352 research outputs found

    Hyper-Spectral Image Analysis with Partially-Latent Regression and Spatial Markov Dependencies

    Get PDF
    Hyper-spectral data can be analyzed to recover physical properties at large planetary scales. This involves resolving inverse problems which can be addressed within machine learning, with the advantage that, once a relationship between physical parameters and spectra has been established in a data-driven fashion, the learned relationship can be used to estimate physical parameters for new hyper-spectral observations. Within this framework, we propose a spatially-constrained and partially-latent regression method which maps high-dimensional inputs (hyper-spectral images) onto low-dimensional responses (physical parameters such as the local chemical composition of the soil). The proposed regression model comprises two key features. Firstly, it combines a Gaussian mixture of locally-linear mappings (GLLiM) with a partially-latent response model. While the former makes high-dimensional regression tractable, the latter enables to deal with physical parameters that cannot be observed or, more generally, with data contaminated by experimental artifacts that cannot be explained with noise models. Secondly, spatial constraints are introduced in the model through a Markov random field (MRF) prior which provides a spatial structure to the Gaussian-mixture hidden variables. Experiments conducted on a database composed of remotely sensed observations collected from the Mars planet by the Mars Express orbiter demonstrate the effectiveness of the proposed model.Comment: 12 pages, 4 figures, 3 table

    Adaptive Markov random fields for joint unmixing and segmentation of hyperspectral image

    Get PDF
    Linear spectral unmixing is a challenging problem in hyperspectral imaging that consists of decomposing an observed pixel into a linear combination of pure spectra (or endmembers) with their corresponding proportions (or abundances). Endmember extraction algorithms can be employed for recovering the spectral signatures while abundances are estimated using an inversion step. Recent works have shown that exploiting spatial dependencies between image pixels can improve spectral unmixing. Markov random fields (MRF) are classically used to model these spatial correlations and partition the image into multiple classes with homogeneous abundances. This paper proposes to define the MRF sites using similarity regions. These regions are built using a self-complementary area filter that stems from the morphological theory. This kind of filter divides the original image into flat zones where the underlying pixels have the same spectral values. Once the MRF has been clearly established, a hierarchical Bayesian algorithm is proposed to estimate the abundances, the class labels, the noise variance, and the corresponding hyperparameters. A hybrid Gibbs sampler is constructed to generate samples according to the corresponding posterior distribution of the unknown parameters and hyperparameters. Simulations conducted on synthetic and real AVIRIS data demonstrate the good performance of the algorithm

    Spectral–Spatial Classification of Hyperspectral Images Based on Hidden Markov Random Fields

    Get PDF
    Hyperspectral remote sensing technology allows one to acquire a sequence of possibly hundreds of contiguous spectral images from ultraviolet to infrared. Conventional spectral classifiers treat hyperspectral images as a list of spectral measurements and do not consider spatial dependences, which leads to a dramatic decrease in classification accuracies. In this paper, a new automatic framework for the classification of hyperspectral images is proposed. The new method is based on combining hidden Markov random field segmentation with support vector machine (SVM) classifier. In order to preserve edges in the final classification map, a gradient step is taken into account. Experiments confirm that the new spectral and spatial classification approach is able to improve results significantly in terms of classification accuracies compared to the standard SVM method and also outperforms other studied methods.Ritrýnt tímaritPeer reviewe

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    Topics in High-Dimensional Statistics and the Analysis of Large Hyperspectral Images.

    Full text link
    Advancement in imaging technology has made hyperspectral images gathered from remote sensing much more common. The high-dimensional nature of these large scale data coupled with wavelength and spatial dependency necessitates high-dimensional and efficient computation methods to address these issues while producing results that are concise and easy to understand. The thesis addresses these issues by examining high-dimensional methods in the context of hyperspectral image classification, unmixing and wavelength correlation estimation. Chapter 2 re-examines the sparse Bayesian learning (SBL) of linear models in a high-dimensional setting with sparse signal. The hard-thresholded version of the SBL estimator, under orthogonal design, achieves non-asymptotic error rate that is comparable to LASSO. We also establish in the chapter that with high-probability the estimator recovers the sparsity structure of the signal. The ability to recover sparsity structures in high dimensional settings is crucial for unmixing with high-dimensional libraries in the next chapter. In Chapter 3, the thesis investigates the application of SBL on the task of linear/bilinear unmixing and classification of hyperspectral images. The proposed model in this chapter uses latent Markov random fields to classify pixels and account for the spatial dependence between pixels. In the proposed model, the pixels belonging to the same group share the same mixture of pure endmembers. The task of unmixing and classification are performed simultaneously, but this method does not address wavelength dependence. Chapter 4 is a natural extension of the previous chapter that contains the framework to account for both spatial and wavelength dependence in the unmixing of hyperspectral images. The classification of the images are performed using approximate spectral clustering while the unmixing task is performed in tandem with sparse wavelength concentration matrix estimation.PHDStatisticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135893/1/chye_1.pd

    Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery

    Get PDF
    This paper studies a new Bayesian unmixing algorithm for hyperspectral images. Each pixel of the image is modeled as a linear combination of so-called endmembers. These endmembers are supposed to be random in order to model uncertainties regarding their knowledge. More precisely, we model endmembers as Gaussian vectors whose means have been determined using an endmember extraction algorithm such as the famous N-finder (N-FINDR) or Vertex Component Analysis (VCA) algorithms. This paper proposes to estimate the mixture coefficients (referred to as abundances) using a Bayesian algorithm. Suitable priors are assigned to the abundances in order to satisfy positivity and additivity constraints whereas conjugate priors are chosen for the remaining parameters. A hybrid Gibbs sampler is then constructed to generate abundance and variance samples distributed according to the joint posterior of the abundances and noise variances. The performance of the proposed methodology is evaluated by comparison with other unmixing algorithms on synthetic and real images

    Hyperspectral Unmixing Based on Dual-Depth Sparse Probabilistic Latent Semantic Analysis

    Get PDF
    This paper presents a novel approach for spectral unmixing of remotely sensed hyperspectral data. It exploits probabilistic latent topics in order to take advantage of the semantics pervading the latent topic space when identifying spectral signatures and estimating fractional abundances from hyperspectral images. Despite the contrasted potential of topic models to uncover image semantics, they have been merely used in hyperspectral unmixing as a straightforward data decomposition process. This limits their actual capabilities to provide semantic representations of the spectral data. The proposed model, called dual-depth sparse probabilistic latent semantic analysis (DEpLSA), makes use of two different levels of topics to exploit the semantic patterns extracted from the initial spectral space in order to relieve the ill-posed nature of the unmixing problem. In other words, DEpLSA defines a first level of deep topics to capture the semantic representations of the spectra, and a second level of restricted topics to estimate endmembers and abundances over this semantic space. An experimental comparison in conducted using the two standard topic models and the seven state-of-the-art unmixing methods available in the literature. Our experiments, conducted using four different hyperspectral images, reveal that the proposed approach is able to provide competitive advantages over available unmixing approaches
    corecore