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In the Wave Range 0.4 to 2.5 Microns 
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The spectral distribution of the global radiation from 0.4 to 2.5 

microns penetrating deciduous and coniferous canopies were measured 

during clear days between 10 a.m. and 2 p.m. using a double-quartz 

monochromator. 

In the visible region (0.4 to 0.7 micron) the average relative 

spectral transmissions under both canopies are about one percent 

beginning at 0.4 micron and decreasing to about half a percent at 0.67 

micron. There is only a small peak in the green (0.55 micron) trans-

mission under deciduous stands while there is none under coniferous 

canopies. The slightly higher transmission in the blue (0.4 micron) is 

attributed to the direct sky radiation penetrating through the gaps in 

the canopies. There is a steep increase in the transmission at about 

0.7 micron. The increase is relatively higher under deciduous stands 

compared to coniferous stands. 

In the infrared region from 0.8 to about 1.4 microns, the average 

relative spectral transmission under deciduous stands is about 10 percent 

which is double the transmission under coniferous canopies. The trans-

mission under deciduous stands is about twice that of the coniferous 



ix 

stands throughout the near infrared with very low transmission in the 

water absorption band at 1.45 and practically no transmission at all in 

the 1.90 micron-band. 

The absolute spectral transmission exhibit a somewhat different 

distribution, especially in the visible region. Since the highest 

intensity of the solar spectrum in the open is located in the 0.5 micron­

band, this is also reflected in the absolute values. The small peak in 

the green under deciduous stands is now indicated as a slight shift of 

the peak to the 0.55 micron-band. The water absorption bands at the 

0.95 and 1.15 microns are also distinct, with hardly no transmission at 

all beyond 1.7 microns. 

The spectral transmittance of forest canopies differ from those 

reported for single leaves in the proportion of radiation transmitted in 

the visible and infrared regions. For example, the ratio of the trans­

mission at 0.55 micron to that at 1.10 micron-band is about one to 

twelve compared to about one to five in single leaves. 

A deciduous canopy consisting of several layers of leaves will only 

allow a very small amount of transmission, mostly in the green portion 

and somewhat more in the infrared region between 0.72 and 1.40 microns. 

Under natural conditions in the forest, there exists a very weak "green" 

shadow and a somewhat stronger "infrared" shadow. The altered spectral 

composition may influence the understory vegetation as regards photo­

synthesis, seed germination, and the photoperiodic responses in the 

forest floor. 

(88 pages) 



INJ'RODUCTTON 

Background and scope of study 

Knowledge in the radiation fields influenced by plants is still 

very limited. Under the plant canopy the measurements of solar radia­

tion as to its intensity and spectral composition are more complex than 

is often realized. Variations may range from a few percent of the value 

in the open to about full intensity. And if measurements are made, 

satisfactory interpretation is very difficult, if not impossible, due 

to a number of reasons. Prominent among these are the failure to give 

details of the techniques used and the spectral response of the sensors. 

These make some of the previous measurements very limited in value. 

This study is mainly concerned with the determination of the 

spectral composition of the global radiation penetrating the forest 

canopy, specifically coniferous and deciduous canopies. The measure­

ments are made in the wave range 0.4 to 2.5 microns. According to 

Thekaekara and Drummond (1971), the 0.3 to 2.2 micron wavelength 

interval accounts for nearly 94 percent of the total energy. 

Not all portions of the solar spectrum are of equal importance to 

the plant for its growth and development. For example, the wave range 

0.4 to about 0.73 microns, which is also called the visible region, 

appears to be involved in five photochemical reactions--photosynthesis, 

chlorophyll synthesis, phototropism, photomorphogenic induction, and 

photomorphogenic reversal (Robertson, 1966). According to Monteith 

(1965), when a plant receives adequate water and nutrients during the 

growing season, dry matter production is governed by the solar energy 



available for photosynthesis. In addition, the radiant energy trans­

mitted after its interaction with the plant canopy exerts a controlling 

influence on the microclimate of the forest floor. Evapotranspiration 

from the understory vegetation mainly depends on the net radiation 

absorbed (Reifsnyder, Furnival and Horowitz, 1972). The radiation 

intercepted by the crown plays a major role in the energy and water 

balance of forest communities (Vezina and Pech, 1964; Cowan, 1968). 

The germination and early development of tree seedlings are also 

dependent upon the intensity and spectral composition of available 

"physiological" radiation as referred to by Shakov, Khasanov and Stanko 

(1965). 

2 

Another purpose of this study is to assess the possible effect of 

the forest canopy in transmitting the global radiation and to evaluate 

whether there is a difference between deciduous and coniferous canopies. 

Definitions 

In the literature, the word "light" has been used to describe 

different, although related, physical entities. The failure to define 

terms in any particular investigation can bring up difficulties in 

comparing or evaluating the results. 

Short wave radiation is usually meant to be the wave range interval 

0.25 to 3.0 microns. This is about 98 percent of the total emitted 

energy from the sun. This is also the range that optical glasses used 

as domes on pyranometers allow transmission to the sensor. The parallel 

beam of the sun's rays, or direct solar radiation, plus the diffuse 

radiation falling from every point of the sky, or sky radiation, is 

conveniently termed global radiation. 



The aspect of radiation as to quality means the spectral composi­

tlon of the global radiat:lon whether it be in the open or after it 

passes through plant canopies. In general terms, it is often more 

understandable to distinguish between ultraviolet radiation which is 

roughly 0.28 to 0.38 microns, visible radiation from 0.38 to about 0.72 

microns and the near infrared, from 0.72 to about 3.0 microns. 

Radiation beyond 3.0 microns is termed as the far infrared or the long 

wave radiation. 

The ordered array of all known electromagnetic radiation according 

to wavelength, frequency, or photon energy extending from an extremely 

small fraction of a millimeter (cosmic rays) to several kilometers 

(radio waves) is known as the electromagnetic spectrum. 

In a str-Lct sense, "light" refers to the sensation caused on the 

human eye and brain by electromagnetic radiation. This is also known 
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as the visible radiation which is involved in the photochemical reactions 

in plant leaves. It is for this reason that biologists often equate 

this with "photosynthetic" wavelengths (Anderson, 1964; Robertson, 1966) 

and, in another case, as "physiological" radiation (Shakov, Khasanov 

and Stanko, 1965). 



REVIEW OF LITERATURE 

The three aspects of solar radiation are duration, intensity and 

quality or spectral composition. The spectral composition is the most 

elusive to measure. Not only does solar radiation vary with the solar 

angle and atmospheric conditions, but at any given time in a forest 

stand, the intensity and spectral composition vary in spatial distri­

bution. 

The disposition of light striking the vegetation on the surface 

of the earth has fascinated scientists for over a century. The inter­

a ction of global radiation with the plant canopy requires detailed 

understanding. As soon as the light strikes the leaves, reflectance, 

absorptance, transmittance, and scattering all influence the disposi­

tion of the incident energy. According to Rabinowitch (1951) the 

proportion of "white" light transmitted by plant leaves was first 

measured by Sachs (1861). After more than a century, not enough is 

known about the spectral composition of the global radiation that 

passes through the woodstand for ecological studies. Researchers are 

still hindered by the inability to describe the radiation environment 

adequately. This inability is due, in part, to the lack of suitable 

radiation measuring instruments, the difficulty of working in the 

forests, the variety of instruments and techniques used, and the 

inadaptability of the apparatus for all weather conditions desired in 

the study. Anderson (1964) stated that all radiation measurements 

involve some compromise between accuracy and possibility. 

4 



In the United States the increased awareness and understanding of 

the significance of the variation in the duration, intensity, and spec­

tral composition of solar radiation was brought about by the classical 

report on photoperiodism by Garner and Allard (1920). 

Many plant responses related to growth are wavelength dependent. 
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These are discussed by Wassink and Stolwijk (1956). The Dutch Connnittee 

on Plant Irradiation (1953) recommended the following divisions of the 

solar spectrum for considerations: 

1st Band: greater than 1 micron. No specific effects are known 

other than its conversion into heat. 

2nd Band: 1.0 to 0.7 micron. Specific elongating effect on 

plants. 

3rd Band: 0.7 to 0.61 micron. Strongest absorption of chlorophyll 

and photosynthetic activity in the red region. In many 

cases it also shows the strongest photoperiodic activity. 

4th Band: 0.61 to 0.51 micron. Spectral region of low 

photosynthetic effectiveness in the green and weak 

formative activity. 

5th Band: 0.51 to 0.4 micron. Virtually the region of strong 

chlorophyll adsorption and absorption by yellow pigments. 

It is also the region of strong photosynthetic activity 

in the blue-violet and of strong formative effects. 

These differences in the influences of different wavelengths of the 

solar spectrum on the photochemical processes in plants warrant that a 

special consideration be given to the spectral composition of radiation 

as an environmental factor (Robertson, 1966). Monteith (1965) pointed 

out that a week-to-week relationship between growth and solar radiation 
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is very difficult to establish because it depends on other parameters, 

such as leaf area index that changes as the crop matures. Another fact 

is that photosynthesis in most species is reached at an intensity well 

below the maximum. Bonner (1962) stated that plants are inefficient at 

high intensities because they are efficient at low intensities. For 

these reasons very few plant scientists or ecologists are willing to use 

even a simple physical model to describe their complex biological 

behavior. This is why most analysis of the dependence of plant growth 

and development on the meteorological elements stop at a statistical 

correlation without any quantitative representation of cause and effect. 

Early measurements of the spectral composition in the visible 

region of the solar spectrum were, according to Federer and Tanner (1966), 

"inadequate by current standards." However, it is well established in 

general terms that a leafy canopy of a forest is a highly selective 

filter of the visible radiation passing through it. Zederbaur (1908) 

was able to show that the red portion was absorbed the most, and the 

green the least. Knuckel (1914) was cited by Shirley (1929) and Coombe 

(1957) to have shown that there was no significant change in the 

spectral composition of the visible region of the solar spectrum under 

spruce and fir canopies or other needle-leaved canopies. Knuchel's 

measurements, which were considered as the most reliable at that time, 

showed that the canopy of conifers were practically neutral filters over 

the wavelength 0.44 to 0.65 microns while deciduous canopies showed 

higher transmission in the yellow-green than in the red and blue regions. 

Later measurements by Egle (1937) and Atkins, Poole and Stansbury (1937), 

using narrow-band filters, were in agreement. 



Although plant ecologists are aware of these phenomena, Shirley 

(1935, 1945) stated the common opinion that changes in the spectral 

composition of the visible radiation resulting from passing through the 

leafy canopies were of minor ecological significance. Shirley (1945), 

however, indicated that Seybold and Egle (1937) "evidently believed 

that leafy canopies did cause changes in light quality of ecological 

significance." Later it was emphasized by Coombe (1957) that any 

further discussion of the effects of varying spectral composition on 
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the growth of woodland plants is fruitless unless this variation in the 

composition of the light in woodlands is firmly established and under­

stood. In an attempt to find out more about the spectral composition 

under the woodland canopy, Coombe (1957) used a set of 12 combinations 

of glass color filters which transmitted fairly narrow bands of the 

spectrum over the range 0.365 to 0.73 microns, a sensitive barrier­

layer photoelectric cell, a shunt, and a galvanometer. Coombe agreed 

with earlier findings that the canopy of a deciduous woodland is a 

highly selective filter of the visible radiation, and the conifer canopy 

less so. In addition, Coombe emphasized that it is no always possible 

to say whether one woodland site is lighter or darker than another with­

out specifying the wavelength. 

Akulova et al. (1964) carried out an investigation in three regions 

of the spectrum: red, green, and blue, using wide-band filters (optical 

glass). Experimental data are given on the dependence of the spectral 

distribution and intensity under a forest canopy on the character of the 

incident radiation and density of the crowns. 

Federer (1964) and Federer and Tanner (1966) distinguished four 

components of radiation within a plant canopy. A spectrophotometer 



utilizing a wedge interference filter and a silicon photovoltaic cell 

as a detector and a high-gain amplifier was used to study the spectral 

distribution in a wave range 0.4 to 0.74 microns. 
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Robertson (1966) made measurements with a 5-band spectral light 

meter in the visible region of the spectral distribution below and within 

a crop canopy. Robertson indicated that there may be significant differ­

ences in the spectral composition with changes in solar elevation or 

haziness of the atmosphere. The inference was made based on measurements 

in the open from both clear, cloudy and hazy skies. 

Vezina and Boulter (1966) determined the spectral composition of the 

near ultraviolet and visible radiation under a forest canopy under 

cloudless, hazy and overcast conditions. The quality of radiation in the 

wave range studied was changed greater with respect to the open during 

clear days than during cloudy days. On overcast days and during the 

leafless period of the deciduous canopy, the transmission of the incident 

radiation was very high with very slight changes in the spectral compo­

sition. 

The spectral analysis of radiation under a coniferous forest was 

made using an ISCO spectrophotometer by Atzet and Waring (1970). It was 

found that minor changes in the proportion of radiation in one band to 

that in another occurred throughout the day. However, the 0.4 to 0.7 

micron wave range appeared rather uniformly adsorbed by the coniferous 

canopy. Using the same instrument, Freyman (1968) found that aspen 

stands showed radiation low in the blue, high in the green, and low in 

the red and exceptionally rich in the far-red. The lodgepole pine and 

Douglas fir showed a uniform decline in energy from 0.47 to 0.675 micron 

wave band without the distinct 0.55 micron (green) peak characteristics 

of the aspen. 
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The only investigations of the spectral composition of the solar 

radiation under plant canopies beyond the visible up to about one micron 

were those by Scott, Menalda, and Brougham (1968), Shakov, Khasanov, and 

Stanko (1965), and Yocum, Allen, and Lemon (1964). 

Scott, Menalda, and Brougham (1968) concluded that all green 

vegetation had low reflection and transmission of visible radiation and 

high reflection and transmission of infrared radiation. In the visible 

region of the spectrum some vegetation have sharper peaks in their trans­

mission of the green than other vegetation. On the other hand, Shakov, 

Khasanov, and Stanko (1965), working under forest canopies, found that 

the intensity beneath crowns was 100 to 1,000 times weaker in the violet 

portion of the spectrum, 30 times weaker in the green, 100 to 1,000 times 

weaker in the red-orange, and 3 to 5 times weaker than the open in the 

infrared portion. Working under a dense stand of corn, Yocum, Allen 

and Lemon (1964) showed measurements of the transmission of radiation 

in the wave range 0.3 to 1.0 microns. The results show quite low 

transmission in the visible spectrum and higher transmission beyond the 

0.7 micron wavelength. 

Fundamentals of leaf reflectance, 

transmittance and absorptance 

Suits (1960) pointed out that the reflective power is decreased 

with increasing wavelength until the radiation emitted by the object 

becomes dominant. The crossover point is approximately at 3.0 microns 

where the emitted radiation becomes dominant over the reflected 

radiation. 

Hoffer and Johannsen (1969) showed that in the measurements of 

spectral reflectance of a healthy green leaf, the 0.4 to 2.6 micron 
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portion of the spectrum can be roughly divided into three areas: the 

visible region in which plant pigments, especially the chlorophylls, 

dominate the spectral response of plant leaves; the second is the 0.72 

to 1.3 microns where there is less absorption by the leaves which means 

that the energy impinging upon the leaf must either be transmitted or 

reflected; the third is the water absorption at the 1.3 to 3.0 micron 

interval. 

Knipling (1969) emphasized that the absorption of the visible 

radiation by chlorophyll and the infrared radiation by water is a 

strong evidence for the internal reflectance mechanism since the 

radiation must enter the leaf before it can be absorbed. Further 

evidence was given by Gates et al. (1965) when they found a drastic 

reduction in the infrared reflectance as the leaf is infiltrated with 

water under vacuum. The water fills the air cavities and a continuous 

liquid phase medium is formed throughout the leaf. The reflective 

index difference is eliminated and direct transmittance increases at 

the expense of multiple scattering according to Knipling (1969). 

It has been shown that the infrared reflectance of dehydrating 

leaves changes very little in the wilting range but increases with 

severe dehydration especially in the water absorption bands beginning 

at about 1.3 microns (Allen and Richardson, 1968; Thomas et al., 1966). 

Knipling (1969) also cited Keegan et al. (1956) and Knipling 

(1967) that in some cases the initial stages of disease and leaf 

senescence are accompanied by an increase in the infrared reflectance. 

Knipling (1969) also mentioned that there is strong evidence of the 

reorientation of the cell walls into the same plane as the leaf 

surfaces and this may increase reflectance. 
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Effect of pigmentation 

It was illustrated by Hoffer and Johannsen (1969) that leaf 

pigmentation can cause marked differences in the spectral response of 

single leaves. For example, the white Coleus leaf without any apparent 

pigmentation shows a high level of reflectance throughout the 0.5 to 0.9 

micron wave range while the green leaf shows a relatively low reflectance 

at 0.5 micron, a peak in the 0.55 micron (green), and again low reflec­

tance in the 0.65 micron (red) and then increases sharply at about 0.7 

micron. On the other hand, the red leaf had a low reflectance throughout 

the red and near infrared wavelengths. The reddish-purple leaf had a 

relatively low level of reflectance throughout the visible region with a 

sharp rise coinciding with the green leaf. There is very little 

difference in the reflectance throughout the infrared region in spite of 

the marked differences in the visible regions caused by pigmentation for 

the four leaves. These findings agree with previous measurements by 

Dirmhirn (1964). 

Optical properties of single leaves 

Studies involving the optical properties of single leaves in the 

laboratory are extensive. Most of the work has been concerned with the 

visible and the very near infrared portions of the spectrum. 

Gates et al. (1965) measured the spectral reflectance and trans­

mittance of plant leaves using a Cary 14 spectrophotometer. The 

mechanism by which radiation in the wave range 0.4 to 1.1 microns 

interacts with a leaf was discussed, including the presence of pigments. 

The effect of chlorophyll pigmentation was indicated by the deepening 

of the reflectance band at the 0.68 micron. Desert plants were found 
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to reflect more radiation at all wavelengths measured than did the meso­

phytic types. Earlier, Billings and Morris (1951) showed that desert 

species reflected the greatest amount of visible radiation, followed 

by subalpine, west-facing pine forest, north-facing pine forest, and 

shaded campus species in that order. In the infrared wave range from 

0.78 to 1.10 microns, the difference between groups were not so marked, 

but the desert species still had the greatest reflectance. 

Carlson, Yarger and Shaw (1971) measured the reflectivity and 

transmissivity of leaves from corn, sorghum and soybean in the wave 

range 0.7 to 2.6 microns and discussed the leaf structure and water 

content as factors affecting the interaction with radiant energy. 

Leaf water content accounted for more than 80 percent of the variability 

in leaf reflectivity measurements for all species investigated. Specific 

leaf density was more highly correlated with leaf transmissivity and 

absorptivity than either leaf water content or specific dry weight 

density. Pearman (1966), measuring in the 0.32 to 0.62 micron range, 

found that a decrease in water content tended to increase reflectances. 

Dirmhirn (1964) also observed that surface hairs and surface wax 

increased reflection. 

Thomas, Wiegand, and Myers (1967) made a study of the effects of 

soil salinity, cotton leaf relative turgidity and chlorine content on 

reflectance and transmittance of radiation over the wavelength interval 

0.4 to 2.5 microns using a Beckman spectrophotometer. Soil salinity 

increased the percentage reflectance and decreased the percentage of 

the incident radiation on single cotton leaves. A decrease in relative 

turgidity or an increase in the chlorine content of the leaf blade 

increased reflectance. 
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Howard (1966) s t udied reflectance and transmittance of eucalyptus 

in the spectral range 0.4 to 0.95 micron at varying angles of incidence 

using a Beckman spectrophotometer. Reflectance and transmittance was 

observed to be high in the infrared. All leaf surfaces were found to 

be highly diffusing and not to reflect "white" light in accordance with 

sine law. Transmittance in the visible spectrum through a single leaf 

was observed to be insignificant, and reflectivity in the infrared 

increased but slightly with layers in excess of four leaves. 

Gupta and Wolley (1971) used the Beckman spectrophotometer in 

measuring reflectance and transmittance of three varieties of soybean 

leaves over the wavelength interval 0.5 to 2.5 microns. Except in the 

visible the three varieties did not differ very much. Relatively, 

young leaves reflected more than did the old leaves. This is probably 

associated with chlorophyll development. The upper surface reflected 

less than did the lower surface of the same leaves in the visible. 

This was explained on the basis of internal leaf structure and compo­

sition. In a similar study by Gausman et al. (1971), it was shown 

that leaf age affects the interaction of light with cotton leaves. 

Earlier, Gates and Tantraporn (1952) made the same conclusions. 

Gausman et al. (1969) tried to relate light reflectance to internal 

structure of cotton leaves of the same chronological age which were 

subjected to low, medium and high osmotic stress. A slight decrease 

in reflectance and a greater increase in transmittance caused by high 

osmotic stress is associated with a more compact cellular organization 

in the leaf mesophyll. Infiltration of leaves with water increased 

transmission of radiation. 



Gausman et al. (1971a) found that transmittance was lower when 

radiation was passed from the top through the leaves compared with 

passing radiation from the bottom through the leaves. They felt that 

the difference in transmittance was caused by greater light diffusion 

by the top leaf surfaces. 
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Howard, Watson and Hessin (1971) compared measurements of the 

visible and near infrared spectra of foliage taken from Pinus ponderosa 

growing in a copper-rich area and from that growing in a background area 

of low copper content. There were differences in the reflected energy 

in the red and far-red regions (0.68 to 0.78 micron) but only in the 

field not in the laboratory measurements. The differences between the 

laboratory and field results were attributed to possible needle-density 

differences. Under similar conditions, Yost and Wenderoth (1971) made 

simultaneous in situ measurements with an ISCO spectrophotometer in the 

0.38 to 1.25 micron wave range. The results indicated significant 

difference in the spectral reflectance between mineralized (copper 

molybdenum) and non-mineralized red spruce and balsam fir. The differ­

ence generally occurred in the 0.55 and 0.70 to 0.90 micron, with both 

red spruce and balsam fir showing higher reflectance for mineralized 

conditions. 

Doraiswamy (1971) concluded that the energy balance and water use 

efficiency of plants are characterized by their spectral properties. 

Doraiswamy followed the theoretical suggestions of Seginer (1969) and 

the laboratory studies of Aboukhaled (1966) on the use of reflectants 

(kaolinite) to increase reflectivity of soybean canopies. 

Hoffer and Johannsen (1969) believed that laboratory studies are a 

very necessary step in developing and understanding the radiation 
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interactions in plant canopies. However, it must be stressed that the 

capability for differentiating plants on the basis of laboratory spectra 

does not guarantee the same results in the field. Recent model and 'field 

studies by Myers et al. (1966) have shown that spectrophotometer studies 

of single leaves can be very misleading for predicting reflectance or 

transmittance from plant canopies. This is because the near infrared 

radiation when transmitted through the top of the canopy changes in 

spectral composition within the canopy. There are also multiple internal 

reflections within the canopy and reinforcement of reflectance from the 

top of the canopy. Changes in the leaf-water status during measurements 

can also be an additional source of error (Carlson and Yarger, 1971). 

Spectral distribution of solar 

radiation in the open 

The spectral distribution of the solar spectrum outside the 

atmosphere (m=O) and at sea level (m=l) recorded with a low resolution 

spectrometer is redrawn in Figure 1 (Handbook of Geophysics, 1960). The 

shaded areas represent absorption of ozone, oxygen, water vapor, and car­

bon dioxide. The difference between the curve at sea level and outside 

the atmosphere is due to scattering. 

The combined effect of the air mass, water vapor content, and 

all other components, such as dust, is illustrated by Robinson (1966). 

The measurements for a clear sky and an almost dry atmosphere at high 

altitudes (i.e., Rayleigh atmosphere) differ from those obtained at sea 

level (humid and turbid atmosphere) showing the considerable effects of 

the water content and turbidity on radiation reaching the earth. The 

strong minima in the humid and turbid atmosphere are due to either water 
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vapor or carbon dioxide absorption. The relative spectral character­

istics of global radiation under clear sky, cloud covered sky and a 

clear sky without the direct component is shown in Figure 2 (Dirmhirn, 

1967). 
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Gates (1966) calculated and presented the spectral distribution of 

direct solar radiation at sea level as a function of the air mass and the 

concentrations of aerosol, ozone, and water vapor. Gates also showed the 

variation of the spectral distribution of direct solar radiation with 

altitude zero to five kilometers. 
-2 -1 

A solar constant of 2.0 cal cm min 

and a fixed amount of five millimeters of precipitable water was used 

in the computation while the values for altitudinal distribution of ozone 

and aerosol concentrations and for molecular densities were taken from 

Elterman (1964). 

Taylor and Kerr (1941) measured the visible spectral distribution 

of global radiation for various types of natural daylight in the vicinity 

of Cleveland, about nine miles from the city center. The results showed 

what the authors call "some normal variations". The measurements showed 

that the most constant quality would be obtained on a horizontal plane 

exposed to both sun and sky and not the one from the north sky as 

previously believed. Later, Yost and Wenderoth (1969) showed that at 

Davis, California in July 1967, the amplitude and wavelength of global 

radiation in the wave range 0.36 to 1.3 microns in the natural environ­

ment constantly varied both with solar angle and atmospheric conditions. 

For example, there was a large increase in the incident infrared band 

at 0.75 micron in the afternoon compared to the morning. Yost and 

Wenderoth attributed this as probably due to absorption of visible light 

by large particles which have been churned up in the fields during the 
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day. This agrees with the findings of Robertson (1966) who attributed 

the increase in the proportion of red and far-red bands to increased 

haziness or decreasing solar elevation. 
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The information about the spectral distribution of direct solar 

radiation outside the earth's atmosphere or of global radiation in the 

open at any altitude is important in the sense that it is the starting 

point from which the spectral distribution under the plant canopies can 

be estimated or compared. 
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THEORETICAL CONSIDERATIONS 

Nature of the problem 

The forest floor is exposed to variations in solar radiation 

ranging from a few percent of the value in the open to about full inten­

sity. The problem of measuring solar radiation beneath the forest 

canopy is complicated by the highly irregular distribution of the 

radiation in both space and time. Added to this is the fact that 

variations may occur in a matter of seconds or a few minutes as the wind 

sways the branches or as the sunflecks move across the forest floor. 

There has been various attempts to study the complex geometric 

interrelationships between stand and leaf structure and the amount of 

solar radiation received on any spot on the forest floor (Anderson, 1966; 

Idso and deWit , 1970; Anderson and Denmead, 1970). However , as Anderson 

pointed out, such theoretical analysis is subject to many practical 

limitations . 

A model for the penetration of global radiation through the canopy 

has been presented by Reifsnyder, Furnival and Horowitz (1972). Four 

components of global radiation reaching the forest floor were identified: 

(1) penetrating direct beam radiation which passes through the canopy 

largely unobstructed and causing sunflecks on the forest floor. 

Sunflecks will not show full scale intensity unless the apparent canopy 

hole has an angular diameter in excess of one-half degree which is the 

apparent diameter of the solar disk; (2) reflected direct beam radiation 

which is the rest of the direct beam reflected or diffused in the canopy; 

(3) and (4) indirect or diffuse radiation emanating from the entire sky 
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also reaching the forest floor as penetrating and reflected components. 

The penetrating component enters through the holes in the canopy where 

the amount reaching the point on the forest floor is a function of the 

pattern of canopy holes and the distribution of luminosity over the sky. 

Earlier, Federer (1964) and Federer and Tanner (1966) also 

considered radiation under the forest stands at any given wavelength as 

the sum of four components expressed in the equation 

[l] 

where Is is the beam radiation of the sun and Ih is the diffuse sky 

radiation. The sand h subscripts on transmissivities t, indicate the 

corresponding light source, and d and i subscripts indicate whether the 

light is directly or indirectly transmitted through the canopy. 

The measurements made by Reifsnyder, Furnival and Horowitz (1972) 

did not take into consideration the spectral distribution of the global 

radiation. On the other hand, Federer (1964) and Federer and Tanner 

(1966) made spectral measurements at particular wavelengths 0.4, 0.45, 

0.50, 0.55, 0.675 and 0.75 micron, with linear interpolation between. 

Reifsnyder, Furnival, and Horowitz (1972) pointed out that solar radiation 

penetrating deciduous and coniferous canopies will differ in spectral 

distribution since approximately 50 percent of the radiation reaching the 

forest floor beneath the hardwood canopy was first reflected from the 

leaves and other vegetation elements in the canopy compared to only about 

14 percent underneath a pine canopy. In the equation presented by 

Federer (1964) and Federer and Tanner (1966) the radiation reflected 

from the forest floor and again off the canopy was assumed negligible. 
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Also they assumed that transmissivities were constant for a given wave­

length and independent of sky conditions which is not valid. 

Theory 

The energy flux density at any wavelength (EA) above a plant surface 

is a function of wavelength and may be expressed as 

The total flux then is 

-2 -1 -1 
EA(erg cm sec mµ ) 

-2 -1 
cm sec 

f (A) [2] 

[3] 

The radiation inside the canopy is the result of a part of the 

uninterrupted radiation from sun and sky (global radiation and the 

radiation transmitted or reflected by one or more leaves or other plant 

organs. The spectral transmission and reflection of leaves are 

qualitatively similar. After transmission by n leaves, each with 

fractional transmission coefficient tA(erg transmitted/incident erg), 

the spectral energy distribution becomes 

The equation for the reflected radiation by m leaves is given by 

where rA is the reflection coefficient (erg reflected/incident erg), 

The energy flux density after reflection and transmission at any 

wavelength then becomes 

n m E 1 = E,t, r,. n,m,,_ 11. 11. 11. 

[ 4] 

[ 5] 

[6] 
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For radiation transmitted and reflected by 0,1,2, and 3 leaves at 

any wavelength, equation [6] becomes: 

m,n = 0: E • EA ; 

m,n 1: Ell EAtArA; 

2: E22 
2 2 

m,n = = EAtArA; 

3: E33 = 
3 3 

m,n = EAtArA. 

The total flux after transmission and reflection is given by 

E 
n,m 

The energy flux density at any wavelength under the canopy is 

the sum expressed in the equation 

and the total flux at any wavelength interval as 

where P and Qare coefficients representing fractions of the area of 

[6a] 

[6b] 

[6c] 

[6d] 

[7] 

[8] 

[9] 

the canopy and the sky, respectively, or the spatial distribution of the 

canopy. The above equations assume that the reflected radiation off the 

ground and again off the canopy is negligible. This is not true for 

certain parts of the spectrum, especially in the near infrared. In case 

we have to consider the multiple reflection, the energy flux density at 

any wavelength may be represented in the equation 



where R are reflection coefficients, the odd subscripts representing 
n 

reflection coefficients from the ground, the even subscripts, from the 

canopy. 
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The radiation fluxes under vegetation at a given wavelength in 

equations [3] to [10] represent equations which cannot be calculated 

unless average values of EA, tA, and rA are available. These problems 

necessitate actual measurement of spectral quality under plant canopies 

(E and E 
1 

). An analytical approach to this problem is extremely 
can mu t 

complicated, particularly since the leaves are oriented to different 

directions and a multitude of transmission and reflection processes 

occur. This study will determine the spectrum of the natural radiation 

field from 0.4 to 2.5 microns under specified canopies by actual 

measurements with a monochromator. 
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MATERIALS AND METHODS 

A Leiss Double-Quartz monochromator was used to measure the spectral 

distribution in the wave range 0.4 to 2.6 microns. Photovoltaic selenium 

and photoconductive lead sulfide detectors were used as sensors. High­

gain amplifiers were specially built to provide the gain necessary for 

recording. Electric power was provided by a 12-volt car battery through 

an inverter for 110 volts to run the recorder. 

Description of instrument 

1 The optical systems of the Leiss Double-Quartz monochromator is 

shown in Figure 3. The light entering the entrance slit s
1 

is 

deflected by the plane mirror A1 and is collimated by the concave mirror 

H1 . The resulting parall~l beam reflected from H1 is refracted by the 

prism P1 which has a mirror coating on its rear surface. The spectrally 

dispersed radiation returning from the prism is brought to a focus in 

the plane of the intermediate slit s
2 

by means of the concave mirror H
2

• 

The divergent beam emerging from slit s
2 

is collimated by the second 

mirror H
3 

and refracted by the second prism P
2

• Whatever false radiation 

is present is dispersed again so that after reflection from the second 

focusing mirror H
4 

and from the plane deflecting mirror A
2

, the twice­

purified light leaves through exit slit s
3

. 

The usable height of the slits is 10 mm. At the entrance slit, a 

built-in diaphram permits controlled reduction of the slit height down 

½iention of trade names does not constitute endorsement of the 
product . . 
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(b) 

Figure 3. (a) Double-Monochromator with the cover removed showing (b) 
the mechanical construction and the optical system. 
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to one millimeter. The minimum mechanical slit width that can actually 

be employed will depend on the intensity of the entering radiation, the 

transmission prevailing at the particular operating conditions and the 

sensitivity of the detector. Generally speaking, the spectral width of 

the waveband isolated by the monochromator depends upon the mechanical 

slit settings. If the slits are adjusted to a narrow width, the wave­

band is narrow also but is reduced. 

The resolving power is proportional to the dispersion and thus 

increases from red to blue. At a slit width at which the limit of the 

resolution is reached, the energy available at the exit slit is obviously 

very low. Therefore, depending upon the sensitivity of the detector, it 

might be necessary to operate with appreciably wider slits so that the 

limit of resolution of the instrument is not fully utilized. This makes 

it necessary to operate with detectors of the highest sensitivity and 

use high-gain electronic amplifiers. 

Calibration 

The Leiss Double-Quartz monochromator was calibrated as to wave­

length using a Cary spectrophotometer. The calibration curve obtained 

is shown in Figure 4. 

Reflector 

The Leiss monochromator is basically designed for laboratory use. 

One accessory is a concave mirror (1 in Figure 3a) which focuses the 

light source at a distance of twice the focal length into the entrance 

slit with the aid of plane mirror (2 in Figure 3a). 

In this study, measurements were made under forest canopies with 

the sun as the light source. The illumination system described above 

is not possible. Therefore a reflector, shown in Figure 5, was 
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Figure 5. The Leiss Monochromator, recorder, amplifiers, sensors, 
inverter, chopper, reflector, and a pyranometer. 
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designed and f itted t o the entrance slit. It is a plastic cylinder with 

a diameter and height of about 11 cm. The cylinder is fitted with a 

plastic holder at the closed end. The outside is painted with a flat 

black paint and the inside walls, including the bottom, are smoked with 

burning magnesium. The magnesium oxide is about a millimeter thick. 

This material is known to reflect more than 95 percent of the incident 

radiation over the whole spectrum (Middleton and Sanders, 1951; Sanders 

and Middleton, 1953). The monochromator is positioned under the forest 

canopy such that the reflector is to the north of the entrance slit . The 

reflector serves as an integrating sphere as well. 

Detectors 

The most commonly used photoelectric effect in the infrared region 

of the electromagnetic radiation is the photoconductive process. The 

photon energy is absorbed from infrared radiation producing a change in 

resistance or conductivity independent of any heating effect . Among the 

materials used, lead sulfide is the most common. It has a spectral 

response extending to about 3.0 microns and exhibits excellent performance 

at room temperature, and even better when cooled to solid carbon dioxide 

or liquid nitrogen temperature. Its methods of preparation and compara­

tive performance is discussed by Kruss, McGlanchlin, and McQuistan (1963). 

The lead sulfide used in this study is in the form of a simple flat 

plate mounted in hardward (Figure 5). The detector is hermetically 

sealed between a substrate and a window made of quartz. Normal glass 

is not used because of undesirable polarization (an ion migration effect 

under prolonged voltage application resulting in excessive noise, reduced 

sensitivity, non-uniformity of sensitivity). Electrodes are of 



evaporated gold for noise free contact with attached leads anchored in 

the substrate for mechanical strength. The sensitive area is 1 x 2 mm 

and the resistance of lead sulfide surfaces is independent of the size 

of the area. As semi-conductors they exhibit a negative temperature 

coefficient of resistance which means that resistance increases with 
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decreasing temperature and decreases with increasing temperature. The 

time constant at 25°C is 10 to 10,000 microseconds and varies inversely 

with temperature. 

The spectral response of the lead sulfide at 25°C is shown in 

Figure 6 (Technical Bulletin 2). It is relatively flat from 0.5 to 2.5 

microns. 

1 The amplifier was built in the Department • The circuit is shown 

in Figure 7. In order to take a voltage signal off the cell, a bias 

of 90 volts is applied as specified by the manufacturer of the lead 

sulfide. The 150 microfarad capacitor is a noise filter and the 622K 

ohm resistor is a voltage divider with the lead sulfide cell across the 

bias. As the resistance of the cell changes, the current through the 

622K ohm resistor changes and therefore the voltage across it changes as 

the resistance of the photoconductive cell. The .22 microfarad 

capacitor is a blocking capacitor for DC voltage and filter for the AC 

signal. The amplifier is a high-gain, low noise electrometer amplifier 

connected in a current to voltage amplifier configuration. The signal 

goes from this amplifier through a second .22 microfarad capacitor to 

an amplifier with a gain of 100 to boost the signal up to a usable level 

for rectification. The remaining part of the circuit is a 1/2 wave 

1 By Charles Craw, Research Engineer, Department of Soil Science and 
Biometeorology, Utah State University, Logan, Utah. 
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rectif~er for the purpose of changing the AC signal to DC. The signal 

is then recorded on a strip chart recorder (Figure 5). The amplifier is 

powered by a 15-volt supply. 

The primary difficulty in building an amplifier for a lead sulfide 

cell is overcoming the high thermal noise (or electrical noise) which 

appears in any conducting or resistive material, whether metals or semi­

conductors. This is due to the random motion of electrical charges in 

the materials. This noise was seen to depend upon the temperature and 

measurement bandwidth, and to be frequency independent. This makes it 

necessary to have high-gain amplifiers. 

The selenium cell was used in detecting the visible region. The 

cell is ruggedly constructed, utilizing a base of thin steel, a thin 

layer of selenium, onto which are vacuum deposited molecular layers of 

cadmium selenide, cadmium oxide, and in some cases an additional thin 

transparent conductive film, serving as a current collector. A low 

melting alloy is then deposited in a line or a ring to provide a suit­

able connection. The selenium cell used in this study is cylindrical in 

shape (Figure 5) having a diameter of two inches and a sensitive area of 

2.4 square inches. It has a minimum output of 750 microamperes based 

upon a cell temperature of 75°F. The spectral response of a typical 

selenium cell is shown in Figure 8 (Bulletin SPV-4B, 1967). The response 

has a range in the visible region and peaks at about 0.57 micron. 

The selenium photovoltaic cell needs no bias. It is connected to a 

high-gain low-drift amplifier (Figure 7) which amplifies the DC signal 

from the cell to a usable level for recording in a strip chart recorder. 

The amplifier is powered by a 15-volt power supply. 
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Study areas 

Measurements were made under different canopies around the Utah 

State University campus, in Logan Canyon and under Douglas fir canopy 
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at the University of Washington Forest Experiment Station about 30 miles 

southwest of Seattle. The species of the different canopies as well as 

the single leaves used in this study are listed in Table 1. 

A Fish-Eye camera was used in taking pictures of canopies used in 

t his study. For the deciduous stands, pictures were taken also after 

the trees shed their leaves during the fall. Figures 9, 10 and 11 are 

representative of the canopies studied. Sun tracks are superimposed on 

the canopy pictures except for the Douglas fir canopy and the leafless 

stands. 

Figure lla and llb shows that the lodgepole pine (Pinus contorta) 

and Douglas fir canopies are similar insofar as crown closure is 

concerned. It is very difficult to find a uniform canopy with respect 

to stem, branches, or needle distributions. For the Douglas fir stand, 

a tower may be noted signifying that this canopy was selected to be 

somehow representative at this site for diffusion studies at the 

University of Washington Forest Experiment Station. 

Figures 9 and 10 are two contrasting canopy pictures of deciduous 

stands. The mountain maple (Acer grandidentatum) canopy seems to be very 

dense in comparison to the aspen (Populus tremuloides) stand. During the 

leafless stage, it can be clearly seen that while the stem density of 

the aspen stand is more than the mountain maple, there are less branches. 

As a consequence, the mountain maple has more leaves and therefore the 

crown closure is very different from the aspen stand. More radiation 

penetrates through the aspen than through the mountain maple stand. 
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Table 1. Species of the different canopies as well as the single leaves 
used in this study 

Deciduous 

Plattanus occidentalis (sycamore) 

Salix fragilis (willow) 

Fraxinus (ash) 

Betuta alba (white birch) 

Acer saccharinum (silver maple) 

Ulnus (elm) 

Liriodendron tulipifera (tulip tree) 

Acer grandidentatum (Rocky Mountain maple) 

Populus tremuloides (quaking aspen) 

Castanea mollissima (Chinese chestnut) 

Coniferous 

Pinus contorta (Lodgepole pine) 

Picea glauca (white spruce) 

Pinus nigra (black pine) 

Pinus mugo (mugo pine) 

Pseudotsuga taxifolia (Douglas fir) 

Picea pungens (blue spruce) 

Single leaves 

Pelargonia (geranium) 

Scindapsus aureus (water plant) 

Poinsettia (poinsettia) 

Acer rubrum (red maple) 
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Figure 9. A Fish-Eye hemispherical photograph of mountain maple (Acer 
grandidentatum) with and without leaves. 
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(a) 

(b) 

Figure 10. A Fish-Eye hemispherical photograph of aspen with and 
without leaves. 
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Figure 11. A Fish-Eye hemispherical photograph of blue spruce (Pinus 
contorta) and Douglas fir. 
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This may be the reason why understory growth is more developed under the 

aspen compared to the maple. 

The problem of sampling 

It is very difficult to sample global radiation in a forest stand. 

There is always the complicated patterns of sunflecks and shadows present 

resulting in a diversity of values recorded throughout the day and 

throughout the stand. 

Insofar as the measurement of the spectral composition of the 

global radiation reaching the forest floor is concerned, no periodic or 

areal sampling was ever attempted. This is a gigantic task if not 

impossible. Measurements under forest canopies so far were described as 

"apparently uniform shade with no visible sunflecks." Obviously this is 

not the representative condition under the forest floor. It is clear that 

the radiation regime under the forest stand will always be a combination 

of all the components identified by Federer (1964), Federer and Tanner 

(1966) and Reifsnyder, Furnival and Horowitz (1972). Of these components, 

sunflecks would probably be the most difficult to measure. 

In this study the measurements under the canopies were made where 

the uniform crown shade is located. There is extreme difficulty in 

finding the right spot on the forest floor since it is only a matter of 

seconds and minutes for the apparent position of the sun to change. 

Under the deciduous canopies, it is relatively easier to find a uniform 

crown stand with no apparent sunflecks compared to the coniferous stand. 

Under conifer stands the whole set-up of instruments and accessories has 

to be moved one or more times to get a complete spectral measurement in 

the wave band desired. Beyond the visible region, the openings or holes 
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through the canopy do not make much contribution in the spectral compo­

sition as can be seen in Figure 2. The sky radiation is very low beyond 

the visible region of the spectrum. Therefore, under the needle-leaf 

canopies, care was exercised in positioning the monochromator, especially 

when measuring in the visible region since there are more holes through 

which the sky radiation can go through and reach the instrument. 

Measurement procedure 

The monochromator, recorder, and all the accessories except the 

inverter and the power supply (12 volt car battery) were placed on a 

wood table about a meter high from the forest floor. Since time is a 

limiting factor in this study because measurements could only be made 

during clear and calm days, the spectral distribution at one spot on 

the forest floor was measured at least twice and then the whole set-up 

was moved to another site. This procedure was repeated until all 

measurements possible were made. Measurements on a particular day were 

made as many times as possible. The spectral distribution of the global 

radiation in the open was always made around noontime for consistency. 

In this manner the spectral distribution under the canopy can be expressed 

as a percentage of the energy in the open for any wavelength. Measure~ 

ments were made at every two-hundredths and five-hundredths of a micron 

in the visible and infrared, respectively. This gives an excellent 

spectral distribution of the global radiation under the canopies after a 

linear interpolation in between. 

A strip chart 2-pen recorder was used to record the signal at each 

specific wavelength. The second pen was used to record the transmitted 

global radiation on the forest floor as detected by a star pyranometer. 
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This was originally intended to serve as a basis for making adjustments 

in the spectral measurements when sudden changes in the incoming 

radiation occur due to a change in the crown density as the sun moves 

through the sky or as the wind sways the leaves or branches. However ·, 

it was found that no matter how close the pyranometer is positioned with 

respect to the entrance slit of the monochromator, the radiation that is 

getting through the slit does not necessarily correspond to what is 

falling on the pyranometer. No matter how the shade appears to be uni­

form there is still some differences in the incoming radiation even on the 

very short distances of a few centimeters. 

The measurements of the spectral composition of radiation under both 

deciduous and coniferous canopies were made during clear days between 

10 a.m. and 2 p.m. only. During this period the variation of the intensity 

of the global radiation is minimum. The global radiation has a simple 

daily distribution with a maximum at about noon. The diurnal variation 

during conditions of cloudless sky is shown in Figure 12. At the latitude 

of Logan, the highest daily value is about June 22 with a maximum of 1.3 

ly/min and lowest about December 22 with a maximum of about 0.67 ly/min, 

based on December 25, 1970 record. The noon maximum is caused by the 

shorter path length of the atmosphere which means lesser attenuation. 

At the geographical point of USU Campus (41°45' N; 111°50' W), 

the features of the variation of the radiant flux (R1) with solar height 

greater than 23 degrees is shown in Figure 13. There is quite a spread 

in the values but this could be explained by the prevailing atmospheric 

transparency at the time of the measurement. The radiant energy on a 

surface normal to the sun's rays is hardly influenced by solar height. 

On the other hand, the flux on a horizontal surface (R_) is shown to b3 
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a function of latitude, declination, and solar time. In order to 

emphasize the contribution of the diffuse sky radiation to the total 

flux falling on any surface, this component is also shown in Figure 13. 

On the average it is shown to have a value around 0.10 ly/min. 

Analysis of data 

The recordings in each specific wavelength took about five to ten 

seconds. The readings were in percent of whatever scale was used, 

usually volts or millivolts. The time involved in each complete 

measurement from 0.4 to about 2.4 micron interval was around three to 

five minutes. The value at each particular wave band was then the 

average during the five or ten second period the monochromator was set 

for that specific wavelength. The values were then tabulated and plotted 

on a linear graphing paper. All measurements for a particular day under 

canopies were analyzed in this manner in order to detect any possible 

change in the calibration of the monochromator. Plotting the values on 

the graphing paper in units of the recorder allowed detection of any 

drastic change in the intensity of the incoming radiation during the dur­

ation of the measurement at each site. Only one measurement in the open 

was made for any particular day. The values were also tabulated and 

plotted on a linear graphing paper. The measurements under the wood­

stand were then expressed in percent of the value outside the forest, 

This facilitated representation, comparison, and interpretation of the 

spectral distribution obtained under the different canopies studied. 

This procedure also eliminated instrument characteristics that influenced 

the values. Therefore, the only effect was the one from the canopy. 



RESULTS AND DISCUSSION 

Spectral properties of plant leaves 

The spectral transmittance and reflectance of some leaves in the 

visible spectrum are shown in Figures 14 and 15. The measurements 

47 

were made in September 1971 as part of the test in building the 

amplifier for the photovoltaic selenium detector. Detectable trans­

mittance differences were noted in the green (0.55 micron) where the 

silver maple leaf has about 11 percent followed by tulip tree, 8 percent; 

chestnut, 7 percent; and lilac, 5 percent. All four species had very 

low transmittance in the 0.44 to 0.5 micron and 0.6 to 0.66 micron 

intervals. 

The reflectance curves (Figure 15) exhibited the same pattern as the 

transmittance. The spectral transmittance was measured by wrapping the 

leaf around the entrance slit of the monochromator. The reflectance 

curves, on the other hand, were obtained by placing the foliage of each 

plant species as a single layer about 10 centimeters in front of the 

entrance slit approximately normal to the incident radiation. The spectral 

distribution of both the reflected and transmitted radiation are similar 

but of different magnitudes. In the green portion the silver maple has 

about 14 percent reflectance, followed by the chestnut leaf with 13 per­

cent, lilac, 12 percent; and tulip tree, 11 percent. Relatively lower 

reflectance values were obtained in the 0.44 to 0.50 micron and the 0.60 

to 0.66 micron wavelength intervals. Both the reflectance and trans­

mittance values increased very sharply beginning at approximately 0.68 

micron. 
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In autumn, the spectral characteristics of broadleaf species change 

markedly. The chlorophyll is destroyed, leaving carotene and antho-

cyanin pigments and then eventually all the pigments are destroyed as 

the leaf dies. This phenomenon is illustrated in Figures 16 and 17. 

The leaves were described as green (1), yellow (2), brown (3), and 

brown dry (4). The leaves were taken from the broad leaf species tulip 

tree. The spectral transmittance of these leaves was measured in 

October 1972. There was very little transmittance in the wave range 

0.40 to 0.50 micron for all four leaves, barely one percent. The green 

leaf had a peak transmittance of about 7 percent in the green (0.55 micron) 

and decreased to about 3.5 percent at 0.65 micron and increased very 

sharply after 0.68 micron reaching 25 percent at about 0.80 micron. 

Transmittance of the yellow leaf increased markedly after 0.5 micron 

reaching 23 percent at 0.76 micron. The transmittance values of the 

brown and brown dry leaves increased gradually after 0.5 micron to about 

20 percent at 0.74 micron. After the 0.72 micron, all four leaves had no 

pronounced pattern in their spectral transmittance. 

Spectral measurements of a single leaf from a poinsettia and a 

geranium plant and foliage from blue spruce are shown in Figure 18 in 

the wave range 0.55 to 2.50 micron. The transmission coefficient for 

the two broadleaves rose very sharply beginning at about 0.68 micron to 

more than 40 percent in the wavelength interval 0.80 to 1.3 micron, 

with the geranium leaf being lower by a few percent. The dip at 1.45 and 

1.95 micron is very distinct for the two broad leaves, with the geranium 

leaf showing no transmission beyond 1.9 micron. 

The foliage of blue spruce was placed over the reflecting drum in 

Figure 5. The transmittance curve is about 5 percent at 0.4 micron, 
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Figure 17. A color picture of the four leaves from the species_!:. 
tulipifera used in obtaining the spectral transmission 
in Figure 16. 
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slowly decreasing to about three percent at 0.68 micron, and rising to 

more than 10 percent between 0.72 and 1.17 microns. The absorption 

bands at the 1.2, 1.45, and 1.90 microns are still noticeable but the 

transmission is less than 5 percent beginning at 1.45 microns. 
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All of the above measurements were made with the sun as the source 

of illumination. Previous measurements cited in the literature were 

made in the laboratory using mostly incandescent lamps as the light 

source. As pointed out by Hoffer and Johannsen (1969), laboratory 

studies are a very necessary step in understanding the radiation inter­

actions in plant canopies. However, it must be realized that the 

capability for differentiating plants on this basis does not guarantee 

similar results in the field. Recent model and field studies by Myers 

et al. (1966) have shown that spectrometer studies of single leaves can 

be very misleading for predicting reflectances and transmittances from 

plant canopies. This is due to the near infrared radiation being trans­

mitted through the top of the canopy, changes in the spectral composition 

within the canopy, multiple reflections within the canopy, and reinforce­

ment of reflectance from the top of the canopy. Therefore, any further 

measurements in the laboratory using single leaves will not solve the 

problem of finding the actual transmission or reflections under natural 

conditions in the forest~ 

Spectral properties of selected 

canopies 

The relative spectral distribution of global radiation under 

selected deciduous and coniferous stands are shown in Figures 19 and 20. 

The curves indicate that the 0.4 to 2.4 micron wave range can be roughly 

divided into three areas similar to what Hoffer and Johannsen (1969) 
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did for single leaves. First is the visible region in the 0.4 to 0.72 

micron wave range where the plant pigments, especially the chlorophylls, 

dominate the spectral responses of the canopies. Second is the region 

from approximately 0.72 to 1.35 micron interval where there is greater 

transmission by the leaves. The third is the 1.35 to 3.0 micron wave 

range which is the region of water absorption. Figures 19 and 20 also 

indicate that forest canopies have three primary absorption bands, (1) 

the visible region at 0.4 to 0.72 micron caused by the chlorophyll, 

(2) the 1.45 and (3) 1.90 microns where water absorption accounts for the 

strong decrease in the transmittance. 

Visible region (0.4 to 0.72 micron): 

deciduous 

In Figure 19, the willow and mountain maple canopies had about the 

same relative spectral transmittance in the visible region with less 

than one percent. The chestnut canopy had the lowest transmittance with 

barely two-tenths of one percent. The aspen had the highest spectral 

transmittance in the visible region among the four broad-leaf canopies 

with a little more than one percent. There was a small peak in the 

green (0.55 micron) and a minimum at about 0.67 micron for all species. 

The transmittance curve for the conifer was for reference only and will 

be discussed later. 

The higher relative spectral transmission value in the visible 

spectrum under the aspen was due to the lesser leaf density plus the 

branches being more or less vertical rather than horizontal like other 

deciduous canopies, thereby creating more holes through the canopy. 

Under this condition, on a cloudless day, the shorter wavelengths tend 

to predominate in the diffuse sky radiation reaching the forest floor 
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through the holes i n the canopy. This was evidenced by the transmission 

value for the aspen in the blue region of the spectrum which was even 

higher than in the green. 

The chestnut had the lowest relative transmission in the visible 

because it had a more dense canopy. In the 0.67 micron there was no 

transmission at all. The transmission was also lower in the blue because 

there was hardly any contribution from the direct diffuse sky radiation 

component. The reflections and transmission from the leaves largely 

contribute to the radiation reaching the forest floor. However, in spite 

of the very low transmission values throughout the visible range, the 

green peak was still noticeable. 

For the willow and mountain maple canopies the relative spectral 

transmissions did not exhibit the distinct minimum in the 0.48 and 0.67 

micron wavelengths which were very prominent in single leaf transmission 

measurements. Here the contribution from the diffuse sky radiation corning 

through the holes in the canopy was not as much as in the aspen canopy. 

The crown density was, however, much less than the chestnut and this 

made the transmission higher by a factor of two. 

Measurements by Shakov, Khasanov, and Stanko (1965) under the 

European bird cherry, horse chestnut, and birch canopies in the visible 

region were of similar distribution and magnitude. Measuring under a corn 

canopy, Yocum et al (1964) also noted the small peak in the green. 

Under oak and sugar maple stands, Federer (1964) and Federer and Tanner 

(1966) measured transmission values of about one percent in the green 

with somewhat higher transmission values in the 0.48 and 0.67 micron 

wavelength. 



Visible region (0.4 to 0.72 micron): 

conifers 

The relative spectral transmission under conifers in Figure 20 

were qualitatively the same. Two canopies of blue spruce at different 

locations and a combination of white spruce, black pine, and mugo pine 

are represented in Figure 20. The curve for the sycamore was for 

reference only and was discussed earlier. 
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The canopies of the blue spruce on one location and the combination 

of white spruce, black pine, and mugo pine had about the same magnitude 

of relative spectral transmission in the visible region with values of 

a little more than one percent beginning at 0.4 micron and decreasing 

steadily to about three-tenths of one percent in the 0.67 micron. The 

other blue spruce (solid line) had about twice as much transmission in 

the same wave range. 

Since the needle-leaf canopies used in this study had more gaps 

through which the direct diffuse sky radiation can penetrate through 

the forest floor as compared to deciduous canopies except aspen, the 

higher transmission values in the blue was expected. The transmission 

in the visible region under the pine canopies appears to be quite 

similar to the "blue shade" light described by Seybold (1936) cited by 

Coombe (1957) and Vezina and Boulter (1966). Previous measurements by 

Federer (1964) and Federer and Tanner (1966) under spruce, white, red, 

and jack pines had marked qualitative similarities with relative trans­

mission values of about one percent beginning at 0.4 micron but with a 

relative minimum around 0.50 and 0.67 micron as well. According to 

Akulova et al. (1964), with a gap area in the canopy of 20 to 30 per­

cent, the transmission of the blue light begins to predominate regardless 

of species. 



0.72 to 1.35 microns: deciduous 

and conifers 
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In the wave range 0.72 to 1.4 microns the transmission was several 

orders of magnitude higher than in the visible region. Under deciduous 

canopies the relative transmission range from about 6 to 14 percent 

compared to about four to 10 percent under the coniferous canopies. 

All the spectral transmission had approximately the same general shape. 

However, there were some differences in the amplitude of transmission 

in certain wavebands. The water absorption in the 0.96 micron and 1.2 

microns is generally low and therefore the influence on leaf trans­

mission was minor. Under the deciduous canopy, the willow had the 

highest transmittance followed by mountain maple, aspen and aspen. All 

the canopies in both categories exhibited a steep increase in trans­

mittance after the 0.68 micron wavelength. Because the incident radia­

tion penetrating the canopies, whether as reflected, transmitted and 

scattered, was not very stable as the sun moved through the canopies, 

a definite conclusion cannot be made on the exact shape of the spectra 

obtained. However, it appears that under a uniform canopy, the general 

shape of the spectral transmission would be similar to that obtained 

in Figure 18 using single leaves. In this wave range (0.72 to 1.35 

microns) the contribution from direct diffuse sky radiation coming 

through the gaps in the crown is very small. 

1.35 to 2.4 microns: deciduous and 

conifers 

The primary absorption bands centered at 1.45 and 1.90 microns 

were very prominent under both deciduous and coniferous canopies in 
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Figures 19 and 20 . In this wave range, the spectra obtained indicated 

that the transmittance measurements made were strongly influenced by 

moisture content of the leaves, particularly, but not exclusively in the 

1.35 to 2.4 microns regions. Since in this region there is no component 

coming from the diffuse sky radiation, the amount reaching the forest 

floor depends on what has mainly been reflected, transmitted or diffused 

by the crown. For coniferous canopies, the tendency of the needles is 

to diffuse or scatter the radiation and, therefore, weakens the intensity 

reaching the forest floor. It is also possible that in Figure 20 the 

reflected direct component of the incident radiation or even the visually 

undetected sunflecks may have contributed considerably to the magnitude 

of the spectra obtained. 

Average spectral properties of 

deciduous and coniferous canopies 

The average relative spectral transmission for deciduous and 

coniferous canopies are shown in Figure 21. 

The average spectrum for deciduous canopies was computed from 19 

observations regardless of species. As mentioned earlier, the relative 

spectral distribution under a particular canopy was the average of at 

least two runs, going from 0.35 to 0.8 micron and back. Then the sensor 

was changed for the infrared portion and another run was made from 

about 0.6 to 2.6 microns and back. This gave a good overlap for the 

two spectra and served as a check whether a big change in the intensity 

occurred within the period, which was about five minutes. Therefore, 

the nineteen observations under the deciduous canopies were at least 

twice this number. 
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The number of observations for the conifers is 13. Since there 

were fewer conifer canopies used in the study, the runs under each 
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site were usually more. Another reason is the fact that it is less easy 

to find a uniform shade under this type of canopy. Measurements were 

made as late as April 1973. In September 1972 most of the measurements 

were made under deciduous canopies. 

In the visible region (0.4 to 0.72 micron) there was no significant 

difference in the relative transmittance values between conifers and 

deciduous stands used in this study. There was an absence of the strong 

peak in the green which was rather prominent in measurements using single 

leaves. On the other hand, the average relative spectral transmittance 

under the coniferous stand did not exhibit the green peak. Both spectra, 

however, had a slightly higher average relative transmission value in 

the blue (0.4 micron). There was a strong indication that this was due 

to gaps in the canopies where the component from the direct sky radiation 

was considerable. 

There was significant difference in the average relative spectral 

transmittance in the region of 0.75 micron to 1.30 microns. The 

spectral transmission under the deciduous stand was about twice that 

under the conifer stand throughout the near infrared with very low 

transmission in the water absorption band at 1.45 microns and practically 

no transmission at all in the 1.90 microns. 

Average spectral properties of 

deciduous and coniferous stands 

in absolute units 

Spectral measurements presented as percentages of that in the open 

may disguise important features of the variation of the absolute amounts 
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of the radiative flux. Therefore, the absolute quantities were calculated 

based on the solar spectrum at sea level in Figure 1. The spectral 

transmission of the deciduous and coniferous canopies was presented in 

Figure 22. 

The entire shape of the spectral transmission under both canopies 

exhibited a somewhat different distribution, especially in the visible 

region. The slightly higher relative transmission in the blue compared 

to the green in Figure 21 was now lower in the absolute value in Figure 

22. Since the highest intensity of the solar spectrum in the open is in 

the 0.5 micron band, this was now reflected in the absolute values. The 

small peak in the green was reflected as a slight shift of the peak to 

the 0.55 micron band. 

In the infrared region the water absorption bands were rather 

distinct at 0.95 and 1.15 microns and there was hardly any transmission 

beyond 1.7 microns. The transmission values of the deciduous stand still 

appeared to be approximately twice that .in the conifer stand. 
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SUMMARY AND CONCLUSIONS 

The spectral distribution of the global radiation from 0.4 to 2.5 

microns were measured during clear days between 10 a.m. and 2 p.m. under 

deciduous and coniferous canopies. 

In the visible region (0.4 to 0.7 micron) the average relative 

spectral transmissions under both canopies are about one percent, 

beginning at 0.4 micron and decreasing to about half a percent at 0.67 

micron. There is a small peak in the green (0.55 micron) transmission 

under the deciduous stands but there is none under coniferous canopies. 

The slightly higher transmission in the blue (0.4 micron) is attributed 

to the direct sky radiation penetrating through the gaps or holes in the 

canopies. There is a steep increase in the transmission at about 0.7 

micron. The increase is relatively higher under deciduous compared to 

coniferous stands. 

In the infrared region from 0.8 to about 1.4 microns the average 

relative spectral transmission under deciduous stands is about ten per­

cent which is double the transmission under the coniferous canopies. 

The transmission under deciduous stands is about twice that of the 

coniferous stands throughout the nea infrared with very low transmission 

in the water absorption band at 1.45 and practically no transmission at 

all in the 1.90 micron band. 

The absolute spectral transmission exhibits a somewhat different 

distribution, especially in the visible region. Since the highest 

intensity of the solar spectrum in the open is located in the 0.5 micron 

band, this is now reflected in the absolute values. The small peak in 



67 

the green under deciduous stand is now indicated as a slight shift of the 

peak to the 0.55 micron band. The water absorption bands are also 

distinct at the 0.95 and 1.15 microns with hardly no transmission at all 

beyond 1.7 microns. 

The spectral transmittance of forest canopies differs from those 

reported for single leaves in the proportion of radiation transmitted in 

the visible and infrared regions. For example, the ratio of the trans­

mission at 0.55 micron to that at 1.10 micron band is about one to twelve 

compared to about one to five in single leaves. Although the spectral 

reflectance and transmittance of single leaves of deciduous canopies are 

of similar distribution and magnitude, the spectra under actual canopies 

are not so. 

In theory, a conclusion can be made that an ideal canopy without 

gaps consisting of several layers of leaves will only allow a very small 

amount of transmission mostly in the green portion and somewhat more in 

the infrared between 0.72 and 1.40 microns. Under natural conditions in 

the forest there exists a very weak "green" shadow and a somewhat stronger 

"infrared" shadow. Under a coniferous stand without gaps in the canopy, 

there can hardly be any transmission in the visible region although there 

may still be a much weaker infrared shadow. The altered spectral 

composition may influence the understory vegetation as regards to 

photosynthesis, seed germination, and the photoperiodic responses. 

Where the canopy is very dense there can be no understory vegetation. 
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RECOMMENDATIONS 

Due to the complexity of the radiative field under the canopy, 

studies of the spectral composition of the solar radiation in different 

forests should continue and other species should be included. Data 

gained by measuring transmissivity and reflectivity of single leaves 

cannot readily be applied to the integral effect under canopies. Field 

measurements are necessary. 

Measurements should be extended to study under both clear sky and 

cloudy sky conditions. 

For physiological as well as heat budget considerations, the 

absolute values of the spectrum have to be considered; data preparation, 

however, is facilitated by using graphs of spectra, relative to the solar 

spectrum. 

Since many parameters influence the transmission and reflection 

of plant leaves, auxiliary data with each measurement are of advantage. 

They are: leaf area index, leaf maturation, leaf structure, and water 

content, as well as soil salinity. A log book of solar zenith angle, 

condition of the sky, and cloudiness (if applicable) is indicative. 

Measurements at disturbed sun, except for entirely overcast sky, should 

be avoided not to overcomplicate the measurements until a solid know­

ledge of the conditions at clear and overcast skies is available. 
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