1,662 research outputs found

    Estimating regional evapotranspiration from remotely sensed data by surface energy balance models

    Get PDF
    Spatial and temporal variations of surface radiative temperatures of the burned and unburned areas of the Konza tallgrass prairie were studied. The role of management practices, topographic conditions and the uncertainties associated with in situ or airborne surface temperature measurements were assessed. Evaluation of diurnal and seasonal spectral characteristics of the burned and unburned areas of the prairie was also made. This was accomplished based on the analysis of measured spectral reflectance of the grass canopies under field conditions, and modelling their spectral behavior using a one dimensional radiative transfer model

    A Study of the Radiation Quality under Plant Canopies In the Wave Range 0.4 to 2.5 Microns

    Get PDF
    The spectral distribution of the global radiation from 0.4 to 2.5 microns penetrating deciduous and coniferous canopies were measured during clear days between 10 a.m. and 2 p.m. using a double-quartz monochromator. In the visible region (0.4 to 0.7 micron) the average relative spectral transmissions under both canopies are about one percent beginning at 0.4 micron and decreasing to about half a percent at 0.67 micron. There is only a small peak in the green (0.55 micron) transmission under deciduous stands while there is none under coniferous canopies. The slightly higher transmission in the blue (0.4 micron) is attributed to the direct sky radiation penetrating through the gaps in the canopies. There is a steep increase in the transmission at about 0.7 micron. The increase is relatively higher under deciduous stands compared to coniferous stands. In the infrared region from 0.8 to about 1.4 microns, the average relative spectral transmission under deciduous stands is about 10 percent which is double the transmission under coniferous canopies. The transmission under deciduous stands is about twice that of the coniferous stands throughout the near infrared with very low transmission in the water absorption band at 1.45 and practically no transmission at all in the 1.90 micron-band. The absolute spectral transmission exhibit a somewhat different distribution, especially in the visible region. Since the highest intensity of the solar spectrum in the open is located in the 0.5 micron-band, this is also reflected in the absolute values. The small peak in the green under deciduous stands is now indicated as a slight shift of the peak to the 0.55 micron-band. The water absorption bands at the 0.95 and 1.15 microns are also distinct, with hardly no transmission at all beyond 1.7 microns. The spectral transmittance of forest canopies differ from those reported for single leaves in the proportion of radiation transmitted in the visible and infrared regions. For example, the ratio of the transmission at 0.55 micron to that at 1.10 micron-band is about one to twelve compared to about one to five in single leaves. A deciduous canopy consisting of several layers of leaves wi ll only allow a very small amount of transmission, mostly in the green portion and somewhat more in the infrared region between 0.72 and 1.40 microns. Under natural conditions in the forest, there exists a very weak green shadow and a somewhat stronger infrared shadow. The altered spectral composition may influence the understory vegetation as regards photosynthesis, seed germination, and the photoperiodic responses in the forest floor

    HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    Get PDF
    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements

    Fundamental remote sensing science research program. Part 1: Scene radiation and atmospheric effects characterization project

    Get PDF
    Brief articles summarizing the status of research in the scene radiation and atmospheric effect characterization (SRAEC) project are presented. Research conducted within the SRAEC program is focused on the development of empirical characterizations and mathematical process models which relate the electromagnetic energy reflected or emitted from a scene to the biophysical parameters of interest

    Proceedings of the Second Airborne Imaging Spectrometer Data Analysis Workshop

    Get PDF
    Topics addressed include: calibration, the atmosphere, data problems and techniques, geological research, and botanical and geobotanical research

    Predicting and managing light in the understory of boreal forests

    Get PDF
    This paper reviews current information relating to the dynamics of light in northern and boreal forests and discusses factors affecting overstory light transmission, seasonality of light, sunflecks, canopy gaps, and understory development, particularly with regard to tree regeneration. Techniques for measurement of light in forests such as radiometers, photosensitive paper or chemicals, hemispherical canopy photographs, the plant canopy analyzer, or visual estimators of canopy density are each discussed in terms of their accuracy, costs, ease of use, and conditions required during measurement. Predictive models of light transmission based on canopy architecture are also described in terms of their assumptions, accuracy, and input data costs. Lastly the paper discusses the relationship among overstory and understory densities, ground-level light, and 'windows of opportunity' for regeneration of trees in the understory following management interventions

    Remote sensing of photosynthetic-light-use efficiency

    Get PDF

    Soil-Tree-Atmosphere Water Relations

    Get PDF
    • …
    corecore