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Abstract—This paper presents a novel approach for

spectral unmixing of remotely sensed hyperspectral data.

It exploits probabilistic latent topics in order to take

advantage of the semantics pervading the latent topic

space when identifying spectral signatures and estimating

fractional abundances from hyperspectral images. Despite

the contrasted potential of topic models to uncover image

semantics, they have been merely used in hyperspectral

unmixing as a straightforward data decomposition process.

This limits their actual capabilities to provide semantic rep-

resentations of spectral data. The proposed model, called

Dual-dEpth probabilistic Semantic Analysis (DEpLSA),

makes use of two different levels of topics to exploit the

semantic patterns extracted from the initial spectral space

in order to relieve the ill-posed nature of the unmixing

problem. In other words, DEpLSA defines a first level of

deep-topics to capture the semantic representations of the

spectra, and a second level of restricted-topics to estimate

endmembers and abundances over this semantic space. An

experimental comparison in conducted using two standard

topic models, and seven state-of-the-art unmixing methods

available in the literature. Our experiments, conducted

using four different hyperspectral images, reveal that the

proposed approach is able to provide competitive advan-

tages over available unmixing approaches.
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I. INTRODUCTION

Hyperspectral unmixing (HU) is an essential proce-

dure for Earth and other planetary observations due to

the frequent lack of spatial resolution in remotely sensed

hyperspectral images [1], [2]. The main goal of HU

techniques [3] is decomposing the pixel spectra from

a hyperspectral image into a collection of constituent

spectral signatures, called endmembers, and a set of

fractional abundances, that indicate the proportion of

each endmember present in the pixel. In general, the

HU process has proven to be an excellent tool to un-

cover sub-pixel information from hyperspectral imagery,

because endmembers usually correspond to the materials

appearing in the scene and, consequently, abundance

maps often provide useful information to relieve limited

spatial resolutions [4].

A. Brief HU overview

In the literature, it is possible to find two main

trends depending on the characterization scale of the

HU process [5]: (i) linear and (ii) non-linear models.

Whereas the linear HU paradigm assumes that incident

light interacts just with one material at a macroscopic

scale, the non-linear model takes into account more
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complex interactions among the solar radiation scattered

by multiple materials in the scene. Despite the potential

of non-linear models, many works in the remote sensing

field are focused on the linear approach, because com-

mon hyperspectral remote sensing sensors usually have a

rather limited spatial resolution, what makes reasonable

to assume that the mixing process occurs within the

instrument itself [6].

Broadly speaking, HU methods can be categorized

into three different groups [7]: (a) geometrical, (b)

statistical and (c) sparse regression-based. Geometrical

methods assume that the endmembers of a hyperspectral

image define a simplex of minimum volume enclosing

the dataset; therefore the geometry of convex sets can be

exploited to identify the simplex vertices [8], [9]. Despite

their high computational efficiency, geometrical models

tend not to capture highly mixed spectral signatures

because simplex facets are often ill-defined with the

absence of pure pixels in the scene. In this case, both

statistical and regression-based methods provide a more

powerful scheme to deal with the HU problem while

accounting for endmember variability.

Statistical algorithms make use of a probabilistic

framework to infer endmember and abundance param-

eters as probability distributions which, precisely, are

aimed at modeling the data variability. One of the

most relevant works was presented by Nascimento and

Bioucas in [10], where abundance fractions are defined

as mixtures of Dirichlet densities. In other works, the

endmember variability is modeled using other kinds

of distributions, for instance the Gaussian distribution

considered in [11].

Regarding sparse regression approaches, these models

formulate the unmixing task as a linear regression prob-

lem over a given spectral library [12]. That is, they use a

semi-supervised procedure to express the input image as

a combination of spectral signatures which are known in

advance. Additionally, they usually include some sort of

sparsity regularization constraint to refine and alleviate

the computational cost of the regression process.

B. Current limitations and trends

Each one of the aforementioned methodologies has

shown to be effective under specific conditions. Whereas

geometric models are able to produce better endmember

estimates when the pure pixel assumption is fulfilled in

the scene [7], statistical and regression-based methods

tend to obtain a better result in highly mixed scenarios.

Nonetheless, statistical models usually lead to com-

putationally demanding algorithms, but they have the

advantage of not requiring the availability of a suitable

spectral library.

Some recent research lines try to relieve the ill-posed

nature of the unmixing problem by taking advantage

of so-called semantic representations [13], [14], that is,

modeling the structural patterns of the spectrum domain.

Whereas the traditional hyperspectral image character-

ization scheme relies on directly using the low level

features captured by the spectral bands (e.g. reflectance

values), the semantic representation approach pursues to

provide a higher level image characterization in which

pixels are represented according to the input image

spectral patterns. In other words, each pixel is managed

as a composition of hyperspectral patterns instead of

a collection of raw values. The rationale behind this

methodology is based on the fact that spectral patterns

can be useful to identify discriminative features in the

spectra and, therefore, they can help to reduce the

uncertainty when unmixing pixels.

These semantic patterns are often defined in a su-

pervised [15] or semi-supervised form [14] with the

collaboration of expert users, who make manual as-

sociations between the chemical makeup of materials

and the shape of absorption bands in spectral signals.
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However, when it comes to unsupervised learning, these

patterns usually rely on a regular clustering process [16].

The high complexity of hyperspectral images makes

this straightforward approach unable to capture complex

spectral relationships, and this eventually limits the se-

mantic power in HU. As a result, additional research

is required to improve unmixing techniques under the

unsupervised semantic representation research line.

C. Topic models as semantic representations

During the last years, topic models have shown their

potential to effectively cope with many kind of tasks

by providing data with a higher level of semantic un-

derstanding [17]. Text categorization [18], vocabulary

reduction [19], image segmentation [20], object recog-

nition [21] or even video retrieval [22] are some of the

applications in which the semantic power of topic models

have been successfully exploited.

From a practical point of view, latent topics represent

a kind of probabilistic models which provide methods to

automatically understand and summarize data collections

by means of their hidden patterns. In particular, these

models are able to express data as probability distribu-

tions according to their hidden semantic patterns instead

of their low level features, which makes it easier for

the data to be managed at a higher abstraction level.

Precisely, this is the point that makes topic models an

interesting tool to improve the semantic characterization

level in HU.

D. Work objectives and main contributions

With the aforementioned considerations in mind, this

work is focused on implementing a new perspective on

the unsupervised HU statistical approach by means of

latent topics [17]. That is, we propose to tackle the

unmixing problem as a latent topic-based approach in

which endmembers and abundances can be estimated

according to the semantics encapsulated by the latent

topic space. Several works in the literature advocate

the use of topic models for remote sensing applications

where the image semantics may be important, such as

image annotation [23], scene classification [24], [25]

or image super-resolution [26]. Nonetheless, there are

few research works within the HU field, and this is

precisely the gap that motivates this work. To the best of

our knowledge, there is only one work in the literature

which relates HU and topic modelling [27]. However,

the approach presented here provides a more powerful

HU scheme with a comprehensive motivation and a more

robust experimental setting to shed light on the general

use of topic models within the HU field.

First, we study the straightforward application of

standard probabilistic Latent Semantic Analysis (pLSA)

[28] and Latent Dirichlet Allocation (LDA) [29] models

within the HU field. Later, we propose a new pLSA-

based model extension, called Dual-dEpth sparse prob-

ability Semantic Analysis (DEpLSA), in order to better

adapt the pLSA model to the peculiarities of the un-

mixing problem. Specifically, we develop a dual-depth

pLSA-based architecture using two different levels of

topics and a dual entropy-based regularization term to

introduce the sparsity constraint, which is also widely

taken into account in HU [7]. Finally, we conduct an

experimental comparison including some of the most

popular HU approaches available in the literature.

The rest of the document is organized as follows:

Section II presents the background of the work. In

Section III, the proposed DEpLSA model is defined,

which is specially adapted to HU. Section IV presents

the extended HU framework based on the proposed topic

model. Section V shows the experimental part of the

work, where seven unmixing methods are tested over

four different hyperspectral images. Finally, Section VI

discusses the results and Section VII draws the main
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conclusions arisen from the work.

II. BACKGROUND ON TOPIC MODELS

Topic models [17] can be defined as probabilistic

graphical models containing one or more hidden random

variables useful to uncover the hidden structure of a

data collection. Specifically, given the observed prob-

ability distribution p(w|d), which describes a corpus of

documents D = {d1,d2,...,dM} in a particular word-

space W = {w1,w2,...,wN}, latent topic algorithms

are able to obtain two probability distributions: (1)

the description of topics in words p(w|z) and (2) the

description of documents in topics p(z|d). More specif-

ically, the interpretation that we make of these elements

within the HU field is the following: documents (d)

are considered hyperspectral image pixels, words (w)

are represented by spectral bands, word-counts (n(w,d))

contain the pixel-band reflectance values, and topics

(z) depict the unmixing process in which probabilities

p(w|z) and p(z|d) represent the uncovered endmembers

and fractional abundances, respectively.

In general, topic methods can be grouped into two

reference families, one based on probabilistic Latent

Semantic Analysis (pLSA) [28] and another based on

Latent Dirichlet Allocation (LDA) [29]. Specifically,

pLSA (Fig. 1a) defines a semi-generative data model

by introducing a latent context variable associated to

the different word polysemy occurrences. The pLSA

generative process is made as follows: (1) Select a

document d with probability p(d); (2) Pick a latent class

z with probability p(z|d); (3) Generate a word w with

probability p(w|z). Nonetheless, this generative process

is usually called ill-defined because documents set topic

mixtures and simultaneously topics generate documents,

thus there is not a natural way to infer previously unseen

documents [17].

As a result, Blei et al. proposed the LDA model

(Fig. 1b) as a more general framework to overcome

pLSA limitations. LDA (Fig. 1b) represents documents

as a multinomial of topic mixtures generated by a

Dirichlet prior which is able to predict new documents.

The LDA generative process can be defined as follows:

1) Choose the length of the document, Nd ∼

Poisson(ξ).

2) Choose a parameter vector for the topic distribu-

tion, θ ∼ Dirichlet(α). The parameter α is a K-

vector (K is the number topics) with components

αk > 0 and θ is a K-vector so that θk ≥ 0 and∑K
k=1θk = 1. p(θ|α) is the probability density

function of the Dirichlet distribution.

3) For each one of the Nd words wn:

a) Choose a topic tn ∼Multinomial(θ).

b) Choose a word wn from p(wn|tn,β), a multi-

nomial probability conditioned on the topic

tn, where β is a K × N matrix (N is the

number of terms in the vocabulary) so that

βij = P (wj |ti) for all 1 ≤ j ≤ N and

1 ≤ i ≤ K.

Although both pLSA and LDA models have shown

to be effective in many fields, there are some practical

differences that need to be reviewed. The number of

pLSA parameters grows linearly with the number of

training documents which makes this model particularly

memory demanding and susceptible to over-fitting. LDA

potentially overcomes these drawbacks by using two

Dirichlet distributions, one to model documents θ ∼

Dir(α) and another to model topics p(w|t,β) ∼ Dir(β).

However, the α and β hyper-parameters have to be

estimated during the topic extraction process and it

logically adds an extra computational time and makes

LDA performance highly sensitive to the quality of

this estimation. In practice, α and β are estimated by
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(a) The pLSA topic model. (b) The LDA topic model.

Fig. 1: In (a), the nodes d,z,w represent document, topic and word random variables. In (b), α and β represent the

Dirichlet hyperparameters for the topic-document and word-topic distributions. Besides, θ represents the multinomial

distribution generated from the corresponding Dirichlet prior α and t corresponds to the categorical distribution

used for the topic activations. In both models, letters Nd and M are the number of words in the document and the

total number of documents in the collection. Finally, shaded nodes represent the observable variables of the models.

iterating over the document collection which results in

LDA requiring relatively dense distributions to obtain

a good hyper-parameter estimation [30]. Even authors

in [31] stand that pLSA is able to obtain a topic

structure more correlated to the human judgement than

LDA, even though the perplexity metric may suggest

the opposite. All these facts make pLSA-based models

usually preferred when relatively few training samples

are available according to the complexity of the problem

[31].

In the context of unsupervised HU, the amount of

information available to estimate endmembers and abun-

dances is generally rather limited due to the fact that the

unmixing process is carried out using only the own input

image. As a result, pLSA-based models may take advan-

tage of considering the document collection as model

parameters in order to obtain a better spectral semantic

characterization than LDA. Ceirtainly, this hypothesis

is supported by the fact that, in the unmixing field, it

is usual to see approaches based on the Non-negative

Matrix Factorization (NMF) [32]–[34] which is, in some

sense, connected to pLSA.

The NMF approximation relies on linear algebra to

factorize an input matrix into two multiplicative factors

in an analogous way to pLSA. Despite the relation

between NMF and pLSA [35], there are important

implications derived from the pLSA use that can be

highly beneficial in HU. First, pLSA offers a highly

consistent probabilistic framework to develop further

model extensions [3]. Second, pLSA parameters repre-

sent probability distributions whereas NMF factors are

simply a set of values as vectors or arrays. This fact

is especially relevant in HU because the estimation of

fractional abundances directly fits into this probabilistic

nature. Besides, it also allows evaluating the importance

of the estimated endmembers as semantic patterns. Third,

pLSA topic-word distributions p(w|z) are identifiable in

the vocabulary of mixture models, unlike NMF factors.

This has some implications on the theoretical properties

of the pLSA Maximum Likelihood estimator, such as a

strong consistency [36].

All in all, pLSA offers a more convenient framework

than NMF and this is precisely the reason why the HU

model we propose in this paper is based on pLSA.

Additionally, note that the way we use pLSA and LDA

for the HU problem is by assuming that endmembers

correspond to topic-word distributions, i.e p(w|z), and

abundance factors can be estimated according to the

December 10, 2018 DRAFT



6

model by document-topic distributions, i.e. p(z|d).

In addition to the NMF approach, different kinds of

unmixing models have been also proposed in the recent

literature. For instance, Yang et al. present in [37] a novel

abundance estimation algorithm based on the bilinear

mixture model, which constructs a group of hyperplanes

in the low-dimensional feature space to reduce compu-

tational complexity. Other works, such as [38], take ad-

vantage of a modified Gaussian model to investigate the

mineralogical extraterrestrial soil composition. Halimi

et al. propose in [39] two novel hyperspectral mixture

models which account for the presence of nonlinearities

by considering a residual term in addition to the linear

mixture of endmembers with the sum-to-one and non-

negativity abundance constraints. In addition, Yong et al.

define in [40] a robust sparse unmixing method which

simultaneously handles noise and outliers by adopting a

l2,1 norm loss function.

When considering all these recent methods, the pro-

posed approach is mainly different in three aspects. First,

the proposed model is focused on the generative process

of the data rather than defining a specific unmixing

model equation. Logically, both concepts are related

since the data eventually contains the result of the

unmixing process, but it is important to highlight that

the generative approach itself provides a more complete

framework than considering a specific mixing equation

because the sum-to-one and non-negativity properties

of fractional abundances are inherently incorporated.

Second, the proposed approach does not consider any

kind of prior distribution but only the own data, which

eventually simplifies the complexity of the model when

compared to other Bayesian approaches that assume

prior distributions with some hyperparameters [41], [42].

Third, the proposed approach is able to estimate both

endmembers and fractional abundances, whereas many

of the existing Bayesian methods available in the liter-

ature [43], [44] are only focused on estimating abun-

dances from a given set of spectral signatures, that

is, they deal with the unmixing problem from a semi-

supervised perspective whereas the proposed approach

does not make use of a spectral library.

III. DUAL-DEPTH SPARSE PROBABILISTIC SEMANTIC

ANALYSIS

The starting point of the proposed DEpLSA model is

the asymmetric formulation of pLSA (Fig. 1a), where

a latent topic z is chosen for each document d condi-

tionally to the p(z|d) probability distribution and then

a word w is generated from that topic according to

p(w|z). The proposed model extension introduces a new

latent variable z′ in order to create a new level of topics

when connecting documents d and words w. Addition-

ally, we introduce two diverging regularization factors,

i.e. δd and δz , to guarantee a dual sparsity constraint

when estimating both abundances and endmembers rep-

resented by p(z|d) and p(w|z) parameters in the model.

Hereinafter, we use the terms deep-topic and restricted-

topic to identify z′ and z respectively. Fig. 2 shows the

DEpLSA graphical model representation where shaded

nodes represent visible random variables.

Fig. 2: The proposed DEpLSA topic model. The nodes

d,z,z′,w represent document, restricted-topic, deep-topic

and word random variables. Nd is the number of words

in d and M is the total number of documents in the

collection. Finally, δd and δz represent the sparsity

factors for documents and restricted-topics respectively.
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Likewise in pLSA, the DEpLSA generative process

can be described as follows:

1) A document d is chosen from p(d) probability

distribution.

2) For each one of the Nd words in the document d,

a) A restricted-topic z is chosen according to

conditional distribution p(z|d) that expresses

documents in restricted-topics.

b) A deep-topic z′ is chosen according to condi-

tional distribution p(z′|z) which encapsulates

the relation between both levels of topics.

c) Finally, a word w is chosen according to con-

ditional distribution p(w|z′) which expresses

deep-topics in words.

The rationale behind the use of DEpLSA in HU

is based on using the deep-topics z′ to generate the

semantic representations of the input spectral data, and

then using the restricted-topics z to learn endmembers

and abundances in this semantic space. That is, the

deep latent space p(z|z′) initially projects the original

spectra, defined by the visible words w, onto a high

dimensional space of K ′ topics in order to unfold the

semantic patterns of the input data. Then, K restricted-

topics can be learnt at a higher semantic level to uncover

the K endmembers, i.e. p(w|z), and the corresponding

abundance maps, i.e. p(z|d). The main difference be-

tween z′ and z random variables lies in two factors,

the space dimensionality and the δd and δz sparsity

constraints. That is, the deep-topic space projects the

data onto a high-dimensional space (K ′ >> K) in order

to capture fine semantic image patterns of the spectral

data. Then, the restricted-topic space takes advantage

of these patterns to conduct the unmixing process by

fixing the number of restricted topics to the number of

endmembers. The use of z′ is motivated by the fact

that the deep-topic space allows extracting endmembers

and abundaces over a semantic characterization space

instead of the original spectra. In other words, this high-

dimensional space enables connections among spectral

signatures through the image patterns defined by topics,

and therefore it is able to generate a higher abstraction

level for the unmixing process.

In addition, the proposed model makes use of two

regularization factors to introduce some sparsity con-

straints over p(z′|z) and p(z|d) probability distributions

in order to reduce the uncertainty and noise. On the

one hand, δz aims at sparsing the p(z′|z) distribution,

which defines the probability of the deep-topics z′ given

the restricted-topics z. Note that the number of deep

topics (K ′) is significantly higher than the number of

endmembers (K), therefore it is reasonable to assume

that each endmember (restricted-topic) is modeled using

only a limited number of deep-topics. In a sense, this

assumption is analogous to the one considered by other

sparse coding-based methods, such as [45], [46], to

reduce the uncertainty when choosing endmembers from

a given spectral library. Logically, the proposed method

does not require any spectral library but it can also

take advantage of this sparsity constraint over the deep-

topic space. On the other hand, the δd factor intends to

reduce the entropy of the p(z|d) distribution in order

to guarantee a better model convergence. That is, the

uniform distribution 1/K is the most uninformative

(highest entropy) abundance map configuration from

an information theory perspective and precisely this

regularization pursues to encourage sparser and more

informative abundance map solutions. In other words, the

δd regularization aims at neglecting noisy components

among the spectral patterns present in a specific pixel

(document). This strategy is also common in the sparse-

coding field to deal with the input noise, e.g. [47], and

this is precisely the reason why we make use of it.
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A. Model relaxation

The proposed model takes advantage of two different

levels of topics to connect d and w random variables,

however this fact has an important implication related to

the model inference cost: an additional freedom degree

is required to capture the relationships between z and

z′ hidden random variables. From a pLSA-based per-

spective, this additional level may become unaffordable

as the input image size increases, because each variable

marginalization over the posterior distribution requires

to evaluate the Cartesian product between z and z′. As

a result, in order to alleviate the computational cost of

managing two different level of topics when estimating

the model parameters, we propose to apply the following

model relaxation based on two sequential steps:

1) Learning deep-topics z′ (DEpLSA-1): In the first

phase (Fig. 3a), the proposed DEpLSA model is

simplified to estimate the deep-topic space using a

regular pLSA approach. Specifically, components

z, δd and δz are removed from the model in

order to approximate the deep-topic distribution,

i.e p(w|z′), directly from the observable input

documents d. As Fig. 3a shows, the DEpLSA-

1 model relaxation corresponds to the inner part

of DEpLSA and it is equivalent to the standard

pLSA model. Therefore, parameters Φ′ ∼ p(z′|d)

and Θ′ ∼ p(w|z′) can be initially estimated using

pLSA over the input hyperspectral image in order

to extract K ′ deep-topics.

2) Learning restricted-topics z (DEpLSA-2): Once

parameters Φ′ and Θ′ have been estimated, the

outer part of DEpLSA corresponds to a dual

sparse pLSA model where the random variable

related to the deep-topics z′ becomes observable as

Fig. 3b shows. In particular, we use the parameter

Φ′ of DEpLSA-1 as the input word-document

distribution for DEpLSA-2, i.e. n(d,z′) ≈ Φ′.

Note that this assumption implies considering a

uniform prior probability over deep-topics, which

is a quite general premise, however different prior

probability values could be also used instead to en-

courage specific topics. Eventually, the Φ ∼ p(z|d)

and Θ ∼ p(z′|z) parameters of the DEpLSA-

2 model are estimated using K restricted-topics

which represent the number of endmembers in the

input scene.

This model relaxation allows reducing the DEpLSA

computational cost to the pLSA order. Since the

DEpLSA-1 model relaxation corresponds to the standard

pLSA formulation [28], in the following section we only

provide the formulation for the DEpLSA-2 model.

B. Expectation-Maximization formulation for DEpLSA-

2

DEpLSA-2 parameters, Φ and Θ, are estimated

by maximizing the complete log-likelihood using the

Expectation-Maximization (EM) algorithm [48]. First,

let us define the likelihood function in terms of the

density function of a document collection D,

L = p(D|Φ,Θ) =

D∏
d

Nk′∏
z′

p(z′,d) =

D∏
d

K′∏
z′

p(z′,d)n(z′,d), (1)

where Nk′ represents the total number of deep-topics

required to generate the document d, K ′ is the consid-

ered number of deep-topics and n(z′,d) denotes the num-

ber of times the deep-topic z′ occurs in the document d.

The joint probability p(z′,d) can be factorized according

to the DEpLSA-2 model as follows:

p(z′,d) =

K∑
z

p(z′|z)p(z|d)p(d) = p(d)

K∑
z

p(z′|z)p(z|d). (2)

Note that K represents the number of considered

restricted-topics. Inserting Eq. (2) in Eq. (1), we obtain

the expression of the complete likelihood:
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(a) DEpLSA-1, first phase model relaxation. (b) DEpLSA-2, second phase model relaxation.

Fig. 3: Two-phase model relaxation for the proposed DEpLSA model. See Fig. 2 for notation details.

Lc =
D∏
d

K′∏
z′

(
p(d)

K∑
z

p(z′|z)p(z|d)

)n(z′,d)

. (3)

The target is to estimate the Φ ∼ p(z|d) and

Θ ∼ p(z′|z) parameters which maximize the com-

plete likelihood function Lc, nonetheless multiplicative

and exponential factors are hard to optimize. Due to

the monotonic nature of the logarithmic function, we

can equivalently maximize the complete log-likelihood

(Eq. (4)) remaining the optimisation problem as Eq. (5)

shows:

`c = log(Lc) =

D∑
d

K′∑
z′

n(z′,d)log

(
p(d)

K∑
z

p(z′|z)p(z|d)

)
, (4)

argmax
Φ,Θ,

D∑
d

K′∑
z′

n(z′,d)log

(
p(d)

K∑
z

p(z′|z)p(z|d)

)
. (5)

Even though the performed simplifications, this ex-

pression is still hard to maximize because of the sum-

mation inside the logarithm. Taking advantage of the log

function properties, we can make use of the concave

version of the Jensen’s inequality as follows,

D∑
d

K′∑
z′

n(z′,d)log

(
p(d)

K∑
z

p(z′|z)p(z|d)

)

≥
D∑
d

K′∑
z′

n(z′,d)p(d)

K∑
z

p(z|z′,d)log(p(z′|z)p(z|d)). (6)

As a result, the expression to optimize remains as

follows:

E =

D∑
d

K′∑
z′

n(z′,d)p(d)

K∑
z

p(z|z′,d)log(p(z′|z)p(z|d)). (7)

Let us now introduce the normalization constraints for

parameters p(z|d) and p(z′|z) by inserting the appropri-

ate Lagrange multipliers α and β:

H0 = E +

K∑
z

α

(
1−

N∑
z′

p(z′|z)

)

+

D∑
d

β

(
1−

K∑
z

p(z|d)

)
. (8)

Finally, the solution is regularized using the dual

sparsity factors δd and δZ to maximize the Kullback-

Leibler (KL) divergence between the uniform distribu-

tion over documents (Ud = 1/D) and restricted-topics

(Uz = 1/K) with respect to parameters p(z|d) and

p(z′|z) respectively:

H = H0 +

D∑
d

δd(KL(Ud|p(z|d)))

+

K∑
z

δz(KL(Uz|p(z′|z)))

= H0 −
D∑
d

δd

(
1

K

K∑
z

log(p(z|d))

)

−
K∑
z

δz

(
1

N

K∑
z

log(p(z′|z))

)
. (9)
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To maximize the above expression, we use the EM

algorithm which works in two stages: (i) E-step, where

given the current estimation of the parameters the ex-

pected value of the likelihood is computed (estimat-

ing the posterior probability p(z|z′,d)) and (ii) M-step,

where the new optimal values of the parameters are

computed according to the current setting of the hidden

variables.

For the M-step, we calculate Eq. (9) partial derivatives,

set them equal to zero and solve the equations to estimate

p(z′|z) (Eq. (10)) and p(z|d) (Eq. (11)) parameters.

Note that α and β multipliers can be obtained from

the normalization constraint on topics and documents,

respectively.

p(z′|z) =

∑
d

n(z′,d)p(d)p(z|z′,d)− δz/K ′∑
z′

∑
d

n(z′,d)p(d)p(z|z′,d)
(10)

p(z|d) =

∑
z′

n(z′,d)p(z|z′,d)− δd/K∑
z

∑
z′

n(z′,d)p(z|z′,d)
(11)

For the E-step, p(z|z′,d) probabilities can be com-

puted by applying the Bayes’ rule and the chain rule as

Eq. (12) shows.

p(z|z′,d) =
p(z′,d,z)

p(z′,d)
=

p(z′,d,z)∑
z

p(z′,d)
=

p(z′|z)p(z|d)∑
z

p(z′|z)p(z|d)
(12)

The EM process is performed as follows. First, p(z|d)

and p(z′|z) are randomly initialized. Then, the E-step

(Eq. (12)) and the M-step (Eqs. (10)-(11)) are alternated

until p(z′|z) and p(z|d) parameters converge. As con-

vergence conditions, we use a 10−6 stability threshold

in the difference of the log-likelihood (Eq. (4)) between

two consecutive iterations and a maximum number of

1000 EM iterations.

IV. HU FRAMEWORK BASED ON DEPLSA

In order to enable the use of LDA, pLSA and DEpLSA

models over HS images, we make use of the Bag-

of-Words (BoW) characterization scheme [49] adapted

to the spectral image domain. Specifically, pixels are

considered as topic model documents, spectral bands

define the vocabulary terms and document word-counts

are represented by the reflectance values of the bands.

Note that considering an image size of (r × c × b),

this characterization generates a total of D = (r × c)

documents with a N = b vocabulary size.

Fig. 4 shows a general overview of the proposed

HU framework based on the DEpLSA model. From left

to right, the proposed methodology consists of three

sequential steps: (1) learning the deep-topic space, (2)

extracting the restricted topics and (3) generating the

output endmemember signatures and abundance maps.

Once the input HS image is characterized as a col-

lection of spectral documents, the first step is based on

applying the DEpLSA-1 model to learn the deep-topic

space using K ′ latent units. Note that this step aims at

obtaining a high dimensional deep-topic space to unfold

semantic patterns of the original spectral data, therefore

the number of deep-topics K ′ has to be substantially

higher than the vocabulary size N .

In the second step (2), the DEpLSA-2 model is used

to extract K restricted topics over the deep-topic space

previously learnt. That is, the Φ′ ∼ p(z′|d) parameter of

DEpLSA-1 acts as the input word-document distribution

for DEpLSA-2 in order to uncover K endmembers

considering δd and δz sparsity factors.

Finally, the third step (3) is focused on obtaining the

final endmember and abundance results. The Φ ∼ p(z|d)

parameter of DEpLSA-2 provides a direct estimate of the

fractional abundances due to the fact that it expresses

pixels according to the probability of belonging to each
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Fig. 4: Overview of the proposed HU framework.

one of the K endmembers. However, the considered

model relaxation (Sec. III-A) does not provide any

straightforward endmember estimation. In order to ob-

tain such result, we approximate it by factorising the

p(w|z) probability as follows:

p(w|z) =
p(w,z)

p(z)
=
∑
z′

DEpLSA-1

p(w|z′)
DEpLSA-2

p(z′|z) = Θ′Θ. (13)

Note that the p(w|z) distribution represents the K

restricted-topics in the initial vocabulary space of spec-

tral bands, therefore it provides an estimation of the spec-

tral signatures. In particular, we initially factorize p(w|z)

according to the proposed DEpLSA model (Sec. III).

Then, the Θ′ and Θ parameters can be used to connect

both the deep-topic space and the restricted-topic space

estimated by the DEpLSA-1 and DEpLSA-2 models,

respectively.

V. EXPERIMENTAL RESULTS

The experimental part of the work aims at validating

the performance of LDA, pLSA and DEpLSA models

within the HU field against several unmixing algorithms

available in the literature. In particular, Section V-A

introduces the five hyperspectral images used in the

experiments, Section V-B describes the experimental

setting and Section V-C shows the obtained results.

A. Datasets

We have considered five different hyperspectral

datasets in our experiments, one synthetic image, called

Fractal [50], and four real hyperspectral images, which

are Samson, Jasper, Urban and Cuprite datasets [51].

These images have been selected because they are used

in many recent works [52]–[55] and also because they

are publicly available and can be easily donwloaded

from websites [56], [57]. In the following, we provide a

description of all the considered hyperspectral data sets.

1) Fractal (Fig. 5a) [50] is a simulated hyperspectral

image which has 221 spectral bands and its size

in pixels is 100 × 100. It contains a total of 9

endmember mineral signatures selected from the

U.S. Geological Survey (USGS) spectral library,

i.e. Alunite, Dumortierite, Halloysite, Kaolinite1,

Kaolinite9, Muscovite, Nontronite, Pyrophilite and

Sphene, which cover the wavelengths from 400

nm to 2500 nm. Specifically, the procedure for

generating this synthetic image, which is detailed

in [50], mainly assigns different spectral signatures

to adjacent image regions and then it calculates

fractional abundances considering pure pixels in

each region center and linearly mixed pixels for

transitions. In addition to the noise-free version of

the Fractal image, three different levels of zero-

mean Gaussian noise have been considered [50]:

30 SNR (signal to noise ratio), 50 SNR and 70
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(a) Fractal (b) Samson (c) Jasper (d) Urban

(e) Cuprite

Fig. 5: Hyperspectral images considered in our experiments.

SNR.

2) Samson (Fig. 5b) [51] is a simple hyperspectral

image with a size of 952 × 952 pixels and 156

bands. The spectral resolution is highly up to 3.13

nm and it covers the wavelengths from 401 nm to

889 nm. In order to reduce the computational cost

of the tested HU methods, a region of 95×95 pix-

els has been cropped from the (252,332)-th pixel

in the original image. There are three materials

present in the image: soil, tree and water.

3) Jasper (Fig. 5c) [51], [58]–[60] is a popular hyper-

spectral data set which contains 512× 614 pixels

per band. It has a total of 224 channels with a

spectral resolution up to 9.46 nm ranging from

380 nm to 2500 nm. Due to the high complexity

of the image, we consider an area of 100 × 100

pixels starting from the (105,269)-th pixel in the

original image. In a addition, channels 1-3, 108-

112, 154-166 and 220-224 have been removed to

avoid atmospheric effects (198 channels remain).

The number of members in this scene is four: road,

soil, water and tree.

4) Urban (Fig. 5d) [51], [58]–[60] is another common

hyperspectral image present in many HU works.

Specifically, it has a size of 307×307 with a spatial

resolution of 2 mpp (meter per pixel). There are

210 spectral bands ranging from the 400 nm to

the 2500 nm wavelength what results in a spectral

resolution of 10 nm. As a pre-processing step,

we remove bands 1-4, 76, 87, 101-111, 136-153

and 198-210 to avoid atmospheric effects (162

channels remain). The number of materials in the

scene is four: asphalt, grass, tree and roof.

5) Finally, Cuprite (Fig. 5e) [51], [59], [60] is one

of the most challenging datasets for HU which

covers the Cuprite mining district in NV, U.S. This

image contains 224 channels, ranging from 370

nm to 2480 nm. Similarly to the other datasets,

a region of 250 × 190 pixels is considered and

we also remove the noisy channels (1-2 and 221-

224) and water absorption channels (104-113 and

148-167) in order to maintain a total of 188 chan-
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nels. A total of 12 types of minerals are present

in the scene: Alunite, Andradite, Buddingtonite,

Dumortierite, Kaolinite1, Kaolinite2, Muscovite,

Montmorillonite, Nontronite, Pyrope, Sphene and

Chalcedony.

B. Experimental settings

The proposed approach has been validated against 9

different methods selected from the literature. In par-

ticular, three different families of methods have been

included in this experimental comparison: geometrical-

based, Non-negative Matrix Factorization-based and la-

tent topic-based. Regarding the first group, the Vertex

Component Analysis (VCA) [8] and Minimum Volume

Simplex Analysis (MVSA) [9] unmixing methods have

been considered. For the second one, four different

variations of the standard NMF procedure [61] have

been taken into account: NMF-div [62], which uses

the Kullback-Leibler divergence criterion to perform

the decomposition, NMF-mse [62], which employs an

Euclidean objective function, NMF-sp [63], which also

introduces a sparsity constraint, and CNMF [34], which

uses two different kinds of regularization terms. Finally,

three different topic models have been tested for the

unmixing problem, LDA [29], pLSA [28] and pLSA-sp

[27], which adds a sparsity constraint over documents.

All these methods have been selected because their

implementations are publicly available and besides they

allow estimating both endmembers and abundances in

the same form as the proposed framework does. That

is, we assume that the number of endmembers K is

known in advance, therefore all the tested methods make

use of this information when conducting the unmixing

experiments. Note that multiple works in the literature

are focused on estimating the number of endmembers,

thus some methods like [64] could be used as a pre-

processing step to estimate this number.

Whenever possible, the considered methods have been

tested using a similar parameter configuration in order to

conduct experimental comparisons which are as fair as

possible taking into account the approaches’ diversity.

In particular, the NMF-sc abundance and endmember

sparsity constraints have been fixed to 10−2 and 1/N ,

respectively. Similarly, the pLSA-sp abundance sparse

factor has been set to 10−2. Finally, the δd and δz

sparsity factors of the proposed approach have been fixed

to 10−2 and 1/K ′. Note that for the δz term we use 1/K ′

instead of 1/N because K ′ is the vocabulary length of

the restricted-topics which is set to 1000 in this work.

Regarding the convergence of the algorithms, we have

considered a maximum of 1000 iterations for both NMF-

based and topic-based models.

In order to perform a quantitative evaluation of the

HU results, two reference metrics are used: the Spectral

Angle Distance (SAD) and the Root Mean Squared Error

(RMSE). On the one hand, the SAD [65] is used to assess

endmember estimates by considering each spectral band

as a coordinate axis and then computing the average

angle between the estimated endmembers M̃ and the

ground-truth ones M . Eq. (14) shows the expression

defining this metric, where K represent the number of

endmembers.

SAD(M̃,M) =
1

K

K∑
i

arccos
M̃ i ·M i

||M̃ i|| ||M i||
. (14)

On the other hand, the RMSE metric is useful to eval-

uate the abundance estimation results by computing the

absolute differences between the estimated abundances

(Ã) and the ground-truth ones (A) as eq. (15) shows.

Note that R and C represent the input image size.

RMSE(Ã,A) =

√√√√ 1

R · C

R∑
i

C∑
j

(Ãi,j −Ai,j)2. (15)
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Regarding the ground-truth information used to com-

pute these metrics, we use the ground-truth data available

in [56], [57]. In the case of the simulated image (Fractal),

real endmembers and abundances are logically known

in advance. For Samson, Jasper and Urban images, we

make use of the ground-truth information in [66], which

has been obtained using a semi-supervised approach also

employed in [67], [68]. First, the VD (Virtual Dimen-

sionality) method [69] is used to find out the number of

endmembers. Second, the endmember spectral signatures

are manually chosen from the USGS (United States

Geological Survey) library1 and other hyperspectral li-

braries, according to the acquisition area. Finally, the

corresponding fractional abundances are generated by

solving the constrained convex optimization also applied

in [68]. For the Cuprite dataset, we consider the USGS

library signatures of the most representative minerals in

the scene, available in [57].

C. Results

Tables I-II show the SAD and RMSE quantitative

assessment for the considered unmixing methods and

datasets. In the case of the synthetic Fractal data, four

different levels of Gaussian noise are considered, i.e.

without noise (noNoise), 30 SNR, 50 SNR and 70 SNR.

In the case of the real data, four different hyperspectral

images are included, i.e. Samson, Jasper, Urban and

Cuprite. Regarding the considered unmixing methods,

two column groups are differentiated: (A) Non-topic-

based methods, i.e. VCA [8], MVSA [9], NMF-div [62],

NMF-mse [62], NMF-sp [63] and CNMF [34], and (B)

Topic-based methods, i.e. LDA [29], pLSA [28] and

pLSA-sp [27] together with the results obtained by the

proposed approach. Note that two different columns are

shown for the proposed approach: DEpLSA-noReg, that

1https://speclab.cr.usgs.gov/

shows the result obtained without regularization (that is,

δd = δz = 0), and DEpLSA, where the configuration

explained in Sec.V-B is used.

In addition to the quantitative evaluation provided by

the SAD and RMSE metrics, some visual results are

presented as a qualitative evaluation for the tested HU

methods. Specifically, Figs. 6-8 show the abundance

estimation results for Samson, Jasper and Urban datasets

obtained by a subset of the tested methods: VCA, NMF-

sp, CNMF, LDA, pLSA, pLSA-sp and the proposed

DEpLSA model. Besides, the acronym GT represents

the ground-truth abundances. Since for the Cuprite data

set there is no GT abundance map that can be used

as reference, we do not display the abundance maps in

this case. Additionally, Figure 9 provides the Cuprite

endmember results and abundance maps for the proposed

method.

Fig. 6: Samson abundance results for VCA, NMF-sp,

CNMF, LDA, pLSA, pLSA-sp and the proposed DE-

pLSA method. The ground-truth image (GT) is shown at

the top-right position. Soil, tree and water endmembers

are represented using pure red, green and blue colors,

respectively.

VI. DISCUSSION

According to the unmixing results obtained from the

synthetic hyperspectral data (Tables I-II), the proposed

approach is able to provide a remarkable performance
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Fig. 7: Jasper abundance results for VCA, NMF-sp,

CNMF, LDA, pLSA, pLSA-sp and the proposed DE-

pLSA method. The ground-truth image (GT) is shown

at the top-right position. Tree, soil, water and road

endmembers are represented using pure red, green, blue

and black colors, respectively.

Fig. 8: Urban abundance results for VCA, NMF-sp,

CNMF, LDA, pLSA, pLSA-sp and the proposed DE-

pLSA method. The ground-truth image (GT) is shown

at the top-right position. Asphalt, grass, tree and roof

endmembers are represented using pure red, green, blue

and black colors, respectively.

improvement with respect to the rest of the tested

methods when considering a certain amount of input

noise. That is, DEpLSA obtains the best SAD and RMSE

values for Fractal 30 SNR and the second and third best

average quantitative result for Fractal 50 SNR, which

indicates the good performance of the proposed approach

under noisy conditions. Nonetheless, it is also possible

to observe that other methods, especially CNMF, tend

to obtain better results in a low-level noise scenario

(Fractal 70 SNR) and in free-noise conditions (Fractal

noNoise). Note that the non complex nature of the

simulated data makes that pure pixels can easily occur

when not considering noise or a small amount of it,

therefore straightforward methods may generate a more

accurate unmixing estimates than the proposed approach

probabilistic nature. However, the absence of noise is not

a realistic premise in a real remotely sensed hyperspec-

tral data production scenario where images are typically

affected by many different kinds of perturbations and

image corrections that introduce some noise as well.

Precisely, this is the reason why we also use real

hyperspectral data in the experimental part of the work.

The quantitative assessment reported in Tables I-II

reveals that the proposed DEpLSA model is able to

achieve a competitive HU performance with the four real

considered hyperspectral datasets. When considering the

SAD metric (Table I), the proposed approach shows a

remarkable reduction on the angular deviation between

the estimated endmembers and the ground-truth ones.

Although the geometrical method (VCA) and the NMF-

based one (CNMF) also exhibit good capabilities to

extract endmembers, the result provided by DEpLSA

tends to be more accurate as well as robust. That is,

whereas VCA and CNMF decrease their effectiveness for

Jasper and Urban datasets, the proposed approach is able

to maintain a good performance for all the considered

hyperspectral images.

In the case of the RMSE metric, it is possible to

identify a similar behaviour. More specifically, DEpLSA

achieves the best results and the second best average

value is obtained by NMF-sp. Nonetheless, the perfor-

mance of the proposed approach remains significantly

higher on average. According to the reported results,

we can also see that VCA and CNMF are certainly

less effective to estimate abundances than to estimate
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Fig. 9: Cuprite endmember results and abundance maps for the proposed DEpLSA method. For each sub-picture,

the first plot shows the ground-truth spectral signature (in blue color), the second one shows the proposed approach

endmember estimation (in red) and the last one provides the obtained fractional abundance map.

endmembers.

When analyzing the unmixing results obtained by

topic models, several interesting observations can be

made. First, the pLSA model clearly shows a better

performance for unmixing tasks than LDA. As it was

mentioned in Section II, LDA requires an initial estima-

tion of two Dirichlet hyper-parameters and the quality

of this estimation may be affected by the number of

available documents. In the blind HU application, the

number of pixels is constrained to the input image size,

and this number is usually rather limited to generate a

good initial hyper-parameter estimate for LDA. However,

pLSA takes advantage of the use of input pixels as model

parameters and, therefore, it is able to extract more

accurate semantic patterns using less input information

than LDA.

Another important point is related to the use of

regularization to relieve the ill-posed nature of the HU
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problem. As we can see in Tables I-II, the standard

LDA and pLSA models present poor global performance,

especially when estimating endmembers. However, a

substantial improvement can be reached when introduc-

ing sparse regularization terms. The presented results

show that pLSA-sp and NMF-sp achieve an important

performance improvement over standard models (i.e.

pLSA, NMF-div and NMF-mse) by means of consid-

ering sparsity constraints on the final estimation of

fractional abundancies. In general, sparse regularization

is an excellent tool to reduce the uncertainty in the

unmixed space [7], and this is precisely the reason why

this technique is also effective in topic-based HU.

Overall, VCA and CNMF show good performance in

the task of extracting endmembers, and NMF-sp in the

task of estimating estimate abundances. Nonetheless the

proposed approach is able to provide superior results in

both tasks. The abundance maps shown in Section V

also support this observation. In the case of the Sam-

son dataset (Fig. 6), soil, tree and water endmembers

are represented using pure red, green and blue colors,

respectively. As we can see, VCA, CNMF and DEpLSA

are the methods that better distinguish among these

three endmembers. However, DEpLSA is able to provide

a more accurate result. In the coastal area of Fig. 6,

VCA and CNMF generate a blurring effect, whereas

DEpLSA obtains a result more similar to the ground-

truth abundances. In Figs. 7-8, it is also possible to find

similar examples to validate the results obtained by the

proposed approach. Regarding the Cuprite endmember

results provided in Fig. 9, we can also observe that the

proposed approach is able to obtain spectral signatures

very similar to the corresponding ground-truth endmem-

bers.

A. Performance analysis for different sparsity factors

As it has been commented in Section V-B, the pro-

posed approach δd and δz sparsity factors have been set

to 10−2 and 10−3, for all the datasets, in order to use

a general configuration. That is, according to the infor-

mation provided in Section III, these two regularization

factors allow us to neglect those small noisy components

appearing in p(z|d) and p(w|z) probability distributions

throughout the EM optimization process. In order to

highlight this point, Figure 10 shows the quantitative

assessment for different parameter configuration over the

Samson dataset.

Specifically, Figs. 10a-10b provide the SAD and

RMSE evaluation when considering δd and δz within

the range 0.00− 0.04. In addition, Figs. 10c-10d show

the corresponding SAD and RMSE details in the range

0.000− 0.004. As we can see in Figs. 10a-10b, the

optimal δd parameter seems to be between 0.002 and

0.03 for the SAM metric and between 0.00 and 0.02

when considering the RMSE result. Regarding the δz

parameter, it initially seems not to have a significant

impact on the performance, at least for the considered

value range. However, the details provided in Figs. 10c-

10d reveal that a small regularisation is convenient in

both cases.

That is, both the SAD and RMSE details show that

there is a small area close to the axis representing δd = 0

and δz = 0 where the metric performance tends to

decrease. Precisely, this effect is produced because tiny

probability values, which somehow can be considered

noisy in a real scenario, are not regularized in the EM

process when considering null sparsity factors. As a

result, the proposed approach can take advantage of

small regularization factors to increase the resulting per-

formance and this is the reason why we set δd and δz to

10−2 and 10−3 as a general settings for all the datasets.
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Logically, this configuration may not be optimal for all

the considered hyperspectral images, however it pursues

to avoid the aforementioned effect while providing the

most general scheme. This assertion is also supported by

the fact that the proposed approach with the considered

configuration is able to outperform the corresponding

non-regularized version (DEpLSA-noReg) for all the

experiments except for the free-noise synthetic image.

B. Advantages and limitations of the proposed approach

The main advantage of the proposed DEpLSA-based

HU framework lies in the deep-topic structure that it

offers to uncover endmembers and abundances. Even

though some methods in the literature have tried to

use pLSA [27] (or, analogously, NMF [34], [62], [63])

for the unmixing task, they mainly use these models

as a straightforward data decomposition process. That

is, endmembers and abundances are estimated over the

initial spectral space, and this fact limits the semantic

potential of topic-models in HU.

The proposed DEpLSA model introduces a new level

of topics, called deep-topics (z′), in order to extract the

semantic representations of the input spectral data. Then,

another level of topics, called restricted-topics (z), is

used to uncover the endmembers and abundances over

these semantic representations. In this way, the unmixing

process is conducted over a semantic representation

space, unlike the classical straightforward approach. Ad-

ditionally, we introduce a dual sparsity constraint over

restricted-topics to guarantee regularized solutions.

The underlying rationale behind the improvement pro-

vided by DEpLSA is based on its potential to better

discern similar spectral patterns in the deep-topic space.

Let us explain this concept through a simple visual exam-

ple. Fig. 11a shows the original Samson data projected

onto the two first PCA (Principal Component Analysis)

TABLE III: Computational time of unmixing algorithms.

Datasets K
Time (seconds)

VCA NMF-sp CNMF pLSA-sp DEpLSA

Samson 3 2.32 57.99 26.79 5.57 38.46

Jasper 4 2.70 38.02 19.81 9.72 52.56

Urban 4 7.98 73.32 191.33 77.71 197.10

Cuprite 12 3.48 64.00 200.24 85.55 282.70

components, where soil, vegetation and water pure pixels

are colored in red, green and blue, respectively.

When using pLSA-sp over the original spectral space

(Fig. 11b), we can see that pure pixels tend to maintain

essentially the same data variability, that is, the extracted

topics do not provide any substantial improvement on the

data simplex geometry. Nonetheless, the restricted-topic

space uncovered by the proposed approach (Fig. 11d)

is able to define a clearer geometry over the extracted

topics by means of reducing the intra-member variability.

In other words, the deep-topic space (Fig. 11c) initially

compacts the data that shares the same hidden spectral

patterns. Then, the restricted-topic space (Fig. 11d) is

able to reduce uncertainty in dense areas of the simplex

while maintaining the variability in the less dense parts

of it.

Despite the potential of the proposed approach, it still

has some limitations which need to be mentioned at

this point. Specifically, its computational cost is one of

them. Table III shows a summary of the computational

time required by VCA, NMF-sp, CNMF, pLSA-sp and

DEpLSA unmixing methods over the tested images. As

we can see, the proposed model is, on average, the most

computationally demanding one and this fact may limit

its application.

According to the model relaxation introduced in Sec-

tion III-A, we can reduce the DEpLSA computational

load to a pLSA order cost by using a regular pLSA
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(a) (b)

(c) (d)

Fig. 10: Result evaluation for Samson datasets using different sparsity factors.

model to estimate the deep-topic space and a regular-

ized pLSA model to uncover the restricted-topic space.

However, the computational time that we obtain de-

pends, in practice, on the number of deep-topics, that

is K ′ = 1000, which is significantly higher than the

number of initial spectral bands (N ), i.e. 156, 198, 162

and 188 bands for Samson, Jasper, Urban and Cuprite,

respectively. Even though the high dimensionality of the

deep-topic space may allow a faster convergence of the

model, the total computational time of DEpLSA remains

on average 1.3, 2.4 and 3.2 times higher than CNMF,

NMF-sp and pLSA-sp costs. At this point, it should be

also mentioned the high efficiency of the geometrical

method VCA.

Another limitation of the proposed approach is related

to the absence of noise on the input image. Even

though this may not be an actual limitation in a real-

life scenarios because of the inherent complexity of real

remotely sensed hyperspectral data, the DEpLSA model

has shown a limited performance with the noise-free

synthetic data. The proposed approach has been specially

designed to deal with the hyperspectral data complexity

through the semantic patterns uncovered by the deep-

topic space, however the simpler nature of the simulated

data makes other straightforward methods more conve-

nient than the proposed approach probabilistic nature.
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(a) Original spectral space. (b) pLSA-sp space.

(c) Deep-topic space. (d) Restricted-topic space.

Fig. 11: Visual representation of Samson data projected onto the two first PCA components.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we have presented a new topic-based

unmixing framework specially designed to estimate both

endmembers and abundances from remotely sensed hy-

perspectral imagery. Specifically, we introduce a so-

called DEpLSA model in order to deal with the un-

mixing problem, following a pLSA-based dual-depth

architecture. The proposed model generates a first level

of deep-topics to extract the semantic representations

of the input hyperspectral data. Then, a second level

of restricted-topics is computed to estimate endmember

spectral signatures and fractional abundances according

to the uncovered spectral patterns. Our experimental

comparison, conducted using four different hyperspectral

datasets, reveals that the proposed approach is able to

provide competitive performance with respect to stan-

dard topic models, as well as several state-of-the-art

unmixing methods available in the literature.

One of the first conclusions that arises from this

work is the potential of pLSA-based models to cope

with the HU problem. In general, pLSA-based models

have shown to obtain better unmixing results than LDA

because they can take advantage of the use of spectral

pixels as model parameters to generate better topic

estimates.
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Another important conclusion is related to the use

of sparse regularization within the HU field. As the

conducted experiments reveal, pLSA and NMF obtain a

substantial performance improvement when considering

sparsity constraints over spectral signatures and frac-

tional abundances. In a sense, these sparse assumptions

help unmixing models to avoid uninformative solutions.

Finally, the most relevant conclusion of the work is

related to the effectiveness of the proposed pLSA-based

dual-depth architecture to cope with the unmixing prob-

lem, especially under real remotely sensed hyperspectral

data. Whereas the common algorithm design trend relies

on using some models like pLSA as a straightfor-

ward data decomposition process, the proposed DEpLSA

model transforms this classical perspective into a new

probabilistic framework under which the HU process is

conducted according to the semantics encapsulated by

the deep-topic space.

Although the proposed approach results are encour-

aging as a HU technique using semantic representa-

tions, it still has some limitations which provide room

for improvement to conduct more research on topic-

based HU. Specifically, our future work is aimed at the

following directions: (i) the development of a parallel

implementation of the DEpLSA model to significantly

reduce its computational time, using graphics processing

units (GPUs), (ii) the extension of our model to estimate

the ideal sparsity factors for each input image, (iii)

the design of automatic procedures to set the most

appropriate number of topics in the deep-topic space

and (iv) an extension of the proposed HU framework

to automatically find the number of endmembers in the

original hyperspectral image.
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