
,

u⊥a ∩ `2 = −αa, u⊥b ∩ `2 = −βb,

for some positive real numbers α, β > 0. Since `1 and `2 are not parallel, we have α 6= β.
We can choose a, b, such that ua = 1

‖a‖
( a2
−a1

)
and ub = 1

‖b‖

(
b2
−b1

)
. The lengths of the

line segments u⊥a ∩ P = conv(a,−αa) and u⊥b ∩ P = conv(b,−βb) are

‖u⊥a ∩ P‖ = ‖a− (−αa)‖ = (1 + α)‖a‖
‖u⊥b ∩ P‖ = ‖b− (−βb)‖ = (1 + β)‖b‖.

Thus, the boundary points of IP in directions ua, ub are

pa := ρIP(ua) ua = (1 + α)‖a‖ ua = (1 + α)

(
a2

−a1

)
,

pb := ρIP(ub) ub = (1 + β)‖b‖ ub = (1 + β)

(
b2

−b1

)

respectively. Consider the midpoint a+b
2 ∈ `1 and let ua+b be the unit vector in C

orthogonal to a + b (and thus also to a+b
2 ). Then ua+b = 1

‖a+b‖

(
a2+b2
−a1−b1

)
, u⊥a+b ∩ `2 =

− αβ
α+β (a + b) and the boundary point of IP in direction ua+b is

pa+b = ρIP(ua+b) ua+b =

(
1
2
+

αβ

α + β

)
‖a + b‖ ua+b =

(
1
2
+

αβ

α + β

) (
a2 + b2

−a1 − b1

)
.
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a

b
−αa

−βb
a+b

2 0
`1 `2

u⊥a
u⊥b

u⊥a+b

papb

q

pa+b

0

Figure 4.13: The proof of Proposition 4.6.11 in a picture. Left: the lines orthogonal to ua, ub, ua+b
and their intersections with the edges `1, `2 of P. Right: the points pa, pb, pa+b ∈
∂IP, and the point q ∈ conv(pa, pb), but q 6∈ IP.

Let q = conv(pa, pb)∩ cone (ua+b), as in Figure 4.13. We want to prove now that IP∩ C
is not convex, by showing that ‖q‖ > ‖pa+b‖. Indeed, we can compute that

q =
(1 + α)(1 + β)

2 + α + β
(a2 + b2,−a1 − b1)

and therefore

‖q‖ − ‖pa+b‖ =
(1 + α)(1 + β)

2 + α + β
‖a + b‖ −

(
1
2
+

αβ

α + β

)
‖a + b‖

=
(α− β)2

2(2 + α + β)(α + β)
‖a + b‖.

Since α 6= β, this expression is strictly positive, and so q 6∈ IP. This proves that
pa, pb ∈ IP, but the segment conv(pa, pb) is not contained in IP. Hence, IP is not
convex.

We are now ready to move towards a full classification of convexity of intersection
bodies of polygons for any position of the origin. Note that if P is centrally symmetric,
then the convexity of P follows from the following classical statement.

Theorem 4.6.12 ([Gar06, Theorem 8.1.4]). Let K ⊆ R2 be a two-dimensional convex
body centered at the origin. Then IK = r π

2
(2K), where r π

2
is a counter-clockwise

rotation by π
2 .

A key argument in the proof of the following Theorem 4.6.12 is done via the chordal
symmetral of P. The chordal symmetral ∆̃K of a star body K ⊆ Rd is the union of segments
conv(−cuu, cuu), where u ∈ Sd−1 and cu = 1

2 vold−1(K ∩ u⊥) [Gar06, Definition 5.1.3].
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The chordal symmetral is starshaped set with respect to the origin. We will make use
of the following statements.

Proposition 4.6.13 ([Gar06, Chapter 5.1]). Let K ⊆ Rd be a star body. Then

(i) K is centrally symmetric and centered at the origin if and only if K = ∆̃K,

(ii) if K ⊆ R2 then IK = 2∆̃K

We now prove the main result of this section.

Theorem 4.6.14. Let P ⊆ R2 be a polygon. Then IP is a convex body if and only if

(i) P = −P, or

(ii) the origin is the midpoint of an edge and P ∪−P is convex.

Proof. Recall that IP is not convex if the origin lies in R2 \ P, or if the origin is a vertex
of P. We are left to analyze the cases in which the origin lies in the interior of P or in
the interior of an edge of P.
We first consider the case in which the origin lies in the interior of P and show that
IP is convex if and only if P = −P. If P = −P, then Theorem 4.6.12 implies that IP is
convex. Assume now that IP is convex, and the origin lies in the interior of P. Then
C ∩ IP is convex for every chamber C of H(P). In particular, by Proposition 4.6.11,
every line u⊥ through the origin which does not intersect a vertex of P intersects ∂P in
the interior of two parallel edges. Hence, the edges of P come in pairs of parallel edges.
We rotate u ∈ S2 continuously. Whenever u⊥ crosses a vertex of one edge, it must also
cross a vertex in the parallel edge, since otherwise this results in a pair of non-parallel
edges. This implies that for every vertex v of P, there exists a vertex w of P such that
w = −λv for some λ > 0. Since all edges are pairwise parallel, this positive scalar λ
is the same for all vertices. Therefore, we also get that v = −λw, which implies that
λ = 1. Hence, P = −P.
Consider now the case in which the origin lies in the interior of an edge F of P.
Since the origin lies on the boundary of P, we have that IP = 1

2 I(P ∪ −P). Using
Proposition 4.6.13 we deduce the following chain of equalities:

IP =
1
2

I(P ∪−P) (i)
=

1
2
· 2∆̃(P ∪−P) (ii)

= P ∪−P.

Therefore, IP is convex if and only if P ∪−P is convex. In order for this to happen, the
origin must be the midpoint of F, and additionally P ∪−P must be convex.

Example 4.6.15. By Corollary 4.6.16 for each polygon P there are only finitely many
positions of the origin such that the intersection body of P is convex. Figure 4.14

shows a collection of examples of polygons, together with the possible positions of the
origin. �
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Figure 4.14: Examples in which IP is convex; the orange points represent admissible positions
of the origin. From left to right: a parallelogram (k = 5), an acute triangle (k = 3),
a diamond shape (k = 2), a panettone shape, and a centrally symmetric polygon
which is not a parallelogram (k = 1). The case k = 4 is not realizable.

Corollary 4.6.16. Let P ⊆ R2 be a polygon and let

k =
∣∣{t ∈ R2 | I(P + t) is convex}

∣∣ .

Then k ≤ 5 and the equality is realized exactly when P is a parallelogram.

Proof. By Theorem 4.6.14, I(P + t) is convex if and only if −t is the center of symmetry
of P (if it exists), or a midpoint of an edge such that (P + t) ∪−(P + t) is convex. Thus,
the number of such t ∈ R2 is finite.
If −t is the midpoint of an edge e, then (P− t) ∪−(P− t) is convex if and only if the
sum of the angles adjacent to e is at most π. Let v1, . . . , vn be the vertices of P, ordered
cyclically, and let αi be the interior angle of P at vi (and αn+1 = α1). Assume that there
are m pairs of consecutive interior angles (αi, αi+1), i ∈ [m] such that αi + αi+1 ≤ π.
Recall that for any polygon with n vertices, the sum of all interior angles is (n− 2)π.
Furthermore, for any angle in a polygon holds αi ≤ π. We thus obtain that

2(n− 2)π = 2
n

∑
i=1

αi =
n

∑
i=1

(αi + αi+1)

=
m

∑
i=1

(αi + αi+1) +
n

∑
i=m+1

(αi + αi+1)

≤
m

∑
i=1

π +
n

∑
i=m+1

2π

≤ mπ + 2(n−m)π.

This implies m ≤ 4, hence k ≤ 5. Note that if the pairs of interior angles with sum
≤ π are not consecutive, then this violates the convexity of P. A similar computation
as above with the exterior angles of P implies that if k = 5 then n = m = 4 and
all pairs of consecutive angles sum up to π. Hence, the unique maximizers of k are
parallelograms.
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4.6.3 Convexity in higher dimensions

We now discuss which of the result presented in this section may generalize to higher
dimensions.
The construction of the hyperplane arrangement H(P) is defined for every polytope
P ⊆ Rd, and gives rise to an oriented matroid in general. The statement of Theorem 4.6.3
can be generalized as follows. Let

L (P) = {aff(−v1, . . . ,−vd) | v1, . . . , vd are affinely independent vertices of P}.

This yields an affine hyperplane arrangement, in which each region R gives rise to
a unique oriented matroid underlying the central hyperplane arrangement H(Pt).
However, defining the right notion of ordered type such that the regions R are in bijection
with ordered types is more intricate for higher dimensions and is subject for further
research. On the other hand, since the argument in Theorem 4.6.6 solely depends on
the oriented matroid, also in higher dimensions the radial function is continuous on
regions of the more general version of L (P).
The methods used in the arguments of Section 4.6.2 do not generalize to higher
dimensions. For example, in contrast to Propositions 4.6.10 and 4.6.11, in higher
dimensions there exist convex pieces IP∩C which are not linear. Also the identification
with the chordal symmetral body does not hold in general. These are key arguments in
the proof of Theorem 4.6.14 which do not generalize to higher dimensions. However, in
order to obtain a convex intersection body IP, the origin must either lie in the interior of
P, or in the interior of a facet of P. Otherwise there exists a hyperplane u⊥ intersecting
P at most in a lower-dimensional face, and thus the radial function in direction u has
value 0. This yields the following conjecture.

Conjecture 4.6.17. Let P ⊂ Rd be a full-dimensional polytope. Then IP is a convex
body if and only if

(i) P = −P, or

(ii) the origin is the center of a symmetric facet F of P, and P ∪−P is convex.
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5
C O M B I N AT O R I C S O F C O R R E L AT E D E Q U I L I B R I A

In 1950, Nash published a two-page article proving the existence of a Nash equilibrium
for any finite game [Nas50]. This opened many new fronts, not only in game theory, but
also in areas such as economics, computer science, evolutionary biology and quantum
mechanics [PPV05; SP73; BL13]. To study Nash equilibria one assumes that the actions
of the players are independent and completely separated from any exterior influence.
Moreover, these can be described as a system of multilinear equations [Stu02, Section
6]. However, there exist cases where a Nash equilibrium fails to predict the most
beneficial outcome (e.g. Pareto optimality) for all players. There are several approaches,
rooted in the concept of a dependency equilibrium, which generalize Nash equilibria by
imposing dependencies between the actions of players. This class of equilibria has
been studied from the point of view of algebraic statistics and computational algebraic
geometry [Spo03; PS22; PSA22]. On the other hand, Aumann introduced the concept of
a correlated equilibrium, which assumes that there is an external correlation device such
as a mediator or some other physical source. The resulting correlated equilibria are
probability distributions of recommended joint strategies [Aum74; Aum87]. In contrast
to Nash equilibria and dependency equilibria, correlated equilibria are significantly less
computationally expensive, since they only require solving a linear program [PR08].
In other words, the set of such equilibria can be described by linear inequalities in the
probability simplex and thus form a convex polytope called the correlated equilibrium
polytope. In this chapter, we study combinatorial properties of correlated equilibrium
polytopes with methods from discrete geometry and real algebraic geometry.
We illustrate the concept of correlated equilibrium in an example: Two cars meet at
a crossing. Both drivers would like to continue to drive, but, even more importantly,
would also like to avoid a car crash. Thus, each of the drivers prefers not to drive in

Figure 5.1: The correlated equilibrium polytope of a (2× 3)-game and its face lattice.
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case the other chooses to drive. We make the assumptions that both drivers are unable
to communicate with each other. This is a classic game in game theory known as
Chicken game or Hawk-Dove game, and we formalize this in Examples 5.1.1, 5.4.1, 5.1.3
and 5.1.6. However, this situation changes drastically if there is a traffic light installed
at this crossing. We can view the traffic light as a neutral exterior party, that gives a
recommendation to each player in showing green or red lights; here we assume that
each driver only knows their own given recommendation. If a fixed driver is given such
a recommendation (for example a red light), the driver now ponders about deviating
from this recommendation in benefit of their own (selfish) good, assuming that the
other player adheres to their own given recommendation. If both drivers decide not to
deviate from the recommendation given by the traffic lights, a correlated equilibrium is
achieved.
To our knowledge, there are no articles concerning the combinatorics of correlated
equilibrium polytopes in the language of convex or discrete geometry up to this date,
despite the fact that the concept of correlated equilibria is a topic of extensive research in
economics and game theory [Aum87; Rag02; Vio03; NCH04; PR05]. In this chapter we
study this class of polytopes from combinatorial perspective. In general, the correlated
equilibrium polytope can exhibit a great variety of distinct combinatorial structures.
This is not surprising as it is proven that any convex polytope can be realized as
the correlated equilibrium payoffs of game [LSV11], i.e. as a certain projection of a
correlated equilibrium polytope. Even classifying necessary conditions under which the
correlated equilibrium polytope is of maximal dimension is highly nontrivial [Vio03].
For this purpose, we introduce the region of full-dimensionality, a set that classifies under
which conditions the correlated equilibrium polytope has maximal dimension.

Theorem 5 .3 .1 . The region of full-dimensionality is a semialgebraic set and can be
explicitly described. The full description of this semialgebraic set as the coordinate
projection of a basic semialgebraic set can be found on page 176.

We continue the study of the combinatorial structure of correlated equilibrium polytopes
by introducing a linear space called the the correlated equilibrium space, and consider an
oriented matroid strata inside this space. This is a stratification of the linear space, in
which regions correspond to oriented matroids, and give rise to the different combinato-
rial types of correlated equilibrium polytopes. We study the algebraic boundary of the
strata for (2× n)-games, which turns out to be generated by binomials corresponding
to (2× 2)-minors of a certain matrix (Theorem 5.4.7). These investigations yield novel
insights into the possible combinatorial types of (2× 3)-games.

Theorem 5 .4 .8 . Let G be a (2 × 3)-game and PG be the associated correlated
equilibrium polytope. Then one of the following holds.

(i) PG is a point.

(ii) PG is of maximal dimensional 5 and of a unique combinatorial type.
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(iii) There exists a (2× 2)-game G′ such that PG′ has maximal dimensional 3 and is
combinatorially equivalent to PG.

The unique combinatorial type of dimension 5 of (2× 3)-games has f -vector (1, 11, 32,
40, 25, 8, 1) and its edge graph is shown in Figure 5.4. A full description of this polytope
can be found on MathRepo [BHP22b]. Supported by the above theorem and our
computations for (2× n)-games G (where n ≤ 5), we conjecture that if PG is not of
maximal dimension, then there exists a smaller (2 × k)-game G′ with k < n such
that PG′ is a full-dimensional polytope and PG is combinatorially equivalent to PG′

(Conjecture 5.4.10).
This chapter is based on [BHP22a], which is joint work with Benjamin Hollering and
Irem Portakal. All supplementary material, including all referenced code and the
resulting computations are publicly available on a MathRepo page [BHP22b].

Overview

We study correlated equilibrium polytopes from a discrete geometric and real algebraic
geometric point of view. The background is given in Sections 1.1, 1.2, 1.4 and 1.8.
We first provide a short introduction for the necessary concepts from game theory
in Section 5.1, including correlated equilibria and Nash equilibria. In Section 5.2 we
describe the correlated equilibrium cone, a convex polyhedral cone which captures
the geometry of the correlated equilibrium polytope, and describe the correlated
equilibrium space. We study the region of full-dimensionality in Section 5.3. Finally,
we consider the possible combinatorial types through the oriented matroid strata in
Section 5.4. All results are illustrated with examples for games of types (2× 2), (2× 3)
and, whenever possible, games of type (2× 2× 2).

5 .1 the correlated equilibrium polytope

In this section we introduce the basic concepts of game theory, such as a game itself,
and different notions of strategies. We establish the concept of correlated equilibria and
illustrate the relation to Nash equilibria.

Let n be the number of players. Each player i ∈ [n] has a fixed set of pure strategies
s(i)1 , . . . s(i)di

, di ∈ N. It is practical to think of each strategy as a single move that a
player can play, and all players perform their single move simultaneously. Afterwards,
the game is over, so the choices of the possible moves can be seen as outcome of the
game. A pure joint strategy is a tuple sj1 ...jn = (s(1)j1

, . . . , s(n)jn ) of strategies, where each

player i ∈ [n] chooses to play a fixed strategy s(i)ji
with ji ∈ [di], i ∈ [n]. The payoff

X(i)
j1 ...jn ∈ R of player i at sj1 ...jn is the quantity of how beneficial player i values the

combination (s(1)j1
, . . . , s(n)jn ) of strategies as outcome of the game. A mixed strategy of a

single player i is an action with probability p(i) = (p(i)j1
, . . . , p(i)jdi

), i.e. p(i)j1
, . . . , p(i)jdi

≥ 0
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and ∑di
k=1 p(i)jk

= 1. We can view this geometrically as a point in the (di− 1)-dimensional
probability simplex ∆di−1.
Formally, a (d1 × · · · × dn)-game in normal form is a tuple G = (n, S, X), where
S = (S(1), . . . , S(n)) is the collection of strategies S(i) = (s(i)1 , . . . , s(i)di

) of all players, and
X = (X(1), . . . , X(n)) is the collection of all (d1 × · · · × dn)-payoff tensors. In particular,
if n = 2, then each X(i) is a (d1 × d2)-matrix and called the payoff matrix of player i.

Example 5.1.1 (Traffic Lights). Recall the example from the introduction, in which two
cars meet at a crossing and would like to avoid a car crash. Formally, each player i ∈ [2]
has the strategies s(i)1 = “go” and s(i)2 = “stop”. The bimatrix below shows the payoffs
of both players simultaneously, where each entry is a tuple (X(1)

j1 j2
, X(2)

j1 j2
) of the payoff of

each player for the tuple of strategies (s(1)j1
, s(2)j2

), j1, j2 ∈ [2] as the expected outcome of
the game.

Player 2
go stop

Player 1
go (−99,−99) (1, 0)

stop (0, 1) (0, 0)

We may interpret the given payoffs such that each of the players prefers to go (with
payoff X(1)

12 = X(2)
21 = 1) if the other driver stops. However, both drivers choosing to

drive is the worst possible outcome for each of the players individually (with payoff
X(i)

11 = −99 for both players). Since there is no interaction between the players, and the
payoffs of a car crash are very negative, the players are very likely not to risk a move,
although this is not optimal for either of these players (X(i)

22 = 0 for both players). This
is the motivation for introducing the concept of correlated equilibrium, in which the
assumptions allow a dependence of the moves of the players by the suggestion of an
external party, e.g. a traffic light. We continue with this in Examples 5.1.3 and 5.1.6. �

We now allow a third, independent party to influence the game from the outside. Let
S̃ =

{
sj1...jn

∣∣ ji ∈ [di], i ∈ [n]
}

be the set of all pure joint strategies of the game. The
external party draws such a pure joint strategy with probability pj1...jn ≥ 0, called
a mixed joint strategy. Such a joint probability distribution is a vector (or a tensor)
p = (pj1...jn | ji ∈ [di], i ∈ [n]), such that ∑d1

j1=1 · · ·∑
dn
jn=1 pj1 ...jn = 1. The set of all joint

probability distributions is the probability simplex ∆d1···dn−1.
The external party recommends the drawn joint strategy to the players. But instead
of revealing the true outcome to all players, each player is only told their own part. If
player i believes that all other players will adhere to their given recommendations, then
the best strategy for player is to follow the strategy which maximizes their expected
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payoff. If none of the players has such an incentive to deviate, then the condition

d1

∑
j1=1
· · ·

d̂i

∑
ji=1
· · ·

dn

∑
jn=1

X(i)
j1···ji−1kji+1···jn pj1···ji−1kji+1···jn

≥
d1

∑
j1=1
· · ·

d̂i

∑
ji=1
· · ·

dn

∑
jn=1

X(i)
j1···ji−1l ji+1··· ,jn pj1···ji−1kji+1···jn

is satisfied for all k, l ∈ [di], and for all i ∈ [n] [Aum87]. This motivates the following
definition.

Definition 5.1.2 (Correlated Equilibrium). Let G be a game with payoff tensors X =
(X(1), . . . , X(n)). A point p ∈ ∆d1···dn−1 is a correlated equilibrium if and only if

d1

∑
j1=1
· · ·

d̂i

∑
ji=1
· · ·

dn

∑
jn=1

(
X(i)

j1···ji−1kji+1···jn − X(i)
j1···ji−1l ji+1··· ,jn

)
pj1···ji−1kji+1···jn ≥ 0. (5.1)

for all k, l ∈ [di], and for all i ∈ [n], which are the incentive constraints of the game G.
These linear inequalities in (5.1) together with the linear constrains

pj1 ...jn ≥ 0 for ji ∈ [di], i ∈ [n], and
d1

∑
j1=1
· · ·

dn

∑
jn=1

pj1 ...jn = 1

define the set of all correlated equilibria of the game. The set of all such equilibria is
the correlated equilibrium polytope PG of the game G.

The ambient space of the polytope PG has dimension d1 · · · dn. By definition, the
maximal dimension that PG can achieve is d1 · · · dn − 1. In the literature, in this case
PG is often called full-dimensional. To avoid confusion with conventions in discrete and
convex geometry, we refer to PG as having maximal dimension.

Example 5.1.3 (Traffic Lights). We continue with Example 5.1.1, where the third party
is given by a traffic light at the crossing. The traffic light gives the recommendation “go”
to a driver if it turns green, and “stop” if it turns red. The traffic light draws randomly
from one of the combinations of strategies. Let pj1 j2 be the probability with which the
traffic light draws the pure joint strategy sj1 j2 . The point p = (p11, p12, p21, p22) is a
correlated equilibrium if and only if pj1 j2 ≥ 0, p11 + p12 + p21 + p22 = 1 and

(X(1)
22 − X(1)

12 )p22 + (X(1)
21 − X(1)

11 )p21 ≥ 0, (X(1)
12 − X(1)

22 )p12 + (X(1)
11 − X(1)

21 )p11 ≥ 0,

(X(2)
22 − X(2)

21 )p22 + (X(2)
12 − X(2)

11 )p12 ≥ 0, (X(2)
21 − X(2)

22 )p21 + (X(2)
11 − X(2)

12 )p11 ≥ 0.
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5 combinatorics of correlated equilibria

Figure 5.2: The vertices of the correlated equilibrium polytope of the Traffic Lights example
(Examples 5.1.3 and 5.1.6). The three Nash equilibria are indicated in black.

With the payoffs as given in the bimatrix in Example 5.1.1 these inequalities evaluate to

− p22 + 99p21 ≥ 0, p12 − 99p11 ≥ 0,
− p22 + 99p12 ≥ 0, p21 − 99p11 ≥ 0.

The correlated equilibrium polytope, i.e. the set of points p that satisfy these inequalities,
has 5 vertices with coordinates

0
0
1
0

 ,


0
1
0
0

 ,


1

10000
99

10000
99

10000
9801

10000

 ,


0
1

101
1

101
99

101

 ,


1

199
99
199
99
199

0

 .

This polytope is depicted in Figure 5.2. The vertices (0, 0, 1, 0)t and (0, 1, 0, 0)t are the
probability distributions representing the pure joint strategies in which one player
drives, while the other stops. The vertices ( 1

10000 , 99
10000 , 99

10000 , 9801
10000 )

t, and (0, 1
101 , 1

101 , 99
101 )

t

are probability distributions in which it is most likely that both players stop, while
the scenario in which both players drive is the least likely one. Finally, the vertex
( 1

199 , 99
199 , 99

199 , 0)t is a probability distribution in which, most likely and with equal
probability, one of the players drives while the other one stops. �

The next proposition shows that two affinely dependent games define the same corre-
lated equilibrium polytope.

Proposition 5.1.4. Any affine linear transformation of the payoff tensors X(i) with
positive scalars leaves the polytope PG invariant. More precisely, let G = (n, S, X) be
a game. For each i ∈ [n], fix ti ∈ R, λi ∈ R>0 and let X̃(i)

j1...jn = λiX
(i)
j1 ...jn + ti for all

jk ∈ [dk], k ∈ [n]. Then for the game G̃ = (n, X̃, S) with X̃ = (X̃(1), . . . , X̃(n)) it holds
that PG = PG̃.
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5.1 The Correlated Equilibrium Polytope

Figure 5.3: A 3-dimensional correlated equilibrium polytope (green) inside the probability
simplex ∆3 (yellow) for a (2× 2)-game. Its Nash equilibria (black) are the intersection
with the Segre variety (red). This picture applies to the Traffic Lights example
(Examples 5.1.1, 5.1.3 and 5.1.6) as well as the Hawk-Dove game (Example 5.4.1).

Proof. For each player i ∈ [n] let X(i) be their payoff tensor, fix ti ∈ R, λi ∈ R>0, and
consider the affine transformation X̃(i)

j1 ...jn = λiX
(i)
j1 ...jn + ti. Then

d1

∑
j1=1

. . .
d̂i

∑
ji=1
· · ·

dn

∑
jn=1

(
X̃(i)

j1...ji−1kji+1...jn
− X̃(i)

j1 ...ji−1l ji+1 ...jn

)
pj1...ji−1kji+1 ...jn

=
d1

∑
j1=1

. . .
d̂i

∑
ji=1
· · ·

dn

∑
jn=1

(
λiX

(i)
j1 ...ji−1kji+1 ...jn

+ ti − λiX
(i)
j1 ...ji−1l ji+1 ...jn

− ti

)
pj1 ...ji−1kji+1...jn

=λi

d1

∑
j1=1

. . .
d̂i

∑
ji=1
· · ·

dn

∑
jn=1

(
X(i)

j1...ji−1kji+1 ...jn
− X(i)

j1...ji−1l ji+1...jn

)
pj1 ...ji−1kji+1 ...jn ≥ 0.

Since λi > 0, this is equivalent to (5.1) being nonnegative.

Definition 5.1.5 (Nash Equilibrium). Let G be a game. A Nash equilibrium of G is a point
of the correlated equilibrium polytope that is a tensor of rank one. More specifically,
the set of Nash equilibria are those points in PG that are also contained in the image of
the product map

ϕ : ∆d1−1 × · · · × ∆dn−1 → ∆d1···dn−1

(p(1), . . . , p(n)) 7→ p(1)j1
· . . . · p(n)jn

The image of this map is the Segre variety inside ∆d1···dn−1.
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5 combinatorics of correlated equilibria

Figure 5.3 shows a 3-dimensional correlated equilibrium polytope of a (2× 2)-game
together with the Segre variety inside the simplex ∆3. We illustrate this in more details
in the following example.

Example 5.1.6 (Traffic Lights). We continue with the Traffic Lights example from
Examples 5.1.1 and 5.1.3. The Nash equilibria of this game occur as vertices of the
correlated equilibrium polytope PG. More precisely, they occur as the images of
the points (p(1), p(2)) ∈ ∆1 × ∆1 with coordinates ((1, 0), (0, 1)), ((0, 1), (1, 0)) and
(( 1

100 , 99
100 ), ((

1
100 , 99

100 )) under the product map ϕ from Definition 5.1.5, which correspond
to the three black vertices in Figure 5.2. With indexing p = (p11, p12, p21, p22) the images
of the first two points are p = (0, 1, 0, 0) and (0, 0, 1, 0). These are the probability
distributions which correspond to the pure joint strategies in which one of the players
drives, while the other one stops. The point p = ( 1

10000 , 99
10000 , 99

10000 , 9801
10000 ) is a probability

distribution in which it is most likely that both players stop, independently from each
other. �

By Definition 5.1.5, the set of Nash equilibria is a subset of the correlated equilibrium
polytope, and a Nash equilibrium always exists [Nas50]. However, characterizing Nash
equilibria is a computationally difficult task [PR05]. It is thus of interest to understand
where the Nash equilibria lie relative to the correlated equilibrium polytope. A game
G is called non-trivial if X(i)

j1 ...ji−1kji+1,...jn
6= X(i)

j1 ...ji−1l ji+1,...jn
for some player i ∈ [n] and

k, l ∈ [di] with k 6= l. The next result states that if PG is of maximal dimension, then any
Nash equilibrium lies on a proper face of PG.

Proposition 5.1.7 ([NCH04, Proposition 1]). Let G be a non-trivial game. Then the
Nash equilibria lie on a face of the correlated equilibrium polytope PG of dimension
at most d1 · · · dn − 2. In particular, if PG has maximal dimension d1 · · · dn − 1, then the
Nash equilibria lie on the relative boundary of PG.

In order to locate the possible positions of Nash equilibria, it is thus helpful to un-
derstand the conditions under which PG is of maximal dimension. In Section 5.3 we
introduce the region of full-dimensionality, which formalizes these conditions.

5 .2 the correlated equilibrium cone

The combinatorics of the correlated equilibrium polytope is completely determined
by the cone given by the incentive constraints (5.1), intersected with the nonnegative
orthant. The correlated equilibrium cone CG ⊆ Rd1···dn is the polyhedral cone defined by
inequalities

pj1...jn ≥ 0

d1

∑
j1=1
· · ·

d̂i

∑
ji=1
· · ·

dn

∑
jn=1

(
X(i)

j1···ji−1kji+1···jn − X(i)
j1···ji−1l ji+1···jn

)
pj1···ji−1kji+1···jn ≥ 0

(5.2)
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for all k, l ∈ [di], and for all i ∈ [n]. For each player i ∈ [n] this defines di(di − 1)
nontrivial inequalities of type (5.2). The cone CG is a convex pointed polyhedral cone
and the correlated equilibrium polytope PG is the intersection of the cone with the
hyperplane where the sum of all coordinates equals 1. Therefore, a facet of PG is in
bijection with a facet of CG, and a vertex of PG is in bijection with an extremal ray of CG.
We make a substitution of the coefficients in the inequality (5.2). For each i ∈ [n],
j1 ∈ [d1], . . . , ji−1 ∈ [di−1], k, l ∈ [di], ji+1 ∈ [di+1], . . . , jn ∈ [dn] we define

Y(i)
j1··· ĵi ···jn

(k, l) = X(i)
j1···ji−1kji+1···jn − X(i)

j1···ji−1l ji+1···jn .

Note that Y(i)
j1... ĵi ...jn

(k, l) = −Y(i)
j1 ... ĵi ...jn

(l, k). Thus, for each player i ∈ [n] this defines

(di
2 )∏k∈[n]

k 6=i
dk distinct variables, so in total this defines

M =
n

∑
i=1

(
di

2

)
∏

k∈[n]
k 6=i

dk

many variables. Under this substitution, the above inequality becomes

d1

∑
j1=1
· · ·

d̂i

∑
ji=1
· · ·

dn

∑
jn=1

Y(i)
j1··· ĵi ···jn

(k, l) pj1···jn ≥ 0. (5.3)

For fixed i ∈ [n], k, l ∈ [di], let U(i)
kl ∈ Rd1···dn be the vector with entries

(U(i)
kl )j1 ...ji ...jn =


Y(i)

j1... ĵi ...jn
(k, l) if ji = k and k < l

−Y(i)
j1... ĵi ...jn

(k, l) if ji = k and k > l

0 otherwise

for each coordinate indexed by j1 ∈ [d1], . . . , ji ∈ [di], . . . , jn ∈ [dn]. Using the same
indexing of coordinates for p ∈ Rd1·...·dn , the inequalities (5.3) can be expressed as the
inner product 〈U(i)

kl , p〉 ≥ 0.

Example 5.2.1 ((2× 2)-games). Consider a 2-player game with d1 = d2 = 2. We fix the
indexing p = (p11, p12, p21, p22). Recall that the inequalities are

(X(1)
11 − X(1)

21 )p11 + (X(1)
12 − X(1)

22 )p12 = Y(1)
1 (1, 2) p11 + Y(1)

2 (1, 2) p12 ≥ 0

(X(1)
21 − X(1)

11 )p21 + (X(1)
22 − X(1)

12 )p22 = −Y(1)
1 (1, 2) p21 −Y(1)

2 (1, 2) p22 ≥ 0

(X(2)
21 − X(2)

22 )p21 + (X(2)
11 − X(2)

12 )p11 = Y(2)
2 (1, 2) p21 + Y(2)

1 (1, 2) p11 ≥ 0

(X(2)
22 − X(2)

21 )p22 + (X(2)
12 − X(2)

11 )p12 = −Y(2)
2 (1, 2) p22 −Y(2)

1 (1, 2) p12 ≥ 0.
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The vectors U(i)
kl have entries in the 4 unknowns Y(1)

1 (1, 2), Y(1)
2 (1, 2), Y(2)

1 (1, 2), Y(2)
2 (1, 2).

More specifically,

U(1)
12 = (Y(1)

1 (1, 2) , Y(1)
2 (1, 2) , 0, 0)

U(1)
21 = −(0, 0, Y(1)

1 (1, 2) , Y(1)
2 (1, 2))

U(2)
12 = (Y(2)

1 (1, 2) , 0, Y(2)
2 (1, 2) , 0)

U(2)
21 = −(0, Y(2)

1 (1, 2) , 0, Y(2)
2 (1, 2)).

The cone CG is defined by the inequalities 〈U(i)
kl , p〉 ≥ 0 for i ∈ [2], and k, l ∈ [2], k 6= l,

and the inequalities 〈ei, p〉 ≥ 0, where ei denote the standard basis vectors of R4. �

Recall that the number of variables defined above is M = ∑n
i=1 (

di
2 )∏k∈[n]

k 6=i
dk. The

ambient dimension of the correlated equilibrium polytope and cone is D = ∏n
i=1 di,

and the number of linear inequalities of the form (5.3) is N = ∑n
i=1 di(di − 1). Let

U(Y) ∈ RN×D be the matrix with rows U(i)
kl for i ∈ [n], k, l ∈ [di], k 6= l, and let

A(Y) ∈ R(D+N)×D be the block matrix

A(Y) =

(
U(Y)
IdD

)
.

By (5.3), the cone CG = C(Y) is given by

C(Y) =
{

p ∈ RD
∣∣∣ A(Y)p ≥ 0

}
.

The matrix A(Y) has full rank D, and so C(Y) is a pointed cone.

For (d1 × · · · × dn)-games, where di ≥ 3 for some i ∈ [n], we have additional relations

Y(i)
j1··· ĵi ···jn

(k, l) + Y(i)
j1··· ĵi ···jn

(l, t) = Y(i)
j1··· ĵi ···jn

(k, t) (5.4)

for j1 ∈ [d1], . . . , ji−1 ∈ [di−1], k, l, t ∈ [di], ji+1 ∈ [di+1], . . . , jn ∈ [dn]. A vector Y ∈ RM

corresponds to a certain game G if and only if these relations hold. Geometrically, these
relations define a linear space inside RM. We thus make the following definition.

Definition 5.2.2. The correlated equilibrium space S ⊆ RM of (d1× · · · × dn)-games is the
linear space defined by the equations (5.4), where i ∈ [n] ranges over all players with at
least 3 strategies. If all players have at most 2 strategies, then no such relation among
the variables holds, and the correlated equilibrium space is the entire ambient space
S = RM.
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Example 5.2.3 (S for (2× 3)-games). In a (2× 3)-game, there are six variables

Y(1)
1 (1, 2) = X(1)

11 − X(1)
21 , Y(1)

2 (1, 2) = X(1)
12 − X(1)

22 , Y(1)
3 (1, 2) = X(1)

13 − X(1)
23 ,

Y(2)
1 (1, 2) = X(2)

11 − X(2)
12 , Y(2)

1 (1, 3) = X(2)
11 − X(2)

13 , Y(2)
1 (2, 3) = X(2)

12 − X(2)
13 ,

Y(2)
2 (1, 2) = X(2)

21 − X(2)
22 , Y(2)

2 (1, 3) = X(2)
21 − X(2)

23 , Y(2)
2 (2, 3) = X(2)

22 − X(2)
23 .

The relations among these variables are

Y(2)
1 (1, 2) + Y(2)

1 (2, 3) = Y(2)
1 (1, 3), Y(2)

2 (1, 2) + Y(2)
2 (2, 3) = Y(2)

2 (1, 3).

These relations cut out the 4-dimensional correlated equilibrium space S for (2× 3)-
games. For any game (2× 3)-games G the correlated equilibrium polytope is nonempty,
a so point Y ∈ R6 defines a correlated equilibrium cone of dimension at least 1 if and
only if it satisfies the above relations. �

Remark 5.2.4. In the following sections we will classify correlated equilibrium polytopes
and cones with respect to the variables Y instead of the payoff tensors X. We note that
this is not a significant restriction, as this is a linear change of coordinates and thus
does not change the geometry of the objects described in what follows, provided one
restricts to the correlated equilibrium space S .

5 .3 the region of full-dimensionality

In this section we introduce the region of full-dimensionality for a fixed type of games.
For fixed di ∈ N, i ∈ [n], this region classifies for which (d1 × · · · × dn)-games the
polytope PG is of maximal dimension D− 1 = d1 · · · dn− 1. Recall from Proposition 5.1.7
that the dimension of PG may determine the possible positions of Nash equilibria. The
connections between full-dimensionality and elementary games are discussed in [Vio03].
In general, it is not understood under which conditions PG has maximal dimension
(i.e. G is a full game), though there are partial results on forbidden dimensions [Vio10,
Proposition 7].
Let S ⊆ RM be the correlated equilibrium space and let A(Y) and C(Y) be the matrix
and correlated equilibrium cone as defined in Section 5.2. We consider the correlated
equilibrium polytope P(Y) as the set of points in C(Y) whose coordinates sum to 1.
Recall that P(Y) is of maximal dimension if and only if C(Y) is full-dimensional. Thus,
we are interested in the region of full-dimensionality

D = {Y ∈ S | dim(C(Y)) = D} .

In Section 1.8, we introduce semialgebraic sets as subsets of RM defined by a boolean
combinations of finitely many polynomial inequalities. In fact, D is semialgebraic.
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Theorem 5.3.1. The region D of full-dimensionality is the semialgebraic set

πY

({
(x, Y) ∈ RD+M

∣∣∣ A(Y)x > 0
})
∩ S

where πY is the coordinate projection onto the last M coordinates.

Proof. The cone C(Y) is full-dimensional if and only if it has nonempty interior, i.e. if
there exists some p ∈ RD such that A(Y)p > 0. Let x = (xj1···jn | i ∈ [n], ji ∈ [di]) be a
vector of D indeterminates. Consider the set

D̃ =
{
(x, Y) ∈ RD+M

∣∣∣ A(Y)x > 0
}

.

The expression A(Y)x defines a (D + N)-dimensional vector, where each coordinate
is a polynomial in variables x and Y. Hence, the set D̃ is defined by D + N poly-
nomial inequalities, and is thus a (basic open) semialgebraic set. The region D of
full-dimensionality is the intersection of the correlated equilibrium space S with a
coordinate projection of D̃, which can be obtained by projecting away the x-coordinates.
The Tarski–Seidenberg theorem (Theorem 1.8.2) implies that the coordinate projection
is semialgebraic, and hence D is a semialgebraic set.

Example 5.3.2 (D for (2× 2)-games). In the case of (2× 2)-games, the ambient dimen-
sion of the correlated equilibrium polytope is D = 4, the number of incentive constraints
is N = 4 (so the number of inequalities that define the polytope is D + N = 8) and the
ambient dimension of D ⊆ S = RM is M = 4. The different combinatorial types in this
case have been fully classified in [CA03] and P(Y) is either a point or a bipyramid over
a triangle. Here, D ⊆ R4 is the union of two open orthants:

(i) Y(1)
1 (1, 2) > 0, Y(1)

2 (1, 2) < 0, Y(2)
1 (1, 2) > 0, Y(2)

2 (1, 2) < 0

(ii) Y(1)
1 (1, 2) < 0, Y(1)

2 (1, 2) > 0, Y(2)
1 (1, 2) < 0, Y(2)

2 (1, 2) > 0

The file dimensions2x2.nb [BHP22b] contains a Mathematica script [Mat] which
computes these inequalities. �

Example 5.3.3 (D for (2× 3)-games). The coordinate projection of the set D̃ onto R9 is
the union of basic semialgebraic sets, where each piece is the intersection of an orthant
with a binomial inequality. One of the pieces is

Y(1)
1 (1, 2) > 0, Y(1)

2 (1, 2) > 0, Y(1)
3 (1, 2) < 0,

Y(2)
1 (1, 2) < 0, Y(2)

1 (1, 3) < 0, Y(2)
1 (2, 3) > 0,

Y(2)
2 (1, 2) > 0, Y(2)

2 (1, 3) > 0, Y(2)
2 (2, 3) < 0,

Y(2)
2 (1, 3) Y(2)

1 (2, 3) < Y(2)
1 (1, 3) Y(2)

2 (2, 3).
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The region D of full-dimensionality for (2× 3)-games consists of the intersection of the
above mentioned pieces with the correlated equilibrium space S . The Mathematica
file dimensions2x3.nb [BHP22b] contains our code for computing all of the compo-
nents of this semialgebraic set. �

While this approach could theoretically be used to obtain inequalities for larger games,
this is extremely difficult in practice since the required algebraic methods do not scale
well as the number of variables involved increases. For example, we were unable to
carry out this computation for (2× 2× 2)-games since we must compute the coordinate
projection of a semialgebraic set which lives in D + M = 20-dimensional space.

5 .4 combinatorial types of correlated equilibrium polytopes

In this section, we consider how to systematically classify combinatorial types of poly-
topes arising as a correlated equilibrium polytope. First, we present a systematic
approach for classifying the possible combinatorial types for arbitrary games by describ-
ing oriented matroid strata. However, even for small examples the explicit computation
of the oriented matroid strata is beyond current scope and thus we introduce algebraic
methods for understanding oriented matroid strata via a common algebraic bound-
ary. We use this technique to completely classify the combinatorial types of PG for
(2× 3)-games (Theorem 5.4.8). We then show that for all (2× n)-games the irreducible
components of the common algebraic boundary of the oriented matroid strata are
coordinate hyperplanes and (2× 2)-minors of the matrix A(Y) (Theorem 5.4.7).

Example 5.4.1 (Hawk-Dove game). This game models a scenario of a competition for a
shared resource. Both players can choose between conflict (hawk) or conciliation (dove)
and is a generalization of the Traffic Lights example (Examples 5.1.1, 5.1.3 and 5.1.6).
The inequalities for general (2× 2)-games are given in Example 5.2.1. In the Hawk-Dove
game, each of the two players has two strategies s(i)1 =“hawk” or s(i)2 =“dove”.

Player 2
Hawk Dove

Player 1
Hawk

(V−C
2 , V−C

2

)
(V, 0)

Dove (0, V)
(V

2 , V
2

)
In this bimatrix game, V represents the value of the resource and C represents the cost
of the escalated fight. It is mostly assumed that C > V > 0. The correlated equilibria
polytope PG is a bipyramid over a triangle. In the case V ≥ C > 0, the game becomes
an example for the famous Prisoner’s Dilemma, in which case PG is a single point. �

As seen in the previous example, for fixed d1, . . . , dn ∈ N, different choices of the
payoffs for the players in a (d1 × · · · × dn)-game can result in different combinatorial
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types of correlated equilibria. We would thus like to classify the regions of the correlated
equilibrium space S ⊆ RM such that

{Y ∈ S | C(Y) has a fixed combinatorial type} .

We now explain how the combinatorial type of C(Y) is completely determined by the
underlying oriented matroid defined by the matrix A(Y). The combinatorial type of
C(Y) is the incidence structure of rays and facets of C(Y). Equivalently, we can classify
the incidence structure of facets and rays of the dual cone C∨(Y). By definition, the
(inner) facet normals of C(Y) are generators of extremal rays of C∨(Y) and vice versa.
Let h ∈ [D + N] and Ah(Y) be a row of A(Y). Seen as a linear functional, this row
uniquely selects a face

Fh = {p ∈ C(Y) | 〈Ah(Y), p〉 = 0} .

Note that this is not necessarily a facet of C(Y), but all facets of C(Y) arise in this way.
For the dual cone C∨(Y) this implies that rh = cone(Ah(Y)) is an extremal ray of C∨(Y)
if and only if Fh is a facet of C. If C(Y) is not full-dimensional, then there is some
h ∈ [D + N] such that Fh = C(Y). The set of all such vectors span the lineality space

L = C∨(Y) ∩ (−C∨(Y)) = span ({Ah | Fh = C(Y)})

of C∨(Y). In this case, extremal rays of C∨(Y) are to be considered in C∨(Y)/L.

We want to understand the incidence structure of extremal rays and facets of C(Y).
Each such ray of C(Y) is contained in at least D− 1 facets. Thus, we seek to understand
which subsets of D− 1 faces Fh of C(Y) intersect in a single point. Equivalently, we
want to understand which subsets of D− 1 rays rh of C∨(Y) are contained in a common
face. Let H ⊆ [D + N] such that |H| = D − 1, and denote by AH(Y) the submatrix
of A(Y) with rows indexed by H. If {rh | h ∈ H} lie on a common face, then these
rays all lie on the hyperplane given by the rowspan of AH(Y). Note that in this
case all rays rh′ , h′ ∈ [D + N] \ H lie on the same side of this hyperplane. Thus, the
sign of det(AH∪h′) is uniquely determined for all h′ ∈ [D + N] \ H. In the language
of Section 1.2 this means that the chirotope defined by the matrix A(Y) completely
determines the combinatorial type.
The collections of all regions R ⊆ RM in which the maximal minors of A(Y) satisfies a
certain sign pattern are known as oriented matroid strata of A(Y). Each cell gives rise to
a fixed sign pattern of the maximal minors of A(Y), i.e. the underlying chirotope and
hence a fixed oriented matroid. Restricting all oriented matroid strata to the correlated
equilibrium space S yields a subdivision of S in which distinct combinatorial types lie
in distinct regions.
Let S ⊆ RM be a semialgebraic set. Recall from Section 1.8 that the algebraic boundary
∂aS is the Zariski closure of the topological (Euclidean) boundary ∂S, i.e. the smallest
algebraic variety containing ∂S over C.
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Construction 5.4.2 (Algebraic Boundary). For every H ⊆ [D + N], |H| = D the minor
det(AH) is a polynomial in variables Y of degree at most D, and sgn(det(AH)) ∈
{−1, 0, 1} is a polynomial inequality. Let s = (sH | H ⊆ ([D+N]

D )), sH ∈ {1,−1} be a
sign vector. Each maximal open stratum is of the form

R◦s =

{
Y ∈ RM

∣∣∣∣ sgn(det(AH(Y))) = sH for all H ∈
(
[D + N]

D

)}
.

Let Rs denote the Euclidean closure of such an open maximal region, which is a closed
basic semialgebraic set. We define the algebraic boundary of all oriented matroid strata ∂aR
as the union of the algebraic boundaries of all such closed regions, i.e.

∂aR =
⋃
s

∂aRs =
⋃

H∈([D+N]
D )

V(det(AH(Y))),

where the first union ranges over all sign vectors s such that R◦s is maximal, and
V(det(AH(Y))) =

{
Y ∈ RM

∣∣ det(AH(Y)) = 0
}

. In the second union we only consider

H ∈ ([D+N]
D ) such that AH(Y) contains at least one variable. Recall that A(Y) =

(
U(Y)
IdN

)
where the matrix U(Y) has no zero rows and all nonzero entries are variables. Thus, the
only minor of A(Y) that does not contain a variable is the determinant of IdD, so the
number of such minors is (D+N

D )− 1. We note that the minors may not be irreducible
polynomials, so they do not necessarily define the irreducible components of the variety
∂aR. In total, this defines (D+N

D )− 1 hypersurfaces, whose defining polynomials are of
degree at most D.

The algebraic boundary ∂aR can be seen as an arrangement of hypersurfaces. Applying
[BLN22] and [Bas03, Theorem 4] to this setup yields a general bound on the number of
oriented matroid strata.

Proposition 5.4.3. Let δ be the maximum degree of all β ≤ (D+N
D )− 1 defining

polynomials of the boundaries of the regions of the oriented matroid strata. Then
δ ≤ D and the number of maximal regions in the oriented matroid strata is at most

δ(2δ− 1)M−1(1 + 3β).

The following three examples illustrate this construction for small games.

Example 5.4.4 (∂aR for (2× 2)-games). In a (2× 2)-game we have D = 4, N = 4
and M = 4. The number of irreducible components of ∂aR is β = 4, and these are
the 4 coordinate hyperplanes. Indeed, the classification in [CA03] shows that in each
open orthant the combinatorial type is fixed, and in the two orthants described in
Example 5.3.2 there is a unique combinatorial type of maximal dimension. The file
orientedMatroidStrata2x2.m2 [BHP22b] contains a Macaulay2 script [GS22]
which explicitly computes these irreducible components. �
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Example 5.4.5 (∂aR for (2× 3)-games). In a (2× 3)-game, we have D = 6, N = 8
and M = 9. The number of minors of AH(Y) that contain at least one variable is
(12

6 ) − 1 = 934, but the number of irreducible components is only β = 12. All of
these polynomials are homogeneous, and the maximum degree is δ = 2. In fact, the
irreducible components are the 9 coordinate hyperplanes, together with the 3 binomials

Y(2)
2 (1, 2) Y(2)

1 (1, 3)−Y(2)
1 (1, 2) Y(2)

2 (1, 3)

Y(2)
2 (1, 2) Y(2)

1 (2, 3)−Y(2)
1 (1, 2) Y(2)

2 (2, 3)

Y(2)
2 (1, 3) Y(2)

1 (2, 3)−Y(2)
1 (1, 3) Y(2)

2 (2, 3).

Thus, Proposition 5.4.3 implies that the oriented matroid strata is at most 2 · 38(1 +
3 · 12) = 485 514. However, as we will show in Theorem 5.4.8, it turns out that there
are precisely 3 distinct combinatorial types. We note that the three binomials above
are precisely the binomials intersecting the the orthants in Example 5.3.3. The file
orientedMatroidStrata2x3.m2 [BHP22b] contains Macaulay2 code which ex-
plicitly computes these polynomials. �
Example 5.4.6 (∂aR for (2× 2× 2)-games). In a (2× 2× 2)-game, we have D = 8, N = 6
and M = 12. The number of minors of AH(Y) that contain at least one variable
is (14

8 ) − 1 = 3003, but the number of irreducible components of ∂aR is only 194.
All of these polynomials are homogeneous, and the maximum degree is 6. The
file orientedMatroidStrata2x2x2.m2 [BHP22b] contains Macaulay2 code which
explicitly computes these polynomials. Proposition 5.4.3 implies that the number of
oriented matroid strata is at most

6 · 1111(1 + 3 · 194) = 998 020 223 797 278 > 1014.

However, as in Example 5.4.5, we expect the actual number to be much smaller than
given by this bound. �
The previous examples illustrate that the algebraic boundary of all oriented matroid
strata is quite nice for (2× 3)-games but becomes significantly more complicated even
for (2× 2× 2)-games. The following theorem shows that the nice structure we see for
(2× 3)-games holds for all (2× n)-games.

Theorem 5.4.7. Consider a (2× n)-game, i.e. a 2-player game with strategies d1 = 2
and d2 = n ∈N. Then the irreducible components of ∂aR are given by

(i) all coordinate hyperplanes and

(ii) certain hypersurfaces defined by quadratic binomials that are given by some
(2× 2)-minors of the matrix A(Y).

Proof. We prove by induction on n. For n = 2 after reordering the rows and columns,
the matrix A(Y) = A2(Y) has the following representation:
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Y(1)
1 (1, 2) Y(1)

2 (1, 2)
−Y(1)

1 (1, 2) −Y(1)
2 (1, 2)

Y(2)
1 (1, 2) Y(2)

2 (1, 2)
Y(2)

1 (2, 1) Y(2)
1 (2, 1)

Id4


For n = 3 the columns and rows can be arranged to A(Y) = A3(Y) as follows.



Y(1)
1 (1, 2) Y(1)

2 (1, 2) Y(1)
3 (1, 2)

−Y(1)
1 (1, 2) −Y(1)

2 (1, 2) −Y(1)
3 (1, 2)

Y(2)
1 (1, 2) Y(2)

2 (1, 2)
Y(2)

1 (1, 3) Y(2)
2 (1, 3)

Y(2)
1 (2, 1) Y(2)

2 (2, 1)
Y(2)

1 (2, 3) Y(2)
2 (2, 3)

Y(2)
1 (3, 1) Y(2)

2 (3, 1)
Y(2)

1 (3, 2) Y(2)
2 (3, 2)

Id6

.


In both cases, the statement holds by Examples 5.4.4 and 5.4.5. First, we describe
the general block matrix structure of A(Y) = An(Y) for fixed n ∈ N. Recall that
An(Y) is a ((D + N)× D)-matrix, where D = 2n and N = 2 + n(n− 1). As in the
case n = 2, 3, we can arrange the rows and columns of An(Y) such that the first two

rows consist of n blocks of size (2× 2), which are of the form
[

Y(1)
k (1,2)

−Y(1)
k (1,2)

]
for

k ∈ [n]. The following n(n− 1) rows form a block diagonal matrix, with n blocks of
size ((n− 1)× 2) of the form  Y(2)

1 (k,1) Y(2)
2 (k,1)

...
...

Y(2)
1 (k,n) Y(2)

2 (k,n)


for each k ∈ [n], where the row [Y(2)

1 (k, k) Y(2)
1 (k, k)] is omitted. Finally, the last 2n rows

consist of the identity matrix Id2n.
We now assume that the statement holds for n and show it for n + 1. Note, that we
can construct the matrix for An+1(Y) by adding the following rows and columns to the
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matrix for An(Y): To the first two rows we add the block[
Y(1)

n+1(1,2)

−Y(1)
n+1(1,2)

]
To the kth block of the block diagonal matrix we add the row

[Y(2)
1 (k, n + 1) Y(2)

2 (k, n + 1)],

and we add the entire block  Y(2)
1 (n+1,1) Y(2)

1 (n+1,1)
...

...
Y(2)

1 (n+1,n) Y(2)
1 (n+1,n)

 .

Finally, we complete the identity matrix. Schematically, this procedure can be viewed
as in the following picture, where ∗ indicate non-zero entries, and the cells that are
added when going from n to n + 1 are shaded in gray.

* * * *
* * * *

*

*

*

*

*

*

*

Id2n−1

1
1



182



5.4 Combinatorial Types of Correlated Equilibrium Polytopes

We now consider the minors of the matrix An+1(Y) for n + 1, and show that they are
either monomials, binomials, or zero. Note that every maximal minor of An+1(Y) that
involves a row from the identity matrix corresponds to a smaller minor of the remaining
matrix. We thus consider all minors of the submatrix of An+1(Y) that consists of the
first 2 + (n + 1)n rows. Choosing a submatrix of An+1(Y) that consists of at most n− 1
rows from each block of the block diagonal matrix and at most n columns of even (or
odd) index yields a submatrix of the matrix An(Y), up to relabeling of variables. Thus,
the statement holds by induction.
Choose any (n× n)-submatrix M of An+1(Y) containing n rows from a single block
of the block diagonal matrix. Then M has precisely two nonzero columns and thus
has rank ≤ 2, so the determinant of this matrix is 0. Therefore, the determinant of any
square matrix containing these n rows is also 0.
Finally, consider an ((n + 1)× (n + 1))-submatrix M containing the first row, and all
columns of odd index (so the first row of M does not contain any 0s). We compute
the determinant of M by expanding a column which has a maximum number of 0-
entries. If M contains a column with only a single non-zero entry Y(1)

k (1, 2), then the

det(M) = Y(1)
k (1, 2)det(M) for some submatrix M of M. By induction (possibly after

a relabeling of variables), det(M) is either a monomial, binomial, or 0. Suppose that
no such column exists. Then for each column with first entry Y(1)

k (1, 2), k ∈ [n + 1]

the matrix M must contain a row from the block with entries Y(2)
∗ (k, ∗). However, this

requires that M consists of at least n + 2 rows, contradicting the assumption that M
is a square matrix of size n + 1. Thus, the determinant of every submatrix of An+1(Y)
containing M is zero. An analogous argument holds for any submatrix containing the
second row, and all columns of even index.
Thus by induction we have that every minor of A(Y) is the product of a monomial
and some of the (2× 2)-minors of the matrix A(Y). This implies that the irreducible
components of ∂aR are some (2× 2)-minors of A(Y) and the coordinate hyperplanes.

We now show how the algebraic boundary of all oriented matroid strata of (2× 3)-
games can be used to completely determine the possible combinatorial types of the
polytope.

Theorem 5.4.8. Let G be a (2× 3)-game with payoffs Y ∈ S ⊆ R9 and let PG = P(Y)
be its associated correlated equilibrium polytope. Then one of the following holds.

(i) PG is a point.

(ii) PG is of maximal dimensional and of a unique combinatorial type.

(iii) There exists a (2× 2)-game G′ such that PG′ is full-dimensional and combinato-
rially equivalent to PG.
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Figure 5.4: The graph of the combinatorially unique 5-dimensional polytope that arises as the
correlated equilibrium polytope of a (2× 3)-game, as described in Theorem 5.4.8
and Example 5.4.9.

Proof. First recall that the combinatorial type is fully determined by the sign patterns
of the maximal minors of A(Y), i.e. the oriented matroid of A(Y). For (2× 3)-games
the matrix A(Y) has 1206 nonzero maximal minors for generic Y, since 1797 of the
(14

6 ) = 3003 maximal minors are identically zero. The signs of these 1206 maximal
minors are completely determined by the signs of the irreducible components of
det(A(Y)H) for each H ∈ ([14]

6 ). As in Example 5.4.5, there are 12 such irreducible
components f1, . . . , f12, which are given by the 9 coordinate hyperplanes and the 3
binomials listed in the example. This means that once we fix a sign pattern s ∈ {1,−1}12

of the fi the signs of all maximal minors of A(Y) are uniquely determined. We note
that some sign patterns are not feasible, i.e. cannot be obtained. Thus, to compute all
possible combinatorial types, we compute the combinatorial type of the polytope once
for each possible sign pattern s of the fi(Y) that is feasible.
We do this computationally, using the software Mathematica 13.0 and SageMath
9.6 [Mat; Sag]. We first use Mathematica to find a payoff Y ∈ S such that si fi(Y) > 0
for all i = 1, . . . , 12. We then compute the corresponding combinatorial type of the
polytope in SageMath. These computations can be found on MathRepo [BHP22b]
in the files combinatorialTypes2x3.nb and combinatorialTypes2x3.ipynb
respectively. As a result we obtain 3 different possible combinatorial types, which
are a single point, the unique combinatorial type of full-dimensions of (2× 2)-games
(a bipyramid over a triangle), and a new unique full-dimensional combinatorial type.
This polytope has f -vector (1, 11, 32, 40, 25, 8, 1), and the graph of this 5-dimensional
polytope is depicted in Figure 5.4. A full description of this polytope can be found in
combinatorialTypes2x3.ipynb [BHP22b].

Example 5.4.9 (Combinatorial types of (2× 3)-games). By Theorem 5.4.8, for (2× 3)-
games there is a unique combinatorial type of full-dimension. This is a 5-dimensional
polytope with f -vector (1, 11, 32, 40, 25, 8, 1) and its graph is depicted in Figure 5.4. �
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Theorem 5.4.7 shows, that in (2× 3)-games all correlated equilibrium polytopes that
are not of maximal dimension appear as the maximal polytope of a smaller game. This
gives rise to the following conjecture.

Conjecture 5.4.10. Let G be a (2× n)-game with generic payoff matrices and let
PG be its correlated equilibrium polytope. If PG is not of maximal dimension, then
there exists a (2× k)-game G′ where k < n such that PG′ is has maximal dimension
and PG and PG′ are combinatorially equivalent.

A relevant study to this conjecture is the dual reduction process of finite games. An
iterative dual reduction reduces a finite game G to a smaller elementary game G′, for
which PG′ is full-dimensional, by deleting certain pure strategies or merging several
pure strategies into a single one. Any correlated equilibrium of the reduced game G′ is
a correlated equilibrium of the original game G, however the opposite is not always true
[Mye97, Section 5]. Conjecture 5.4.10 is supported by our computations thus far. To test
this conjecture, we sampled 100 000 random payoff matrices X for (2× n)-games for
n = 4, 5. The results are summarized in Table 5.1, which shows the number of unique
combinatorial types of a given dimension that we found for each (2× n)-game. In all
of our computations, Conjecture 5.4.10 holds. The supporting code can be found on
[BHP22b].

Unique Combinatorial Types by Dimension

Dimension 0 3 5 7 9

(2× 2) 1 1 0 0 0
(2× 3) 1 1 1 0 0
(2× 4) 1 1 1 3 0
(2× 5) 1 1 1 3 4

Table 5.1: The number of unique combinatorial types of PG of each dimension for a (2× n)-game
in a random sampling of size 100 000.

In contrast to the (2× n)-case, (2× 2× 2)-games exhibit a much wider variety of distinct
combinatorial types. In a sample of 100 000 random payoff matrices for (2× 2× 2)-
games, we found 14 949 distinct combinatorial types which are of maximal dimension.
Amongst these 7-dimensional polytopes, the number of vertices can range from 8 to
119, the number of facets from 8 to 14, and the number of total faces from 256 to 2338.
Examples of f -vectors achieving these bounds are

fPG1
= (1, 8, 28, 56, 70, 56, 28, 8, 1)

fPG2
= (1, 119, 458, 728, 616, 302, 87, 14, 1),

fPG3
= (1, 119, 460, 733, 620, 303, 87, 14, 1).

185





B I B L I O G R A P H Y

[ABH+11] Federico Ardila, Matthias Beck, Serkan Hoşten, Julian Pfeifle, and Kim
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