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Miniaturizing High Throughput Droplet Assays For Ultrasensitive
Molecular Detection On A Portable Platform

Abstract
Digital droplet assays – in which biological samples are compartmentalized into millions of femtoliter-volume
droplets and interrogated individually – have generated enormous enthusiasm for their ability to detect
biomarkers with single-molecule sensitivity. These assays have untapped potential for point-of-care
diagnostics but are mainly confined to laboratory settings due to the instrumentation necessary to serially
generate, control, and measure millions of compartments. To address this challenge, we developed an
optofluidic platform that miniaturizes digital assays into a mobile format by parallelizing their operation. This
technology has three key innovations: 1. the integration and parallel operation of hundred droplet generators
onto a single chip that operates >100x faster than a single droplet generator. 2. the fluorescence detection of
droplets at >100x faster than conventional in-flow detection using time-domain encoded mobile-phone
imaging, and 3. the integration of on-chip delay lines and sample processing to allow serum-to-answer device
operation. By using this time-domain modulation with cloud computing, we overcome the low framerate of
digital imaging, and achieve throughputs of one million droplets per second. To demonstrate the power of this
approach, we performed a duplex digital enzyme-linked immunosorbent assay (ELISA) in serum to show a
1000x improvement over standard ELISA and matching that of the existing laboratory-based gold standard
digital ELISA system. This work has broad potential for ultrasensitive, highly multiplexed detection, in a
mobile format. Building on our initial demonstration, we explored the following: (i) we demonstrated that the
platform can be extended to >100x multiplexing by using time-domain encoded light sources to detect color-
coded beads that each correspond to a unique assay, (ii) we demonstrated that the platform can be extended
to the detection of nucleic acid by implementing polymerase chain reaction, and (iii) we demonstrated that
sensitivity can be improved with a nanoparticle-enhanced ELISA. Clinical applications can be expanded to
measure numerous biomarkers simultaneously such as surface markers, proteins, and nucleic acids.
Ultimately, by building a robust device, suitable for low-cost implementation with ultrasensitive capabilities,
this platform can be used as a tool to quantify numerous medical conditions and help physicians choose
optimal treatment strategies to enable personalized medicine in a cost-effective manner.
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ABSTRACT 
 

MINIATURIZING HIGH THROUGHPUT DROPLET ASSAYS FOR ULTRASENSITIVE 

MOLECULAR DETECTION ON A PORTABLE PLATFORM 

Venkata Yelleswarapu 

David Issadore 

Digital droplet assays – in which biological samples are compartmentalized into millions 

of femtoliter-volume droplets and interrogated individually – have generated enormous 

enthusiasm for their ability to detect biomarkers with single-molecule sensitivity. These 

assays have untapped potential for point-of-care diagnostics but are mainly confined to 

laboratory settings due to the instrumentation necessary to serially generate, control, 

and measure millions of compartments. To address this challenge, we developed an 

optofluidic platform that miniaturizes digital assays into a mobile format by parallelizing 

their operation. This technology has three key innovations: 1. the integration and parallel 

operation of hundred droplet generators onto a single chip that operates >100x faster 

than a single droplet generator. 2. the fluorescence detection of droplets at >100x faster 

than conventional in-flow detection using time-domain encoded mobile-phone imaging, 

and 3. the integration of on-chip delay lines and sample processing to allow serum-to-

answer device operation. By using this time-domain modulation with cloud computing, 

we overcome the low framerate of digital imaging, and achieve throughputs of one 

million droplets per second. To demonstrate the power of this approach, we performed a 

duplex digital enzyme-linked immunosorbent assay (ELISA) in serum to show a 1000x 

improvement over standard ELISA and matching that of the existing laboratory-based 

gold standard digital ELISA system. This work has broad potential for ultrasensitive, 

highly multiplexed detection, in a mobile format. Building on our initial demonstration, we 
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explored the following: (i) we demonstrated that the platform can be extended to >100x 

multiplexing by using time-domain encoded light sources to detect color-coded beads 

that each correspond to a unique assay, (ii) we demonstrated that the platform can be 

extended to the detection of nucleic acid by implementing polymerase chain reaction, 

and (iii) we demonstrated that sensitivity can be improved with a nanoparticle-enhanced 

ELISA. Clinical applications can be expanded to measure numerous biomarkers 

simultaneously such as surface markers, proteins, and nucleic acids. Ultimately, by 

building a robust device, suitable for low-cost implementation with ultrasensitive 

capabilities, this platform can be used as a tool to quantify numerous medical conditions 

and help physicians choose optimal treatment strategies to enable personalized 

medicine in a cost-effective manner.  
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CHAPTER 1: INTRODUCTION 

1.1 Need for ultrasensitive, multiplexed assays in diagnostics 

Effective healthcare relies on the ability to treat patients based on symptoms that 

differentiate healthy patients from those that are at risk for certain conditions or are in a 

state of disease. Since treatment can be expensive, and comes with side effects, it is 

paramount that diagnosis must be accurate. Diagnostic sensitivity measures the 

proportion of correctly classified patients with disease as having a disease, while 

specificity measures the proportion of healthy patients who receive a negative result. 

While these are binary measures, predictive values give probabilities that these 

classifications are truly accurate. Diagnosis can be done by checking physiological 

features such as heart rate; removing tissue and checking for any abnormalities; various 

forms of imaging; and liquid biopsies. Of these, liquid biopsy1,2 shows immense potential 

since measuring basic physiological features do not provide enough information to 

classify patients accurately, while techniques like needle biopsy can be expensive, 

painful, and time consuming3. In addition, tests that require lab-grade facilities require 

patients to travel, creating a burden on how frequently these tests can be administered. 

Liquid biopsies focus on sampling body fluids and testing these for target 

biomarkers that may indicate the condition of the patient4–7. Liquid biopsies can be more 

practical than techniques like surgery, magnetic resonance imaging, CT scans, etc. 

since a blood draw can be administered routinely, is inexpensive, less painful, and time 

efficient. The convenience also makes it possible to track patients through multiple 

stages of screening and treatment to verify that treatment is working effectively. In 
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addition to blood, samples as saliva, sputum, urine, and cerebral spinal fluid also contain 

vast resources for biomarkers.  

One technique that is employed is to search for the presence of target material 

that would only be present if a patient is infected. This strategy works in infectious 

diseases like HIV8,9, where a single virus particle circulating in blood indicates infection; 

or cancers where rare tumor cells start to appear in the bloodstream that would 

otherwise not be there10. Conditions where the target concentration is extremely low – 

~a few particles/mL of sample – require large patient sample volumes, since detecting 

rare molecules in a finger prick of blood would also mean that there is a high probability 

that the finger prick would not even contain the target. Therefore, it is crucial to collect 

volumes as large as 10mL and screen this entire sample for rare circulating tumor cells, 

or virus particles to catch them at early stages. In addition, drug treatments that may not 

have completely eradicated cancer or HIV can be monitored frequently, which is not 

practical via tissue biopsy or imaging.9,11,12  By monitoring frequently, any signs of 

remission can be addressed immediately before cancer cells can metastasize or 

infectious pathogens spread latently to other regions of the body.  

While detecting rare targets that are only present in diseased conditions is ideal, 

this may not be practical due to specificity issues, or lack of knowledge of physiological 

conditions. Instead, biomarkers that are normally present in healthy individuals can 

either increase or decrease in response to changing physiology, which can also be 

measured to indicate disease13–15. For example, in traumatic brain injury (TBI), 

biomarkers panels have not been fully established that link specific proteins or nucleic 

acids to conditions like concussion. Instead, if it is observed that cytokines or exosomes 

are responding to a TBI condition, it is useful to measure the concentrations of these 
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over several time points before classifying a patient for treatment4. Therefore, liquid 

biopsies also can be a strategy for drug discovery since large panels of biomarkers 

between known healthy and diseased patients can be studied to find biomarkers with the 

most fold change, and then use these in diagnosis. 

In order to catch early onset of certain diseases, ultrasensitive detection is 

necessary16. miRNA and proteins previously thought to be of little importance can in fact 

have a lot of information in them17. Since traditional assays cannot measure these low 

concentrations accurately, the “right” biomarkers for disease may never be found without 

the proper tools. As ultrasensitive assays are being developed, proteins once thought to 

not provide any value in diagnostics such as PSA in prostate cancer, have shown 

promising diagnostic value when measured at lower limits of detections17. Furthermore, 

ultrasensitive detection enables trace molecules that could not be measured to now 

provide valuable information.  

Ultrasensitive technology is driving development of biomarker panels as miRNA, 

mRNA, exosomes, and proteins are being mapped onto various conditions such as 

pancreatic cancer10, HIV188, Alzheimer’s19, cancers, TB, cytokines20. In pancreatic 

cancer, a single base mutation in the KRAS gene could be detected in the background 

of ~200,000 copies of nonmutated genes, enabling incredible sensitivity to catch 

mutations early in blood10.  In HIV, capsid protein p24 measurements showed similar 

limit of detection to nucleic acid amplification8,18.  With 2000 p24 molecules per HIV 

particle as opposed to two copies of RNA, ultrasensitive immunoassays could potentially 

replace the need for more equipment-dependent polymerase chain reaction (PCR). For 

Alzheimer’s, measurements of change in Neurofilament light chain (NfL) proteins over a 

ten year period showed predictive value compared to just the absolute quantity19. This 
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study highlights that while detecting concentrations is important, the rate of change is 

critical, which is only possible if inexpensive, convenient assays are available for use in 

the clinic. Blood tests for tuberculosis are currently in development that combine four 

host proteins measurements with machine learning with 80% sensitivity and 65% 

specificity when compared with TB-like diseases21, showing potential for blood-based 

diagnostics but also lots of room to improve. Lastly, measurement of multiple cytokines 

have implications in diseases ranging from brain injuries, cancers, and infection.20  

Clinical studies have also shown that one biomarker is not enough to classify 

patient groups. Complex diseases mean that heterogenous patients will display different 

biomarker levels, which will also vary over time in the same individual. To make this 

even more complicated, cells are heterogeneous and using a single biomarker as a 

diagnostic often risks having low specificity22. Diagnosing cancer improves significantly 

when combining biomarkers that may not be related to each other or one’s that may 

follow separate trends among patients23. TBI measurements have shown that some 

biomarkers change immediately in response to an insult, while others respond later2425, 

indicating diagnosis can also indicate the progression of disease. While DNA and RNA 

changes are routinely measured with sequencing technologies, they might not paint 

entire picture without proteins and epigenetic information that can further illustrate what 

is happening on a physiological level26.  

Lastly, laboratory facilities are important for developing new technologies, but if 

these new powerful technologies can never be implemented in resource-poor areas or in 

the field, there will be less impact for the diagnostic value. In order to develop 

meaningful point-of-care technologies, the ASSURED (affordable, sensitive, specific, 

user-friendly, rapid and robust, equipment free, and deliverable to users) criteria lists out 
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several features that make technologies adaptable in the field27. Therefore, an ideal 

device would follow these ASSURED criteria, offer ultrasensitive detection, contain 

sample prep on chip, and be able to detect a panel of biomarkers to maximize its impact. 

1.2 Current techniques for diagnostics 

Blood based diagnostics enables several advantages discussed above, but also 

has a unique opportunity for diseases where other techniques often find the symptoms 

too late4–7. For example, in cases like Tuberculosis, while sputum and cell culture are 

known to be the widely adopted methods for clinical testing, a problem arises in getting 

access to sputum. For young children, it becomes difficult to force them to cough up 

large amounts of sputum and then grow these cultures out for over a week28. Similarly, 

in cases like pancreatic cancer, imaging is often too late to find tumors before they have 

already metastasized, so the survival rate is ~5% despite major advances in imaging 

techniques29.  

Blood-based tests that have shown practical uses in the clinic, as well as point of 

care assays that can be purchased without the need for a medical expert. These range 

in complexity from laboratory facility limited equipment that can scan for many 

biomarkers but require a trained expert to run; to simple at home blood prick tests that 

change color to indicate the disease status. The simplest of blood based diagnostics are 

those based on paper, or later flow assays30–32 33. These assays change color or create 

an easy to read qualitative mark in the presence of a biomarker – and are used widely in 

at home self-care tests for pregnancy and diabetes. Some come with portable readers 

that can somewhat quantify the color change or other properties by having optical or 

electrochemical biosensors. However, these types of devices require that a sample is 

concentrated, abundant in a small sample volume, and does not require precise 
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quantification of change in levels. Nonetheless, several companies have built 

commercial platforms such as Alere (HIV/AIDS), Claros Diagnostics (urological, 

infectious disease), Cepheid (respiratory infections), Daktari (HIV/AIDS), Abbott i-STAT 

(coagulation, blood chemistry, cardiac markers) to address these needs34. While 

techniques have been developed to concentrate molecules in targets with paper or other 

materials, or even purify serum or plasma from the rest of the blood35, these tests still do 

not have the sensitivity for ultrasensitive detection.  

In order to achieve more quantitative measurements, techniques such as flow 

cytometry exist, where cells or beads that capture target biomarkers are then labeled 

with fluorescent tags and pass through multiple lasers, each then read out by 

photodetectors after emitted light passes through many optical elements36,37. These 

types of systems have great precision since the lasers generate sharp excitation 

wavelengths, optical elements separate emission light into multiple wavelengths, which 

are then read out by sensitive photodetectors. Flow cytometers can thus cover a large 

dynamic range, measure multiple colors simultaneously and even detect the size and 

makeup of particles from the side and forward scatter. Recently, imaging flow cytometry 

combines images of particles and implements machine learning to combine what is 

fluorescently detected with image data, allowing more precise morphological 

measurements to be taken38. Combined with sorting, these workflows offer flexibility, 

precision, and accuracy. However, flow cytometry suffers from low adoptability in 

resource-poor settings due to their size, cost, training required, and the low throughput 

nature since the particles are often filed one by one through a focused laser spot.  

In order to address fluorescent readouts that require expensive equipment, 

several other approaches to biosensors have been built that are based on graphene39, 
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plasmonic sensors40, micro-Hall detectors41, and nanopore sequencing42. While these 

biosensors have shown great promise in multiple human samples for various diseases, 

the specialized nature of fabricating them makes them hard to scale up, manufacture, 

and replicate in various lab settings. Therefore, simplicity is also a requirement that 

ensures simple fabrication strategies, limited steps for protocols, and limited use of 

complex engineering techniques if a chip is to be manufactured en masse for portable 

environments.   

1.3 Digital Assays 

While the above assays have made enormous strides in liquid biopsies, many 

still lack the sensitivity for detecting single molecules in the background of billions of 

nontarget molecules. Trying to detect single molecules in bulk volumes is nearly 

impossible since nonspecificity and diffusion of fluorescent molecules will generate only 

a weak signal. Trying to detect one molecule in a 100 µL sample (as is often used for 

traditional assays) means that the target molecule can diffuse into the entire space. If 

any fluorescence is to be measured from the molecule, or any reaction that amplifies the 

reaction such as polymerase chain reaction (PCR) or enzyme-linked immunosorbent 

assay (ELISA), the product to be measured would diffuse in this vast space (Fig 1.1a). 

The concentration of a single molecule in that space would be 2 *10-20 M, which would 

make it extremely difficult to distinguish between a true positive and a blank sample.43 

Additionally, what if there are billions of other off target molecules in the sample? Since 

typical Kd of antibodies are in the range of µM to nM range44, this would mean that even 

with the specificity of a sandwich ELISA, the 2 *10-20 M protein concentration would 

result in a false positives or false negatives even with the strongest binding affinities. 

This also does not improve significantly if there is amplification since the same amplified 
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molecules can diffuse freely, so the signal would not be concentrated. In addition, any 

generated signal would be hard to quantize into single molecules since the difference 

between zero, one, two, ten, so on in 100 µL would look nearly identical in most 

detection strategies (Fig 1.1a). The reason conventional assays such as qPCR and 

ELISA are unable distinguish between individual copy numbers it that the initial 

concentration is calculated by using calibrator curves. These calibrator curves are used 

as a reference, but the threshold settings used to compare the values are either 

empirically or subjectively determined, causing a major source for variation. In addition, 

in large samples low target copies are dominated by background signal that is much 

larger than the fluorescence of a single target copy45 (Fig 1.1a). 

 

Figure 1.1 Conventional Analog vs Digital Assays. a. In conventional analog assays, 

the change between a negative sample and those with trace amounts of target 

molecules are hard to distinguish. b. When the sample is compartmentalized either into 

droplets or static arrays, the effective concentration increases by many orders of 

magnitude, and the fluorescent substrate is concentrated. In addition, these 

compartments contain a single target molecule or none, allowing them to be counted for 

absolute quantification as opposed to compared to standards. c. The limit of detection of 
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state-of-the-art ELISA assays can be above the clinical range needed, making it 

impossible to measure physiological concentrations of these relevant proteins. 

Quanterix’s digital ELISA, has shown up to 104 increase in several proteins by using 

digital assays.  

To overcome the challenges of conventional ELISA assays,digital approaches 

have been developed.. While different strategies have been employed for portioning a 

sample (“digitize”), the result is that the individual molecules are confined into solutions 

that are on the order of ~fL in volume. Thus the same molecule that was in 100 µL, when 

placed into fL volumes would be 2nM, or 1011 more concentrated. The resulting higher 

concentration means molecules are confined and more easily observed, with the 

additional benefit that by partitioning a volume into these tiny compartments, most will 

only contain either one or zero target molecules based on distribution based on Poisson 

statistics46 (Fig 1.1a). In addition, the background competition is also significantly 

reduced, reducing signal from background molecules. Rather than relying on quantifying 

the change in fluorescence, digital assays measure endpoints. If a compartment is 

fluorescent, it signifies a single molecule. Counting the number of fluorescent 

compartments gives a count of total target molecules without the need for standards or 

an analog readout, making this technique robust. Digital assays have demonstrated 

enormous improvements in sensitivity with over 104-fold improvements in several 

biomarkers (Fig 1.1b). There are three main methods to perform digital assays: static 

arrays, electrowetting on dielectric (EWOD) surfaces to manipulate droplets, and 

continuous flow droplets. 

1.3.1 Static Arrays 
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Static array digital assays use compartments that are separated by physical 

barriers or by dispersing liquid into emulsions separated by a continuous phase of oil, 

and are often the simplest to build due to the lack of moving fluids. The sample is placed 

into these compartments through gravity, centrifuging sample into tiny wells, applying 

pressure on top of wells to force the sample into the thousands of wells, or using fluidic 

paths to seal wells and ducts after loading reagents. Several strategies use self 

compartmentalization47 or reagent introduction into wells that are then sealed and 

observe such as the SlipChip48. One particular strategy that has been developed into a 

commercial platform is the Quanterix’s Single Molecule Array (Simoa) 49, which began 

as with etched glass fiber wells and evolved to manufacturing using Bluray technology to 

create multiple 250k wells regions on a disc50. This technique is used for bead-based 

protein capture, where beads that have captured single protein molecules and are 

labelled with enzyme will cause a well to fluorescence. A CCD camera measures 

fluorescence and calibrates for crosstalk into empty wells, and detect multiple colored 

beads simultaneously.  

Other techniques create water in oil emulsions, which contain the sample and 

reagents which are then injected into a reservoir chip that acts as a viewing platform, 

where these emulsions spread out in a monolayer and can be observed for fluorescence 

over time51. The advantages of static arrays are that they are often image based, since 

the endpoint of the reaction is measured after the reagents are sealed into an array. This 

allows for long integration times that can be overlaid with several optical filters to 

generate images for multiple color, that can be used to identify multiple biomarkers. 

Image based detection can potentially enable lower grade cameras such as cell phone 

cameras if the number of compartments fit the pixel resolution of the camera – again 
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demonstrating the tradeoff between hardware complexity and dynamic range of a target 

biomarker to be measured. Static arrays are often simpler to build since the fluid sits 

inside wells without moving, and do not require precise pumps but still require machines 

like centrifuges, careful pipetting, etc. The main drawback of static arrays is that they are 

limited by the number of compartments that can be imaged to fit onto a chip. Therefore, 

the sample volume is limited since it must fit in the volume of the compartments, thus 

sacrificing dynamic range. To address this issue, techniques such as the Simoa can 

measure multiple targets in a single well by correcting for Poisson encapsulation 

probabilities to back calculate the initial concentration. In addition, once the wells 

become increasingly full, the overall fluorescence from the entire array can be measured 

and compared to a calibration curve to measure both digital and analog52.  

1.3.2 Digital Microfluidics based on Electrowetting on Dielectrics (DMF on EWOD) 

Certain reactions call for the complex steps that include introduction of reagents 

and wash steps that cannot be addressed if the compartments are isolated. While pico-

injectors for continuous flow droplet systems  and workflows exist for exchanging liquids 

between steps in arrays, these still do not allow the user to manipulate the volumes with 

much control. Digital Microfluidics (DMF)36,38,53 was developed to have precise control 

over how droplets move and have complex liquid handling protocols automated by 

addressing each droplet individually. The spatial position is controlled through 

electrowetting by having insulating layers on electrodes that separate them from the 

liquid on top. While electrowetting on dielectric surfaces is most common, approaches 

also exist that use acoustic waves, magnetic force, optical wetting, and thermal 

gradients. Furthermore, the droplets can be sandwiched on both sides, or be open so 

that color and fluorescent properties can be measured from the open side. Once 
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programmed, these multistep protocols obviate the need for human intervention since 

the spatial position can be controlled precisely. The advantages of this technique include 

monitoring droplets over time and keeping track of location of each droplet and mixing 

conditions. Applications where such precision are required include chemical synthesis,  

 However, the dynamic range again is limited since typical assays run up to tens 

of droplets in parallel, and the droplets tend to be larger in size (µL to 100 nL)54. Since 

the force applied to move the droplets is on the order of seconds, operations on DMF 

are typically in the Hz range, which limit how quickly reactions occur54. Additionally, 

fabrication often involves more complex steps compared to soft lithography of droplet 

microfluidics, or well based approaches for static arrays. Thus, the dynamic range is 

smaller, and multiplexing becomes more complicated to scale, making the system low 

throughput. This makes DMF more difficult as a diagnostic platform since a wide range 

of biomarkers and dynamic range from rare to concentration targets cannot be 

measured simultaneously.  

1.3.3 Continuous flow high throughput droplet systems 

Continuous flow high-throughput droplet systems use thousands to millions of 

droplets that are generated, incubated while a reaction takes place, and then observed 

after. These droplets can be manipulated through merging, sorting, splitting55; or used to 

create complex particles such as two faced Janus particles or cured using several 

chemical approaches like UV to create nanoparticles54,56. In diagnostics, the tiny 

volumes afford better heating, mixing, increasing the concentration of particles, 

encapsulating primarily one or zero target molecules for strong signal to background 
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separation, and allow lower reagent consumption for running millions of experiments in 

parallel.57–61 

Continuous flow droplets offer several advantages over arrays and DMF, in that 

millions of droplets can be measured – enabling large dynamic range and sensitivity with 

no limit on sample size. In addition, the liquid-liquid interface as opposed to walls also 

provides benefits. With the proper surfactants, these interfaces can reduce enzymes, 

nucleic acids, and targets from sticking to surfaces and thus reducing sensitivity62. Since 

these droplets are encapsulated in oil, they are at a lower risk of drying from exposed 

air, since static arrays in several oils have shown to exchange gases and evaporated 

out51. In addition, since the channels where droplets travel through after they are 

generated are not fouled, the risk of contamination also reduces since the dispersed 

liquid inside the compartment never makes contact with walls, which also allows chips to 

be reused63,64.  

1.3.4 Applications of Digital Assays 

Diagnostic digital assays are primarily used to amplify nucleic acids through 

PCR, or proteins through ELISA. If droplets need to be analyzed further in cases such as 

single cell sequencing applications, or to process only droplets of interest to save 

reagent costs, the droplets can be sorted for further downstream analysis.  

Table 1.1 – Digital PCR Technologies 

Ref. Throughput Droplet 
Volume 

Method of 
Thermal 

Method of 
Detection 

On Chip 
Heating 

    

Hatch51 125 to 250 k/s 
based on 4-8s 
exposure 

50 pL Thermoelectric 
Cooler, Copper, Si 
wafer, PDMS 

Wide field 21 MP 
DSLR camera 
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Schaerli65  Flow rates 
~160ul/h; 

4.7*106/mL 

40um to 
150um; 33.5 
pL to 1.76nL 

Peltier module with 
copper rod at 
center; spatial 

Droplets were 
collected, opened for 
gel electrophoresis  

Beer66 Generate 1k/s 
and then stop 
while it cycles.  

10 pL Peltier temporal 
heating 

Nikon microscope w/ 
5k fps camera.  

Kiss67 500/s 65 pl; observed 
14k droplets 
per cycle at 11 
points 

Spatial heating; two 
heaters at 95 and 
65c zone; 55 s 
cycles/ 35 min 

Droplets flash frozen 
and analyzed on gel 
and fluorescence 
microscope  

Terazono68 2.2k/3.5 min 20-30um 
droplets made 
with micro-
pipetting 10-
30uL at a time 

Single monolayer 
of droplets heated 
w/ IR laser; 3.5min 
for 50 cycles 

Inverted microscope, 
laser,  

Off Chip 
Heating 

    

Biorad 1.92 mL can 
be loaded on 
thermocycler 
at once 

1 nL; 1 k/s Off chip 
thermocycler 

Dual laser 

Raindance 400 µL sets 5 pL; 1 k/s  Dual laser  

Isothermal    

Rane69 

 

1M/110 min; 
10uL per 
110min 

8 pL; 1-2 
ms/droplet 

Peltier heater with 
water cooling  

Custom built optical 
dual fluorescence  

Li et al 70 27,000 314 pL  

Static array 

Peltier heater with 
copper chamber, 
PWA chip, and 
glass; 10 min… 30 
min for entire 
procedure at 39C 

Wide field image 
microscopy 

SlipChip48 1550 reaction 
wells 

9 nL each; 
1550 wells/hr 

39C on flat metal 
adapter; plate 
reader  with 
temperature  
controlled  at  25°C. 
1 hr at 39C, 30 min 
at 42C 

Leica DMI 6000 B 
epi-fluorescence  

microscope (Leica 
Microsystems, 
Germany) with a 5X 
/ 0.15 NA objective 
and L5  filter 

Schuler71  Volume 
calculated 
from given 
dimensions: 
~30000 

0.9048 nL; 
volume of 
chamber where 
droplets form is 

Labdisk player with 
built in heater; 30 
min for entire thing 

Stroboscopic setup 
for droplet dia only; 
fluorescence 
imaging with Lavion 
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120um dia 
droplets;  

27 µL bioanalyzer 

Kang72 100 kHz 10 kHz Red/Green colors;  Rotating cuvette with 
mini confocal 
detector for 
DNAzyme detection 

  

Digital PCR: Digital PCR can quantify specific nucleic acid targets, including 

DNA, miRNA, and mRNA, by compartmentalizing large volumes into tiny droplets that 

are then thermocycled for the nucleic acids to amplify (Table 1.1). Several approaches 

exist for RNA amplification, where a heating step is dedicated to first creating cDNA73,74. 

As the DNA amplifies in the droplets, dyes such as EvaGreen or quenched probes come 

apart in the presence of amplified DNA, causing a fluorescence readout7576. Studies 

have shown that when compared directly with qPCR, ddPCR results are more precise 

and reproducible. Digital PCR demonstrates much lower variance than qPCR when 

targets are at low abundance targets, in highly contaminated sample, or when the fold 

change difference between samples is 2-fold or lower (variance between 7%-30% for 

ddPCR compared to 60-87% for qPCR in replicates)7711. Endpoint reactions do not 

depend on primer efficiency if the final fluorescence is achieved in positive droplets, 

while in qPCR the fluorescence of the sample can vary significantly based on acceptable 

primer pairs (90 to 110%). Absolute quantification relies on counting positive droplets, 

and do not rely on standards for comparison, although most assays run them as quality 

check78.  

Digital PCR can also be multiplexed such that a single test volume can be tested 

for multiple nucleic acids simultaneously79 80. Multiplexing can be achieved by adding 

additional dyes for each target, however, this becomes limited by the optics and 

hardware, making each addition more expensive and crosstalk among dyes a larger 
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issue as more colors are added. Therefore, commercial techniques often use “higher 

order multiplexing” where the endpoint fluorescence amplitude is used to differentiate 

target strands.79,80 In “amplitude based multiplex assay”, different concentrations of 

probes are used such that the end point fluorescence depends on this concentration and 

can identify which target strand is amplified. In order to expand this to multicolor, multiple 

dyes can increase the number of genes targeted. To scale up practically, each target 

also has different probe concentrations such that even within one dye, multiple levels of 

final endpoint fluorescence can be generated based on the probe concentration per 

specific target. Other techniques also use the fact that since longer strands can 

potentially bind more EvaGreen, they should be more fluorescent, so while probe 

concentration remains the same, the endpoint fluorescence will now depend on the 

target strand length. However, multiplexing comes with a host of issues including probe 

specificity, competition with other primers, and differential PCR efficiencies79,80. Digital 

PCR has made its mark on the field for nucleic acid detection and has been adopted for 

ultrasensitive measurements on nucleic acids, generating $318 million in 2017 and 

projected to reach $1.2B by 2025 (Allied Market Research, 2019). 

Table 1.2 – Digital ELISA Technologies 

Ref. LOD Volume / 
compart
ments 

Device  

material 

Method  

Guan81 0.88 µM 4.2 pL/ 
200k 

PDMS -Single β-Gal in droplets 

-Measured rate of fluorescence 
production 

Obayashi82 7.0 fM 44 fL/ 
7600*120 

chamber 

CYTOP 
on 

glass 
coverslip 

-Noted only 2.5% of the substrate 

was consumed in 20 min with ALP 
and β-Gal 
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Rissin44 6 fg/mL 

(200aM) 

50 fL / 
50k 

wells 

Glass 
wells 

Silicone 
gasket/oil 

Microarray with bead based 
dELISA 

Chang83 100 vir/mL 50 fL / 
50k 

wells 

Simoa 

array 

-Measured number of p24 proteins 

-Converted to virion count 

by dividing 2000 p24 proteins/virion 

Verified with RNA extracted 

Shim84 1.2 pg/mL 

(43 fM) 

32 fL / 
20k drops 

PDMS 

Glass 

-Static array with 

around 20k droplets analyzed 

-Low dynamic range 

-No false positives reported 

Leirs85 4 fM in buffer 38 fL /  
62.5k 
wells 

Patterned 
Teflon-Af 

on glass 
slides 

-Detected nucleoprotein 

from flu virus 

in nasopharyngeal swabs 

to show dELISA in clinical sample 

Wilson86 

McGuigan49 

Kan87 

3.8 fg/mL 

(200 aM) 

IL-10 

40 fL 
/216k 
wells 

25-50k 
beads 

Cyclic 
Olefin 
Polymer 

Bluray 
Printing 

-Fully automated 

commercial digital ELISA 

from Quanterix Simoa HD-1 

Analyzer 

Yelleswarapu88 

 

 

3.7 fg/mL 

(300 aM) 

7.0 fg/mL 

(350 aM) 

22.5 pL / 
10M 
droplets 

1M beads 

PDMS 
and Glass 

3D stack 

-Integrated mobile platform 

with parallelized droplet 

generation and detection 

with cloud computing 

  

Digital ELISA: In addition to nucleic acids, proteins have enormous potential in 

measuring the physiological conditions, but traditional ELISA techniques cannot 

generate the single molecule sensitivity due to background fluorescence of blank 

samples. To overcome this obstacle, digital ELISA confines single molecules into 

partitions by first using a bead-based ELISA approach, where antibody-functionalized 
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beads capture a single protein from the sample by setting the concentration of beads 

higher than the number of proteins. The unbound sample is washed away, and the 

captured protein is then labelled with a detection antibody, washed to remove unbound 

detection antibodies, and then labeled with an enzyme43,89. When these enzymes are 

present in a partition, the inactive substrate turns fluorescent, and the fluorescent dye 

and bead are measured together to count the total protein molecules (Figure 1.1a, 

Table 1.2). In PCR, specificity comes from the primers that can bind to very specific 

target sequences. In ELISA however, any enzyme that is not washed away properly and 

remains in a well not bound to a bead will cause a false positive. Therefore, there are 

two critical requirements for developing a successful digital ELISA assay: the sandwich 

assay between the protein and antibodies must be strong and not dissociate during 

subsequent wash steps, else it will result in false negatives. Second, excess labeling 

enzyme must be completely washed away, else it will result in false positives44. In bulk, a 

single molecule in 100 µL is 2 *10-20M, thus even the best antibodies with low Kd in the 

nM range would be unable to compete with background protein molecules in serum or 

plasma that would create false positives from non-specificity issues. But when confined 

in fL volumes, the 1011 higher concentration now allows combinations of antibodies that 

are in the µM to nM range8578443,89. The bead based approach of capturing a target 

molecule and labeling it an enzyme can also be accomplished with nucleic acids90,91. A 

powerful advantage of ELISA comes from its simplicity without the need for 

thermocyclers – and if the same sensitivity of target molecules in a 100 µL sample can 

be mathced – digital ELISA offers great potential for simpler ultrasensitive detection 

compared to digital PCR.  In addition, multiplexing can be achieved by using color 

encoded beads with different combinations of dye that each capture a specific protein; 

creating a higher order multiplexing strategy similar to multiplex digital PCR2192. 
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Single Cell Sequencing: More complicated approaches with digital assays also 

exist that can identify large amounts of heterogeneity. Personalized medicine aims to 

find these differences in heterogeneity and optimize treatment options. Since droplets 

allows millions of experiments to be done simultaneously, digital assays with single cell 

sequencing has evolved to measure cells from large tissues in entire organisms to find 

variations in how genes are expressed. One popular technique termed “Drop-seq”53 

analyzes mRNA from individual cells by compartmentalizing a single cell, lysis buffer and 

primer barcoded beads into droplets. As cells are lysed, mRNA can bind to the primers. 

All the droplets are broken to release beads, which go through a reverse transcription 

process to generate cDNA. This DNA can be amplified and sequenced to measure a 

large panel of mRNA from single cells. Tabula Muris is an example of taking all of the 

resulting information that was generated from commercial platforms such as Biorad’s 

digital PCR, 10x Genomics, and sequencing93. These types of parallel assays generate 

enormous amounts of biological data. The interpretation of this data is still in nascent 

stages as researchers are using data mining algorithms to eventually map out how 

genes, proteins, and physiology are all linked to classify patients in different states.  
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1.4 Point of Care Diagnostics 

While digital assays have proven ultrasensitive detection has enormous 

advantages for early detection and in general understanding physiological conditions, 

most of these techniques rely on bulky, expensive equipment. Point of care devices 

eliminate equipment that cannot be used in the field and instead rely on simpler tests 

that often have a qualitative readout such as a color or turbidity change94. The simplest 

of these are based on paper and use the wicking motion of liquid to flow liquid over a 

region where a reaction takes place95. The most common are lateral flow assays, where 

antibodies are printed onto a region, and after the sample is introduced, can change 

color in the presence of a target biomarker. These have been successfully 

commercialized for pregnancy tests, while other electrochemical sensors are used for 

glucose measurements with a prick of blood96. Point of care devices excel in conditions 

that have concentrated biomarkers in a small volume, allowing qualitative measurements 

to provide satisfactory information.  

However, most point of care devices cannot provide the quantitative information 

and the ability to detect rare molecules necessary for many diagnostic applications. 

Diseases like HIV, cancer, and traumatic brain injury are hard to diagnose using PoC 

devices since the small fold changes or limit of detection required cannot be achieved 

through later flow assays97,98. Several groups have used inexpensive CMOS cameras 

with LEDs, and 3d printed casing where a reaction on a microfluidic chip can be 

observed99. A large subset of these have transitioned to the use of smartphone-based 

readouts, due to their powerful cameras, built in LEDs, computation power, and 

connection to the cloud to transmit data and results100,101. In addition, smartphone-based 
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systems have been combined with brightfield, fluorescence imaging, spectroscopy, 

phase imaging, and multicolor techniques to demonstrate the power of a handheld 

device that is ubiquitous around the world102. By combining smartphone-based 

technology with techniques like machine learning, powerful image analysis and 

diagnostics have emerged103. 

Several groups, including our own, have combined the power of smartphone 

technology with digital assays to achieve ultrasensitive detection in a mobile platform104. 

Most groups use static arrays where compartments are made on a simple chip and an 

LED excitation source is separated from the emission through optical filters. Slip Chip is 

an example of a microfluidic platform that uses arrays with isothermal amplification, and 

counts the total number of fluorescent compartments105. Other readouts such as a 

rotating cuvette with a laser diode readout was also used for a smaller footprint device, 

termed the Integrated Comprehensive Droplet Digital Detection106. While many portable 

techniques have been developed, they often lack the dynamic range, sensitivity, or 

integration required for a point of care device with ultrasensitive detection.  
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1.5 Challenges with current systems 

Current digital systems often require that the input sample must be purified or 

diluted. If the sample is not processed or enriched, volumes required could be as large 

as 10mL to interrogate for sparse targets that would otherwise be missed if sampling 

only 100 µL. For example, in the case of pancreatic cancer, there can be as few as one-

three pancreatic cancer cells in the background of billions of other particles in 1 mL of 

blood107,108. Therefore, to get a confident readout, it is best multiple mL of blood. 

However, most commercial techniques such as Biorad’s digital PCR system, or 

Quanterix’s Simoa often use 100uL of sample as an input for a test. If a large sample is 

broken up into 100uL aliquots, this would increase the reagent cost and time cost. This 

becomes an even larger issue in cases like single cell sequencing, where the library 

prep and costs for processing these large samples for extremely rare cells would be 

resource intensive. In addition, many of the technologies developed for digital assays 

took what was available in flow cytometry and applied the same principles to droplets109. 

The inherently low throughput nature of generating droplets one by one for analysis for 

up to 10mL of sample is highly impractical since measuring this volume would take 

nearly 10h per sample, assuming a 10kHz processing time and 40 µm diameter droplets. 

Therefore, parallelization from sample preparation, enrichment, droplet generation, 

incubation, detection and analysis is mandatory to make digital assays appealing for the 

most challenging, yet highest impact, applications. 
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Figure 1.2: Miniaturizing bulky equipment into an integrated, portable platform. a. 

The Biorad Digital PCR workflow requires first centrifuging sample to separate plasma or 
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serum. The sample is then used for the droplet generator, where it is transferred to a 

plate sealer, and then moved to a droplet detector that is connected to a computer. b,c. 

In order to compress the systems, we have envisioned an ideal device that has a 

membrane sample processor to first filter out molecules based on size or magnetic 

sorting. Downstream of the membrane is a 3D chip where droplets are generated, 

incubated, and detected in parallel. Using a smartphone-based readout with peristaltic 

pumps, equipment is inexpensive without sacrificing robustness or sensitivity. A true 

sample in to results out can be displayed on a cell phone with multiplexed, ultrasensitive 

measurements.      

The ASSURED criteria sets the standards for an ideal point-of-care device, and 

the addition of ultra-sensitivity would be a feature that further extends what could be 

possible in a portable device. Assay sensitivity, reproducibility, specificity and dynamic 

range are criteria that can act as quantifiable measures for an ideal device. First, a limit 

of detection for nucleic acids have already been shown with up to 1:200,000 specificity 

for single mutated KRAS genes in the background of unmutated genes, showing the 

capability of digital PCR. 10110 Similarly, zM concentrations of enzymes can accurately be 

detected through digital ELISA – making droplets ideal platforms due to their inherent 

robustness and endpoint measurements. Next, specificity in PCR comes from base pair 

bonding, while in ELISA comes from the binding events between the antibodies and the 

proteins. A major advantage of amplification inside droplets is that millions of dye 

molecules can be detected in a small volume – obviating the need for expensive lenses, 

optical setups, and lasers that are traditionally required for flow cytometry-based 

approaches.  
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One of the main tradeoffs in commercially available ultrasensitive assays and 

those that have been implemented in the field, is that dynamic range is often sacrificed 

for simplicity111. This means that static arrays with a small number compartments can be 

implemented on simple devices in the field, making more complicated scenarios where 

multiple biomarkers are at varied concentrations over a 103 range becomes difficult to 

measure without serially diluting samples. However, diluting samples does not always 

produce a linear effect due to matrix effects112, which can complicate the attempt to 

serially dilute and run multiple digital assays. If the same sample is broken up into 103 

droplets as opposed to 106, a positive partition will have a lower signal to background. In 

addition, lower number droplet assays often employ the use of the Most Probable 

Number (MPN) algorithm that back calculates the initial concentration based on empty 

droplets due to statistical filling of positive droplets113. This means that the absolute 

quantification of digital assays is lost with a limited number of partitions.  

In addition, having the ability to process millions of droplets enables key 

applications in areas like copy number variation genotyping, detecting of sparse cell free 

DNA in large samples of blood, low-level viral load and pathogens, and preparing for 

next generation sequencing libraries.113 Applications that require multiplexing are also 

highly limited if the 10k droplets in an assay workflow have to be split by 10 biomarkers 

and then back calculated, which loses the strengths of digital assays. Furthermore, next 

gen sequencing and techniques that employ barcoding mechanisms for cells or DNA-

tagged antibodies require millions of droplets to cast a wide net for the inherent 

variability in biological systems114. Since current workflows that can process such large 

quantities are too expensive and bulky, an ideal device would also be able to process 

droplets at ultra high-throughput. 
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Sample prep would have to be integrated such that machines such as 

centrifuges that require lab facilities are not needed. Next, while many microfluidic chips 

are small, they often rely on expensive syringe pumps to control flow, or a computer to 

analyze the results – making them not truly portable. In other scenarios, these 

microfluidic chips also rely on microscopes, lasers, and optical components that must be 

fixed precisely, or the imaging becomes impaired. Therefore, another feature of an ideal 

device is that it is robust to the precision needed for many microfluidic platforms, without 

requiring expensive pumps or detection platforms. Integration is also critical, since 

having users transfer samples, collect droplets, and reinject them results in loss and 

variability between runs. Therefore, a sample to readout device with ultrasensitive 

detection while being portable can unlock the potential of digital assay from lab facilities 

to a wider group of researchers and clinicians.  
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CHAPTER 2: ULTRA-HIGH THROUGHPUT DETECTION (1 MILLION DROPLETS / 
SECOND) OF FLUORESCENT DROPLETS USING A CELL PHONE CAMERA AND 
TIME DOMAIN ENCODED OPTOFLUIDICS 
 

This chapter is a slightly modified version of a manuscript published in Lab on a Chip:  

VR. Yelleswarapu, H. Jeon, S. Yadavali, D. Issadore, Ultra-High Throughput Detection 

(1 Million Droplets / Second) of Fluorescent Droplets Using a Cell Phone Camera and 

Time Domain Encoded Optofluidics, Lab on a Chip, DOI: 10.1039/C6LC01489E, 2017. 

 

V. Y. conceived and performed all experiments in this study, coded the Matlab software, 

created the Android app, as well as prepared the manuscript and figures. 

 

2.1 Abstract 

 Droplet-based assays — in which ultra-sensitive molecular measurements are 

made by performing millions of parallel experiments in picoliter droplets — have 

generated enormous enthusiasm due to their single molecule resolution and robustness 

to reaction conditions. These assays have enormous untapped potential for point of care 

diagnostics but are currently confined to laboratory settings due to the instrumentation 

necessary to serially generate, control, and measure tens of millions of droplets. To 

address this challenge, we have developed the microdroplet Megascale Detector (µMD) 

that can generate and detect the fluorescence of millions of droplets per second (1000x 

faster than conventional approaches) using only a conventional cell phone camera. The 

key innovation of our approach is borrowed from the telecommunications industry, 

wherein we modulate the excitation light with a pseudorandom sequence that enables 

individual droplets to be resolved that would otherwise overlap due to the limited frame 

rate of digital cameras. Using this approach, the µMD measures droplets at a rate of 106 

droplets/sec (ɸ = 166 mL/hr) in 120 parallel microfluidic channels and achieves a limit of 

detection LOD = 1 µM Rhodamine dye, sufficient for typical droplet based assays. We 

http://pubs.rsc.org/en/content/articlelanding/2017/lc/c6lc01489e
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incorporate this new droplet detection technology with our previously reported 

parallelized droplet production strategy, incorporating 120 parallel droplet makers and 

only one set of continuous and droplet phase inputs and one output line. By miniaturizing 

and integrating droplet based diagnostics into a handheld format, the µMD platform can 

translate ultra-sensitive droplet based assays into a self-contained platform for practical 

use in clinical and industrial settings. 

2.2 Introduction 

Droplet-based assays, in which microscale emulsions are used as isolated 

compartments to run many independent chemical reactions, have demonstrated 

enormous utility in recent years as a platform for the ultrasensitive detection of small 

molecules, proteins, and nucleic acids115–122. The sensitivity of droplet-based assays 

arises from the 106x reduction in volume from conventional assays (>µL) to the volume 

of individual microscale droplets (pL). However, the enormous increase in sensitivity 

comes at the expense of cumbersome instrumentation and time-consuming, not fully 

automated processing (T >> 1 hour for current commercial systems123) to generate, 

incubate, and measure millions of droplets — including pumps, optics, thermal cyclers, 

and multiple microfluidic chips. Primarily, this processing time is currently limited by the 

inherently low throughput rate (<104 droplets/sec) in which microscale droplets are 

serially generated and fluorescently detected69,124–126. (Fig. 1a) 



29 
 

 

Figure 2.1. μMD Implementation. a. Conventional digital assays are 

currently confined to laboratory settings due to the instrumentation necessary to 
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serially generate, control, and measure tens of millions of droplets, with typical 

droplet throughput limited to f ≅ 1 kHz. For a 107 droplet experiment, the 

experiment time is T ~ 2.8 hours. b. Our μMD can generate and detect the 

fluorescence of millions of droplets per second, by parallelizing both the 

generation of droplets and the detection of droplets to achieve f = 1 MHz, 

resulting in T = 10 seconds for a 107 droplet experiment. c. The µMD consists of 

a cell phone, a custom 3D printed piece that contains inexpensive optics, an 

LED, and a disposable microfluidic chip. d. Using conventional excitation that is 

constant in time, as a droplet travels through a microfluidic channel, it is imaged 

as a streak that has a length Lstreak = v*Texp, where v is the droplet’s velocity and 

Texp is the camera’s exposure time, that sets the minimum distance between 

droplets. e. Neighboring droplets closer than Lstreak have streaks that overlap and 

cannot be resolved. f. The µMD breaks the tradeoff relationship between droplet 

spacing and flow velocity v. The LED excitation is modulated 

 One promising direction to scale-up droplet production and detection has been the 

development of platforms that make it possible to operate many microfluidic droplet 

generators and detectors in parallel127–131. Many promising technologies have been 

proposed in this area132–135. (Table 1) Imaging platforms have been designed that can 

measure as many as 1 million droplets simultaneously19. In-flow detection systems, in 

which droplets pass one-by-one through an optical detector can measure a far greater 

number of droplets than is possible using static imaging, and have the advantage that 

droplets can be sorted downstream of the detector55,136–138. In recent years, microfluidic-

based techniques have been proposed to detect droplets without the need for expensive 
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lenses, cameras, and lasers, which were conventionally necessary for in-flow detection. 

In one particularly promising approach, hybrid CMOS/microfluidic chips have been 

reported that can detect droplets flowing in parallel channels, achieving high throughput 

detection (254x103 droplets/sec) using no lenses139. However, these hybrid 

CMOS/microfluidic approaches are limited by the expense of incorporating centimeter 

sized post-processed CMOS chips (> $10/chip)27 into a disposable microfluidic 

component. Alternatively, devices have been developed in which the light coming from a 

fluorescent droplet is modulated using microfabricated apertures, enabling parallel 

streams of micro-scale droplets or cells to be detected using only a single 

photodetector129,140–143. (Table 1) These approaches, however, are limited to a 

throughput < 5k droplets/sec, resulting in > 30 minutes to read out each 10 million 

droplet-based assay, and require specialized optics, electronics, and micro-

lithographically defined apertures on the microfluidic chip. 

Table 1 - Technologies to Perform Digital Assays 
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Building on this previous work, we have developed a new approach to 

miniaturizing droplet based assays that can achieve a throughput of 106 droplets/sec, 

1000x faster than conventional methods, using a conventional smartphone camera and 

inexpensive disposable chips. (Fig. 1b) By harnessing ultra-bright LEDs with the 

sensitivity and computing power of smartphone based imaging and cloud 

computing134,144, we were able to implement our platform as a self-contained mobile 

device. (Fig. 1c) The key innovation of our approach is modulation of the excitation light 

in time with a pseudorandom sequence that enables individual droplets to be resolved 

that would otherwise overlap due to the limited frame rate of digital cameras. Using 

conventional excitation that is constant in time, as a droplet travels through a microfluidic 

channel and moves across the camera’s field of view, it is imaged as a streak145 whose 

length Lstreak = v*Texp is a function of the droplet’s velocity v and the camera’s exposure 

time Texp. (Fig. 1d) This streak length Lstreak sets the minimum distance that must be 

maintained between droplets for them to be resolved. To illustrate this point, for droplets 

that have a diameter ddrop = 35 µm that are traveling through a typical microfluidic 

channel (40 µm wide and 35 µm tall) at ɸ = 5 mL/hr, using a typical camera with 1/Texp = 

60 frames per second (FPS), the minimum separation is Lstreak = 472*ddrop. Droplets that 

are separated by less than Lstreak are imaged as overlapping streaks that cannot be 

resolved. (Fig. 1e) 

The key innovation of our approach breaks the tradeoff relationship between 

droplet spacing and flow velocity v, allowing the throughput and dynamic range to be 

dramatically increased. To this end, we modulate the LED excitation with a 

pseudorandom sequence at a rate >10x faster than the exposure time of the camera, 

encoding the droplet streak with a pattern that allows it to be resolved using correlation-
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based detection amongst neighboring droplets with a separation as small as 3.5*ddrop. 

(Fig. 1f) Moreover, we use the entire field of view of the camera to include 120 parallel 

channels, enhancing the throughput by a further 120x relative to a single channel. In 

contrast to previous approaches, which used lithographically patterned apertures to 

modulate the fluorescent droplet in the time-domain129, we can achieve 100x improved 

throughput and obviate the need for lithographically defined apertures, enabling 

extremely low-cost implementation that requires no lithography (<10ȼ/chip)146. 

Furthermore, our use of conventional cell phone cameras offers an opportunity for 

droplet microfluidics to be harnessed for point of care applications due to the ubiquitous 

availability of smartphones144,147,148. To demonstrate the utility of our platform, we 

demonstrated extremely high throughput (1M droplets/sec, ɸ = 166 mL/hr), sensitivity 

comparable to conventional laser-based techniques (1 µM resorufin dye)136, and a 

dynamic range of fluorescent droplets:non fluorescent droplets (1:107 to 1:40) that 

matches the typical dynamic ranges for ultrasensitive digital assays149,150. (Table 1) 

2.3 Methods 

Microdroplet Megascale Detector (µMD) Design 

The key innovation of our µMD technology is the modulation of the excitation light 

with a pseudorandom maximum length sequence (MLS). (Fig. 1f) This modulation of the 

excitation light in time translates into a modulation of the image streak in space, (Fig. 

1g) which allows fluorescent droplets to be detected even amongst other densely 

packed fluorescent droplets. (Fig. 1i) The modulated image is analyzed by correlating 

the image with the expected modulation pattern m, creating a signal Ψ(X) = 

∫Sn(x)m(x+X)dx = Sn⊗m, wherein droplets can be resolved with far greater resolution 

than in the unprocessed image. (Fig. 1h,j) We have chosen as our modulation pattern 
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the MLS sequence because its autocorrelation function approximates a Kronecker delta, 

thereby allowing the best possible resolution of droplets in the processed signal Ψ. MLS 

sequences were originally developed for applications in radar and 

telecommunications,151 and have previously been used in droplet based detection 

schemes129. 

To design the optimal MLS sequence for our detection platform, there are two 

main considerations. First, it is advantageous to include as many bits in the MLS 

sequence as is possible to minimize the width of its autocorrelation peak. The number of 

bits is constrained by several key parameters of our smartphone based implementation. 

The maximum number of bits in the MLS sequence |m|max = Lstreak/Δx = v*Texp/Δx is set 

by the spatial resolution of the camera Δx, the droplet velocity v, and the exposure time 

of the camera Texp. This value is further constrained by the length of our imaging field of 

view LFOV = 12 mm, which sets the length of the droplet streak Lstreak that can be imaged. 

We chose to set Lstreak ≈ 1/3*LFOV, such that each droplet’s modulated streak is measured 

fully in at least one frame. The length of the MLS sequence that we used was |m| = 63 

bits. One further consideration for our technique is droplet diameter d. If the droplets 

have a diameter d larger than the resolution of our camera Δx, it sets the minimum bit 

size in the MLS pattern. In this implementation, we set the droplet diameter to d = 35 

µm. For the |m| = 63 bit MLS pattern that we use, where each bit is ~60 µm, the droplet 

diameter must follow the condition d < 60 µm to avoid blurring the MLS pattern. 

Signal Extraction 

The µMD’s signal analysis workflow is as follows: i. the video stream from the cell 

phone camera is partitioned into individual frames. (Fig. 2a) ii. The image is digitally 

filtered, such that only the red component from the RGB image representation remains 
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and spherical aberrations, which arise from our inexpensive smartphone based optics, 

are digitally corrected. (Fig. S1). iii. Each of the individual 120 microfluidic channels in 

the image is partitioned, (Fig. 2b) and for each channel, the fluorescence intensity is 

measured along the length of the channel using a line average. Thus, each video frame 

is converted into 120 one-dimensional vectors Sn=1:120 of length 1080. iv. For each of 

these vectors Sn, droplets are identified by correlating the fluorescence intensity in the 

channel Sn with the expected MLS signal m, Ψ = Sn⊗m. (Fig. 2c) v. Indexed by the 

video frame k and the channel n, a matrix [xk,n,vk,n] is generated that reports the droplets 

detected. 

A major challenge of our detection technique is that it requires knowledge of 

each droplet signal’s velocity v and its phase shift θ relative to the MLS pattern m used 

to excite the droplets. Rather than add additional cost to our platform by phase locking 

the excitation of our LED to the cell phone camera or controlling velocity using a more 

expensive pump, we instead use a cloud computing implemented algorithm to optimally 

detect each droplet with unknown velocity v and phase θ. To this end, we correlate each 

Sn,k with the MLS pattern m(x,v,θ), a three dimensional matrix that contains all possible 

phases θ and velocities v, (Fig. 2d) and search within the resultant 3D matrix Ψ(x,v,θ) 

(Fig. 2f) for peaks with an amplitude greater than a defined threshold, and record the 

position and velocity [xk,n,vk,n] of every droplet. This analysis allows the correct phase θc 

(Fig. 2g) and velocity vc (Fig. 2h) to be determined for each individual droplet.  
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Figure 2.2. Signal Analysis Workflow. a. Each video frame from the cell phone 

camera is first partitioned into 120 one dimensional vectors Sn (b), corresponding to the 

fluorescence intensity along the length of each microfluidic channel. c. Each vector Sn is 

analyzed by correlating it with the expected signal m(x/v-θ), where v is the expected 

droplet velocity and θ is the expected droplet phase. d. A flow chart of the µMD’s 

algorithm to detect droplets with unknown velocity v and phase θ. e. A timing diagram of 

our cell phone’s rolling shutter readout, which complicates our measurement by giving 
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each vector Sn a different phase θ. f. Each Sn is correlated with m(x,v,θ), a three 

dimensional matrix that contains all possible phases θ and velocities v, resulting in a 3D 

matrix Ψ(x,v,θ). Within this 3D vector Ψ(x,v,θ), peaks are identified that allow droplets to 

be detected at their correct phase θc (g) and velocity vc (h). i. A single microfluidic 

channel is shown at various frames k, showing that individual droplets are detected in 

multiple frames. j. We perform correlation analysis on Ψ between subsequent frames to 

further improve accuracy. with a pseudorandom sequence, modulating the streak (g) 

such that it can be resolved using correlation based detection (h), even amongst close 

by neighboring droplets (i,j). 

 

 

There are several considerations, based on our hardware implementation, that 

inform the design of our algorithm. The computation time for our algorithm is 

approximately proportional to the number of velocities v that our algorithm searches. To 

determine the appropriate number of velocities, we measured the coefficient of variation 

of droplet velocity CV = 4.4% at ɸ = 100 mL/hr by imaging the streak lengths of sparse 

non-overlapping droplets. (Fig. S3) Based on this measurement, we calculate Ψ(x,v,θ) 

over a domain that covers ±20% of the mean velocity, with 34 increments. Matching the 

phase θ for each signal Sn to the phase of the MLS pattern m is complicated by our cell 

phone camera's (Samsung Galaxy S7 Edge) use of rolling shutter. In a digital camera 

that uses rolling shutter, which includes most currently available cell phone cameras, 

each row of the imaging sensor is sequentially readout over the period defined by the 

frame rate. (Fig. 2e) Thus, the exposure time for each row Texp is sampled at an offset 

window in time, resulting in a phase shift between each Sn. Because of this readout 
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technique, we choose to orient our microfluidic channels to align with the rows of the 

CMOS sensor in the digital camera, such that within each vector Sn the phase θ is 

constant.  

In addition to the analysis performed on each individual frame k in the video, we 

also perform correlation analysis between subsequent frames to further improve 

accuracy. Detected droplets in a given frame k are cross referenced with droplets 

detected in subsequent frames (Fig. 2i) by comparing the droplet's expected position 

x*k+1,n = xk,n + vk,nTexp, based on its measured velocity and position [xk,n,vk,n], (Fig. 2j) with 

its measured position in the subsequent frame xk+1,n. The algorithm described above is 

implemented in Matlab (source code provided in SI). Due to the required 

computational power, this program is not performed directly on the cell phone. Using a 

Windows 7 PC with an Intel Core i7-4700 @ 3.4 GHz and 16 GB RAM, we can locally 

process the data at a rate of 106 droplets/30 min. In addition, we take advantage of 

ubiquitous wireless networks, and perform the computation either on a local server or 

using Matlab's Cloud service, to greatly speed up processing, both of which interface 

with a mobile app installed on the cell phone based device that we created. (Fig. S2) 

µMD Implementation 

The µMD consists of a disposable microfluidic chip, a cell phone, and a 3D 

printed piece that we designed. The 3D printed piece contains an LED, a low-cost 

commercial plastic lens (<$4), and a slot to automatically align and focus the microfluidic 

chip. (Fig. 3a) The disposable microfluidic chip is constructed of only PDMS and glass, 

and is prototyped using soft lithography at The University of Pennsylvania's Singh 

Center. A hobbyist-grade, clip-on plastic macro lens (15x magnification, Carson 

HookUpz, ML-515) is used to magnify the microfluidic chip to a field of view FOV = 7x12 
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mm2. Mounted in-line with this lens is a longpass filter (λc = 605 nm, Edmund Optics, 

#52-528) to diminish background scattered excitation light in the image. (Fig 3b) An 

ultra-bright green LED (λex = 530 nm, Luminus, CBT-90-G-C11-JK201) is used with a 

bandpass filter (λcuton = 535, λcutoff = 585 nm, Omega Optical, 560AF50-X), to further 

diminish the excitation light that reaches the cell phone's camera. The LED is driven 

using external electronics consisting of an LED driver circuit (Luminus Development Kit, 

DK-114N-3) and a microcontroller (Arduino Mega2560). To illuminate the droplets in the 

microfluidic channels we make use of anti-resonant side coupling152 which ensures 

uniform illumination. The MLS sequence that we use is stored in our microcontroller, and 

is used to modulate our LED. The non-disposable cost, excluding the cell phone, of the 

µMD prototype is < $500. 
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Figure 2.3. µMD Implementation. a. A schematic cross section of the µMD. A 

microcontroller controls the LED excitation pattern. Bandpass BPex and long pass LPFem 

filters reduce background signal in the cell phone image. The microfluidic chip is side-

coupled to LED such that total internal reflection ensures uniform excitation across the 

chip. The cell phone video is processed using a remote server that has the processing 

power to perform our computationally intensive signal processing. b. The spectrum of 

the LED excitation, the cell phone camera’s red channel CMOS-R, the excitation BPex 

and emission filters LPFem, and Rhodamine dye’s absorption and emission. c. A 
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schematic of the µMD chip, showing the droplet generation module, the droplet 

distribution module, and the detection module. Micrographs of each of these modules 

are shown. Scale bars are 100 µm. 

 

 The disposable microfluidic chip consists of three modules, i. a module to rapidly 

generate monodispersed droplets 130,131; ii. a module to distribute these droplets to 

parallel detection channels44, and which in future implementations can include delay 

lines for chemical reactions to take place within the droplets45; and iii. the µMD's ultra-

high throughput cell phone based fluorescence droplet detection. These modules are 

integrated into a low-cost all-polymer (PDMS) and glass chip, for point of care 

implementation. To rapidly generate droplets, we make use of an architecture 

previously published by our group17, which enables N = 200 droplet generators to be 

incorporated onto a single chip with only one input for the droplet phase, one input for 

the continuous phase, and one output line.16,17 (Fig. 3c) Droplets were generated with 

droplet diameter d = 35 µm, using a ladder geometry that can achieve high throughput 

>106 droplets/sec with only small variation in droplet diameter (CV < 7%)17
. Droplet 

diameter was validated using fluorescence microcopy (Fig. 3c). Downstream of the 

droplet generator, the droplets are evenly distributed over the 120 channels using an 

array of pillars, which are 60 µm in diameter and are spaced by 180 µm in a hexagonal 

array. (Vid. S1, CAD schematic provided in SI)153. The N = 120 flow channels where 

µMD detection is carried out have a height of 40 µm and a width of 35 µm to 

accommodate d = 35 µm diameter water droplets suspended in 0.65 cSt Silicone Oil 

(Consolidated Chemical) with 5% v/v Span80 (Sigma). We fabricate the chip using 



42 
 

traditional soft lithography154 and use oxygen plasma surface activation to permanently 

bond the PDMS to a glass slide (Corning® Glass Slides, ID: 26005). 

Simulations to Parameterize Device Performance  

To characterize and to aid in the design of our platform, we created a numerical 

model to simulate the performance of the µMD. The model was carried out using Matlab 

and all source code is included in the Supplementary Information. In this model, a 

simulated signal from the passing droplet was created using an MLS sequence m(x/v − 

tp), scaled by a droplet velocity v and placed into a particular channel's signal Sn at time 

point tp. N droplets are iteratively placed into Sn with randomly generated tp, and 

Gaussian noise is added to the signal to obtain the intended signal to noise ratio (SNR). 

The model was verified by comparing it directly to our experimental data. Using this 

model, we were able to determine the limits of our detection strategy, and answer the 

following questions: i. how does our platform's sensitivity scale with the number of bits in 

the MLS sequence? and ii. what design parameters define the throughput of our 

platform? For these simulations, we set velocity v = 4 mm/Texp, which corresponds to a 

volumetric flow rate ɸ = 145 mL/hr, for 120 channels with dimensions that match our 

prototype device and a frame rate of 60 FPS. 

To quantify the scaling of our platform's performance with the number of bits in 

the MLS sequence, we measured the SNR in our model system using MLS sequences 

that ranged from 10 bits to 100 bits. The output signal from our platform Ψ is expected to 

have a greater SNRΨ than the raw data SNRraw, as correlation of the raw image with the 

expected MLS pattern acts as an ideal filter, diminishing the majority of the noise 

because it does not correlate with the expected pattern. To determine the SNRΨ of our 

platform, we calculate the ratio of the energy of the signal from a passing droplet ∫Ψ2
sigdx 
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to the energy of a background signal ,where there is only noise and no signal ∫Ψ2
bgdx, 

over the length of the signal. To test each condition, we ran the simulation for 500 

independently simulated droplets. We found that as the number of bits in the MLS 

sequence increased, so did the SNRΨ (Fig 4a- top inset). Moreover, as we increased 

the number of bits in the MLS sequence, we could detect droplets with diminishing 

values of SNRraw (Fig 4a- bottom inset). For example, for a droplet with an SNRraw= 1 (0 

dB), the SNRΨ of the output of our platform, for an |m| = 63 bit MLS, increased to SNRΨ 

= 100 (20dB). 

Figure 2.4. Modeling and Simulating the µMD. a. To determine the number of bits in 

the MLS sequence |m|, we compared the signal to noise ratio SNRΨ of the droplet in Ψ 

to the droplet in the unprocessed signal SNRraw. Inset Top: At SNRraw = 0 dB, as the 

number of bits |m| increased, SNR increased. Inset Bottom: As the number of bits |m| 
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increased at SNRΨ = 20 dB decreased, we could detect droplets with diminishing values 

of SNRraw. b. Droplets D1 and D2, not resolvable in the raw signal Sn, could be resolved 

in Ψ. c. Twenty droplets, not resolvable in the raw signal Sn, could be resolved in Ψ with 

perfect fidelity. d. Receiver Operator Characteristic (ROC) curves for increasing number 

of droplets per channel, demonstrate excellent performance Area Under the Curve 

(AUC) ~ 1 up to N = 20 droplets in a channel. e. In comparison, using conventional 

constant excitation, performance degraded with more than one droplet in the channel. f. 

For the MLS patterned droplets, the AUC > 0.95 for as many as N = 20 droplets in a 

channel, but the AUC degrades severely for N > 1 droplets using constant (DC) 

excitation.  

 

To determine the design parameters that control the µMD's throughput, we 

performed a simulation to determine how many positive droplets could be 

simultaneously detected in a single channel. For these simulations we used an MLS 

sequence containing |m| = 63 bits. We created a set of simulated data consisting of 

signals Sn that have N droplets pass through the µMD at random time points tp, within a 

single exposure time Texp. To illustrate the µMD's performance at high droplet densities 

N, we first successfully demonstrated detection of individual droplets with N = 2 droplets 

(Fig. 4b) and N = 20 (Fig. 4c) droplets per channel, which could not be detected using 

non-modulated detection due to droplet overlap. The signal from passing droplets in Ψ 

was found to have a full width half maximum of 10 pixels, allowing droplets to be 

resolved as long as the spacing between droplets was > 20 pixels (3.5*ddrop). To quantify 

the tradeoff of sensitivity, specificity, and throughput, we calculated the sensitivity = TP/P 

and specificity = (P- FP)/P at various numbers N of positive droplets per channel, where 
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true positives (TP) are instances where the detected droplet matched the true locations 

of the droplets that were randomly spaced, positives (P) were the total number of 

droplets that were randomly placed, and false positives (FP) were detected droplets that 

did not co-register with a true droplet. We quantified the device's performance by 

sweeping the droplet detection threshold in Ψ, to create a Receiver Operator 

Characteristic curve (ROC) and calculate the corresponding Area Under the Curve 

(AUC). We tested the device using a density of positively fluorescent droplets with 

densities ranging from N = 1 to N = 27 droplets per channel in a given frame. (Fig. 4d) 

To test each condition, we ran the simulation 100 times to average over the effect of 

random droplet placement tp. We demonstrated that device performance was near 

perfect (AUC ~ 1) for N < 19 droplets per channel per frame, above which the AUC 

began to drop off. (Fig. 4d,f) We compared this performance to non-modulated 

detection, and found that without modulation, at only N = 2 droplets per channel per 

frame, the performance (AUC = 0.43) was already extremely degraded. (Fig. 4e,f) 

Design Validation  

We performed a series of experiments to validate our prototype µMD's capability 

to detect droplets across a wide range of velocities v, phase shifts θ, droplet density N, 

and fluorophore concentrations C. We first demonstrated that neighboring channels in 

the µMD's detection region can be partitioned automatically into channels Sn, allowing 

passing droplets to be detected without cross-talk between channels. (Fig. 5a) Next, to 

demonstrate that droplets can be detected that have a signal comparable to the noise 

level, we measure a droplet with C = 1 µM Rhodamine. In the raw image, the signal from 

this passing droplet is barely detectable (SNRraw ~ 1). However, in the correlation output 

Ψ, the signal from the passing droplet is easily detected versus the background 
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(SNRΨ ~ 100). (Fig. 5b) Next, we demonstrate that nearby droplets can be detected, 

which would otherwise overlap due to the exposure time of the cell phone camera. In 

Fig. 5c, two droplets are shown in the raw data, which are not resolvable in Sn, but 

become easily resolvable in the correlation output Ψ. We next demonstrate the µMD's 

capability to detect droplets across a range of droplet velocities v. In Fig. 5d, two 

droplets from separate flow rate experiments, one with a velocity of v = 2.5 mm/Texp and 

another with a velocity of v = 6.25 mm/Texp, were simultaneously detected using our 

velocity and phase scanning algorithm. We demonstrated the µMD’s capability to detect 

droplets across a range of droplet phase shifts θ, which arise from the lack of phase 

locking and the rolling shutter of modern cell phone cameras. Fig. 5e shows three 

separate channels with different phase shifts θ, which were correctly detected using our 

detection algorithm. For these experiments, we generated d = 35 µm diameter droplets 

containing Dextran Rhodamine B 10,000 MW with 0.15 M MgSO4 (Thermo, D1824). 

These droplets were dispersed in a continuous phase consisting of 0.65 cSt Silicone Oil 

(Consolidated Chemical) with 5% v/v Span80. We chose Silicone oil due to its low 

viscosity and cost, and found that the known PDMS swelling effects to the oil were 

minimal given the short time frame droplets were driven through the device155. These 

experiments were conducted at a volumetric flow rate ɸ = 80 mL/hr and 30 FPS. 
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Figure 2.5. Experimental Validation of the µMD’s Key Features. a. Droplets in 

neighboring channels can be detected, and their correct channel identified. b. Droplets 

with low signal to noise ratio in the raw signal SNRraw ~ 1 could be resolved with high 

SNR in Ψ. c. Two droplets that overlap and cannot be resolved in the raw data are easily 

resolved in Ψ. d. Two droplets traveling at different velocities v are both detected 

accurately due to our velocity invariant detection method. e. Three droplets, in three 

different channels n = 47, 64, and 83, with different phases θ, are detected accurately 

due to our phase θ invariant detection method. 

Quantification of Device Sensitivity and Dynamic Range 

To quantify the limit of detection (LOD) of the µMD, we performed a serial dilution 

with Rhodamine dye and demonstrated an LOD = 1 µM, sufficient for performing 

biological assays such as digital PCR132, enzyme assays133, and ELISA156. In these 

experiments, we diluted the dye at various concentrations and measured the SNR of 

passing droplets in our µMD. The SNRΨ of a passing droplet in Ψ was calculated by 
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integrating the energy of the signal ∫Ψ2
sigdx over its length, 20 pixels, and compared it to 

the case when there is no droplet passing. The µMD's camera frame rate, which 

modifies Texp and thus the SNR, controls the tradeoff between throughput and sensitivity. 

In the raw images, the SNRraw can be seen to decrease with concentration C of dye. The 

droplets became difficult to observe relative to the noise at concentrations below C = 10 

µM Rhodamine at 30 FPS (Fig. 6a) and 50µM Rhodamine at 60 FPS. (Fig. 6b) After 

running the raw video data though our algorithm, the SNRΨ for both the 30 FPS (Fig. 6c) 

and 60 FPS (Fig. 6d) data increased by 100x compared to SNRraw. The measured limit 

of detection was CLOD = 1 µM Rhodamine at 30 FPS and CLOD ≅ 5 µM Rhodamine at 60 

FPS, and was ultimately not defined by SNRΨ but by the digitization error of the digital 

camera. Thus, sensitivity can be further improved by using a camera with higher gain or 

by increasing the intensity of the LED. For these experiments, the throughput was ɸ = 80 

mL/hr for the 30 FPS measurements and ɸ = 166 mL/hr for the 60 FPS experiments. 

Quantification of Dynamic Range and Throughput 

To quantify the µMD’s dynamic range for counting droplets and its throughput, 

we performed experiments where we spiked a known number of fluorescent droplets into 

a suspension of non-fluorescent droplets and evaluated the accuracy of the device's 

response. The positive fluorescent droplets contained 100 µM Rhodamine and the 

negative droplets contained only water. These positive and negative droplets were 

generated on two separate flow-focusing droplet generating chips and collected 

separately. Droplets in the collection tubes were concentrated based on buoyancy, as 

the aqueous phase (ρaq = 1.00 g/mL) had a higher density than the oil phase (ρoil = 0.75 

g/mL) and sank to the bottom. Positive fluorescent droplets were then spiked into 

negative droplets and thoroughly mixed by pipetting to generate a concentration of 1:40 
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positive:negative droplets. This suspension was then serially diluted into lower 

concentrations of positive:negative droplets, and each concentrations was independently 

measured using microscopy. These suspensions were reinjected into the detection 

module of our chip for evaluation. These emulsions had a volumetric fraction of 53% of d 

= 35 µm droplets suspended in 0.65 cSt Silicone Oil with 5% v/v Span80.  

As the concentration of positively fluorescent droplets increases, passing 

droplets begin to overlap in the raw video such that they are not detectable without 

processing. (Fig. 6e,f) For numbers of spiked droplets ranging from 3 to 6*105 per mL, 

the droplets could be quantified on the µMD with extremely high fidelity (R2 = 0.985). 

(Fig 6g) In Fig. 6g, we demonstrate that the µMD can detect as few as 1:107 to 1:40 

positive: negative droplets using the same settings. The upper limit of the dynamic range 

was experimentally validated at concentrations as high as 1:40 positive:negative 

droplets, beyond which overlapping signals within a single channel begin to limit device 

performance. We demonstrated this effect in simulations (Fig. 4f), wherein the 

performance began to drop (AUC < 0.95), as the number of overlapping droplets 

increased beyond N > 19 droplets in a single channel at any given time, which 

corresponds to a concentration of ~1:18 positive:negative droplets. The limit of detection 

of 1:107 could be improved even further by analyzing more droplets, at the expense of 

increased assay time. These experiments were carried out at ɸ = 166 ml/hr, 

corresponding to an f = 1 MHz detection rate (Calculations provided in SI) for ratios of 

positive:negative droplets of 10-7 to 2.5*10-2, a value consistent with typical digital 

assays157. 
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Figure 6. Characterization of the µMD’s Performance. a. Raw cell phone images of a 

passing droplet at different concentration of Rhodamine dye, at a frame rate of (a) 30 

FPS and (b) 60 FPS. The µMD could detect droplet with SNRΨ > 100 for dye 

concentrations as low as C = 1 µM, where the SNRraw ~ 1 at both (c) 30 FPS and (d) 60 

FPS. e. The ratio of positively fluorescent droplets to the negative number of droplets 

was titrated from 1:107 to 1:40, to evaluate the devices dynamic range for detecting 

positive droplets. f. As the density of positive droplets increased to 1:40, many of the 

droplets were not resolvable in the raw data due to droplet overlap, but could be 

resolved with high fidelity in Ψ. g. A serial dilution of fluorescent droplets: negative 

droplets was performed, and a dynamic range from 3 positive droplets /mL to 6*105 

positive droplets /mL was demonstrated (R2 = 0.985).  
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2.4 Discussion 

Our µMD platform, with its very large scale integrated parallelized droplet 

production and detection, allows digital assays containing 10 million droplets to be 

performed in as little as three minutes on a mobile cell phone based platform. By 

automating, speeding up, and miniaturizing digital assays, the µMD can translate digital 

diagnostics from a laboratory research tool to a point of care diagnostic. Building on this 

work, temperature control and delay lines can be additionally incorporated into the 

µMD158, to move this work beyond a proof of concept and to molecular sensing. In 

addition to making existing digital assays more accessible, due to the µMD’s ultra-high 

throughput rate, it can detect sparse molecules in large volume samples (V > 10 mL) 

that are impractical to measure using conventional hardware, for applications such as 

detecting mutant KRAS genes in the blood of pancreatic cancer patients5 or for 

evaluating cures for HIV by detecting sparse copies of latent HIV in the blood of 

patients159. While in this paper each of the device's channels were used to measure 

droplets from the same suspension, individual channels, or sets of channels, can be 

used to measure independent assays simultaneously, allowing for facile multiplexed 

biomarker detection. Because our detection method is invariant to droplet velocity, it is 

possible to use the detection scheme with low cost portable pumps for point of care 

applications. While the droplet generation module demonstrated in this paper130,131 would 

suffer from increased droplet polydispersity with a low cost pump, recent strategies for 

droplet generation that have greater flow rate invariance could potentially solve this 

issue18. Additionally, though this platform was designed for detecting droplets, due to the 

high sensitivity of its correlations based detection, it can also be applied to the detection 

of fluorescently labeled cells or microbeads145,147. Moreover, this high throughput droplet-
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based chip can be combined with sample processing modules to sort out rare cells, 

bacteria, virus, or exosomes for integrated downstream analysis160–162. 

To further expand the µMD’s functionality, there are several additional features 

that can be incorporated onto the µMD’s monolithic, microchip-based format. For 

example, we postulate that this technique can be extended to the detection of multiple 

fluorescent colors by including multiple LEDs with different colors, each uniquely 

identified by its modulation with a distinct MLS pattern. In addition to measuring the 

fluorescence signal from each droplet, dielectric sensors158 could also be added to count 

the non-fluorescent droplets as well. The counting of negative droplets is not necessary 

for quantifying the number of molecular targets in a digital assay, in the case when the 

total number of droplets is much greater than the number of molecular targets. By 

adding dielectric sensing to quantify the number of negative droplets, the dynamic range 

can be extended to the regime when the number of molecular targets approaches the 

total number of droplets. In this paper, we demonstrated cloud computing using a local 

server or Matlab’s cloud computing service. Achieving the real time data processing 

required for droplet sorting will be challenging and cannot feasibly be done at this time 

with cloud computing. Alternatively, local digital signal processing (DSP) based 

processing techniques have the potential to solve this problem163. However, resources 

such as Amazon Cloud services that allow access to larger numbers of computing cores 

could be used to dramatically increase the rate at which the signal is analyzed. 

Alternatively, the processing can be carried out using parallel computing on a Graphical 

Processing Unit (GPU) for improved computing times. 
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2.5 Supplementary Information 

 

 

Supplementary Figure 2.1: Software Image Correction. a. The low cost macro lens 

used in our µMD caused a pincushion distortion (left) on the acquired images that could 

be corrected using Matlab’s computer vision toolbox (right). The theoretical distortion 

was generated by creating a grid and running the image correction parameters in 

reverse to demonstrate how distortion from the lens can be corrected using software 

rather than resorting to expensive hardware solutions. b. To calculate the camera 

parameters for the image distortion, we used MATLAB’s cameraParameters function to 
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find how the coordinates of the checkerboard were distorted due to the lens (left). These 

coordinates were used to correct the distortion (right), and these parameters were also 

saved for the microfluidic device c. We then implemented this transform for our 

microfluidic device, where corrections from translation vectors due to misalignment were 

adapted. We show three sequential frames (F1, F2, F3) where initially the distortion does 

not allow for proper segmentation as the curvature bends the channels. d. We show that 

after image correction, the channels can be properly segmented and the droplet can be 

followed through the frames for correlation and further analysis. 
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Supplementary Figure 2.2: μMD App for Cloud computing. A custom built app allows 

users to record droplet video, upload the video to the Matlab drive, and retrieve results 

after running the code online a. The record button opens the Camera app on the phone. 

b. The upload button connects to the Matlab drive via a browser, where the files sync to 

the cloud. c. The analyze button opens the Matlab Mobile app, which connects to the 

Matlab drive and allows users to run the analysis code remotely. The app is provided in 

the SI as an .apk file that can be installed on Android phones. 
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Supplementary Figure 2.3: Velocity Distribution. To determine the dispersion of 

droplet velocity v in the µMD, we measured velocity of droplets in multiple channels at 

multiple flow rates ɸ. a. At a given flow rate ɸ, the channels were binned to determine if 

the droplet velocity varied as a function of the row position in the device. There was no 

significant change in velocity moving across the chip. The error bars represent the 

standard deviation. b. Droplet velocity scales linearly with the flow rate (R2 = 0.9978). 

Error bars show the standard deviation at each of the given data points.  

Supplementary Video 1: Animation of device setup and workflow, along with how the 

app interfaces with the cell phone to record and analyze the data.  

Cell Phone Parameters: 

Unlike a traditional scientific CMOS camera where the user is in control of most image 

acquisition parameters35, a cell phone camera has only a handful of features that can to 

be optimized prior to recording. Using the S7 Edge’s Camera “Pro” Mode, the following 

settings were used to record: i. the focus was manually fixed so the chip could slide in to 

an acrylic casing without having to align the chip; ii. the ISO was set to 3200 and 

https://www.youtube.com/watch?v=Kvdb9jifgiQ
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Exposure to +2 maximize light input unless specified otherwise; iii. aperture was set to 

1/30; iv. metering mode was set to Matrix; and (v) the color correction was set to Auto. 

All videos were recorded 1920x1080p size at 60 fps or 30 fps using the OpenCamera 

App, since this setting captured all 120 channels properly without extremely large file 

sizes, and with a field of view of ~12mm by 7mm. While higher resolution videos could 

be captured, this would create file sizes that would take much longer to analyze without 

significantly increasing the field of view.  

Calculation of Droplet Throughput: 

To calculate the droplet throughput, we first measured the droplet diameter to be d = 35 

µm and the volume fraction of dispersed phase to continuous phase to be 𝝌 = 53%. For 

the volumetric throughput ɸ = 166 ml/hr, the droplet throughput f = ɸ / (Vd * 𝝌) = 1.1 MHz 

was calculated. To create a suspension with a filling factor of 𝝌 = 53%, we generated the 

droplets using a separate chip and concentrated the droplets based on buoyancy before 

re-injecting them into the detection region of our chip.  

2.6 Supplementary Code: 

The supplementary zip file contains: (i) Matlab code for simulations, (ii) Matlab code for 

video analysis, (iii) Arduino code to modulate the LED, (iv) CAD schematic of detection 

chip, and (v) an apk to install the app on an Android phone. Each folder contains a 

readme on how to run the code and parameters to change.  
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20161111_Clean_matlab_code_COMPLETE 

~~~~~~~~ Simulation_Spacing_Distance_two_beads_ONLY 

Simulation_Spacing_Distance_two_beads_ONLY.m 

 
clear all 
close all 

  
num_bits = 63; %number of bits in the MLS to use 
logbase2pow = ceil(log2(num_bits));%get base power of 2 for number of 

bits desired 

  
MLS_seq = mseq(2,logbase2pow,0,0); %generates an MLS  
MLS_seq = MLS_seq(1:num_bits); %truncates only the first bits of the 

MLS desired 

  
%Stretch the MLS such that each bit = 10 points, or that each bit = 10 
%pixels in in the CMOS frame 
x = 1:length(MLS_seq); 
v = MLS_seq; 
xq = 1:.1:length(MLS_seq); 
vq2 = 10*(interp1(x,v,xq,'nearest')+1); 

  

  
%Store a signal matrix  
Signal_Mat = zeros(27,1920); 

  
%Create several signals that are spaced apart 
Signal_Mat(1,1:length(vq2)) = vq2; 
for i = 2:27 
  Signal_Mat(i,1+floor((i-1)*length(vq2)/13):length(vq2)+floor((i-

1)*length(vq2)/13)) = vq2; 
end 

  

%Add white noise to the signal 
snr = -10; 
for i = 1:27 
    Signal_Mat(i,:) = awgn(Signal_Mat(i,:),snr); 
end 

  
%Plot the first, middle, and last pattern in the matrix 
figure 
stairs(Signal_Mat(1,:),'Color',[1 0 0]) 
hold on 
stairs(Signal_Mat(13,:),'Color',[0 1 0]) 
hold on 
stairs(Signal_Mat(27,:),'Color',[0 0 1]) 

  
Signal = zeros(1,length(Signal_Mat(1,:))); 
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%Add two signals that are next to eaceh other 
for i = 13:14 
    Signal = Signal + Signal_Mat(i,:); 
end 

  
%Find correlatoin between the expected and summed signals 
corr_vector = xcorr(vq2,Signal); 
figure 
subplot(2,1,1) 
plot(Signal) 
title('Summed Signal of 2 64-bit patterns spaced 23 px apart') 
subplot(2,1,2) 
plot(corr_vector) 
title('Correlation of expected signal with Summed Signal') 

  

  
figure 
stairs(Signal,'LineWidth',1) 
title('Summed signal') 
axis([0 1920 0 300]) 

  
%Filter out DC and low frequencies from the correlation  
figure 
Fs = 1920; 
half_freq = Fs/2; 
notch_freq_filter =1; 
low_freq_filt = 2; 
smoothing_factor = 2; 
w0=notch_freq_filter/half_freq; 
[num,den]=iirnotch(w0,w0/35,-45); 
[a,b]=butter(2,low_freq_filt/half_freq,'high'); 

  
y=filter(num,den,corr_vector); 
yfil=filtfilt(a,b,y);  
ysm=smooth(yfil,smoothing_factor);   
figure 
plot(abs(ysm)) 

  
figure 

  
%Due to the shift in the correlation, only a segment of it is relevant 

to 
%when the expected and signal of interest overlap 
actual_vector_that_matters = abs(ysm(640:1920+640)); 
actual_vector_that_matters=actual_vector_that_matters/max(actual_vector

_that_matters); 
plot(actual_vector_that_matters,'LineWidth',2) 
%select a threshold 
threshold2 = max(actual_vector_that_matters)*.4; 
%Find peaks based on a minimal peak distance 
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[pks,locs] = 

findpeaks(actual_vector_that_matters,'MinPeakDistance',20,'MinPeakHeigh

t',threshold2); 

  
%Plot the information 
threshold_line_x = 1:20:length(actual_vector_that_matters); 
threshold_line_y = zeros(1,length(threshold_line_x))+threshold2; 

  
hold on 
plot(locs,pks,'ro','MarkerSize',6,'LineWidth',2) 
hold on 
plot(threshold_line_x,threshold_line_y,':','Color',[1 0 

0],'LineWidth',4) 
axis([0 1920 0 1.2]) 
xlabel('Frame Pixel') 
ylabel('Signal Correlation') 
title('Max beads that can be packed into a frame') 

  

  
%Plot all the relevant information onto one figure 
figure 
subplot(4,1,1) 
stairs(Signal_Mat(13,:),'LineWidth',1) 
axis([400 1400 0 50]) 
title('Signal 1') 
grid off  
box off 
subplot(4,1,2) 
title('Signal 2') 
stairs(Signal_Mat(14,:),'LineWidth',1) 
axis([400 1400 0 50]) 
grid off  
box off 
subplot(4,1,3) 
stairs(Signal_Mat(14,:)+Signal_Mat(13,:),'LineWidth',1) 
title('Signals Overlap') 
axis([400 1400 0 50]) 
grid off  
box off 
subplot(4,1,4) 
plot(actual_vector_that_matters,'LineWidth',2) 
hold on 
plot(locs,pks,'ro','MarkerSize',6,'LineWidth',2) 
title('Correlation peaks') 
plot(threshold_line_x,threshold_line_y,':','Color',[1 0 

0],'LineWidth',4) 
axis([400 1400  0 1.2]) 

  
grid off  
box off 
%   set(gca,'visible','off'); 

  

~~~~~~~~ Simulation_packing_dense_droplets_COMPLETE 



62 
 

SpacingProximity_vs_ROC 

Function_to_call_noplotsV3.m 

%pick number of bits for MLS and generate signal 
num_bits = 63; 
logbase2pow = ceil(log2(num_bits));%get base power of 2 for number of 

bits desired 
MLS_seq = mseq(2,logbase2pow,0,0); 
MLS_seq = MLS_seq(1:num_bits); 
x = 1:length(MLS_seq); 
v = MLS_seq; 
close all 
xq = 1:.1:length(MLS_seq); 
vq2 = 10*(interp1(x,v,xq,'nearest')+1); 

  
%preallocate a signal matrix 
Signal_Mat = zeros(27,1920); 

  
%add droplets randomly into segments that are atleast two droplet 

diameters 
%apart; some code was borrowed from the following: 

  

Signal_Mat(1,401:400+length(vq2)) = vq2; 
Signal_Mat(2,401+distnace:400+distnace+length(vq2)) = vq2; 
real_locations_droplets = [401 401+distnace]; 

  
%place the droplets at different starting points 
% for i = 1:num_droplets 
%    number_toshift = Pshuffled(i);       
%   Signal_Mat(i,1+number_toshift:number_toshift+length(vq2)) = vq2; 
%   real_locations_droplets(i) =1+number_toshift; 
% end 

  
%add noise to the signal 
snr = -10; 
for i = 1:2 
    Signal_Mat(i,:) = awgn(Signal_Mat(i,:),snr); 
end 

  
%start adding the droplets such that they overlap 
Signal = zeros(1,length(Signal_Mat(1,:))); 
for i = 1:2 
    Signal = Signal + Signal_Mat(i,:); 
end 
%take a correlation from the expected to the signal that contains all 

the 
%droplet summations 
corr_vector = xcorr(vq2,Signal); 

  

%filter out DC components 
Fs = 1920; 
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half_freq = Fs/2; 
notch_freq_filter =1; 
low_freq_filt = 2; 
smoothing_factor = 2; 
w0=notch_freq_filter/half_freq; 
[num,den]=iirnotch(w0,w0/35,-45); 
[a,b]=butter(2,low_freq_filt/half_freq,'high'); 

  
y=filter(num,den,corr_vector); 
yfil=filtfilt(a,b,y);  
ysm=smooth(yfil,smoothing_factor);   

  
%plot a portion where the vectors overlap completely 
actual_vector_that_matters = abs(ysm(640:1920+640)); 
actual_vector_that_matters = flipud((ysm(1:1920))); 

  

%normalize the vector 
actual_vector_that_matters=actual_vector_that_matters/max(actual_vector

_that_matters); 
%the threshold is set from earlier. the threshold value can be changed 

to 
%get differnet amounts of counted droplets 
[pks,locs] = 

findpeaks(actual_vector_that_matters,'MinPeakDistance',6,'MinPeakHeight

',threshold2); 

  
threshold_line_x = 1:20:length(actual_vector_that_matters); 
threshold_line_y = zeros(1,length(threshold_line_x))+threshold2; 

  

  
%true positives are where locs match the locs of where droplets are 

placed 
%false positives are when locs show up that are no in the original list 
%false negatives are when a peak is supposed to be there but nothing 

shows 
%up 

  

%we already know where the droplets were initially placed; so find 

those 
%locations first and sort 
locs2 = locs; 
real_locations_droplets2 

=sort(real_locations_droplets(real_locations_droplets~=0))'; 

  
%this is the known number of droplets we placed randomly 
positives = 2; 

  
%preallocate 
true_pos = 0; 
locs =locs(locs~=0); 
real_locations_droplets 

=real_locations_droplets(real_locations_droplets~=0); 
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%another way to measure this is to look at the differences between 

where 
%droplets were placed and the distances between peaks incase the 
%correlation is off from the exact location; both can be used to affirm 
%positive droplets 
diff_locs = diff(locs2); 
diff_reals = diff(real_locations_droplets2); 

  
diff_locs2 = diff_locs; 
diff_reals2 = diff_reals; 

  
%for each of the locations found in corrrelation, compare it to the 

list of 
%locations where droplets were randomly placed in simulation. If a 

droplet 
%location matches that of where it was placed, add a true positive. 
for i = 1:length(locs) 
    for j = 1:length(real_locations_droplets) 
        if locs(i) == real_locations_droplets(j) 
            true_pos = true_pos +1; 
            real_locations_droplets(j) = 5000; 
            locs(i) = 0; 
        end 
    end 
end 

  
for i = 1:length(real_locations_droplets) 
    if real_locations_droplets(i) == 5000; 
        real_locations_droplets(i) = 0; 
    end 
end 

  
true_pos2 = 0; 
for i = 1:length(diff_locs) 
    for j = 1:length(diff_reals) 

  
            if diff_locs(i) == diff_reals(j) 
            true_pos2 = true_pos2 +1; 
            diff_reals(j) = 5000; 
            diff_locs(i) = 0; 
        end 
    end 
end 

  

  
for i = 1:length(diff_reals) 
    if diff_reals(i) == 5000; 
        diff_reals(i) = 0; 
    end 
end 
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%false positives are locations that were found in correlation but were 

not 
%locations were droplets were placed 
true_pos ; 
false_neg = nnz(real_locations_droplets); 
false_pos = nnz(locs); 

  
     true_pos2 ; 
false_neg2 = nnz(diff_reals); 
false_pos2 = nnz(diff_locs); 

 

Packing_MLS_droplets_simulation_MAIN.m 

% clear all 
% close all 

  
%pick the number of droplets you want to pack 
dropletspacing = [6:40]; 
distances_analyzed = length(dropletspacing); 

  
%set a threshold that you can change to manually sweep different levels 

of 
%the ROC curve to find the tradeoff between sensitivity and 

specificity. 

  
%after inputting a threshold value, the resulting values from the 

matrices 
%need to be transferred to generate the roc plots 
% threshold2 = .5; 

  

%the first matrix set keeps track of the number of droplets 
%the second  
total_stat_matrix = zeros(distances_analyzed,2); 
total_stat_matrix2 = zeros(distances_analyzed,6); 
total_stat_matrix3 = zeros(distances_analyzed,6); 

  

  

  
%for each number of droplets to look at... 
for distance_iteration= 1:distances_analyzed 
    distnace = dropletspacing(distance_iteration); 

     

     
    %loop through and simulate the total number of false and true 

positives 
    %that occur 
%     for repeatingtrialnumber  = 1:1 
        repeatingtrialnumber=1; 
        Function_to_call_noplotsV3 
        true_pos_total(distnace) = true_pos; 
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%         false_neg_total(repeatingtrialnumber) = false_neg; 
        false_pos_total(distnace) =false_pos; 
%          true_pos_total2(repeatingtrialnumber) = true_pos2; 
%         false_neg_total2(repeatingtrialnumber) = false_neg2; 
%         false_pos_total2(repeatingtrialnumber) =false_pos2; 
%         locs2_length(repeatingtrialnumber) = length(locs2); 
% %     end 
%    total_stat_matrix(distnace,1:3) = [distnace mean(locs2_length) 

std(locs2_length)] ; 
%    total_stat_matrix2(distnace,1:6) = [mean(true_pos_total) 

std(true_pos_total) mean(false_neg_total) std(false_neg_total) 

mean(false_pos_total) std(false_pos_total) ]; 
%    total_stat_matrix3(distnace,1:6) = [mean(true_pos_total2) 

std(true_pos_total2) mean(false_neg_total2) std(false_neg_total2) 

mean(false_pos_total2) std(false_pos_total2) ]; 
%    clearvars -except threshold2 numberofdropletstocall 

rangeofdroplets total_stat_matrix total_stat_matrix2 total_stat_matrix3 

rangeofdroplets 
end 

  

  

% total_stat_matrix; 
% total_stat_matrix2; 
% total_stat_matrix3; 
%  
%  
%  
sens = true_pos_total/2;  
one_minspec = false_pos_total/2;  

Packing_thresholdvalue_change.m 

% Change threshold value and change 
close all 
clear all 

  
%several threshold values to sweep for the ROC 
threshold_vec = [0:.05:1]; 
Senstivity_vector = zeros(40,length(threshold_vec)); 
Specificity_vector = zeros(40,length(threshold_vec)); 

  
%Select a threshold and start running the relevant code 
for threshold_iterator = 1:length(threshold_vec) 
    threshold2 = threshold_vec(threshold_iterator); 
    Packing_MLS_droplets_simulation_MAIN 
    fprintf('%i',threshold_iterator) 

     
    %The matrices here are the sensitivity and 1-specificity of the 
    %resulting analysis 
    Senstivity_vector(:,threshold_iterator) = sens; 

     
    Specificity_vector(:,threshold_iterator) = one_minspec; 
end 
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plot_ROC_curves.m 

%create ROCs curves 
% close all 
% clear all 

  
%From the stat matrices found in the first simulation, we can extract 
%relevant sensitivities and spec; by manually altering the threshold 

for a 
%range of values and collecting the data at different increments of 
%thresholds 
sens = [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

0.5 0.5 0.5 0.5 0 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

0.5 0.5 0 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

0.5 0.5 0 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0   0.5 0.5 

0.5 0.5 0 
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

0.5 0.5 0 
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1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   1   0.5 

0.5 0.5 0 
]; 

  

%oneminusspec 

  
one_min_spec = [49.5    10  3.5 1   0   0   0   0   0   0   0   0   0   

0   0   0   0   0   0   0   0 
46.5    10.5    4.5 1   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0   0 
49.5    12  5.5 1   0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
45  12.5    3.5 1.5 0.5 0   0   0   0   0   0   0   0   0.5 0   0.5 0   

0   0   0   0 
47.5    11  4.5 1.5 1   0   0   0.5 0   0   0   0   0   0.5 0   0   0   

0   0   0   0 
49.5    13  5   2.5 0.5 0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
51  12.5    6.5 1.5 0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
54  15  6.5 2.5 1   0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0 
52.5    13  4   3   0.5 0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
51  13.5    5   2.5 1   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
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51.5    13  5   2.5 1   0.5 0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
50  14.5    6   1.5 1.5 0.5 0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
51.5    13  4   1   1   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
52  13.5    5.5 1   0.5 0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
44.5    12.5    7.5 1   1   0.5 0   0   0   0   0   0   0   0   0   0   

0   0   0   0   0 
51  12.5    6   1   1   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
46.5    12.5    8.5 2.5 0.5 0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0   0 
47.5    13  5   2   0.5 0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
50  10.5    5   1.5 0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
47.5    13  4.5 1.5 0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
47  13  5.5 0.5 0   0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0 
52.5    13.5    5   1   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0   0 
46.5    14  6   1.5 0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
50  15.5    5.5 1   0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
50  13  5.5 1.5 0   0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0 
50  13.5    7   1.5 0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
51  12  6   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0 
46  13  6   1.5 0   0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0 
47  12.5    5   2   0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
52.5    13  6.5 2   0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
51.5    12.5    5.5 1.5 0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0   0 
46.5    14  4.5 2   0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
45  13.5    5.5 1.5 0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
47  12.5    5.5 1   0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
52.5    13  6.5 0.5 0   0   0   0   0   0   0   0   0   0   0   0   0   

0   0   0   0 
]; 

  
% one_min_spec=one_min_spec'; 
% sens=sens'; 
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figure 
[ m n ] = size(sens); 

  
%since we cannot interpolate with the same set of values, we add a tiny 
%amount just to separate overlapping datapoints so that the 

interpolation 
%algorithm can work. 
for i =1:m 
    for j = 1:n 
        one_min_spec(i,j) = one_min_spec(i,j) + .0001*j; 
    end 
end 

  

     
    figure 
   plot(one_min_spec(1,:),sens(1,:),'LineWidth',2) 
    hold on 
   plot(one_min_spec(3,:),sens(3,:),'LineWidth',2) 
   plot(one_min_spec(5,:),sens(5,:),'LineWidth',2) 
   plot(one_min_spec(10,:),smooth(sens(10,:),3),'LineWidth',2) 
   plot(one_min_spec(15,:),smooth(sens(15,:),3),'LineWidth',2) 
   plot(one_min_spec(20,:),smooth(sens(20,:),3),'LineWidth',2) 
legend('   1','  3','  5','   10','   15','   20') 
axis([-.05 1.05 -.05 1.05])  

     
xq = 0:.01:1; 
for i = 1:m 
    x = one_min_spec(i,:); 
    v = sens(i,:); 
    vq1 = interp1(x,v,xq,'pchip'); 
    interp_plots(i,1:length(vq1)) = vq1; 
end 
[o p ] = size(interp_plots); 

  
figure 
for i = 1:m 
AUC(i) = sum(interp_plots(i,2:end))/(p-1); 
end 
AUC = smooth(AUC,4); 
   plot(AUC,'LineWidth',2) 

  
title('AUC v droplets in DC') 
xlabel('Droplets overlapping') 
axis([0 30 0 1]) 

  
    figure 
   plot(xq,interp_plots(1,:),'LineWidth',2) 
    hold on 
   plot(xq,interp_plots(3,:),'LineWidth',2) 
   plot(xq,interp_plots(5,:),'LineWidth',2) 
   plot(xq,interp_plots(10,:),'LineWidth',2) 
   plot(xq,interp_plots(15,:),'LineWidth',2) 
   plot(xq,interp_plots(20,:),'LineWidth',2) 
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legend('   1','  3','  5','   10','   15','   20') 
axis([-.05 1.05 -.05 1.05])  

  

  
interp_plots = interp_plots'; 
xq = xq'; 

  

  

  

%the following loads the data from an example set and plots the 

resulting 
% AUCS 
% figure 
% load('AUC_AC.mat') 
% load('AUC_DC.mat') 
% figure 
% plot(AUC_DC, 'LineWidth', 2) 
% hold on 
% plot(AUC_AC, 'LineWidth', 2) 

~~~~~~~~ uMD_Video_Analysis-code 

The following files carry out the functions described: 

 

The files follow the workflow described in Figure 2: 

 

uMD_Initialize_Code.m 

%initializes all variables such as expected signals, camera parameters, 

etc.  

%sets the frames to view within the video to start analysis 

%calls Frame_Undistrotion to start a chain to .m files that creates a 

matrix where correlations are stored 

%once the vector is saved into a .mat file that can also be accessed 

later as done typically... 

%calls Corr_Hough_matrix_script to begin a chain for peak finding 

analysis 

 

Frame_Undistrotion.m 

%uses camera parameters to undistort spherical aberrations and rotates 

any offsets 

%calls Frame_segmentation 

 

Frame_segmentation.mat 

%segments the frame into N channels and stores the vector into a 1d 

line vector  

%sends 1d line vector to Segmented_1D_CrossCorr_PhaseVel 

 

Segmented_1D_CrossCorr_PhaseVel.m 

%loops through phase and for each phase, begins proper correlation 

initiation  

%after calling Cross_Corr_no_graphs.m, it finds the optimal phase and 

velocity 

 

Cross_Corr_no_graphs.m 
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%begins a 2d correlation for the input signal and the selected expected 

signal based on the phase 

%finds the best matching velocity for the given phase after searching 

through the 2d map 

 

Corr_Hough_matrix_script.m 

%loads the correlation matrix and begins to search for each segmented 

channel, how droplets travel through sequentially 

%calls detect_real_droplets 

 

detect_real_droplets.m  

%searches through the passed 2d matrix for a given segmented channel if 

droplets appear more than 2+ frame in series 

%based on expected velocity to designate as a true positive 

 

uMD_Initialize_Code.m 

%initializes all variables such as expected signals, camera parameters, 

etc.  
%sets the frames to view within the video to start analysis 
%calls Frame_Undistrotion to start a chain to .m files that creates a 

matrix where correlations are stored 
%once the vector is saved into a .mat file that can also be accessed 

later as done typically... 
%calls Corr_Hough_matrix_script to begin a chain for peak finding 

analysis 

  

  
close all force   
clear all 
% parpool 
%uncommeting the above can start the parallel computing toolbox if 
%available in matlab. Doing so increases computational speed 

significantly 

  

%initialize variables 
x1 = 0 ; 
x2 = 0; 
y1 = 0; 
y2 = 0; 
inc = 0; 

  
%load the MLS that was used in the Arduino Code 
 MLS_seq = [-1, 1, -1,  1, -1,  1, 1, -1,  -1,  1, 1, -1,  1, 1, 1, -1,  

1, 1, -1,  1, -1,  -1,  1, -1,  -1 , 1 ,1 ,1, -1,  -1,  -1,  1, -1,  1, 

1, 1, 1, -1,  -1,  1, -1,  1, -1,  -1,  -1,  1 ,1, -1,  -1,  -1,  -1,  

1, -1,  -1 , -1,  -1,  -1,  1, 1, 1, 1, 1, 1]; 
%load camera params once to fix image distortion 
%The main variables that affect spherical distortion is 

'RadialDistortion' 
load('cameraParams1.mat') 
cameraParams2 = cameraParameters('IntrinsicMatrix', 

[716,0,0;0,716,0;1920/2,1080/2,1],... 
    'RadialDistortion',[.06,0.0,.00],... 
    'TangentialDistortion',[0,0],... 
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    'RotationVectors',[0 0 0],... 
    'TranslationVectors',[0 0 0],... 
    'ReprojectionErrors',[0 0],... 
    'WorldPoints',cameraParams1.WorldPoints,... 
    'WorldUnits',cameraParams1.WorldUnits,... 
    'EstimateSkew',cameraParams1.EstimateSkew,... 
    

'NumRadialDistortionCoefficients',cameraParams1.NumRadialDistortionCoef

ficients,... 
    

'EstimateTangentialDistortion',cameraParams1.EstimateTangentialDistorti

on); 

  

  
%select amount of channels and segment based on the pixels per channel 
segmented_ch_num = 120; 
pixels_per_ch = floor(1080/segmented_ch_num); 

  
%load the interpolated masks. these represent the expected signal 
%NOTE: the interpolated masks can change to fit the velocity range 

required 
%and can be increased or shortened to improve computation. In this 
%particular case, the range was chosen to match the data, and 

obviously, 
%larger ranges with finer resolution will always work but the tradeoff 

is 
%computation time.  
load('All_Interpolated_Masks.mat') 

  
%the table below has several values, but the main ones that are 

relevant 
%are the first entry which is the filename of a video to be analyzed, 

and 
%the last term (flip) which represents the direction the droplets are 

going 
%in.  

  
%Droplets can either go left to right or right to left based on how the 
%chpi is attached; the flip vector properly selects the option 

  
%The remaining variables can be ignored for this code. 
data_table = {'20160927_165111.mp4' 27  7   624 800 1142    800 0   624 

392 1142    377 624 1142    1}; 
load('cmap2.mat') 

  
filename = data_table{1}; frame = data_table{2};  
flip = data_table{15}; inc = data_table{8}; 
x1 = data_table{4}; y1 =data_table{5}-inc; x2 = data_table{6}; y2 = 

data_table{7} -inc; 
%bead two start and end 
x3 = data_table{9}; y3 = data_table{10}; x4 = data_table{11}; y4 = 

data_table{12}; 
dropletstart = data_table{13}; dropletend = data_table{14}; 
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startframe = 450; endframe = 650; %select frames in video to analyze 
%a portion of the video is analyzed since there may be a lag time for 
%droplets to reach the proper velocity initially, saving computation 

time. 

  

%select the background frame to subtract out background signal in the 
%algorithm 
background_frame = 1; 
v_file = VideoReader(filename); 
video_frame = read(v_file,background_frame); 
R_channel = video_frame(:,:,1); 
R_background = R_channel; 

  
%begin loop through each frame 
for framestoprocess = 1:endframe-startframe+1 
    framenum=framestoprocess ; 
    frame = startframe+framestoprocess-1; 
    fprintf(num2str(framestoprocess)) 
    %%%%%%%%%%%%%%%%%%%%%% Workflow Chain Begins 

%%%%%%%%%%%%%%%%%%%%%%%%%% 
    Frame_Undistrotion 

  
end 

  
%save the correlation results in a matrix for analysis later if 

necessary 
save('Frames450to650.mat','-v7.3','corr_matrix_final') 
%begin analysis on the correlation matrix 
Corr_Hough_matrix_script 
 

 

Frame_Undistrotion.m 

%uses camera parameters to undistort spherical aberrations and rotates 

any offsets 
%calls Frame_segmentation 

  

  
close all 

  
%load frame and subtract background 
video_frame = read(v_file,frame); 
img = video_frame; 
red = img(:,:,1)-R_background; % Red channel 

  
%undistort with camera parameters chosen 
[J1] = undistortImage(red, cameraParams2); 

  
%define angle to rotate image 
x_ang_1 = 607; y_ang_1 = 669;  
x_ang_2 =  1435; y_ang_2 = 655 ; 
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J1 = imrotate(J1,rad2deg(atan((y_ang_2-y_ang_1)/(x_ang_2-x_ang_1)))); 
%resize properly. during this portion, we lose several channels that 

can be 
%imaged but are too distorted at the edges on the top and bottom. 
J1 = J1(57:1026,119:1835,:);   
red = imresize(J1,[1080 1920]); 

  
%begin segmenting each channel to create 1D line vectors 
Frame_segmentation 

  
 

Segmented_1D_CrossCorr_PhaseVel.m 

%loops through phase and for each phase, begins proper correlation 

initiation  
%after calling Cross_Corr_no_graphs.m, it finds the optimal phase and 

velocity 

  
%store the 1d vector ina variable  
Patterned_droplet = droplet_line; 
whatbead = 1; 

  
sig = Patterned_droplet; 

  
%if droplets flow in reverse direction, we can flip the 1d line vector 

for 
%correlation here 
if flip ==1 
    sig = fliplr(sig); 
end 

  

%begin looping through phase. phase is defined as when the MLS starts, 

so 
%since the MLS is cyclical, we simply begin at the next cycle of the 

MLS to 
%loop through the phase 
for phase = 1:4:length(MLS_seq) 
    %for each phase, store the output into a 2d matrix 
    Cross_Corr_no_graphs 
    Final_vec_before_phase(phase,1:mat_b) = FINAL_CORR_VECTOR; 
end 

  

%find the optimal fit for all the phases  
[I,J] = find(Final_vec_before_phase==max(max(Final_vec_before_phase))); 
max_corr_Vec_phase = fliplr(Final_vec_before_phase(I(1),:)); 

  
Cross_Corr_no_graphs.m 

%begins a 2d correlation for the input signal and the selected expected 

signal based on the phase 
%finds the best matching velocity for the given phase after searching 

through the 2d map 
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%To vary the range of velocities to scan, this variable can be altered. 
%Preallocating the expected signal improves computational time. 
Signal_Mat(:,:) = All_Interpolated_Masks(phase,:,:); 
ma = Signal_Mat; 
out8=xcorr2(sig,ma); 
[mat_a mat_b] = size(out8); 
%store the length of each MLS for different velocities to normalize 

later 
flipped_vec = fliplr(lengths_vector); 
out8_new = zeros(mat_a,mat_b); 

  
%take correlatoins and normalize by length of the mask 
for i = 1:mat_a 
        out8_new(i,1:mat_b) = out8(i,:)/flipped_vec(i); 
end 

  
%select the velocity that generates the largest peak.  
[M,N] = find(out8_new==max(max(out8_new))); 
Max_out = out8_new(M(1),:); 

  
%Filter to get rid of DC effects     
Fs = 1920; 
half_freq = Fs/2; 
notch_freq_filter =1; 
low_freq_filt = 1; 
smoothing_factor = 1; 
w0=notch_freq_filter/half_freq; 
[num,den]=iirnotch(w0,w0/35,-45); 
[a,b]=butter(2,low_freq_filt/half_freq,'high'); %remove low frequency 

components 

  
y=filter(num,den,Max_out); 
yfil=filtfilt(a,b,y);  
ysm=smooth(yfil,smoothing_factor);   

  
FINAL_CORR_VECTOR = (ysm); 
 

 

Corr_Hough_matrix_script.m 

 

%loads the correlation matrix and begins to search for each segmented 

channel, how droplets travel through sequentially 
%calls detect_real_droplets 
clear all 
load('Frames450to650.mat')  
clear loc_info_all 
load('cmap2.mat') 
%it may be useful to segment the vector into smaller pieces to analyze 
% corr_matrix_final = corr_matrix_final(1+50*3:51+50*3,:,:); 
[frames_total, numberofchannels ,framelengtha] = 

size(corr_matrix_final); 

  



77 
 

%if the droplet was going in the reverse direction, the direction the 
%droplet peaks move can be reversed if the proper flip variable was not 
%set; rearranging the correlations can correct this 
% for i = 1:numberofchannels-1 
%     corr_matrix_final(:,i,:) = flipud(corr_matrix_final(:,i,:)); 
% end 

  
  %plot everything frame by frame 
  warning('off','all') 
  %convert the 3d matrix into a 1d for each channel 

   
  %count all the peaks in a certain channel 
  max_entire_vector = max(max(max(corr_matrix_final))); 
  numberofdroplets = zeros(numberofchannels); 
  allchannelsvectors = 

zeros(numberofchannels,frames_total*framelengtha); 
  threshold2 = max_entire_vector*.4; %set threshold 

  
  %for each channel, loop through all the frames and begin counting 
  for chan_loop_2 = 1:numberofchannels 
      for chan_loop_2_2  = 1:frames_total 
      corr_matrix_per_channel(chan_loop_2_2,1:framelengtha) = 

corr_matrix_final(chan_loop_2_2,chan_loop_2,:); 
      end 
      %for a particular channel, send the data to analyze to: 
      detect_real_droplets 
      %store detected droplets into a matrix for each channel 
    n_matrix(chan_loop_2) = num_totalpeaks_final;  
    nonzero_perchannel_matrix(chan_loop_2,:) = nonzeros_per_channel; 
  end 

   

  %calculates the total number of droplets in the matrix 
  sum(n_matrix) 

 
 

detect_real_droplets.m  

%detect peaks in array 
%searches through the passed 2d matrix for a given segmented channel if 

droplets appear more than 2+ frame in series 
%based on expected velocity to designate as a true positive 

  
%initialize variables and input data 
hough_array = corr_matrix_per_channel'; 
[hough_array_a, hough_array_b] = size(hough_array); 
loc_info_all = zeros(hough_array_b+3,20); 
full_matrix_pks_locs = zeros(hough_array_b,100,100); 

  

  
for i = 1:hough_array_b 
    %find peaks in the data based on the threshold set and the expected 
    %minimum distance between droplets 
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[pks,locs] = 

findpeaks(hough_array(:,i),'MinPeakDistance',20,'MinPeakHeight',thresho

ld2); 
%store the pk values and the locations in a matrix 
full_matrix_pks_locs(i,1:length(locs),1:2) = [pks locs]; 
loc_info_all(i,1:length(locs)) = locs; 
end 

  
%find the total number of peaks that were found in the matrix by 
%counting all entires that are nonzero as peaks that passed the 
%thresholding step 
num_totalpeaks_initial = nnz(loc_info_all); 

  
%we now loop through and find repeating peaks.  
%if peaks are within the expected velocity range, and occur at least 

twice 
%we count them as real droplets. If a peak only occurs once with no 
%followup, this can be attributed to noise.  
expected_velocity = 540; 
range = 50; 
for i = 1:hough_array_b 
    set_of_locs = loc_info_all(i,:); 
    for j = 1:length(set_of_locs) 
        if set_of_locs(j) ~=0 
            repeatcount = 0; %this variable checks if a droplet was 

able to be seen two or three times successfuly. 
            locationvalue = set_of_locs(j); 
             nextlocationvalue = locationvalue+expected_velocity; %this 

finds the next location value based on the ranges selected 
             set_of_locs2 = loc_info_all(i+1,:);  
             for k=1:length(set_of_locs2) 
                 if set_of_locs2(k)>nextlocationvalue-range && 

set_of_locs2(k)<nextlocationvalue+range 
                 repeatcount = 1; %if a droplet is within the range, 

this means a peak was successfully found in the given range of 

prediction 
                 if repeatcount==1  
                     nextlocationvalue2 = nextlocationvalue 

+expected_velocity; %look for a third peak  
                      set_of_locs3 = loc_info_all(i+2,:); 
                                  for l=1:length(set_of_locs2) 
                                     if 

set_of_locs3(l)>nextlocationvalue2-range && 

set_of_locs3(l)<nextlocationvalue2+range 
                                     repeatcount = 2;  
                                      if repeatcount==2 
                                          loc_info_all(i+2,l) = 0; 

break %set repeat peaks to 0 so droples are not overcounted (three 

peaks case) 
                                      end 
                                     end 
                                  end 
                     loc_info_all(i+1,k) = 0; %set repeat peaks to 0 so 

droples are not overcounted (two peaks case) 
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                     break 
                     %in cases of repeat peaks, the original location 

still 
                     %remains, so this is the peak that gets counted as 

a 
                     %true positive                      
                 end   
                 end    
             end 
             if repeatcount==0 
                 loc_info_all(i,j) = 0; %if a droplet was only detected 

one time, then discard it. This peak corresponds to a false positive 
             end 
        end 
    end   
end 

  
%find all the remaining peaks that correspond to true droplets rather 

than 
%repeat peaks or single peaks from noise.  
num_totalpeaks_final = nnz(loc_info_all); 
nonzeros_per_channel= sum(loc_info_all~=0,2); 

~~~~~~~~ 2016111_uMD_App_Final_Package_COMPLETE 

MainActivity.java 

package vraviy.exosomedetection; 

 

import android.app.Notification; 

import android.app.NotificationManager; 

import android.app.PendingIntent; 

import android.content.ComponentName; 

import android.content.Context; 

import android.content.pm.PackageManager; 

import android.graphics.Bitmap; 

import android.media.MediaMetadataRetriever; 

import android.support.v4.app.NotificationCompat; 

import android.support.v7.app.AppCompatActivity; 

import android.os.Bundle; 

import android.view.Menu; 

import android.view.MenuItem; 

import java.io.File; 

import java.io.FilenameFilter; 

import java.util.Arrays; 

import android.app.Activity; 

import android.app.AlertDialog; 

import android.app.AlertDialog.Builder; 

import android.app.Dialog; 

import android.content.DialogInterface; 

import android.content.Intent; 

import android.content.SharedPreferences; 

import android.database.Cursor; 

import android.graphics.Color; 
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import android.net.Uri; 

import android.os.Bundle; 

import android.os.Environment; 

import android.preference.PreferenceManager; 

import android.provider.MediaStore; 

import android.provider.MediaStore.MediaColumns; 

import android.util.Log; 

import android.view.Menu; 

import android.view.MenuInflater; 

import android.view.MenuItem; 

import android.view.MotionEvent; 

import android.view.View; 

import android.view.View.OnTouchListener; 

import android.widget.Button; 

import android.widget.ImageView; 

import android.widget.TextView; 

import android.widget.Toast; 

import android.widget.VideoView; 

import java.util.HashMap; 

import java.lang.Object; 

 

public class MainActivity extends AppCompatActivity implements 

OnTouchListener{ 

 

    private static final int SELECT_VIDEO = 1; 

    private static final int RECORD_VIDEO = 2; 

  //  private static final int SELECT_GIF = 3; 

    private static final String TAG = "MainActivity"; 

    private NotificationManager notificationManager; 

    MediaMetadataRetriever retriever = new MediaMetadataRetriever(); 

  //FFmpegMediaMetadataRetriever retriever = new 

FFmpegMediaMetadataRetriever(); 

 

 

    private VideoView selected_video; 

 

    //Getting video dimensions for pixels 

    private int vid_width = 0; 

    private int vid_height = 0; 

 

 

 

//Frames from video 

 

    ImageView img, img2, img3, img4, img5, img6, img7, img8, img9, 

img10; 

ImageView imageView; 

TextView textview_ratio, t0,t1,time0_text,time5_text,time10_text; 

TextView rotatedYLabel; 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

        super.onCreate(savedInstanceState); 

        if(savedInstanceState != null){ 

            Log.d("STATE",savedInstanceState.toString()); 
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        } 

 

        setContentView(R.layout.activity_main); 

 

        setupButtonClickListeners(); 

 

        notificationManager = (NotificationManager) 

                getSystemService(Context.NOTIFICATION_SERVICE); 

 

        CharSequence tickerText = "Hello"; 

        long when = System.currentTimeMillis(); 

        NotificationCompat.Builder mBuilder = new 

NotificationCompat.Builder(this) 

                .setSmallIcon(R.mipmap.ic_launcher) 

                .setContentTitle("Microdroplet Detector"); 

        Intent resultIntent = new Intent(this, MainActivity.class); 

        PendingIntent resultPendingIntent = PendingIntent.getActivity( 

                this, 

                0, 

                resultIntent, 

                PendingIntent.FLAG_UPDATE_CURRENT); 

        mBuilder.setContentIntent(resultPendingIntent); 

        Notification notification = mBuilder.build(); 

        notification.flags |= Notification.FLAG_NO_CLEAR | 

Notification.FLAG_ONGOING_EVENT; 

 

        NotificationManager mNotifyMgr = (NotificationManager) 

getSystemService(NOTIFICATION_SERVICE); 

        mNotifyMgr.notify(1, notification); 

 

 

    } 

 

 

    private void setupButtonClickListeners() 

    { 

        //Button exitButton = (Button)findViewById(R.id.exit); 

        //exitButton.setOnClickListener(this); 

       

((Button)findViewById(R.id.GalleryButton)).setOnTouchListener(this); 

        

((Button)findViewById(R.id.RecordButton)).setOnTouchListener(this); 

        

((Button)findViewById(R.id.Matlabbutton)).setOnTouchListener(this); 

 

    } 

 

    @Override 

    public void onActivityResult(int requestCode, int resultCode, 

Intent data) 

    { 

        Log.d("CREATION", "Clicked button"); 
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//        Intent browserIntent = new Intent(Intent.ACTION_VIEW, 

Uri.parse("https://drive.matlab.com")); 

//        startActivity(browserIntent); 

 

 

 

 

    } 

 

    private void VideoAnalysis(String path) { 

 

        retriever.setDataSource(path); 

 

        imageView.setImageBitmap(retriever.getFrameAtTime(1000000, 

MediaMetadataRetriever.OPTION_CLOSEST)); 

 

    } 

 

 

    private String getPath(Uri uri) 

    { 

        //file:///mnt/sdcard/DCIM/Camera/VID_20111217_233451.mp4 

 

        if(uri.toString().contains("content")) 

        { 

            try 

            { 

                String[] projection = {MediaColumns.DATA}; 

                Cursor cursor = 

managedQuery(uri,projection,null,null,null); 

                int column_index = 

cursor.getColumnIndex(MediaColumns.DATA); 

                cursor.moveToFirst(); 

                return cursor.getString(column_index); 

            } 

            catch(Exception ex) 

            { 

                return null; 

            } 

        } 

        else 

        { 

            return uri.toString(); 

        } 

    } 

 

    private void handleClickEvent(View v) 

    { 

        switch(v.getId()) 

        { 

            case R.id.GalleryButton: 

                Intent browserIntent = new Intent(Intent.ACTION_VIEW, 

Uri.parse("https://drive.matlab.com")); 

                startActivity(browserIntent); 
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//                Intent intent = new Intent(); 

//                intent.setType("video/*"); 

//                intent.setAction(Intent.ACTION_GET_CONTENT); 

//                

startActivityForResult(Intent.createChooser(intent,"Select 

Video"),SELECT_VIDEO); 

                //image/* 

                break; 

            case R.id.RecordButton: 

                Intent recordIntent = new Intent(); 

                

recordIntent.setAction(MediaStore.ACTION_VIDEO_CAPTURE); 

                recordIntent.putExtra(MediaStore.EXTRA_VIDEO_QUALITY, 

1); 

                //recordIntent.putExtra(MediaStore.EXTRA_OUTPUT, 

Uri.fromFile(file)); 

                startActivityForResult(recordIntent,RECORD_VIDEO); 

                break; 

            case R.id.Matlabbutton: 

//                Intent intent = new Intent(Intent.ACTION_MAIN); 

//                

intent.setComponent(ComponentName.unflattenFromString("com.mathworks.ma

tlabmobile")); 

//                intent.addCategory(Intent.CATEGORY_LAUNCHER); 

//                startActivity(intent); 

 

 

                PackageManager pm = this.getPackageManager(); 

                Intent appStartIntent = 

pm.getLaunchIntentForPackage("com.mathworks.matlabmobile"); 

                if (null != appStartIntent) 

                { 

                    this.startActivity(appStartIntent); 

                } 

 

                break; 

        } 

    } 

 

    //#FFA500 

    @Override 

    public boolean onTouch(View v, MotionEvent event) { 

        switch(event.getAction()) 

        { 

            case MotionEvent.ACTION_DOWN: 

                switch(v.getId()) 

                { 

                    case R.id.GalleryButton: 

                        

//((Button)findViewById(R.id.GalleryButton)).setBackgroundColor(0xFFFFA

500); 

                        break; 

                    case R.id.RecordButton: 
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                       // 

((Button)findViewById(R.id.RecordButton)).setBackgroundColor(0xFFFFA500

); 

                        break; 

 

                } 

                return true; 

            case MotionEvent.ACTION_UP: 

                switch(v.getId()) 

                { 

                    case R.id.GalleryButton: 

                       // 

((Button)findViewById(R.id.GalleryButton)).setBackgroundColor(Color.BLA

CK); 

                        handleClickEvent(v); 

                        break; 

                    case R.id.RecordButton: 

                       // 

((Button)findViewById(R.id.RecordButton)).setBackgroundColor(Color.BLAC

K); 

                        handleClickEvent(v); 

                        break; 

                    case R.id.Matlabbutton: 

                        // 

((Button)findViewById(R.id.RecordButton)).setBackgroundColor(Color.BLAC

K); 

                        handleClickEvent(v); 

                        break; 

                } 

 

            default: 

                return true; 

        } 

    } 

 

    //In an Activity 

    private String[] mFileList; 

    private File mPath; 

    private String mChosenFile; 

    private static final String FTYPE = ".gif"; 

    private static final int DIALOG_LOAD_FILE = 1000; 

 

    private void loadFileList(){ 

 

        try 

        { 

            mPath = new 

File(getApplicationContext().getExternalFilesDir(null).getAbsolutePath(

) + "/"); 

            Log.i(TAG,"loadFileList() path: " + mPath.getAbsolutePath() 

+ "/"); 

        } 

        catch(Exception ex) 

        { 
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            mPath = null; 

            return; 

        } 

        try{ 

            mPath.mkdirs(); 

        } 

        catch(SecurityException e){ 

            Log.e(TAG, "unable to write on the sd card " + 

e.toString()); 

        } 

        if(mPath.exists()){ 

            FilenameFilter filter = new FilenameFilter(){ 

                @Override 

                public boolean accept(File dir, String filename){ 

                    File sel = new File(dir, filename); 

                    return filename.contains(FTYPE) || 

sel.isDirectory(); 

                } 

            }; 

            mFileList = mPath.list(filter); 

        } 

        else{ 

            mFileList= new String[0]; 

        } 

    } 

 

 

    @Override 

    public boolean onCreateOptionsMenu(Menu menu) { 

        // Inflate the menu; this adds items to the action bar if it is 

present. 

        getMenuInflater().inflate(R.menu.menu_main, menu); 

        return true; 

    } 

 

    @Override 

    public boolean onOptionsItemSelected(MenuItem item) { 

        // Handle action bar item clicks here. The action bar will 

        // automatically handle clicks on the Home/Up button, so long 

        // as you specify a parent activity in AndroidManifest.xml. 

        int id = item.getItemId(); 

 

        //noinspection SimplifiableIfStatement 

        if (id == R.id.action_settings) { 

            return true; 

        } 

 

        return super.onOptionsItemSelected(item); 

    } 

 

 

} 
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CHAPTER 3: MOBILE PLATFORM FOR RAPID SUB PG/ML, MULTIPLEXED, 
DIGITAL DROPLET DETECTION OF PROTEINS 

 

This chapter is a slightly modified version of a manuscript published in PNAS:  

V Yelleswarapu, J Buser, M Haber, J Baron, E Inapuri, D Issadore. Mobile platform for rapid 

sub-picogram-per-milliliter, multiplexed, digital droplet detection of proteins. PNAS, 116, 

4489–4495 (2019). 

 

V.Y., J.R.B., and D.I. designed research; V.Y., M.H., J.B., and E.I. performed research; 
V.Y. contributed new reagents/analytic tools; V.Y. analyzed data; and V.Y. and D.I. wrote 
the paper. 

3.1 Significance statement 

Digital assays have enormous untapped potential for diagnostics, environmental 

surveillance, and biosafety monitoring, but are currently confined to laboratory settings 

due to the instrumentation necessary to generate, control, and measure millions of 

droplets. We instead use a mobile phone-based imaging technique that is >100x faster 

than conventional microfluidic droplet detection, does not require expensive optics, is 

invariant to flow-rate, and can simultaneously measure multiple fluorescent dyes in 

droplets. By using this time-domain modulation with cloud computing, we overcome the 

low frame rate of digital imaging, and achieve throughputs as high as one million 

droplets per second. We integrate on-chip delay lines and a microbead processing unit, 

resulting in a robust device, suitable for a low-cost implementation, with ultra-sensitive 

measurement capabilities. 

3.2 Abstract 

Digital droplet assays - in which biological samples are compartmentalized into millions 

of femtoliter-volume droplets and interrogated individually - have generated enormous 

enthusiasm for their ability to detect biomarkers with single-molecule sensitivity. These 

assays have untapped potential for point-of-care diagnostics but are currently mainly 

confined to laboratory settings due to the instrumentation necessary to serially generate, 

https://www.pnas.org/content/116/10/4489.abstract
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control, and measure tens of millions of droplets / compartments. To address this 

challenge, we developed an optofluidic platform that miniaturizes digital assays into a 

mobile format by parallelizing their operation. This technology is based on three key 

innovations: 1. the integration and parallel operation of a hundred droplet generators 

onto a single chip that operates >100x faster than a single droplet generator. 2. the 

fluorescence detection of droplets at >100x faster than conventional in-flow detection 

using time-domain encoded mobile phone imaging, and 3. the integration of on-chip 

delay lines and sample processing to allow serum-to-answer device operation. To 

demonstrate the power of this approach, we performed a duplex digital ELISA. We 

characterized the performance of this assay by first using spiked recombinant proteins 

into a complex media (fetal bovine serum) and measured a limit of detection 0.004 

pg/mL (300 aM), a 1,000x improvement over standard ELISA and matching that of the 

existing laboratory-based gold standard digital ELISA system. We additionally measured 

endogenous GM-CSF and IL6 in human serum from N = 14 human subjects using our 

mobile duplex assay, and showed excellent agreement with the gold standard system 

(R2 = 0.96). 

3.3 Introduction 

Digital droplet-based assays achieve 1000x improved sensitivity over 

conventional assays by performing millions of assays in parallel within femtoliter volume 

droplets. This parallelization converts the traditionally analog problem of quantifying 

biomarkers into a digital one, where each droplet contains either one copy or zero copies 

of the target molecule. Digital assays have demonstrated enormous utility as a platform 

for the ultrasensitive detection of nucleic acids 164–167  and proteins, 84,85,168–172 as well as 

the analysis of single cells 173–176 and single exosomes. 177 Digital enzyme-linked 
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immunosorbent assays (dELISA) 86,170,178,179 and digital polymerase chain reaction 

(dPCR) 180 have found broad utility and have been successful achieving  (attogram per 

mL) sensitivity and high levels of multiplexing for a broad range of targets. 180 In a 

particularly exciting demonstration, digital assays were recently used to measure both 

protein and mRNA simultaneously from single cells. 181 The improvement in sensitivity of 

digital assays over conventional assays has allowed measurement of previously 

undetectable concentrations of clinical biomarkers, opening new opportunities for 

improved diagnostics and prognostics for applications such as traumatic brain injury, 

HIV, and early cancer detection. 119,178,182–185 

Due to digital assays' high sensitivity, their capability for absolute quantification 

without calibration, and the robustness of digital detections to reaction conditions, they 

are particularly well-suited for point-of-care diagnostics. However, the instrumentation 

currently required to generate, process, and detect the many independent reaction 

vessels for ultrasensitive digital assays has proven cumbersome to implement. The gold 

standard commercial implementation of dELISA is Quanterix’s Simoa 49,86, which uses a 

microfabricated array of 200,000 wells that are each 40 fL. The Simoa HD-1 Analyzer 

provides a fully automated sample-to-answer readout, capable of being loaded with up 

to four 96-well ELISA plates. The machine has automated the entire digital ELISA assay, 

minimizing the time required to process multiple samples through their workflow, 

resulting in a throughput of 66 samples per hour.86 Furthermore, the Simoa HD-1 can 

perform a multiplexed 10-plex assay on each sample. While the Simoa system has 

demonstrated the value of ultrasensitive protein detection in a laboratory setting, it 

requires bulky optics and bulky fluid handling, resulting in a technology not suitable for 

portable use and that has an instrumentation cost of more than a hundred thousand 
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dollars. Point-of-care systems have been developed that typically use smaller numbers 

(< 10,000) of nanoliter wells, much larger than the femtoliter wells used in the 

ultrasensitive systems, 186 and as a result do not achieve the same sensitivity, dynamic 

range, or capability for multiplexing. 132,187,188  

Compared to static arrays, continuous flow microfluidic droplet systems allow 

much greater numbers of partitions to be analyzed (> 1 million), allowing increased 

multiplexing, sensitivity, and the capability for downstream sorting of the droplets. 

55,84,171,175,176 However, droplet microfluidic systems are currently hindered by both 1. the 

throughput (<104 droplets per sec) at which droplets can be serially generated in 

microfluidic systems and be monodisperse 131,189 and 2. the throughput (<104 droplets 

per sec) at which the fluorescence of droplets can be detected by flowing them one-by-

one through a micrometer-scale laser spot. (Fig. 1a) (SI Appendix, Table S1) 55,175,176  

An emerging approach to overcome these limitations has been to incorporate many 

replica generators or detectors that can operate on the same chip in parallel to increase 

throughput. 129,131,139,141,190,191 However, it has not yet been possible to fully implement 

ultrasensitive digital assays into a mobile format due to the required instrumentation to 

generate the highly controlled flows required for conventional droplet microfluidics,192 the 

difficulty of parallelizing the optics necessary for multi-color fluorescence detection, and 

the challenge of integrating sample preparation. 
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Figure 1. Miniaturization and parallelization of droplet dELISA. a. A schematic of the 

conventional workflow for dELISA, which requires multiple hands-on steps and is rate-

limited by the serial partitioning of the sample into droplets and the serial detection of the 

fluorescence of each individual droplet. b. µMD parallelizes droplet generation, 

incubation, and detection to miniaturize dELISA fully onto a mobile platform and increase 

its throughput by 100x. c. Antibody-functionalized, color-coded beads are used in a 
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duplex dELISA assay, wherein individual beads are encapsulated into droplets and read 

out if they have captured a single target protein. 

To address this challenge, we have developed an optofluidic platform, the 

microdroplet Megascale Detector (µMD), that miniaturizes digital droplet assays into a 

mobile device, while matching the limit of detection of the current laboratory-scale gold-

standard technology. To achieve this limit of detection in a robust, mobile device, the 

µMD is built on three key innovations.( Fig. 1b) 1. Rather than generate droplets one at 

a time, we instead incorporate a parallelized microfluidic droplet generator that operates 

>100x faster than a single droplet generator. Moreover, by making use of the recently 

published Millipede geometry,131 the monodispersity of the generated droplets are 

invariant to flow rate, which allows use of inexpensive peristaltic pumps that can be 

incorporated into a mobile device. 2. To rapidly read-out the fluorescence of the droplets 

(>105 drops/sec), we use a mobile-phone based imaging technique that is >100x faster 

than conventional detection, wherein droplets are detected one-by-one. 55,176 Our 

approach does not require expensive optics and is invariant to flow-rate, making it well 

suited for a mobile implementation 190. The key innovation of this approach is that it 

overcomes the low frame rate of digital imaging, and can achieve multicolor 

fluorescence detection, by modulating multiple, differently colored LED/laser diode 

excitation sources with unique non-periodic signals. The video feed can be decoded to 

accurately measure each droplet's fluorescent signals at throughputs far exceeding that 

of the frame rate of the camera, as high as 1 million droplets per second. This work 

builds on a previously published proof-of-concept device that demonstrated the 

measurement of only a fluorescent dye in passing droplets, 190 and is here extended to 

measure three fluorescent channels in each droplet to implement dELISA. 3. We 



92 
 

integrate a microbead processing unit, droplet generators, on-chip delay lines for droplet 

incubation, and droplet fluorescence detection, resulting in a robust device, suitable for a 

low-cost implementation, that allows raw serum to be input and for molecular data to be 

output.   

To demonstrate the power of this approach, we implement multiplexed dELISA 

using microbeads color-coded with different fluorescent dyes, where the color code 

corresponds to the protein targeted by its antibody.( Fig. 1c) We performed a duplex 

cytokine assay (GM-CSF, IL6) in serum using UV and green fluorescent beads, where 

droplets containing a bead with a complete immunocomplex fluoresce red. We 

accurately measured IL6 and GM-CSF simultaneously in complex media (bovine serum) 

over four orders of magnitude with a limit of detection as low as 0.004 pg/mL (~300aM) – 

a thousand-fold improvement over standard ELISA and matching that of the current gold 

standard digital platform. 168,169 Our chip is designed for minimal user interaction (SI 

Appendix, Vid S1), has a total droplet processing time of 10 minutes for 10 million 

droplets, where the workflow encompasses droplet generation, droplet incubation, and 

fluorescence droplet detection for each sample, and has a prototype instrumentation 

cost of $500 and a disposable cost $5. 

3.4 Results and Discussion 

µMD Design 

The complete workflow of dELISA is incorporated onto our chip,(Fig. 2a) and 

consists of: 1. A microbead processor where microbeads capture their target proteins 

from serum, are tagged with enzyme labeled immunocomplexes for downstream 

amplification within droplets, and are iteratively washed between each labeling step, 2. a 

droplet generator, where the microbeads are mixed with the enzyme's substrate and 
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encapsulated into water-in-oil droplets. 3. A three-dimensional microfluidic channel that 

takes 3.2 minutes for the droplets to pass, allowing time for the enzymatic amplification 

of the fluorescence signal. 4. A mobile phone based detector, where the droplets' 

fluorescence are rapidly detected using time-domain encoded optofluidics. 

The microbead processor unit consists of a semi-permeable membrane to 

immobilize the beads. Multiple reagents and washing buffers are sequentially delivered 

to the immobilized beads, after which the beads are released for downstream 

analysis.({Fig. 2b) One of the populations of color-coded microbeads (Spherotech, d = 

5.4 µm, λex/λem = 470/490 nm) is functionalized with antibody for GM-CSF (R&D 

MAB2172). The other population of beads (Spherotech, d = 4.5 µm, λex/λem = 

370/410nm) is functionalized with antibody for IL6(MAB206). The beads are first 

incubated with the sample for 60 minutes, and then immobilized on the membrane. 

Subsequently, the beads are washed with 1 mL of T20 Buffer at 10 mL/hr, incubated 

with 0.1 mL of 0.7 nM detection antibody (R&D BAF206, BAM215) in T20 buffer for 30 

minutes, washed in 1 mL of T20 Buffer at 10 mL/hr, and subsequently released from the 

membrane by reversing the flow at 6 mL/hr. The semi-permeable membrane is an A = 

300 mm2 track etched polycarbonate membrane with d = 3 µm pores.(Fig. 2a) The 

membrane is incorporated into the microfluidic chip using laser cut mylar membrane 

microfluidics. 193,194 (SI Appendix, Fig. S1, S2) For testing, a syringe pump (Harvard 

Apparatus) or a low cost peristaltic (Intllab, <$10) were used. 

Downstream of the microbead processor, the released microbeads are mixed 

with the ELISA substrate (QuantaRed™ Enhanced Chemifluorescent HRP Substrate, 

Thermo)(Fig. 2c,d) and encapsulated into d = 40 µm droplets suspended in QX200™ 

Droplet Generation Oil (Biorad, 1864006).(Fig. 2d) A channel length of 14 mm with a 
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staggered herringbone design is used to ensure proper mixing of the beads and the 

substrate, while minimizing background signal that comes from enzymes generating 

fluorescence signal before they are encapsulated into droplets 195,196.(SI Appendix, Fig. 

S3). To generate monodisperse droplets that are robust to flow rate, we used the 

Millipede geometry described by Amstad et al (Amstad2016). In brief, the millipede uses 

step emulsification, where the droplet diameter depends only on the channel geometry 

and not the flow rates of the dispersed or continuous phase over a large range of flow 

rates. Our device consists of 100 droplet generators to achieve a throughput of 100k 

droplets/sec. The droplet generator layer has a height h = 10 µm and the continuous 

phase layer has a height h = 120 µm.(SI Appendix, Fig. S2) Each droplet encapsulates 

one or zero beads (Fig. 2d) by setting the concentration of beads such that there are 

10x more droplets than beads, resulting in a 0.5% probability of a droplet containing two 

beads based on Poisson statistics. 
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Figure 2. Integrated µMD workflow. a. A schematic of the µMD chip, showing both a 

top view and a bottom view. Each inset shows a schematic cartoon of the modules that 

are incorporated onto the µMD. b. A photograph of the disposable µMD chip, with the 

channels filled with dye to make them visible. c. A micrograph showing the droplet 

generator encapsulate microbeads into d = 40 µm droplets. The arrows highlight the 

microbeads. (Scale bar = 50 µm) d. A fluorescence micrograph of the droplets after the 
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delay line. (Scale bar = 50 µm) e. A schematic of the µMD platform, consisting of a 

mobile phone, three light sources, and the disposable µMD chip. 

Downstream of the droplet generator, the droplets pass through a delay line, 

(Fig. 2a) which we have designed to hold droplets for a precise minutes-scale duration 

in continuous flow, without the need for active valves. To achieve a precise minute-scale 

delay, a channel is required that has both a large cross-sectional area, to reduce 

velocity, and a long length. To achieve a large cross-sectional area, we mold the PDMS 

microfluidics using a laser-cut acrylic mold rather than conventional SU-8 to achieve 

channels with width w = 1.8 mm and height h = 1.5 mm. To achieve a large channel 

length, without leading to an overly large device footprint, we stack N = 4 spiral channels 

vertically by plasma bonding multiple PDMS pieces with punched hole vias.(SI 

Appendix, Fig. S1) Using a flow rate of Φd = 67 mL/hr, it takes droplets 3.2 minutes to 

traverse the entire channel, allowing the enzymes time to generate a measurable 

fluorescence signal.( Fig. 2d) 

Time-domain encoded optofluidic fluorescence detection 

To achieve high throughput, multicolor, fluorescence droplet detection on a 

mobile platform, we modulate the excitation light in time with a pseudorandom sequence 

that allows individual droplets to be resolved that would otherwise overlap due to the 

limited frame rate of digital cameras. Using conventional excitation that is constant in 

time, a droplet moving across a camera's field of view is imaged as a streak (Lstreak = 

v*Texp, where v is the droplet velocity and Texp the exposure time of the camera). This 

streak length L sets the minimum distance between droplets, and thus severely limits 

throughput. We overcome this limitation by modulating the excitation light source with a 
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pseudorandom sequence at a rate >10× faster than the exposure time of the camera, 

modulating the streak so that it can resolved amongst neighboring droplets as close as 

three droplet diameters via correlation detection, and do so in 120 parallel channels in 

the camera's field of view. In our previous work in this area, 129,190 we only interrogated a 

single fluorescent dye in each droplet, which is not sufficient to readout the multiplexed 

dELISA assays carried out in this paper. We had previously presented a proof-of-

concept demonstrating that two distinct dyes could be detected. 36 Here, we expand this 

approach by using three light sources, each of which emits a wavelength tuned to excite 

a different dye and that is modulated in time with a unique maximum length sequence 

(MLS) that can be decoded independently to readout each fluorescence channel. A 

band-pass filter is placed on the camera to diminish the effects of scattered excitation 

light.(Edmund Optics, #87-241) We implemented a three-color system using two LEDs 

(blue, green) and one diode laser (UV). This µMD platform is invariant to flow rate, has a 

maximum throughput of 160 mL/hr (106 droplets/sec), and a dynamic range of 1: 107 to 

1: 40 fluorescent: non-fluorescent droplets.  

To decode the videos taken by our cell phone camera we perform a correlation 

detection for the three expected modulation patterns m, corresponding to each of the 

three light sources. By doing so, we generate the correlation vectors Ψk,n
r,g,b = 

Sk,n
R,G,B(x)mr,g,b(x+X)dx = Sk,n

R,G,B  ⊗ mr,g,b), where the indices k are the video frames, n 

are the n = 1:120 channels in the device, (R,G,B) correspond to the color channels of 

the digital camera, and (r,g,b) correspond to each of the three unique excitation 

sources.(Fig. 3a) We chose to pattern the droplets using MLS with |m| = 63 bits, where 

each bit corresponds to 10 pixels in the digital image. Thus, 63 bits would correspond to 

630px, or 1/3 of a 1920px wide video frame. To create a set of MLS with minimal auto-
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correlation and cross correlation from each other, we followed the process in 

MacWilliams and Sloane 151 to create a pseudorandom vector with (212-1=4095) 

elements, that we folded into a 63*65 matrix, and chose the first three rows to select the 

three MLS patterns. 

 

Figure 3. Software workflow for multi-color phase and velocity invariant 

optofluidic fluorescence droplet detection. a. The algorithm for detecting droplets. b. 

Truth table for interpreting the readout of the µMD's three-color (r: red ELISA signal, g: 

green beads, b: blue beads) fluorescence measurement. c. Schematic showing the µMD 

platform collecting data, which is sent to the cloud to be processed, and then returned to 

the mobile phone to report the results of the assay to the user. d. A sample workflow for 
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a droplet that contains a green bead and that is positive for its target. The video's image 

frames are segmented into 1d vectors. e. A 3D correlation results in a data matrix where 

the phase is first identified (f). From this 2D "slice" of the data matrix, the velocity of the 

droplet is found and the position is recorded for each peak in the correlation space (g). 

The goal of the fluorescence detector is to inspect each droplet and determine 1. 

if the droplet contains a microbead, and if so determine its color (UV or green) which 

indicates the protein target the droplet is measuring (GM-CSF, IL6 respectively). (Fig. 

3b), 2. if the droplet fluoresces red, which indicates whether the droplet has detected 

one molecule of its target. The workflow to extract this information from each droplet is 

as follows: (i) The kth frame of the video is separated into its red, green, and blue 

components Ik
R,G,B based on the camera’s red, green, and blue sensors.(Fig. 3d) (ii) A 

line-average is taken along the direction of each of the n = 120 microchannels Sk,n
R,G,B(x) 

. (iii) To simplify the hardware of the system, rather than control the droplet velocity v or 

phase θ, relative to the MLS excitation, of the passing droplets we instead use cloud 

computing to computationally detect droplets with unknown phase and velocity.(Fig. 3c) 

We generate a 3d matrix by correlating each of the modulated signals with expected 

emission patterns that scans the range of velocities and phase at which the LED strobes 

mr,g,b(x/v-θ) ⊗ Sn
R,G,B, corresponding to the three excitation sources (r,g,b) 

respectively.(Fig.3e) (iv) By selecting the optimal phase (θc) and velocity (vc) of every 

droplet, we can identify peaks in the correlation space Ψk,n
r,g,b(x, vc, θc).(Fig.3f,g) These 

detected signals are tabulated [Nb&r, Ng&r], where Nb&r corresponds to droplets that 

contain a UV bead and fluoresce red and thus contain a molecule of GM-CSF and Nb&r 

corresponds to droplets that contain a green bead and fluoresce red and thus contain a 

molecule of IL6. The data is collected using our custom Android app, sent into the cloud, 
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processed using MATLAB in a remote server, and then sent back to the smartphone and 

reported to the user in an easy-to-interpret format. For each target molecule, the active 

enzymes per bead 168 (AEB) is calculated by quantifying the number droplets that 

contained a bead and that fluoresced red, normalized to the total number of beads. The 

values that we report are calculated by subtracting the AEB measured when we ran a 

blank sample, which does not contain the target protein, and corrected for the pre-

calculated loss factor, obtained in the measurements of spiked proteins into PBS, 

multiplied by the molecular weight of the target protein. 

 

Figure 4. Flow rate invariant droplet generation using step emulsification generate 

droplets of the same diameter. a. By using the Millipede geometry, droplet size is 

invariant to dispersed phase flow rate. b. For a range of continuous flow rates (45-65 

mL/hr) and dispersed flow rates (2-14 mL /hr), the generated droplets remained 

monodispersed with syringe pumps (CV = 5.3%) and with inexpensive peristaltic pumps 

(CV = 6.0%).  c. To evaluate the enzymatic amplification of captured protein in the 
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droplets, we inspected the droplets after the delay line with fluorescence microscopy. d. 

After a 3.2 minute delay, the distribution of droplets positive and negative for enzyme 

were measured. (Scale Bar = 50 µm) 

Droplet generation and integrated incubation line 

Droplet uniformity is critical for digital assays, because variance in droplet 

diameter leads to variance in fluorescence after the delay line, confounding the ability to 

discriminate positive and negative droplets. To evaluate the droplet generator's 

capability to generate monodispersed droplets in a mobile setting, we scanned the 

continuous phase over flow rates Φc = 45-65 mL/hr and we scanned the dispersed 

phase over flow rates Φo = 2-14 mL/hr.(Fig. 4a) We generated droplets with a diameter 

d = 40 µm and a coefficient of variation CV < 6% with both syringe pumps and 

inexpensive peristaltic pumps.(Fig. 4b) The greater the ratio of the aqueous flow rate to 

the continuous flow rate, the larger the volume fraction of droplets was, allowing 

increased throughput.  

To evaluate and optimize the delay line and the enzymatic amplification of 

captured protein in the droplets, we inspected the droplets after the delay line with 

fluorescence microscopy (Leica DM4200). (Fig. 4c) We calculated the distribution of 

fluorescence intensities of droplets with and without an enzyme to identify the delay time 

that minimized their overlap. For a 3.2 minute delay, the ratio of the average droplet with 

an enzyme had a > 30x greater mean fluorescence intensity (MFI) than a droplet without 

an enzyme. (Fig. 4d)  
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Figure 5. Benchmarking and characterization of ultrasensitive, duplex protein 

detection in complex media. a. Single-plex detection of GM-CSF spiked into PBS. The 

limit of detection LOD = 0.0045 pg/mL (320 aM). b. Single-plex detection of IL6 spiked 

into PBS. LOD = 0.0070 pg/mL. c. The same samples of fetal bovine serum (FBS) 

spiked with varying concentrations of GM-CSF were measured using the µMD and 

Quanterix's Simoa. Good agreement was found between the two measurements (R2)= 

0.95. d. The limit of detection (LOD), limit of quantification (LOQ), dynamic range, and 

coefficient of variation (CV) are reported for the µMD's and Simoa's measurement of 

GM-CSF in FBS. e. The duplex assay is tested by measuring various concentrations of 

GM-CSF and IL6 spiked into FBS. f. Varying concentrations of GM-CSF into FBS 

resulted in insignificant cross-talk with the measurement of IL6 and did not significantly 

change the LOD for GM-CSF. g. Conversely, varying concentrations of IL6 into FBS 

resulted in insignificant cross-talk with the measurement of GM-CSF and did not 

significantly change the LOD for IL6. h. 22 various concentrations of GM-CSF and IL6 
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were spiked into FBS and measured. Good agreement was found between the spiked 

and measured results, for both GM-CSF (R2 = 0.99) and IL6 (R2 = 0.99). 

 Ultrasensitive, duplex protein detection in complex media 

To evaluate our integrated µMD's capability for sensitively detecting proteins, we 

first measured IL6 and GM-CSF in PBS, complex media (FBS), and human serum, and 

compared the results with those from a commercial dELISA device (Quanterix Simoa). 

Non-human serums provides a good model to simulate human serum 168,197,198, because 

it has the convenient property that it does not include any human IL6 or GM-CSF 

allowing titration experiments to be performed down to our device’s LOD. In these initial 

experiments, we performed bead processing off-chip, such that the droplet generator, 

incubator, and detector could be evaluated. In PBS, we first performed separate single-

plex measurements on GM-CSF (Fig. 5a) and IL6 (Fig. 5b) by measuring serial dilutions 

from 10-4 - 102 pg/ml. We achieved a limit of detection LOD = 0.0045 pg/mL (320 aM) 

and LOD = 0.0070 pg/mL (350 aM) for GM-CSF and IL6, respectively. We next 

performed the same titration measurement for GM-CSF in 1:4 FBS solution. In this 

experiment we split the sample between our µMD platform and Simoa (GM-CSF 2.0 kit) 

to perform a head-to-head comparison. We found excellent agreement between the 

output of our chip and that of Simoa (R2 = 0.95). (Fig. 5c) The LOD, limit of 

quantification (LOQ), dynamic range, and average CV were tabulated for the µMD and 

Simoa, (Fig. 5d) and showed similar performance. 

Next, we evaluated the µMD chip's capability to simultaneously measure two 

protein levels in a duplex measurement of GM-CSF and IL6 in complex media. To this 

end, we first spiked various quantities of GM-CSF into FBS, keeping IL6 concentrations 
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at 0 pg/ml. In these samples, we measure both GM-CSF and IL6 using our duplex 

microbead assay and evaluate cross-talk and compare to our single-plex results. (Fig. 

5f,g) We also performed the same experiment, but instead spiked various levels of IL6 

and kept GM-CSF concentrations at 0 pg/ml. In both cases the LOD, for GM-CSF or IL6, 

did not change significantly from the singleplex measurement (p > 0.88 for GM-CSF, p > 

0.90 for IL6) To further verify our capability to simultaneously measure both GM-CSF 

and IL6, we evaluated our chip's accuracy in measuring N = 22 separate titrations of 

various quantities of GM-CSF and IL6 spiked into FBS. (Fig. 5h) We found excellent 

agreement between the expected spiked concentrations and the measured 

concentrations (R2> 0.99) for GM-CSF and (R2> 0.99) for IL6. 

We next validated that the µMD can measure endogenous protein in human 

serum. We collected serum from N = 14 healthy subjects, and for each subject 

measured an aliquot using our mobile µMD platform’s IL6 and GM-CSF duplex assay 

and we measured an aliquot using Quanterix’s commercial assay (Fig. 6a), allowing us 

to compare our results to the commercial gold standard. We saw excellent agreement 

between measurements on our mobile platform and that performed on Quanterix’s 

Simoa (R2 = 0.96) (Fig. 6b), demonstrating that our microfluidic device can perform on 

human serum. 

3.5 Conclusion 

Our µMD platform, with its integrated and miniaturized implementation, its high 

sensitivity, and its high droplet throughput, allows digital assays containing millions of 

droplets to be performed rapidly on a mobile platform. By integrating and miniaturizing 

digital assays, the µMD can translate the benefits of dELISA assays to a mobile 

diagnostic platform. While in this paper we performed a duplex assay, we can further 
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leverage improvement in droplet throughput} and multicolor detection to increase 

multiplexing to 100s of markers. Multiplexing can be increased by both 1. running M 

assays in parallel by leveraging our chip's high droplet throughput and dividing the 

sample to be mixed with different reagents in either individual channels or sets of 

channels of the N = 120 detection channels. This approach comes at the expense of 

device throughput and a reduction in sensitivity that comes from splitting the sample 

volume for each additional assay. 2. Microbeads with varying concentrations of multiple 

dyes can be used to barcode the microbeads for M assays in a single pot, as has been 

done by groups such as Luminex. 199 Moreover, these two approaches can be combined 

on the same chip to achieve M >100 multiplexed assays. Similarly, multiple samples can 

be processed by either running them serially through the µMD or in parallel by dividing 

up the N = 120 detection channels. In either approach, the samples would be incubated 

with beads, labeled, and washed in separate wells to avoid cross-contamination. In 

serial operation, the incubation time would remain the same (currently three hours), and 

the total processing time would increase linearly with the number of samples (5 

additional minutes per sample, given a droplet throughput of 100k droplets/sec and a 

four minute droplet incubation time). The additional processing time per sample could be 

reduced by parallelizing the droplet incubation stage. Our miniaturized technology 

matches the limit of detection to existing dELISA, however, it is important to highlight 

that the µMD does not currently have the ability to sequentially load samples in an 

automated fashion that the Simoa HD-1 has demonstrated for up to 384 samples 86 By 

making use of recent developments of applying dELISA to miRNA detection, 179 

multiplexed detection of miRNA and protein can be measured on the same chip for 

multi-modal characterization of complex disease states. 200,201  By automating and 

incorporating dELISA onto a mobile platform, the µMD allows ultrasensitive, multiplexed 
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biomarker detection to be brought directly to the point-of-use, where digital assays can 

have the greatest impact. 

3.6 Methods and Materials 

Device Fabrication 

The µMD is composed primarily of four components, all integrated into a 

monolithic chip (Fig. 2a): 1. a bead processor where beads are incubated and washed in 

successive steps, 2. droplet generators, 3. a delay line for the enzymatic amplification 

reaction, and 4. the fluorescence detection region. The bead filtration unit consists of a 3 

µm polycarbonate filter (Sterlitech) sandwiched between laser-cut layers of adhesive 

coated mylar (7602A54, McMaster Carr). The top PDMS piece contains the droplet 

generators, and is fabricated using multi-layer soft lithography, consisting of a layer that 

contains the nozzles and the spine (h = 10 µm), a second layer that contains only the 

spine delivery channels (h = 120 µm), and a third layer that contains herringbone 

structures for enhanced mixing (h = 30 µm). The bottom PDMS piece was also 

fabricated using soft lithography, and consist of the spiral delay line (h = 1.5mm) and the 

detector channels (h = 40 µm). The three pieces are assembled by bonding the droplet 

generators PDMS piece to the top of a glass slide and the delay line PDMS piece to the 

bottom, using plasma bonding. The glass slide (Corning® Glass Slides, ID: 26005) is 

etched with a through-hole d = 200 µm using a CO2 laser, to serve as a via between the 

top and bottom pieces of PDMS microfluidics.(Fig. 2a) The bead processing unit is 

adhered to the top PDMS piece using adhesive coated mylar (7602A54, McMaster 

Carr). The PDMS portion of the chip was made hydrophobic by running 1% silane 

(Trichloro(1H,1H,2H,2H-perfluorooctyl)silane, Sigma) in Novec 7500 (Oakwood 

Chemical) and flushed with Novec7500 alone. The filter portion of the µMD was soaked 
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in 1% F127 in PBS, flushed with PBS, and then soaked in T20 buffer to reduce adhesion 

with antibodies and labeling enzyme.  

Measurement of Endogenous Protein in Human Serum 

We collected blood from N = 14 healthy subjects (age = 20-43, 71% male, 29% 

female), in which all experiments involving human subjects were approved by University 

of Pennsylvania Institutional Review Board protocols (Protocol 828435).  Informed 

consent was obtained from the eligible subject directly. A written document was provided 

to the subject detailing the procedure involved and the rational for the study. The risks 

and benefits of study participation were explained. After a consent document was 

signed, an 8 mL blood draw was acquired along with information regarding gender and 

age. Blood was collected in yellow cap tubes which contain Acid Citrate Dextrose 

Solution (ACD) and serum separating gels (BD Vacutainer™ Venous Blood Collection 

Tubes: SST™ Serum Separation Tubes: Hemogard, BD 368013). Blood was allowed to 

sit for 15 minutes after collection, and then centrifuged at 1500 rcf for 15 minutes to 

isolate the serum. After centrifugation, serum was frozen at -80℃. Samples were thawed 

immediately before use, ensuring that all samples experienced the same freeze-thaw 

cycling. For Simoa measurements, we followed Quanterix’s protocol for the singleplex 

GM-CSF 2.0 and IL-6 2.0 kits, using the standard protocol. (SimoaIL6, SimoaGMCSF) 
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Figure 6. The measurement of endogenous protein in human serum. a. Human 

serum was collected from N = 14 healthy controls, and an aliquot was measured using 

our µMD’s duplex IL6, GM-CSF assay and measured on Quanterix’s commercial assay. 

b. Good agreement between Simoa and the µMD was found for measurements of both 

IL6 and GM-CSF (R2 = 0.96). 
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Supplementary Figure 1. 3D design of chip. a-c. Isometric and side views of the µMD 

display the how the modular components are stacked in a 3d case. d. Draftsight 

drawings of each layer of µMD, followed by component layers for the bead processor 

(e,i) and the droplet generator (e,ii).  
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Supplementary Figure 2.  Design of µMD casing. a,b. The µMD consists of a 

disposable microfluidic chip, a cell phone, and an acrylic casing that we designed. The 

acrylic casing comes in two parts: one that is attached to the cell phone to fix the 

distance between the imaging plane and the macro lens, and the second which houses 

the LEDs and locks the cell phone into position when the disposable chip is inserted. 
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Supplementary Figure 3. Mixing of aqueous phases.  A channel length of 14 mm is 

used to ensure proper mixing of the beads and the substrate, while minimizing 

background signal that comes from enzymes generating fluorescence signal before they 

are encapsulated into droplets. 

 

The video demonstrates the workflow of the droplet digital assay, as well as features of 

the robust droplet generation and detection. 

 

 

https://www.youtube.com/watch?v=OYXj1MqlwVA
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dELISA Assay 

On our chip, the bead processing, droplet generation, droplet incubation, and 

detection are integrated. By avoiding manual processing steps, loss, contamination, and 

unreliable reinjection of droplets after incubation, as has been observed in similar 

systems 202, can be avoided. To functionalize the microbeads used in our assay, we first 

washed both the 5.4 µm Carboxyl Green Particles (Spherotech, CFH-5052-2) and 4.5 

µm Carboxyl UV beads (CFP-4041-2) 6 times each, using centrifugation at 15k rcf for 5 

min to remove the sodium azide, which inhibits HRP, from the supernatant. 

Subsequently, we used the PolyLink Protein Coupling Kit (PolySciences, 24350-1) to 

attach anti-human GM-CSF (R&D, MAB2172) and anti-human IL-6 (MAB206) antibodies 

onto the beads, respectively. To evaluate our device, we created serial dilutions of the 

protein targets (R&D #215-GM-010, R&D #206-IL-010) in low protein binding tubes to 

reduce protein binding to the surface. 

The on-chip bead processing steps were carried out as follows. The input to the 

device is 1:4 diluted serum, diluted in T20 buffer. Incubation with the beads is performed 

in a total volume of 100 µL T20 buffer and protein sample. Reagents are stored off-chip 

in this study, but can be preloaded on-chip in future device generations. The reagents for 

the HRP substrate are prepared immediately before the assay to reduce the background 

of the fluorescence substrate. The reagents can be loaded into a pre-loaded tubing and 

dispensed using a peristaltic pump. On the on-chip membrane, which captures the 

beads for processing, the following steps are carried out. Following the initial incubation, 

the beads are washed and then incubated with 0.7 nM concentration of detection 

antibody in T20 buffer. After an hour of incubation, the sample is washed and replaced 

with 12.5 pM concentration of HsHRP in T20 Buffer (Life Technologies), and washed 
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again. Subsequently, the flow is reversed so that beads are released and the output is 

encapsulated into droplets for analysis. For droplet generation, the continuous phase is 

Biorad Oil. Droplets of diameter d = 40 µm (CV = 5.3%) are generated with the total 

dispersed phase fixed at Φd = 12 ml/hr with a fixed continuous phase of Φc = 55 ml/hr. 

QuantaRed™ Enhanced Chemifluorescent HRP Substrate Kit was mixed with the 

microbeads in the on-chip vortex mixer (Fig. 2a, SI Appendix, Fig. S3) immediately 

upstream of the droplet generator. The substrate is introduced at a flow rate of 6 ml/hr. 

We selected QX200 Droplet Generation Oil for EvaGreen (Biorad) to encapsulate the 

beads in stable droplets with minimal dye leakage. The µMD uses high fluorescence 

intensity dye beads, and HRP substrate compared to the low intensity dyes and the β-

gal enzyme and RGP substrate found in Simoa’s technology. 49,168  

When performing the bead-processing off-chip, we used the following protocol. 

Capture beads are added into sample in low protein binding tubes, and incubated for an 

hour. The sample is diluted into 1mL with T20 Buffer and centrifuged at 12k rcf to 

remove background cell debris and nontarget molecules in the supernatant. The beads 

are resuspended into 0.7 nM concentration of detection antibody in T20 buffer and 

incubated for an hour. This solution is diluted into 1mL T20 Buffer and centrifuged at 12k 

rcf to remove unbound detection antibody, and 12.5 pM concentration of HsHRP in T20 

Buffer. This sample is washed 4 times using a centrifuge and resuspended in T20 

Buffer, to remove any HsHRP that could result in a false positive. The resulting sample 

is then introduced as the aqueous inlet for the droplet generating device. 

To calculate the limit of detection (LOD) and limit of quantification (LOQ), we 

measured the number of false positives in replicate (N = 3) "blank" samples that included 

FBS but contained no spiked protein. The LOD and LOQ was converted to units pg/mL 
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using the know molecular weights of the target molecules. The LOD was defined as LOD 

= <FP> + 2.5 σ(FP), where <FP> was the mean number of false positives and σ(FP) 

was the standard deviation of the false positives. The LOQ was defined as LOQ = <FP> 

+10σ(FP). We defined these values so that they agree with what is used to describe the 

gold standard technology, Quanterix’s Simoa. (SimoaIL6, SimoaGMCSF) 

Design of the Non-Disposable Components of the µMD and its Software 

The µMD consists of a disposable microfluidic chip, a cell phone, and an acrylic 

casing that we designed. (SI Appendix, Fig. S1,S2) The acrylic casing comes in two 

parts. The first part is attached to the cell phone and fixes the distance between the 

imaging plane and the macro lens. The second part houses the LEDs and the cell 

phone, and sets the position of the disposable chip relative to the excitation sources and 

the camera (SI Appendix, Vid S1). This casing contains a low cost commercial plastic 

lens (<$4), a bandpass filter (λcw = 512 ± 11.5 nm, 630 ± 45.5 nm, Edmund Optics, #87-

241), and a slot to automatically align the microfluidic chip. The disposable microfluidic 

chip is constructed of only PDMS, glass and mylar, and is prototyped using soft 

lithography at The University of Pennsylvania's Singh Center for Nanotechnology. The 

low cost plastic macro lens (15x magnification, Carson HookUpz, ML-515) is used image 

the device Field of View FOV = 7x12 (mm2). (Fig. 3b) There are three excitation 

sources, each mounted in the acrylic casing: an ultra-bright UV LED (λex = 400 nm, 

Luminus, CBT-90-UV-C31-M400-22), a fat beam (laser diameter > 10mm) blue laser 

diode (450nm, 400mW Laser Diode Module, APT Lighting), and a fat beam green laser 

(532nm, 300mW Laser Diode Module, APT Lighting). The light sources are driven using 

external electronics consisting of an LED driver circuit (Luminus Development Kit, DK-

114N-3) for the LEDs, TTL modules for the laser diodes, and a microcontroller (Arduino 
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Mega2560) programmed with unique MLS patterns for each light source. To illuminate 

the droplets in the microfluidic channels we make use of antiresonant side coupling to 

achieve uniform illumination 152. The non-disposable cost, excluding the cell phone, of 

the µMD prototype is < $1000. 

The software used in this study implements the data analysis shown in Fig. 3. 

This software detects multiple fluorescent colors in each individual droplet, rather than 

just one, as was done in previous work. 190 A custom App is written that is installed on a 

Galaxy S8 phone. This App controls, and coordinates, the multiple components in this 

experiment, including the cloud computing, and the cell phone camera. A commercially 

available App Open Camera is used to interface with the cell phone’s camera, and 

allows manual control of the camera’s settings. Video collected on the phone is 

uploaded to a Maltab cloud server (MathWorks Cloud). Optical aberrations in the video 

are fixed by the software based on a calibration used to calculate the distortion from the 

macro lens. Small errors in the position and angle of the chip relative to the camera are 

also corrected. The software then parses the frames into 120 individual channels, and 

carries out the algorithm described in Fig. 3. The data analysis currently takes 10 

minutes to analyze 10 million droplets. Data analysis can further be sped up using a 

GPU or cloud server, but we currently run the process locally on a Using an Ubuntu OS 

with an Intel Core i7-7700HQ @ 2.80 GHz x 8 and 16 GB RAM. All source code for the 

software used in this study is included in the SI Appendix, SI Text. 

3.8 Supplementary Code 

Source code can be found in the following 

\href{https://sites.google.com/site/issadorelab/Issadore-Lab/protocols-and-software}{link} 

to the lab website contains all of the software with a readme file to explain how to use 
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each of the components. All code is commented thoroughly for ease of use. Source 

code is shared for: (i) Matlab software for image analysis, (ii) Arduino code that 

modulates the LED excitation, and (iii) an Android App that connects the software to 

cloud.  

~~~~~~~~ 

MATLAB_uMD_Video_Analysis-code 

uMD_Initialize_Code.m 

%initializes all variables such as expected signals, camera parameters, 

etc.  
%sets the frames to view within the video to start analysis 
%calls Frame_Undistrotion to start a chain to .m files that creates a 

matrix where correlations are stored 
%once the vector is saved into a .mat file that can also be accessed 

later as done typically... 
%calls Corr_Hough_matrix_script to begin a chain for peak finding 

analysis 

  

  
close all force   
clear all 
% parpool 
%uncommeting the above can start the parallel computing toolbox if 
%available in matlab. Doing so increases computational speed 

significantly 

  
%initialize variables 
x1 = 0 ; 
x2 = 0; 
y1 = 0; 
y2 = 0; 
inc = 0; 

  
%load the MLS that was used in the Arduino Code 
MLS_seq = [-1, 1, -1,  1, -1,  1, 1, -1,  -1,  1, 1, -1,  1, 1, 1, -1,  

1, 1, -1,  1, -1,  -1,  1, -1,  -1 , 1 ,1 ,1, -1,  -1,  -1,  1, -1,  1, 

1, 1, 1, -1,  -1,  1, -1,  1, -1,  -1,  -1,  1 ,1, -1,  -1,  -1,  -1,  

1, -1,  -1 , -1,  -1,  -1,  1, 1, 1, 1, 1, 1]; 

  
MLS_seqR = [-1, 1, -1,  1, -1,  1, 1, -1,  -1,  1, 1, -1,  1, 1, 1, -1,  

1, 1, -1,  1, -1,  -1,  1, -1,  -1 , 1 ,1 ,1, -1,  -1,  -1,  1, -1,  1, 

1, 1, 1, -1,  -1,  1, -1,  1, -1,  -1,  -1,  1 ,1, -1,  -1,  -1,  -1,  

1, -1,  -1 , -1,  -1,  -1,  1, 1, 1, 1, 1, 1]; 
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MLS_seqG = [-1,  1, -1 , 1 ,1 ,1 ,1, -1,  -1,  1, -1  ,-1 , 1 ,-1 , 1 

,1, 1, -1 , -1 , 1 ,1 ,1 ,-1,  -1 , -1 , -1 , -1 , -1,  1, 1 ,1, -1 , 1 

,1, 1 ,-1 , 1 ,-1 , -1  ,1, 1 ,1 ,1 ,-1 , 1, -1 , 1, -1 , -1,  1 ,-1  

,1 ,-1  ,-1  ,-1  ,-1  ,-1  ,-1  ,1 ,-1  ,1 ,-1 , 1]; 
MLS_seqB = [-1,  -1,  1, 1, 1, 1, 1, 1, -1,  -1,  1, -1,  1, -1,  1, -

1,  1, -1,  -1,  1, 1, -1,  -1,  1, 1, -1,  -1,  1, -1,  1, -1,  -1,  

1, 1, 1, 1, 1, -1,  1, -1,  -1,  1, 1, 1, -1,  -1,  -1,  -1,  1, -1,  -

1,  -1,  1, 1, -1,  1, 1, -1,  -1,  1, -1,  -1,  -1]; 

  
 %load camera params once to fix image distortion 
%The main variables that affect spherical distortion is 

'RadialDistortion' 
load('cameraParams1.mat') 
cameraParams2 = cameraParameters('IntrinsicMatrix', 

[716,0,0;0,716,0;1920/2,1080/2,1],... 
    'RadialDistortion',[.06,0.0,.00],... 
    'TangentialDistortion',[0,0],... 
    'RotationVectors',[0 0 0],... 
    'TranslationVectors',[0 0 0],... 
    'ReprojectionErrors',[0 0],... 
    'WorldPoints',cameraParams1.WorldPoints,... 
    'WorldUnits',cameraParams1.WorldUnits,... 
    'EstimateSkew',cameraParams1.EstimateSkew,... 
    

'NumRadialDistortionCoefficients',cameraParams1.NumRadialDistortionCoef

ficients,... 
    

'EstimateTangentialDistortion',cameraParams1.EstimateTangentialDistorti

on); 

  

  

%select amount of channels and segment based on the pixels per channel 
segmented_ch_num = 120; 
pixels_per_ch = floor(1080/segmented_ch_num); 

  
%load the interpolated masks. these represent the expected signal 
%NOTE: the interpolated masks can change to fit the velocity range 

required 
%and can be increased or shortened to improve computation. In this 
%particular case, the range was chosen to match the data, and 

obviously, 
%larger ranges with finer resolution will always work but the tradeoff 

is 
%computation time.  
load('All_Interpolated_Masks.mat') 
load('All_Interpolated_MasksB.mat') 
load('All_Interpolated_MasksG.mat') 

  
%the table below has several values, but the main ones that are 

relevant 
%are the first entry which is the filename of a video to be analyzed, 

and 



119 
 

%the last term (flip) which represents the direction the droplets are 

going 
%in.  

  
%Droplets can either go left to right or right to left based on how the 
%chpi is attached; the flip vector properly selects the option 

  
%The remaining variables can be ignored for this code. 
data_table = {'20160927_165111.mp4' 27  7   624 800 1142    800 0   624 

392 1142    377 624 1142    1}; 
load('cmap2.mat') 

  
filename = data_table{1}; frame = data_table{2};  
flip = data_table{15}; inc = data_table{8}; 
x1 = data_table{4}; y1 =data_table{5}-inc; x2 = data_table{6}; y2 = 

data_table{7} -inc; 
%bead two start and end 
x3 = data_table{9}; y3 = data_table{10}; x4 = data_table{11}; y4 = 

data_table{12}; 
dropletstart = data_table{13}; dropletend = data_table{14}; 

  

  
startframe = 450; endframe = 455; %select frames in video to analyze 
%a portion of the video is analyzed since there may be a lag time for 
%droplets to reach the proper velocity initially, saving computation 

time. 

  
%select the background frame to subtract out background signal in the 
%algorithm 
background_frame = 1; 
v_file = VideoReader(filename); 
video_frame = read(v_file,background_frame); 
R_channel = video_frame(:,:,1); 
R_background = R_channel; 
G_channel = video_frame(:,:,2); 
G_background = G_channel; 
B_channel = video_frame(:,:,3); 
B_background =  B_channel; 

  

  
%begin loop through each frame 
for framestoprocess = 1:endframe-startframe+1 
    framenum=framestoprocess ; 
    frame = startframe+framestoprocess-1; 
    fprintf(num2str(framestoprocess)) 
    %%%%%%%%%%%%%%%%%%%%%% Workflow Chain Begins 

%%%%%%%%%%%%%%%%%%%%%%%%%% 
    Frame_Undistrotion 

  
end 
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%save the correlation results in a matrix for analysis later if 

necessary 
save('FramesAnalyzed.mat','-

v7.3','corr_matrix_final','corr_matrix_final_G','corr_matrix_final_B') 
%begin analysis on the correlation matrix 
Corr_Hough_matrix_script 

 

Frame_Undistrotion.m 

%uses camera parameters to undistort spherical aberrations and rotates 

any offsets 
%calls Frame_segmentation 

  

  
close all 

  
%load frame and subtract background 
video_frame = read(v_file,frame); 
img = video_frame; 
red = img(:,:,1)-R_background; % Red channel 
blue = img(:,:,2)-R_background; % Red channel 
green = img(:,:,3)-R_background; % Red channel 

  

  
%undistort with camera parameters chosen 
[J1] = undistortImage(red, cameraParams2); 
[J2] = undistortImage(blue, cameraParams2); 
[J3] = undistortImage(green, cameraParams2); 

  

  

%define angle to rotate image 
x_ang_1 = 607; y_ang_1 = 669;  
x_ang_2 =  1435; y_ang_2 = 655 ; 

  
J1 = imrotate(J1,rad2deg(atan((y_ang_2-y_ang_1)/(x_ang_2-x_ang_1)))); 
J2 = imrotate(J2,rad2deg(atan((y_ang_2-y_ang_1)/(x_ang_2-x_ang_1)))); 
J3 = imrotate(J3,rad2deg(atan((y_ang_2-y_ang_1)/(x_ang_2-x_ang_1)))); 
%resize properly. during this portion, we lose several channels that 

can be 
%imaged but are too distorted at the edges on the top and bottom. 
J1 = J1(57:1026,119:1835,:);   
J2 = J2(57:1026,119:1835,:);   
J3 = J3(57:1026,119:1835,:);   

  
red = imresize(J1,[1080 1920]); 
green = imresize(J1,[1080 1920]); 
blue = imresize(J1,[1080 1920]); 

  

  
%begin segmenting each channel to create 1D line vectors 
Frame_segmentation 
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Frame_segmentation.m 

%segments the frame into N channels and stores the vector into a 1d 

line vector  
%sends 1d line vector to Segmented_1D_CrossCorr_PhaseVel 

  

  
x = [1:1920]; 
for segmented_channel= 1:segmented_ch_num 
    %take line average for channel 
    %If fluorescent signal is leeching onto the edge of the channels, 

the 
    %segmented channels, Sn, can be made narrower to prevent the 

leakage.  
    droplet_line = mean(red(1+(0+pixels_per_ch)*(segmented_channel-

1):(0+pixels_per_ch)*(segmented_channel),:)); 
    droplet_line_g = mean(green(1+(0+pixels_per_ch)*(segmented_channel-

1):(0+pixels_per_ch)*(segmented_channel),:)); 
    droplet_line_b = mean(blue(1+(0+pixels_per_ch)*(segmented_channel-

1):(0+pixels_per_ch)*(segmented_channel),:)); 
    %send each segmented vector for correlation analysis 
    Segmented_1D_CrossCorr_PhaseVel 

     

    %store the results in a matrix based on frame, channel, and 

position 
    %where peak occurs (mapped to CMOS pixel location) 
    corr_matrix_final(framenum, segmented_channel,:) = 

max_corr_Vec_phase(1:1920); 
    corr_matrix_final_G(framenum, segmented_channel,:) = 

max_corr_Vec_phase_G(1:1920); 
    corr_matrix_final_B(framenum, segmented_channel,:) = 

max_corr_Vec_phase_B(1:1920); 
end 

  

Segmented_1D_CrossCorr_PhaseVel.m 
%loops through phase and for each phase, begins proper correlation 

initiation  
%after calling Cross_Corr_no_graphs.m, it finds the optimal phase and 

velocity 

  

%store the 1d vector ina variable  
Patterned_droplet = droplet_line; 
whatbead = 1; 

  
sig = Patterned_droplet; 

  
%if droplets flow in reverse direction, we can flip the 1d line vector 

for 
%correlation here 
if flip ==1 
    sig = fliplr(sig); 
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end 

  
%begin looping through phase. phase is defined as when the MLS starts, 

so 
%since the MLS is cyclical, we simply begin at the next cycle of the 

MLS to 
%loop through the phase 
for phase = 1:4:length(MLS_seq) 
    %for each phase, store the output into a 2d matrix 
    Cross_Corr_no_graphs 

     
    Final_vec_before_phase(phase,1:mat_b) = FINAL_CORR_VECTOR; 
    Final_vec_before_phase_G(phase,1:mat_b) = FINAL_CORR_VECTOR_G; 
    Final_vec_before_phase_B(phase,1:mat_b) = FINAL_CORR_VECTOR_B; 

  
end 

  
%find the optimal fit for all the phases;  
[I,J] = find(Final_vec_before_phase==max(max(Final_vec_before_phase))); 
max_corr_Vec_phase = fliplr(Final_vec_before_phase(I(1),:)); 
[I,J] = 

find(Final_vec_before_phase_G==max(max(Final_vec_before_phase_G))); 
max_corr_Vec_phase_G = fliplr(Final_vec_before_phase_G(I(1),:)); 
[I,J] = 

find(Final_vec_before_phase_B==max(max(Final_vec_before_phase_B))); 
max_corr_Vec_phase_B = fliplr(Final_vec_before_phase_B(I(1),:)); 

 

Cross_Corr_no_graphs.m 

%begins a 2d correlation for the input signal and the selected expected 

signal based on the phase 
%finds the best matching velocity for the given phase after searching 

through the 2d map 

  

  
%To vary the range of velocities to scan, this variable can be altered. 
%Preallocating the expecte;d signal improves computational time. 
Signal_Mat(:,:) = All_Interpolated_Masks(phase,:,:); 
ma = Signal_Mat; 
out8=xcorr2(sig,ma); 
[mat_a mat_b] = size(out8); 
%store the length of each MLS for different velocities to normalize 

later 
flipped_vec = fliplr(lengths_vector); 
out8_new = zeros(mat_a,mat_b); 

  
%take correlatoins and normalize by length of the mask 
for i = 1:mat_a 
        out8_new(i,1:mat_b) = out8(i,:)/flipped_vec(i); 
end 

  
%select the velocity that generates the largest peak.  
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[M,N] = find(out8_new==max(max(out8_new))); 
Max_out = out8_new(M(1),:); 

  
%Filter to get rid of DC effects     
Fs = 1920; 
half_freq = Fs/2; 
notch_freq_filter =1; 
low_freq_filt = 1; 
smoothing_factor = 1; 
w0=notch_freq_filter/half_freq; 
[num,den]=iirnotch(w0,w0/35,-45); 
[a,b]=butter(2,low_freq_filt/half_freq,'high'); %remove low frequency 

components 

  
y=filter(num,den,Max_out); 
yfil=filtfilt(a,b,y);  
ysm=smooth(yfil,smoothing_factor);   

  
FINAL_CORR_VECTOR = (ysm); 

  

%%%%%%%%%%%%%% Repeat for G channel %%%%%%%%%%%%%% 
%To vary the range of velocities to scan, this variable can be altered. 
%Preallocating the expecte;d signal improves computational time. 
Signal_Mat(:,:) = All_Interpolated_MasksG(phase,:,:); 
ma = Signal_Mat; 
out8=xcorr2(sig,ma); 
[mat_a mat_b] = size(out8); 
%store the length of each MLS for different velocities to normalize 

later 
flipped_vec = fliplr(lengths_vector); 
out8_new = zeros(mat_a,mat_b); 

  
%take correlatoins and normalize by length of the mask 
for i = 1:mat_a 
        out8_new(i,1:mat_b) = out8(i,:)/flipped_vec(i); 
end 

  
%select the velocity that generates the largest peak.  
[M,N] = find(out8_new==max(max(out8_new))); 
Max_out = out8_new(M(1),:); 

  
%Filter to get rid of DC effects     
Fs = 1920; 
half_freq = Fs/2; 
notch_freq_filter =1; 
low_freq_filt = 1; 
smoothing_factor = 1; 
w0=notch_freq_filter/half_freq; 
[num,den]=iirnotch(w0,w0/35,-45); 
[a,b]=butter(2,low_freq_filt/half_freq,'high'); %remove low frequency 

components 

  
y=filter(num,den,Max_out); 
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yfil=filtfilt(a,b,y);  
ysm=smooth(yfil,smoothing_factor);   

  
FINAL_CORR_VECTOR_G = (ysm); 

  
%%%%%%%%%%%%%% Repeat for B channel %%%%%%%%%%%%%% 
%To vary the range of velocities to scan, this variable can be altered. 
%Preallocating the expecte;d signal improves computational time. 
Signal_Mat(:,:) = All_Interpolated_MasksB(phase,:,:); 
ma = Signal_Mat; 
out8=xcorr2(sig,ma); 
[mat_a mat_b] = size(out8); 
%store the length of each MLS for different velocities to normalize 

later 
flipped_vec = fliplr(lengths_vector); 
out8_new = zeros(mat_a,mat_b); 

  
%take correlatoins and normalize by length of the mask 
for i = 1:mat_a 
        out8_new(i,1:mat_b) = out8(i,:)/flipped_vec(i); 
end 

  
%select the velocity that generates the largest peak.  
[M,N] = find(out8_new==max(max(out8_new))); 
Max_out = out8_new(M(1),:); 

  
%Filter to get rid of DC effects     
Fs = 1920; 
half_freq = Fs/2; 
notch_freq_filter =1; 
low_freq_filt = 1; 
smoothing_factor = 1; 
w0=notch_freq_filter/half_freq; 
[num,den]=iirnotch(w0,w0/35,-45); 
[a,b]=butter(2,low_freq_filt/half_freq,'high'); %remove low frequency 

components 

  
y=filter(num,den,Max_out); 
yfil=filtfilt(a,b,y);  
ysm=smooth(yfil,smoothing_factor);   

  
FINAL_CORR_VECTOR_B = (ysm); 

 

Corr_Hough_matrix_script.m 

%loads the correlation matrix and begins to search for each segmented 

channel, how droplets travel through sequentially 
%calls detect_real_droplets 
clear all 
load('FramesAnalyzed.mat')  
clear loc_info_all 
load('cmap2.mat') 
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%it may be useful to segment the vector into smaller pieces to analyze 
%we now allocate the number of frames, the 1D line segments, and the 

pixel 
%length of each of the correlations we took earlier 
[frames_total, numberofchannels ,framelengtha] = 

size(corr_matrix_final); 
% (100,19200) 

  
% frames_total*numberofchannels, framelengtha 
%We look through and find the local peaks for each of them based on a 
%threshold found experimentally  

  
%if the droplet was going in the reverse direction, the direction the 
%droplet peaks move can be reversed if the proper flip variable was not 
%set; rearranging the correlations can correct this 
% for i = 1:numberofchannels-1 
%     corr_matrix_final(:,i,:) = flipud(corr_matrix_final(:,i,:)); 
% end 

  

  %plot everything frame by frame 
  warning('off','all') 
  %convert the 3d matrix into a 1d for each channel 

   
  %count all the peaks in a certain channel 
  %one way to set the threshold is to find the max correlation value in 

all 
  %the correlations found; and set the threshold to be 40% of that; 
  %assuming there was at least one positive in the entire analysis done 

   
  %Another method is to take an average of the entire correlation 

vector 
  %matrix and use this as the background noise if the events are 

sparse, 
  %and add 3*standadd deviation of the noise to the mean to separate 

the 
  %peaks from the background 

   
  %A final way to set threshold is to manually verify in several peaks 

that 
  %can be visually inspected and verified, and then setting the 

threshold 
  %based on what was epxerimeentally observed in cases of misalignment 

of 
  %the chip and excitation sources.  
  max_entire_vector = max(max(max(corr_matrix_final)));   

max_entire_vector_G = max(max(max(corr_matrix_final_G)));   

max_entire_vector_B = max(max(max(corr_matrix_final_B))); 
  numberofdroplets = zeros(numberofchannels); 
  allchannelsvectors = 

zeros(numberofchannels,frames_total*framelengtha); 
  threshold2 = max_entire_vector*.4; %set threshold; threshold was 

determined experimentally for each particle and varies for dye, and 

bead color based on the intensity of background and particle intensity 
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  threshold2_G = max_entire_vector_G*.4; 
  threshold2_B = max_entire_vector_B*.4; 

   
  %for each channel, loop through all the frames and begin counting 
  for chan_loop_2 = 1:numberofchannels 
      for chan_loop_2_2  = 1:frames_total 
          corr_mat_R(chan_loop_2,(chan_loop_2_2-

1)*framelengtha+1:chan_loop_2_2*framelengtha) =  

corr_matrix_final(chan_loop_2_2,chan_loop_2,:); 
          corr_mat_G(chan_loop_2,(chan_loop_2_2-

1)*framelengtha+1:chan_loop_2_2*framelengtha) =  

corr_matrix_final_G(chan_loop_2_2,chan_loop_2,:); 
          corr_mat_B(chan_loop_2,(chan_loop_2_2-

1)*framelengtha+1:chan_loop_2_2*framelengtha) =  

corr_matrix_final_B(chan_loop_2_2,chan_loop_2,:); 
      end 
  end 

   
counter_R_G = 0; 
counter_R_B = 0; 
counter_G = 0; 
counter_B = 0; 

   

   
[indexR_a, indexR_b] = size(corr_mat_R); 
[indexG_a, indexG_b] = size(corr_mat_G); 
[indexB_a, indexB_b] = size(corr_mat_B); 

  

  
  for chan_loop_2 = 1:numberofchannels 
   [pks,locs] = 

findpeaks(corr_mat_R(chan_loop_2,:),'MinPeakDistance',30,'MinPeakHeight

',threshold2); 
   [pks,locs_G] = 

findpeaks(corr_mat_G(chan_loop_2,:),'MinPeakDistance',30,'MinPeakHeight

',threshold2); 
   [pks,locs_B] = 

findpeaks(corr_mat_B(chan_loop_2,:),'MinPeakDistance',30,'MinPeakHeight

',threshold2); 

     

    peaks_R(chan_loop_2,1:length(locs)) = locs; 
    peaks_G(chan_loop_2,1:length(locs_G)) = locs_G; 
    peaks_B(chan_loop_2,1:length(locs_B)) = locs_B; 
  end 

   

   
  %find where both colors peak together to count true positives 
  for chan_loop_2 = 1:numberofchannels 
      %go through each 1d line vector segment  
  for index_track = 1:nnz(peaks_R(chan_loop_2,:)) 
      %for each nonzero number for the 1d vector; check if there is a 

value 
      %that is close to the peak location in G or B 
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      for index_track_G = 1:nnz(peaks_G(chan_loop_2,:))  
          if (peaks_R(chan_loop_2,index_track)-10) < 

peaks_G(chan_loop_2,index_track_G) && 

(peaks_R(chan_loop_2,index_track)+10) > 

peaks_G(chan_loop_2,index_track_G) 
              counter_R_G =counter_R_G+1; 
          end 
      end 

       
      for index_track_B = 1:nnz(peaks_B(chan_loop_2,:))  
          if (peaks_R(chan_loop_2,index_track)-10) < 

peaks_B(chan_loop_2,index_track_B) && 

(peaks_R(chan_loop_2,index_track)+10) > 

peaks_B(chan_loop_2,index_track_B) 
              counter_R_B =counter_R_B+1; 
          end 
      end 

       

       

  end 
  end 

  
  %count the number of beads based on the total nonzero elements in the 
  %matrix containing peaks for g and b correlation peaks 
  counter_G = nnz(peaks_G); 
  counter_B = nnz(peaks_B); 

     
  %Active enzyme for beads is defined as fraction of total beads that 
  %caputred a protein 
  AEB_G = counter_R_G/counter_G; 
  AEB_B = counter_R_B/counter_B; 

~~~~~~~~ 

uMD_ThreeColor_Arduino_Code 

ThreeColorArduino 

int fps = 25; 

int bits = 63; 

//int delay_time = 0; 

long delay_time = 1000000L/(fps*bits); //delaytime is in us based on 

fps 

//int MLS_Seq[63]; 

int MLS_Seq[] = {-1, 1, -1,  1, -1,  1, 1, -1,  -1,  1, 1, -1,  1, 1, 

1, -1,  1, 1, -1,  1, -1,  -1,  1, -1,  -1 , 1 ,1 ,1, -1,  -1,  -1,  1, 

-1,  1, 1, 1, 1, -1,  -1,  1, -1,  1, -1,  -1,  -1,  1 ,1, -1,  -1,  -

1,  -1,  1, -1,  -1 , -1,  -1,  -1,  1, 1, 1, 1, 1, 1}; 

int MLS_SeqTwo[] = {-1,  1, -1 , 1 ,1 ,1 ,1, -1,  -1,  1, -1  ,-1 , 1 

,-1 , 1 ,1, 1, -1 , -1 , 1 ,1 ,1 ,-1,  -1 , -1 , -1 , -1 , -1,  1, 1 

,1, -1 , 1 ,1, 1 ,-1 , 1 ,-1 , -1  ,1, 1 ,1 ,1 ,-1 , 1, -1 , 1, -1 , -

1,  1 ,-1  ,1 ,-1  ,-1  ,-1  ,-1  ,-1  ,-1  ,1 ,-1  ,1 ,-1 , 1}; 
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int MLS_Seq3[] = {-1,  -1,  1, 1, 1, 1, 1, 1, -1,  -1,  1, -1,  1, -1,  

1, -1,  1, -1,  -1,  1, 1, -1,  -1,  1, 1, -1,  -1,  1, -1,  1, -1,  -

1,  1, 1, 1, 1, 1, -1,  1, -1,  -1,  1, 1, 1, -1,  -1,  -1,  -1,  1, -

1,  -1,  -1,  1, 1, -1,  1, 1, -1,  -1,  1, -1,  -1,  -1}; 

 

 

// the setup function runs once when you press reset or power the board 

void setup() { 

 

  // initialize digital pin 13 as an output. 

  pinMode(24, OUTPUT);pinMode(25, OUTPUT);pinMode(26, OUTPUT); 

Serial.begin(9600); 

 

} 

 

// the loop function runs over and over again forever 

void loop() { 

//Serial.print(delay_time); 

Serial.print('\n'); 

//Largest number for delayMicroseconds function is 16383 

 

for (int i=0; i<bits; i=i+1){ 

if (MLS_Seq[i]>0){ 

  digitalWrite(24, LOW); //LOW leads ot LED being on from the Driver     

} 

else { 

  digitalWrite(24, HIGH);     

  

} 

if (MLS_SeqTwo[i]>0){ 

  digitalWrite(25, LOW); //LOW leads ot LED being on from the Driver     

} 

else { 

  digitalWrite(25, HIGH);     

  

} 

 

if (MLS_Seq3[i]>0){ 

  digitalWrite(26, LOW); //LOW leads ot LED being on from the Driver     

} 

else { 

  digitalWrite(26, HIGH);     

  

} 

 

 

 delayMicroseconds(delay_time); 

} 

//Serial.print(micros()) ; 

             

} 

~~~~~~~~ 
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ddELISA_App_Final_Package_COMPLETE 

MainActivity.java 

package vraviy.exosomedetection; 

 

import android.app.Notification; 

import android.app.NotificationManager; 

import android.app.PendingIntent; 

import android.content.ComponentName; 

import android.content.Context; 

import android.content.pm.PackageManager; 

import android.graphics.Bitmap; 

import android.media.MediaMetadataRetriever; 

import android.support.v4.app.NotificationCompat; 

import android.support.v7.app.AppCompatActivity; 

import android.os.Bundle; 

import android.view.Menu; 

import android.view.MenuItem; 

import java.io.File; 

import java.io.FilenameFilter; 

import java.util.Arrays; 

import android.app.Activity; 

import android.app.AlertDialog; 

import android.app.AlertDialog.Builder; 

import android.app.Dialog; 

import android.content.DialogInterface; 

import android.content.Intent; 

import android.content.SharedPreferences; 

import android.database.Cursor; 

import android.graphics.Color; 

import android.net.Uri; 

import android.os.Bundle; 

import android.os.Environment; 

import android.preference.PreferenceManager; 

import android.provider.MediaStore; 

import android.provider.MediaStore.MediaColumns; 

import android.util.Log; 

import android.view.Menu; 

import android.view.MenuInflater; 

import android.view.MenuItem; 

import android.view.MotionEvent; 

import android.view.View; 

import android.view.View.OnTouchListener; 

import android.widget.Button; 

import android.widget.ImageView; 

import android.widget.TextView; 

import android.widget.Toast; 

import android.widget.VideoView; 

import java.util.HashMap; 

import java.lang.Object; 

 



130 
 

public class MainActivity extends AppCompatActivity implements 

OnTouchListener{ 

 

    private static final int SELECT_VIDEO = 1; 

    private static final int RECORD_VIDEO = 2; 

  //  private static final int SELECT_GIF = 3; 

    private static final String TAG = "MainActivity"; 

    private NotificationManager notificationManager; 

    MediaMetadataRetriever retriever = new MediaMetadataRetriever(); 

  //FFmpegMediaMetadataRetriever retriever = new 

FFmpegMediaMetadataRetriever(); 

 

 

    private VideoView selected_video; 

 

    //Getting video dimensions for pixels 

    private int vid_width = 0; 

    private int vid_height = 0; 

 

 

 

//Frames from video 

 

    ImageView img, img2, img3, img4, img5, img6, img7, img8, img9, 

img10; 

ImageView imageView; 

TextView textview_ratio, t0,t1,time0_text,time5_text,time10_text; 

TextView rotatedYLabel; 

    @Override 

    protected void onCreate(Bundle savedInstanceState) { 

 

 

 

        super.onCreate(savedInstanceState); 

        if(savedInstanceState != null){ 

            Log.d("STATE",savedInstanceState.toString()); 

        } 

 

 

 

        setContentView(R.layout.activity_main); 

 

        setupButtonClickListeners(); 

 

        notificationManager = (NotificationManager) 

                getSystemService(Context.NOTIFICATION_SERVICE); 

 

 

 

 

        CharSequence tickerText = "Hello"; 

        long when = System.currentTimeMillis(); 

        NotificationCompat.Builder mBuilder = new 

NotificationCompat.Builder(this) 
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                .setSmallIcon(R.mipmap.ic_launcher) 

                .setContentTitle("Microdroplet Detector"); 

        Intent resultIntent = new Intent(this, MainActivity.class); 

        PendingIntent resultPendingIntent = PendingIntent.getActivity( 

                this, 

                0, 

                resultIntent, 

                PendingIntent.FLAG_UPDATE_CURRENT); 

        mBuilder.setContentIntent(resultPendingIntent); 

        Notification notification = mBuilder.build(); 

        notification.flags |= Notification.FLAG_NO_CLEAR | 

Notification.FLAG_ONGOING_EVENT; 

 

        NotificationManager mNotifyMgr = (NotificationManager) 

getSystemService(NOTIFICATION_SERVICE); 

        mNotifyMgr.notify(1, notification); 

 

 

    } 

 

 

 

    private void setupButtonClickListeners() 

    { 

        //Button exitButton = (Button)findViewById(R.id.exit); 

        //exitButton.setOnClickListener(this); 

 

        

((Button)findViewById(R.id.GalleryButton)).setOnTouchListener(this); 

        

((Button)findViewById(R.id.RecordButton)).setOnTouchListener(this); 

        

((Button)findViewById(R.id.Matlabbutton)).setOnTouchListener(this); 

 

    } 

 

 

 

    @Override 

    public void onActivityResult(int requestCode, int resultCode, 

Intent data) 

    { 

        Log.d("CREATION", "Clicked button"); 

 

//        Intent browserIntent = new Intent(Intent.ACTION_VIEW, 

Uri.parse("https://drive.matlab.com")); 

//        startActivity(browserIntent); 

 

 

 

 

 

    } 
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    private void VideoAnalysis(String path) { 

 

        retriever.setDataSource(path); 

 

        imageView.setImageBitmap(retriever.getFrameAtTime(1000000, 

MediaMetadataRetriever.OPTION_CLOSEST)); 

 

 

 

 

    } 

 

 

    private String getPath(Uri uri) 

    { 

        //file:///mnt/sdcard/DCIM/Camera/VID_20111217_233451.mp4 

 

        if(uri.toString().contains("content")) 

        { 

            try 

            { 

                String[] projection = {MediaColumns.DATA}; 

                Cursor cursor = 

managedQuery(uri,projection,null,null,null); 

                int column_index = 

cursor.getColumnIndex(MediaColumns.DATA); 

                cursor.moveToFirst(); 

                return cursor.getString(column_index); 

            } 

            catch(Exception ex) 

            { 

                return null; 

            } 

        } 

        else 

        { 

            return uri.toString(); 

        } 

    } 

 

    private void handleClickEvent(View v) 

    { 

        switch(v.getId()) 

        { 

            case R.id.GalleryButton: 

                Intent browserIntent = new Intent(Intent.ACTION_VIEW, 

Uri.parse("https://drive.matlab.com")); 

                startActivity(browserIntent); 

//                Intent intent = new Intent(); 

//                intent.setType("video/*"); 

//                intent.setAction(Intent.ACTION_GET_CONTENT); 

//                

startActivityForResult(Intent.createChooser(intent,"Select 

Video"),SELECT_VIDEO); 
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                //image/* 

                break; 

            case R.id.RecordButton: 

                Intent recordIntent = new Intent(); 

                

recordIntent.setAction(MediaStore.ACTION_VIDEO_CAPTURE); 

                recordIntent.putExtra(MediaStore.EXTRA_VIDEO_QUALITY, 

1); 

                //recordIntent.putExtra(MediaStore.EXTRA_OUTPUT, 

Uri.fromFile(file)); 

                startActivityForResult(recordIntent,RECORD_VIDEO); 

                break; 

            case R.id.Matlabbutton: 

//                Intent intent = new Intent(Intent.ACTION_MAIN); 

//                

intent.setComponent(ComponentName.unflattenFromString("com.mathworks.ma

tlabmobile")); 

//                intent.addCategory(Intent.CATEGORY_LAUNCHER); 

//                startActivity(intent); 

 

 

                PackageManager pm = this.getPackageManager(); 

                Intent appStartIntent = 

pm.getLaunchIntentForPackage("com.mathworks.matlabmobile"); 

                if (null != appStartIntent) 

                { 

                    this.startActivity(appStartIntent); 

                } 

 

                break; 

        } 

    } 

 

 

 

    //#FFA500 

    @Override 

    public boolean onTouch(View v, MotionEvent event) { 

        switch(event.getAction()) 

        { 

            case MotionEvent.ACTION_DOWN: 

                switch(v.getId()) 

                { 

                    case R.id.GalleryButton: 

                        

//((Button)findViewById(R.id.GalleryButton)).setBackgroundColor(0xFFFFA

500); 

                        break; 

                    case R.id.RecordButton: 

                       // 

((Button)findViewById(R.id.RecordButton)).setBackgroundColor(0xFFFFA500

); 

                        break; 
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                } 

                return true; 

            case MotionEvent.ACTION_UP: 

                switch(v.getId()) 

                { 

                    case R.id.GalleryButton: 

                       // 

((Button)findViewById(R.id.GalleryButton)).setBackgroundColor(Color.BLA

CK); 

                        handleClickEvent(v); 

                        break; 

                    case R.id.RecordButton: 

                       // 

((Button)findViewById(R.id.RecordButton)).setBackgroundColor(Color.BLAC

K); 

                        handleClickEvent(v); 

                        break; 

                    case R.id.Matlabbutton: 

                        // 

((Button)findViewById(R.id.RecordButton)).setBackgroundColor(Color.BLAC

K); 

                        handleClickEvent(v); 

                        break; 

                } 

 

            default: 

                return true; 

        } 

    } 

 

    //In an Activity 

    private String[] mFileList; 

    private File mPath; 

    private String mChosenFile; 

    private static final String FTYPE = ".gif"; 

    private static final int DIALOG_LOAD_FILE = 1000; 

 

    private void loadFileList(){ 

 

        try 

        { 

            mPath = new 

File(getApplicationContext().getExternalFilesDir(null).getAbsolutePath(

) + "/"); 

            Log.i(TAG,"loadFileList() path: " + mPath.getAbsolutePath() 

+ "/"); 

        } 

        catch(Exception ex) 

        { 

            mPath = null; 

            return; 

        } 

        try{ 

            mPath.mkdirs(); 
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        } 

        catch(SecurityException e){ 

            Log.e(TAG, "unable to write on the sd card " + 

e.toString()); 

        } 

        if(mPath.exists()){ 

            FilenameFilter filter = new FilenameFilter(){ 

                @Override 

                public boolean accept(File dir, String filename){ 

                    File sel = new File(dir, filename); 

                    return filename.contains(FTYPE) || 

sel.isDirectory(); 

                } 

            }; 

            mFileList = mPath.list(filter); 

        } 

        else{ 

            mFileList= new String[0]; 

        } 

    } 

 

 

 

 

 

    @Override 

    public boolean onCreateOptionsMenu(Menu menu) { 

        // Inflate the menu; this adds items to the action bar if it is 

present. 

        getMenuInflater().inflate(R.menu.menu_main, menu); 

        return true; 

    } 

 

    @Override 

    public boolean onOptionsItemSelected(MenuItem item) { 

        // Handle action bar item clicks here. The action bar will 

        // automatically handle clicks on the Home/Up button, so long 

        // as you specify a parent activity in AndroidManifest.xml. 

        int id = item.getItemId(); 

 

        //noinspection SimplifiableIfStatement 

        if (id == R.id.action_settings) { 

            return true; 

        } 

 

        return super.onOptionsItemSelected(item); 

    } 

 

 

} 
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CHAPTER 4: MAGNETIC NICKEL IRON ELECTROFORMED TRAP (MAGNET): A 
MASTER / REPLICA FABRICATION STRATEGY FOR ULTRA-HIGH THROUGHPUT 

(> 100 ML/HR) IMMUNOMAGNETIC SORTING 
 

This chapter is a slightly modified version of a manuscript published in Lab on a Chip:  

J Ko*, VR Yelleswarapu*, A Singh, N Shah, D Issadore. Magnetic Nickel iron 

Electroformed Trap (MagNET): A master / replica fabrication strategy for ultra-high 

throughput (> 100 mL/hr) immunomagnetic sorting, Lab on a Chip, 2016. (*Equal 

Contribution) 

 

V. Y. conceived and performed experiments in this study, coded the Comsol and Matlab 

software, as well as prepared the manuscript and figures. 

 

 

4.1 Abstract 

Microfluidic devices can sort immunomagnetically labeled cells with sensitivity and 

specificity much greater than that of conventional methods, primarily because the size of 

microfluidic channels and micro-scale magnets can be matched to that of individual 

cells. However, these small feature-sizes come at the expense of limited throughput ɸ < 

5 mL/hr and susceptibility to clogging, which have hindered current microfluidic 

technology from processing relevant volumes of clinical samples, e.g. V > 10 mL whole 

blood. Here, we report a new approach to micromagnetic sorting that can achieve highly 

specific cell separation in unprocessed complex samples at a throughput (ɸ > 100 mL/hr) 

100x greater than that of conventional microfluidics. To achieve this goal, we have 

devised a new approach to micromagnetic sorting, the Magnetic Nickel iron 

Electroformed Trap (MagNET), which enables high flow rates by having millions of 

micromagnetic traps operate in parallel. Our design rotates the conventional microfluidic 

approach by 90° to form magnetic traps at the edges of pores instead of in channels, 

enabling millions of the magnetic traps to be incorporated into a centimeter sized device. 

Unlike previous work, where magnetic structures were defined using conventional 
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microfabrication, we take inspiration from soft lithography and create a master from 

which many replica electroformed magnetic micropore devices can be economically 

manufactured. These free-standing 12 µm thick permalloy (Ni80Fe20) films contain 

micropores of arbitrary shape and position, allowing the device to be tailored for maximal 

capture efficiency and throughput. We demonstrate MagNET’s capabilities by fabricating 

devices with both circular and rectangular pores and use these devices to rapidly (ɸ = 

180 mL/hr) and specifically sort rare tumor cells from white blood cells. 

4.2 Introduction 

The isolation of specific populations of cells, such as stem cells, pathogens, or 

circulating tumor cells (CTCs), from complex biological fluids is an emerging 

methodology that holds enormous potential for detecting, monitoring, and studying a 

wide variety of diseases.203–206 The use of magnetic fields to separate cells labeled with 

magnetic nanoparticles (MNPs) has shown particular promise because it can achieve 

highly selective sorting even in complex biological media, due to the inherently negligible 

magnetism of biological samples compared to MNP labeled cells.207–211 Moreover, 

platforms that use micro-scale structures, where the dimensions of the microfluidic 

channels and the micrometer-scale magnets can be designed to match those of the 

targeted cells, have been harnessed for highly selective sorting of rare cells. However, 

conventional microfluidic geometries where immunomagnetically labelled cells travel 

through microfluidic channels and are captured with patterned microstructures have 

limited throughput (ɸ < 5 mL/hr) and are susceptible to clogging, due to their microscale 

channels. The limited throughput (ɸ < 5 mL/hr) and susceptibility to clogging of 

microscale devices have kept these approaches from being translated from the 

laboratory to many medical applications, where large volume samples, e.g. V > 10 mL of 

whole blood, must be processed rapidly (< 15 minutes) to provide relevant point-of-care 
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information. In particular, applications where extremely rare cells (e.g. CTCs, pathogens, 

stem cells) must be sorted from complex biological fluids (e.g. blood, sputum, 

environmental samples) require large volumes of unprocessed clinical samples to be 

sorted with the precision of microfluidics within timescales relevant to providing real-time 

information (T < 30 minutes). For example, using CTCs for the diagnosis of cancer 

requires the detection of extremely sparse cells (< 1 CTC / mL) in volumes of blood > 10 

mL.212 

 

Figure 4.1. High throughput immunomagnetic sorting with the Magnetic Nickel 

iron Electroformed Trap (MagNET). a. MagNET uses magnetophoretic traps to isolate 

cells specifically targeted with functionalized magnetic nanoparticles. This design 

enables high flow rates by having millions of micromagnetic traps operate in parallel. b. 
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MagNET rotates the conventional microfluidic geometry by 90° to form magnetic traps at 

the edges of pores instead of in microfluidic channels (c). d. Micrographs of Track 

Etched Magnetic microPOre (TEMPO) devices. In this approach as the density of 

micropores is increased so did the number of overlapped pores, which limited 

performance. Scale bar 30 µm. e. Micrographs of MagNET devices. In this approach 

density and the shape of the micropores could be tailored to maximize performance. 

Scale bar 30 µm. f. A graph summarizing the trade-off relationship between % open area 

and % overlap for both TEMPO and MagNET. 

To address these challenges, we have developed a new approach to the micromagnetic 

separation of cells, the Magnetic Nickel iron Electroformed Trap (MagNET).(Fig. 1a) In 

contrast to lateral flow devices208–210,212213, our vertical flow design enables high flow 

rates (ɸ > 100 mL/hr) by having millions of micromagnetic traps operate in parallel. This 

improved throughput allows typical clinical samples (V > 10 mL of blood) to be 

processed in less than fifteen minutes, allowing precise microfluidic cell sorting to be 

used for rapid point-of-care diagnostics. Our design achieves this performance by 

rotating the conventional microfluidic geometry (Fig. 1b) by 90° to form magnetic traps at 

the edges of pores instead of in microfluidic channels. (Fig. 1c) An external static field, 

provided by an inexpensive NdFeB magnet, magnetizes both the MNP labeled cells and 

the MagNET filter. This geometry allows millions of magnetic traps to be incorporated 

into a single centimeter sized device. Furthermore, the large density of micropores (ρ = 

5*104 pores/cm2) reduces clogging from clinical samples, as the blockage of a few pores 

does not significantly change the device’s behavior.214 The trapping of a cell in MagNET 

is based on a competition between the individual cell’s drag force and its magnetic force 

as it passes through a magnetic micropore. Thus, the contrast in the magnetic trapping 
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of targeted cells versus non-targeted cells is not affected by the concentration of cells. 

Unlike previous work, where magnetic micropores were defined using conventional 

microfabrication,215,216 we instead take inspiration from soft lithography217 and create a 

master that can be used repeatedly to economically produce replica permalloy 

membranes with lithographically defined micropores. The micropores on these 12 µm 

thick electroformed membranes can have arbitrary shape and position, allowing the 

device to be tailored for maximal capture efficiency and throughput. We demonstrate 

MagNET’s capabilities by fabricating devices with both circular and rectangular pores 

and use these devices to rapidly (ɸ = 180 mL/hr) and specifically sort rare tumor cells 

(LOD = 3 cells/mL) from white blood cells. 

Our MagNET approach builds upon previous work from our lab, where track etching was 

used to fabricate magnetic micropores.214216 The MagNET approach offers several 

important advantages over our previous approach, which we called Track Etched 

Magnetic microPOre (TEMPO). The TEMPO consists of an ion track-etched 

polycarbonate membrane coated with soft magnetic film, permalloy (Ni80Fe20). The main 

advantage of track etching is the ability to fabricate microscale pores over large areas (A 

> 1 cm2) at a cost < 5¢ /cm2, much less than conventional microfabrication.214 MagNET 

conserves the advantages of TEMPO, and also addresses its two key weaknesses: 

1. TEMPO’s low cost fabrication comes at the expense of its inability to control the 

position or shape of the pores.(Fig. 1d) The MagNET strategy solves this challenge, 

allowing pores to be created with arbitrary shape and position.(Fig. 1e) The inability 

of TEMPO to control the position of the pores creates a tradeoff relationship between 

the density of the micropores and the fraction of pores that overlap with one another 

(Fig. 1f), which results in a tradeoff between the device’s throughput ɸ and the 
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capture efficiency of magnetically labeled cells ζ. The reason for this tradeoff is that 

as the fraction of open area is increased by increasing the density of micropores, the 

flow velocity through each pore decreases. As the flow rate decreases, the capture 

efficiency of each magnetic micropore increases, increasing the overall capture rate 

ζ. However, for TEMPO, as the density of track etched micropores increases, so 

does the fraction of pores that overlap.(Fig. 1d) For pores that overlap, the effective 

pore diameter is increased and so fewer cells come in close proximity to the pore’s 

edge to be trapped, and thus the overall capture efficiency ζ is reduced. MagNET’s 

ability to control the position and shape of the pores allows this tradeoff relationship 

to be broken (Fig. 1f) and extremely high flow rates to be achieved ɸ > 100 mL/hr 

without having to sacrifice capture rate ζ > 104. 

2. While track etching allows the polycarbonate membranes in TEMPO to be 

fabricated at low-cost, the deposition of the magnetic film is expensive, slow, and 

requires specialized facilities.12 The MagNET strategy solves this challenge. Once 

the master is made, which requires a cleanroom and lithography equipment, 

subsequent replicas only require electroplating, which can be performed at high 

throughput and without specialized laboratory facilities.218 Moreover, the MagNET 

method allows thick permalloy films (12 µm) compared to thermal evaporation, which 

is practically limited to < 1 µm, while also achieving consistent reproducibility of film 

thickness (± 0.5 µm). The increased thickness of MagNET leads to an increased 

capture rate, due to both increased magnetic field gradients (Fig. 3b) and the 

formation of two traps in series for each pore: one on the top surface of the filter and 

one on the bottom (Fig. S2). 
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4.3 Methods 

Fabrication of the MagNET master. We take inspiration from soft lithography217 and 

create a master from which many replica MagNET devices can be produced using 

electroformation. Electroformation is a well-known process to form metal parts by 

electroplating onto a master (i.e. a mandrel), and subsequently removing the 

electroplated piece from the master to form a free-standing metal piece. Much work has 

been done to use this technique to form free-standing metal pieces with microscale 

features,219–221 but to our knowledge this work represents the first such work that creates 

a reusable microscale master to generate many replica devices. The creation of a 

reusable micro-scale master for electroformation comes with the following challenges: 1. 

A thin metal piece (i.e. 12 µm) must be removed from the master without tearing. 2. The 

master must be mechanically robust, such that the removal of the electroformed metal 

piece from the master does not cause the microscale features of the master to be 

destroyed.  
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Figure 4.2. Master / replica fabrication of MagNET. a. Step by step fabrication of the 

master and subsequent replicas of MagNET.  b. A micrograph of the lithographically 

defined aluminum mask. Scale bar 30 µm. c. Photograph of a replica MagNET being 

mechanically removed from its Master. d. Three dimensional optical micrograph of 

MagNET. In the region to the left, a MagNET has been electroformed. In the region to 

the right, the MagNET has been removed and the polyimide and copper master can be 

seen. e. Micrographs of the master and replica MagNETs after k replications. Scale bar: 

30 µm. f. The fraction of damaged pillars was quantified after each replication, and there 

was no statistically significant change observed. (P >> 0.05). Error bars indicate 

standard error from the ratio of intact pores to total number of pores of different regions 

from the same device. 

To address these challenges, we made the following design choices. To remove the 

electroformed permalloy piece without tearing, we needed to find a metal substrate that 

has minimum adhesion to the electroformed material. We chose copper as a substrate 

because it is known to have low adhesion to permalloy.222 To allow the electroformed 

permalloy to be removed without destroying the master, we patterned the microscale 

features of the master in polyimide, which was adhered to a roll annealed copper 

substrate. The roll annealed copper on polyimide is more strongly adhered than is 

possible with spun-on photo-activated polymers (e.g. SU8),219–221 and so does not 
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delaminate when the electroformed permalloy is removed. We used conventional 

microfabrication techniques to etch the polyimide to create the micropore pattern through 

which MagNET was electroformed. 

To fabricate the master for MagNET, we perform the following procedure.(Fig. 2a) We 

begin with Pyralux AC181200R (Dupont), a substrate typically used for flexible 

electronics, where an 18 μm copper layer is roll annealed onto a 12 μm polyimide film. 

We adhere the Pyralux to a glass slide to prevent the film from wrinkling during 

processing. Next, a hard mask of aluminum (Al) is thermally evaporated (PVD75 E-

beam/Thermal evaporator) and patterned using conventional planar UV photolithography 

(Singh Center for Nanotechnology).(Fig. 2b) We use the same Tetramethylammonium 

hydroxide (TMAH) solution (MF319, Microposit) to both develop the S1805 (Microchem) 

photoresist and chemically etch the Al mask. Finally, the unexposed photoresist is 

stripped in acetone. After patterning the Al hard mask, the polyimide is etched using 

Inductively Coupled Plasma (ICP) etching.223–225 Whereas a pure plasma etch would 

result in isotropic etching, a combination of a plasma etch with ion bombardment 

provided an etch with a sufficiently anisotropic etch profile. Exposed regions of the 

copper without the polyimide pillars are used as zones for electroplating permalloy. Once 

the permalloy filter is > 10 μm, the filter can be peeled off mechanically due to poor 

adhesion between the copper and electroplated permalloy222(Fig. 2c). The Pyralux 

substrate facilitates the easy removal of the permalloy film. By gently flexing the 

substrate, the permalloy delaminates from the copper. 

We optimized RIE conditions for the MagNET master using The Trion Phantom at 

University of Pennsylvania’s Singh Center for Nanotechnology. After exploring a variety 

of combinations of pressures, RIE powers, RF powers, and gas flow rates, we found that 
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O2/CF4 resulted in large undercuts in the polyimide and made etching 12μm polyimide 

impractical since the undercut resulted in the erosion of the hardmask. O2/SF6 etching 

resulted in less undercut, as well as slower etch rates. The optimal recipe for the etching 

of the polyimide was with 40 sccm O2/ 10 sccm SF6/ 40mT Pressure/ 300W ICP/ 50W 

RIE for 50 minutes. The etch profile was characterized using profilometry and 3D 

imaging (Zeiss Smartzoom5 2D/3D). 

Electroformation of MagNET. Permalloy was electroplated onto the MagNET master 

using nickel foil (1 mm thick, 99.5%, Alfa Aesar) as the anode in an electroplating 

solution containing 200 g/l NiSO4-6H2O, 8 g/l FeSO4-7H2O, 5 g/l NiCl2-6H2O, 25 g/l 

H3BO3, and 3 g/l saccharin (pH=2.5-3).218 12 µm thick permalloy layer was deposited on 

the 3.8 cm [W] × 4.3 cm [L] master at 0.2A for 45 min. The master was firmly attached to 

a flexible mylar support for plating. To peel off the filter, the mylar/Pyralux combination 

was flexed until the permalloy started to lift off at the corner. The permalloy was 

separated mechanically as shown in Fig. 2c. Once removed from the master, the free 

standing electroformed MagNET was then plated (Bright Electroless Gold, Transene) 

with approximately 100 nm of gold to passivate the surface.  

Electroformation allows precise and repeatable control over film thickness. In prior work, 

permalloy has been electroplated with film thickness ranging from 500 nm to 5 µm in 

uniform, smooth layers (surface roughness < 100 nm)226,227. To control the thickness of 

our electroformed film, we fixed the device area exposed to the electroplating solution, 

and then calibrated the deposition current and the deposition time to produce specific 

film thicknesses. We measured film thickness using a profilometer (KLA Tencor P7 2D 

profilometer). The variation of film thickness across individual devices was determined 

by measuring film thickness at N = 10 locations across the 3.8 × 4.3 cm2 film, resulting in 
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a coefficient of variation of CV = 3.6 %. The variation of film thickness across various 

devices was determined by measuring the average film thickness of N = 8 independently 

fabricated devices, resulting in a coefficient of variation between devices of CV = 3.3 %. 

These measurements indicate that MagNETs can be fabricated with accurate and 

reproducible film thickness.  

Device fabrication. The MagNET filter was incorporated into the device using a 

moisture-resistant polyester film (McMaster-Carr, 0.004” thick) and a solvent-resistant 

tape (McMaster-Carr, adhesive on both sides). Multiple layers of the polyester film and 

the solvent-resistant tape were cut by a laser cutter (Universal Laser VLS 3.50) and 

assembled. For the device with multiple filters stacked in series, the filters were 

separated by the height of the polyester film (0.004’’) and the tape (0.004’’). An optically 

clear cast acrylic sheet (McMaster-Carr) was used as a reservoir, and the output was 

made using a blunt syringe tip (McMaster-Carr) epoxy-bonded to the device to pull the 

fluid from the reservoir. The design of each of the device layers, as well as a three 

dimensional rendering of the device, are shown in detail in Fig. S3. 

 

4.4 Results 

Robustness of MagNET fabrication over multiple replications. One design challenge 

that we overcame in developing MagNET was to find a material that we could use to 

pattern the microscale features of our master that is not damaged during the removal of 

each electroformed MagNET replica. We found that spin-on polymers such as 

photoresists (SU8, S1818, SPR220) delaminated during mechanical peel off even after 

surface treatment to improve adhesion. Dupont’s Pyralux – a material used for flexible 

circuit PCBs – consisting of 18 μm copper film roll annealed onto a 12 μm polyimide film 

proved to be perfect due to the polyimide layer’s strong adherence to copper. To 
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demonstrate the robustness of the MagNET master for reusability, we performed 

multiple cycles of plating and peeling, and for each cycle checked for any damaged 

pillars (Fig. 2e). Profilometer (KLA Tencor P7 2D profilometer) and 3d images (Zeiss 

Smartzoom5 2D/3D Optical Microscope) of the master confirmed that there was no 

structural damage during mechanical peel off, and that the electroformed filters were 

identical after multiple rounds of fabrication. The percent of damaged pores after rounds 

one, two, and three were 0.5%, and did not show a statistically significant increase after 

repeated use.(P >> 0.05) To visually demonstrate the functionality of our fabrication 

process, we mechanically removed a MagNET such that a portion of the electroformed 

permalloy remained on the polyimide pillars, and subsequently imaged it (Fig. 2d, Fig. 

S1)(Zeiss Smartzoom5 2D/3D Optical Microscope). In this image, the electroformed 

permalloy has been plated to the height of the pillars. Adjacent to this film, there is a 

region where the film has been peeled away and the copper and polyimide pillars are 

visible. The image demonstrates that the pillars are still intact, and at the same height as 

the permalloy, and thus the master is robust for multiple rounds of reuse.  

Magnetic Field Finite Element Simulation. To aid in the design and characterization of 

the MagNET filter, we performed finite element simulations. We modeled MagNET as a 

circular d = 30 µm pore in a 12 µm thick permalloy film using a finite element simulation 

package (Comsol). We created a 2D axisymmetric model, containing one circular pore at 

the center of the permalloy film. The film is magnetized by a B = 0.4 T field in the 

cylindrical direction provided by centimeter-sized NdFeB magnet placed below MagNET. 

In addition to MagNET, we also modeled a TEMPO filter for comparison. The TEMPO 

model was identical to MagNET's except the thickness of the permalloy film was 200 nm. 
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In these simulations, we used as our boundary conditions that at distances far from 

MagNET or TEMPO, the magnetic field dropped to zero. 

To calculate the magnetophoretic force Fm = (m ·∇ ) B on a cell as it passes through 

MagNET, we combined the finite element field simulations described above with a 

simplified model for a cell. The total magnetic moment of the cell was calculated to be 

proportional to the number of magnetic nanoparticles n, each with a magnetic moment 

mp = 106 Bohr magnetons, with the assumption that the external magnetic field was 

sufficient to fully magnetize the beads.225 Due to the low Reynold’s number regime of 

flow through the micropore, the mass of the cell does not play a role in determining the 

cell’s behavior. The total number of particles per cell was assumed to be 104 particles. 

There are a total of >105 CD45 receptors on a leukocyte208. The assumed number of 

particles (104) corresponds to 6.2% coverage of the surface of the cell, and thus would 

not result in significant steric hinderance. We assumed the cell to have a diameter d = 10 

µm and the particles to have a diameter d = 50 nm. We calculated the magnetic force 

experienced by the cell, Fm = ([mp*n] ·∇ ) B, as the sum of the magnetic force 

experienced by all of the beads bound to the cell. 

We calculated and plotted the radial force Fr experienced by the cell at one cell radius r 

= 5 μm above the filter. Additionally, the force in the cylindrical direction Fz on the cell 

was calculated and plotted along a line one cell radius r = 5μm away the filter edge. The 

magnetophoretic force is opposed by a drag force, which can be calculated using Stokes 

equation Fd = 6πηrv, where ηwater = 0.8 mPa/s, r = 5 μm for a cell. The average flow 

velocity in the pore vavg = ɸ / (nporeApore), where npore is the total number of pores and Apore 

is the cross sectional area of the pore. We calculated the maximum flow rate ɸ at which 
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the magnetic trapping force Fm would still be greater than the drag force Fd, and the cell 

would remain trapped on the edge. 

 

Figure 4.3. Finite element simulations of MagNET. a. The field strength |B| is plotted 

on the cross-section of an individual 30 μm pore. The magnetophoretic force Fm 

competes with drag force Fd to trap cells at the edge of the pore. b. The magnetophoretic 

force in the radial direction FM,r is plotted along r, one cell radius d = 5 µm above the 

MagNET’s surface. c. The magnetophoretic force in the cylindrical direction FM,z is 

plotted along z, one cell radius d = 5 µm away the MagNET’s edge. 

The results of the finite element simulations were used to choose design parameters, 

such as the pore diameter, and to guide us in approaches to further improve the 
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throughput and enrichment of our device. Fig. 3a shows the simulated magnetic flux 

density around the edge of the pore. The magnetic flux density drops rapidly away from 

the edge of the pore, leading to strong gradients and magnetic forces at this region. 

Based on this simulated field, we calculated the radial and vertical forces experienced by 

a cell as it moves through the pore. The radial force, which pulls cells to the edge of the 

pore, was plotted 5 µm above the MagNET’s surface.(Fig. 3b) The force has a 

maximum magnitude of Fr = 266 pN at the edge of the pore and drops rapidly in distance 

r from the pore’s edge. Thus, we can improve the device’s performance by making the 

pore as small as possible, as that will force cells to come into close proximity of the 

regions where the magnetic force is the strongest. However, the pores must be large 

enough that we do not capture off-target cells based on their size. The max Fr and Fz are 

~10x and ~50x, respectively, larger for MagNET than TEMPO, demonstrating that the 

thicker metal film allows stronger trapping forces. Once a cell is translated to the pore’s 

edge, the magnetic force Fz opposes the drag force Fd, and determines whether the cell 

will stay in the trap or not. The magnetophoretic force (Fig. 3c), at one cell radius r = 5 

µm away from the filter, is Fz = 707 pN. For the device described above ( A = 6.2 cm2), 

the magnetic force will exceed the drag force up to extremely large flow rates ɸ > 1000 

mL/hr. Thus, the performance of the device will be limited solely on what fraction of cells 

make it to the pore’s edge. And, based on this fact, we predict that device performance 

can be improved, even at flow rates ɸ >> 100 mL/hr, by stacking multiple filters in series 

to give cells multiple chances to be trapped. 

Characterization of MagNET’s using a suspension of microbeads as a 

model sample. Before testing the MagNET’s capability to sort cells, we first 

tested it with magnetic and non-magnetic polystyrene beads that have well 
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characterized, homogenous properties. We used 1 µm pink fluorescent magnetic 

beads (FCM-1058-2, Spherotech) and 1 µm yellow fluorescent polystyrene 

beads (F13081, Invitrogen). We first compared the performance of MagNET to 

TEMPO, where both filters had an area of A = 6.2 cm2. The input to each device 

contained a 100:1 ratio of magnetic to non-magnetic beads. To characterize the 

capability of these devices to selectively sort magnetic beads, we calculated an 

enrichment factor ζ = (C1p/C1m)/(C0p/C0m), at different flow rates Φ, where C0p and 

C1p are the numbers of non-targeted beads before and after sorting respectively, 

and C0m and C1m are the numbers of targeted beads before and after sorting 

respectively. We found that as flow rate increased, the enrichment dropped as a 

power law.(Fig. 4a) At all flow rates the enrichment of MagNET was > 30x the 

enrichment of TEMPO. One of the reasons for MagNET’s enhanced performance 

is that, in contrast to TEMPO where beads are captured on only one side of the 

filter (NiFe deposited), on MagNET the beads were captured both on the front 

and back side of the 12 µm thick MagNET layer. By forming two traps, on the top 

and bottom surface of MagNET, the capture efficiency is increased by providing 

a second chance for cells missed by the trap on the top surface of MagNET to be 

captured.(Fig. S2) Moreover, we demonstrated that enrichment could be further 

improved by stacking multiple MagNET filters in series.(Fig. 4b) By increasing 

from N = 1 to N = 5 at Φ = 150 ml/hr, enrichment was improved ~1,000x, 

allowing high enrichment (ζ > 5,000) to be achieved even at exceedingly high 

flow rates Φ = 150 mL/hr. As the filters are vertically stacked, the subset of the 

cells missed by the previous filter can be captured on the next filter, which leads 
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to an exponential increase in the enrichment ζ ∝ ζ0
N, where ζ0 is the enrichment 

of one filter. (Fig. 4b - inset) 

 

Figure 4.4. Characterization of the MagNET using microbeads. a. 1 µm 

diameter magnetic polystyrene microbeads were sorted from non-magnetic 1 µm 

polystyrene microbeads using MagNET. The enrichment of the non-magnetic 

beads ζ is plotted vs. flow rate. Inset: Enrichment vs. flow rate on a log-log plot 

for both MagNET and TEMPO. At all flow rates the enrichment of MagNET was ζ 

>30x the enrichment of TEMPO. The error bars indicate standard error from 
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replicates from flow cytometry measurement. b. As N filters are vertically stacked 

the enrichment at Φ = 150 ml/hr was improved ~1,000x. Inset: Enrichment ζ vs. 

Φ on a log-linear plot, shows that enrichment ζ scales exponentially with the 

number of filters N. The error bars indicate standard error from replicates from 

flow cytometry measurement. 

Reusability of the electroformed device. In addition to the reusability of the 

master, MagNET can also be reused since it consists of only metal (NiFe 

passivated with gold) and can be cleaned with aggressive mechanical agitation. 

Unlike conventional micro-magnetic sorting devices, where a magnetic film is 

adhered to a substrate, in MagNET there is no risk of delamination of the metal 

layer from the substrate during cleaning. Additionally, aggressive solvents can be 

used that would not be compatible with a polymer-based device (e.g. acetone 

with PDMS). To test the reusability of MagNET, we compared the performance of 

a previously used MagNET to a newly fabricated device. At 6 different flow rates, 

the enrichment of the used MagNET was not statistically significantly different 

from the newly fabricated device. (P >> 0.05) 

Characterizing MagNET’s ability to sort tumor cells from leukocytes. To 

demonstrate the utility of our chip to perform highly specific cell sorting, we used 

MagNET to isolate spiked tumor cells from a large background of leukocytes. 

The detection of rare circulating tumor cells (CTCs)(< 100 cells/mL) has 

demonstrated great potential to diagnose and monitor cancer and has gained 

enormous attention in the field of microfluidics.209,210,212,213,228 
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MagNET’s highly specific capture of cells at ultra-high flow rates offers an 

important new tool for the study of CTC biomarkers as well as their translation to 

the clinics. While many ingenious microfluidic devices have been used with great 

success to sort CTCs,204,209,211 there is currently a mismatch between the 

throughput of microfluidic devices (ɸ ≅ 1 mL/hr) and the large sample volume of 

blood (V ~ 20 mL) necessary for ultra-rare cell detection. This mismatch leads to 

run times unsuitable for practical use (T > 10 hrs). MagNET, with its ɸ = 100 

mL/hr flow rates, can process 20 mL of whole blood in only twelve minutes. In 

this demonstration, rather than using MagNET to trap tumor cells based on one 

of their heterogenous properties, we instead use negative selection, wherein the 

cells that are easily identified as not being tumor cells are removed from 

suspension (i.e. white blood cells) to create a concentrated population enriched 

for potential CTCs.209,229 Because CTCs are present in clinical samples at a ratio 

of approximately 1 tumor cell for every 1 million leukocytes, the high enrichment 

of MagNET (ζ ~104) is necessary to create enriched populations (1 tumor cell for 

every 100 leukocytes) that can be practically analyzed. And, MagNET is capable 

of even greater enrichment ζ for applications that require high purity, e.g. 

molecular analyses, by either decreasing the flow rate ɸ or increasing the 

number of filters N. 
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Figure 4.5. Characterizing MagNET’s ability to sort tumor cells from leukocytes. a. 

Cytometry quantified cell populations before and after filtration. b. Very high enrichment 

ζ was achieved at flow rates Φ > 80 mL h−1 using N = 4 filters. Inset: Enrichment vs. flow 

rate on a log-log scale for the sorting of leukocytes from tumor cells using both MagNET 

and TEMPO.The error bars indicate standard error from replicates from flow cytometry 

measurement. c. A fluorescence micrograph showing leukocytes, stained red, trapped 

on the MagNET filter. Scale bar: 30 µm. d. Titration of cultured cells into whole blood 

measured using MagNET, for negative selection of leukocytes, combined with a sized-

based filter that concentrated the tumor cells into a small field of view (3x3 mm2) were 

enumerated using microscopy. A limit of detection LOD < 3 cells in a 1 mL suspension 

was achieved at a flow rate of Φ = 80 mL/hr. 
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To test our chip’s ability to sort rare CTCs from leukocytes, a known number of 

cells from pancreatic cancer cell line (PD7591) were spiked into a background of 

leukocytes (Jurkat), and the enrichment of CTCs relative to leukocytes was 

quantified. Cancer cells and leukocytes were stained with different fluorescent 

dyes, green (CellTracker Green, Invitrogen) and red (CellTracker Red, 

Invitrogen) respectively, and a suspension of 100:1 of leukocytes to cancer cells 

was fed into the device. The leukocytes were labeled with CD45 functionalized 

MNPs (Miltenyi) to be captured on MagNET. Both the input and output were 

measured using flow cytometry, and the enrichment ζ quantified.(Fig. 5a) The 

magnetically labeled leukocytes were captured on MagNET and only a very small 

fraction (< 0.04%) were missed, even at extremely high flow rates ɸ = 100 mL/hr 

using N = 4 MagNET filters in series.(Fig. 5b) MagNET’s performance sorting 

tumor cells from leukocytes was directly compared to TEMPO's (Fig. 5b - inset), 

which showed that MagNET matched TEMPO's enrichment at 5x the flow rate of 

TEMPO. A fluorescence micrograph of MagNET after sorting shows leukocytes, 

stained in red, captured at the edge of the pores of where the magnetic field 

gradients are the largest, confirming that the cells were captured due to magnetic 

forces (Fig. 5c).  

To test the sensitivity of our chip to rare cells, we challenged our device with an 

in-vitro model for CTCs, wherein we spiked a known number of cultured 

pancreatic cancer cells (PD7591) into a background of leukocytes (Jurkat) and 

enumerated the number of recovered tumor cells. To quantify the number of 
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CTCs, a size-based filter that consisted of a nucleopore track-etched 

polycarbonate membrane was incorporated into our device downstream of 

MagNET. The size-based filter had a size of only 3x3 mm2, allowing rapid 

enumeration with microscopy. On this filter, captured potential CTCs could be 

imaged using an inverted fluorescence microscope (Leica DM750M). This device 

used N = 4 MagNET filters in series, with an area of 6.2 cm2. A titration of varying 

numbers of tumor cells spiked into a background of Jurkat cells was prepared 

using serial dilution and then ran through our device (Fig. 5d). The enumeration 

of these spiked cells agreed with expected cell numbers (R2 = 0.99) over a 

dynamic range of 3 to >100 cells. A limit of detection (LOD) of <3 cells in a 1 mL 

suspension was achieved at a flow rate of 80 mL/hr. 

4.5 Discussion 

MagNET offers a new approach to immunomagnetic separation that can be 

performed at extremely high flow rates (ɸ > 100 ml/hr) without sacrificing the high 

sorting efficiency (ζ > 104) typical of microfluidics. Additionally, we have 

developed a fabrication strategy for MagNET that can produce these high 

performance, microfabricated devices without specialized facilities, enabling 

MagNET to be manufacturable for applications such as low-cost medical 

diagnostics.230 In this paper we demonstrated the utility of MagNET to sort rare 

tumor cells from blood cells for CTC detection. However, the approach is broadly 

applicable to any application that requires highly specific sorting of rare cells from 

large volume unprocessed samples, such as the diagnosis of infectious disease, 

environmental sensing, cancer biology, and stem cell research.211,231  
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Our MagNET approach to rapidly sort immunomagnetically labeled cells from 

unprocessed samples is well suited for incorporation into integrated microfluidic 

systems. For example, MagNET can be used to perform negative selection 

upstream of ultrasensitive, low throughput single cell measurements.230,231 By 

removing the vast majority of background cells, it can improve the effective 

throughput of these single cell detection modalities by orders of magnitude. 

Additionally, due to the high enrichment ζ of MagNET, it can isolate rare cells 

with the purity necessary for downstream molecular analysis, such as 

quantitative polymerase chain reaction (qPCR), sequencing, or nanodevice (e.g. 

nanowire, graphene, etc…) sensing.194,212,232 In addition to negative selection, 

MagNET can also be used for positive selection. The MagNET filter has the 

advantage that when the external NdFeB magnet is removed, the magnetic force 

disappears, and the trapped cells can be released for downstream analysis. The 

viability of trapped cells in the MagNET has not yet been evaluated, but traps 

with similar forces have been demonstrated to keep trapped cells viable.233,234 

The master / replica electoformation fabrication strategy developed in this paper 

has uses beyond the cell sorting highlighted in this manuscript. It also has broad 

applications for the manufacturing of electroformed microscale devices. There 

have been many previous approaches to electroform metal pieces with 

microscale features for a variety of applications, 219–221,235,236 but our MagNET 

technology represents the first such work that creates a reusable microscale 

master to generate many replica devices. There have been several recent, 
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particularly exciting, applications that use electroformed micromagnets. One 

publication combined electroformation with a novel process to transfer NiFe 

micro-scale structures to flexible PDMS membranes to confer magnetic 

properties to substrates such as coverslips and eppendorf tubes.235 In another 

example, electroformed NiFe microstructures were created to generate large 

magnetic ratcheting forces to trap and translate cells in a microfluidic channel 

labeled with magnetic nanomaterials.236 Our reusable master / mold technique 

can reduce the cost of fabrication of such technologies by eliminating the need to 

do costly lithography to create each device, and thus aid in the translation of 

these emerging technologies to commercial use. Our MagNET fabrication 

strategy offers a general approach to produce low-cost devices at high 

production rates for a wide range of microchemical systems (MEMS), including 

microsensors, microactuators, and microswitchers219. 
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4.6 Supplementary Information 

 

Figure 4.S1. Characterization of polyimide pillars on the master and during 

electroformation. a. Profilometer measurement along two rectangle pillars in the master 

shows the RIE process etched 12 µm deep. The profilometer tip was not able to fit in 

between the gaps of the two pillars so we used the Zeiss Smartzoom5 2D/3D Optical 

Microscope to verify the pillar profiles. b. 3D optical profile of the pillars shows the 

copper surface at the bottom, and a boundary between where permalloy was plated and 

peeled. The depth profile is plotted here to show that the permalloy can be plated to the 

height of the pillars and successfully peeled at a thickness of 10 µm.  
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Figure 4.S2. Bead distribution capture rate on the top and bottom surface of each 

filter in stacked devices. Since MagNET is formed completely of permalloy, this leads 

to the formation of two traps at the top and bottom surface of each filter (a = top, b = 

bottom). To demonstrate that each surface does capture beads, the capture rate of each 

surface for N=5 filters stacked in series was calculated. The capture rate was defined as 

the area of the microscope image (shown below for each surface) that was covered with 

beads since individual 1µm beads could not be counted individually. We also 
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demonstrate that by stacking filters in series with two surfaces, we give magnetically 

labelled particles multiple chances to become trapped on MagNET to exponentially 

increase capture rate. 

 

Figure 4.S3. Device Fabrication. a. A three dimensional rendering of the device. 

The sample is loaded into the acrylic reservoir that sits on top of MagNET. A 

negative pressure is applied at the blunt tip, which draws sample through the 

MagNET to isolate immunomagnetically labeled cells. b. The design of each of the 
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device layers. The boxed in area to the left are the layers associated with each 

layer of MagNET. The layers shown on the right are the microfluidics that are used 

to withdraw sample from the reservoir. In this particular device, a size based filter is 

attached near the output for viewing target cells in a fluorescence microscope after 

the negative enrichment of the background cells.  
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CHAPTER 5: MULTICOLOR DETECTION OF FLUORESCENT DROPLETS ON A 
CELL PHONE USING TIME DOMAIN ENCODED OPTOFLUIDICS 

 

This chapter is a slightly modified version of a manuscript published in IEEE:  

VR. Yelleswarapu, D. Issadore. Multicolor detection of fluorescent droplets on a cell 

phone using time domain encoded optofluidics. Healthcare Innovations and Point of 

Care Technologies (HI-POCT), 2017 IEEE, 245-248. 

 

V. Y. conceived and performed all experiments in this study, coded the Matlab software, 

created the Android app, as well as prepared the manuscript and figures. 

 

5.1 Abstract 
 

Digital droplet assays – in which biological samples are compartmentalized into millions 

of femtoliter volume droplets and interrogated individually – have generated enormous 

enthusiasm for their ability to robustly detect nucleic acids and proteins with single 

molecule sensitivity. A key challenge in the field however has been the cumbersome 

instrumentation necessary to generate, process, and detect millions of individual 

droplets. We have demonstrated the miniaturization of droplet diagnostics into a portable 

platform that can process millions of droplets per second by combining the parallelization 

of thousands of microfluidic droplet generators onto a single chip and a strategy to 

rapidly detect droplets using time-domain encoded cell phone imaging. Building on our 

work in this area, we show that multiple fluorescent dyes can be detected in each 

individual droplet by encoding the excitation light from multiple LEDs with unique 

maximum length sequences that are decoded using cloud-based computation. By 

developing a strategy to carry out multiplexed digital droplet assays in a portable 

platform at a rate (106 droplets / sec), 1000x faster than conventional approaches on a 

cell phone based device, we have demonstrated a key step towards translating the 
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sensitivity of digital assays from research laboratories to portable molecular diagnostics. 

5.2 Introduction 

Digital droplet-based assays use femtoliter volume emulsions as isolated 

compartments to run massively parallel biochemical reactions. These digital assays have 

demonstrated enormous utility as a platform for the ultrasensitive, single molecule 

detection of nucleic acids and proteins. However, although these assays are robust to 

reaction conditions and thus have enormous potential for point of care diagnostics, 

translating these assays into portable devices has proven challenging due to the 

expensive, semi-automated machinery necessary to generate, process, and readout 

each of the millions of droplets in every assay. We developed a new approach to 

miniaturize droplet based assays that achieves a throughput (106 droplets/sec) 1000× 

faster than conventional methods, using a smartphone camera and disposable plastic 

microfluidic chips237 .  The key innovation of this approach is the modulation of the 

excitation light in time with a pseudorandom sequence that enables individual droplets to 

be resolved that would otherwise overlap due to the limited frame rate of digital cameras. 

This approach combines ultra-bright LEDs, the sensitivity and computing power of 

smartphone based imaging, and the ubiquity and computational power of cloud-based 

computing to implement our platform as a self-contained mobile device. A limitation of 

our previous work in this area has been that it can only interrogate a single fluorescent 

dye in each droplet, severely limiting the use of the chip for the multiplexed molecular 

detection necessary for most clinical applications 238,239. Building on prior work, we show 

that multiple fluorescent dyes can be detected in each individual droplet by using 

multiple LEDs, each encoded with a unique maximum length sequence (MLS) that can 

be specifically readout using a correlation based detection, borrowing techniques from 

the telecommunications industry. (Fig. 1a) In this paper, we experimentally demonstrate 
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a two-color system wherein we can detect up to three separate molecular targets in each 

droplet. (Fig. 1b,c) Our microdroplet Megascale Detector (μMD) detects droplets on a 

low frame rate camera by using modulated fluorescent emission from a modulated light 

source to resolve overlapping fluorescent droplets and improve signal to noise ratio 

(SNR) by 100x compared to conventional optical detection. Moreover, our μMD achieves 

flow-rate invariant detection at rates as high as 160 mL/hr (106 droplets/sec) and a 

dynamic range of 1:107 to 1:40 fluorescent: non-fluorescent droplets. 

 

Fig. 5.1. Design Strategy of our Multiplexed Microdroplet Megascale Detector 

(µMD). (a) Cross section schematic; a microcontroller strobes LED excitation to 

modulate the fluorecent emission. (b) Each dye has its own MLS pattern. Droplets with a 

mix of dyes emit both patterns. (c) We can resolve the presence of each MLS pattern in 

low SNR, and when MLS overlap – to achieve high dynamic range and to identify mixed 

dye droplets. (d) Phone based implementation that monitors 120 microfluidic channels 

simultaneously. 
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5.3 Background 

Digital assays have met the demand for ultrasensitive detection, but their utility can 

be greatly expanded by incorporating multiplexed detection of multiple biomarkers. 

Multiplexed assays have demonstrated higher sensitivity and specificity for the detection 

of cancers, genetic diseases, and infectious diseases than is possible using any single 

biomarker 238,239. To expand digital droplet based assays to multiplexed detection, there 

are two main options: 1. Samples can be run one after another in series, which adds 

additional labor costs, time and requires sample to be aliquoted, or 2. By expanding to 

multiple color detection, it is possible to simultaneously monitor multiple biomarkers in 

individual droplets, preserving precious sample, reducing assay time, and simplifying 

use. Droplet assays can measure N>2 biomarkers, using only two colors, by using 

endpoint fluorescence measurements in droplets where ratiometric combinations of two 

reporter dyes at specific combinations signify a target. Multicolor digital assays have 

proven useful in detecting, nucleic acids in digital PCR 180, proteins in digital ELISA using 

barcoded fluorescent beads86, cell surface markers in droplets 240, and in the Luminex 

system, wherein barcoded beads  are used to detect multiple proteins241. However, 

current commercially available multicolor panels for digital assays, such as Quanterix’s 

Simoa technology for single protein detection49,86, and Biorad’s multiplexed digital PCR 

assay180, require complex optics and bulky machinery. Various microfluidic approaches 

to miniaturize and increase the throughput of digital assays have been proposed, 

including spatial modulation of fluorescent particles in flow to increase the SNR as well 

as resolve multiple fluorescent families129,141, a highly parallel microfluidic chip that sits 

directly on a CMOS which monitor droplets139, using a microlens array to monitor 

multiple droplet channels133, a miniaturized confocal microscope observing a cuvette of 

droplets135,and optical fibers integrated into a microfluidic chip242. However, these 
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approaches require complex fabrication processes, do not achieve a throughput 

sufficient for ultrasensitive, multiplexed assays (<10k drops / sec), or use difficult to 

miniaturize microscopy to readout the fluorescence.  

 

Fig. 5.2. Optical and dye spectra. Components and dyes were selected to separate the 

excitation and emission spectra for each of the LED/dye combinations to prevent 

crosstalk. 

5.4 Methods 
Imaging Implementation 

We have previously published on our cell phone based approach that addressed the 

challenges of portability, high dynamic range, and high throughput required for droplet 

assays237. Briefly, the microfluidic chip is made using standard photolithography to 

create PDMS devices that are plasma bonded to glass. The PDMS chip contains n = 

120 channels, through which droplets flow in parallel and are monitored by a cell phone 

camera to achieve high flow rates. 
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In our next generation device, which we herein report, we measure droplets using a cell 

phone camera on the Galaxy S7 Edge using pro mode to fix the focus and settings144. 

The optics consist of a hobbyist-grade macro lens (Carlson Hookupz), followed by a dual 

band emission filter (512 & 630nm, Edmund). The chip is illuminated from the side by a 

green and blue LED (Luminus) that are coupled to maximize total internal reflection. 

Each LED has its own bandpass filter (Green: 560DF15; Blue: 450BP50, Omega). (Fig. 

2) To test the device, we used Dextran-FITC 10kDa (Sigma) and QuantaRed Enhanced 

HRP substrate (Life) – a red Resorufin based dye used for immunoassays such as 

ELISA. We combined the dyes at different ratios to generate three populations of 

fluorescent droplets. Droplets were generated off-chip using a parallelized droplet 

generator130, to ensure monodispersity, and then added to a suspension, which includes 

droplets that contain fluorescent dye and those that contain only water. For the oil 

phase, we used Biorad Oil and for aqueous we added dye in the concentrations 

specified into a 1% PBS solution. For the Resorufin spiked droplets, we mixed the 

substrate as specified by the manufacturer and added HRP until the product was 

saturated.  

Droplet Patterning and Detection 

The key innovation to achieve multicolor droplet detection is the modulation of each 

dye with its own excitation LED. Each LED-dye set uses a unique pseudorandom 

sequence. The modulated excitation light in time patterns the droplet streak in space 

(Fig. 1b), which allows multiple overlapping droplets to be resolved. To extract the 

individual droplets, we correlate the image streak with the expected modulation pattern 

m, to generate the correlation vector Ψ(X) = ∫Sn(x)m(x+X)dx = Sn ⊗ m. We chose to 

pattern the droplets using MLS sequences with |m| = 63 bits, where each bit 
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corresponds to 10 pixels. Thus, 63 bits would correspond to 630px, or 1/3 of a 1920px 

wide video frame. To create a set of MLS with minimal auto-correlation and cross 

correlation from each other, we followed the process in MacWilliams and Sloane 151 to 

create a pseudorandom vector with 212-1=4095 elements, that was folded into a 63*65 

matrix, and chose the first two rows to select the two MLS patterns.   

The workflow (Fig. 3) to detect droplets is as follows: (i) The video is broken up 

into images and each image is separated into two frames, based on the camera’s red 

(CMOS-R) and green (CMOS-G) sensors. (ii) Each frame is segmented along the x-axis 

to generate 1D signal vectors  that correspond to the n = 120 microfluidic 

channels. (iii) To simplify the hardware of the system, we do not control the droplet 

velocity v or phase θ, relative to the MLS excitation, of the passing droplets, and instead 

use cloud computing to computationally detect droplets with unknown phase and 

velocity. We generate a 3d matrix by correlating each of the modulated signals with 

expected emission patterns that scans the range of velocities and phase at which the 

LED strobes [  and ]. (iv) By selecting the 

optimal phase  and velocity   of every kth droplet, we pick out the maximum 

correlation peaks [ ] and record the locations of the peaks  

that cross a defined threshold from  and , respectively. By comparing the 

intensities R,G at each of the peak locations, , we identify which family of dye 

combinations the droplet contains and report the results back to the smartphone via a 

custom app. (v) The software is available as an Android App to make the system truly 

portable by allowing the user to record the video, send the data to Matlab Mobile with 

predefined code that remotely analyzes the data, and receive the results on the 

smartphone. 
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In the case of a droplet that contains both FITC and QuantaRed dye, we observe 

peaks in both ΨR and ΨG. As expected, R and G match in droplet velocity (vc) and 

location (xk), as seen in the 3D/2D plots of Ψ.(Fig 3c, iii-iv). For droplets that contain 

only QuantaRed, we observed peaks only in ΨR and for droplets that contain only FITC, 

we detected peaks in ΨG only. 

 

Fig. 5.3. Software Workflow for Phase and Velocity Invariant Detection of 

fluorescent droplets. (a) Workflow for detecting droplets, with lock-in detection that 

scans for the emitted fluorescence as a function of droplet velocity and phase at which 

the LED pattern starts. (b) Sample workflow for a single droplet that contains Resorufin 

and FITC. Images from the video are filtered into CMOS-R & -G frames, and are 

partitioned into 1d vectors (ii). We generate a 3d correlation matrix with all phases and 

velocities for a droplet (ii), and select the optimal correlation for each MLS (iv). From 

these results, we use the location of the correlation peaks to determine which population 

a droplet belongs to. The cell phone records the video, while the data is processed using 

cloud computing, and returns the results on the Android using Matlab Mobile and a 

custom app.  
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5.5 Results and Discussion  
Simulation for Multicolor Detection 

Ideally, each of the dye emission MLS patterns would only show up in the respective 

CMOS channel, where the emission from Resorufin would only show up in the CMOS-R 

and emission from the FITC would only show up in CMOS-G. However, we observed 

non-zero cross talk between the channels, where a droplet that contained only FITC had 

some signal in the CMOS-R channel and a droplet that contained only QuantaRed had 

some signal in CMOS-G, due to the broad tail of the emission from both dyes (Fig. 2).  

To measure the impact of crosstalk on the ability to resolve droplets, we simulated the 

total signal in a given 1D vector , where  represents the amount 

of SG that leeches into the SR channel. We scanned the length of the MLS, |m|, and the 

crosstalk intensity, , affect the peaks R and G for a mixed droplet. When  = 0, there is 

no crosstalk and depicts an ideal scenario. In Fig. 4a, we demonstrate that the ability to 

resolve droplets decreases with crosstalk and increases with the number of bits. In Fig. 

4b, we observe the impact of MLS length, crosstalk, and noise on the ability to group 

multicolor droplets. Increasing |m| results in a tighter grouping of droplets, while 

increasing  causes a shift towards the channel where the crosstalk originates from. 

Decreasing the SNR causes the scatter to increase. A combination of poor SNR with 

substantial crosstalk can shift and spread out the populations of droplets to a point 

where the resolved droplets cannot be grouped. However, this occurs at -30dB SNR 

which is much lower than the typical >0dB  SNR levels observed for droplet assays[4].  
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Fig. 5.4. Simulation for Multicolor Detection. (a) We scan the impact of crosstalk (α) 

and the number of bits (|m|) on the ability to resolve droplets (R/G). As crosstalk 

increases from the green channel into the red, the ability to resolve the green droplet 

weakens. Right: As |m| increases, scatter reduces and droplets separate better. (b) 

Increasing crosstalk results in a shift, while decreasing SNR increases scatter.  

Multiplexed detection of droplets with two dyes at various ratios 

To experimentally evaluate our approach, we generated three populations of 

monodisperse 40 μm diameter droplets: 500μM FITC droplets, saturated Resorufin 

droplets, and one that contains both dyes. We spiked 10 μL of these droplets into 10mL 

of an emulsion with empty droplets, and thoroughly mixed the droplets to create a 
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homogenous population. We ran this suspension through the μMD at a flow rate ɸ = 70 

mL/hr while recording in Samsung 7 Edge’s Pro mode with the following settings: a 

frame rate of 1920x1080p resolution at 30 fps, ISO = 2000, Exposure = 0, aperture = 

1/30, metering mode set to Matrix, and a fixed focus determined by the macro lens. The 

field of view was ~12mm x 7 mm, and spherical aberrations from the lens were corrected 

with Matlab’s computer vision toolbox.  

We analyzed the computed R and G spread of the scatter for each population and 

showed a sample of N = 50 droplets (Fig. 5a). The scatterplot shows that we can 

separate all three populations. The centroids for Resorufin, FITC, and mixed populations 

with scatter, r, defined as the average distance from the centroid were: [xR=0.58, 

yR=0.08, rR =0.09];[xF= 0.35, yF=0.64, rF =0.22];[xRF=0.73, yRF=0.40, rRF =0.14]. We also 

calculated the crosstalk defined as the total intensity in the “incorrect” channel divided by 

the intensity in the “correct” channel. For Resorufin, the crosstalk was 17 ± 3%, while for 

FITC the crosstalk was 49 ± 17%. We used this measurement to correct for crosstalk by 

a linear transformation where the coefficient of correction matched the calculated 

crosstalk (Fig. 5b). As expected from simulation, scatter was larger in populations that 

had more noise and crosstalk. Interestingly, when we add the centroids based on the 

concentrations for a theoretical mixed droplet centroid: (xR+0.5*xF, yR+0.5*yF), or (0.69, 

0.40), we find that it nearly matches the calculated (xRF,yRF) at (0.72,0.40). The scatter 

resulted from nonuniform excitation as the LED intensity decreased further away from 

the source, which can be corrected in software. Crosstalk between fluorescence signals 

can be further reduced by redesigning the filters, at the expense of a decrease in signal 

to noise (Fig. 2). 

Using our platform, we demonstrate that we could detect three distinct groups of 

droplets, defined by their unique combination of the two dyes. Moreover, using a 
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computational model, we showed that it is possible to further expand to a linear 

combination of droplets with dye concentrations βcR+ γcG, where βc and γc represent the 

concentration of each dye within a droplet – as has been previously demonstrated in 

commercial N-plex assays[4]. In addition, we can expand our platform to include 

additional LEDs, beyond the two demonstrated in this manuscript, each patterned with 

its distinct MLS patterns. Using this approach, the highly multiplexed molecular 

diagnostics that are emerging to diagnose cancer, infectious disease, and trauma can be 

miniaturized and made accessible for clinical use.  

 

Fig. 5.5. Experimental Verification of µMD. (a) Classification of Resorfuin, FITC, and 

mixed droplet populations. (b) Linear transformation correcting for the crosstalk of the 

FITC droplets results in tighter scatter groups.  
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CHAPTER 6: FUTURE WORK 
 

While the µMD is currently functional for a duplex biomarker detection with digital 

ELISA, there are several applications that could be expanded including with minimal 

hardware change including: Digital PCR, multiplexed detection of biomarkers, washless 

ELISA, and nanoparticle enhanced ddELISA. 

6.1 Digital PCR 

Introduction: 

 Droplet-based assays have been used extensively for nucleic acids due to their 

sensitivity for amplifying single molecules of DNA, RNA; and their robustness to reaction 

conditions since only endpoint measurements are necessary16569. Similar to ddELISA, 

ddPCR has enormous potential for early detection, and differentiating small fold changes 

compared to traditional PCR; yet the equipment is often limited due to cost or bulkiness 

or suffers from poor dynamic range in static array-based digital PCR deices.  
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Figure 6.1. a. Comparison of traditional and digital PCR. Typical commercial digital 

PCR assays such as Biorad’s system come in several parts for each function of the 

workflow. Manual intervention is necessary for steps, and the slow throughput requires 

overnight runs or suffers from low dynamic range. b. The µMD integrates all of this onto 

one chip, where droplets are rapidly generated in parallel, thermocycled, and imaged 

after. The parallel approach speeds up the process, while minimizing manual labor and 

any steps that could cause contamination.  

 

Figure 6.2 Components and workflow for integrated digital PCR. a. The major 

components are the droplet generators followed by a compact 3d chip for thermocycling. 

The 3d component is sandwiched by two peltiers on either side for rapid heating and 

cooling, while an app detects droplets (inset: setup in lab). b. App analyzes the video on 

the cloud by finding signatures that identify positive droplets. c. Integrated workflow 
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shows droplet generation, a droplet fluorescent through RPA, and finally what the 

droplets would potentially look like under the cell phone detection system. 

 To address this challenge, we began  developing the integrated microscale mobile 

droplet detector (µMD) – an integrated sample to answer to droplet based platform that 

generates droplets in parallel, incubates them in a delay line for 10 minutes to amplify 

target nucleic acids via recombinase polymerase amplification (RPA)243, and detects 

droplets on a cell phone camera that is linked to cloud computing. The key innovation of 

our platform that enables high-throughput is the parallelization of both the generators 

and detectors, as well a rapid and robust isothermal amplification scheme that obviates 

the need for bulky thermal cyclers. Using this approach, the µMD demonstrated that 

isothermal amplification using Recombinase Polymerase Amplification (RPA) could be 

possible by amplifying targeted strands and measuring their fluorescence after a delay 

line. The device footprint was less than 100 cm2. In addition, thermocycling approaches 

were also tested for traditional digital PCR since this technique could measure a wider 

range of RNA and DNA targets that are not possible by isothermal amplification. By 

miniaturizing and integrating droplet-based diagnostics into a handheld format, the µMD 

platform can translate ultra-sensitive droplet-based assays into a self-contained platform 

for practical use in clinical and industrial settings. 

Table 6.1 – Digital PCR Technologies 

Ref. Throughput Droplet 

Volume 

Method of 

Thermal 

Material Method of Detection 

Continuous      

Hatch51 125 to 250 

k/s based on 

4-8s 

exposure 

50 pL Thermoelectric 

Cooler, 

Copper, Si 

wafer, PDMS 

PDMS Wide field 21 MP DSLR 

camera 
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Schaerli65  Flow rates 

~160ul/h; 

4.7*106/mL 

40um to 

150um; 33.5 

pL to 1.76nL 

Peltier module 

with copper 

rod at center; 

spatial 

SU8 

embedded 

in PMMA 

Droplets were collected, 

opened for gel 

electrophoresis  

Beer et al66 Generate 

1k/s and 

then stop 

while it 

cycles.  

10 pL Peltier 

temporal 

heating 

.5 mm thick 

silicon 

wafer a 

anodic 

bonded to 

.5mm 

coverslip 

Nikon microscope w/ 5k 

fps camera.  

Kiss67 500/s 65 pl; 

observed 14k 

droplets per 

cycle at 11 

points 

Spatial 

heating; two 

heaters at 95 

and 65c zone; 

55 s cycles/ 35 

min 

PDMS; 

incubation 

channels 

260um 

Droplets flash frozen and 

analyzed on gel and 

fluorescence microscope  

Terazono68 2.2k/3.5 min 20-30um 

droplets 

made with 

micro-

pipetting 10-

30uL at a 

time 

Single 

monolayer of 

droplets 

heated w/ IR 

laser; 3.5min 

for 50 cycles 

Droplets 

were 

covered w/ 

mineral oil 

and heated 

on glass 

base dish 

Inverted microscope, 

laser,  

Off Chip      

Biorad 1.92 mL can 

be loaded 

on 

thermocycler 

at once… 

1 nL; 1 k/s Off chip 

thermocycler 

Well plate 

with 

collected 

droplets 

Dual laser 

Raindance 400 uL sets 5 pL; 1 k/s   Dual laser  

Isothermal     

Rane69 

 

1M/110 min; 

10uL per 

110min 

8 pL; 1-2 

ms/droplet 

Peltier heater 

with water 

cooling  

glass, 

pdms, 

coverslip 

Custom built optical dual 

fluorescence  

Li70 27,000 314 pL  

Static array 

Peltier heater 

with copper 

chamber, PWA 

chip, and 

glass; 10 

min… 30 min 

for entire 

procedure at 

39C 

 Wide field image 

microscopy 

SlipChip48 1550 

reaction 

9 nL each; 39C on flat 

metal adapter; 

Glass Leica DMI 6000 B epi-
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wells 1550 wells/hr plate reader 

with 

temperature 

controlled  at  

25°C. 1 hr at 

39C, 30 min at 

42C 

fluorescence  

microscope (Leica 

Microsystems, Germany) 

with a 5X / 0.15 NA 

objective and L5 filter 

Schuler71  Volume 

calculated 

from given 

dimensions: 

~30000 

120um dia 

droplets;  

0.9048 nL; 

volume of 

chamber 

where 

droplets form 

is 27 µL 

Labdisk player 

with built in 

heater; 30 min 

for entire thing 

Lab disks 

were micro 

milled in 

PMMA – at 

foundry 

service 

Stroboscopic setup for 

droplet dia only; 

fluorescence imaging 

with Lavion bioanalyzer 

Kang72 100 kHz 10 kHz Red/Green 

colors;  

8 pL Rotating cuvette with 

mini confocal detector for 

DNAzyme detection 

 Several digital PCR commercial platforms already exist that demonstrated several 

advantages of digital PCR when compared to standard qPCR. These advantages 

include robustness to background, absolute quantification where every single nucleic 

acid target is counted rather than compared to standards, and endpoint measurements 

that do not require as much optimization when compared to tracking PCR fluorescence 

in traditional qPCR systems. While these commercial assays such as Biorad and 

Raindance demonstrated great strides in digital PCR, they were limited to lab facilities 

that could afford the equipment and were low throughput – relying on overnight runs for 

their droplet generation to analysis workflow.  

 Several techniques to miniaturize the platform using microfluidics are described in 

Table 6.1. Continuous flow digital PCR was first demonstrated in several chip materials 

including glass, silicon, and PDMS. Continuous flow heating consists of two major 

methods: cycle the chip through the temperatures required using rapid 

heating/cooling6667 or using spatial heating65  that control the temperature of the surface 

at different regions of the chip and as droplets flow between regions, the droplets also go 
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through various temperatures. Beer et al66 and Kiss et al67 first demonstrated that by 

rapidly heating and cooling a chip, and monitoring several locations for droplet 

fluorescence, digital PCR could be done in continuous flow. However rapid heating and 

cooling of large chips often require bulky equipment since the thermal load does not only 

consist of the channels where the droplets travel through, but also the entire thermal 

mass of the glass, silicon or PDMS chip. With insulated materials, this can become 

problematic and thus low throughput. A different strategy was employed by Schaerli with 

spatial modulation, where a Silicon and SU8 chip hybrid had different regions of cool and 

hot regions for amplification.  

Design and Methods 

 In order to address the problem of the large thermal mass that is often cycled in 

many of these setups and the inherent low throughput nature of these devices, we built a 

thermocycler with a copper chip that was less than 200um in height. In addition, we 

wanted the chip to be as thermally conductive as possible, which meant materials like 

PDMS or thick glass would pose obstacles in rapid thermal cycling. We used COMSOL 

to simulate several materials with different thicknesses to find out how long it would take 

for droplets and the carrier oil to heat up from room temperature to the targeted 

temperature. These simulations showed that PDMS and thick glass would be poor 

choices for the design. We also tried using PDMS experimentally and found that 

problems with evaporation and gas bubbles was a major issue despite papers 

demonstrating success with degassing or using thin glass slides to prevent evaporation. 

Silicon was also explored but the expensive manufacturing with deep reactive ion 

etching, and the eventual need to have a compact footprint by stacking in 3D made this 

not practical since the bonding between several layer would get complex and have a 
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high risk of failure. Figure 6.3 shows the final design choice with a copper-based chip 

that was stacked in 3d to have a compact yet large volume where droplets could cycle 

rapidly.   

 

Figure 6.3 Heating component for on chip isothermal amplification. a. The chip was 

fabricated using both copper and thin mylar sheets that acted as a 3d reservoir for 

droplets to travel through. b. Ten of these were stacked on top of each other, with 

peltiers sandwiching both sides to keep the temperature at 37C. As room temperature 

liquid entered, it spent several minutes inside the delay line where the 37C for isothermal 

amplification was reached. c. COMSOL simulation shows how long it takes for room 

temperature liquid to reach the intended temperature, while (d) shows the results of 

spiking in varying concentrations of target templates. Droplet homogeneity was an issue 

due to heating, but surface treatment and degassing of the devices should fix these 

issues.  
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 In order to regulate the temperature, we used peltiers designed for high 

temperatures and used an Arduino that measured the surface using thermocouples and 

an H-bridge to reverse the current and cool the system. Heatsinks were added so the 

peltiers did not lose efficiency over time; yet one issue was where the thermocouple 

probe would be placed. Surface temperatures overestimated the liquid interface, so to 

measure the effect of the surface temperature and the actual temperature of the liquid, 

we used a Rhodamine calibration curve to relate the surface temperature to the liquid 

temperature. We first measured the Rhodamine and its fluorescence at various 

temperatures at steady state and then measured how the surface temperature changed 

with the Rhodamine and optimized by thickness and channel height until the Rhodamine 

followed the surface temperature quickly, covering about 4 cycles in 2 minutes. 

 

Figure 6.4. Rapid on chip thermal cycling. a. A similar approach can also be applied 

for digital PCR rather than just isothermal applications. b. A larger heatsink with a 
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copper chip is used for rapid thermal cycling. c. Rhodamine dye was used to first 

calibrate the surface temperatures at 30C and 75C. These fluorescent measurements 

were associated with surface temperatures, and then probe surface temperature was 

compared with the fluorescent signal from the Rhodamine. The graph shows that the 

liquid closely follows the surface temperature, but over time can begin to lag and not 

cool as effectively. COMSOL simulations also demonstrate how fast temperature should 

change in the liquid as a function of surface temperature. 

 However, even with the thermal cycling, this did not seem fast enough, so we 

looked at alternatives that would simplify the heating but still enable ultrasensitive 

detection. RPA244 was previously demonstrated to be a robust isothermal amplification 

that only requires 37C to amplify fluorescent signal in the presence of target DNA. While 

existing commercial kits focused on bacterial nucleic acid targets, several labs have 

developed RPA for digital assays covering a wider range by carefully designing 

primers702432457148246. While RPA also was harder to control due to primer design and 

nonobvious correlations between the speed and efficiency of the amplification247, we 

demonstrated that RPA could be done in a continuous flow system.  

Biorad Oil for Evagreen was used as the continuous phase, a rehydrated pellet 

from the RPA kit was used for the dispersed phase. A serial dilution of the target DNA 

was mixed in with each of the rehydrated pellet solution, which was then formed into 

droplets through a parallelized droplet generator. Since the droplets only had to be held 

at 37C for a few minutes, the reaction could be observed immediately after in a 

microscope setup. Figure 6.3d shows the results of the onchip amplification when 

observed on a microscope, with higher concentrations leading to a higher fraction of 

fluorescent droplets. While this assay was not optimized for the loss of target molecules 



185 
 

due to the sticky surfaces, improvements in the non-stick surface treatments from ELISA 

would significantly improve the existing problems. Furthermore, multiplexing of 

isothermal amplification has already been demonstrated and could be implemented to 

cover a wider range of targets once primers have been verified248–250. 

6.2 Higher order multiplexing for ddELISA 

In order to detect multiple biomarkers simultaneously based on the ddELISA 

approach, there were several options for the design. The first is to have separate 

microfluidic channels each with its own inlet so that biomarkers are separated spatially. 

Here one bead color can be used, and each inlet would identify which biomarker was 

present based on the number of fluorescent droplets counted. While the approach is 

simpler, the drawbacks are that the sample has to be split into as many biomarkers to be 

measured. If the sample is limited or precious, this can be an issue. Next, from an 

engineering perspective, having 100 inlets with tubing for each would also make this 

impractical even if the oil and substrate inlets could be shared; limiting the amount of 

inlets to about 10 bead samples practically if we wanted to avoid connection complexity. 

The second approach uses multiple excitation and emission filters for each bead 

color. While this requires more complex harder, the limitations here stem from the trade 

off between the amount of narrowband excitation and emission sources that can be 

purchased. In addition, as the bands become more narrow, the amount of light for each 

color will also be decreased, reducing the electrical signal generated by the pixels. If the 

narrowbands are not tight, cross talk will severely reduce the ability to classify each bead 

population.   
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Figure 6.5 Higher order multiplexing strategy for color coded-beads. a. A similar 

strategy from the duplex ddELISA is employed, except this time there are three 

excitation sources each with a unique MLS. b. A color coded bead array is generated 

based on various combinations of dye concentrations. One color indicates the presence 

of a protein, whereas each color-coded bead is uniquely coated with capture antibody for 

a single protein target. c. Droplets that contain a protein will fluoresce, while those that 

do not remain blank.    

Therefore, since we began with a cell phone-based approach and wanted to limit 

hardware complexity, we chose a higher order multiplexing method that only relies on 

three excitation sources, and a bandpass filter that fits the given ranges of emission 
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sources. In order to do this, we had to select beads that emitted in two colors at different 

intensities, where each combination of intensity would map out to a different target 

protein, and a final color that would identify if a target protein was present or not inside a 

droplet. This three-color system would be able to resolve as many populations of 

biomarkers as long as the bead populations separated into tight clusters in 2d map. 

While Luminex beads are the dominant player in this multiplexing bead approach, their 

red and infrared emission wavelengths were not compatible with our setup. 

Therefore, we choose to use PolyAn beads that were fluorescent with blue and 

green lasers and had to shift to a UV fluorescent dye. These beads come in 12 distinct 

populations, with 6 sets of fluorescent beads at various combinations of dye. Therefore, 

each bead color would produce one MLS peak, and the third color would detect the 

presence of a protein. The first iteration was running beads through at high flow rate and 

measuring their MLS peaks for each wavelength of the bead dye. We observed that 

there were several causes for large scatter in the correlation 2d indexing plot: (1) phase 

variation from where the MLS starts, (2) excitation variation since the laser diodes have 

nonuniform excitation, (3) beads travel at different velocities, (4) high pass filters in the 

code, (5) software for normalizing the peak, and (6) crosstalk between signals.  

In order to address the phase variation and get better sensitivity, we switched from a 

cell phone-based detector to the FLIR machine vision camera (Grasshopper 3). The 

FLIR 3 camera was swapped in, and this had several advantages: (1) higher sensitivity, 

(2) control of parameters that were automated in the cell phone, (3) a smaller angle of 

incidence which allows optical filters to work more effectively in narrow bands, (4) 

removal of any optical aberrations that required software correction previously, and (5) 

triggering of the recording frame in phase with the modulation of excitation light. Higher 
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sensitivity allowed dimmer droplets and substrates to be resolved in a dynamic range 

that covered the dimmest bead component to the brightest while flowing, without 

saturating the pixels. In order to address excitation variation, a background frame with 

the light intensities were used to first subtract and divide a real frame analyzed to 

normalize each frame for nonuniform intensity. Bead velocities, high pass filters, and 

bead length normalization were all related and in order to fix this, we first measured how 

the correlation peaks changed for different streaks of the MLS after passing it through 

the correlation analysis. The data was then used to correct for variations by multiplying 

by the inverse and reduce a theoretical scatter from +- 10% to +-1%. Finally, the 

crosstalk was limited as much as possible by choosing the sharpest optical filters and 

notch filters for the excitation, yet the fluorescent emissions of the dyes overlapped in 

the same CMOS segment. Therefore, the MLS patterns were used to distinguish which 

dye was present in the beads. The results of the correlation analysis and rectangles 

representing the centroid with widths of two standard deviations are shown. While the 

beads are currently still clustered, there are some obvious steps to improve this process.  
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Figure 6.6 Color-coded beads resolved in µMD. a. Spectra from the company 

showing two sets of six color coded beads, that are also separated by size. b. Beads 

were run in flow cytometry. c. Setup with the FLIR camera, and three excitation sources 

controlled by an Arduino that triggers the excitation and detection. d. Resulting 

correlations of the beads in the µMD, with rectangles representing centroids and two 

standard deviations in width and length. 
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6.3 Washless ddELISA 

One weakness in digital ELISA techniques, is that aggressive wash steps can cause 

dissociation between proteins and antibodies that are bound. Additionally, even with a 

fast workflow from when the sandwich is completely formed to detection, the incubation 

times and wash steps needed for each prior step of the sandwich can be lengthy. While 

doing these in parallel can reduce time, bead-based approaches require wash steps that 

often include centrifuges, magnetic washes, or more inexpensive size based membrane 

filters. Each of these systems has loss from beads or proteins from sticking to surfaces 

or not resuspending back properly after each wash step.  

 

Figure 6.7 Schematic of washless ELISA. a. Typical bead based digital ELISA often 

requires (ii) capture beads to capture target proteins, (iii) bind detection antibody, and 

(iv) label with an enzyme. Each step requires multiple wash steps that often use a 

centrifuge or magnetic washer before they can be compartmentalized into droplets (c). 

b. In washless ELISA, active enzyme is only completed in the presence of excess 
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targets. Target protein compete with target attached to an enzyme fragment. When 

excess target is added, the ED-target fragment can dissociate from the antibody and 

complement with the EA fragment. Competition assays show lower sensitivity in bulk (d) 

than the digital assay where single complemented enzyme can be measured (e).   

 

A one step reaction process that removes the needs for beads or wash steps 

could overcome this challenge. There are several enzymes that use complementation in 

the presence of a target to turn active, and cause fluorescence. This was demonstrated 

with Luciferase, HRP, and B-Gal; however there was no commercial kit that allowed us 

to test this. The principle of such an assay would require no washing since the two 

halves would only join and turn active in the presence of a target, and could directly be 

loaded into droplets after incubation. In order to test this with a similar technology called 

the HitHunter cAMP assay that uses enzyme fragmentation technology for cAMP 

(Figure 6.7). We tested this kit in bulk first, and then in droplets and measured 

fluorescence when enzymes complemented successfully. There were some issues in 

terms of running the kit completely with target proteins and inhibitors, so there was 

significant loss. An additional issue is that the kit is only available for cAMP which may 

not have potential as a significant diagnostic marker and is rather used for cell based 

studies. Several labs have been developing fragmentation technology that could be 

created for any target and are hopeful that this technology would enable a bead-free 

washless digital ELISA.  
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6.4 Nanoparticle enhanced ddELISA 

Digital ELISA is currently severely limited by the antibodies that are available to 

form a strong sandwich complex that can withstand various wash steps. Digital ELISA is 

only possible when both the capture antibody and detection antibodies have low Kds, 

allowing a single protein molecule to bind and stick to the bead surface. For the capture 

antibody, this problem is not as severe since the entire capture bead is coated with 

antibodies, and if a protein molecule dissociates, it has a chance to attach to a 

neighboring antibody, termed avidity effects. However, when this happens with the 

detection antibody, the problem is that there is only one detection antibody per protein 

molecule. If the detection antibody dissociates either due to kinetics or from aggressive 

wash steps, this will result in a lower sensitivity. Additionally, finding a sandwich pair that 

has effective antibodies for digital ELISA is a limiting step in establishing assays that can 

detect single proteins, where a low Kd antibody might not even be available. 

Table 6.2 Bulk Nanoparticle enhanced ELISA 

Ref. Method of Verification and Improvement in Results 

Zhan251 • Five anti-RSV–HRP molecules for each AuNPs. 

• Improved LOD of conventional ELISA probe by 50 times. 

• 6x improvement in color signal development from 15-30 mint o 5 min 

Bill252 

 

• Two-step detection assay that utilizes HRP-conjugated secondary IgG;  

• 150 nm diameter nanoshells (NS) composed of 120 nm silica cores and 15 
nm thick gold shells 

• 13 fold increase in sensitivity  

• 40x more conjugated antibodies were required to detect EGFR 

Bang253 • Binding affinity of affibody functionalized gold nanoparticles of ~500 pM, 
exceeded that of the anti-NS1 affibody dimer (Kd = 5 mM) by 10000 times. 

• 14.2 fold improvement in sensitivity 

• Average of 150 affibodies per gold nanoparticle 
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Figure 6.8 Enhancement from nanoparticle based digital ELISA. a. Traditional plate 

based ELISA suffer from poor sensitivity. b. Digital ELISA measures the end point 

reactions of single protein molecules in millions of tiny compartments where the 

amplified dye can be concentrated for a strong signal. c. When the detection antibody is 

replaced with a nanoparticle containing multiple detection antibodies, the higher number 

of enzymes will speed up the reaction for a stronger signal compared to digital ELISA. 

d,e. In digital ELISA, the protein has multiple chances to bind to neighboring capture 

antibody, but only one detection antibody per captured protein. If the antibody weakly 

binds, washing or dissociation will reduce total protein counted. f,g,h. In nanoparticle 

enhanced ELISA, there are multiple chances for detection antibody to bind to the 

protein, allowing a higher rate of proteins to be counted.   
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We propose that nanoparticles covered with detection antibody can overcome 

this limitation by enabling the avidity effects to the detection antibody. A nanoparticle 

covered with detection antibody has the following advantages: (1) if the nanoparticle 

dissociates, neighboring antibodies could rebind to the protein and (2) additional biotin 

groups from multiple detection antibodies would capture more HRP/single protein 

molecule. Additional HRP enzymes would result in faster signal generation, and avidity 

would enable more sensitive measurements. Several groups have shown that this 

enhancement has improved bulk ELISA by several orders of magnitude, allowed lower 

levels of reagents, and lower false positive signals.   
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