9,817 research outputs found

    Automated Analysis of Cryptococcal Macrophage Parasitism Using GFP-Tagged Cryptococci

    Get PDF
    The human fungal pathogens Cryptococcus neoformans and C. gattii cause life-threatening infections of the central nervous system. One of the major characteristics of cryptococcal disease is the ability of the pathogen to parasitise upon phagocytic immune effector cells, a phenomenon that correlates strongly with virulence in rodent models of infection. Despite the importance of phagocyte/Cryptococcus interactions to disease progression, current methods for assaying virulence in the acrophage system are both time consuming and low throughput. Here, we introduce the first stable and fully characterised GFP–expressing derivatives of two widely used cryptococcal strains: C. neoformans serotype A type strain H99 and C. gattii serotype B type strain R265. Both strains show unaltered responses to environmental and host stress conditions and no deficiency in virulence in the macrophage model system. In addition, we report the development of a method to effectively and rapidly investigate macrophage parasitism by flow cytometry, a technique that preserves the accuracy of current approaches but offers a four-fold improvement in speed

    Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High-Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Embryos and Single Cells

    Get PDF
    Chemical analysis of soybean seeds, somatic embryos and single cells were carried out by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching 1 micron (1μ) resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as 2μ3. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision approaching the picogram level. Indeed, detailed chemical analyses of oils and phytochemicals are now becoming possible by FT-NIR Chemical Imaging/ Microspectroscopy of single cells. The cost, speed and analytical requirements of plant breeding and genetic selection programs are fully satisfied by FT-NIR spectroscopy and Microspectroscopy for soybeans and soybean embryos. FT-NIR Microspectroscopy and Chemical Imaging are also shown to be potentially important in functional Genomics and Proteomics research through the rapid and accurate detection of high-content microarrays (HCMA). Multi-photon (MP), pulsed femtosecond laser NIR Fluorescence Excitation techniques were shown to be capable of Single Molecule Detection (SMD). Therefore, such powerful techniques allow for the most sensitive and reliable quantitative analyses to be carried out both in vitro and in vivo. Thus, MP NIR excitation for Fluorescence Correlation Spectroscopy (FCS) allows not only single molecule detection, but also molecular dynamics and high resolution, submicron imaging of femtoliter volumes inside living cells and tissues. These novel, ultra-sensitive and rapid NIR/FCS analyses have numerous applications in important research areas, such as: agricultural biotechnology, food safety, pharmacology, medical research and clinical diagnosis of viral diseases and cancers

    Miniaturizing High Throughput Droplet Assays For Ultrasensitive Molecular Detection On A Portable Platform

    Get PDF
    Digital droplet assays – in which biological samples are compartmentalized into millions of femtoliter-volume droplets and interrogated individually – have generated enormous enthusiasm for their ability to detect biomarkers with single-molecule sensitivity. These assays have untapped potential for point-of-care diagnostics but are mainly confined to laboratory settings due to the instrumentation necessary to serially generate, control, and measure millions of compartments. To address this challenge, we developed an optofluidic platform that miniaturizes digital assays into a mobile format by parallelizing their operation. This technology has three key innovations: 1. the integration and parallel operation of hundred droplet generators onto a single chip that operates \u3e100x faster than a single droplet generator. 2. the fluorescence detection of droplets at \u3e100x faster than conventional in-flow detection using time-domain encoded mobile-phone imaging, and 3. the integration of on-chip delay lines and sample processing to allow serum-to-answer device operation. By using this time-domain modulation with cloud computing, we overcome the low framerate of digital imaging, and achieve throughputs of one million droplets per second. To demonstrate the power of this approach, we performed a duplex digital enzyme-linked immunosorbent assay (ELISA) in serum to show a 1000x improvement over standard ELISA and matching that of the existing laboratory-based gold standard digital ELISA system. This work has broad potential for ultrasensitive, highly multiplexed detection, in a mobile format. Building on our initial demonstration, we explored the following: (i) we demonstrated that the platform can be extended to \u3e100x multiplexing by using time-domain encoded light sources to detect color-coded beads that each correspond to a unique assay, (ii) we demonstrated that the platform can be extended to the detection of nucleic acid by implementing polymerase chain reaction, and (iii) we demonstrated that sensitivity can be improved with a nanoparticle-enhanced ELISA. Clinical applications can be expanded to measure numerous biomarkers simultaneously such as surface markers, proteins, and nucleic acids. Ultimately, by building a robust device, suitable for low-cost implementation with ultrasensitive capabilities, this platform can be used as a tool to quantify numerous medical conditions and help physicians choose optimal treatment strategies to enable personalized medicine in a cost-effective manner

    Microsensors for Microreaction and Lab-on-a-Chip Applications

    Get PDF

    Stretching the Rules: Monocentric Chromosomes with Multiple Centromere Domains

    Get PDF
    The centromere is a functional chromosome domain that is essential for faithful chromosome segregation during cell division and that can be reliably identified by the presence of the centromere-specific histone H3 variant CenH3. In monocentric chromosomes, the centromere is characterized by a single CenH3-containing region within a morphologically distinct primary constriction. This region usually spans up to a few Mbp composed mainly of centromere-specific satellite DNA common to all chromosomes of a given species. In holocentric chromosomes, there is no primary constriction; the centromere is composed of many CenH3 loci distributed along the entire length of a chromosome. Using correlative fluorescence light microscopy and high-resolution electron microscopy, we show that pea (Pisum sativum) chromosomes exhibit remarkably long primary constrictions that contain 3-5 explicit CenH3-containing regions, a novelty in centromere organization. In addition, we estimate that the size of the chromosome segment delimited by two outermost domains varies between 69 Mbp and 107 Mbp, several factors larger than any known centromere length. These domains are almost entirely composed of repetitive DNA sequences belonging to 13 distinct families of satellite DNA and one family of centromeric retrotransposons, all of which are unevenly distributed among pea chromosomes. We present the centromeres of Pisum as novel ``meta-polycentric'' functional domains. Our results demonstrate that the organization and DNA composition of functional centromere domains can be far more complex than previously thought, do not require single repetitive elements, and do not require single centromere domains in order to segregate properly. Based on these findings, we propose Pisum as a useful model for investigation of centromere architecture and the still poorly understood role of repetitive DNA in centromere evolution, determination, and function
    • …
    corecore